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Abstract. Directory-based coherence is widely used in modern CMP systems.
As the number of cores increases, it is increasingly deemed as the only candidate
for on-chip cache coherence maintaining. However, limitations of traditional
coherence directory pose serious challenges to deal with the ever-increasing size
of the system. The hardware overhead and redundant message broadcasting prob‐
lems dramatically degrade the scalability and performance of the system. In this
paper, a space-efficient coherence directory BFDir is proposed. The directory
dramatically reduces the directory size as the share list is shortened by Bloom
filter. Also, it does not incur message broadcasting as that in limited directories.
The evaluation results show, for 32-core CMP systems, compared to full-map
directory, 59% overhead of share list can be avoided at the expense of 2.77%
performance loss on average; compared to 16-bit coarse directory, 22% overhead
of share list can be avoided at the expense of 0.16% average performance loss on
average; compared to 8-bit coarse directory, 48% invalid messages are saved and
the performance is improved by 2.31%.
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1 Introduction

CMP processors, which contain multiple processing cores on a single chip have become
popular design choice for high-performance processors. Currently, 8-core CMPs are
commonplace on the mobile processor and server processor markets. Cores integrated
in a single processor will continue to increase with the development of semiconductor
technology, and tens or maybe hundreds of cores may be integrated in future CMP
processors. In CMP systems, the shared memory programming paradigm is the key
component to exploit the performance. To support the paradigm, the cache coherence
across all cores in the system has to be maintained with cache coherence protocol
(abbreviated as CC protocol).

Basically, all CC protocols fall into two categories: snooping and directory-based
protocols. The snooping protocol is often used in CMP systems with few cores (such as
IBM Power6 [1]) as it does not scale well with the increase of core number. The direc‐
tory-based protocols use a hardware structure (called directory) to record coherence
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information to avoid the message broadcasting in snooping protocols, but the hardware
cost of the directory grows as the square of the number of cores.

In this paper, we propose a space-efficient coherence directory BFDir to reduce the
hardware overhead of the directory structure and avoid the message broad-casting in
snooping protocol. In the directory implementation, each core of the system is mapped
to multiple positions of the share list by several hash functions. BFDir has two advan‐
tages. Firstly, mapping one core to multiple positions in the share list reduces the size
of the share list and thus saves the directory space significantly. Secondly, as the share
list records all potential sharers of a memory block, it will never overflow and no broad‐
casting thus exists, which will benefit the performance of the system.

2 Related Work

The basic idea of directory protocol is to establish a directory that maintains a global view
of the coherence state of each block. Each entry of the directory has a share list to record
which core has a valid copy of a memory block. Full-map directory is a typical implemen‐
tation of coherence directory, in which each entry is allocated to each memory block in the
memory and each bit of the share list is assigned to one core of the system [2]. It is simple,
but its share list is redundant [3]. To reduce the length of share list, many directory designs
are proposed, such as limited directory [4], linked directory [5–7] and coarse directory [8].

A limited directory only records fixed number of sharer pointers (for example 5
sharers). Its drawback is pointer overflow. When the number of sharers of a memory block
exceeds the pointer number, extra operations (such as broadcasting messages to all other
cores) have to be executed. Moreover, as the number of cores grows, the share list over‐
flows tend to occur more frequently, which degrades the performance significantly. In linked
directory, share information is distributed to a number of small-scale local directory. It
compresses the share list, but increases the implementation complexity. Coarse directory
reduces the size of share list by a set-associative structure. However, it yields redundant
message broadcasting, since each bit of the share list represents a set tag.

During the last few years, some proposals that compressed tagless or sharing patterns
have been presented to optimize the design of directory. Jason et al. proposed the Tagless
Coherence Directory (TL), a scalable directory structure based on a grid of Bloom filters
[9]. SPACE [10] stores the sharing patterns table instead of share list. SPATL [11]
combines Tagless and SPACE. Lei et al. presented an area-efficient coherence directory
which uses hybrid representation of share list [12]. These methods has made more
changes to the directory structure and cache coherence protocol, although they signifi‐
cantly reduce the directory overhead.

