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Abstract
Proteases play an important role in health and disease of the lung. In the normal
lungs, proteases maintain their homeostatic functions that regulate processes like
its regeneration and repair. Dysregulation of proteases–antiproteases balance is
crucial in the manifestation of different types of lung diseases. Chronic
inflammatory lung pathologies are associated with a marked increase in protease
activities. Thus, in addition to protease activities, inhibition of anti-proteolytic
control mechanisms are also important for effective microbial infection and
inflammation in the lung. Herein, we briefly summarize the role of different
proteases and to some extent antiproteases in regulating a variety of lung diseases.
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1 Introduction

The lung possesses a large number of anti-inflammatory components [1], which
fight against microbial infections.

Serine, cysteine, aspartic, and metalloproteases are the principal classes of
protease present in the human lung. A good number of evidence suggest that
neutrophil serine proteases (NSPs) such as elastase, proteinase 3 (PR3), cathepsin G
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(CatG), and matrix metalloproteases (MMPs) are major pathogenic determinants of
chronic inflammatory lung disorders [1]. The lung proteases act in concert with the
proteases of invading microbes, inactivate antiproteases, and antimicrobial com-
pounds and thereby play a pivotal role in different types of lung diseases including
chronic obstructive pulmonary disease (COPD), asthma, acute respiratory distress
syndrome (ARDS), influenza, and cancer [1].

The lung proteases can either intracellularly or extracellularly regulate processes
such as tissue remodeling, mucin production, neutrophil chemotaxis, and microbial
destruction. Additionally, they regulate infection and inflammation in the lung, for
example neutrophil elastase (NE), a serine protease, which plays critical role in the
progression of a variety of lung diseases. It can regulate activities of CatB and
MMP-2 in alveolar macrophages [2] and also activates proMMP-2, MMP-7, and
MMP-9 [3–5], indicating that NE may act as a proinflammatory mediator. In some
cases, NE regulates important signaling pathways that modulate innate immunity
[6, 7]. NE’s multiple roles characterize it as a decisive factor controlling many
aspects of infection and inflammation in the lung.

2 Pulmonary Hypertension

Pulmonary hypertension (PAH) occurs due to elevation of pulmonary artery
pressure and if it is prolonged, then right ventricular failure may occur with sub-
sequent fatality [8]. PAH often leads to secondary complications of many pul-
monary disorders such as COPD, asthma and chronic bronchitis bronchopulmonary
displasia, cystic fibrosis, chronic bronchitis, and emphysema [9, 10].

2.1 Serine Protease and Pulmonary Hypertension

The role of oxidants such as hydrogen peroxide, hydroperoxides, superoxide, and
peroxynitrite in producing PAH is now well established [11–15]. Administration of
the oxidant, tert-butylhydroperoxide (tert-buOOH) to the perfusate of isolated rabbit
lungs causes pulmonary vasospasm [16]. Oxidant-induced pulmonary vasocon-
striction can be blocked by the cyclooxygenase or thromboxane synthase inhibitor,
indomethacin and is closely correlated with the thromboxane level in the effluent
perfusate [13, 16–19], suggesting a critical role of thromboxane in pulmonary
vasoconstriction. On the other hand, TMB-8, an intracellular Ca2+ ([Ca2+]i)
antagonists, has been shown to prevent oxidant-mediated pulmonary vasocon-
striction [13]. Thus, oxidant-mediated PAH is triggered by an increase in [Ca2+]i.
In many occasions PAH occur due to an increase in [Ca2+]i caused by stimulants
such as thromboxane A2 and endothelin-1 that generates oxidants. Oxidant and Ca2
+ ionophore-mediated pulmonary hypertension has been observed to be inhibited by
serine protease inhibitors, for example, aprotinin [19–21].
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The mechanism by which oxidants stimulate production of the arachidonic acid
(AA) metabolites has gained considerable interest. A report by Chakraborti et al.
[22] indicated that oxidants, e.g., tert-buOOH stimulation of pulmonary artery
endothelial and smooth muscle cells caused a marked increase in phospholipase A2

(PLA2) activity with subsequent generation of AA. Mepacrine, an inhibitor of PLA2

inhibits tert-buOOH-induced increase in PLA2 activity, thromboxane B2 produc-
tion, and PAH [19, 22]. Some investigators, considering the analogy of activation
of pancreatic phospholipase A2 [23], suggested that a serine protease might be
involved in regulating PLA2 activity [24]. Chakraborti et al. [25, 26] demonstrated
that oxidant-mediated activation of PLA2 activity in pulmonary endothelial and
smooth muscle cells occur with the involvement of proteolytically activated protein
kinase Ca (PKCa). They have also demonstrated that oxidants caused increase in
[Ca2+]i in pulmonary endothelial and smooth muscle cells can activate an aprotinin
sensitive protease having mol mass of *43 kDa [26]. The protease then prote-
olytically activates PKCa resulting in stimulation of cPLA2 (Fig. 1), which gen-
erates thromboxane and that has been observed to be important in producing PAH
[25, 26]. Oxidants elicit an increase in [Ca2+]i due to proteolytic activation of

Fig. 1 Schematic representation of the underlying mechanism associated with oxidant (reactive
oxygen species: ROS)-mediated cPLA2 activation in pulmonary vascular endothelial and smooth
muscle cells. A calcium channels; B membrane bound Ca2+ stores; C anion channels; D diffusion;
E inhibition of Na+ dependent Ca2+ uptake
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PKC-d by MMP-2 resulting in phosphorylation of a pertussis toxin sensitive protein
(Gi) leading to inhibition of Na+ dependent Ca2+ uptake (Na+/Ca2+ exchanger) in
the endoplasmic reticulum (ER) [27–31] (Fig. 2), whereas the role of cell mem-
brane for an increase in [Ca2+]i has been observed to be due to phosphorylation of
Gi via proteolytically activated PKCa by an aprotinin sensitive serine protease
leading to inhibition of Na+ dependent Ca2+ efflux (Na+/Ca2+ exchanger) (Fig. 1) in
pulmonary vascular cells [24–26].

In many systems, Ca2+-ATPase represents only about 1% of the total proteins
[32]. In heart sarcolemmal vesicles, Ca2+ uptake via NCX produces maximum
transport velocity and that has been demonstrated to be about 30-fold up than that
elicited by the sarcoplasmic reticulum {S(ER)} Ca2+ pump system [33]. In addition

Fig. 2 Schematic representation of the underlying mechanism of oxidant (reactive oxygen
species: ROS) triggered inhibition of Na+ dependent Ca2+ uptake in bovine pulmonary smooth
muscle ER resulting in an increase in [Ca2+]i. A Anion channel; B diffusion; MMP-2 matrix
metalloprotease-2; TIMP-2 tissue inhibitor of metalloprotease-2; PKCd protein kinase C delta;
RACK-1 receptor for activated C kinase-1; Gia inhibitory G protein a subunit; GiaP
phosphorylated Gia; C Na+-K+-ATPase/Na+-H+ exchanger. (Taken from Chakraborti et al.
(2005) Mol Cell Biochem. 280: 107–117 with permission)
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to the Ca2+ pump, Na+ dependent Ca2+ uptake system is an important mechanism to
sequester Ca2+ in the ER of pulmonary vascular cells [29–33]. A decrease in Ca2+

sequestration by proteolytic inhibition of Na+ dependent Ca2+ uptake has been
observed to measure duration of free [Ca2+]i transient, which eventually produces
vasoconstriction [34, 35]. In different systems, Na+/Ca2+ exchanger controls the
contractility of smooth muscle cells [34, 35]. For example, contractile dysregulation
in the myocardium could be related with activation of proteases [36]. Thus, the role
of cell membrane associated aprotinin sensitive protease and ER MMP-2 on Na+/
Ca2+ exchange in pulmonary artery endothelial and smooth muscle cells under
oxidant triggered condition is an important mechanism for the pathological mani-
festation of pulmonary vasoconstriction [24–26, 29–31].

