Evolvable Hardware Architecture Using
Genetic Algorithm for Distributed
Arithmetic FIR Filter

K. Krishnaveni, C. Ranjith and S.P. Joy Vasantha Rani

Abstract The aim of the paper is to design evolvable hardware (EHW) architecture
for Finite Impulse Response Filter using Genetic Algorithm. Evolvable hardware
refers to hardware that can change its behaviour (parameters such as coefficients)
according to the changes in its environment. To update the filter coefficients
adaptively, genetic algorithm was used. The proposed filter architecture was
implemented with Xilinx Spartan 6 FPGA (XC6SLX45-CSG324) Trainer Kit.
Hardware design was synthesized using the EDK (Embedded Development Kit)
platform and the genetic algorithm was implemented in SDK (Software
Development Kit) of Xilinx Platform Studio tool (XPS) 14.6.

Keywords Evolvable hardware - Genetic algorithm - FIR filter - Distributed
arithmetic - FPGA - VLSI

1 Introduction

The evolvable hardware is a method of designing circuits based on the reconfig-
urable structures. Evolvable hardware uses the evolutionary algorithms (EA) to
design the circuits without manual engineering [1]. Evolvable hardware can change
its architecture and behaviour dynamically and autonomously according to its
changes in environment [2]. The evolvable hardware design deals with the design
of circuit based on the evolutionary techniques. The circuit design using this
techniques use the mathematical model either of reconfigurable structure or of
system with variable parameters. These techniques are used to find new and
innovative solution to the circuits. Then the resulting circuit can be implemented as
real hardware [3].

K. Krishnaveni (B<) - C. Ranjith - S.P. Joy Vasantha Rani
Electronics Engineering Department, MIT Campus, Anna University, Chennai, India
e-mail: krishnaveni.k.2012@gmail.com

© Springer Nature Singapore Pte Ltd. 2017 295
S.S. Dash et al. (eds.), Artificial Intelligence and Evolutionary Computations

in Engineering Systems, Advances in Intelligent Systems and Computing 517,

DOI 10.1007/978-981-10-3174-8_26

296 K. Krishnaveni et al.

The search for the suitable configuration of the evolvable structures is entirely
guaranteed, by using the EA [4]. In this paper, genetic algorithm (GA) is used as the
evolutionary algorithm and the programmable devices are preferably field pro-
grammable gate array (FPGA) [5]. The configuration bits for FPGA are the chro-
mosomes of the GA. The evolvable finite impulse response (FIR) filter acts as the
backbone of adaptive noise cancellation.

Genetic Algorithm is the adaptive algorithm used to update the FIR filter
coefficients. Thus implementing evolvable FIR filters using GA for noise cancel-
lation and thereby extracting the original signal. The FIR filter was designed using
distributed arithmetic (DA) method using VHDL [6]. For this filter design the
optimal coefficients are generated using GA.

In this paper, the GA operations are performed on the soft core Micro Blaze
processor of the Spartan 6 FPGA for finding the fittest chromosome by configuring
the FPGA to design an optimized system. The Micro Blaze is a 32 bit soft core
processor provided as an intellectual property (IP) core by the Xilinx vendor [7].

The rest of the paper is organized as follows. Section 2 discusses the proposed
system architecture of the evolvable hardware architecture of FIR filter. Section 3
describes the implementation of the GA for EHW of FIR filter. Results are dis-
cussed in the Sect. 4. Then the conclusions are given in Sect. 5.

2 Proposed System Architecture

The block diagram of the evolvable system is shown in Fig. 1. The FIR filter
implemented in VHDL is added as an IP core and is integrated with GA written in
C which is operated on Micro Blaze processor of FPGA. The FIR filter is designed
using DA method. The evolvable system is used for changing the behaviour of the
filter. The GA finds the fittest configuration bits (coefficients) for the FIR filter [6].

This GA program is imported into Micro Blaze soft core processor and the
generations with their fitness values are displayed on the console window of the
software development kit(SDK) using the UART peripheral [5].

2.1 FIR Filter

Digital filter consists of interconnection of filter taps connected in certain topology
which operates on discrete-time signals. Each tap holds a filter co-efficient. FIR
filter output is computed as a weighted sum (finite) of the past, present and perhaps
future values of the filter input. FIR filter is chosen for this work because it has
more stability and reliability. It can be used for the study of the effects of evolution
on adaptability.

