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Abstract
The adamalysins, which include the ADAMs and ADAMTSs, are multidomain,
multifunctional proteins of the metzincin superfamily of zinc-dependent
metalloproteinases that play a key role in extracellular matrix remodeling and
regulation of the tissue microenvironment. While ADAMs are mostly
membrane-anchored proteinases, the ADAMTSs are secreted proteinases
and/or adhesion molecules. A major function of the ADAMs is ectodomain
shedding of membrane-bound growth factors, receptors, cytokines, chemokines,
and proteoglycans. The adamalysins are also involved in a multitude of
biological processes including fertilization, organogenesis, hemostasis, cell
adhesion, intracellular signaling, angiogenesis, and ECM assembly and turnover.
These metalloproteinases exert both promoting and inhibitory effects on
tumorigenesis and serve as biomarkers of cancer progression and prognosis.
Dysregulated expression of adamalysins leads to acquisition of cancer hallmarks
such as increased cell proliferation, apoptosis evasion, migration, neovascular-
ization, invasion, and metastasis. In addition, aberrant expression of these
proteases also results in drug resistance. Of late, the adamalysins have emerged
as potential molecular targets for cancer therapeutics. This chapter summarizes
current knowledge on the different types of ADAMs and ADAMTSs, their
general structure, functions, role in cancer progression, and acquisition of major
cancer hallmarks as well as their potential as diagnostic and prognostic aids and
therapeutic targets based on available literature.
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1 Introduction

Cancer, a multifactorial, heterogeneous disease, arises due to sequential accumu-
lation of mutations that promote clonal selection of cells characterized by uncon-
trolled proliferation, apoptosis evasion, invasion of surrounding tissues, and
metastasis to other organs [1, 2]. Tumor invasion, an essential prerequisite for
cancer metastasis, involves remodeling of the extracellular matrix (ECM), a process
initially considered to be the prerogative of the matrix metalloproteinases (MMPs)
[3]. It has now become apparent that adamalysins, which include the ADAMs (A
Disintegrin And Metalloproteinase) and ADAMTSs (A Disintegrin And Metallo-
proteinase with Thrombospondin motifs), are also key players in ECM homeostasis
and regulation of the tissue microenvironment [4–7]. The metalloproteinase system
is in turn regulated by tissue inhibitors of metalloproteinases (TIMPs) [8] and
reversion-inducing cysteine-rich protein with Kazal motifs (RECK) [9, 10].

The adamalysins are multidomain, multifunctional proteins of the metzincin
superfamily of zinc-dependent metalloproteinases [11]. While ADAMs are mostly
membrane-anchored proteinases, the ADAMTSs are secreted proteinases and/or
adhesion molecules [12]. Although 40 different proteins have been recognized as
members of the ADAMs family, only 25 of these are believed to function in
humans (Table 1). Of these, only 13 ADAMs display proteolytic activity. Infor-
mation on ADAMs is constantly updated in http://people.virginia.edu/*jw7g/
Table_of_the_ADAMs.html and http://degradome.uniovi.es/). Members of the
ADAMs family are localized to specific organs such as, the heart (ADAM9, -17, -
19) [13], kidney (ADAM19) [14], lungs (ADAM33) [15], teeth (ADAM28), and
pancreas (ADAM-9, -10, -17) [16].

The human family of ADAMTs comprising 19 known members [17] is classi-
fied based on their preferred substrates as the aggrecanases or proteoglycanases
(ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3
and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and
12), the von Willebrand Factor proteinase (ADAMTS13), and orphan enzymes
(ADAMTS6, 10, 16, 17, 18 and 19). Table 2 lists the various ADAMTs. Data on
ADAMTs is available at http://www.lerner.ccf.org/bme/apte/adamts.

The adamalysins play a central role in biological processes including fertiliza-
tion, organogenesis, hemostasis, cell adhesion, intracellular signaling, angiogenesis,
and ECM assembly and turnover. Mutations and aberrant expression of ADAMs
and ADAMTs have been implicated in diverse pathologies including thrombotic
thrombocytopenic purpura, inflammatory bowel diseases, airway diseases,
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Table 1 ADAMs: chromosomal loci, tissue expression and functions

ADAM Chromosomal
locus

Tissue distribution Function Reference
(s)

ADAM
1a,b

12q24.13 Sperm Sperm–egg binding and
fusion, interaction with the
integrins: a6b1 and a9b1

[121, 122]

ADAM2 8p11.22 Sperm Sperm–egg binding and
fusion, interaction with the
integrins: a4b1, a6b1 and
a9b1

[123, 124]

ADAM6 14q32.33 Testis Not fully defined [125]

ADAM7 8p21.2 Testis Not fully defined but it
interacts with the integrins
like a4b1, a4b7 and a9b1

[126, 127]

ADAM8 10q26.3 Lung, kidney, brain,
macrophage, neutrophils

Cancer cell migration,
neutrophil infiltration and
shedding of CD23

[128]

ADAM9 8p11.23 Breast, pancreas, lung,
stomach, and skin

Promotion of cell
adhesion, invasion,
binding to integrins,
shedding of HB-EGF,
tumor necrosis factor-p75
receptor, cleavage of
amyloid precursor protein
(APP) and digestion of
fibronectin and gelatin

[129]

ADAM10 15q22 Brain, breast, liver, oral
cavity, ovary, prostate,
colon, kidney

Promotion of cell growth
and migration, release of
TNFa, digestion of
collagen IV, gelatin and
myelin basic protein;
cleavage of delta, APP, L1,
and CD44 and shedding of
HB-EGF

[130–132]

ADAM11 17q21.3 Brain Not fully defined but may
act as a tumor suppressor

[133]

ADAM12 10q26.3 Liver, stomach, colon,
brain, breast, osteoblast,
muscle, placenta and
chondrocytes

Promotion of cell growth,
muscle formation, binding
to integrins, insulin-like
growth factor binding
protein-3 (IGFBP-3) and
IGFBP-5, shedding of
HB-EGF, digestion of
collagen IV, gelatin, and
fibronectin

[134]

ADAM15 1q21.3 Brain, prostate, lungs,
stomach, endothelium
smooth muscle,
chondrocyte, and
osteoclast

Promotion of cell growth,
Expressed in
arteriosclerosis, binds to
integrins: aVb3, a5b1 and
a9b1 and helps in digestion
of collagen IV and gelatin

[135, 136]

(continued)
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osteoarthritis, atherosclerosis, neurodegeneration, and cancer. Adam-19 KO mouse
suffers from developmental defects and embryos died due to abnormalities of the
heart and other cardiovascular system disorders [18]. The proteolytic activities,
regulation of growth factors and cytokines and the ability to degrade ECM com-
ponents, suggest that these enzymes may be involved in cell migration, invasion,
angiogenesis, and metastatic spread of tumor cells [19, 20]. This chapter summa-
rizes current knowledge on different types of ADAMs and ADAMTSs, their general
structure, functions, role in cancer progression, and acquisition of major cancer

Table 1 (continued)

ADAM Chromosomal
locus

Tissue distribution Function Reference
(s)

ADAM17 2p25 Macrophage, ovary,
prostate, kidney, colon,
and breast tissue

Promotion of cell growth,
binding with integrins:
shedding of signaling
molecules/surface
receptors (TNFa, TGF-b,
TNF-p75 receptor, ErbB4,
TNF-related activation
induced cytokine
HB-EGF, APP, Notch,
L-selectin and CD44)

[137]

ADAM18 8p11.22 Brain, testis, kidney Not fully defined [138]

ADAM19 5q32–q33 Testis Formation of neuron,
digestion of neuregulin
and interacts with the
integrins like a4b1, a5b1

[128]

ADAM20 14q24.1 Testis Formation of sperm [139]

ADAM21 14q24.1 Testis – [139]

ADAM22 7q21 Brain – [140]

ADAM23 2q33 Brain, Heart Not fully defined but it
interacts with the integrins
like aVb3

[140]

ADAM28 8p21.2 Testis, lung, lymphocyte,
pancreas, uterus

IGFBP-3 cleavage,
promotion of cell growth,
binding with integrins:
a4b1, a4b7, a9b1;
digestion of myelin basic
protein and IGFBP-3

[141, 142]

ADAM29 4q34 Testis – [143]

ADAM30 1p13–p11 Testis – [144]

ADAM32 8p11.23 Testis – [145]

ADAM33 20p13 Lung (fibroblast, smooth
muscle)

Interactions with integrins;
cleavage of APP,
Kit-ligand-1 (KL-1) and
insulin B chain

[146]
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Table 2 ADAMTs: chromosomal loci, tissue expression and functions

ADAMT Chromosomal
locus

Tissue distribution Function Reference
(s)

ADAMTS1 21q21 Ovary, breast, bronchial
epithelial cells, fetal
lung, placenta, smooth
muscle, uterus, adrenal
cortex, adipocytes,
ciliary ganglion,
prostate, olfactory bulb,
breast stromal fibroblasts
and myoepithelial cells

Promotion of cell
growth, cell survival and
invasion, Binding to
heparin, HB-EGF and
AR shedding, digestion
of aggrecan and
versican, syndecan 4,
TFPI-2, semaphorin 3C,
nidogen-1, -2,
desmocollin-3,
dystroglycan, mac-2,
gelatin, amphiregulin,
TGF-a

[89, 100,
147, 148]

ADAMTS2 5q35 Adipocyte, skeletal
muscle, superior cervical
ganglion, uterus,
placenta, heart, liver,
lung, tongue, smooth
muscle, breast stromal
fibroblasts

Processing of collagen I
and II N-propeptides,
Glucocorticoids (in
monocytes) and IL-6

[149]

ADAMTS3 4q21
(NM014243.1)

Skeletal muscle, tendon,
cartilage, bone, breast
myoepithelial cells,
CD105+ endothelial
cells, CD34+ cells and
pineal gland

Processing of collagen
N-propeptides, fibrillar
procollagen type II and
biglycan

[150]

ADAMTS4 1q23 Brain, heart, ovary,
spinal cord, adrenal
cortex, ciliary ganglion,
trigeminal ganglion,
retina, pancreas (islets),
fetal lung and breast
myoepithelial cells

Digestion of aggrecan,
brevican and versican,
reelin, biglycan,
matrilin-3,
a2-macroglobulin,
COMP, IL-1
+ oncostatin M, TNFa,
S100A8, S100A9,
leptin, IL-6

[31, 151,
152]

ADAMTS5 21q21 Brain, adipocyte, uterus,
breast myoepithelial
cells, uterus, placenta

Promotion of invasion,
Digestion of aggrecan,
versican, reelin,
biglycan, matrilin-4,
brevican,
a2-macroglobulin
cleavage, IL-1, TNFa,
S100A8, S100A9,
leptin, IL-6

[153–
155]

(continued)
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Table 2 (continued)

ADAMT Chromosomal
locus

Tissue distribution Function Reference
(s)

ADAMTS6 5q12 Heart, breast
myoepithelial cells,
superior cervical
ganglion, trigeminal
ganglion, appendix

Regulation of TNFa [151]

ADAMTS7 5q24 Liver, heart, skeletal
muscle, trigeminal
ganglion, adrenal cortex,
intervertebral disc and
breast stromal fibroblasts

Regulation of PTHrP,
acts on COMP

[156,
157]

ADAMTS8 11q24 Skeletal muscle, heart,
lungs, liver, superior
cervical ganglion,
adrenal cortex, breast
stromal fibroblasts and
luminal epithelial cells

Inhibitor of
angiogenesis, helps in
digestion of aggrecan

[102]

ADAMTS9 3p14 Dorsal root ganglion,
breast and myoepithelial
cells

Digestion of aggrecan,
versican, TNFa, IL1
+ oncostatin M and
leptin

[56, 158]

ADAMTS10 19p13 Brain, uterus, breast
stromal fibroblasts and
CD8+ T cells

Acts on fibrillin-1 [159]

ADAMTS12 Liver, bone marrow,
atrioventricular node,
intervertebral disc, breast
stromal fibroblasts and
myoepithelial cells

Acts on COMP [160,
161]

ADAMTS13 9q34 Liver, CD71+ early
erythroid cells, lung,
thyroid, breast
myoepithelial cells;
prostate, brain

Cleavage of von
Willebrand factor
(vWF) and IL-1

[162]

ADAMTS14 10q22 Thalamus, brain, uterus,
bone marrow, fetal
thyroid, adipocyte,
cerebellum, bone, skin,
fibroblasts, breast
myoepithelial and
luminal epithelial cells

Processing of collagen
N-propeptides such as
fibrillar procollagen type
I (pNa1 and pNa2
chains)

[163]

ADAMTS15 11q24 Colon, brain, heart,
uterus, musculoskeletal
system, breast
myoepithelial cells,
Liver (fetus), Kudney
(fetus)

Digestion of aggrecan
and versican

[57, 58,
93]

(continued)
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hallmarks as well as their potential as diagnostic aids and therapeutic targets based
on available literature.

2 Structure of Adamalysin Family of Proteins

The adamalysins family of proteins shows sequence similarities with the MMP
family members as well as the reprolysin family of snake venomases [21, 22].
Based on their structure, the adamalysin family proteins are classified into the
membrane-anchored ADAMs and the secreted ADAMTSs (Fig. 1).

The ADAM family members have a complex structure with multiple domains.
The structural elements from the amino terminus comprise a signal peptide that
marks the protein for the secretory pathway, a prodomain that ensures accurate
folding of the protein and prevents catalytic activity of the metalloproteinase
domain via a cysteine-switch mechanism until it is cleaved in the Golgi apparatus, a
metalloproteinase domain, with the consensus sequence HEXGHXXGXXHD [23],
a highly conserved disintegrin domain that interacts with integrins and mediates
cell adhesion [24, 25], a cysteine-rich domain involved in substrate recognition and
cell adhesion [26], an EGF-like domain, a transmembrane domain, and a cyto-
plasmic tail that contains phosphorylation sites and interacts with proteins con-
taining the Src homology domain [27].

Table 2 (continued)

ADAMT Chromosomal
locus

Tissue distribution Function Reference
(s)

ADAMTS16 5p15 Breast myoepithelial
cells

Regulated by follicle
stimulating hormone;
forskolin cAMP;
Transcription factors:
Wilm’s tumor-1; Egr-1
and Sp1

[164]

ADAMTS17 15q26 Breast myoepithelial
cells

– [165]

ADAMTS18 16q23 Ciliary ganglion, heart,
skin, brain and breast
myoepithelial cells

– [166,
167]

ADAMTS19 5q23 Dorsal root ganglion,
breast myoepithelial
cells

– [168]

ADAMTS20 2q12 Brain, appendix, heart,
liver, skeletal muscle,
pituitary, trigeminal
ganglion, breast
myoepithelial cells

– [169]
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The activation of ADAMs involves removal of the prodomain from the pre-
cursor protein by a proprotein convertase of furin type or by an autocatalytic
process [28, 29]. Analysis of the crystal structure revealed that the disintegrin and
cysteine-rich domains form a C-shaped structure, restricting accessibility for protein
binding. Isoforms of ADAM9, ADAM11, ADAM12, and ADAM28 are secreted
proteins that lack the transmembrane and cytoplasmic domains. The ADAM19
isoform lacks the propeptide, metalloproteinase, and disintegrin domains. Splice
variants of ADAM15 and ADAM22 have also been identified.

Unlike the ADAMs, the ADAMTS do not possess the EGF-like, transmembrane
and cytoplasmic domains [30, 31]. These proteins are characterized by the presence
of a thrombospondin type I sequence repeat (TSR) motif. Some of the members
contain one or two additional specific C-terminal modules such as a mucin domain
(ADAMTS-7, and -12). Members of the ADAMTs family differ in the
carboxy-terminal region downstream of the TSR, known as the ancillary domain.
The ancillary domains provide substrate-binding specificity and ensure correct
tissue compartmentalization, whereas cleavage site specificity is endowed by the
protease domain. The ADAMTS differ from the ADAMs in their cysteine signa-
tures. A unique family of seven ADAMTS-like (ADAMTSL) proteins that include
ADAMTSL 1–6 and papilin, contain the ancillary domains of ADAMTS but lack
the catalytic domains may modulate the activities of the ADAMTSs. The
ADAMTS with the exception of ADAMTS4 as well as the ADAMTSL undergo
posttranslational modifications that involve the addition of N-linked carbohydrate
essential for activity.

3 Functions

Like the MMPs, both ADAMs and ADAMTs exhibit catalytic activity. Several
ADAMs degrade ECM substrates and insulin-like growth factor binding proteins
(IGFBPs). For example, ADAM10 cleaves type IV collagen, ADAM12 cleaves
gelatin, type IV collagen and fibronectin, ADAM15 digests type IV collagen and
gelatin, and ADAM28 cleaves IGFBP-3. Unlike ADAMs which due to their