2.2 MMPs and Pulmonary Hypertension

PAH is characterized by persistent vasoconstriction and remodeling of pulmonary
vasculature associated with activation of proteases, for instance, MMPs [34].
Remodeling of pulmonary artery is associated with an alteration of extracellular
matrix (ECM) turnover with concomitant change in ECM proteins level. In PAH,
dysregulation of ECM turnover has been suggested to play an important role in the
pathological remodeling process [35, 36]. ECM degradation occurs by different
proteases of which matrix metalloproteases (MMPs) has been shown to play the
crucial role [37, 38]. Of the MMPs, MMP-2, and MMP-9 are able to cleave
basement membrane associated type IV collagen, which increase remodeling of the
pulmonary vasculature in PAH [39]. Given the potency of MMPs, its activity is
tightly regulated at the transcriptional and post-translational level, where the tissue
inhibitors of MMP (TIMPs) play a pivotal role [40, 41].

IL-1, a potent endogenously generated inducer of PAH, elicits its effect via an
increase in the level of TGF and TNF in pulmonary smooth muscle cells. TGF
causes an increase in the expression of the 92 kDa proMMP-9 and 72 kDa
proMMP-2 mRNAs, while TNF triggers activation of proMMP-9 and proMMP-2
[42].

MMP-2 is produced upon activation of proMMP-2 by a variety of stimuli under
different pathophysiological conditions. It has been observed that the activation of
proMMP-2 occurs at the cell membrane. Interaction between MT1-MMP and
TIMP-2 is an important phenomenon in the activation of proMMP-2. The
MT1MMP-TIMP2 associates with proMMP-2 and forms a trimolecular complex,
which triggers the activation of proMMP-2 and subsequently generates MMP-2
[41, 42]. The activation of proMMP-2 in pulmonary artery smooth muscle cells
occur with the involvement of protein kinase C-a dependent and
NF-кB-MT1MMP-mediated signaling mechanism. TNF-a augments mRNA and
protein expression of MT1MMP, while the expression level of TIMP-2 diminishes.
The increase in TNF-a leads to IKK activation, IB phosphorylation and degrada-
tion, and subsequently activation of NF-кB. Upon activation, NF-кB binds to the
MT1-MMP promoter, thereby enhancing its expression and subsequently increases
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proMMP-2 level in association with TIMP-2 that is modulated by protein kinase
C-a at the cell membrane [41, 42] (Fig. 3). This indicates therapeutic potentiality of
PKC inhibitors in ameliorating the PAH, where activation of proMMP-2 is an
important phenomenon.

ProMMP-9 activation by TNF-a has been observed to occur with the involve-
ment of an aprotinin sensitive serine protease [42]. TNF-a was shown to inhibit
aprotinin and TIMP-1 mRNA and protein expression, which trigger activation of
proMMP-2 resulting in the stimulation of MMP-2 (Fig. 4). Under IL-1b stimula-
tion, the aprotinin sensitive protease was not activated, although a discernible
inhibition of TIMP-2 mRNA and protein expression were triggered by TNF-a [42].
Thus, IL-1-induced stimulation of the two progelatinases occurs via different
mechanisms.

Fig. 3 Schematic representation of TNFa-induced proMMP-2 activation in the SMCs. TNFa
binds to cell surface receptor TNFR1. Upon binding, TNFa induces PKCa activation, which
subsequently activates IKK by phosphorylation. Activated IKK then phosphorylates IkB-a, which
upon phosphorylation is ubiquitinated and degraded in the cytosol. The free NF-кB then
translocates to the nucleus and increases the expression of MT1-MMP, which then accumulates on
the cell surface. PKC-a, on the other hand, also down regulates TIMP-2 expression by mechanism
that is currently unknown. (Taken from Roy et al. (2013) J Biochem 153:289–302 with
permission)

338 S. Chakraborti et al.



3 Influenza

Influenza viruses are highly infectious and trigger acute respiratory diseases with
significant morbidity and mortality in humans and other animals [43–46].

Influenza viruses can be classified as A, B, or C. Influenza virus A, found in
humans and other mammals and birds, played a nefarious role in causing the three
twentieth century major influenza outbreak and also the influenza outbreak of swine
origin that occurred in the recent past [47]. Many of the influenza A-related mor-
talities are attributable to secondary bacterial pneumonia [48, 49].

Haemagglutinin (HA) protein contributes critically to influenza virus-mediated
pathogenicity. HA of influenza virus binds to sialic acid containing cell surface
receptors. HA upon cleavage by a good number of host of protease(s) forms HA1
and HA2 subunits and that has been fused with host cell membrane, which sub-
sequently initiates the infection process [49–52]. In most cases, the cleavage site of
HA of avian and mammalian influenza viruses is a single arginine, albeit a single
lysine amino acid has also been observed at the cleavage site in some cases.
Cleavage can occur extracellularly by trypsin [53, 54] and proteases such as

Fig. 4 Schematic representation of proMMP-9 activation by an aprotinin sensitive protease
during IL-1b stimulation of pulmonary artery smooth muscle cells. IL-1b treatment to the cells
stimulates TGF-b and TNF-a. TGF-b stimulates expression of proMMP-9, while TNF-a activates
proMMP-9 via an increase in a *43 kDa aprotinin sensitive protease concomitant with the down
regulation of aprotinin and TIMP-1 expression
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plasmin [55–57], tryptase of bronchiolar epithelial and mast cells [58], and also by
bacterial proteases [59–61].

Several other proteases expressed in the lung are also able to facilitate influenza virus
spread. Böttcher et al. [62] demonstrated that TMPRSS2 and TMPRSS11D, trans-
membrane serine proteases, (a.k.a. human airway trypsin-like protease: HAT) activate
the influenza viruses H1N1 (A/Memphis/14/96), H2N9 (A/Mallard/Alberta/205/98),
andH3N2 (A/Texas/6/96) upon cleavage of haemagglutinin (HA) and contribute to the
high pathogenicity of these influenza viruses in the lung [63]. In addition to HAT,
TMPRSS-2 and -4, the granzymes (Gzm) such asGzmA,GzmB, andGzmE are known
to play a key role in the process of cleavage of 1918 H1N1 HA as a part of the
progression of the influenza disease [62, 63].

The sites of virus replication in the microenvironments of respiratory tract
represent complex extracellular proteases (such as trypsin and tryptase), which
activate a family of receptors called protease activated receptors (PARs) [64, 65]
and that play an important role in both virus replication and innate immune
response [58, 66]. Four PARs (PAR1-4) are known to be activated by different
proteases. After cleavage of the receptor(s) by proteases, the newly released amino
terminal sequence binds and internally activates the receptor [67]. In the airways of
IAV-infected mice, an increase in the level PAR2 upon IFNc-mediated modulation
has been shown to play a crucial role in influenza pathology [68, 69].

Multiple serine protease activities are implicated in mediating influenza virus
infection. Inhibition of influenza A virus infection in cultured lung epithelial cells
by serine protease inhibitors, for example, aprotinin markedly protects mice from
infection [70]. Another serine protease inhibitor, camostat has also been shown to
possess anti-influenza (Taiwan/1/86) virus pathology [71].

4 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is associated with the pathological
manifestations of emphysema and chronic bronchitis. Emphysema is characterized
by a marked destruction of the alveolar septa with concomitant decrease in lung
plasticity and that results in gas trapping leading to a marked decrease in pulmonary
oxygenation in the lung. Chronic bronchitis usually occurs with inflamed and
thickened airways along with an increase in mucus production by the cells in the
airways, which leads to a marked increase in cough and difficulty in breathing.
Noxious particles present in cigarette smoke and automobile exhaustion have been
observed to be an important causative agent of COPD [72, 73].