Evolvable Hardware Architecture Using Genetic Algorithm ... 297
/ SW development flow \ / HW development flow \
i i Embedded
Genetic algorithm ~ Dr;veiopfilent Micro FIR IP
(C code) it — Blaze CORE
I
Compiler/Linker UART DDR2
| memory
Simulator l
I | Run DRCs |
Object code l
I | Generate Net list |
I
CPU code in DDR2
memory Generate Bit stream
v Spartan 6 |
Download to FPGA »| FPGA < { Download to FPGA |
K Board

/

Fig. 1 Block diagram of evolvable hardware architecture.

Software; HW Hardware

FIR filter is described by equation,

3
|

Nk,
0

~
Il

- /

DRC Design Rule Check; SW

()

where x is the input signal, y is filter output, k is the number of co-efficients of the

filter, / is filter coefficient, n is number of taps.

The transpose form of FIR filter topology is shown in Fig. 2. This filter structure
is designed using DA method. Distributed arithmetic is the extension of multiply
and accumulate unit (MAC). It is the efficient method for calculating the inner

product or sum of products and accumulates to the

x(n)

A\ 4

h(M-1) h(M-2)

77

O

Fig. 2 Transpose form FIR Filter

filter output [8].

h(0)

—> y(n)

298

The x; value in the Eq. (1) be a N-bits scaled two’s complement number

\xk|<l
xi+ {bros brt, bia- - brv—1) }

where by is the sign bit
We can express x; as

N-1
X = b+ Y b2 ™"

n=1
by substituting x; in Eq (1),
Therefore,
K K N-1
- Z(bko he) + Z (hi - bin)2
k=1 k=1 n=1

K N=1
_Z((ka) “hy) + Z[hk bin + hi - ban +
k=1 =1

=

Equation (4) is the final equation of the DA.

K
Z hkbkn
k=1

Equation (5), can be pre-calculated for all possible values of by, by, ...

K. Krishnaveni et al.

-+ hk : b2n]2_n

(5)

bgy.

These values are stored using a look-up table of 2% words addressed by K-bits.
The Distributed arithmetic FIR filter structure is shown in Fig. 3. Carry save

accumulation is used for shift accumulation process [9].

B-bit input signal from Partial product
LSB to MSB P2s >
SR, g
| Shift accumula-
PY LUT d tor
P (ROM) B-bit
[J

B-bit

Output
signal

Fig. 3 Distributed arithmetic FIR filter structure. P2S parallel to serial converter, SR shift register,

LUT look-up table

Evolvable Hardware Architecture Using Genetic Algorithm ... 299

Fig. 4 Adaptive noise d(n)+r(n)
cancellation. Where d(n) + r

(n) = noisy input; r

(n) = noise; d(n) = original / Y(n)
signal; r'(n) = reference r'(n) ‘
noise; y(n) = filter output; e Filter
(n) = error signal e(n)

Adaptive

| Adaptive
L algorithm

Adaptive Filter. Adaptive filters are self-designing using recursive algorithm
and used where knowledge of environment is not available. Adaptive filters are
used for noise cancellation application. Adaptive noise cancellation, is used to filter
out an interference component by identifying a linear model between measurable
noise source and the corresponding immeasurable. Figure 4 shows the adaptive
noise cancellation system. The GA used as the adaptive algorithm [10].

2.2 Genetic Algorithm

Genetic algorithm (GA) is a particular class of EA, categorized as global search
heuristics. GAs is heuristic search algorithms based on the mechanism of natural
selection and genetics. The general flow of GA is shown in Fig. 5. Each individual
in the population is called a chromosome (or individual), representing a solution to
the problem. Chromosome is a string of symbols either it can be a binary or
real-valued bit string [11].

The chromosomes evolve through successive iterations called generations.
During each generation, the chromosomes are evaluated, using some measures of
fitness. The next generation is created by, new chromosomes, called offspring, are
formed by crossover, mutation operators [3]. Then new generation is formed by
using selection operation, based on the fitness values. Fittest chromosomes have the
highest probabilities of being selected. GAs converges to the best chromosome
which represents the optimal solution to the problem after several generations. GA
requires the following, a genetic representation of the solution and a fitness function

Fig. 5 Pseudo code for GA Choose initial population
Evaluate each individual’s fitness
Repeat
Select best-ranking individuals to reproduce
Mate the pairs at random
Apply crossover operator
Apply mutation operator
Determine the population’s average fitness until termination condition
(until one individual has the optimal desired fitness or number of gen-
erations has passed)

300 K. Krishnaveni et al.

to evaluate the solution. The genetic operators are selection, crossover, Mutation are
used for creating new generation of solutions according to the fitness function.

Selection. Selection method is used for finding two (or more) individuals for
crossover. The selection is the degree to which the better individuals are favoured:
the higher the selection pressure, the more the better individuals are favoured. The
selection strategies are Roulette wheel selection, Tournament selection, Truncation
selection, Ranking and Scaling, Sharing selection.

