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Abstract
Cardiovascular disease is the leading cause of death in the United States. Risk
factors that contribute to the heart disease and cardiac dysfunction include
diabetes, obesity, hypertension, high blood cholesterol, smoking, alcohol abuse,
sedentary life style, unhealthy diet, family history, and aging. Whereas obesity
and uncontrolled hypertension can lead to hypertrophic cardiomyopathy; chronic
alcohol consumption and diabetes can cause dilated cardiomyopathy, both of
which can eventually result in an impaired cardiac function and heart failure.
Cathepsins are lysosomal proteases that are capable of degrading proteins.
Studies have shown that cathepsins, particularly those that belong to the cysteine
protease family exhibit an important role in the development of cardiomyopathy
and heart failure, probably by regulating cardiac remodeling. In diabetic
cardiomyopathy, cathepsin K, the most potent cathepsin in terms of its
collagenolytic and elastolytic properties, regulates calcineurin/NFAT transcrip-
tional signaling critical for cardiac remodeling. Under obese conditions,
inhibition of cathepsin K results in cardioprotection. Cathepsins also exhibit
potential effects on epigenetics associated with alcoholic cardiomyopathy.
Therefore, targeting cathepsins may represent a novel therapeutic strategy for the
prevention and/or treatment of cardiovascular diseases.
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1 Introduction

Cardiovascular disease is the leading cause of morbidity and mortality in the United
States [1]. Diabetes, obesity, and alcoholism are among the major risk factors that
contribute to heart diseases in the modern society. According to the statistics from
Centers for Disease Control and Prevention (CDC), in the year 2012, more than 29
million people or 9.3% of the U.S. population was diabetic. Diabetic subjects are at
higher risk for heart attack, congestive heart failure, and atherosclerotic disease all
of which can lead to diabetic cardiomyopathy and heart failure [2]. Alcohol abuse is
another notable problem worldwide. Chronic alcohol consumption can result in
alcoholic cardiomyopathy, characterized by thinned and enlarged heart (dilated
cardiomyopathy), disruption of myofibrillary architecture, and cardiac contractile
anomalies [3]. Current therapeutic options for dilated cardiomyopathy, such as
diabetic cardiomyopathy and alcoholic cardiomyopathy, are limited. Moreover,
obesity is an emerging health problem worldwide and is an independent risk factor
for developing cardiovascular diseases. Obesity-associated myocardial damage is
characterized by cardiac hypertrophy and contractile dysfunction, which is referred
to as hypertrophic cardiomyopathy. The numerous preclinical and clinical studies
aimed at preventing and/or treating cardiac disorders have not made any dent on the
staggering numbers of cardiomyopathies, warranting newer pharmacological
strategies to address this problem. This review aims at a brief discussion of the
mechanisms leading to the progression of cardiomyopathy under diabetic, obesity,
and alcoholic conditions, and addresses the possibility of employing cathepsins as
novel targets for prevention and/or treatment of cardiomyopathy.

2 Biological Properties and Functions of Protease
Cathepsins

Cathepsins are proteolytic enzymes that are involved in lysosomal protein degra-
dation, which plays a vital role in physiological and pathological processes in living
organisms [4, 5]. Dysregulation of cathepsins have been shown to correlate with
numbers of diseases such as arthritis [6, 7], cancer [8, 9], autoimmune disease [10],
stroke [11], neurodegenerative diseases [12, 13], gastrointestinal diseases [14–16],
cardiovascular diseases [17], diabetes, and obesity [18, 19]. The proteolytic prop-
erty of cathepsins rely on their broad specificities, thus the cleavage sites are
different among different cathepsins. Most cathepsins are endopeptidases that cat-
alyze the cleavage of nonterminal amino acids or break peptide bonds within the
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target sequences. A few of them are carboxy- or amino-peptidases that cleave the
peptide bond at only carboxy- or amino-terminal residues. A main physiological
role of cathepsins is protein turnover in the lysosome [5]. Generally, cathepsins are
contained and activated within the acidic pH of the lysosomes, sparing the cytosol
and membrane of the cells from proteolysis. However, impaired lysosomal integrity
leads to leakage of cathepsins to the cytosol and eventually outside of the cell
resulting in degradation of cellular components or proteins in the extracellular
matrix (ECM) [20].