In the early 1960s, proteases have been shown to produce lung lesions in
experimental animals similar to human emphysema. Initial studies in this scenario
included metalloproteinases, papain and subsequently serine proteases, for exam-
ple, porcine pancreatic elastase [74].
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4.1 Serine Proteases and COPD

The identification of a1-PI (an endogenous serine protease inhibitor) and subse-
quent research confirmed that a strong association exists between the development
of emphysema and inherited deficiency of the inhibitor [75]. A critical role of serine
proteases have been established in the pathobiology of emphysema. Preliminary
studies in this genetic condition of inherited a1-PI deficiency indicated that chronic
bronchitis is associated with the early onset of the disease [76, 77].

The lung epithelium of normal individuals is protected from the detrimental
effects of neutrophil serine proteases (NSPs) by a battery of antiproteases. Large
quantities of NSPs (*20-fold w.r.t. normal subjects) released by neutrophils in
acute and chronic inflammatory conditions overpowered antiprotease activities,
leading to uncontrolled proteolysis and subsequently lung damage [74–76].

Alpha-1-PI deficiency increases activities of different enzymes secreted by
activated neutrophils such as NE, cathepsin G (CatG), and proteinase 3 (PR3), all of
which are capable of damaging different components of the ECM such as collagen,
laminin, fibrillin, and elastin. However, several evidences suggest that it is the
destruction of lung elastin that is important in causing emphysema, which generates
COPD pathophysiology in animal model systems [75, 76].

Human neutrophil elastase (HNE), by destroying elastin, plays a critical role in
the development of pulmonary emphysema [76, 77]. HNE has many other bio-
logical activities. For example, it stimulates mucin production [78], activates MMPs
[5], inactivates TIMPs [79], and generates neutrophil chemotactic elastin-derived
fragments [80, 81]. PR3 and CatG, two elastase homologues secreted in massive
quantities from neutrophils at inflammatory sites, have also been shown to have
proinflammatory functions acting through various mechanisms [80–82]. The most
abundant is the a1-PI, which targets preferentially HNE. Secretory leukoprotease
inhibitor (SLPI), an inhibitor of HNE and CatG, but not of PR3, has been shown to
control excess proteolysis in the upper airways [83]. Elafin, derived from trappin-2
(pre-elafin) [84], is an NSP inhibitor that controls the activities of HNE and PR3
[85]. Other NSP inhibitors including 1-antichymotrypsin and monocyte/NE inhi-
bitor (MNEI) were found to play relatively minor role as protease inhibitors [86,
87]. NSPs, therefore, could prove useful as therapeutic target for a number of
inflammatory lung diseases.

There are differences in pathological manifestations among smoking and
non-smoking a1-PI deficient COPD patients. The smokers with COPD frequently
show pulmonary emphysema and bronchitis, while patients of the latter category
often show emphysema without bronchitis. Although the chronic smokers usually
suffer from the antiprotease inactivation in both the airways and respiratory units as
a result of oxidant-mediated inactivation of a1-PI, the non-smoking a1-PI deficient
individuals possess diminished antiprotease content primarily in respiring units,
which are free of mucus glands and depends upon a1-PI for antiprotease defence
[88].

Oxidative stress induced by cigarette smoke in COPD patients may promote the
inflammatory state by recruiting additional neutrophils and upregulating the

16 Role of Proteases in Lung Disease: A Brief Overview 341



inflammatory transcription factor, NF-кB and neutralizing TIMPs in addition to
a1-PI and SLPI [89].

4.2 Urokinase Plasminogen Activator and COPD

In COPD patients, an increase in urokinase plasminogen activator (uPA) level in the
airway epithelial and alveolar cells, and lung macrophages cause destruction of
small airways and alveolus of the lung [90]. Urokinase plasminogen activator
receptor (uPAR), in addition to functioning as a protease receptor, mediates
intracellular signaling [91]. An increase in uPAR level in the macrophages has been
observed in patients with COPD, which suggests the critical role of uPAR in
inflammation and tissue remodeling including parenchymal destruction and fibrosis
of small airways [92].

4.3 MMPs and COPD

MMPs are known to induce morphological changes in the lung that are prevalent in
COPD. Several MMPs are known to play important roles in the pathogenesis of
COPD [93]. Lung parenchyma and inflammatory cells such as neutrophils and
macrophages are the major sources of MMPs in patients with COPD [94].

MMP-12 (a.k.a. macrophage elastase) is known to play an important role in
COPD pathogenesis. A marked increase in MMP-12 expression in alveolar mac-
rophages is associated with smoking associated emphysema [95]. In mouse, dele-
tion of MMP-12 gene prevents cigarette smoke-induced inflammation, neutrophil
influx, and emphysema in the lung [96, 97]. Genetic analysis of human COPD
patients demonstrated that the common serine (codon 357) of the MMP-12 gene
plays a crucial role in the pathological manifestations of matrix degradation, which
has been observed to be related with the severity of the disease [98, 99].

Analysis of COPD lung tissue indicated an increase in the activity of MMP-1
and MMP-8, but not MMP-13 [100, 101]. An increase in MMP-1 activity was
found in type II pneumocytes in patients with emphysema, but not in normal control
subjects [101]. Neutrophil-derived MMP-8 levels were markedly increased in
patients with COPD in comparison to the normal subjects [101]. Prominent increase
in MMP-2 and MMP-9 expression has been observed in the lung of COPD patients
[102]. During interleukin-10 (IL-10)-mediated airflow obstruction, an imbalance
between MMP-9 and TIMP-1 results in an increase in MMP-9 activity was found in
an animal model system [103].

Acrolein, a component of cigarette smoke‚ has been shown to initiate cleavage
of proMMP-9, thereby producing active MMP-9. However, MMP-9 knockout mice
do not completely inhibit cigarette smoke-induced emphysema, suggesting that
other MMPs also play role in COPD pathogenesis [103]. Importantly, MMP-14, the
membrane-type MMP (MT1-MMP), has been observed to be induced by acrolein
which upon increase in mucin production leads to COPD [104] (Fig. 5).
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5 Lung Fibrosis

Lung fibrosis (a.k.a. interstitial lung diseases) is a chronic disorder, exemplified by
a marked increase in matrix degradation and intra-alveolar fibrosis leading to
dyspenea, impaired oxygen transfer and alveolar collapse [105, 106]. Lung fibrosis
occurs in the alveolar space and interstitium and is characterized by a widespread
accumulation of differentiated fibroblasts (i.e., myofibroblasts) and ECM
components.

Fibrotic disorders in the lung are associated with dysregulation of proteolytic
activities. A considerable number of reports have suggested the involvement of
cathepsins in this scenario. Enhanced proteolytic processing of CatB was observed
in the lungs during an increase in TGF-b, suggesting that CatB may participate in
fibrogenesis [107].

Microarray studies have revealed that in addition to NE, MMP-7 (a.k.a. matri-
lysin) is an important COPD marker. MMP-7 degrades decorin, the extracellular
proteoglycan, which subsequently releases decorin-bound transforming growth

Fig. 5 Cigarette smoke and other noxious volatile components-mediated dysregulation of
protease–antiprotease balance resulting in an increase in protease activity for pathological
manifestation of COPD
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factor-b (TGF-b) [108] and that subsequently contributes to TGF-b activation,
which is known as a critical marker of COPD [109].

