
A Comprehensive Comparison of Ant
Colony and Hybrid Particle Swarm
Optimization Algorithms Through Test
Case Selection

Arun Prakash Agrawal and Arvinder Kaur

Abstract The focus of this paper is towards comparing the performance of two
metaheuristic algorithms, namely Ant Colony and Hybrid Particle Swarm Opti-
mization. The domain of enquiry in this paper is Test Case Selection, which has a
great relevance in software engineering and requires a good treatment for the
effective utilization of the software. Extensive experiments are performed using the
standard flex object from SIR repository. Experiments are conducted using Matlab,
where Execution time and Fault Coverage are considered as quality measure, is
reported in this paper which is utilized for the analysis. The underlying motivation
of this paper is to create awareness in two aspects: Comparing the performance of
metaheuristic algorithms and demonstrating the significance of test case selection in
software engineering.

Keywords Optimization ⋅ Meta-heuristics ⋅ Ant colony optimization ⋅ Par-
ticle swarm optimization ⋅ Regression testing

1 Introduction

Every software system enters into the maintenance phase after release and keeps
evolving continuously to provide the functionality required and to incorporate
changing customer needs. Regression testing is an activity that tries to find any bugs
introduced during the maintenance phase. One approach is to re-run all the test

A.P. Agrawal (✉)
Department of Computer Science and Engineering, Amity University,
Noida, Uttar Pradesh, India
e-mail: apagrawal@amity.edu

A. Kaur
University School of Information and Communication Technology, GGSIP University,
New Delhi, India
e-mail: arvinderkaurtakkar@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018
S.C. Satapathy et al. (eds.), Data Engineering and Intelligent Computing,
Advances in Intelligent Systems and Computing 542,
DOI 10.1007/978-981-10-3223-3_38

397



cases available from an earlier version of the software system [1]. But it is often too
costly in terms of time and effort required to rerun all the test cases and is practically
infeasible [2]. Two approaches have therefore emerged to optimize the regression
test suite—Regression Test Case Selection and Prioritization [3]. The focus of this
paper is on Regression Test Case Selection for re-execution to reduce the overall
effort. Selecting the test cases would give the opportunity to optimize some per-
formance goals like minimize execution time and maximize fault coverage.

The objective of this paper is to use two nature inspired metaheuristic
techniques—Ant Colony Optimization and Hybrid Particle Swarm Optimization in
testing for the purpose of minimizing the time required in regression testing by
selecting the test cases and compare their performance. These two algorithms were
empirically evaluated on flex object from the SIR repository and results of both the
algorithms are compared on the basis of Fault Coverage and Execution Time.
Results indicate that hybrid Particle Swarm Optimization outperforms the Ant
Colony Optimization algorithm.

Rest of the paper is organized as follows: Sect. 2 briefly discusses the Regres-
sion Testing and states the Regression Test Case selection Problem. Sections 3 and
4 give an overview of the Ant Colony Optimization and Hybrid Particle Swarm
Optimization algorithms respectively. Section 5 presents experimental design and
results obtained results. Section 6 discusses the results. Finally Conclusion and
Future work conclude the paper.

2 Problem Definition

2.1 Regression Testing

Primary purpose of Regression Testing is to increase the performance of software
systems in terms of productivity and efficiency and to ensure quality assurance of
applications [4]. The main objective of regression testing is to assure that the
modification in one part of the software does not adversely affect the other parts of
the software [5].

2.2 Regression Test Case Selection

Regression Test Case Selection is choosing a subset of test cases from the existing
set of test cases that are necessary to validate the modified software. It reduces the
testing cost by reducing the number of test cases to test the modified program [6, 7].

We consider following two criteria for the selection of test cases:

398 A.P. Agrawal and A. Kaur



2.2.1 Fault Coverage

The aim is to maximize the Fault coverage. Let T = {TI, T2,…, Tn} indicates a test
suite and F = {Fl,F2, …,Fm} indicates faults covered by a test case [8]. F(Ti)
indicates a function which returns the subset of faults covered by a test case. Then,
the fault coverage of a test suite is given by

Fault Coverage = 100 * ∑
s

t=1
⋃
s

t=1
F Tið Þf g ̸k ð1Þ

where s reflects the selected test cases and k is the total number of selected test
cases.