Cathepsin B, C, F, H, K, L, O, S, V, W, X, and Z, are cysteine proteases with
cysteine residue in their catalytic site. Histidine residue in the active site can also
assist in the hydrolysis of target peptide bonds on the substrate, as evidenced in
cathepsin B His197 or His199, and cathepsin H His166. Other cathepsins are serine
protease (cathepsin G), aspartyl proteases (cathepsins D and E), and exopeptidase
(cathepsin A). The knowledge of the catalytic sites of different cathepsins is of great
importance in developing specific inhibitors for these proteases [5, 21]. Cathepsin K
is by far the most potent mammalian cysteine protease [5]. It hydrolyzes various
synthetic substrates such as Z-Gly-pro-Arg-MCA, Z-Arg-Phe-AMC,
Z-Arg-Arg-AMC, and Bz-Val-Lys-Lys-Arg-AMC [22, 23]. In contrast to the
cathepsins B, L, and S, cathepsin K is predominantly present in osteoclasts, and has
strong elastase and collagenase properties for the degradation of bone collagen,
indicating a special role in bone resorption. Therefore, cathepsin K has been
implicated in the pathophysiology of osteoporosis and arthritis [24, 25].

3 Cathepsins in Cardiomyopathies and Heart Failure

Cardiomyopathy, literally “heart muscle disease,” is a chronic and sometimes
progressive disease of the myocardium (heart muscle) that is abnormally enlarged,
thickened, and/or stiffened. The most common case of cardiomyopathy is dilated
cardiomyopathy, and posteriorly hypertrophic cardiomyopathy. The weakened
heart muscle in these conditions is unable to pump blood to the rest of the body.
Cardiomyopathy is caused by a range of risk factors including heredity, coronary
heart disease (e.g., atherosclerosis), amyloidosis, diabetes, obesity, long-term
alcoholism, endocrine diseases, sarcoidosis, hypertension, and certain drugs (e.g.,
doxorubicin). All these can lead to peripheral edema, irregular heartbeat, a heart
valve problem, heart failure, or other complications.

Cathepsins are ubiquitously expressed in various tissues and play important roles
in cardiovascular diseases [17, 26]. Alterations of both extra and intracellular pro-
teolytic activities are invariably observed in heart failure and have been linked to
hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopa-
thy, ischemic cardiomyopathy, and diabetic cardiomyopathy [27]. Cathepsins B, L,
and S are capable of regulating autophagy [28–30], ECM turnover, antigen pre-
sentation, neuropeptide and hormone processing, inflammatory response, and
apoptosis [10, 26]. Previous studies have shown that the expression and activity of
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cathepsin, B, D, K, and S were elevated in atherosclerotic plaque and in the
hypertrophic and failing heart in both human and animal models [7, 54, 55].
Cathepsin S and G also displayed detrimental effects by altering ECM degradation,
and causing cardiac remodeling [31, 32]. On the contrary, knockout of cathepsin L in
mice resulted in dilated cardiomyopathy, whereas over expression of cathepsin L
displayed decreased inflammation, fibrosis, and cardiac hypertrophy, probably
through AKT/GSK3 beta pathway [33]. These studies strongly suggest a pivotal role
for cathepsins in cardiac remodeling and heart failure and attribute protective and
detrimental roles for these cysteine proteases. Despite the growing number of recent
studies on the role of cathepsins in cardiovascular disease, the cellular and molecular
mechanisms by which cathepsin K regulates cardiac dysfunction in the setting of
cardiomyopathy and heart failure are yet to be explored. Growing evidence suggests
that the expression and activity of cathepsin K are elevated in both clinical and
experimental models of neointimal lesions, atherosclerosis, coronary artery disease,
hypertrophy, and heart failure [34–37]. Our recent studies have suggested that
cathepsin K protein levels were markedly upregulated in human hearts of end-stage
dilated cardiomyopathy, and deletion of ctsk gene protected against cardiac
anomalies induced by pressure overload or high-fat diet (HFD) feeding in mice [38,
39]. We also found that ctsk knockout exhibited an overall improvement in systemic
glucose utilization [39], which was consistent with the evidence that cathepsin K
displayed a negative effect on glucose and lipid metabolism, and inhibition of
cathepsin K attenuated body weight gain, elevated serum glucose, and insulin levels
in obese mice [19, 40, 41]. Cathepsin K may therefore represent a potential target for
prevention or treatment of cardiac hypertrophy and heart failure.

