
A Novel Low-Power and High-PSNR
Architecture Based on ARC for DCT/IDCT

Yiliu Feng(&), Jianfeng Zhang, and Hengzhu Liu

National University of Defense and Technology, Changsha, Hunan, China
endlessfyl@gmail.com

Abstract. Discrete cosine transform (DCT) and its inverse (IDCT) play a key
role in image and video systems. In this paper, we propose an efficient
DCT/IDCT architecture based on adaptive recoding coordinate rotation digital
computer (ARC), which has been validated on an FPGA platform. Compared to
the state-of-the-art DCT, the proposed architecture dissipates 8.2% less power
and improves PSNR by 3.21 dB while maintaining nearly the same area and
speed. The proposed architecture uses 37.6% less hardware resources, saves
31.6% in power dissipation, provides a 2.15 times speed-up and improves PSNR
slightly when compared with the newest DCT/IDCT architecture.

Keywords: ARC � CORDIC � DCT � FPGA � IDCT � PSNR

1 Introduction

Recent years have experienced a significant demand for low-power implementations of
algorithms in image and video processing systems, especially like discrete cosine
transform (DCT) and inverse discrete cosine transform (IDCT). The reason is that DCT
and IDCT are one of the most computationally intensive transforms in image and video
compression standards, which have been demonstrated to provide perfect energy
packing for images [1] and are very close approximation of the optimal
Karhunen-Loeve transform (KLT) [2], such as JPEG [3], MPEG [4] and HEVC [5].

Hence, many fast algorithms are proposed to reduce the computational complexity
of computing DCT/IDCT based on three different methods: multiplier-based algorithms
[6], distributed arithmetic (DA) based algorithms [7] and coordinate rotation digital
computer (CORDIC) based algorithms [8–12]. As the multiplier has high hardware
complexity, which restricts the computation speed, and the ROM size increases
exponentially with the transform length for DA-based DCT, it is an efficient way to
implement DCT and IDCT based on CORDIC, which only requires shifters and adders.
Huang et al. [9–11] presented a radix-2 unified DCT and IDCT algorithm based on
unfolded CORDIC, but it consumes too many hardware resources and dissipates too
much power. Lee et al. [12] discussed a low-power DCT based on look ahead COR-
DIC, while the peak signal-to-noise ratio (PSNR) is reduced.

In this paper, we propose an efficient multiplier less unified DCT and IDCT
architecture based on adaptive recoding CORDIC (ARC) [13] combined with the
conventional CORDIC [14]. ARC accelerates the vector rotation and improves the

© Springer Nature Singapore Pte Ltd. 2016
W. Xu et al. (Eds.): NCCET 2016, CCIS 666, pp. 55–68, 2016.
DOI: 10.1007/978-981-10-3159-5_6

accuracy with no performance penalty, and the post-processing of DCT/IDCT is cor-
related with the scale factor of the conventional CORDIC. Therefore, compared to
existing DCT and unified DCT/IDCT architectures, the proposed one has outstanding
performance. The proposed architecture has been synthesized on Xilinx Virtex-5
LX150T to verify the correctness and performance.

The rest of this paper is organized as follows: In Sect. 2, we discuss the efficient
unified DCT and IDCT architecture. The vector rotation schemes are described in
Sect. 3. Section 4 analyzes the simulation and comparison results. Conclusions are
drawn in Sect. 5.

2 Efficient Unified DCT/IDCT Architecture

As a 2-D DCT is commonly calculated by first applying a 1-D DCT over the rows
followed by another 1-D DCT applied to the columns of the input matrix [12], 1-D
DCT is the kernel processing element. Meanwhile, both DCT and IDCT are used in
image and video systems, and then designing a unified efficient architecture for 1-D
DCT and IDCT is very important. In this paper, we propose a novel unified architecture
for 1-D DCT and IDCT based on CORDIC.

The N-point 1-D DCT transforms a real data sequence from time domain
xðnÞ; n = 0; 1; 2; . . .;N � 1f g to frequency domain yðnÞ; n ¼ 0; 1; 2; . . .;N � 1f g,

which is defined as

yðkÞ ¼
ffiffiffiffi
2
N

r
� cðkÞ �

XN�1

n¼0

xðnÞ � cos ð2nþ 1Þkp
2N

� �
; ðk ¼ 0; 1; . . .;N � 1Þ ð1Þ

Where cð0Þ ