
FPGA-Based High Throughput TDMP LDPC Decoder

Ruochen Liao(✉), Yuzhuo Fu, and Ting Liu

School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China
liaorc@sjtu.edu.cn

Abstract. In this paper, a high-throughput decoder architecture for quasi-cyclic
low density parity check (QC-LDPC) codes is presented. Using the Normalized
Min-Sum algorithm and the turbo-decoding message-passing algorithm, the
proposed design expanded degree of parallelism to improve the throughput at a
cost of hardware resource usage. Based on the proposed architecture, we imple‐
mented a (8176, 7154) Euclidian geometry-based QC-LDPC code decoder on a
Xilinx Kintex7 (XC7K325T-2) board. The FPGA implementation results show
that the decoder can achieve a total decoding throughput of 1.6 Gbps at the clock
frequency of 105Mth at 10 iterations.

Keywords: Low-density parity-check · Turbo-decoding message-passing ·
Normalized min-sum · FPGA

1 Introduction

Low-Density Parity-Check (LDPC) codes were discovered by Gallager in 1962 [1].
Later in late 1990s, LDPC codes were rediscovered by MacKay and shown to approach
Shannon capacity [2]. With excellent error control capacities, LDPC codes have been
considered for emerging wireless communication standards, such as IEEE802.16e,
IEEE802.11n, and DVB-S2 etc.

The original approach for LDPC decoders is known as Gallager’s two-phase
message-passing (TPMP) algorithm. Since TPMP algorithm need to decode iteratively
using sum-product algorithm [1] at a high cost of calculation complexity, variations such
as the min-sum algorithm and normalized min-sum algorithm [3] are also widely used.
Previous works focused on the hardware implementations of TPMP algorithm with all
kinds of architectures (e.g. fully parallel, partially parallel, and serial) have been
proposed. However, the convergence speed of these methods are slow, which is trou‐
blesome in high-throughput applications. To address this problem, turbo-decoding
message-passing (TDMP) algorithm [4] has been proposed. A single iteration in TPMP
algorithm is divided into sub-iterations to accelerate convergence speed. The throughput
is increased since less number of iterations is needed at the same bit error rate (BER).

The proposed architecture aims to expand degree of parallelism of a TDMP LDPC
decoder. We take advantage of pipelining and parallel processing in the proposed high-
throughput FPGA decoder. In additional with configurable depth of the block RAM in
FPGA design, which allows the high bandwidth of message passing. Furthermore, the
design carefully deals with the choosing of degree of parallelism to avoid data conflict

© Springer Nature Singapore Pte Ltd. 2016
W. Xu et al. (Eds.): NCCET 2016, CCIS 666, pp. 94–101, 2016.
DOI: 10.1007/978-981-10-3159-5_9

when introducing pipelining. In result, the proposed decoder greatly improved parallel
level in processing comparing with others. The improvement helps the decoder to
achieve a high-throughput under a low clock frequency.

2 Previous Works

In this section, previous works with FPGA-based hardware designs are listed.
Chen Xiaoheng, Kang Jinyu and Lin Shu built a (8176, 7156) LDPC decoder with

two specific optimizations called vectorization and folding [5]. With their efforts on
taking advantage of configurable embedded memory in FPGA, the decoder achieved a
total throughput of 713.8 Mbps at 15 iterations.

Wang Zhongfeng proposed a (8176, 7156) LDPC decoder based on Xilinx field
programmable gate array Virtex-II 6000 [6]. The decoder employed an efficient nonuni‐
form quantization scheme to reduce the size of memories storing soft messages. The
results showed that Wang’s work achieved a maximum decoding throughput of
172 Mbps at 15 iterations.

Xiang Bo in his work at 2011 implemented decoders for multiple LDPC code length
ranging from 576 to 2304 [7]. Xiang’s main effort was to include pipelining, block
interleaving and nonzero sub-matrix reordering into his decoding technic. By Xiang’s
reordering feature, memory conflict was reduced when using pipeline in LDPC decoder.
Xiang’s best result achieved 955 Mbps at 10 iterations with a clock frequency of
214 MHz.

Previous works on LDPC decoder using TDMP algorithm share a common problem,
which is that they all need a relatively high clock frequency to achieve a high throughput.
For TDMP algorithm introduces potential memory conflict when processing multiple
rows parallely, the dilemma between frequency and throughput appears. Our work aims
at analysing the best degree of parallelism in TDMP algorithm. Therefore the proposed
decoder reaches a high throughput at a relative low clock frequency.

3 High-Throughput Parallel LDPC Decoder Architecture

3.1 Decoding Algorithm

The proposed decoder uses the same algorithm as the one in work [8], which is the min-
sum turbo decoding message passing algorithm. With TDMP algorithm, the conver‐
gence speed is faster than its opponent TPMP algorithm. By using min-sum algorithm,
the calculation complexity of updating log-likelihood ratios is reduced.

3.2 Decoder Overview

In this section, the overview architecture of the proposed decoder will be shown. And
the function of each part will be introduced.

FPGA-Based High Throughput TDMP LDPC Decoder 95

Generally, the proposed LDPC decoder consist of four main parts. Four parts and
the interconnects are shown in Fig. 1.