4 Cathepsin K and Calcineurin/NFAT Signaling in Diabetic
Cardiomyopathy

Myopathic state of the heart in diabetic subjects is manifested as left ventricular
dilation, impaired left ventricular contractility, reduced ejection fraction and cardiac
output, cardiac compensatory hypertrophy, and enhanced risk of stroke and hyper-
tension, eventually leading to maladaptation and heart failure [42].
Micro/macrovascular complications also contribute to the cardiac anomalies associ-
ated with diabetes [43, 44]. However, the explicit mechanisms underlying the disease
are still controversial as the pathogenesis of diabetic cardiomyopathy ismultifactorial.
Myocardial contractile dysfunction can be attributed to structural changes in the heart
as a result of atherosclerosis and hypertension. Recent evidence suggests that diabetes
affects cardiac structure and function in the absence of coronary artery disease,
valvular disease, or high blood pressure [45]. The general triggering mechanisms
behind the complicacy of diabetic cardiomyopathy include metabolic disturbances,
altered cellular insulin signaling, small vessel diseases, andmyocardial fibrosis which
mainly associated with the stimulation of renin–angiotensin–aldosterone system
(RAAS) and increased cytokines. Additionally, cardiac autonomic neuropathy,
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autophagy, and epigenetics may also contribute to the pathogenesis of diabetic car-
diomyopathy [46, 47]. Studies have shown that cathepsin D accelerates cardiac
muscle degradation that occurs in the late stage of diabetic cardiomyopathy by trig-
gering autophagy [48, 49]. Impairment of cathepsin L by hyperglycemia has been
suggested as a cause of poor neovascularization and regeneration capacity of ischemic
tissues in diabetics [50].

Hyperinsulinemia under diabetic conditions contributes to cardiac hypertrophy
and remodeling, which can be explained, at least in part, to the inactivation of
glycogen synthases kinase-3b (GSK-3b), a well-recognized antagonist of the cal-
cineurin, which in turn inhibits nuclear transcription governing the hypertrophic
process via the nuclear factor of activated T cells (NFAT) [51, 52]. It has been
demonstrated that a transgene encoding a constitutively active form of calcineurin
was sufficient to induce cardiac hypertrophy that progressed to dilated cardiomy-
opathy, heart failure, and sudden death in transgenic mice [53]. Suppression of
calcineurin activity or NFAT transcription inhibits brain natriuretic peptide
(BNP) induction and cardiac hypertrophy [52, 54], indicating a potential therapy
strategy targeting on calcineurin/NFAT signaling.

Calcineurin is a Ca2+/calmodulin-dependent serine/threonine-protein phos-
phatase ubiquitously expressed in eukaryotic cells, and involves in a number of
cellular processes including Ca2+ dependent signaling pathways. In skeletal muscle,
calcineurin can modulate fiber type-specific gene expression which is dependent on
Ca2+ signaling and contractile activity [55, 56]. Indeed, calcineurin has been shown
to influence Ca2+ fluxes by modulating the activities of L-type Ca2+ channel [57],
ryanodine receptor (RyR)/Ca2+-release channels [58, 59], sarco/endoplasmic retic-
ulum Ca2+-ATPase 2a (SERCA 2a) [60] and the inositol 1,4,5-triphosphate receptor
[61] in the heart. It has been known that Ca2+-mediated signal transduction is
essential for cardiac remodeling and hypertrophy process, and the disturbance of Ca2
+ homeostasis leads to contractile dysfunction of the cardiomyocyte [62]. Such
alterations of Ca2+ signals could play a role in the pathophysiology of heart failure.
Furthermore, decreased activity of cardiac L-type Ca2+ channel induces hypertrophy
and heart failure through activation of calcineurin/NFAT signaling in mice [63].

