
Validation of Lehman Laws of Growth
and Familiarity for Open Source Java
Databases

Arvinder Kaur and Vidhi Vig

Abstract Lehman’s laws of software evolution have been widely researched and
validated but there exists very few studies that verified these laws for databases in
open source. Database evolution jeopardize the semantical and syntactical cogency
of an applications, but, is their incremental augmentation restrained by the growth
and familiarity? To verify this, the current study explores the properties of growth
for database evolution by analyzing Lehman’s fifth and sixth law of software
evolution: Law of Conservation of Familiarity and Continuous Growth on three
open source Java databases spread across 63 releases for 17774 number of bugs.
The study found that Lehman’s laws of growth and familiarity applies on Open
Source Java databases also and laws were validated by all the datasets.

Keywords Open source � Databases � Lehman laws of software evolution � Bugs

1 Introduction

Lehman laws of software evolution [1–4] were defined and redefined from late
1960s to early 1990s. Lehman laid three Laws of software evolution

1. Law of Continuing Change
2. Law of Increasing Entropy
3. Law of Statistically Smooth Growth.

A. Kaur � V. Vig (&)
USICT, Guru Gobind Singh Indraprastha University, Sec 16-C Dwarka,
New Delhi, India
e-mail: vidhi.ipu@gmail.com

A. Kaur
e-mail: arvinderkaurtakkar@yahoo.com

© Springer Nature Singapore Pte Ltd. 2017
S.C. Satapathy et al. (eds.), Computer Communication, Networking
and Internet Security, Lecture Notes in Networks and Systems 5,
DOI 10.1007/978-981-10-3226-4_43

429



In 1978, modification of earlier laws and redesigning resulted in five laws, three
of which were the old ones only. The new laws introduced were Law of Invariant
Work Rate and Law of Incremented Growth.

Though, the first three laws remained same, only their definitions changed.
These laws were validated specifically on E (embedded) type of systems which
involved human interception. Unlike the other two types of programs (S (specified)
type and P (problem solving) type), E type programs showed evolutionary pattern
and changed as a result of change in its environment. Laws 3–5 experienced a new
version in year 1980 and were stated as:

3. Law of fundamental law of program evolution
4. Law of conservation of organizational stability
5. Law of conservation of familiarity

Continuous uncertainty in the software led to reformulations of laws in 1996.
The laws now increased from 5 to 8 and since then, are used as it is till date by the
researchers to prove or refute the laws for their study. The reason behind revision of
these laws was change in development and maintenance standards of the software,
with time. Thought of global users coming together to work and discuss software
was totally unimaginable until internet came into existence. Lehman totally aban-
doned Free Libre Softwares while formulating the earlier laws resulting in for-
mulation and reformulation of laws as the time progressed. Law VIII is one such
example, where libre softwares strongly hold and progress.

1. Law of Continuing Change
2. Law of Increasing Complexity
3. Law of Self-Regulation
4. Law of Conservation of Organizational Stability
5. Law of Conservation of Familiarity
6. Law of Continuing Growth
7. Law of Declining Quality
8. Law of Feedback Systems

Databases resembles a lot to E-type systems as they revolve around a community
(developers and users) that solve real world problems (use of queries) [5] therefore,
they must apply to Laws of Software evolution also. Evolution of databases has been
rarely studied for its entire lifecycle in spite of the fact that alteration in schema of
databases may lead an application to crash or behave abnormally [5]. In fact, no
study till date has explored the incremental growth and familiarity of these databases
for Open Source Java applications. The current study therefore specifically explores
the Law of Continuous Growth and Conservation of Familiarity for three open
source Java databases spread across 63 releases for 17774 number of bugs.

The related work is presented in Sect. 2 followed by Data Collection
Methodology in Sect. 3. Validation of Law of Evolution for Growth Attributes of
Databases is presented in Sect. 5 and Conclusion in Sect. 5.

430 A. Kaur and V. Vig



2 Related Work

Lehman laws of software evolution have been studied and validated widely. Many
researchers verified these laws on closed source and industrial projects. Lehman
himself proposed these laws for closed source applications. [6] in their study gave
an elaborate description on categorization of projects in S, P and E type. [7] on the
other hand, explained the methodology to perform empirical research in this field
for software evolution. Consequently, these laws were explored on different plat-
forms and programming languages by various studies [8].