2.2.2 Execution Time

The execution time should be minimized. Execution time is defined as the total time
required to execute a test [9]. The total Execution time of selected test cases is given
by

∑
s

t=1
Time ð2Þ

where s = selected test cases.
However test case selection could reduce the rate of detection of faults because

the effectiveness of a test suite could decrease with the decrease in the size of a test
suite.

3 Ant Colony Optimization for Optimizing Test Suites

Ants demonstrate complexity in their social behavior which has been attracting the
attention of humans since a long time. Apparently the most marked behavior is the
formation of ant streets. The most astonishing behavioral pattern demonstrated by
ants is that they are able to find the shortest path from its nest to food source. It is
proven that this behavior is the result of communication by a hormone called
pheromone, an odorous chemical substance ants deposit and smell [10]. Computer
scientists are simulating real ants in artificial ants and one such example is ant
colony optimization.

A Comprehensive Comparison of Ant Colony and … 399



Description of Algorithm

1. Test Cases are treated as a graph.
2. Each node on the graph has a specific score.
3. All ants start from the same place i.e. first node.
4. Ants deposit pheromone on the paths i.e. edges between two nodes.
5. Ants move on any node within 20 nodes from node number.
6. Ant follows route with [τ]*[η] probability.
7. η = (Number of faults)/(execution_time).
8. τ = τ + τ0 * ρ.
9. where ρ = 0.9.

10. τ0 = 1/Cnn; where Cnn is distance between current and next node.
11. Ants can only move forward.
12. Pheromone is appended on the paths.

4 Hybrid Particle Swarm Optimization
for Test Case Selection

Particle Swarm Optimization is a population based memory using optimization
technique. In PSO, each particle has its own position vector and velocity vector
[11]. Position vector represents a possible solution to a problem and also a velocity
vector. In testing, position means rank assigned to a test case in a test suite, whereas
the velocity is the coverage or the execution time taken by a test case. Every particle
stores its best position seen so far and also the best global position obtained through
interaction with its neighbor particles. Particle Swarm Optimization algorithm
guides its search by adjusting the velocity vector and Position of particles.
Objective function is responsible for moving the particles. Particles which are very
far from the optimal solution have higher velocity as compared to the particles that
are very near to the optimal solution. Many variants of PSO with Genetic Algo-
rithm, Gravitational Search Algorithm, Krill Herd and Cuckoo Search Algorithm
etc. has been used by previous researchers to solve many optimization problems
like frame selection in image processing, aircraft landing, feature selection in
software defect prediction, quadratic assignment problem etc. [11–19].

This paper presents Hybrid PSO with Genetic Algorithm for test case selection.
The algorithm uses Crossover and Mutation operator of genetic Algorithm and uses
the Velocity Vector of PSO to guide the particles to Global Best Solution.

Description of Algorithm

1. Read Test cases from the text file and choose them randomly from the test suite.
2. Read execution time and statements covered by each test case.
3. Set MAX_VEL, MIN_VEL, MAX_LEN, MIN_LEN, TOTAL_PARTICLES

and MAX_ITER.

400 A.P. Agrawal and A. Kaur



4. Initialize each particle with zero Velocity and random Length. Each Particle
contains set of Test Cases.

5. for i = 0 to MAX_ITER.

i. Evaluate Fitness of Each Particle.
ii. Use Bubble sort to sort Particles in the ascending order of their fitness

level.
iii. Set Velocity of Each Particle.
iv. Update Each Particle on the basis of the changes required (Particle with

bad fitness level have higher changes).
v. Apply Mutation with 1, 2 and 5% rate on each particle.
vi. Determine Global and Local Optimal Values.

5 Experimental Design and Results

Our Empirical study addresses the following research questions:

Table 1 Results of ant colony optimization

Selected test cases Execution time of
selected test cases

Execution
time for
program

Fault
coverage

T1, T3, T12, T17, T19, T21, T37, T54, T69,
T77, T78, T85, T89, T106, T125, T129, T146,
T153, T168, T178, T192, T199, T217, T236,
T237, T243, T247, T266, TT267, T271, T289,
T304, T314, T325, T343, T358, T368, T375,
T379, T398, T416, T433, T438, T441, T459,
T467, T477, T487, T488, T495, T502, T519,
T523, T539, T554, T559, T563, T564, T566,
T567

14.48 0.35 16

Table 2 Result of Hybrid PSO at mutation probability 1, 2 and 5%

Selected test cases Execution time of
selected test cases

Execution time
for program

Fault
coverage

Mutation probability 1%
T303, T258, T164 0.872175 30.81 16
Mutation probability 2%
T553, T308, T258, T414 1.07353 33.455 16
Mutation probability 5%
T12, T412, T118, T308 1.06982 33.66 16