6 Silicosis

An increase in the activity of MMP-2, MMP-9, and stromelysin has been
demonstrated in alveolar macrophages from silica-treated rats, which contribute to
extracellular matrix (ECM) and basement membrane (BM) degradation [110].
Administration of silica particles to mice causes upregulation of cathepsin K (CatK)
expression and activity in silicotic lung homogenates compared to control lungs.
Lung fibroblasts and macrophages were known as the main CatK-producing cells.
Expression of CatK is inversely correlated to the level of TGF-b1, suggesting a
protective role of CatK during silicotic process [111]. Mature active CatB, -H, -K,
-L, and -S were identified in the broncho alveolar lavage fluids (BALFs) of patients
suffering from silicosis. Among them, CatH has been observed to be the most
abundant aminopeptidase, while CatB and CatL were mostly found thiol dependant
endoproteases. Importantly, an increase in cathepsins/inhibitors ratio has been
shown to favor uncontrolled proteolysis during silicosis [110, 111].

7 Cystic Fibrosis

In cystic fibrosis (CF), a marked increase in the activities of proteases could damage
the airway architecture and that contributes to progressive bronchiectasis, a con-
dition where the bronchial tubes of lungs are permanently damaged and enlarged
due to infection in the bronchi [112, 113]. CF is an autosomal recessive genetic
disorder caused by loss of expression or functional mutations to the cystic fibrosis
transmembrane conductance regulator (CFTR) [114, 115]. CF affects multiple
organs, albeit the pathology associated with CF appears to be due to its effect on the
respiratory system. Non-functional CFTR channels in CF patients prevent the
regulation of chloride and sodium ions across epithelial membranes leading to an
increase in dehydrated mucus secretions in the lungs [112–116].

The key immune cell mediators seen in CF patients are polymorphonuclear
neutrophils [115]. Upon recruitment, activated neutrophils release a wide variety of
proteases, which induce inflammatory response and subsequently tissue damage
[115, 116].

The impairment of mucociliary clearance mainly revolves around the interac-
tions between NE and mucins. Mucins are a family of highly glycosylated proteins
produced by epithelial cells and are the main components of the mucus found
clogging of the airways in CF patients [117, 118]. NE has been shown to regulate
the mucins via activation of TNF—converting enzyme, which upregulates their
expression via epidermal growth factor receptor (EGFR) pathway [118–120].
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CF patients cannot efficiently clear mucus due to damage by proteases to the cilia
structures in the lungs and, therefore, are highly susceptible to chronic bacterial
infections [121–123].

MMPs were found to play a crucial role in CF pathogenesis [124]. MMP levels
are increased in the BAL of CF individuals [125]. MMPs produce
proline-glycine-proline (PGP), a neutrophil chemoattractant derived from extra-
cellular matrix, which regulates the immune response during CF [126].

A marked increase in NE has been shown in CF lung, which causes airway
remodeling by degrading ECM proteins such as elastin and fibronectin [127]. The
resulting alteration of airway epithelial cell membrane by NE induces
neutrophil-mediated inflammation upon increase in the expression of proinflam-
matory cytokines, for example, IL-8, which results in neutrophil-mediated
inflammation by upregulating the proinflammatory MMPs, CatG, and PR3 lead-
ing to tissue damage in the CF lung [6].

8 Asthma and Allergy

8.1 Asthma

Asthma is a chronic inflammatory disease of the airways and its occurence and
propagation is on the rise. The number of patients with asthma is estimated to attain
a staggering figure of 100 million globally by 2025 [128]. Generally, asthma is
triggered by the activation of adaptive immune response that upon inducing the
lung triggers mucus production, increased IgE level, airway remodeling, and airway
hyperactivity [129].

Manifestation of Asthma is characterized by acute inflammatory response and
airway obstruction [130]. In both acute and chronic asthma, proinflammatory cells,
including neutrophils, eosinophils, mast cells and macrophages enters into the lung
tissue [131, 132]. These proinflammatory cells secrete a variety of extracellular
proteases of which serine proteases and MMPs are important as these enzymes play
prominent role in asthma pathogenesis [133–139].

Plasminogen can be converted to the active enzyme plasmin by tissue type
plasminogen activator (PA) or urokinase-type PA (u-PA). Tissue PA and u-PA are
associated with the dissolution of fibrin and also in the degradation of ECM
components [140]. Plasminogen activator inhibitor-1 (PAI-1) is a major inhibitor of
tissue type plasminogen activator and u-PA, and thereby contributes to matrix
formation by preventing matrix degradation. Mast cells (MCs) in the airways of
patients with asthma are crucial in initiating allergic inflammation [141]. MCs and
bronchial epithelial cells (BECs) are the major source of plasminogen activator
inhibitor (PAI-1). The interactions between the BECs and the MCs are important in
maintaining persistent inflammation and structural changes in asthma [142].

IgE-mediated inflammation is well known for the pathogenesis of asthma.
MCs-derived TGF-b upon cross-linking with IgE receptor enhances PAI-1
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production in BECs. This increase in the production of PAI-1 has been suggested to
play a critical role in the development of fibrosis that occurs adjacent to the
epithelium [143]. Conceivably, drugs that inhibit activation of MCs, for example,
by anti-IgE may prove useful in preventing airway remodeling in asthma.

8.2 Serine Protease and MMP in Asthma Pathophysiology

Proteolytic enzymes including NE and MMP-9 play important roles in tissue
remodeling and repair in the airways [144]. The proteolytic enzymes levels are
increased in asthma, which occurs due to an imbalance in the protease–antiprotease
system.

In neutrophilic asthma, high levels of active NE and proMMP-9 were observed,
whereas only a small amount of MMP-9 has been observed to be active. However,
eosinophilic asthma was characterized with high level of active MMP-9 without
free elastase. Thus, a differential profile of protease activity has been observed in
asthma. A deficiency of antiproteases may explain the differential enzyme activity
observed in eosinophilic and neutrophilic asthma. An increase in the level of
MMP-9 bound to TIMP-1 in subjects with neutrophilic asthma in comparison to the
eosinophilic asthma has been observed. This could explain about the presence of
low level of active MMP-9 in neutrophilic asthma. This relative deficiency of
TIMP-1 in subjects with eosinophilic asthma in comparison to neutrophilic asthma
may explain about the high level of active MMP-9 that exists in the sputum of
subjects in this group [144–146].

Alpha1-PI level has been observed to be increased in neutrophilic asthma, but its
function was impaired leading to a marked increase in free elastase (NE) activity.
Proteolytic inactivation of a1PI may lead to a form, which acts as an activator of
neutrophils and that could result in superoxide (O2

.−) production [146]. However,
role of proteolytic enzymes in specific inflammatory phenotypes of asthma is not
clearly known. In contrast, IL-8 (a potent chemoattractant and an activator of
neutrophils) plays an important role in eosinophilic asthma [6]. NE can induce
production of IL-8 and its potency has been observed to be elevated upon prote-
olytic processing by MMP-9 [147].

Patients with persistent inflammatory asthma elicit more non-eosinophilic asthma
progression than that of the eosinophilic asthma. These exacerbations are not pre-
vented by corticosteroid treatment [148]. COPD and neutrophilic asthmatic patients
generally show chronic airway inflammation associated with a marked airway neu-
trophilia, which are not discernibly responsive to inhaled corticosteroids [148, 149].

8.3 Cytokines and Asthma

Inflammation in asthma has been observed to be mediated by a specific subclass of
T-lymphocytes referred primarily to Th2 lymphocytes, which causes inflammation
and remodeling via secretion of specific cytokines [150].
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Cytokines, for example, IL-11 play primary role in mediating asthma patho-
physiology through its receptor (IL-11R). ADAM-10, a matrix metalloprotease, can
release the IL-11R ectodomain upon cleavage of IL-11 receptor. Serine proteases
such as NE and PR3 can also cleave the IL-11R. The resulting truncated soluble
IL-11R (sIL-11R) activates the inflammatory cells. Thus, IL-11 signaling pathology
proceeds upon proteolytic cleavage of its receptor [151].