0
1

2
3 4 ...

Row
Calculation

Unit
P-1

EX
memory

LLR
memory

Controller

Fig. 1. LDPC decoder overview

The function of each part:

• LLR memory: The log-likelihood ratio memory. This module stores log-likelihood
ratio of all the check nodes. This module also deals with the input and output data
flow.

• EX memory: The extrinsic information memory. This module stores the extrinsic
information passing from check nodes to variable node.

• Controller: The control module of decoder. This module generates read and write
addresses for all the memories.

• Row calculation Unit: The row information update module. This is the main calcu‐
lation module of the decoder, which does all the computation process and update the
log-likelihood ratio and extrinsic information of each row in every iteration. The
proposed parallel and pipeline structure is implemented in this part. Figure 2 shows
that we implemented a number of P row calculation units in total, which means P
rows of check nodes can be calculating in parallel.

96 R. Liao et al.

decompress

Q(31:0)

minimum
finder

Input LLR

Output
EX

Input EX Output
LLR

SubMin

normalize

MinMinRow

QAbsQSign

Sign

compress

Fig. 2. Row calculation unit

3.3 Parallel Decoder Core Architecture

This is the structure for a single row calculation unit in Sect. 3.2.
Basically the update process is divided into three stages. The first stage deals with

the data reading and decompression of extrinsic information. The second stage handles
the main calculation process of check node unit (CNU). The last stage compresses the
data and stores the updated data back to memory.

3.4 Parallel Decoder Core Architecture

During updating one log-likelihood ratio, three steps are needed by LDPC decoder: read
original data from memory, calculate new log-likelihood ratios and extrinsic informa‐
tion, write back the updated data to memory. In Fig. 3, read or write cycle is assumed
to be Tc (Tc also stands for time of a clock cycle), and the delay of calculation module
is assumed to be X ns. Thus the cycle delay of updating one data is,

Tpath =

⌈
2Tc + X

Tc

⌉
(1)

FPGA-Based High Throughput TDMP LDPC Decoder 97

X ns

2Tc+X

Tc

Read
Memory

minimum
finder

Tc

Write
Memory

decompress adder

normalize adder

Fig. 3. Delay path for updating one log-likelihood ratio

In the proposed design, pipelining and parallel processing are introduced to accel‐
erate the decoding speed. With parallel processing feature, P is set for the parameter of
the number of sub-matrix processing at the same time. And when introducing pipelining
into the design, memory conflict appears to be a new problem.

In the design, memory conflict is prevented during one iteration, but it is hard to
avoid when algorithm runs form one sub-matrix to the next one. Figure 4 tells that when
memory conflict occurs our pipeline should stall for cycles to ensure the algorithm runs
properly and the stall cycles is set to Tstall. Then the total cycles of updating one iteration
Ttotal is,

Ttotal = 2Niter

(
Tstall +

⌈511
P

⌉)
+ Tpath − 1 (2)

read memory
A1

calculation
stage 1

write memory
A1

calculation
stage 2

read memory
A2

calculation
stage 1

write memory
A2

calculation
stage 2

read memory
A3

calculation
stage 1

write memory
A3

calculation
stage 2

BUBBLE BUBBLE BUBBLE

read memory
A1

calculation
stage 1

Memory
Conflict

Sub-matrix 1

Sub-matrix 2

Fig. 4. Potential memory conflict in pipelining

Since we want to avoid memory conflict during one iteration, the offset distance in
one sub-matrix should be taken into consideration. We define offset1 and offset2 to be
the distance between 1’s in one sub-matrix and define a parameter L,

L = min(offset1 − offset2, 511 − (offset1 − offset2)) (3)

98 R. Liao et al.

For (8176, 7154) LDPC code, L ≥ 104. Thus to avoid memory conflict, we need

TpathP ≤ L (4)

On the other hand, Throughput =
fclklen

Ttotal

. And apparently, len = 7136 in (8176, 7154)

code.
The design needs a total throughput no less than 1.6 Gbps. Therefore, with the anal‐

ysis above, we get one solution that P = 26, fclk ≈ 100 MHz, Tpath = 4, Tstall = 3.

3.5 Quantization

Since quantization of log-likelihood ratios affects the memory usage of LDPC decoder
and the path delay of data processing, it is reasonable to choose a shorter quantization
mode for our design (Table 1).

Table 1. Coding gain analysis

Coding gain (dB) Iteration Resource util. (Slice)
5 6 7 8 9 10

Quantization Float 7.17 7.24 7.24 7.24 7.30 7.32 /
7bit [2, 4] 7.12 7.20 7.17 7.22 7.24 7.25 45346
6bit [2, 3] 7.00 7.08 7.05 7.10 7.11 7.13 39741
5bit [2, 2] 6.69 6.74 6.78 6.78 6.78 6.79 33118

When processing with 10 iterations, 5bit quantization results in a 6.79 dB coding
gain, only 0.4 dB worse than a float number decoder. But with 5bit quantization, the
slice resource utilization will drop 26.9%. Since a 6.79 dB coding gain is enough for our
case, we choose a 5bit quantization.