Compared with these existing works, our proposal has several advantages. Firstly,
only tiny modifications are made to the directory structure, which facilitates the manage‐
ment of the directory and reduces the overhead. Secondly, it is easy to match the coher‐
ence protocol with the directory. Lastly, our directory can scale well as the system grows
to include more cores and processors.
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3 The Methodology

In the section, we will first describe the idea of BFDir, and then explain why it is a good
candidate to implement share list of coherent directory. Lastly, we describe the directory
design and the protocol operations related to the directory.

3.1 Bloom filter

The bloom filter is a space-efficient, probabilistic data structure, designed to test whether
an element is a member of a set [13]. It is implemented with a binary-array, and multiple
hash functions as shown in Fig. 1. Each of the functions hashes some element of the
target set to one position of the array. An element is determined to be a member of the
set only when all the positions where it maps in the array are set.

hash1 hashk

Element

...

...Binary array

Fig. 1. A sample implementation of bloom filter.

Bloom filter is a good candidate to implement an efficient coherence directory due
to two facts:

– Firstly, it is a space-efficient data structure. It is possible to map n cores (processors)
to m-bit binary array, where n can be much larger than m. For example, if n equals
32 and the number of hash functions is 2, 10-bit array is enough to record the sharers
(C2

10 = 45 > 32).
– Secondly, using bloom filter can avoid the overflow of the share list, and thus get rid

of the time-consuming message broadcasting.

The disadvantage of bloom filter is mapping conflict, which can result in false sharing
and error removing.

– False sharing occurs when an element is not a member of the set but the query
returns true. Figure 2 shows a simple example of false sharing in Bloom filter,
where the elements C0, C1 and C2 are mapped to position (0, 4), (2, 4) and (0, 2)
respectively. When C1 and C2 are sharers, the position 0, 2, 4 are set to 1. The
query for sharers will return C0, C1 and C2, while C0 is not a real sharer. Fortu‐
nately, the false sharing only affects the performance but not the correctness of the
protocol. Hence, in typical coherence protocol implementations, such as the clas‐
sical MESI protocol, false sharing is allowed. Moreover, the false sharing can be
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reduced and the side effect can be mitigated by sophisticated design of the hash
function and choosing a proper size of the array.

0 0 0 1 1

C0 C1 C2

Binary array0 1 0

01234567 Position

Fig. 2. An example of false positive in bloom filter. E0, E1 and E2 are elements, and E1 and E2
are in the set and shaded.

– Error removing is another challenge of bloom filter. It is safe to clear the bit and
remove the element only when all elements in the set don’t map to the same position.
To safely remove an element, counting bloom filter [14] is proposed, which replaces
each bit of the binary array with a counter. Compared with classical bloom filter,
counting bloom filter significantly increases the size of the binary array. If 2-bit
counters are used, the size of binary arrays is doubled. The added bits could be better
utilized to increase the size of the binary arrays which reduce the mapping conflicts.

3.2 Directory Design Based on Bloom Filter

The coherence directory based on bloom filter (BFDir) contains two state bits and the
share list based on bloom filter, as shown in Fig. 3. The share list provides a space-
efficient structure which uses multiple different hash functions to map one core to several
bits of the share list. In the BFDir, the design of the hash functions is critical and it can
be implemented in the following three ways.

– With hard-wired logic. The function of the logic is to produce k numbers smaller than
m, where k and m are the number of the hash functions and size of the share list
respectively. Every time a core becomes a sharer, feed it to the logic and generate k
numbers which are used to index into the share list and set the corresponding bits to
1. The hard-wired logic implementation is quite efficient and the latency is small.
The drawback is that the logic cannot be programmed and it is impossible to change
the mapping to fit the need of the system.

– As a lookup table. Each entry of the table is related to a core and k bits of it are set
to 1. Every time a core becomes a sharer, the table is looked up and the entry related
to the core is located and the k positions indicated by the entry are set to 1. The
drawback of this method is that the hardware cost to implement a lookup table is
high. Also, the lookup process can be time-consuming and the latency is large. The
advantage is that the mapping can be changed.
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– With registers. It is possible to use one or several registers to store the positions where
each core is mapped. Every time a core becomes a sharer, the register or register
block related to the core is used to set the share list. This implementation can be very
time-efficient and flexible. The mapping can be easily changed by writing new values
to the registers. The limitation is that enough registers must be provided to record the
mapping, which may not be a problem as the FPGA chip used to implement the
directory controller usually have plenty of register resources.

hash1(ci), , hashk(ci)

Share cores=(ci,..)