Roulette wheel selection determines the selection probability or survival prob-
ability for each chromosome proportional to the fitness value. The Selection
probability Pg.; of each chromosome is calculated by:

p(x)selecl = %x;’ (6)

where J(X) is the fitness score of the chromosome X1, X2, X3 ... Xn and J is the
sum of all fitness scores in the population.

Crossover. Crossover is an artificial mating in which chromosomes from two
individuals are combined to form chromosome for next generation. Crossover is
performed by splicing two chromosomes from two different individuals (solutions)
at a crossover point and swapping the corresponding spliced parts. This process will
provide a better solution represented by the new chromosome.

Crossover types are single point crossover, two point crossover, and uniform
crossover. Single point crossover is shown in Table 1. In single point crossover on
both parents’ organism strings is selected. All bits after that point in either organism
string is swapped between the two parent organisms. Crossover probability decides
how often crossover will be performed. The crossover probability Pc has to be
always high which will guarantee rapid search for the solution.

Mutation. Mutation is a random adjustment in the genetic composition. The
mutation operator changes the current value of a gene to a different one. For bit
string chromosome this change amounts to flipping a O bit to al or vice versa.
Table 2 shows an example for random mutation. Mutation probability refers how
often parts of chromosome will be mutated. Mutation generally prevents the GA
from falling into local extremes.

Table 1 Single-point Parent A 11001]001
crossover Parent B 11011101
Offspring A 11001|101
Offspring B 11011]001

Table 2 Random Mutation Chromosome after crossover 11011001

Chromosome after mutation 11111011

Evolvable Hardware Architecture Using Genetic Algorithm ... 301

3 Implementation

This section explains about the implementation of evolvable system design.
A hardware platform was developed using Xilinx platform Studio tool with the
available library components, such as Micro Blaze processor [12], UART
(Universal Asynchronous Receiver Transmitter), DDR2 (Double data rate syn-
chronous dynamic random access memory). The UART and DDR2 components are
interface with Micro Blaze processor using a common clock module. This hardware
design is done using embedded development kit (EDK) platform [9].

Now, the FIR filter structure using DA method implemented in VHDL is
imported as an IP core in the above hardware platform and is interfaced with the
Micro Blaze processor. The GA is implemented in the SDK platform. Then an
embedded system is formed by integrating the SDK platform with the hardware
platform implemented in EDK. The GA is coded using C language. The specifi-
cations of GA:

Selection method: Roulette wheel selection in which each individual gets a slice of
the wheel, but more fit ones get larger slices than less fit ones.

Crossover: Single point crossover.

Probability of crossover: 7T0%

Mutation: Random mutation

Probability of Mutation: 0.5%

Population size: 4(number of coefficients)

No. of iteration: 1000(maximum)

The FIR filter specifications: The cut-off frequency of the filter was set to
0.5 kHz and the filter order 3 with 4 filter coefficients. The reason for the number of
coefficients was chosen small is mainly reduces the computation of the code.

4 Results and Discussions

The performance results of the proposed evolvable hardware architecture were
compared with Matlab results. The hardware platform was designed using XPS tool
and the GA was implemented using the SDK platform of the Xilinx Spartan 6
FPGA. Then this design was fused to the FPGA Kit and the terminal of the SDK
platform was connected to PC through serial communication port UART.

The Fig. 6 shows the implementation of GA configuration in SDK platform in
FPGA Spartan 6 Trainer Kit. The final set of normalized coefficients was displayed
on the console window of the SDK platform through the use of UART peripheral.

The Fig. 7 shows the original signal with frequency of 100 kHz and the sam-
pling frequency is set to 300 kHz. 100 number of samples was taken for simulation
(Iterations). The original signal is corrupted by white noise with variance 6* = 0.5.
The sinusoidal signal with additive white noise is illustrated in Fig. 8.

302 K. Krishnaveni et al.

- [# %]

L
P-R-i @-L-E-@G- 0-0-Q- % D BR T > e Rekss
Pt € ghne e]t

- toris

S (C0PE, W, 0, 1, M, b - CCOMMECTEDS) - v (1508009 1)

Fig. 6 SDK Platform for GA configuration

signal

N W &

g '/ \ /\ / \ / \\ 7\ /1
._é- g | \ /; \\ / \‘ !f "'-\ \\\ F
B 4 \/ o/ \/ N X7
2t A
-3
i]
-5

0 10 20 30 40 50 60 70 80 20 100
Generation number

Fig. 7 Original signal

The aim of the simulation was the mean square error minimisation. Figure 9
shows the enhanced signal for the crossover probability of 0.7 and mutation
probability of 0.005 of GA [13]. The better results are achieved by a crossover
probability of range between 0.65 and 0.9. So crossover probability of 0.7 was
considered. Similarly for mutation rate the range was 0.5-1%. So Mutation prob-
ability of 0.5% was considered.