Activation of calcineurin can dephosphorylate the regulatory domains of NFATs
within the cytoplasm, and the translocation of dephosphorylated NFATs regulates
gene expression in the nucleus [51]. Studies by Fiedlerm [52] and Gao [64] suggest
that L-type Ca2+-channel current can also cause NFAT activation. There are four
calcineurin-regulated NFAT transcriptional factors, NFATc1-c4, each of which is
present in the myocardium [65]. To date, NFATc3, and NFATc4 (NFAT3) have been
shown as two main downstream targets of calcineurin for the initiation of hyper-
trophic response [66]. NFATc4 can in turn stimulate the transcription of
pro-hypertrophic genes MEF2 and GATA4, thereby promoting pathological hyper-
trophy [67]. In addition, NFATc1 has been shown critical for endocardial valve
remodeling, coronary vessels, and fibrous matrix formation in the maturing heart, and
serves as an essential effector of receptor activator of NFjB ligand (RANKL) sig-
naling, which in turn regulates cathepsin K expression [68, 69]. Research also
indicated that in the cardiomyocytes, NFATsmay interact with NFjB/p65 and induce
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the nuclear translocation of NFjB, and genetic deletion of calcineurin/NFATs dis-
plays compromised NFjB transcriptional activation, which predisposes pressure
overload-induced cardiac hypertrophy. On the other hand, full transcriptional acti-
vation of NFATs requires intact NFjB signaling and p65 transcriptional activity [70].
NFATs and NFjB have also been associated with apoptosis [71, 72].

Both cathepsin K and calcineurin/NFATs signaling pathway have been impli-
cated as critical regulators of cardiomyocyte hypertrophy. It can be postulated that
these two previously deemed independent signaling pathways may actually cross-
talk with each other, based on the following suppositions: First, increased
cathepsins K activity can lead to dysregulated glucose metabolism and increase in
glucotoxicity, which can trigger calcineurin/NFATs signaling. Evidence suggests
that both hyperinsulinemia and hyperglycemia can trigger calcineurin-NFATs
pathway [16, 25, 78, 79]. In our studies, mice rendered diabetic by streptozotocin
injection exhibited elevated levels of cardiac cathepsin K, whereas similarly treated
cathepsin K knockout mice exhibited attenuation in fasting blood glucose levels
and reduced cardiac calcineurin A expression. In addition, diabetic mice exhibited
ventricular dilation and cardiac dysfunction that was markedly alleviated by
cathepsin K deletion. Since insulin levels were decreased in mice subjected to
streptozotocin treatment, it is likely that hyperglycemia and glucotoxicity as a
consequence of streptozotocin challenge is the possible trigger for dilated car-
diomyopathy and cardiac dysfunction, via the upregulation of cathepsin K. Second,
higher level of cathepsin K may induce cardiac anomalies by dysregulation of
calcium homeostasis which triggers calcineurin activation. Our studies have
demonstrated that cathepsin K knockout dramatically reversed diabetes-induced
reduction in SERCA2 and phosphorylation levels of phospholamban at Ser16 and
Thr17, as well as attenuated diabetes-induced elevation of intracellular calcium
concentration. Taken together, this would suggest that cathepsin K is an upstream
signal for regulating Ca2+ flux, which contributes to calcineurin stimulation. It is
likely that cathepsin K, by virtue of its protease function, cleaves calcineurin to its
active form resulting in the activation of NFATs, and subsequently triggers
diabetes-induced cardiac anomalies and cardiomyopathy. This may be akin to
calpain, a Ca2+-dependent cysteine protease that has been shown to directly cleave
calcineurin into its active form both in vitro and in vivo [20]. Future work still
needs to be done and to explore the specific cleavage sites of cathepsin K and the
structural basis for activation of calcineurin.

5 Role of Cathepsin K in Obesity Cardiomyopathy
and Cardiac Dysfunction

Obesity is an independent risk factor for the pathogenesis of cardiovascular diseases
such as arteriosclerosis, coronary heart disease, hypertension, cardiomyopathy, and
heart failure [73, 74]. Obesity increases the risk for high blood pressure, metabolic
syndrome, and abnormal energy metabolism such as glucose intolerance,
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dyslipidemia, and insulin resistance, all of which contribute to cardiac anomalies. In
addition to genetic predisposition, both clinical and experimental evidence suggests
a pivotal role of obesity in cardiac hypertrophy and myocardial dysfunction.
Accumulating human studies also confirm that obese people are prone to heart
failure [74, 75].

A number of molecular mechanisms including the alteration in cardiac substrate
utilization, inflammation, oxidative stress, mitochondrial injury, apoptosis, disrupt
of extracellular matrix, fibrosis, endoplasmic reticulum stress, leptin resistance,
endothelial dysfunction, lipotoxicity, and impaired Ca2+ homeostasis have been
speculated as causes for obesity-induced cardiac dysfunction [76–80]. It is specu-
lated that both calcium-dependent CaMKK and calcineurin might participate in
obesity-associated cardiac hypertrophy and cardiomyopathy [51, 81, 82]. Similar to
diabetic cardiomyopathy, calcineurin may also play an essential role in transducing
hypertrophic signals in obese individuals, partially by activating NFAT transcrip-
tion factors, the signaling of which may involve cathepsin K.