Fig. 1 General structure of adamalysin family of proteins. ADAM family members contain a
propeptide domain (PD), a metalloproteinase domain (MPD), disintegrin domain (Dis-D),
cysteine-rich domain (CRD), EGF-like domain (ED), transmembrane (TM) and cytoplasmic tail
(CT). On the other hand, the secretory ADAMTs do not possess a functional TM, CT and ED but
contain a thrombospondin-like domain (TSLD) and spacer domain (SPD)
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membrane localization are predominantly involved in ectodomain shedding of
proteins from the cell surface, the ADAMTS being secreted proteases are primarily
involved in proteolytic events in the ECM. The ADAMTS1, 2, 3, 4, 5, 7, 8, 9, 14,
15, 16, 18, and 20 have been documented to degrade the ECM. ADAMTS1
remodels the ECM via proteolytic degradation of chondroitin sulfated proteogly-
cans and collagen [32]. ADAMTS-4 and ADAMTS-5 cleave aggrecan and are
referred to as aggrecanases. These proteases also cleave brevican and versican [33,
34], while ADAMTS-2 is known to process procollagen chains [35]. However, in
contrast to MMPs, most ADAMTS proteases do not cleave short peptides. Fur-
thermore, proteolysis by ADAMTS may require posttranslational modifications of
the substrate. ADAMTS2 processes procollagen efficiently when it is in the
triple-helical conformation, but is unable to cleave the heat-denatured form.
Mutation of ADAMTS13, a von Willebrand factor-cleaving protease, causes
thrombotic thrombocytopenic purpura, a potentially fatal disease.

Considering the fact that only half of the proteins of the ADAMs and ADAMTS
family display catalytic activity, it is apparent that the functions of these proteins
extend beyond proteolytic activity and ECM remodeling. The first identified
ADAMs (ADAM-1 and -2) were shown to induce the fusion of the sperm with the
egg through interactions with the disintegrin domain. ADAM-15, a component of
adherens junctions, is believed to regulate cell adhesion through interaction with
various integrins via the disintegrin domain [36]. ADAM-10 regulates central
nervous system development by cleaving the NOTCH protein [37]. ADAMs play a
key role in signal transduction by interacting with tyrosin kinases and cytoskeletal
components through their cytoplasmic domain [38].

One of the most important functions of the proteolytic ADAMs is their ability to
cleave membrane-bound growth factors, receptors, cytokines, chemokines, and
proteoglycans, thereby releasing the mature soluble forms, by their sheddase
activity. ADAM-17, a prototype sheddase that cleaves pro-tumor necrosis factor-a
(pro-TNF-a), is also known as TNF-a converting enzyme (TACE) [39–41]. In
addition to TNF-a, ADAM-17 is also involved in shedding other membrane pro-
teins such as proTGF-a, pro-amphiregulin and pro-epiregulin. ADAM-17 as well as
ADAM9 and ADAM12 are responsible for shedding pro-heparin-binding epider-
mal growth factor (pro-HB-EGF) thereby regulating cell proliferation. ADAM-10 is
responsible for shedding the low-affinity immunoglobulin E receptor CD23 [40,
42]. Some ADAMTS also participate in ectodomain shedding, such as ADAMTS1
which sheds syndecan-4 besides enhancing the shedding of HB-EGF. The sheddase
activity of ADAMs is thought to be regulated through the PKC and MAPK path-
ways [43].

Regulated intramembrane proteolysis (RIP) is a highly conserved signaling
process by which membrane-bound signaling proteins are cleaved before being
released into the cytoplasm. In most cases, RIP is preceded by ectodomain shed-
ding. The membrane proteins Notch, CD44 and amyloid precursor protein, first
undergo ADAM-dependent ectodomain cleavage followed by RIPping by
c-secretase [44].
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4 Adamalysins in Cancer

There is substantial evidence to implicate the role of adamalysins in the
aetiopathogenesis of various cancer types. The adamalysins exert both promoting
and inhibitory effects on tumorigenesis. These dual roles probably reflect the
complex interplay between the tumor, the surrounding stroma and the immune
system (Figs. 2 and 3).

ADAMs and ADAMTs are primarily involved in processing the ligands of
growth factor receptors thereby facilitating extracellular matrix remodeling to
promote tumor progression and metastasis. Overexpression of several members of
the ADAM family proteins has been reported in diverse malignancies. These
include ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17,
ADAM19, and ADAM28 [22]. ADAM-9 is upregulated in a number of cancers
including renal, breast, and prostate cancer [45–47]. Upregulation of ADAM10
expression has been documented in diverse malignancies including cancer of the

Fig. 2 The role of ADAM family of metalloproteinases in cancer. ADAM-mediated cancer cell
proliferation and progression. ProADAMs are activated by furin or matrix metalloproteinases
(MMPs). The sheddase activity of ADAMs cleaves and releases the cell surface ligands such as
heparin-binding epidermal growth factor (HP-EGF), transforming growth factor TGFa and
epidermal growth factor receptor (EGFR) to promote cancer. The interaction of ADAMs with
integrins or syndecans on the cells enables cleavage of substrates, enhances invasion/metastasis or
promotes proliferation signals. Many membrane-anchored molecules like chemokines, cytokines
and their receptors, may interact with various ADAMs and promote cancer cell proliferation,
angiogenesis, lymphangiogenesis and thus contribute to cancer cell progression. N nontransformed
cell, T transformed cell, S stromal cell, F fibroblast cell, BM basement membrane, BV blood vessel,
LV lymphatic vessel
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stomach, oral cavity, ovary, uterus, colon, prostate as well as leukemia [22, 48].
ADAM15 has been reported to be overexpressed in breast, prostate, stomach, and
lung cancer [22]. ADAM-17 expression is increased in breast cancer tissues with
higher expression in advanced-grade compared to low-grade tumors. Patients dis-
playing a higher expression of ADAM17 have a shorter overall survival than those
with low expression [49]. The increased level of ADAM29 has been suggested to
have a significant prognostic value for patients with CLL [50]. Likewise
ADAMTS1, ADAMTS4, ADAMTS5, ADAMTS6, and ADAMTS14 are also
upregulated in malignant tumors [22, 51].