An increase in the numbers of apoptotic airway epithelial cells in COPD has
been observed to be associated with secondary necrosis [152, 153]. In severe
asthma, conditions associated with increased airway neutrophilia, tissue damage
and an increase in apoptosis of airway epithelial and smooth muscle cells have also
been demonstrated [154]. Granzymes, a family of serine protease, have a repute to
initiate immune-mediated cell death. Cytotoxic T cells and natural killer (NK) via
granzyme-mediated pathway induces apoptosis of target cells, e.g., bronchial
epithelial cells. Granzymes play critical roles in a variety of age-related chronic
inflammatory diseases. There are five human granzymes identified so far in the
lungs. These are granzyme A (GzmA-tryptase), granzyme B (GzmB-aspase),
granzyme H (GzmH-chymase), granzyme K (GzmK-tryptase), and granzyme M
(GzmM-metase). Granzymes, especially granzyme B and perforin, are stored in
secretory granules of cytotoxic cells, and are released into the intercellular space
following adhesion to the target cells. In presence of Ca2+, perforin pores in the cell
membrane enable entry of granzyme B and subsequently induces
caspase-dependent apoptosis [155], which may be an important mechanism of lung
injury in asthma.

8.4 Allergy

Many aeroallergens like house dust mites and fungal allergens associated proteases
play important role in asthma pathophysiology. Epidemiological studies suggested
that sensitivity to fungal allergens could be an important cause of allergic asthma
[156].

8.5 Alternaria Alternate and Asthma Severity

The fungus Alternaria alternate has been observed to cause asthma under certain
circumstances [157, 158]. The allergen of the fungus possesses intrinsic proteolytic
activities and that upon activating protease activated receptors (PARs) play a
prominent role in mediating allergic airway diseases. Interleukin-33 (IL-33) has
been observed to be associated with the development of allergic asthma [159].
IL-33 expression in the lung was found to be elevated in the asthmatic subjects and
the asthma severity could be positively correlated with the IL-33 expression in the
airways [160, 161].

Alternaria driven release of IL-33 occurs with the involvement of a serine
protease specific to this aeroallergen. The Alternaria serine proteases cause marked
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inflammation because of the capacity of the serine protease to drive IL-33 release,
which in turn induces rapid onset of asthma exacerbations. Thus, targeting the
protease—IL-33 signaling axis could prove useful as a therapeutic measure in this
kind of asthma pathogenesis [162].

8.6 Aeroallergenicity of Acanthamoeba

The free living amoeba, Acanthamoeba trophozoite, is found in human airway
cavities and possesses high protease activities, which can elicit allergic airway
inflammation [163]. Intranasal inoculation of A. trophozoite or its excretory
secretory (ES) proteins in mice have been shown to elicit allergic airway inflam-
mation. ES proteins with strong protease activities stimulate dendritic cells and also
able to enhance the differentiation of early T cells into mature IL-4 secreting T cells.
Treatment of ES proteins in the protease activated receptor (PAR-2) knockout
mouse showed inhibition of lung airway inflammation and Th2 immune responses
with lower IgE level compared with the normal mouse. This suggests a role of
PAR-2 in the aeroallergenicity of Acanthamoeba allergens [163].

8.7 Seasonal Rhinitis and Asthma

Allergic diseases like seasonal rhinitis and asthma are generally result from
exposure to airborne pollens. Asthmatic patients allergic to pollen have been
observed to develop a chronic inflammation of the airways leading to bronchial
obstruction and hyper responsiveness. Upon inhalation, pollen grains release a wide
variety of allergens with protease activities, which may act as inflammatory
mediators and subsequently pathogenesis of respiratory allergies. The proteases
were known to inactivate lung regulatory neuropeptides, for example, substance P
and vasoactive intestinal peptide (VIP) [164] leading to dysregulation of the
contraction-relaxation rhythm of the respiratory airways. The inhaled allergens
were processed by dendritic cells (DCs) present at the subepithelial regions, and
then present allergen peptides to native T-lymphocytes for stimulation of IgE
production. Some pollen allergens exhibit proteases such as aminopeptidase and
trypsin-like serine protease activities, which can cleave proteins from junctional
complexes between epithelial cells [165]. A 98 kDa aminopeptidase of Parietaria
judaica, for instance, has been shown to cause detachment of A549 human alveolar
epithelial cells by degrading intercellular adhesion proteins from tight junctions and
adherens junctions [165, 166]. Pollen proteases can induce degradation of cell
junction proteins such as occluding, claudin-1 and E-cadherin, thereby help aller-
gens to cross the epithelial barrier and contact with DCs for intensifying immune
response [164–166].
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8.8 Organic Dust Allergy

Organic dusts made for agriculture may lead to airway inflammation, which may
cause sinusitis and chronic bronchitis to workers in agricultural industries [167–
170]. Workers in livestock industries working in concentrated animal feeding
operations (CAFOs) are susceptible to chronic airway diseases [171]. Extracts of
dust collected from CAFOs are potent stimulators of lung inflammatory responses.
Hog dust extract (HDE) contains active proteases, which play a critical role in lung
inflammatory processes [172, 173].

Epidermal growth factor receptor (EGFR) signaling has been shown to play an
important role in the proinflammatory response of bronchial epithelial cells (BECs)
to HDE [172]. The proinflammatory effect of HDE has been suggested to be due to
the proteolytic activation of PARs, especially PAR-2 [173]. In lung epithelial cells,
actions of fungal, cockroach and dust mite allergen proteases are mediated by the
cleavage and activation of protease activated receptor-2 (PAR-2) [174–176].
However, PAR-1 is unable to mediate the effects of these proteases. PARS play an
important role in bronchial fibroblast proliferation; epithelial cell wound healing
and hypersecretion of mucus [177, 178]. By inhibiting HDE proteases or abrogating
activation of epithelial cells, PAR-2 could inhibit HDE-induced inflammatory
indexes in bronchial epithelial cells (BECs) and subsequently inhibition of the
allergic response [179]. Thus, targeting the protease activity of organic dusts made
for agricultural usage and other air borne dusts may prove useful as a strategy for
preventing airway inflammation in agricultural workers, who are generally exposed
to dusty agricultural environments.

8.9 Cockroach Allergy

Bernton and Brown [180] first observed skin rashes upon exposure of cockroach
over the skin of allergic patients. Subsequently, a considerable number of evidence
have confirmed that exposure to cockroach can induce allergy. Proteases associated
with cockroach can produce bleb formation to the skin, which could play a critical
role in the development of allergic disease [181–183].

Cockroach allergens such as saliva, feces, cast skins, and dead bodies contain
serine protease activities, however, feces (frass) was found to be the prominent
source of allergens, which contains serine protease activity [184, 185]. Sensitization
of wild type mice to German cockroach frass (GC frass) has been shown to increase
allergic hyperactivity (AHR) due to a marked increase in serum IgE and also
production of cytokines such as IL-13, IL-4, IL-5, and IL-17 [186]. Sensitization of
PAR-2 deficient mice with GC frass, however, did not show a discernible increase
in allergic airway inflammation indicating a role of PAR-2 in mediating allergic
airway inflammation [185].
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9 Lung Cancer

Lung cancer is one the most prevalent and lethal diseases worldwide. Despite recent
advances in chemotherapy, the molecular basis of its progression to a metastatic
disease remains unclear.

Exposure of bronchial epithelial cells of smokers produce oxidants and reactive
oxygen species (ROS) with consequent cellular responses to activate NF-кB and
other transcription factors that regulate inflammation-related genes and initiates
several signaling pathways depending on both genetic and epigenetic factors and
manifest COPD and lung cancer [187, 188].

9.1 MMPs and Lung Cancer

Lung cancers are of two major types: (i) small cell lung carcinoma (LC); and
(ii) non-small cell lung carcinoma (NSCLC). ECM and basement membrane
components are proteolytically cleaved by MMPs. These components play a pivotal
role in cancer progression. Lung cancers express high levels of MMPs. MMP-7 and
MMP-9 expressions were found to be markedly high in NSCLC in comparison to
the normal tissue [189]. MMP-1 and MMP-3 promoter polymorphisms are asso-
ciated in modifying susceptibility to NSCLC and also to an increase in the risk of
lymphatic metastasis of these tumors [190]. MMP-2 and MMP-9 activities have
been found to be associated with an increase in tumor spread [191].