4 Implementation and Performance Evaluation

4.1 Implementation Platform

The decoder is implemented on a Xilinx Kintex7 (XC7K325T-2FFG900) board under
development environment Xilinx Vivado. The design can meet the timing constraint to
run under 105 MHz. To test the function of our decoder, we used a host computer and
the PCI-E interface to control the decoder and transmit data with it.

Considering the data transmission speed would not match the design throughput of
our LDPC decoder, we add additional input and output FIFO to our decoder to test its
highest performance (Fig. 5).

FPGA-Based High Throughput TDMP LDPC Decoder 99

PCI-EHost PC

Input
FIFO

Input
FIFO

LDPC
decoder

FPGA

Fig. 5. System overview for decoder testing

4.2 Implementation Result and Resource Utilization

We prototyped the proposed high-throughput LDPC decoder architectures on Xilinx
Kintex7 (XC7K325T-2FFG900) device. The prototype is verified under a 1e10 bits
LDPC data decoding test. We also tested our design in variety working frequency. All
the FPGA resource utilization result after implementation is given in Table 2.

Table 2. FPGA resource utilization

Clock frequency 75 MHz 85 MHz 95 MHz 105 MHz
FF 165067 165067 175649 175650
LUT 132214 132222 151501 152761
BRAM 221 221 221 221

4.3 Comparison with Other Works

Table 3 shows the throughput result of proposed design and some of previous works.
Comparing with other woks, the proposed design greatly improves degree of parallelism
and achieves a total throughput of 1.6 Gbps only requiring a clock frequency of
105 MHz. To have a more reasonable comparison, we introduce this so called Normal‐
ized Throughput, which is defined as,

Table 3. Comparision

Parameter Wang [6] Xiang [7] Chen [5] Proposed
FPGA Virtex-II

6000
CMOS XC4VLX-160 XC7K325T

Clock frequency (MHz) 193 214 212.2 105
Degree of parallelism 2 2 4 26
Iteration 15 10 15 10
Throughput (Mbps) 199.2 728 713.8 1628.8
Normalized Throughput
(Mb)

15.5 34.0 50.5 155.1

FPGA utilization (slice) 23052 - 17857 38213

100 R. Liao et al.

TpN = Tp × Niter∕fclk (5)

Comparison between Normalized Throughput takes iteration number and frequency
into consideration. According to the result table, the proposed decoder has 3 times of
Normalized Throughput comparing with others.

5 Conclusion

We present a high-throughput (8176, 7154) LDPC decoder with expansion of degree of
parallel. Our work takes the advantage of pipelining and parallel processing to imple‐
ment TDMP algorithm. When compared with previous works on LDPC decoder, our
result achieves a two-times improvement in normalized throughput, which indicate the
proposed architecture have a high throughput in low clock frequency system. Another
main contribution of this work is to give an analysis on the selecting of best degree of
parallelism for the (8176, 7154) LDPC code. The same method can also be applied to
other LDPC codes to design large parallel high-throughput decoders.

Acknowledgements. This work is supported by the National Science Foundation of China
(Grant No. 61373032, Grant No. 61472244) and Innovation Program of Shanghai Municipal
Education Commission (Grant No. 14ZZ018).

References

1. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)
2. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf.

Theory 45(2), 399–431 (1999)
3. Fossorier, M.P.C., Mihaljević, M., Imai, H.: Reduced complexity iterative decoding of low-

density parity check codes based on belief propagation. IEEE Trans. Commun. 47(5), 673–680
(1999)

4. Mansour, M.M.: A turbo-decoding message-passing algorithm for sparse parity-check matrix
codes. IEEE Trans. Sign. Process. 54(11), 4376–4392 (2006)

5. Chen, X., et al.: Memory system optimization for FPGA-based implementation of quasi-cyclic
LDPC codes decoders. IEEE Trans. Circuits Syst. I Regul. Pap. 58(1), 98–111 (2011)

6. Wang, Z., Cui, Z.: Low-complexity high-speed decoder design for quasi-cyclic LDPC codes.
IEEE Trans. Very Large Scale Integr. Syst. 15(1), 104–114 (2007)

7. Xiang, B., et al.: An 847–955 Mb/s 342–397 mW dual-path fully-overlapped QC-LDPC
decoder for WiMAX system in 0.13 m CMOS. IEEE J. Solid-State Circuits 46(6), 1416–1432
(2011)

FPGA-Based High Throughput TDMP LDPC Decoder 101

	FPGA-Based High Throughput TDMP LDPC Decoder
	Abstract
	1 Introduction
	2 Previous Works
	3 High-Throughput Parallel LDPC Decoder Architecture
	3.1 Decoding Algorithm
	3.2 Decoder Overview
	3.3 Parallel Decoder Core Architecture
	3.4 Parallel Decoder Core Architecture
	3.5 Quantization

	4 Implementation and Performance Evaluation
	4.1 Implementation Platform
	4.2 Implementation Result and Resource Utilization
	4.3 Comparison with Other Works

	5 Conclusion
	Acknowledgements
	References

