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Abstract Based on the traditional particle degradation and depleted of particle
filter and the number of particle set, which cannot be adaptive to change brought by
the filtering accuracy and convergence rate of decline. A new methods of Inno-
vation and resampling particle filter was applied to the paper. This approach can
solve the problems mentioned above. The algorithm first uses the observation
information to establish the particle distribution program of the resampling. Then to
conduct a resampling on the basis of the initial resampling. The second resampling
used the particle cross aggregation algorithm. This can improve efficiency
of the particles, and avoid the increase of the calculation when using too many
particles. The simulation result based on the DR/GPS shows that compared with
the traditional PF algorithm, the algorithm can improve the accuracy and stability
of the filter.

Keywords Double-resampling ⋅ Particle filter ⋅ Innovation ⋅ Adaptive ⋅
Target tracking

1 Introduction

The particle filter uses a weighted particle set to describe the probability distribution
of state variable, using Monte Carlo method to realize Recursive Bayesian filter, it
is an effective nonlinear non-Gaussian system suboptimal prediction method, and
has been successfully applied in the field of target tracking [1–3]. But in order to
correctly approximate the posterior probability density, it needs a large quantity of
frequency samples. However, a large number of update operations of particle
optimization will lead to lower efficiency of the algorithm. It is the main defect of
particle filter.
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In order to improve the efficiency of particle filter, the most direct and effective
way to improve the efficiency of particle filter is to adjust the size of the particle
size. It can achieve the purpose of filtering accuracy and reasonable operation
speed. In fact, the particle filter has the problems of particle degeneracy and
impoverishment, it leads to filter failure because too few effective particles, the most
fundamental reason is that the probability distribution description ability is insuf-
ficient, the filter is premature convergence. FOX [4] proposed a Kullback-Leibler
Distance (KLD) sampling method which realize the adaptive adjustment of particle
sets by computing the K-L distance between posterior probability distribution and
maximum likelihood probability distribution of particle sets. In addition, some
researches about adaptive adjustment method [5] of particle set were proposed to
reduce the number of sampled particles [5], but the rationality of particle distri-
bution is not considered.

At the present, the main research means is to improve the micro-ability and
adaptability of particle set [4]. Therefore, on the basis of analyzing a large number
of literature, this paper puts forward a kind of double sampling adaptive particle
filter algorithm. First, the proposed algorithm takes the new observed value of the
target state and the residual error of the prediction result as the current observation.
Then, according to the new information to reflect the relationship between the
accuracy of the target prediction and the uncertainty of the system, the noise
variance of the new information estimation system is determined, and use it to
determine the sampling of the proposed distribution [6–9]. If predication is accu-
rate, this method can obtain accurate density estimation only using a small amount
of particles. When target motion changes greatly, the method uses more samples to
ensure accurate tracking. The actual operation is to use a double-resampling when
the sample set has more particles. First step, according to the new information of
observation to control the number of particles double sampling, it can enhance the
ability to predict the particle set. The second step, according to the particle space
distribution to control particle size, it can ensure the consistency of particle size and
particle spatial scale. This method has the rationality of spatial distribution. The
Monte Carlo simulation experiment shows that this method can balance the particle
diversity in prediction stage and particle size in update phase. Under the premise of
keeping the accuracy of the particle filter, it can effectively reduce the calculation of
the particle filter.

2 The Resampling Distribution Scheme Based
on the Observed Innovation

Considering the following nonlinear discrete dynamic system is:

xt+1 = ftðxt,wtÞ
zt = htðxt, vtÞ

�
ð1Þ
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In this formula, xt ∈ Rn is n dimensional vector state vector at time t. zt ∈ Rm is
m dimensional observation vector, wt is system noise, vt is observation noise, they

variance obey
ðσtxÞ2

ðσtzÞ2
" #

distribution.

Assume xt̂ and xpt are the estimation and predication status value in step t
respectively. And et = xt̂ − xpt is observation innovation at current time. Assume that
state vector xk predicts more accurately, then σtx should be small, the new sampling
should be located in a small neighborhood prediction area. However, when xt
predicts not accurate, σtx should be taken larger value. Enable the sampling distri-
bution range is large enough to contain the real target state. Thus, the system noise
variance can be express as:

σtx =
minðet, σmaxÞ if et ≥ σt− 1

x
maxðαet− 1, et, σminÞ if et < σt− 1

x

�
ð2Þ

In order to avoid poor particle phenomena caused by poor system noise, setting
the lower limit of the system noise variance is σmin, and the σmin is the system
maximum noise variance. In order to avoid the estimation error makes the system
noise decrease quickly, the algorithm uses the attenuation factor α to control the
reduction speed of noise variance, in the experiment α=0.9.