Cathepsin B, L, and K have been shown to be positively associated with lipo-
toxicity, and cathepsin K negatively regulates lipid metabolism. According to
Chiara and co-workers, mRNA levels of ctsk, as well as Mitf and TFE3, two
transcription factors involved in ctsk induction in osteoclasts, were dramatically
higher in white adipose tissue (WAT) of obese mice, compared to their wild-type
littermates. Interestingly, mRNAs were attenuated in mice undergoing weight loss.
Ctsk gene expression has been positively correlated with body mass index [41]. In
human studies both cathepsin K protein and ctsk mRNA expression were elevated
in the WAT of overweight/obese patients, supporting the notion that ctsk is a novel
and reliable marker of adiposity [83]. Studies from our lab showed that ctsk
knockout significantly attenuated HFD-induced obesity and cardiac dysfunction
evidenced as cardiac hypertrophy, cardiomyocyte contractile dysfunction, impaired
intracellular Ca2+ handling, and apoptosis [39].

Obesity is characterized by defective fat storage, increase in intracellular lipid
accumulation, and dyslipidemia. Xiao and co-workers found that ctsk is involved in
the pathogenesis of obesity by promoting adipocyte differentiation in both human and
in cultured cells. Expression and activity of cathepsin K gradually elevates con-
comitant with the differentiation of 3T3-L1 pre-adipocytes intomature adipocyte [83].
Similar to matrix metalloproteinase (MMP)-2, -3, and -9, cathepsin K, as a cysteine
protease, has ability to degrade certain components of the ECM, which contribute to
the ECM remodeling and adipocyte differentiation, likely via regulation of peroxi-
some proliferator-activated receptors (PPAR) and/or CCAAT/enhancer-binding
proteins (CEBPB) [84, 85]. In addition, osteonectin that modulates cell adhesion,
differentiation, and angiogenesis can be cleaved by cathepsin K in theWAT, resulting
in enhanced matrix plasticity, and facilitating adipose remodeling and angiogenesis.
Funicello and co-workers [40] found that the rate of lipolysis in adipocytes together
with CPT-1 activity were increased in both young and HFD-fed ctsk−/− mice com-
pared to wild-typemice, suggesting an increased release and/or utilization of free fatty
acid (FFA) by down-regulating cathepsin K. Furthermore, plasma levels of leptin and
triglyceride were significantly lower in adult ctsk−/−mice. The authors concluded that
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the absence of ctsk is associated with increased energy expenditure, which might be
due to increased activation of brown adipose tissue (BAT) for thermogenesis. Studies
from Podgorski and co-workers indicated an involvement of cathepsin K in the reg-
ulation of adiponectin, an adipokine with anti-inflammatory and anti-angiogenic
properties, which is dramatically decreased in obesity [86].

Platt and co-authors revealed that cathepsin K expression is regulated by shear
stress in cultured mouse aortic endothelial cells (MAECs) and is elevated in
endothelium in human atherosclerosis. Elastase and gelatinase activity was also
increased in MAECs exposed to shear stress, which was attenuated by knocking
down ctsk with siRNA, suggesting that cathepsin K is a shear-sensitive protease
[87]. Their study also showed a positive correlation between the cathepsin K
expression in endothelium and the integrity of the elastic lamina. These findings
suggest that cathepsin K may function as an ECM protease and is involved in
arterial wall remodeling and atherosclerosis. Indeed, cathepsin K levels have been
positively correlated to plaque volume, and blood levels of cathepsin K have been
suggested as independent predictor of coronary artery disease [36].

Sustained obesity can lead to type 2 diabetes and dampened insulin signaling has
been observed in the heart from HFD-fed mice. Knockout of cathepsin K improved
cardiac function and insulin signaling and reduced apoptosis in obese mice [39].
Yang and co-workers have shown that inhibition of cathepsin K reduced serum
glucose and insulin levels by degrading fibronectin [19]. Collectively, these studies
suggest that cathepsin K plays may play a role in regulating insulin signaling and
preventing apoptosis of the heart of obese mice.

