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Abstract
Atherosclerosis underlies the majority of cardiovascular diseases and is accepted
as a primary cause of mortality worldwide. Matrix metalloproteinases (MMPs)
and their endogenous tissue inhibitors (TIMPs) perform complex roles during
the progression and development of atherosclerosis and subsequent plaque
instability. Proposed actions of MMPs include extracellular matrix remodeling
alongside regulation of vascular cell proliferation, migration and apoptosis
including cell types such as monocytes, macrophages and vascular smooth
muscle cells. As such, a large body of evidence from both in vitro and in vivo
studies has shown that individual MMPs and TIMPs are utilized by distinct cell
types to regulate their behavior. Consequently, it is now accepted that some
MMPs promote the growth and development of advanced atherosclerotic
plaques in experimental models whilst others do not. Similarly, human genetic
and pathological findings reveal some MMPs correlate with vulnerable
atherosclerotic plaque phenotypes, whereas others associate with stable lesions.
Furthermore, broad-spectrum MMP inhibition in both mouse and man has
proved ineffective at protecting from atherosclerotic plaque progression and
instability. Considering the divergent effects MMPs exert on atherosclerotic
lesions, selectively targeting individual deleterious MMPs may serve as a more
efficacious therapeutic strategy. For example, our recent data demonstrate that a
selective MMP-12 inhibitor retards atherosclerotic plaque progression in the
apolipoprotein E (Apoe) mouse atherosclerosis model, whilst also promoting
plaque stabilization through reducing monocyte recruitment into plaques whilst
augmenting fibrosis. Similar studies have been conducted assessing MMP-13
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inhibition. Accordingly, as our knowledge of the complex roles MMPs play
during the development, progression and rupture of atherosclerotic plaques
expands, new impetus is required for clinical trials evaluating the therapeutic
potential of selective MMP inhibition, especially in the context of
atherosclerosis.

Keywords
MMPs �Macrophages �Atherosclerosis � Vascular smooth muscle cells � Plaque
rupture

1 Introduction

Atherosclerotic plaque development and progression is the principal underlying
cause of cardiovascular disease, now reported as the primary cause of mortality and
morbidity in developed countries [1]. Atherosclerosis is characterized by the
accumulation of lipids (atheroma) and fibrous elements (sclerosis) within major
arteries sustaining the heart (coronary arteries) and the brain (carotid arteries) [1]. It
has been defined as a chronic, autoimmune-like disease, which develops in the
presence of elevated circulating lipid levels [2]. Atherosclerotic plaque formation
and progression is usually clinically silent. However, plaque rupture followed by
thrombus formation and subsequent vessel occlusion can precipitate several clinical
events including myocardial infarction, stroke, and peripheral vascular disease. The
main underlying trigger for plaque rupture is ascribed to the loss of extracellular
matrix (ECM) proteins, such as elastin and collagen, alongside decreased smooth
muscle cells content within the plaques, which commonly corresponds to areas of
marked inflammation [3]. These areas are characterized by the presence of foam cell
macrophages, B- and T-cells, mast cells and smaller amounts of other white bloods
cells [4]. Over the last quarter of a century, a large number of pathological and
experimental studies have been conducted in this field to elucidate the patho-
physiology of atherosclerotic lesion development, progression, and rupture. One of
the principal goals in cardiovascular research is to find suitable targets to allow the
development of new therapies, aimed at specific cell types or select molecules,
attributed deleterious roles in atherosclerotic disease onset and progression. Matrix
metalloproteinases (MMPs) have been implicated in all the stages of atheroscle-
rosis, from plaque development to plaque rupture, through a large body of pub-
lished work [5, 6]. Elevated expression levels of MMPs including MMP-1, -2, -7,
-8, -9, -11, -12, -13, and -14 have been identified in human atherosclerotic plaques
(see Table 1) [7–15]. Moreover, the majority of increased MMP expression within
atherosclerotic lesions is specifically located to macrophages-rich areas (shoulder
regions and around the lipid core) suggesting that macrophage-derived MMPs may
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play a key role in atherosclerotic plaque progression. Furthermore, considering
MMPs have been proposed to induce plaque rupture in a dual manner: by direct
degradation of ECM proteins (such as elastin and collagen) and by promoting the
death of vascular smooth muscle cells (VSMCs), the main cell type responsible for
ECM synthesis within the plaque [16]; many studies have focused their attention on
inhibitors of MMPs as a therapeutic strategy to stabilize and perhaps induce
regression of atherosclerosis [17].

2 Matrix Metalloproteinases (MMPs)

Matrix metalloproteinases (MMPs), also named matrixins, are a large family of at
least 24 proteolytic enzymes having a role is several physiological and pathological
processes such as morphogenesis, angiogenesis, tissue repair, wound healing and
remodeling. For these reasons, MMPs are involved in several pathologies including
cancer progression and atherosclerosis, highlighting them as key therapeutic targets
for medical research. The MMPs are multi-domain enzymes capable to degrade
both ECM components and several non-ECM molecules. MMPs share similarity
with two other proteinase families: ADAMs (a disintegrin and metalloproteinase
family) and ADAMTSs (ADAM with thrombospondin motifs), as they all contain a
zinc atom and a conserved methionine in the catalytic domain, and collectively
consist the Metzincin family [18]. Due to its destructive capabilities, MMP activity
is tightly regulated by a family of endogenous inhibitors named the tissue inhibitors
of metalloproteinases (TIMPs) that, together with MMPs, are responsible the
maintenance and balance of ECM homeostasis during physiological and patho-
logical conditions. This equilibrium contributes to multiple other processes such as
differentiation, growth, inflammation, migration, and apoptosis due in part to the

Table 1 MMPs up-regulated
in human atherosclerotic
plaques compared to normal
arteries