The number of particle is related to system noise, when the system noise is
small, using a small amount of particles can approximate the target distribution; and
when the system noise is bigger, the particle sampling range will be expanded, so
should increase the number of particles. Using Sigmoid function to represents the
relationship between the number of particles and uncertainty measure.

Nt =Nmin + Nmax −Nminð Þ 2
1+ exp − β rk − rminð Þð Þ − 1

� �
ð3Þ

In the formula, Nmin expresses the min particles, and Nmax expresses the max
particles. The uncertainty measure rt = σtxσ

t
y of the target state in the t moment is

estimated according to the state covariance. The lower limit of uncertainty measure
is rmin = σxminσymin, β=0.01 is control coefficient.

3 Adaptive Particle Filter Algorithm Based
on Double-Resampling

3.1 Particles Sparse Polymerization Double-Resampling

When the target motion changes greatly, or the carrier surrounding environment
changes, the algorithm needs more samples to ensure the effectiveness of the filter,
and at this time, the spatial distribution of particles also shows clustering trend. At
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this time, the particles’ space differentiation appears redundant causing that
updating particles centralization values consumes too much computing resources.
In this paper, before updating the weights of particle set, the algorithm weighted
aggregation for particles based on spatial scale mesh of particles, to reduce the size
of the particle set. So the algorithm is called particles sparse polymerization
resampling [10].

Firstly, this paper gives the definition of a grid dividing the state space:
Definition 1 if dividing the i dimension of n dimensional space S into mi closed

left and right open intervals which are equal length. Thus, it can divide the whole
space S into m1 ×m2 ×⋯×mn disjoint n dimensional grid gn.

Definition 2 using the sample particles which attach to grid cell gi on the space to
express grid density of gi, denoted as den gið Þ. As den gið Þ=0, it says gi is empty;
otherwise, it says gi is not empty. The current grids and the adjacent grids in its
lðl< nÞ dimension direction compose a corresponding mesh grid set of 3l scale.
This paper uses “#” to mark the grid set relevant variables. The k dimensional grid
set corresponding to grid gi is marked #gli. When l= n, #gli is called the whole
dimensional grid set. When l < n, #gli is called the non-whole dimensional grid set.
Based on the weights of the particles, taking weighted average with all the particles
within the unit space to obtain a polymeric particle, and the unit space is called the
polymerization unit. The particle aggregation method with a grid set as polymer-
ization unit implementation is called cross polymerization.

3.2 Particle Cross Polymerization

Assuming that the particles are distributed in a k non-empty grid cell, the grid cell
containing Nk particles can be described as gk: ωi

k, x
i
k

��i=1, 2, . . .Nk
� �

, in the
formula k=1, 2, . . . ,K, xik denotes as the state of particle, ω

i
k denotes as the weight

of particle, the corresponding l dimension grid set is #gik: xik,ω
i
k

��i=1, 2, . . . #Nk
� �

,
#Nl

k is the number of particles including in the polymerization unit #glk . Taking the
grid set as the polymerization unit, all particles within the polymerization unit
weight combination to get the aggregated particles of the central grid. Polymer-
ization equation is:

xk̂t =
∑

#Nl
k

i=1 x
i
kω

i
k

∑
#Nl

k
i=1 ω

i
k

ωk̂
t =

∑
#Nl

k
i= 1 ω

i
k

3l

8>><
>>: ð4Þ

In the formula, ðxk̂t , ω̂k
t Þ expresses polymeric particle corresponding to the k grid.

Polymerization achieves consistent with the particle collection size and particle
space size. Polymeric particle shows that higher weight of the particle has a greater
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impact on spatial distribution, which has a reasonable distribution of computing
resources according to the weight of the particle. Each particle average weights to 3l
polymeric particle (l is the dimension of space), averaging the distribution of par-
ticle on the certain extent, it can effectively relieve the weight degradation problem
caused by reason that weight is too concentrated to a single particle. Thus, the small
weight particles will not be abandoned, and it can avoid the phenomenon of particle
diversity scarcity caused by the particle weight sampling, which effectively reduces
the weight concentration.