Treatment of mice with CH1104I (dual inhibitor of MMP-2 and -9) has been
shown to markedly inhibit metastasis of lung carcinoma, which suggests that
inhibition of MMP-2 and -9 could significantly inhibit tumor invasion and metas-
tasis [192]. MMP-2 and -9 expressions may have prognostic implications in
patients with NSCLC [193]. Over expression of MMP-1 has been observed to
induce the formation of lung metastases [194, 195].

9.2 High Temperature Requirement A (HtrA) Serine
Protease and Lung Cancer

HtrA (a.k.a. DegP) is a heat shock-induced serine protease that is active in the
periplasm of Escherichia coli. Homologues of HtrA were found in a wide range of
bacteria and in eukaryotes. Till date, four human homologues of the bacterial serine
protease HtrA have been described, which are named as HtrA-1, -2, -3, and -4 [196,
197]. They have a variety of functions including cancer [198].

HtrA1 has been observed to be downregulated in lung cancers [198]. In human
cancer cells, HtrA1 over expression prevents cancer cell growth and proliferation
suggesting HtrA1 as a tumor suppressor. A modest expression of HtrA1 has been
observed in primary tumors and lymph node metastases. However, the exact
functions of HtrA1 in cancer are mostly unknown. A previous report suggested that
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HtrA1 elicits its function by inhibiting TGF-b pathway [199]. The role of TGF-b in
cancer progression is well documented [200]. Accordingly, the TGF-b signaling
pathway has been considered as both a tumor suppressor and promoter pathway of
tumor progression and invasion. It, therefore, seems probable that activation of
TGF-b signaling pathway occurs when HtrA1 is downregulated, thereby con-
tributing to the cancer progression. Alternatively, over expression of HtrA1 has
been shown to induce apoptosis [201]. Thus, loss of HtrA1 expression alters reg-
ulation of apoptosis and could lead to cancer progression [201].

HtrA1 degrades tubulin by disrupting microtubules (MTs), which suggest that
HtrA1 could play an important role in regulating MT and tubulin stability and
MT-associated cellular functions [245]. HtrA1 also regulates cell migration and
offers a potential role in regulating MT organization associated with cell migration.
However, the exact mechanism(s) by which HtrA1 regulates cell migration is
currently unclear. Active HtrA1 upon removal of N-terminal Kazal-type trypsin
inhibitory domains contributes to cell death through caspase dependent, as well
caspase-independent mechanisms [202].

The role of HtrA2 protease in stress responses and apoptosis in lung cells has
been established and a previous report suggested its involvement in
cisplatin-induced death of renal cells [203]. Over expression of HtrA2 by cisplatin
has been observed to follow the release of HtrA2 from mitochondria to the cytosol
and it degrades anti-apoptotic proteins. This mechanism seems to be obligatory to
trigger mitochondrial permeabilization for HtrA2 to participate in cell death [203,
204]. Therefore, HtrA2 plays a vital role in programmed cell death upon elimi-
nating the caspase inhibitory activity of apoptosis [205, 206]. However, the detail
mechanism(s) by which HtrA2 regulates lung cancer is currently unknown.

Smoking is a critical factor for lung cancers and the HtrA3 has been shown to be
associated with smoking-induced lung cancer. HtrA3 expression has been found to
be markedly downregulated in lung cancer cell lines and also primary lung tumors
isolated from heavy smokers [207]. HtrA3, in contrast to the steady HtrA1 and
HtrA2 expression, has been identified as a probable target for cigarette
smoke-induced changes in normal human bronchial epithelial cells [207]. It has also
been suggested that cigarette smoke-induced methylation of HtrA3 may play an
important role in the etiology of smoking-linked lung cancer [207].

Studies on HtrA3 exon in lung cancer cell lines indicates that it possesses core
xenobiotic response element (XRE) consensus sequence, 5-TNGCGTG-3 and is a
target for methylation at CpG. XRE is located in the promoter region of the genes
involved in metabolizing xenobiotic carcinogens, mainly aryl hydrocarbons from
cigarette smoke and environmental pollutants, for instance, automobile exhaust
[208, 209]. These compounds upregulate the gene products of XRE via aryl
hydrocarbon receptors and multitude of other transcription factors [210, 211]. The
degree of methylation of HtAr3 is similar when studied in A549 and H157 lung
epithelial cells, when treated with NNK (Nicotine-derived nitrosamine ketone), a.k.
a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, an important tobacco-specific
nitrosamines, which play key role in carcinogenesis [208]. NNK suppressed the
expression of HtAr3, whereas 5-azo-dc has been shown to induce it [208].
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Differential expressivity of HtAr3 may be controlled by other cross-talking
mechanisms such as histone deacetylation, micro RNA activation, loss of
heterozygosity and genetic mutation. Along with that HTAr3, HtAr1, and HtAr2
are also believed to be upregulated by xenobiotic stress [208, 212]. However, more
research is needed to ascertain them as therapeutic targets pertaining to lung cancer
for epigenetic therapies as well as prognosis to forecast tumor response.

10 Tuberculosis

Upregulation of CatG, but not NE, has been shown to induce cell death of activated
Mycobacterium tuberculosis infected macrophages. The substrate specificity of
CatG and NE is distinct. CatG cleaves the C-terminus of aromatic or positively
charged amino acid residues, while NE cleaves the C-terminus of small
hydrophobic amino acid residues [213, 214]. Enhanced necrosis in infected mac-
rophages by CatG may result from proteolysis of specific target sequences, which
are currently unknown. It has been shown that serpinb3a inhibition of CatG is
necessary to prevent necrosis induced by IFN-c in M. tuberculosis infected mac-
rophages [214].

Role of matrix metalloproteinases (MMPs) as an important mediator of tissue
destructive response in TB has now been clearly known [215, 216]. MMPs can
cleave ECM components [217]. In humans, MMP-1 cleaves fibrillar components
(types I and III collagen) of ECM. The level of MMP-3, the activator of MMP-1 is
high in respiratory secretions of TB patients than control subjects [216–218]. In
rabbits, MMP-1, -3, -7, -12, and -13 expressions are elevated in granulomatous and
cavitary pathologies in human respiratory secretions observed in vivo model sys-
tems of TB [218–220]. In a human monocyte infection model, a marked reduction
in TIMP-3 has been observed to be correlated with TB pathogenesis [221]. In a
mice model, TIMP-3 has been observed to be associated with cavity formation and
subsequently ECM degradation, which are important for TB pathogenesis [221,
222].

11 Acute Lung Injury

Severe acute respiratory distress syndrome (SARS) was identified in 2003, which
triggered death of thousands of people worldwide [223, 224]. A new type of
coronavirus has been identified and found responsible for the SARS, which pro-
duces pneumonia and associated high fever and severe dyspnea and subsequently
acute respiratory distress syndrome (ARDS) followed by death due to acute lung
injury (ALI) [224, 225]. ARDS is characterized by accumulation of inflammatory
cells and severe hypoxia that leads to pulmonary edema [226].
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Renin-angiotensin system (RAS) has been observed to play a critical role in
SARS. In animal studies, a prominent role of angiotensin converting enzyme
(ACE) in the pathogenesis of ARDS has been suggested [227, 228]. ACE2, a
homologue of ACE, was shown to be a key regulator for coronovirus infection that
produces SARS. ACE2 has been shown to be expressed in the lungs of both healthy
and diseased humans, and it protects against SARS-induced ALI [229–231].
Therefore, it seems conceivable that ACE2 might prove a novel therapeutic target
for SARS-coronovirus-induced ARDS that develops in emerging lung infectious
diseases including influenza [231].