In addition to the above mechanisms, cathepsin K inhibition prevents cardiac
hypertrophy by alleviating cardiac remodeling, both in vivo and in vitro studies.
Indeed, the stimulation of the mTOR and Erk signaling pathways both of which
were induced in the hypertrophic heart was blunted by ctsk deletion [38]. HFD can
induce not only increased body weight, but also increased heart weight, left ven-
tricular wall thickness, excessive epicardial fat and fatty infiltration of the myo-
cardium, as well as increased total blood volume and cardiac output, all of which
contribute to cardiac dysfunction, cardiomyopathy and heart failure. Under these
conditions, inhibition of cathepsin K protects against the development of
obesity-associated cardiomyopathy via mitigating cardiac remodeling. Furthermore,
cathepsin K inhibition by virtue of its beneficial effects on the vasculature can also
attenuate obesity-induced hypertension [38]. Furthermore, studies form our lab
demonstrated that inhibition of cathepsin K suppresses oxidative stress in the mouse
heart and in cultured H9c2 cells.

6 Cathepsins, Alcoholic Cardiomyopathy, and Epigenetics

Alcohol abuse is a serious medical and social problem. Excessive or chronic
alcohol intake can lead to alcoholic cardiomyopathy, a disorder of the heart muscle
characterized by compensatory cardiac hypertrophy, left ventricular dilation,
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impaired left ventricular contractility, reduced ejection fraction and cardiac output
accompanied with myocardial fibrosis, cardiomyocyte apoptosis, and mitochondrial
impairment. Cardiac remodeling and compensatory cardiac hypertrophy can
eventually result in maladaptation and heart failure [88, 89]. However, the explicit
mechanisms underlying the disease are yet unclear. A number of mechanisms
including direct toxicity of ethanol, indirect toxicity through its metabolites [ac-
etaldehyde and fatty acid ethyl esters (FAEEs)], oxidative stress and impaired
autophagy may be involved in alcoholic complications. Acetaldehyde, the primary
intermediate in the metabolism of ethanol, is an essential candidate toxin in
developing alcoholic cardiomyopathy through hypertrophic responses, interruption
of myocardial protein synthesis (as a result of adduct formation) and impairment of
mitochondrial integrity [90]. Meanwhile, free radicals produced during ethanol
metabolism and FAEEs are also important triggers for alcoholic heart diseases [91].
Additionally, racial and gender differences, genetic variation in certain myocardial
proteins, genetic polymorphism of alcohol metabolizing enzymes, epigenetics, and
alterations in the levels of microRNA levels may also contribute to the development
of alcoholic cardiomyopathy [92].

Epigenetics is a science studying heritable change in the genome, which affects
gene expression without any change in the DNA sequence. Potential epigenetic
mechanisms include DNA methylation, histone modification, and RNA-based
mechanisms such as microRNAs (miRNAs) and long non-coding RNAs (ncRNAs),
leading to either transcriptional suppression or activation of the genes indepen-
dently of the DNA genome sequence [93, 94]. Ethanol can induce epigenetic
alterations in different immune cell types including granulocytes, macrophages, and
T-lymphocytes which promote inflammation [95]. Epigenetic is emerging as a hot
research topic and is a potential target for primary prevention or treating cardio-
vascular diseases. Epigenetic factors such as methylation and acetylation of his-
tones have been shown to be correlated with enhanced expression of small
non-protein-coding ribonucleic acids [92]. Preliminary studies have found that
DNA methylation, histone modifications, and RNA-based mechanisms may have
an association with the development of cardiac hypertrophy and heart failure.
A recent study showed a significant difference in plasma microRNA profile
between patients with alcoholic cardiomyopathy and a healthy population [96]. Our
previous studies have suggested that ethanol feeding increased the levels of Beclin1
and triggered the formation of autophagosomes in cardiomyocytes, which results in
myocardial contractile dysfunction through autophagy. Meanwhile, the expression
of miR-30a, a target of Beclin1 was reduced in cardiomyocytes [90]. However, no
active epigenetic agents or drugs targeting histone methylation and/or acetylation
have actually reached clinical trials for cardiovascular diseases [93].