A schema evolution jeopardize the semantical and syntactical validity of the
related applications and tremendously affect the users as well as developers [5].
Despite this fact, only four studies have verified evolution on databases [5, 6, 9, 10].
[6, 9, 10] studied only the statistical attributes of the evolution and fail to render
details of formal mechanism of database evolution. [5] on the other hand studied
evolution on open source databases and found that the evolution of databases
augmented in controlled manner. [11, 12] analyzed schema evolution for databases
too.

The current study on the other hand, focuses on growth and change brought in
open source Java databases and verifies fifth law, Law of Conservation of familiarity
and sixth law, Law of Continuous Growth only. Till date no study has explored these
laws individually and specifically for Java databases in open source. Moreover, this
study verifies these laws for every major and minor releases in details unlike [5]
study, who just explored the ripples brought in by releases as a whole.

3 Data Collection Methodology

The all-volunteer Apache Server Foundation (ASF) develops, stewards, and incu-
bates more than 350 Open Source projects and initiatives that cover a wide range of
technologies [13]. Apache Server Foundation was mined for database projects
whose bugs were tracked under Jira [14] repository to maintain uniformity of data.
These projects were then checked for their status. Projects under status ‘Active’were
kept in the pool for selection and randomly three projects were chosen for the study.

These datasets were then mined for their artefacts and used in the study. It must be
noted that Versions with status ‘Released’ and Bugs with status ‘Closed and
Resolved’ were considered for the study in order to avoid spurious results. This
process is described briefly in Fig. 1 and the datasets thus collected are presented in
Table 1 given.

Validation of Lehman Laws of Growth and Familiarity … 431



Apache Sever 
Foundation 

Projects

•Projects under 
Jira Bug 
repository 
selected

Random Selection 
of projects

•Projects with 
status 'Active' 
only were 
considered

Each dataset mined 
for its downloads, 
versions, bugs and 

other details

• Only closed and 
resolved bugs were 
considered

• Only released 
versions were 
considered

Fig. 1 Data collection process

Table 1 Datasets selected for the study

Datasets URL Category Brief description Date of
first release

Date of last
release

No of
versions

Pig www.pig.
apache.org

Hadoop,
database

Platform for
analyzing large
data sets on
Hadoop*

29/10/2007 06/06/2015 22

Hive www.
hive.
apache.org

Hadoop
database

Data warehouse
software
facilitates
querying and
managing large
datasets residing
in distributed
storage*

30/04/2009 15/02/2016 16

Zookeeper www.
zookeeper.
apache.org

Database Distributed
computing
platform*

13/11/2007 02/09/2015 25

*Information gathered from https://projects.apache.org/ Note The artefacts were last updated in
May 2016

432 A. Kaur and V. Vig

https://projects.apache.org/


4 Validation of Law of Evolution for Growth Attributes
of Databases

In Jira repository, every issues was categorized into five categories: Bug, Wish,
Task, Improvement and New feature [14]. The current study explored these issues
for the amount of change brought by each one of them. It was observed that bugs
contributed to more than 60% of change in all the datasets. Figure 2 given below
presents the details of the issues of datasets selected for the study.

To further statistically validate this behavior, single factor ANOVA was applied.
To verify this the following null and alternative hypothesis were laid.

H0: All the issues brings in equal change.
H0: At least one issue (Bugs) brings in more change than others.

The null hypothesis states that all the issues bring in equal change in the
application but since, p value is less than 0.05 (Table 2), we can reject the null
hypothesis and support the alternate hypothesis. Consequently, the study mined and
verified bugs for each version in order to identify their trend major and minor
versions. The study gathered details of 17774 bugs in 3 open source Java databases
for 63 versions.

Law of Conservation of Familiarity: This law proposes that system’s incremental
growth tends to remain statistically invariant or to decline. This is so, because the
developers need to understand the program’s source code and behavior. A corollary
is often presented, stating that releases that introduce many changes will be

Fig. 2 Graph displaying various reasons for change in datasets

Table 2 Result of single factor ANOVA

Source of Variation SS Df Ms F P-value F crit

Between Groups 7484626 5 1496925 3.74666 0.028252 3.105875

Within Groups 4794431 12 399535.9

Total 12279057 17

Validation of Lehman Laws of Growth and Familiarity … 433



followed by smaller releases that correct problems introduced in the prior release, or
restructure the software to make it easier to maintain [1–4].

To further understand the behavior of changes every datasets was mined for its
each and every versions. Since, it has already been observed that bugs were the
biggest reason for change (Fig. 2), bugs for every version of the datasets were
collected. Note: The study uses the word release and version synonymously in the
chapter.

While analyzing of these bugs, a trend was observed. Every major version had a
huge number of bugs followed by their minor versions with comparatively smaller
number of bugs. This trend was observed uniformly by all the datasets and are
presented in Fig. 3.