3.3 Steps of Adaptive Double-Resampling Particle Filter
Algorithm

Combining particle cross aggregation algorithm, the following gives the specific
steps of adaptive double sampling particle filter.

(1) Initialization

According prior distribution p x0ð Þ to initialize sampling set xi0
� �N0

i=1, and
ordering the particle weight is ωi

0 =
1
Nn
, i=1, . . . ,N0, t=1.

(2) Sampling

According to the sampling weight ωi
t− 1, choosing Nt samples from sampling set

xit− 1

� �Nt− 1

i=1 , then a group new sampling set x ̂it− 1

� �Nt

i=1 is obtained.

(3) Updating the weights

Each sampling value calculates the new sampling according to the state transi-

tion equation xit = xît− 1 +ωt, i=1, . . .Nt in the sampling set xît− 1

� �Nt

i=1.
Ordering the weight of sampling i for the confidence coefficient of its corre-

sponding candidate item Oi, the normalization weights is ωi
t = g Oi,Ωð Þ.

(4) Double-resampling

According to the grid scale L, dividing the State grid lattice space
gkjk=1, 2, . . . ,Ktf g and calculating the grid density;

(1) According formula (4), taking particles sparse polymerization
double-resampling to generate polymeric particles set S ̂t = xkt ,ω

k
t

� �
k=1, 2, ...,Nt

.

(2) According to the Update Model p otjxtð Þ, updating the weights ωk
t

��
k=1, 2, ...,Nt

of
polymeric particles.

(3) Normalize the particle weights ωi
t.

(5) Estimate the target state: xt̂ = ∑
N

i=1
ωi

tx
i
t.
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(6) Calculate predictive state: xpt = ∑
Nt

i=1
sit.

(7) Calculate observation innovation: et = xt̂ − xpt .
(8) According step 3 to update the number of samples Nt+1.
(9) Return to the step 2, going on the steps until the end of tracking.

The following figure is the algorithm structure (Fig. 1):

. . .

Fig. 1 The algorithm
structure
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4 Simulation Experiment and Analysis

4.1 Establish DR/GPS Integrating System Model

Taking the DR/GPS integrated navigation system as an example, the model of
DR/GPS integrated navigation system is established as follows:

Xt =ϕt, t− 1Xt− 1 +Wt

Zt = hðXtÞ+Vt

�
ð5Þ

Here, the state transition matrix, the observation matrix and the noise matrix are
respectively such as:

ϕt, t− 1 = diag Fe,Fn½ �

Fe =
1 T ð− 1+ αeT + e− αeTÞα− 2

e
0 1 ð1+ e− αeTÞα− 1

e
0 0 e− αeT

2
4

3
5,Fn =

1 T ð− 1+ αnT + e− αnTÞα− 2
n

0 1 ð1+ e− αnTÞα− 1
n

0 0 e− αnT

2
4

3
5;
ð6Þ

hðXtÞ= xe xn vnae − vean
v2e + v2n

T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2e + v2n

ph iT
ð7Þ

Wt = 0 0we 0 0wn½ �T ; Vt = ½v1 v2 v3 v4�T .

Here, αe =1 ̸τe, αn =1 ̸τn, τe, τn is time constant of vehicle about Eastward and
Northward maneuver acceleration respectively. we, wn is white noise sequence
which is meeting the Nð0, σ2eÞ and Nð0, σ2nÞ distribution respectively. v1 and v2 is
the observed noise from the output of the GPS receiver in the East position and
North position, respectively. They are both approximated as 0, σ21

	 

and ð0, σ22Þ

Gaussian white noise. εω is gyro drift, it is approximated as (0,σ2ε ) Gaussian white
noise. εs is the observation noise of the mileage meter, according to the actual
situation, it is assumed to be non-Gauss, and the corresponding noise distribution is
shown in Fig. 2, and the likelihood probability density function is approximate to
the formula (8).

pðztjxtÞ=
1
2
exp −

1
2
ðzt − hðxtjt− 1Þ− n ̄ÞTR− 1ðzt − hðxtjt− 1Þ− n ̄Þ

� �

+
1
2
exp −

1
2
ðzt − hðxtjt− 1Þ+ n ̄ÞTR− 1ðzt − hðxtjt− 1Þ+ n ̄Þ

� � ð8Þ
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4.2 Simulation Experiment and Analysis

In order to analyze the performance of the proposed algorithm, this paper uses
Matlab as the development language, simulation experiment is carried out on the
platform of DR/GPS integrated navigation system.