Generally, epigenetic alterations can be reversed via therapeutic approaches
including but not limited in DNA methyltransferase (DNMT) inhibitors, histone
deacetylase (HDAC) inhibitors, histone acetyltransferase (HAT) inhibitors, miRNA
therapeutics and commonly used medicines like statins [97]. For example,
polyphenols and folic acid may be as decent candidates to reduce lipid and ROS
levels by regulating DNA methylation and histone modification. Resveratrol, a
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DNMT inhibitor, can modulate sirtuin 1, MAP38 kinase, NF-jB, AP-1, eNOS and
inflammatory cytokines. Moreover, the HAT inhibitor curcumin is a polyphenol
and actually modulates various epigenetic factors such as HDAC, HAT, DNMT,
and miRNAs [98]. Curcumin as an antioxidant may influence both acetylation and
deacetylation by regulating oxidative stress. Trichostatin A, as a HDAC inhibitor,
can also play a pivotal role in the prevention of cardiac performance and alleviate
myocardial remodeling through stimulating endogenous cardiac regeneration [93].
Besides, the role of miRNAs in drug exploration as genetic targets has also been
investigated. MicroRNAs are a class of short non-coding RNAs that target specific
mRNAs thereby inducing degradation or translational inhibition during various
physiological or pathological processes. Evidence indicated that miRNAs are
involved in the actions of ethanol and play a key role in regulating the progression
of cardiomyopathy. Ethanol can cause some miRNAs upregulated and others
downregulated simultaneously [94]. For instance, upregulation of miR-212 by
alcohol can lead to activation of fetal gene program and heart failure. Therefore,
miR-212 can be a potential therapeutic target to protect the heart from chronic
alcoholism. According to Jing and colleagues, nine differentially expressed miR-
NAs including miR-506, miR-1285, miR-512-3P, miR-138, miR-485-5P,
miR-4262, miR-548c-3P, miR-548a-5P, and miR-K12-1 may be involved in the
development of alcoholic cardiomyopathy. Particularly, miR-138, may be consid-
ered as a novel biomarker for the early diagnosis and treatment of human alcoholic
cardiomyopathy [96]. Additionally, miR-340 was also regarded as a novel thera-
peutic target for the heart failure progression by restricting cardiac remodeling [99].

Cathepsin L has been shown to cleave histone H3 that is generated in vivo
during mouse embryonic stem cell differentiation. In addition, it was demonstrated
that an endogenous osteogenic growth peptide (OGP) that is identical to the histone
H4 is responsible for bone regeneration [100]. These findings indicate that the
proteolysis of H3 tail may associate with mammalian differentiation and a prolif-
erative effect. Our study found that ethanol treatment increased osteoprotegerin
(OPG) level in H9c2 myoblast, which was restored by pharmacological inhibitor
of cathepsin K. OPG could increase OGP levels and was recently considered as a
hypertrophic marker in patients with cardiomyopathy and heart failure, therefore we
postulate that histone H3 and/or H4 may be regulated by cathepsins thereby reg-
ulating cardiac remodeling in alcoholic cardiomyopathy. Bulynko and co-workers
speculated that cathepsin L-linked phenotypes such as defective skin and bone cell
differentiation and dilated cardiomyopathy may result from cathepsin L
deficiency-induced epigenetic heterochromatin changes in histone H3(K9) and the
histone H2A.Z [101]. It has been suggested that ctsk, as a potential cardiovascular
target gene, may be regulated by miR-107 that is upregulated in experimental
models of heart failure, and gene of cathepsin S (ctss) has consensus binding sites
for repressed miRNAs [102, 103]. MiR-212 may interact with cathepsin G in
connection with collagen deposition [104].
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7 Conclusion

Determination of the specific signaling pathways in the development of heart failure
is essential for the discovery of novel therapeutic strategies. Cathepsins, especially
cysteine cathepsins, are closely associated with cardiac remodeling and contribute
to cardiomyopathy and heart failure. Cathepsins may also serve as diagnostic tools
or biomarkers for heart failure. Cathepsin inhibitors have already been investigated
in clinical trials for a variety of disease conditions such as osteoporosis and
rheumatoid arthritis. These agents should be evaluated for their efficacy in pre-
venting and/or treating cardiovascular diseases particularly the progression of heart
failure. Inhibition of cathepsins may also alter genetic and epigenetic changes.
Further studies are necessary to understand the broader implications and role of
cathepsins to successfully target these proteases to treat or control heart disease.
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