The error was reduced significantly and reaches the global optimum value after
80th generation. The final set coefficients from GA were (0.0075, 0.0021, 0.0021

Evolvable Hardware Architecture Using Genetic Algorithm ... 303

amplitude

5 +
a ==
3
2 - A
11/ \. /’ \\v.__‘ ,/Y \] A \\ /\\ /
L A N\ b
2t \ '_: |
3t i
T A
.5 N L " " N L " " L

© 10 20 30 40 S0 60 70 80 90 100

Generation number

Fig. 8 Original signal and original signal + noise

amplitude

N S o = N W B0
o

A b

"
o

signal
enhanced signal

20 30 40 S50 60 70 80 90 100

Generation number

Fig. 9 Signal and enhanced signal by genetic algorithm

and 0.0071). It can be observed that the filter output gradually gets closer to the
original signal after 80th generation.

5 Conclusion

The use of adaptive algorithm for noise cancellation has been presented in this
paper by using the method of updating the coefficients of FIR Filter (Evolvable
Filter) using GA. The design of the FIR IP Core in VHDL was done and the
coefficients were updated using GA (implemented in C) in FPGA. This paper also

304

K. Krishnaveni et al.

describes the importance of crossover probability, mutation probability of GA
program. Thus, it may be concluded that GAs are feasible and better practical
approach for adaptive filtering.

References
1. L. Sekanina.: Evolvable Hardware Tutorial. GECCO 2007, New York.
2. Jim Torresen.: An Evolvable Hardware Tutorial. Department of Informatics. University of

10.

11.

12.

13.

Oslo. (2004).

. Aifeng Ren, Wei Zhao, Shuo Tang, Xin Tong, Ming Luo.: Implementation of Evolvable

Hardware based Improved Genetic Algorithm. IEEE conference (2011) 2112-2115.

. Ruben Salvador, Lukas Sekanina et. al.: Self-Reconfigurable Evolvable Hardware system for

Adaptive Image Processing. IEEE transactions on computers vol. 62, No. 8, (Aug. 2013)
1481-1493.

. Ranjith, C., Joy Vasantha Rani, S.P., Priyadharsheni, B., Medhuna Suresh and

Madhusudhanan, M.: Optimizing GA operators for System Evolution Of Evolvable
Embedded Hardware On Virtex 6 FPGA. ARPN Journal of Engineering and Applied
Sciences vol. 10, No. 11, (June 2015) 4908-4914.

. Zdenek Vasicek, Lukas Sekanina.: An evolvable hardware system in Xilinx Virtex II Pro

FPGA. International Journal on Innovative Computing and Applications, Vol. 1, No. 1,
(2009) 63-73.

. Rod Jesman, Fernando Martinez Vallina and Jafar Saniie.: Micro Blaze Tutorial Creating a

Simple Embedded System and Adding Custom Peripherals Using Xilinx EDK Software
Tools. Embedded Computing and Signal Processing Laboratory, Illinois Institute of
Technology.

Syed Shahzad Shah, Saquib Yaqub and Faisal Suleman.: Distributed arithmetic for the Design
of High Speed FIR Filter using FPGAs. UET, Taxila, (1999).

Stanley A. White.: Applications of Distributed Arithmetic to Digital Signal Processing: A
Tutorial Review. IEEE ASSP Magazine, (July 1989).

Uma Raja ram, Raja Paul Perinbam, Bharghava.: EHW Architecture for Design of FIR Filters
for Adaptive Noise cancellation. IJCSNS, vol. 9, No. 1, (Jan. 2009) 41-48.

Ajoy Kumar Dey.: A Method of Genetic Algorithm (GA) for FIR Filter Construction. Vol. 1,
(Dec. 2010) 87-90.

Yang Zhang, Stephen L. Smith, and Andy M. Tyrell.: Digital Circuit Design using Intrinsic
Evolvable Hardware. Proceedings of NASA/DoD Conference on Evolution Hardware
(EH’04), (2004).

Pradeep kaur, Simatpreet Kaur.: Optimization of FIR Filters using Genetic Algorithm.
IJETICS vol. 1, No. 3 (2012) 228-232.

	26 Evolvable Hardware Architecture Using Genetic Algorithm for Distributed Arithmetic FIR Filter
	Abstract
	1 Introduction
	2 Proposed System Architecture
	2.1 FIR Filter
	2.2 Genetic Algorithm

	3 Implementation
	4 Results and Discussions
	5 Conclusion
	References