MMP# Cell type Principal reference

MMP-1 Mø, VSMC, EC, and T cell [7]

MMP-2 Mø and VSMC [8]

MMP-3 Mø, VSMC, EC, and T cell [9]

MMP-7 Mø [10]

MMP-8 Mø, VSMC, and EC [11]

MMP-9 Mø, VSMC, EC, and T cell [7]

MMP-11 Mø, VSMC, and EC [12]

MMP-12 Mø [10]

MMP-13 Mø [13]

MMP-14 Mø and VSMC [14]

MMP-16 Mø and VSMC [15]

Mø Macrophage, VSMC vascular smooth muscle cell, EC
endothelial cell
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capacity of MMPs to target non-ECM substrates. MMP and TIMP expression,
which exhibit distinct tissue/cell, temporal and spatial differences, are tightly reg-
ulated by numerous molecules including inflammatory cytokines, hormones,
growth factors, and physical cell–cell and cell–matrix interactions (as reviewed by
[19]).

3 MMP Classification and Structure

MMPs share some structural homology. Usually they present:

(i) Signal peptide at the N-Terminus: a hydrophobic sequence of 18–30 residues
responsible for intracellular trafficking from the Golgi apparatus to the cell
membrane which is cleaved during secretion [19].

(ii) Pro-peptide: a highly conserved motif responsible for pro-MMP latency
[19].

(iii) Catalytic Domain: which contains a zinc-binding site responsible for the
endopeptidase activity of MMPs.

(iv) Hinge Domain: known also as a linker peptide, it is situated between the
catalytic domain and the hemopexin-like domain. It stabilizes the col-
lagenolytic activity due to the presence of several proline residues.

(v) Hemopexin-like Domain: positioned at the C-terminus, it has strong
sequence similarity to the serum protein hemopexin and an extensive range
of roles amongst diverse MMPs [18].

Nevertheless, there are notable structural differences between MMPs that confer
diverse biological properties. Based on their domain organization, MMPs can be
divided into six groups [20] (see Fig. 1).

(i) MMPs presenting the pro-domain and the catalytic domain. This group
includes MMP-7 and MMP-26, also known as Matrilysins.

(ii) MMPs containing the pro-domain, the catalytic domain, the hinge domain,
and the hemopexin-like domain. This group contains several MMPs with
diverse substrate specificities; MMP-1, -8, -13 (Collagenases), MMP-3, -10,
-11 (Stromelysins), MMP-12 (Metalloelastase), MMP-20 (Enamelysin),
MMP-19, MMP-22, and MMP-28.

(iii) MMPs comprising the pro-domain, a catalytic domain containing
fibronectin-like repeats, the hinge domain and the hemopexin-like domain. In
this group there are MMP-2 and -9, also named Gelatinases for their affinity
to degrade gelatin.

(iv) The transmembrane type I MMPs are a group of MMPs that present, together
with the pro-domain, the catalytic domain, hinge domain and the
hemopexin-like domain, a transmembrane domain at the N-terminus. This
domain allows this group of MMPs to localize on to the cell membrane,
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projecting toward the extracellular space. This characteristic facilitates
pericellular matrix degradation, and hence plays a prominent role in directing
cell migration [21]. This group includes MMP-14, -15, -16, and -24.

(v) The transmembrane type II MMPs include one single MMP, MMP-23.
Differently from the type I, type II MMP has the transmembrane domain at
the C-terminus and additionally present an IgG-like domain.

(vi) There is a third group of membrane-type MMPs localized to the cell mem-
brane via glycosylphosphatidyl inositol (GPI) anchor on the N-terminus.
This group includes MMP-17 and -25.

4 MMP Activation and Inhibition

MMPs are produced as zymogens; the interaction between the pro-domain and the
catalytic domain keep the MMP in an inactive conformation. In order to achieve full
activation of these enzymes the pro-domain has to be cleaved, an essential regu-
latory step toward MMP activation [19]. Activation of the biologically inactive
MMP (pro-form) follows a multi-step sequence of events also known as ‘stepwise

Fig. 1 Domain structure for the major classes of MMPs. Diagram illustrating the differing domain
structures of the major MMP classes, including the pro-domain, catalytic domain with the active
site zinc (Zn) bound to cysteine residues within this domain and “cysteine switch-residue” in the
pro-domain, the hinge domain, the hemopexin-domain, the fibronectin-like type II repeats, and in
some cases for MT-MMPs, either a transmembrane domain or a glycophosphatidylinositol (GPI)-
anchor domain
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activation’. First, the cleavage of a ‘proteinase susceptible bait region’ through the
action of plasma or bacterial proteinases, destabilise the cysteine–Zn2+ negative
interaction within the pro-domain, resulting in a MMP intermediate form. To
achieve full activation, the in-trans activity of other intermediary or active MMPs is
required in order to fully remove the inhibitory pro-domain [19]. Some MMPs are
completely activated intracellularly by furin or other pro-protein convertases and
then either translocated to the cell membrane or secreted, as active enzymes. MMP
activity is closely regulated by endogenous inhibitors (such as TIMPs and
a2-macroglobulin), proteolysis, or internalization and recycling [19]. In addition,
other proteins with the ability to inhibit MMPs have been described, including the
reversion-inducing cysteine-rich protein with Kazal motifs (RECK), tissue factor
pathway inhibitor-2 (TFPI-2), and the pro-collagen C-terminal proteinase enhancer
(PCPE). Nevertheless, TIMPs are the most potent endogenous inhibitors of MMPs
and therefore considered key regulators in the physiological regulation of MMP
activity. Four TIMPs have been identified within vertebrates, TIMP-1, -2, -3, and
-4, which exhibit diverse inhibitory actions toward different MMP family members
[22]. For example, TIMP-1 has a poor inhibitory effect on MMP-9, -14, -15, -16,
and -24. TIMPs also harbor the ability to inhibit members of both the ADAM and
ADAMTS family of proteinases [22]. TIMP expression is tissue specific and,
similarly to MMPs, is finely regulated during development and remodeling. Most of
their inhibitory capacity has been ascribed to the N-Terminal domain since it is able
to form, when isolated, a stable native molecule with an inhibitory effect on MMPs
[23]. TIMPs are normally secreted proteins, however they can localize to the cell
membrane associated with membrane protein, including several MT-MMPs. Reg-
ulation of the equilibrium between MMPs and TIMPs is essential in homeostasis.
Alterations in this balance can trigger patho-physiological conditions associated
with atypical ECM turnover of the matrix and/or dysregulation of processes
involved in wound healing, remodeling and inflammation. Cardiovascular disease,
cancer, arthritis, and neurological disorders are all examples of pathologies where
an imbalance between MMPs and TIMPs is apparent [23].