12 Elafin and ALI

Elafin, a serine protease inhibitor having mol wt of 6 kDa, found in lung secretions.
Elafin is formed by proteolytic cleavage of its precursor protein, trappin-2 [232].
The antiprotease activity of elafin is located in the C-terminal domain having
specificity for NE and proteinase 3. The N-terminus transglutaminase substrate
binding motif (GQDPVK) of elafin cross-links with extracellular matrix proteins
[233, 234].

In ALI, the protease–antiprotease balance alters in favor of proteases leading to
an increase in protease activity, and this protease burden can produce pulmonary
edema [235]. A decrease in plasma elafin level has been observed to be correlated
with altered elafin gene expression and seems a critical component for an increase
in acute respiratory distress syndrome (ARDS) [236–238].

In ALI patients, the 20S proteasome was observed to be markedly higher
compared with normal subjects [239], but elafin level was shown to be decreased
with consequent proteolytic degradation of antiproteases by the 20S proteasome in
lung patients with ALI. This decrease may contribute to an increase in NE activity
in ALI regulation and expression; however, its biological role in the lung is cur-
rently unknown. The cleavage of elafin by 20S proteosome suggests that the
increment of antiprotease levels in ALI patients could prove clinically beneficial in
attenuating uncontrolled activity of NE. Elafin’s multifunctional properties could
prove useful as the therapeutic target for ALI [239–241].

13 Elane and ALI

Elane has a potential catalytic activity to hydrolyze elastin. Under physiological
conditions, lungs are protected from this enzyme by endogenous inhibitors such as
a1-PI, a2-macroglobulin, and SLPI. However, in the course of ALI, the balance
between elane and its endogenous inhibitors is disregulated in favor of the enzyme
[242–244] leading to massive infiltration of neutrophils into the lungs and
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subsequently tissue injury. Therefore, peptidic and non-peptidic elane inhibitors
may prove useful for treating ALI associated with systemic inflammation
[245, 246].

14 Age-Related Pulmonary Diseases

Granzymes, especially granzyme A and granzyme B, are the most abundant
granzymes involving the membrane perforating molecule, perforin, which induce
cell death [247]. Perforin facilitates granzymes entry into the target cell and that
subsequently induces cell death [248]. Granzyme A has originally been thought to
induce caspase-independent cell death; however, recent findings suggest that
granzyme A may be involved in immune regulation of age-related lung disorders
[249, 250]. In contrast, granzyme B induces apoptosis through caspase-dependent
and -independent pathways [251]. An increase in granzyme A and B activities is
known to promote generation of proinflammatory cytokines. ECM degradation and
formation of autoantigens may exacerbate the inflammatory response [251].
Chronic inflammation is a hallmark of age-related cardiovascular and lung diseases.
Thus, granzyme A and B may serve as important agent in promoting a positive
feedback cycle that may be common to many persistent age-related disorders [251,
252]. However, role of other granzymes such as GzmH, GzmK, and GzmM in
age-related ARDS are currently unknown.

15 Aspergillosis

Invasive pulmonary aspergillosis (IPA) elicited by the filamentous members of the
genus Aspergillus can have devastating role in immune compromised individuals
[253, 254]. Aspergillus fumigatus is responsible for the majority of IPA infections.
Normal individuals are at little risk because of the effectiveness of their lung
defences. However, inhalation of conidia becomes life threatening to subjects
having weak immunity, which could allow the conidia to germinate into invasive
hyphae in the lung [255].

The populations at greatest risk for IPA are patients with cancer, solid organ
transplants, bone marrow transplants and those with advanced AIDS [256].
A. fumigatus secretes proteases like an alkaline serine protease (ALP), a metallo-
protease (Mep), an aspartic protease (Pep) and a prolyl endopeptidase in the lungs
[257–260]. A. fumigates secreted proteases are expressed in the lung during
infection [261, 262].

A. fumigates binds to ECM proteins with the involvement of polysaccharides
and glycoproteins of the conidial cell wall [263]. Several agents secreted from
fungus such as proteases and toxins have been shown to influence its infection in
host lung tissue [263].
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16 Systemic Sclerosis

Systemic sclerosis (SSc) is an autoimmune disease, which could occur due to
vascular injuries and fibrosis in skin and certain internal organs [264]. Some
cytokines and growth factors like transforming growth factor-b (TGF-b) have been
observed to stimulate fibroblast proliferation [264]. The disintegrin and
metalloprotease-12 (ADAM-12) possess the extracellular cell binding functions.
ADAM-12 is expressed in two alternative forms: (i) membrane-anchored form
(ADAM12-L); and (ii) a short secreted form (ADAM12-S). An increase in the level
of serum ADAM12-S level plays an important role in the pathological events of
diffuse cutaneous systemic sclerosis (dcSSc) [264, 265].

ADAM-12 plays a critical role in fibrotic process. ADAM12-S has the ability to
degrade physiological substrates such as the ECM substrates: fibronectin, type IV
collagen [265] and also insulin-like growth factor binding protein (IGFBPs) [266,
267]. Degradation of IGFBPs augments the association between insulin-like growth
factors, for example, IGF-I and its receptors. IGF-I down regulates collagenase
activity with consequent increase in collagen production [268], which indicates that
IGF-I could be an important mediator in the progression of fibrosis. Additionally,
ADAM-12 has been observed to be upregulated in chronic wound suggesting that
ADAM-12 could be related to the fibrotic process [269].

17 Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) usually occurs in prematurely born infants.
Due to deficiency of lung development, BPD patients require prolonged medical
ventilation for oxygen. BPD causes an increase in morbidity and mortality in
preterm infants. BPD is characterized by chronic inflammation, alveolar hypoplasia
and respiratory infections [270, 271]. In an animal model of BPD, a significant high
elastase activity along with excessive proteolytic degradation of the elastic fibers
due to a marked decrease in the levels of endogenous protease inhibitors are usually
observed in the lung secretion [272]. Additionally, a discernible increase in mRNA
and protein expression and also activities of cathepsins-B, -H, -K, -L, and -S have
been observed in new borne BPD tracheal aspirates [273]. BAL fluid of newborn
preterm infants with BPD showed elevation of MMP-9 and a decrease in free
TIMP-1 level [274, 275].

18 Lymphangioleiomyomatosis

Lymphangioleiomyomatosis, a rare and progressive lung disease, usually affects
women of pre-menopausal age. This disease is characterized by the infiltration of
smooth muscle cells that express contractile proteins, for example, desmin.
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Immunohistochemical studies have demonstrated a strong expression of CatK
restricted to lymphangioleiomyomatosis cells. CatK has been suggested as a marker
for diagnosis of lymphangioleiomyomatosis [276].

19 Bronchiolitis Obliterans Syndrome

Bronchiolitis obliterans syndrome (BOS) is a complication, which usually occurs
during chronic rejection of lung transplant patients. Elevated levels of MMP-8 and
MMP-9 were observed in obliterative bronchiolitis patients after a few years of lung
transplantation [277]. A marked elevation in gelatinase activity was found in BAL
fluid from BOS patients that could be due to MMP-9 secretion by local neutrophils
[278]. In lung transplant model, inhibition of matrix metalloproteases in the donor
and recipient, respectively, before lung harvest and after lung transplantation have
been shown to improve oxygenation and markedly decreased PMN leukocyte influx
into the isograft [279]. Both MMP-8 and MMP-9 deficient mice were observed to
be protected from BOS as evidenced by a marked decrease in neutrophil influx and
collagen deposition [280, 281].

MMPs and TIMPs were suggested to play a crucial role important role during
lung allograft rejection. While TIMP-1 and TIMP-2 over expression have not been
observed to elicit consistent effect on the level of cytokines or rejection pathology,
MMP inhibition via systemic administration of MMP inhibitors were shown to
reduce lung allograft rejection [282].