The initial conditions of simulation and the related parameters are:

T =1s; σ2e = σ2n = ð0.3m ̸s2Þ2; ae = an =1;

σ21 = ð15mÞ2; σ22 = ð16mÞ2; σ2s = ð0.3m ̸s2Þ2;

Respectively, initial state value, initial state error variance matrix, initial process
noise and measurement noise variance matrix is:

x0 = ½0 0.1 0 0 0.1 0�T ;
P0 = diag½100, 1, 0.04, 100, 1, 0.04�;R0 = diagð152, 162, 0.0052, 0.72Þ;
Q0 = diagð0.12, 0.52, 0.32, 0.12, 0.52, 0.32Þ

The simulation time is set to 400 s. In order to verify the effectiveness of the
proposed algorithm under different noise conditions. In the process of simulation,
the vector is assumed to be a variable acceleration motion toward east and north in
150–250 s whose acceleration is 3sin(t/10)m/s2. In this process, the noise variance
is constant, and the mean value is enlarged to 5 times. Within the 250–400 s, the
carrier is doing the uniformly accelerated motion whose acceleration is 2 m/s2. At
this point, the observation noise covariance is enlarged to 3 times of the initial value
to increase the observation noise.

According to the simulation conditions, we use PF and APF algorithm proposed
in this paper to simulate, the simulation results are shown in Figs. 2, 3, 4 and 5 and
Table 1.
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Fig. 2 Process noise mean
trace
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Figures 2 and 3 describe the variation of the noise in the simulation process. The
comparison of the position error about the Eastward and the northward is given in
Figs. 4 and 5. From Figs. 4 and 5, due to the irregular change of the noise, we can
see that the traditional PF algorithm is less than the APF algorithm in the con-
vergence speed and stability. It is mainly due to the traditional PF algorithm has
more or less the particle degeneracy and impoverishment, the number of particles
can’t be changed adaptively. In this paper, the proposed algorithm can effectively
overcome the above problems by changing the particle size and distribution.

In order to further compare the estimation accuracy of the two algorithms, we
selected different particle numbers. The PF algorithm and APF algorithm are used
to investigate the mean square root mean square error (ARMSE), the filter effi-
ciency and the state estimation time. The simulation results are shown in Table 1.

Filtering efficiency in the Table 1 can be expressed as η= 1
EARMSN

. The higher
filtering efficiency shows that the higher filtering accuracy can be obtained with less
number of N particles. From the Table 1 we can see that when the number of
particles are in the same time, we can choose N = 100, so APF algorithm has higher
estimation accuracy and filtering efficiency, and needs shorter state estimation time
than PF algorithm. When the number of particles are the same, choosing N = 500,
and the EARMS of the PF algorithm is 0.1993, it shows that the filtering accuracy is
improved and the filtering efficiency η and the state estimation time are decreased.
This shows that the filtering precision is improved at the expense of filtering effi-
ciency and state estimation time. While under the premise of the EARMS of APF
algorithm is smaller than PF (i.e. filtering precision is high), the filtering efficiency
is higher than PF times, the state estimation time is instead smaller than PF. This
shows that the APF algorithm can achieve greater efficiency with shorter time and
higher accuracy.

5 Conclusion

In this paper, an adaptive particle filter based on adaptive particle filter is proposed.
It is aiming at these problems which are occurred in traditional particle filter. These
problems are such as particle degradation problem, dilution problem, and the
number of particle sets can’t be self-changed to bring about the decline of filtering
precision and convergence rate. The algorithm can determine the number of par-
ticles by real-time detection of the observation information. In the double sampling

Table 1 Comparison of
simulation results under
different particle numbers

Algorithm N η ̸% EARMS Estimated time/s

PF 100 2.563 0.3901 0.305
500 1.004 0.1993 0.556

APF 100 6.715 0.1489 0.198
500 8.811 0.0227 0.287
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process, this particle cross polymerization method is effective to improve the par-
ticle degeneracy and impoverishment problem and more effective improve the fil-
tering precision. The validity of the algorithm is proved by DR/GPS simulation
experiment.
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