A Comprehensive Comparison of Ant Colony and … 401



T
ab

le
3

C
om

bi
ne
d
R
es
ul
ts
of

A
C
O

an
d
H
yb

ri
d
PS

O

A
lg
or
ith

m
M
ut
at
io
n

pr
ob

ab
ili
ty

N
o.

of
te
st
ca
se
s

se
le
ct
ed

T
ot
al

ex
ec
ut
io
n

tim
e
of

se
le
ct
ed

te
st
ca
se
s

T
ot
al

no
.

of
fa
ul
ts

co
ve
re
d

T
ot
al

no
of

te
st

ca
se
s

T
ot
al

ex
ec
ut
io
n

tim
e
of

al
lt
es
t

ca
se
s

T
ot
al

no
.
of

fa
ul
ts

%
ag
e
of

te
st
ca
se
s

se
le
ct
ed

%
ag
e
of

fa
ul
ts

co
ve
re
d

E
xe
cu
tio

n
tim

e
of

A
lg
o.

%
ag
e
of

tim
e

re
qu

ir
ed

A
C
O

N
/A

60
14

.4
8

16
56

7
17

0.
4

19
10

.5
8

84
.2
1

0.
35

8.
7

H
yb

ri
d

PS
O

1%
3

0.
87

16
56

7
17

0.
4

19
0.
52

84
.2
1

30
.8
1

18
.5

H
yb

ri
d

PS
O

2%
4

1.
07

16
56

7
17

0.
4

19
0.
70

84
.2
1

33
.4
5

20
.2

H
yb

ri
d

PS
O

5%
4

1.
06

16
56

7
17

0.
4

19
0.
70

84
.2
1

33
.6
6

20
.3

402 A.P. Agrawal and A. Kaur



• RQ1: Which algorithm is optimal for Regression Test Case selection?
• RQ2: How much saving can we achieve by Regression Test Case selection for

the benchmark problem?

We have used Flex—Fast Lexical Analyzer as the object under test which is
available in open source from Software Artifact Infrastructure Repository [20]. It
consists of 567 test cases and 19 seeded faults and execution time of each test case.
Test cases have been numbered from T1 to T567 and faults have been numbered
from f1 to f19. We ran both the algorithm on the input data set and collected results.
We have considered bi-objective optimization as we want to maximize the fault
coverage and minimize the execution time.

Table 1 above displays the results obtained upon execution of Ant Colony
Optimization Algorithm on the input data set.

Table 2 above display the best results obtained upon execution of Hybrid Par-
ticle Swarm Optimization algorithm for particle size 30 and mutation probabilities
of 1%, 2% and 5% respectively. Particle size was kept constant at 30 in each run and
algorithm was executed 30 times for 500 numbers of iterations to avoid any biases.

6 Discussion on Results

Table 3 above displays the combined results of both the algorithms. It can easily be
seen from the statistics below that the results are quite satisfactory. In case of ACO
less than 11% of test cases have been able to detect 84.2% of the faults and requires
only 8.7% of total time including the running time of the algorithm. Hybrid PSO
algorithm has been run for 30 particles and for 500 iterations in each run and the
best of 30 runs has been taken as the observed result as follows for Mutation
Probability 1%, 2% and 5% respectively. Hybrid PSO is able to detect 84.21% faults
with only 0.7% of the total test cases which is a very cost efficient in comparison of
ACO, though the running time of Hybrid PSO is much more than ACO. Although
hundred percent of the faults have not been identified this is still a great achieve-
ment since the tradeoff is quite high.

It is evident from the results that both the algorithms are optimal for regression
test case selection which answers our research question 1. Hybrid PSO outperforms
ACO in number of test cases selected but requires more time to run itself than ACO.
We can save around 90% of the execution time through test case selection which
answers our research question 2.

7 Conclusion and Future Scope

Primary focus of this paper was to present a comprehensive comparison of two
meta-heuristic algorithms in the domain of software testing. Extensive experiments
were conducted on the benchmark object flex and results obtained answered the

A Comprehensive Comparison of Ant Colony and … 403



research questions in study. This allows future researchers to conduct this kind
of study for number of metaheuristic algorithms on number of benchmark
problems.