20 Lung Surfactant Proteins and Proteases

Lung surfactants are a mixture of lipids and proteins complex, which form a thin
film in the lung alveoli and that plays a vital role in respiratory function especially
gas exchange [283]. Additionally, the surfactant also shows the first line of innate
immune defence in the lung. Its mode of action appears to lie in the inhibition of
microbial infectivity and attenuation of inflammatory responses [284]. SP-A, SP-B,
SP-C, and SP-D are the major surfactant proteins, which elicit important roles to
trigger immune response in the lung [285–289]. SP-A has been demonstrated to be
an important surfactant component having relevant functional immune response
during Staphylococcus aureus infection [290].

Surfactant protein D (SP-D) is an important target of numerous proteases present
in the CF lung. Host defence appears to be impaired due to proteolysis of SP-D and
may contribute to the supportive lung disease in CF. SP-D, a glycoprotein of the
collecting family, is produced and secreted by alveolar type II cells and non-ciliated
bronchial epithelial cells [291].
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SP-D has been observed to be protective against a wide variety of pathogens
such as Pseudomonas aeruginosa, Haemophilus influenza, and A. fumigates
[291–293]. Upon binding with SP-D, these pathogens trigger their agglutination,
enhanced killing and clearance [294, 295]. SP-D has been shown to cause a number
of secretions, which present larger protection in the body. An important charac-
teristic of CF is chronic neutrophil-mediated inflammation in the airways mainly
with an increase in the levels of HLE and PR3 [296–298]. Proteolytic degradation
of some proteins such as SP-A and SP-D was found in BALF of CF patients [299].

Proteases have been observed to modulate surfactant activity in addition to its
action on mucus proteins. Secretory proteases of P. aeruginosa can degrade SP-A
and SP-B from lipid–protein complexes [300]. Purified elastase or secretory pro-
tease IV of P. aeruginosa supernatants have also been shown to degrade SP-A and
SP-D [301–303]. The protease IV-mediated degradation of SP-A and SP-D may
cause a discernible loss of bacterial aggregation or increase bacterial phagocytosis
by alveolar macrophages [304]. NSPs like NE, PR3 and CatG can cleave the
surfactant proteins [305]. These proteases may also cleave SP-D within the con-
served sub-region of the C-terminal lectin domain with the generation of
a *35-kDa fragment, which decreases bacterial aggregation and mannan binding
of SP-D [306]. P. aeruginosa elastase digestion of SP-D has also been shown to
produce the 35-kDa fragment that retain the N-terminal collagen tail, albeit devoid
of functional C-terminal globular lectin domain, which consequently elicit loss of
innate immune functions [300, 303, 304].

In CF, COPD and asthma, like chronic lung airway diseases, an increase in the
epidermal growth factor receptor (EGFR) could be the mechanism for mucus
production [307, 308]. EGFR phosphorylation has been observed to activate
mitogen activated protein kinases (MAPKs)-dependent signaling pathways, which
in turn stimulates MMPs, for example, ADAM-17 and also NSPs leading to the
production of mucins [309–312].

Human airway trypsin-like protease (HAT) has been observed to enhance the
synthesis of mucus glycoconjugates in airway epithelial cells [313]. HAT is a
natural ligand for PAR-2 present in bronchial cells [314] and HAT-dependent
upregulation of mucin genes have also been shown to occur via PAR-EGFR sig-
naling pathway [313].

21 Particulate Matter

Particulate matter (PM) having diameter of about 10 nm (PM10) is a complex
mixture of metals, polycyclic aromatic hydrocarbons, nitrates, sulfates and other
chemicals [315], where traffic and industrial activities have an important impact on
that composition. Adverse effects of PM10, especially on alveolar epithelia were
related to inflammation triggered by phagocytic cells upon PM10 internalization
[316]. An immediate response is to augment generation of cytokines and
chemokines such as IL-1, IL-6, and IL-8, TNF-a [317, 318].
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Airborne PM10 is a risk factor for the development of a variety of lung diseases
including cancer [315, 316]. In vitro, treatment of PM10 induces an increase in
MMP-2 and MMP-9 activities, which causes ECM degradation during acute lung
injury [319]. PM10 was found to be responsible for lung diseases such as tuber-
culosis [320], emphysema [321] and COPD [322]. In A549 lung epithelial cells,
PM10 causes a marked decrease in E-cadherin/b-catenin expression and subse-
quently induces potentially invasive characteristics and thereby could contribute to
cancer development [323].

22 Conclusion and Future Perspective

In order to fight against infections, the lung is orchestrated with different antipro-
teases and anti-inflammatory components. In pulmonary diseases like COPD and
asthma, the balance between host proteases and their secreted endogenous inhibi-
tors shift toward the proteases. Proteases such as NSPs, MMPs, and cathepsins are
known to act along with the bacterial proteases and play important role in the
manifestation of a variety of pulmonary diseases. Thus, agents that restore lung
protease–antiprotease balance by upregulating endogenous protease inhibitors
and/or down regulating host protease activities, appear important to control
excessive inflammatory responses in the lung.

Inflammatory cells, which are rich in oxidants and proteases cause proteolytic
inactivation of protein inhibitors of proteases. SLPI and trappin-2/elafin are rela-
tively stable; even though they may be cleaved and inactivated by proteases, for
example, by cathepsins at their N-terminal end, albeit it does not affect their
inhibitory potency [324]. In contrast, cleavage of elafin by P. aeruginosa proteases
may inactivate its antiprotease activity [325]. To overcome the unwanted proteol-
ysis of antiproteases, encapsulations of protease inhibitors within liposomes have
been suggested [326]. Aerosol delivery of liposomes entrapped antiproteases may
prove useful since it has several features such as sustained release and relatively
high loading capacities.

NE has been chosen as a target for inhibition by synthetic compounds because it
is a widely recognized serine protease, which has been shown to be associated with
a variety of lung diseases including CF [327]. DX-890, a small protein inhibitor of
NE, has been observed to be tolerable in rats and humans after phase 1 clinical trial
[328]. This compound was shown to be involved in IL-8 release from CF neu-
trophils and to reduce neutrophil transmigration through the epithelial barrier.
Outcome of phase 3 clinical trials will reveal the usefulness of DX-890 as a ther-
apeutic measure for a variety of lung diseases.

In a guinea pig model system, the dual MMP9/MMP12 inhibitor, AZ11557272
was found to be protective toward cigarette smoke-induced emphysema [329]. This
compound markedly reduces number of inflammatory cells in bronchoalveolar
lavage (BAL) fluid and has also been shown to decrease smoke-induced air space
enlargement, which suggests that MMP-2 and MMP-12 could be the potential
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targets for therapeutic intervention in COPD. AS112108, another dual
MMP-9/MMP-12 inhibitor, has been shown to inhibit the early inflammatory
responses with a decrease in neutrophil numbers [330]. AS111793, a selective
MMP-12 inhibitor, elicited dose-dependent inhibition in the levels of neutrophils
and macrophages in bronchoalveolar lavage (BAL) fluid, and also on the concen-
tration of several inflammation markers that express after cigarette smoke exposure
[331]. However, it did not inhibit lung inflammation observed by lipopolysaccharide
(LPS). Understanding the mechanism of these antiproteases will eventually lead us
to gain an insight into the basic biochemical mechanisms that regulate COPD.

MMP-1 has been considered as one of the target proteases in lung cancer [332].
The generation of MMP-1 deficient mouse model suggested pro-tumorigenic role of
the enzyme [333]. Further studies on MMP-1 and other MMPs in knockout mice
will be required to evaluate the functional redundancy and relative relevance of
MMP-1 and other MMPs in cell proliferation, regulation of inflammatory cells, and
different stages of cancer progression.
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