Several adamalysins are also downregulated in malignant tumors due to loss by
mutation or epigenetic silencing. Interestingly most of these belong to the
ADAMTS family including ADAMTS1, ADAMTS3, ADAMTS5, ADAMTS8,
ADAMTS9, ADAMTS10, ADAMTS15, and ADAMTS18. These proteins appar-
ently function as tumor suppressors [51]. ADAMTS1 is poorly expressed in hep-
atocellular carcinoma (HCC) [52]. Expression profiling has shown downregulation

Fig. 3 The pro/anticancer effects mediated by different members of ADAMTS family of
proteases. Many of the ADAMTSs family members are produced by stromal or cancer cells.
Epigenetic modification of ADAMTS genes is mainly responsible for their expression. Their
contribution to cancer progression is not fully understood. While most members exert
cancer-promoting effects, other members (including ADAMT-1, 2, 9, 12 and 15) are involved
directly or indirectly in inhibiting carcinogenesis. ADAMTs thus have either positive or negative
influence on angiogenesis or lymphangiogenesis, or affect cancer-promoting signaling pathways
through the degradation of extracellular components such as thrombospondin 1/2, nidogen 1/2,
VEGF sequestration, activation of pro-angiogenic factors (HB-EGF, amphiregulin, IGFBP2),
digest extracellular matrix components (proteoglycans), and recruitment of fibroblasts involved in
cancer growth
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of ADAMTS8 gene expression in breast carcinoma, non-small cell lung cancer
(NSCLC), and brain cancers [53–55]. Knockdown of ADAMTS-9 and
ADAMTS-15 increases the tumorigenic potential of breast, gastric, and colon
cancer cells [56, 57]. Clinical studies on patients with breast cancer revealed
reduced ADAMTS15 expression that correlates with a higher probability of cancer
development and increased mortality [58]. Notably, ADAMTS15 gene is not only
epigenetically silenced, but also frequently mutated in colon and pancreatic carci-
nomas [57, 59, 60]. Studies on cancer cell lines indicated that ADAMTS18 gene is
frequently epigenetically silenced that was subsequently confirmed in tissue sam-
ples from cancer patients [61].

5 Adamalysins and Cancer Hallmarks

Dysregulated functions and activities of adamalysins lead to acquisition of cancer
hallmarks such as increased cell proliferation, apoptosis evasion, migration, inva-
sion, and neovascularization. In addition, aberrant expression of these proteases
also results in drug resistance.

5.1 Cell Proliferation and Apoptosis

Apoptosis evasion, a key hallmark capability of cancer, plays a critical role in
promoting cell proliferation and cell survival. ADAM family of proteolytic
enzymes regulates cell proliferation by cleaving growth factors or cell surface
proteins. The EGF receptor ligands (heparin-binding EGF, amphiregulin, betacel-
lulin, epiregulin) are synthesized as transmembrane proteins and all these require
ectodomain shedding for their activation [62, 63].

ADAM9 has been reported to facilitate cell proliferation and cell survival by
promoting the degradation of E-cadherin. Silencing of ADAM9 reduced ESCC cell
proliferation and migration by inhibiting EGF receptor-AKT signaling [64].
ADAM9 has been reported to be involved in the proteolytic cleavage of the
HB-EGF precursor and contribute to melanoma progression [65].

ADAM-10 has a broad substrate range and contains the six EGFR ligands, TNF,
epireguline, HB-EGF and EGF. It also contributes to E-cadherin shedding [66, 67].
ADAM-10 promotes cell proliferation by modulating b-catenin signaling and
regulating cyclin D1 levels [68]. ADAM-10 knockout (KO) embryos suffer from
cell growth arrest and apoptosis associated with overexpression of full-length
E-cadherin [67]. ADAM10 plays a role in regulated intramembrane proteolysis
(RIP), which is part of the Notch/Delta signaling pathway involved in the cleavage
of Notch membrane receptor and tumor promotion [69–71]. ADAM12 that pro-
motes HB-EGF shedding was found to be overexpressed in colorectal, breast, liver,
and stomach cancer [22]. ADAM-12 has been shown to increase stromal cell
apoptosis and decrease tumor cell apoptosis.
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ADAM17, a potent inducer of tumor growth and cell division promotes the
cleavage of different substrates including TGF-b [72]. ADAM-17 cleavage of
amphiregulin enhances proliferation of cancer cells. ADAM-17 cleaves and releases
bioactive epigen that serves as a ligand of EGFR and promotes growth and
tumorigenesis. ADAM17-catalyzed HB-EGF shedding was demonstrated to induce
mitogenic ERK1/2 signaling [73].

The expression of membrane-anchored ADAM28m and secreted-type
ADAM28s was found to be significantly higher in breast carcinomas compared
to nonneoplastic breast tissues. Treatment of ADAM28-expressing MDA-MB231
breast carcinoma cells with insulin-like growth factor-I (IGF-I) increased cell
proliferation, cleavage of IGF binding protein (IGFBP)-3, and IGF-I cell signaling.
However, treatment with ADAM inhibitor, anti-ADAM28 antibody or siRNA
silencing of ADAM-28, attenuated these processes as well as growth of xenografts
in mice. These results suggest that ADAM28 enhances proliferation of breast
cancer cells by releasing IGF-I released from the IGF-I/IGFBP-3 complex [74].

ADAMTS1 is reported to play a role in breast cancer development and pro-
gression. Induced overexpression of ADAMTS1 results in poor survival and
accelerated tumor growth in mouse models of breast cancer. Overexpression of
full-length ADAMTS-1 in CHO cells enhances tumor growth [75]. A recent study
showed a link between overexpression of ADAMTS1 and tumor growth rate in a
fibrosarcoma model.

5.2 Cell Migration, Invasion, and Metastasis

Excessive cell proliferation coupled with apoptosis evasion enables accumulation of
mutations that facilitate cell migration, invasion, and metastasis which are the most
important events in tumor progression responsible for cancer morbidity and mor-
tality. Adamalysins that play an important role in sculpting the tumor microenvi-
ronment are invaluable biomarkers of disease progression and therapeutic outcome.