State

Share list

Fig. 3. The coherence directory based on bloom filter.

The size of the share list is also important. If it is too small, the probability of false
sharing is high, which degrades the performance; if it is too large, the hardware cost of
the directory structure increases. Suppose there are n cores in the system, the share list
is m-bit long and k hash functions are used in the Bloom filter implementation. In such
system, the condition Ck

m
≥ n must be satisfied; otherwise, more than one cores have

identical mapping.

3.3 Protocol Operations

As a BFDir only records which cores probably share the requested block, share list may
have many false sharers. To handle them, we use a lazy way, in which the share list is
left unchanged until one core asks for an exclusive permission. The cost to lazily update
the share list is that redundant messages needs to be sent, which may increase traffic in
the interconnection network and yield negative impact on the performance. However,
our evaluation shows that the performance loss is acceptable.

• Read Requests
When the directory controller receives a read request, the directory controller corre‐
sponding to the block can be in one of three states:
– The share list records no sharers for the requested block. This is to say, no core

holds a valid copy of the block. The directory controller forwards the request to
memory. The requester is added to the share list after receiving data.

– The share list records only one sharer for the requested block. That is to say, the
block is in E/M state and only one core (termed as owner) holds a valid copy. The
directory controller forwards the request to the owner. The requester is added to
the share list after receiving data from owner.
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– The share list records more than one sharers for the requested block. The directory
controller returns the valid copy to the requester and adds the requester to the share
list. As shown in Fig. 4(c), there may be false sharer as the new sharer added.

C0
Requester

Directory 
Controller Memory

I 0 0 0 0 . . . 0

E 1 1 0 0 . . . 0

C0

C1
Requester

C0
Owner

M1 1 0 0 . . . 0

S 1 1 0 1 . . . 0

C0 C1

C0

Directory 
Controller

(a) No sharers                                                (b) One sharer (owner)
C1

Requester

S 1 1 0 0 . . . 1

S 1 1 0 1 . . . 1

C0 C1

C3:false sharer

C0

Directory 
Controller

C7

C7

(c)  More than one sharers 

Fig. 4. The change of directory in read processing

• Write Requests
When a core (the writer) needs to write a block, it issues a request to the directory.
Once the write request arrives the directory controller, there are three cases:
– The share list records no sharers for the block. The directory controller asks the

memory to provide the data directly to the writer and records the writer in the
share list.

– The share list records exactly one sharer (the owner) for the block. The directory
controller forwards the request to the owner. The owner provides the data to the
writer and invalidate the local copy. After the writer received data, the directory
controller deletes the owner from share list and adds the writer to the share list.

– The share list records more than one sharers for the block. The directory controller
returns the data to the writer and sends invalid messages to all sharers. After the
writer received data, the directory controller deletes all sharers and adds the writer
to the share list.

As shown in Fig. 5(c), error removing never happens in BFDir, since all sharers are
deleted in each writing process. So that classical bloom filter rather than counting bloom
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filter is used to design the share list. However, false sharing may exist in BFDir, and
leads to redundant invalid messages. To reduce the occurrence of false sharing, the
probability that each bit of the share list is mapped to 1 should be equal. Therefore, the
hash functions in BFDir should satisfy the following conditions:

(1) Ck
m
≥ n

(2) P
(

hashl
j
(ci) = 1

)
=

n × k

m
, i = 1, 2,… , n;j = 1, 2,… , k;l = 1, 2,… , m

Where n is the number of cores, k is the number of hash functions, m is the length of
share list, much smaller than n. Since there is a power increase of Ck

m
 with m, hash

function space grows larger as n increases, with the result that the probability of false
sharing will be reduced, and the system performance will be improved.
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Directory 
Controller
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Directory 
ControllerC7
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C0 C1
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Redundant message caused by false sharing
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Fig. 5. The change of directory in write processing
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4 Evaluation

In this section, we evaluate the performance of BFDir with typical parallel benchmarks.
The performance is compared with those collected in a full-map directory and a coarse
directory implementation respectively.