Law of continuous growth: Line of Code (LOC) for all the versions of the
datasets were gathered from their very first releases till their last release before May
2016 (because after this we started analysing the results). The study found and
increasing trend in LOC of all the databases validating the Law of Continuous
Growth for all the datasets. These graphs are not presented in the chapter since
graphs of change in LOC are presented in Fig. 4 given below. Increase in LOC can
be observed from these graphs also.

Interestingly, the study found that change in LOC (presented in Fig. 4) of the
major versions were far more greater than the change in LOC of the minor versions.
Further investigations revealed that every major version in the selected dataset
either brought a ‘New Feature’ or an ‘Improvement’ resulting in a sudden increase
in LOC. This sudden increase in LOC further brought an increase in bugs (in major
versions) also. The minor versions, on the other hand, were maintenance releases or
releases launched after unit testing and rectification of bugs.

Fig. 3 Graphs displaying the distribution of bugs in Pig, Hive and Zookeeper dataset with Bugs
on x axis and versions on y axis

434 A. Kaur and V. Vig



Hence, it can be stated after the analysis that Law of Continuous growth and
Conservation of Familiarity hold for the selected datasets. It can also be observed
that the releases (Versions) that bring maximum change are the “major versions” of
the software system and these releases are often followed by the “minor versions”
that bring smaller changes wherein bugs are the leading factor of change.

5 Conclusion

The study explored the laws concerning the growth attributes of database evolution
which is an indispensable and almost untouched field of software evolution. It was
observed that the databases continuously grow and expand periodically in the
system validating the Law of Continuous Growth in the system. The study dis-
covered that bugs were unanimously the biggest reason for change in the system
and should be paid due attention while validation of Laws of Software Evolution.
Law of Conservation of Familiarity was also validated by all the datasets and it was
found that releases that bring maximum change are the “major versions” and these
releases are often followed by the “minor versions” that bring smaller changes
wherein bugs are the leading factor of change.

Further research is going on to explore the generalizability of these results on all
the Open Source Java databases. Other laws of evolution are also under study for
this domain.

Fig. 4 Change in LOC of each version of selected datasets

Validation of Lehman Laws of Growth and Familiarity … 435



References

1. Lehman, M.M., Perry, D.E., Ramil, J.F.: On evidence supporting the FEAST hypothesis and
the laws of software evolution, 5th International Software Metrics Symposium, 84–88 (1998)

2. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and laws of
software evolution—the nineties view, International Software Metrics Symposium, 0–3
(1997)

3. Lehman, M.M., Ramil, J.F.: Rules and tools for software evolution planning and
management, Annals of Software Engineering, 11 (1), 15–44 (2001)

4. Lehman, M.M.: Laws of software evolution revisited, European Workshop on Software
Process Technology (1996)

5. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-Source Databases: Within, Outside, or Beyond
Lehman’s Laws of Software Evolution?. In International Conference on Advanced
Information Systems Engineering, 379–393 (2014)

6. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems:
foundations of the SPE classification scheme. Journal of Software Maintenance and
Evolution: Research and Practice, 18(1), 1–35 (2006)

7. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolution, IEEE
Transactions on Software Engineering, 25(4), 493–509 (1999)

8. Kaur, A., Vig, V.: Mining software repositories for empirical validation of laws of software
evolution for Java projects, International Journal of Computational Systems Engineering, 3,
155–173 (2016)

9. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.,: Metrics for the prediction of
evolution impact in etl ecosystems: A case study. Journal on Data Semantics, 1(2), 75–97
(2012)

10. Sjøberg, D.: Quantifying schema evolution. Information and Software Technology, 35(1), 35–
44 (1993)

11. Manousis, P., Panos V., Apostolos Z., George, P.: Schema Evolution for Databases and Data
Warehouses, In European Business Intelligence Summer School, 1–31 (2015)

12. Cleve, A., Maxime, G., Loup, M., Jerome, M., Jens, W.: Understanding database schema
evolution: A case study, Science of Computer Programming 113–121 (2015)

13. Apache Server Foundation, http://www.apache.org
14. Jira, https://www.atlassian.com/software/jira

436 A. Kaur and V. Vig

http://www.apache.org
https://www.atlassian.com/software/jira

	43 Validation of Lehman Laws of Growth and Familiarity for Open Source Java Databases
	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection Methodology
	4 Validation of Law of Evolution for Growth Attributes of Databases
	5 Conclusion
	References