ADAM9 abrogates cell–cell contact and facilitates cellular migration by pro-
moting the degradation of E-cadherin. ADAM9 was found to reduce cellular
migration, invasion, and induction of the epithelial marker E-cadherin in pancreatic
cancer [76]. The possible binding of DIS domain of ADAM9 to a6b4 and a2b1
integrins and subsequent proteolytic activity of ADAM9 enables cleavage of
laminins and promotes invasion in cancer of the breast, pancreas, stomach, skin,
liver, and lung [22]. Phosphorylation of the cytoplasmic domain of ADAM9 by
PKCd has been reported to lead to HB-EGF shedding. Abety et al.
(2012) demonstrated increased proliferation and reduced apoptosis in coculture of
melanoma cells and ADAM-9(−/−) fibroblasts, as well as in ADAM-9(−/−) mice
injected melanoma cells. The data indicate that stromal expression of ADAM-9
influences melanoma development both in vitro and in vivo by targeting TIMP-1
and sTNFR1. Chang et al. (2015; 2016) provided evidence to indicate that ADAM9
is a potential candidate for targeted therapy of non-small cell lung carcinoma
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(NSCLC). Downregulation of ADAM9 expression by RNA interference-mediated
gene silencing in human A549 NSCLC cells inhibited cell proliferation, migration
and invasion, and induced apoptosis. ADAM9 gene silencing also suppressed
tumor growth in a mouse model of lung metastasis [77].

ADAM-10 contributes to E-cadherin shedding and subsequent release of soluble
E-cadherin in the extracellular environment thereby promoting cell migration.
Overexpression of ADAM10 was demonstrated to drive metastasis in various
cancers. Knockout of ADAM10 by siRNA enhanced the antitumor activity of the
VEGFR inhibitor sorafenib as evidenced by reduced proliferation, migration and
invasion, and induction of apoptosis in hepatoma cells in vitro, and suppressed
tumor growth in vivo. This was associated with inhibition of PI3K and AKT
phosphorylation implying the involvement of ADAM10 in the activation of
PI3/Akt signaling pathway [78].

ADAM17 is involved in the proteolysis of collagen IV of the ECM as well as the
release of several integrins from the cell surface, suggesting that ADAM17 has a
profound influence on the invasive activity of different cancer cells. Furthermore,
ADAM17 as a primary upstream component for multiple EGFR pro-ligands may also
activate MEK/ERK and PI3K/Akt pathways, which contribute to invasiveness. Pri-
mary blood blasts CD13+ CD33+ from patients with acute myeloid leukemia
(AML) expressed ADAM17 transcript with higher surface expression in subtype M4
(myelomonocytic) and M5 (monocytic) specimens than in M0 and M1/M2 (early and
granulocytic) specimens. Knockdown of CD13 revealed that it is required for
downregulation of ADAM17. Interaction of ADAM17 with CD13 is believed to be
essential for ADAM17 mediated cell growth, migration, and invasion [79].

ADAMTS-1 is involved in tumor progression and facilitates local invasion and
lymph node metastasis. It is overexpressed in pancreatic cancer. Further, the
overexpression of a catalytically inactive ADAMTS-1 impedes these events, which
strongly suggests a prometastatic role for this metalloprotease mediated by its
proteolytic activity. Elevated ADAMTS-1 expression has also been associated with
high risk of bone and lung metastasis in breast cancer patients. It has been proposed
that ADAMTS-1 could facilitate the spread of tumor cells through the degradation
of versican, a predictor of metastatic relapse in human breast cancer. Similarly,
ADAMTS5 promotes brain tumor invasion [22].

Overexpression of ADAMTS-1 promotes pulmonary metastasis of TA3 mammary
carcinoma and Lewis lung carcinoma cells associated with angiogenesis, invasion,
shedding of the transmembrane precursors of heparin-binding epidermal growth
factor (EGF) and amphiregulin (AR), and activation of the EGF receptor and ErbB-2.
However, the proteinase-dead mutant of ADAMTS-1 (ADAMTS-1E/Q) inhibits
metastasis. Overexpression of the NH(2)- and COOH-terminal fragments generated
by auto-proteolytic cleavage of ADAMTS-1 also inhibits pulmonary tumor metas-
tasis as well as Erk1/2 kinase activation induced by soluble heparin-binding EGF and
AR. These results suggest that the metalloproteinase activity of ADAMTS-1 is
essential for its prometastatic activity [80].
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5.3 Angiogenesis

Angiogenesis, the formation of new blood vessels from preexisting microvascula-
ture plays a central role in tumor growth, invasion, and metastasis. The transfor-
mation from a microscopic prevascular lesion to a rapidly expanding highly
vascularized referred to as an “angiogenic switch” occurs when the pro-angiogenic
factors outweigh the effect of angiostatic molecules. Angiogenesis is a complex and
tightly regulated process involving the activation of diverse intracellular signaling
pathways, chiefly vascular endothelial growth factor (VEGF) signaling. Specific
ADAMTSs play a pivotal role in regulating tumor angiogenesis. Multiple mecha-
nisms have been proposed to explain the inhibition of angiogenesis by members of
the ADAM and ADAMTS family.

Transfection of both the full-length ADAMTS1 and catalytic domain-deleted
ADAMTS1 (delta ADAMTS1) inhibited endothelial cell proliferation, migration,
and tube formation by inducing apoptosis. These effects were abolished following
immunoprecipitation of the secreted protein from the medium. Both full
ADAMTS1 and delta ADAMTS1 gene transfer into tumor-bearing mice signifi-
cantly inhibited tumor growth as well as angiogenesis and induced apoptosis. These
results demonstrate that the antiproliferative and antiangiogenic effects of
ADAMTS1 are independent of its protease activity [81].