References

1. Mirarab, S., Akhlaghi, S., Tahvildari, L.: Size-constrained regression test case selection using
multi-criteria optimization. IEEE Trans. Softw. Eng. 38(4), 936–956 (2012)

2. Rothermel, G., Harrold, M.J., Dedhia, J.: Regression test selection for C++ software. Softw.
Test. Verif. Reliab. 10(2), 77–109 (2000)

3. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

4. Mao, C.: Built-in regression testing for component-based software systems. In: 31st Annual
International on Computer Software and Applications Conference, 2007. COMPSAC 2007,
vol. 2, pp. 723–728. IEEE (2007)

5. Ali, A., Nadeem, A., Iqbal, M.Z.Z., Usman, M.: Regression testing based on UML design
models. In: 13th Pacific Rim International Symposium on Dependable Computing, 2007.
PRDC 2007, pp. 85–88. IEEE (2007)

6. Nagar, R., Kumar, A., Singh, G.P., Kumar, S.: Test case selection and prioritization using
cuckoos search algorithm. In: International Conference on Futuristic Trends on Computa-
tional Analysis and Knowledge Management (ABLAZE), pp. 283–288, IEEE (2015)

7. Jeffrey, D., Gupta, N.: Experiments with test case prioritization using relevant slices. J. Syst.
Softw. 81(2), 196–221 (2008)

8. Kaur, A., Goyal, S.: A bee colony optimization algorithm for fault coverage based regression
test suite prioritization. Int. J. Adv. Sci. Technol. 29, 17–30 (2011)

9. Kumar, M., Sharma, A., Kumar, R.: An empirical evaluation of a three-tier conduit
framework for multifaceted test case classification and selection using fuzzy-ant colony
optimisation approach. Softw. Pract. Exp. 45(7), 949–971 (2015)

10. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.
1(4), 28–39 (2006)

11. Liu, B., Wang, L., Jin, Y.H.: An effective hybrid pso-based algorithm for flow shop
scheduling with limited buffers. Comput. Oper. Res. 35(9), 2791–2806 (2008)

12. Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving the economic
emissions load dispatch problem. Int. J. Comb. (2011)

13. Chang, X., Yi, P., Zhang, Q.: Key frames extraction from human motion capture data based
on hybrid particle swarm optimization algorithm. In: Recent Developments in Intelligent
Information and Database Systems, pp. 335–342. Springer International Publishing (2016)

14. Wang, G.G., Gandomi, A.H., Alavi, A.H., Deb, S.: A hybrid method based on krill herd and
quantum-behaved particle swarm optimization. Neural Comput. Appl. 27(4), 989–1006
(2016)

15. Girish, B.S.: An efficient hybrid particle swarm optimization algorithm in a rolling horizon
framework for the aircraft landing problem. Appl. Soft. Comput. 44, 200–221 (2016)

16. Cui, G., Qin, L., Liu, S., Wang, Y., Zhang, X., Cao, X.: Modified PSO algorithm for solving
planar graph colouring problem. Prog. Nat. Sci. 18(3), 353–357 (2008)

17. Kakkar, M., Jain, S.: Feature selection in software defect prediction: a comparative study. In:
2016 6th International Conference-Cloud System and Big Data Engineering (Confluence),
pp. 658–663. IEEE (2016)

18. Tayarani, N.M.H., Yao, X., Xu, H.: Meta-heuristic algorithms in car engine design:
a literature survey. IEEE Trans. Evol. Comput. 19(5), 609–629 (2015)

404 A.P. Agrawal and A. Kaur



19. Agrawal, A.P., Kaur, A.: A comparative analysis of memory using and memory less
algorithms for quadratic assignment problem. In: 2014 5th International Conference on
Confluence the Next Generation Information Technology Summit (Confluence), pp. 815–820.
IEEE (2014)

20. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing
techniques: an infrastructure and its potential impact. Empir. Softw. Eng. 10(4), 405–435
(2005)

A Comprehensive Comparison of Ant Colony and … 405


	38 A Comprehensive Comparison of Ant Colony and Hybrid Particle Swarm Optimization Algorithms Through Test Case Selection
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Regression Testing
	2.2 Regression Test Case Selection
	2.2.1 Fault Coverage
	2.2.2 Execution Time


	3 Ant Colony Optimization for Optimizing Test Suites
	4 Hybrid Particle Swarm Optimization for Test Case Selection
	5 Experimental Design and Results
	6 Discussion on Results
	7 Conclusion and Future Scope
	References