4.1 Experimental Setup

The quantitative evaluation is performed on an extensively modified version of gem5
simulation toolkit [15]. In the paper, we modified the Ruby model to support coherence
protocol based on BFDir implementation. The structure of the CMP system used in the
evaluation is depicted in Fig. 6, in which all cores have private L1 data/instruction caches
and shared L2 cache.

Fig. 6. The structure of the CMP system.

Overall configurations of the simulator are listed in Table 1. Other configurations
not mentioned in the table use the default values provided by the simulator, such as the
size of the router buffer. We choose a directory based MESI protocol to evaluate BFDir
design because it is commonly used in many commercial processors, such as the Xeon
MP series.

In coarse directory, the length of the share list are set to 8-bit and 16-bit, respectively.
In BFDir, the length of the share list are set to 12-bit. The hash functions in BFDir are
designed as follows: (1) 32 options are selected randomly from total C2

12 = 66 mapping
options; (2) each bit maps some set element to one of the 12 array positions with a
uniform random distribution. It is a fair solution but can be improved by more sophis‐
ticated design.
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Table 1. Simulator configurations in the evaluation

Item Value Item Value
Number of CPUs 32 Cache line size 64 KB
ISA Alpha L1 data cache size 64 KB
CPU model Timing L1 instruction cache size 32 KB
Simulation mode FS mode Associativity of L1 cache 4 ways
Frequency of CPU 1 GHz L1 access latency 1 cycle
Topology of network Crossbar L2 Cache size 256 KB
CC protocol MESI Associativity of L2 Cache 8 ways
Memory size 4 GB L2 access latency 8 cycles
Memory access latency 100 cycles Cache replace Policy PSEUDO LRU

4.2 Benchmarks

The benchmarks used in the evaluation is from SPLASH-2 [16] and PARSEC [17]
benchmark suite, which are probably the most commonly used suite for scientific studies
of parallel machines with shared memory. All the benchmarks are compiled to alpha
ISA with gcc cross-compiler. And O3 optimization option is used in the compilation.

The simulation ticks (referred as ST) and number of invalid messages for memory
blocks in NP/I (Not Present or Invalid) state (refer to as Ninv) of the four directory
implementations are collected for all the benchmarks respectively. The performance loss
of directory A is evaluated as

Pl =
STA

STFM

− 1 (1)

Table 2. Benchmarks

Benchmark Description Problem Size
SPLASH-2 FFT Performs 1D fast Fourier transform using six-step

FFT method
262, 144 data
points

radix An integer radix sort n524288
barnes Imlements the Barnes-Hut method to simulate the

interaction of a system of bodies.
16348

ocean_ns Studies the role of eddy and boundary currents in
influencing large-scale ocean movements
(contiguos partitions)

130 ∗ 130

ocean_sq Studies the role of eddy and doundary currents in
influencing large-scale ocean movements
(non_contiguos partitions)

130 ∗ 130

Cholesky Performs blocked Cholesky Factorization on a
sparse matrix

Tk15.o

PARSEC Bodytrack Body tracking of a person 1000
ferret Content similarity search server Small size
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Where STA and STFM denote the simulation ticks when directory A and full-map directory
are adopted respectively. The relative number of invalid messages of directory A is
defined as

RNinv−A = Ninv−A

/
Ninv−FM (2)

Where Ninv-A and Ninv-FM denote Ninv when directory A and full-map directory are
adopted respectively (Table 2).

4.3 Performance Results

From Table 3, it can be seen that there are 64 M memory blocks. Therefore, the total
size of directory is 272 MB in full-map directory, 80 MB in 8-bit coarse directory,
144 MB in 16-bit coarse directory, and 122 MB in BFDir. Compared to full-mapped
directory, BFDir saves 160 MB directory space, which accounts for 59% of the total
overhead of the full-map directory structure.