5 MMPs and Atherogenesis

5.1 Early Stage: Pathological Intimal Thickening

Atherogenesis is a multi-step sequence of events that leads to atherosclerotic plaque
formation on the luminal side of major arteries. In humans, it is a process that
develops and evolves over several decades, beginning with early lesions that can
occur during childhood. The development of atherosclerotic lesions is dependent on
multiple risk factors which can be genetic or modifiable in nature, including
hypercholesterolemia, smoking, high blood pressure, sedentary lifestyle, and dia-
betes [24]. In man, the first event that generally occurs branch points within major
arteries, is the formation of an early lesion, commonly termed pathological intimal

430 K. Di Gregoli and J.L. Johnson



thickening (although sometimes referred to as fatty streaks) [25]. These early
lesions are characterized by the accumulation of lipid-laden macrophages (also
called foam-cell macrophages due to their appearance under the microscope),
within a preexisting smooth muscle and ECM-rich intima. Raised levels of low
density lipoprotein (LDL) within the blood stream, alongside alterations in shear
stress, the presence of free radicals such as reactive oxygen species (ROS), or
exposure to infection-related pathogens, can result endothelial damage. A damaged
endothelium is subject to inflammatory activation that triggers expression of
adhesion molecules (including vascular cell adhesion molecule-1; VCAM-1) that
mediate leukocyte recruitment. Such adhesion molecules facilitate a transient
contact, allowing leukocyte rolling at the luminal surface of the vessel wall. After
firm adhesion to the endothelium, monocytes and lymphocytes transmigrate, pen-
etrating into the tunica intima (the innermost layer of the artery) driven by a
chemoattractant gradient, through molecules including monocyte chemoattractant
protein-1 (MCP-1). Monocyte recruitment is considered a fundamental process
during early lesion formation and atherosclerosis onset. In order to invade the
arterial wall, monocytes are required to degrade the physical barrier represented by
the ECM, therefore it is essential that they possess potent protease activity. Human
monocytes constitutively express several MMPs and TIMPs including MMP-8,
MMP-12, MMP-19, TIMP-1, and TIMP-2. Whereas upon adhesion and in response
to inflammatory stimuli they can be activated and subsequently upregulate the
expression of MMP-1, MMP-3, MMP-10, and MMP-14 via the stimulation of
MAP kinase and NF-jB transcription factors [26]. Specifically, MMP-14 expres-
sion and activity is necessary for monocyte endothelial transmigration and invasion
this process can be blocked by MMP-14 inhibition either by a neutralizing anti-
body, recombinant TIMP-2 or gene silencing in vitro [27–30]. Moreover, MMP14
inhibition of activated circulating monocytes by a neutralizing antibody, retards
monocyte recruitment into existing atherosclerotic lesions in mouse model of
atherosclerosis [30]. Once within the intima monocytes differentiate into macro-
phages in response to several stimuli, in particular the Colony Stimulating Factors
(CSFs), which concomitantly drives the expression of scavenger receptors, growth
factors, cytokines giving rise to a survival impulse [31]. Accordingly, recently
recruited monocytes at sites within the artery where lipoproteins have accumulated
and after their differentiation into macrophages, begin to internalize the modified
lipoproteins from the surrounding areas, through their cell-surface scavenger
receptors. This process results in transformation of macrophages into foam-cells
macrophages (FCMs) [32]. Macrophages also interact with T-cells which are also
recruited to developing plaques, inducing an array of immune and inflammatory
responses including the expression of adhesion molecules, MMPs, cytokines,
apoptotic mediators, and pro-thrombotic activities, which collectively drive an
inflammatory amplification loop and therefore promoting atherosclerotic plaque
progression [33]. Intra-plaque macrophages and foam-cells express a diverse range
of MMPs and TIMPs [34]. In particular, it has been observed that MMP-7, MMP-9,
and TIMP-3 expression is induced during macrophage differentiation in vitro [26],
whereas MMP-1, MMP-3, and MMP-12 expression can be induced in macrophages
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in response to inflammatory mediators and cytokines [34]. However, within
atherosclerotic plaques, most macrophages are lipid-laden and therefore charac-
terized as foam cell macrophages, therefore the accumulation of lipid within
macrophages may exert the most dominant role on MMP and TIMP regulation.
Indeed, immunohistochemistry (a valuable method for studying atherosclerotic
plaque composition alongside macrophages and foam-cell macrophages in situ), has
revealed the expression of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-11,
MMP-12, MMP-13, MMP-14, and MMP-16 in foam-cell macrophages within
lesions (Table 1). Moreover, the detection of matrix proteolysis (as assessed by
in situ zymography) [35, 36] alongside the presence of cleaved collagen fibres at the
corresponding sites [13], suggest that at least some of the MMPs expressed within
these regions are in an active form. Recent direct evidence has demonstrated that
MMP-1, MMP-3, and MMP-14 are over-expressed in foam-cell macrophages
isolated from human plaques [37, 38] and that in vivo generated foam-cell mac-
rophages from cholesterol-fed rabbits display heightened expression of MMP-1,
MMP-3, MMP-12, and MMP-14, when compared to nonlipid-laden macrophages
[39]. Additionally, increased expression and activity of MMP-14 in a
sub-population of rabbit foam cell macrophages was associated with a concomitant
loss of TIMP-3 expression, resulting in their increased invasiveness, proteolytic
activity, and susceptibility to undergo apoptosis [40]. Therefore, the presence of
foam-cell macrophage-derived MMPs within the atherosclerotic lesions may direct
disease progression and predict future clinical outcome.