ADAM-15 expressed in smooth muscle cells, umbilical vein endothelial cells,
and activated endothelial cells is documented to regulate angiogenesis [82]. In
ADAM-15-deficient mice, angiogenesis was found to be inhibited [83]. The pres-
ence of Arg-Gly-Asp (RGD) sequence in the disintegrin domain that binds integrins
has been suggested to play a role in regulating angiogenesis. The recombinant
human disintegrin domain (rhdd) of ADAM15 was found to be a potent inhibitor of
tumor formation and angiogenesis. ADAM-15 RDD decreases tumor growth
associated with reduced vascularization of MDA-MB-231and B16F10 cells [84].
rhddADAM15 inhibited the proliferation of Bel-7402 hepatoma cells via the
mitogen-activated protein kinase pathway and reduced the activation of Src. In
addition, rhddADAM15 inhibited the proliferation, migration, and tube formation
of vascular endothelial EA.hy926 cells in vitro and angiogenesis in zebrafish
in vivo [85]. However, contrary to these reports, mice with sufficient or deficient
ADAM-15 showed no difference in tumor vascularity between wild-type and
mutant mice [83].

ADAMTS-1 and ADAMTS-8 have been established as antiangiogenic factors
[86]. The thrombospondin motifs of ADAMTS-1/-8 interact directly with a mem-
brane glycoprotein receptor CD36 of endothelial cells or directly through VEGF
binding [87, 88]. The TSP-1 repeats in ADAMTS-1 are believed to contribute to its
antiangiogenic activity by trapping VEGF [87, 89].

ADAMTS-2 plays a crucial role in processing fibrillar procollagen to mature
collagen. Recombinant ADAMTS-2 reduces proliferation of endothelial cells,
inhibits vasculature, and induces apoptosis associated with dephosphorylation of
Erk1/2 and MLC. ADAMTS-2 also suppressed growth and vascularization of
tumors induced in nude mice by HEK 293-EBNA cells. The antiangiogenic
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properties of ADAMTS-2 were shown to be mediated by nucleolin, a receptor
found in the nucleus and the cell membrane [90].

ADAMTS5 and 8 ADAMTS-8 have been demonstrated to exert antiangiogenic
function in tumors. Overexpression of full-length ADAMTS5 inhibited B16 mel-
anoma growth in mice by suppressing angiogenesis through the central TSR
(TSR1) presumably by downregulating the pro-angiogenic factors VEGF, placental
growth factor (PlGF), and platelet-derived endothelial growth factor (PD-EGF).
This was associated with diminished cell proliferation and enhanced apoptosis.
Catalytically active ADAMTS5 proteolytic fragment also suppressed angiogenesis
in vitro [91]. ADAMTS8 was shown to block angiogenesis via the inhibition of
FGF-induced vascularization and VEGF-induced angiogenesis. Mice with a single
silenced Adamts9 allele showed spontaneous neovascularization, thus confirming
the antiangiogenic activity of ADAMTS9 [92].

Decreased ADAMTS15 expression correlated with a worse prognosis in mam-
mary carcinoma [58]. Kelwick et al. [93] investigated the effects of ADAMTS15 on
MDA-MB-231 and MCF-7 breast cancer cells by stable expression of either a
wild-type (wt) or metalloproteinase-inactive (E362A) protein. While neither form
influenced cell proliferation or apoptosis, both forms suppressed cell migration on
fibronectin or laminin matrices. The wt ADAMTS-15 but not the E362A mutant
inhibited endothelial tubulogenesis and angiogenesis indicating that catalytic
functionality is essential for antiangiogenic effects. Experimental metastasis assays
in nude mice revealed decreased spread to the liver for both the wt and mutant
forms, with enhanced lung colonization for cells expressing wt ADAMTS-15
implying tissue niche-dependent effects [93].

Unlike other ADAMTSs, which exert antiangiogenic effects, ADAMTS-4 has
been shown to promote angiogenesis in Ewing’s sarcoma. It is noteworthy that
ADAMTS-4 undergoes an autocatalytic processing similar to that described for
ADAMTS-1, which affects the balance between protumorigenic and antitumori-
genic functions of this metalloprotease.

6 Adamalysins and Chemoresistance

Resistance to chemotherapeutic drugs, especially multidrug resistance is a major
obstacle in cancer treatment. Several adamalysin family members are reported to
induce drug resistance given their intricate involvement in proliferation, migration
and invasion. Large-scale expression analysis of drug-resistant cells using
high-density oligonucleotide microarrays revealed altered expression of 13 genes
encoding MMPs, ADAMs, ADAMTSs, and TIMPs in drug-resistant sublines when
compared with sensitive MCF-7 breast cancer cells [94]. Recent research is focused
on developing strategies to overcome chemoresistance by silencing these
molecules.
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Increased expression of ADAM-17 that leads to growth factor shedding and
growth factor receptor activation is postulated to induce drug resistance. In
multidrug-resistant colorectal carcinoma (CRC), an inverse correlation was
observed between the expression levels of ADAM-17 and miR-222. Transfection of
HCT116/L-OHP and HCT-8/VCR cells with miR-22 mimics reduced ADAM-17
expression and sensitized these cells to apoptosis induced by anticancer drugs.
Pharmacological inhibition of ADAM-17 in conjunction with chemotherapy may
have greater therapeutic efficacy [95].

Wang et al. [96] reported that hypoxia-induced resistance to cisplatin treatment
in Hep3B and HepG2 hepatocarcinoma cells is mediated by upregulation of
ADAM-17 via HIF1-a. Furthermore, overexpression of ADAM17 inhibited
cisplatin-induced apoptosis and enhanced the phosphorylation of epidermal growth
factor receptor (EGFR) and Akt, suggesting that ADAM17 causes cisplatin resis-
tance via the HIF1a/EGFR/PI3K/Akt pathway [96].

Cancer stem cells (CSCs) are known to mediate chemoresistance in patients with
metastatic colorectal cancer. Analysis of the effect of ADAM-17 inhibition by
siRNA knockdown or by TAPI-2 revealed a role for ADAM17 on cancer stem cell
(CSC) phenotype and chemosensitivity to 5-fluorouracil (5-FU) in colorectal cancer
via cleavage and release of soluble Jagged-1 and -2 and activation of Notch sig-
naling [97].