Table 3. Comparison of the size of directory

Share list
(bits)

Directory
entry (bits)

Total size of directory
(MB)

Full-map directory 32 34 272
8-bit Coarse directory 8 10 80
16-bit Coarse directory 16 18 144
BFDir 12 14 112

As shown in Fig. 7, the performance loss of BFDir compared to full-map directory is
mostly within 4% in the 32-core system. For ferret, the performance loss of BFDir is negli‐
gible, only 0.907%, less than that of 16-bit coarse directory. While for ocean_ns, the
performance loss is relative large, about 4.599%. This is due to the fact that during the
execution, there are many data sharings among cores and the Write-after-Reads are frequent
which incurs a lot of redundant invalid messages and increases network congestion and
enlarges the latencies of data accesses. So the performance loss of coarse directory is also
large. From Fig. 7, it is also clear that, the performance loss varies for different programs,
such as cholesky and ocean_sq. This is due to the fact that, each program has its own data
access pattern, which mostly relies on the characteristics of the algorithm the program
implements and how the algorithm is programmed. Overall, BFDir with 12 bits share list is
comparable to coarse directory with 16 bits share list in performance. This means that
BFDir can avoid more unnecessary message broadcasting than coarse directory.

Figure 8 shows the relative number of invalid messages during the execution of the
benchmarks. It is noted that, Fig. 8 depicts the relative number of invalid messages for
blocks in NP/I state only, which are rare in full-map directory, so the ratio seems quite
significant. Compared to full-map directory, both BFDir and coarse directory incur redun‐
dant invalid messages. For BFDir, the number of relative invalid messages is below 9,
except for cholesky; for 16-bit coarse directory, the number of relative invalid messages is
below 8, except for cholesky; while for 8-bit coarse directory, the number is much larger,
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even larger than 19. Compared to 8-bit coarse directory, our BFDir reduces 46% invalid
messages with 41% improvement on the size of directory, while 16-bit coarse directory
reduces 55% invalid messages with 83% improvement on the size of directory. Using
BFDir implementation can dramatically reduce blind message broadcasting. This is the
reason why BFDir achieves better performance, as shown in Fig. 7.

Fig. 8. Comparison of relative invalid messages and directory cost to full-map directory

By comparing the results in Figs. 7 and 8, it is shown that reducing the number of
redundant messages broadcasting can benefit to improve system performance. However,
besides the number of invalid messages for blocks in NP/I state, there are many factors
affecting performance, such as the characteristics of the algorithm the program imple‐
ments. Therefore, performance loss and relative number of invalid messages may have
different changes, as presented by ferret.

On average, our BFDir nearly half the number of redundant invalid messages and
performance loss in 8-bit coarse directory, and slightly increase the number of redundant
invalid messages and performance loss in 16-bit coarse directory. The results confirm
the motivation for pursuing better performance by reducing redundant messages.

Fig. 7. Comparison of performance loss to full-map directory. BF, C-16, C-8 and FM represent
BFDir, 16-bit coarse directory, 8-bit coarse directory and full-map directory respectively.
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5 Conclusion and Future Work

The hardware overhead of the full-map directory are very expensive, which makes it
impossible to scale to large-scale systems. And other compressed directories incur lots
of message broadcasting when the share list overflows, which significantly degrades the
performance. In this paper, we propose BFDir, a space-efficient coherence directory
design based on bloom filter. BFDir uses bloom filter to map cores or processors in the
system to multiple bits of the share list and shorten its size. The results show that BFDir
can reduce the hardware overhead of the full-map directory structure by at least 59% for
32-core CMP system at the expanse of average performance loss less than 2.77%, and
reduce the hardware overhead of the 16-bit coarse directory by at least 22% at the
expanse of performance loss less than 0.16%. Also, it avoids 46% redundant invalid
messages and improves 2.31% performance compared to 8-bit coarse directory.

There are several work to do in the future. Firstly, the hash function should be
designed more sophisticated. Secondly, more experiments will be carried out to observe
the performance of BFDir in terms of scalability, area, and power consumption. Thirdly,
current evaluations are carried on systems that use MESI protocol, other coherence
protocol such as MOESI will also be studied.
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