5.2 MMPs and Atherosclerotic Plaque Progression

One of the principal processes that determines the progression of a pathological
intimal thickening toward the development of a mature atherosclerotic plaque is the
formation of a fibrous cap which overlies a recently formed lipid core. The fibrous
cap originates following the organized migration of vascular smooth muscle cells
(VSMCs) from the tunica media (the middle layer of the artery that lies between the
tunica intima on the inside and the tunica externa on the outside) toward the arterial
lumen, alongside the continual growth of VSMCs already resident within the
intimal thickening. The VSMCs overlying the lipid core proliferate and produce
fibrous ECM components, such as collagen and fibronectin, providing a structural
barrier that separates the thrombogenic lipid core from the blood stream, providing
strength and hemodynamic stability to the developing lesion. In addition to the
production of MMPs and TIMPs, macrophages within the plaque secrete numerous
cytokines and mediators such as platelet-derived growth factor (PDGF),
heparin-binding epidermal growth factor (EGF), and insulin-like growth factor
(IGF) that facilitate the mobilization and recruitment of VSMCs [41]. In order to
expedite their migration, VSMCs need to release themselves from their cell–cell
and cell–matrix interactions which act as physical barriers—dysregulated MMP
activity directs this process. Studies investigating the role of MMP activity on
VSMC migration have focused their attention principally on MMP-2, MMP-9, and
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MMP-14, presumably due to these MMPs harboring the ability to degrade the
basement membrane protein collagen type IV [16]. MMP-2 has been shown to
augment VSMC migration across basement membrane proteins in vitro [42, 43],
and MMP-9 overexpression can also promote the migratory capacity of isolated
VSMCs [44]. A comprehensive study revealed MMP-14 is critical during VSMC
migration, facilitating VSMCs to first degrade and then infiltrate 3-D collagen
barriers, including the arterial wall [45]. These findings have been substantiated
through subsequent in vivo studies utilizing genetically modified mice lacking
either MMP-2, MMP-9, or MMP-14 which all reported attenuated VSMC migra-
tion. MMP-3 has also been shown to promote VSMC migration, predominantly
through the activation of MMP-9 [46]. A role for the collagenase MMP-13 in
VSMC migration has been documented, induced through an Akt-ERK dependent
pathway [47]. Additionally, MMPs can contribute to VSMC migration by cleavage
of nonmatrix substrates. For instance, MMP-14 can cleave and shed from the cell
membrane CD44 (a cell surface hyaluronan receptor), promoting increased cell
motility [48]. Conversely, intact CD44 can serve as a docking station for secreted
MMP-7 and MMP-9 on the VSMC membrane, localizing their proteolytic activity
to the cell surface and potentially facilitating cell migration [49, 50]. MMP activity
has also been linked to VSMC proliferation. Similarly to migration, proliferation
requires the removal of cell–cell and cell–matrix interactions, which otherwise exert
an inhibitory effect on cell division. Cadherins are a family of adhesion proteins
involved in cell–cell contact regulation of proliferation, and have recently been
identified as new substrates of MMP activity [51]. Cadherins also serve as mem-
brane receptors for cell signaling transduction and their cleavage by MMPs can
modulate b-catenin nuclear translocation (a member of Wnt/wingless signaling
pathway), known to activate the transcription of several pro-proliferative genes
[51]. Indeed, MMP-7 and MMP-12 can induce N-cadherin cleavage/shedding, and
through b-catenin signaling, promote VSMC proliferation [52]. Taken together,
MMP-directed VSMC growth and migration participates in fibrous cap formation
and therefore plays a prominent role in atherosclerotic plaque formation—but is
considered beneficial as it protects the developing plaque from instability.