ADAM10 is upregulated in several cancers and is associated with advanced
tumor stage and grade. Small interfering RNA (siRNA) knockdown of ADAM10
decreased cell proliferation, migration, and invasion and increased
cisplatin-induced apoptosis in bladder cancer cell lines indicating that ADAM10 is
a candidate therapeutic target [98].

7 Epigenetic Modifications of Adamalysins

Epigenetic mechanisms including aberrant DNA methylation at CpG islands and
histone modifications play a fundamental role in the development and progression
of cancer. In addition, microRNAs also control target gene expression
posttranscriptionally.

Significantly higher methylation of ADAM23 was observed in estrogen receptor
(ER) positive breast cancers compared to ER negative cases [99]. The frequency of
ADAMTS1 methylation was significantly higher in gastric cancer and positively
correlated with depth of tumor invasion and tumor node, metastasis and stage [100].
Downregulation of ADAMTS9 in multiple myeloma was associated with promoter
methylation [101]. ADAMTS8, a novel tumor suppressor that inhibits EGFR sig-
naling and phosphorylation of MEK and ERK was frequently silenced by promoter
methylation in nasopharyngeal, esophageal squamous cell, gastric, and colorectal
carcinomas [102]. Using high-resolution melting (HRM) as a tool for analysis of
promoter methylation, higher degree of methylation of ADAMTS9 and
ADAMTS18 was observed in several cancers indicating gene silencing [61, 103].
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ADAMTS12 promoter is epigenetically silenced in tumor cells by hypermethyla-
tion, whereas in the surrounding stromal cells, expression of this protease is higher
presumably as a protective response [104]. Methylation of ADAMTS19 gene pro-
moter was linked to altered in vivo migration and invasion capabilities of CRC cells
[105].

ADAM17 was identified as a direct target of miR-145, a tumor suppressor miR
that is significantly downregulated in glioma cells. Ectopic expression of miR-145
decreased in vitro proliferation, migration, and invasion of glioma cells as well as
the expression of ADAM17 and EGFR [106]. High expression of ADAM9 in
bladder cancer was found to correlate inversely with miR-126 and indicated poor
prognosis. While knockdown of ADAM9 ameliorated invasiveness of bladder
cancer cells, restoration of miR-126 levels suppressed invasion [107].

8 Therapeutic Potential

Adamalysins have emerged as potential molecular targets for cancer therapeutics.
Synthetic molecules targeting ADAMs such as KB-R7785, a GM6001-derived
hydroxamate have been developed [108]. KB-R7785 is believed to inhibit
ADAM17 and block the synthesis of TNF-a, inhibit ADAM10 processing of CD44
and consequent cell migration. Drugs targeting the cysteine-rich region of
ADAM-12 have been suggested to inhibit invasion and metastasis [109].

ADAM-17 has been implicated in the development and progression of breast
cancer and is an independent predictor of prognosis [49]. Several strategies have
been developed to target ADAM-17 including selective low-molecular-weight
inhibitors [49, 110, 111]. An inhibitory humanized monoclonal antibody D1(A12),
that binds to both the catalytic domain and the disintegrin/cysteine-rich domain of
ADAM-17, was found to inhibit the proteolysis of several substrates as well as
tumor growth in an animal model of ovarian cancer and in triple-negative breast
cancer cell lines [112–114].

The ADAM10 inhibitor GI254023X was shown to suppress proliferation and
induce apoptosis of H929 multiple myeloma cells and acute T-lymphoblastic leu-
kemia Jurkat cells by preventing Notch1 activation [115, 116].

Overexpression of the ErbB family of receptors in human tumors is associated
with poor prognosis and resistance to therapy. An attractive approach to prevent
ErbB-mediated tumor growth and survival is to block sheddase activity. The
selective potent, orally bioavailable small-molecule ADAM inhibitor, INCB3619,
blocks the shedding of ErbB ligands including heregulin and reduces tumor cell
survival. INCB3619 also inhibits gefitinib-resistant HER3 signaling and augments
gefitinib blockade of EGFR signaling. Combining INCB3619 with a lapatinib-like
dual inhibitor of EGFR and HER-2/neu kinases inhibited growth of MCF-7 and
HER-2/neu-transfected MCF-7 human breast cancer cells. The second-generation
sheddase inhibitor INCB7839 when combined with lapatinib suppressed the growth
of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo.
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These findings underscore the scope for ADAM inhibition in pharmacological
intervention, either alone or in combination with other drugs [110, 117, 118].

Wiernik et al. [119] tested whether combination treatment through CD16 sig-
naling and targeting CD33 (CD16 � 33 bispecific killer cell engager (BiKE) plus
ADAM17 inhibitor could activate NK cells against acute myelogenous leukemia
(AML). They found that the combination inhibited CD16 shedding in NK cells, and
enhanced NK cell activation highlighting its potential for patients with relapsed
AML or for adjuvant antileukemic therapy posttransplantation [119].

9 Conclusion

Adamalysins are relatively new players in cancer biology. Recent evidences suggest
their role in cancer cell growth and proliferation [62, 63]; invasion andmetastasis [22];
angiogenesis and cancer cell stemness [120]. These enzymes release
membrane-bound growth factors, receptors, cytokines, and other molecules by
shedding and RIPping, resulting in the activation of key signaling pathways. They
also act on integrins or syndecans and influence cell–cell adhesion. These enzymes
cleave ECM molecules and facilitate metastasis of cancer cells to metastasize to
distant organs. The adamalysis have dual roles, while some members promote tumor
development and progression, several others function as tumor suppressors. Although
understanding the complex roles of adamalysins in cancer is technically challenging,
the emerging knowledge and exciting new discoveries will provide deeper mecha-
nistic insights into the tumor microenvironment besides enabling drug development.
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