5.3 MMPs and Unstable Plaque Development and Rupture

During atherosclerotic plaque progression, foam-cell macrophages undergo cell
death via apoptosis or necrosis. Macrophage and foam-cell death promotes the
establishment and expansion of an extracellular lipid-rich core, which is highly
thrombogenic and harbors the potential to destabilise advanced atherosclerotic
plaques. Unsurprisingly, a role for MMPs has been suggested in macrophage and
foam-cell apoptosis [53]. For example, macrophage and foam-cell susceptibility to
undergo apoptosis can be retarded by inhibition of MMP-12 or MMP-14 activity,
through use of a selective inhibitor or a neutralizing antibody, respectively [40, 54].
Accordingly, TIMP-2 and TIMP-3 can both reduce foam-cell macrophage apop-
tosis, in part through inhibition of MMP-14-dependent N-Cadherin cleavage [30,
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40, 55]. Furthermore, loss of TIMP-2 in vivo increases the number of apoptotic
macrophages within atherosclerotic plaques of hypercholesteroleamic mice, whilst
TIMP-1 depletion had no effect [30]. Therefore, uncontrolled cell death and sub-
sequent lipid core enlargement contributes to plaque progression and is associated
with plaque instability and propensity to rupture [56]. As can know be appreciated,
the stability of atherosclerotic plaques is determined by its composition, specifically
the VSMC and fibrous ECM content (which reflects the thickness and strength of
the fibrous cap), together with the macrophage and lipid content (which reveals the
size and possible rate of expansion of the lipid core) [57]. The vast majority of acute
coronary events originate from atherosclerotic plaque instability, notably the rup-
ture of the fibrous cap and ensuing leakage of the thrombogenic lipid core into the
arterial lumen, triggering thrombosis [58]. As such, clinical symptoms, including
myocardial infarction or stroke, are often a result of plaque rupture and subsequent
thrombus formation, resulting in distal impairment of blood flow or embolization
and consequent ischemia. Indeed, fibrous cap disruption leads to the exposure of
highly thrombogenic plaque constituents such as tissue factor (TF), lipids or
modified collagen fragments. The interaction of these factors with the flowing blood
results in thrombus formation by triggering activation of the coagulation cascade
[59]. As earlier discussed, mature atherosclerotic plaques are characterized by a soft
and highly thrombogenic lipid-rich core and associated macrophages infiltration,
which is encapsulated by a VSMC and ECM-rich fibrous cap that provides struc-
tural integrity [56]. However, atherosclerotic lesions are heterogeneous in nature
and can vary in fibrous cap thickness and lipid-core size; different combinations of
these two variables results in different plaque phenotypes and susceptibility to
rupture, with diverse clinical outcome. Pathological studies of human coronary
artery atherosclerotic plaques permit histological discrimination between stable and
unstable (also defined as vulnerable or rupture-prone) atherosclerotic plaques [25,
56]. Characteristically, stable plaques constitute of a thick fibrous cap, particularly
enriched with VSMCs and collagen, and a small lipid core with reduced macro-
phage accumulation. Plaques with thick caps (and nonstenotic) are generally clin-
ically silent. However, unstable plaques typically present with a large lipid-core and
a thin fibrous cap [5] and are characterized by a high number of macrophages plus
other inflammatory cell types; and are commonly referred to as thin-cap
fibro-atheromas (TCFAs). Histological and in vivo animal studies have demon-
strated that inflammation (T-cells and macrophages) not only promotes
atherosclerotic plaque formation, but also contributes to plaque destabilization [5].
Foam-cell macrophages produce several pro-inflammatory cytokines such as IFNc,
which in addition to mediating inflammatory responses, can also inhibit VSMC
collagen synthesis [60]. As discussed earlier, within atherosclerotic plaques, mac-
rophages are a major source of proteolytic enzymes, especially MMPs, alongside a
plethora of inflammatory mediators in plaques, and are therefore considered to play
a fundamental in ECM degradation (i.e., collagen and elastin) and subsequent
fibrous cap weakening [5]. There is also evidence that macrophage-dependent
MMP activity can promote fibrous cap thinning through potentiating VSMC death.
For example, MMP activity may detrimentally affect VSMC survival by disrupting
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cell–matrix interactions and therefore attenuating matrix-dependent survival signals
[16]. The cleavage of death signal molecules and their receptors from the cell
surface can trigger apoptosis through autocrine and paracrine processes. A number
of MMPs including MMP-7 are able to generate the pro-apoptotic factor TNFa
through proteolytic cleavage of pro-TNFa [16]. In addition, MMP-7 can cleave Fas
ligand (FasL) to its pro-apoptotic soluble form (sFasL) [61]. Interestingly, MMP-7,
TNFa, and FasL all co-localize in human atherosclerotic plaques, suggesting this
apoptotic triptych may contribute to formation and expansion of the lipid-rich core
[62]. The lateral aspects of an atherosclerotic plaque (commonly termed the
shoulder regions) are the sites considered most prone to rupture, and reside between
the lipid-rich core and the thinnest part of the fibrous cap. These areas are char-
acterized by accumulations of macrophages and particularly foam-cell macro-
phages, alongside notable neovascularization [63]. Pathological studies of human
atherosclerotic plaques have revealed that macrophages, VSMCs, lymphocytes, and
endothelial cells within the rupture-prone shoulder regions express MMP-1,
MMP-3, and MMP-9 [64]. MMP-2, MMP-7, MMP-11, MMP-12, MMP-13,
MMP-14, and MMP-16 levels are also elevated at the shoulder regions of unstable
plaques [8, 10, 12–15], where increased MMP activity and substrate cleavage has
also been documented [7, 11, 13, 36]. These findings suggest that MMP expression
and activity is strongly associated atherosclerotic plaque progression, highlighting
them as therapeutic targets and predictors of clinical outcome in patients with
advanced atherosclerotic disease.

6 MMPs as Therapeutic Target for Atherosclerosis

Animal models of atherosclerosis have been widely utilized to investigate the
pathogenesis of plaque formation, progression, and instability with the objective of
identifying novel therapeutic targets to prevent the clinical manifestations associ-
ated with atherosclerosis. Rabbits have been used in multiple studies as several
strains spontaneously develop atherosclerotic plaques when fed a high-fat diet.
However, most atherosclerosis in vivo studies are conducted in mouse models,
despite the fact that wild-type mice atherosclerosis-resistant even after prolonged
periods of high fat feeding. The two most commonly used mouse models of
atherosclerosis are genetically modified where a key gene of the cholesterol
transport pathway has been deleted; these genes are Apolipoprotein E (Apoe) or
LDL receptor (Ldlr), thus rendering them hypercholesteroleamic [65–67]. These
mice develop atherosclerotic lesions throughout the arterial tree including similar
sites to plaque formation in man, even when fed on a normal diet [68]. However, on
consumption of a high-fat diet, atherogenesis is significantly accelerated in either
Apoe or Ldlr deficient mice, although the hypercholesterolemia is more marked in
the Apoe deficient animals. There are also striking similarities in lesion develop-
ment and progression between both models and humans, as early lesions closely
resemble fatty streaks whilst longer periods of high-fat feeding produce complex
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advanced lesions [68, 69]. A multitude of studies have been conducted in Apoe
deficient mice (and to a lesser degree Ldlr knockout mice) to investigate the roles of
MMPs in atherosclerosis. Such studies have utilized genetically modified mice
which have global or cell specific knockout or over-expression of a single
MMP/TIMP, or treated with a potential therapeutic agent that targets select or all
MMPs. These studies have aided the elucidation of potential pathogenic roles of
multiple MMPs and TIMPs in atherosclerosis plaque progression and stability
(summarized in Table 2).

Table 2 Effect of MMP modulation on atherosclerotic plaque development and stability in
animal models

Modulation Model (species) Site Size VSMCs Mø References

MMP-1 Tg Apoe KO (Ms) Aorta and root # $ $ [70]

MMP-2 KO Apoe KO (Ms) Aorta and root # # $ [74]

MMP-3 KO Apoe KO (Ms) Aorta, BCA "/" #/ND #/$ [76, 77]

MMP-7 KO Apoe KO (Ms) BCA $ " $ [77]

MMP-8 KO Apoe KO (Ms) Aorta # $ # [80]

MMP-9 KO Apoe KO (Ms) Aorta, BCA #/" ND/# #/" [77, 78]

MMP-9 Tg Apoe KO (Ms) Arch, collar $ $ $ [71, 72]

MMP-12 KO Apoe KO (Ms) Aorta, BCA $/# $/" $/# [77, 78]

MMP-12 Tg kbt:JW (Rb) Aorta " " " [73]

MMP-13 KO Apoe KO (Ms) Root $ $ $ [81]

MMP-14 KO Ldlr KO (Ms) Root $ $ $ [82]

Non selective MMP
inhibitor

Ldlr or
Apoe KO (Ms)

Aorta, BCA $ $ $ [87–89]

MMP-12 inhibitor Apoe KO (Ms) Aorta, BCA
and root

# " # [54]

MMP-13 inhibitor Apoe KO (Ms) Carotid $ $ $ [92]

miR-24 inhibitor (MMP-
14 over-expression)

Apoe KO (Ms) BCA " $ " [84]

TIMP-1 KO Apoe KO (Ms) Aorta and root $/# $/ND $/" [30, 83]

TIMP-2 KO ApoE KO (Ms) BCA $ # " [30]

TIMP-3 KO ApoE KO (Ms) Aorta and root # ND # [85]

TIMP-1 RAd Apoe KO (Ms) BCA and root #/$ ND/$ #/$ [55, 86]

TIMP-2 RAd Apoe KO (Ms) BCA # " # [55]

miR-712 inhibitor
(TIMP-3 over-
expression)

Apoe KO (Ms) Carotid, aorta
and aortic arch

# ND # [103]

Results of in vivo animal studies evaluating the effects of modulating matrix metalloproteinases
(MMP) or tissue inhibitors of MMPs (TIMP) on atherosclerotic plaque size and cellular
composition, using transgenic (Tg) or adenoviral (Rad) over-expression, gene knockout (KO),
pharmacological inhibitors of MMPs, or microRNA (miR) inhibitors.
VSMC Vascular smooth muscle cell,Mømacrophage, BCA brachiocephalic artery, root aortic root,
(#) decreased, (") increased, ($) no change, and ND not determined
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6.1 Overexpression Studies

Dissimilar to humans, mice do not constitutively express MMP-1. However, when
human MMP-1 was over-expressed exclusively in macrophages of Apoe deficient
mice, an unexpected reduction in plaque size, and collagen content was observed
[70]. In contrast, macrophage-specific over-expression of pro-MMP-9 did not affect
atherosclerotic plaques [71]. However, in a collar-induced carotid artery model of
atherosclerosis in Apoe deficient mice, local over-expression of pro-MMP-9 pro-
moted intra-plaque hemorrhage [72]. Furthermore, the transplantation of transduced
stem cells permitting the over-expression of an active form of MMP-9, increased
plaque progression [71]. Similarly, macrophage-specific over-expression of active
of MMP-12 in transgenic rabbits, augmented plaque size and markers of inflam-
mation [73], suggesting that MMP-9 and MMP-12 activation may promote
atherosclerosis progression (summarized in Table 2).

6.2 Knockout Studies

A number of studies have been conducted in Apoe knockout mice which are also
deficiency for a single MMP or TIMP to elucidate the roles for a selected
MMP/TIMP in atherosclerotic plaque formation. Interestingly, these studies have
revealed that MMPs exert protective and detrimental effects on atherosclerosis. For
instance, Mmp2 knockout mice exhibits a reduction in plaque size, attributed in part
to a reduction in VSMC content and implying that plaque stability is compromised
in the absence of MMP-2 [74], as MMP-2 is necessary for VSMC migration and
intimal formation in vivo [75]. Equally, although Mmp3 deletion resulted in larger
aortic and brachiocephalic plaques, a reduction in VSMC number was observed,
associated with an increased number of buried fibrous layers (a surrogate marker of
plaque instability), suggesting that MMP-3 may promotes plaque stability through
promoting VSMC accumulation [76, 77]. Indeed, after carotid ligation, Mmp3
knockout mice shows decreased VSMC migration and associated neo-intimal for-
mation [46]. Likewise Mmp9 deficient mice develop larger plaques with an
increased number of buried fibrous layers, and a concomitant reduction in VSMC
content [77]. Taken together with findings from an arterial injury model demon-
strating MMP-9 promotes VSMC migration and concomitant neo-intimal formation
[46], these studies support a beneficial role for MMP-9 in promoting plaque sta-
bility through favouring VSMC accumulation. However in another study assessing
aortic plaques in mmp9 KO studies, revealed no change in plaque area and a
reduced number of lesions, although they also suggested that plaque VSMC
number was lowered in Mmp9 deficient animals [78].

In contrast, an increase in VSMC content was reported within the brachio-
cephalic plaques of mmp7 knockout mice [77], in agreement with a pro-apoptotic
role attributed to MMP-7 on VSMCs [79], and indicating a deleterious role for this
MMP in atherosclerosis. Mmp8 deficient mice show reduced plaque size and
macrophage number but increased collagen content, suggesting MMP-8 promotes
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plaque progression [80]. Several lines of evidence have strongly indicated a
detrimental role for MMP-12 in plaque progression and instability. Mmp12 defi-
ciency results in smaller brachiocephalic artery plaques, with a reduced number of
macrophages and buried fibrous layers [77] and diminished indicators of elastin
degradation [78]. Moreover, the ratio between macrophages and VSMCs within the
plaques of Mmp12 knockout mice are favourably increased toward VSMCs, in part
due to reduced monocyte/macrophage invasion and apoptosis [54], suggesting
MMP-12 promotes plaque instability. Further studies in a rabbit model of
atherosclerosis have confirmed a detrimental role for MMP-12 in atherosclerosis
[73]. Collectively these findings strongly imply that MMP-12 promotes plaque
progression and instability. Whilst exerting moderate effects on plaque size, mac-
rophage and VSMC content, mice with either global deletion of MMP-13 or
macrophage-specific loss of MMP-14 exhibit a marked increase in plaque fibrillar
collagen content, indicating significant roles for these two MMPs in collagen
degradation and consequently plaque destabilization [81, 82].

Consequently, these studies imply that some MMPs, such as MMP-2, -3, and -9,
exert a protective effect on atherosclerotic plaque progression by promoting VSMC
growth and consequent fibrous cap formation. Contrastingly, other MMPs includ-
ing MMP-7, -8, -12, -13, and -14, may promote plaque instability via increased
inflammation, matrix degradation and apoptosis, therefore increasing the propensity
of plaque rupture (summarized in Table 2).

6.3 Inhibitor Studies

Although Timp1 deficient mice had larger aortic atherosclerotic lesions with
enhanced MMP activity, accompanied with heightened macrophage and lipid
content [83], Timp2 knockout mice display a more unstable plaque phenotype than
their Timp1 deficient counterparts [30]. These plaques were characterized by
increased necrotic core size, buried fibrous layers, macrophage number, and mac-
rophages undergoing apoptosis and proliferation; they also presented reduced
collagen and VSMC content, indicative of reduced stability [84]. Equally, Timp3
deficiency in Apoe knockout mice increased lesion size within the aorta and at the
aortic root, associated with heightened macrophage accumulation [85]. As therefore
expected, systemic over-expression of TIMP-1 or TIMP-2, via adenovirus-mediated
gene transfer, reduced lesion development and plaque progression in Apoe
knockout mice [55, 86]. Additionally, gene transfer long term over-expression of
TIMP-2, but not TIMP-1, arrested progression of established plaques at least in part
by constraining monocyte/macrophage invasion and their susceptibility to apoptosis
[55]. These findings lend robust support for MMP inhibition as a therapeutic
strategy to prevent plaque progression and destabilization. Accordingly, there have
been numerous endeavours by academia and industry to develop and deploy syn-
thetic inhibitors of MMPs. Nevertheless, broad spectrum inhibitors containing
zinc-chelating groups (such as thiol or hydroxamate groups, or tetracycline deri-
vates) have given inconsistent results. Administration of hydroxamic acid-based,
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nonselective MMPs inhibitors to either Lldr knockout or Apoe KO deficient mice
revealed no beneficial effects on plaque development or progression [87, 88].
Likewise, doxycycline (a commonly used antibiotic with known nonspecific MMP
inhibitory ability) failed to prevent atherosclerosis development in Apoe deficient
mice [89]. Furthermore, two independent, randomized, double-blind, and placebo
controlled clinical trials involving treatment with of patients with symptomatic
coronary and carotid artery disease with doxycycline, did not favourably influence
plaque composition or clinical outcome [90, 91]. In contrast, use of a highly
selective MMP-12 inhibitor, RXP470.1, arrested plaque progression and improved
stability in Apoe deficient mice with preexisting atherosclerosis [54]. In response to
MMP-12 inhibition, lesions exhibited reduced lipid core expansion and macro-
phage apoptosis, increased VSMC to macrophage ratio, decreased plaque calcifi-
cation, and attenuated elastin degradation [54]. These results, together with a
reduction of buried fibrous layers, reflected those observed previously in
Mmp12/Apoe double knockout mice [77]. Similarly, a second study where a highly
specific MMP-13 inhibitor was deployed, revealed intra-plaque collagenolytic
activity was reduced and associated with preservation of fibrillar collagen content
within plaques [92], mirroring the effects also witnessed in Mmp13 deficient mice
[81]. Taken together, considering broad spectrum MMP inhibition failed to exert
any striking benefits on atherosclerosis in either clinical or animal studies, whilst
selective MMP inhibition was beneficial in mice, support the tenet that individual
MMPs (and therefore possibly TIMPs) play divergent roles in disease development
and progression. Consequently, these proof-of-principle studies in mice provide an
incentive to translate selective MMP inhibitor treatment into human atherosclerotic
patients (summarized in Table 2).

6.4 microRNA Regulation of MMPs

microRNAs (miRs) are small noncoding RNA molecules of approximately 22
nucleotides in length which have the ability to post-transcriptionally regulate gene
expression. They are transcribed by polymerase II in the nucleus and are initially
produced as primary miRs (pri-miRs). These pri-miRs are processed to miR pre-
cursors (pre-miRs) by RNAse III Drosha before they can be exported to the
cytoplasm where they are eventually processed into mature and biologically
functional miRs through the action of another RNAse III named Dicer. Mature
miRs are able to target and bind the 3′ untranslated regions (3′-UTR) of messenger
RNA (mRNA) and modulate their expression. It has been predicted that miRs may
modulate up to 90% of mammalian genes and therefore play fundamental roles in
regulating cellular function [93]. Numerous studies have recently investigated that
ability of miRs to regulate MMP expression. For instance, the 3′UTR region of
MMP-1 is targeted and regulated by miR-526 [94], which could have potential
implications for collagenolysis in plaques. MMP-2 is a direct target of miR-29b,
and consequently miR-29b over-expression can inhibit VSMC migration and
proliferation and subsequent neo-intimal formation [95]. MMP-3 has been
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identified and validated as a putative target of miR-93, as such miR-93
over-expression in human nucleus pulposus cells promoted collagen accumula-
tion [96]. In osteocarcinoma, miR-539 plays a key role in inhibiting osteosarcoma
cell invasion and migration through regulating MMP-8 expression in osteosarcoma
cells [97]. Direct targeting of MMP-9 by miR-204 can suppress trophoblast-like cell
invasion, contributing to the development of pre-eclampsia [98]. Furthermore,
MMP-9 expression may also be indirectly regulated by miR-497 via direct targeting
of MEK1 in endothelial cells, in response to the anti-hyperlipidaemia drug probucol
[99]. Another study conducted in chondrocytes revealed miR-320 was able to
directly target and down-regulate MMP-13 expression during chondrogenesis, and
vice versa during inflammatory osteoarthritis [100]. Numerous microRNAs have
been identified and predicted to target and regulate the expression of MMP-14.
miR181a-5p has been shown to downregulate MMP-14 expression by direct tar-
geting of its 3′UTR, reducing cancer cell invasion, and angiogenesis [101]. Simi-
larly, miR-9 can inhibit neuroblastoma cell invasion, metastasis, and angiogenesis
by targeting of MMP-14 mRNA [102]. With regard to atherosclerosis, MMP-14
protein expression can be directly modulated by miR-24 in macrophages in
response to GM-CSF, influencing the invasive capacity of macrophages [84].
Consequently, administration of a locked nucleic acid (LNA)-miR-24 inhibitor
significantly exacerbated preexisting atherosclerosis in Apoe deficient mice,
through increasing lesion size, macrophage content, and MMP-14 expression [84].
Moreover, miR-24 expression correlate with more stable coronary plaques in
humans, suggesting a protective role of miR-24 in atherosclerosis, presumably
through decreased MMP-14 activity [84]. Finally, miR-712 is induced in response
to shear stress in endothelial cells of Apoe deficient mice, and through targeting of
TIMP-3, exerts a detrimental effect on atherosclerosis via promotion of endothelial
inflammation [103]. Collectively, these findings suggest modulation of microRNA
may serve as a valuable tool for regulating MMP and TIMP expression in
atherosclerosis, highlighting these important and powerful molecules as significant
targets for medical intervention.

7 Conclusions

Through studies conducted in isolated cells and animal models, alongside human
pathological and clinical findings, MMPs have been established to play a funda-
mental role in cardiovascular diseases, especially the development, progression, and
rupture of atherosclerotic plaques. Seminal studies utilizing animal models that
permit genetic modulation of individual MMPs or TIMPs has allowed the identi-
fication of specific roles select MMPs exert on all vascular cell types, and the
ensuing significance to atherosclerosis. Collectively, this large body of work has
demonstrated that modulation of MMP expression/activity can halt and even
reverse atherosclerosis, whilst disappointingly broad-spectrum MMP inhibition
does not replicate these effects, presumably due perturbation of both beneficial and
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detrimental MMPs (summarized in Fig. 2). Therefore, it is acknowledged and
necessary to generate and deploy inhibitors which harbor restricted specificity
towards selected MMPs, including MMP-12 and MMP-13, to facilitate transition to
man—particularly in the context of atherosclerotic plaque stabilization.

miR-712

Plaque Rupture Plaque Stability

Lipid core

Thrombus

Endothelial cell

Medial VSMC

Migratory VSMC

Plaque VSMC

Monocyte

Macrophage

Foam-cell macrophage

Apoptotic cell

MMP-2, -3 & -9MMP-1, -8, -12, -13 & -14 TIMP-2 & -3

miR-24

Fig. 2 Divergent roles of MMPs in atherosclerotic plaque progression and stability. Hypothetical
model of the potential beneficial and deleterious roles of MMPs and TIMPs during atherosclerotic
plaque progression and rupture. Matrix metalloproteinase (MMP)-2, -3, and -9 can facilitate
vascular smooth muscle cell (VSMC) migration from the media into the developing atherosclerotic
plaque where they participate in fibrous cap formation and maintenance, thus promoting plaque
stability. In opposition, MMP-1, MMP-8, MMP-12, MMP-13, and MMP-14 can degrade
extracellular matrix proteins present in the fibrous cap whilst also encouraging the recruitment and
accumulation of monocytes and macrophages, and their subsequent susceptibility to apoptosis as
foam cells—which collectively enhance lipid core expansion, thrombogenicity of the plaque, and
thinning of the fibrous cap. Consequently, the stability of the plaque is compromised and
vulnerable to plaque rupture and ensuing thrombus formation. More recently, microRNA
(miR) have been identified which can regulate MMP and TIMP expression/activity, exerting direct
effects on plaque progression
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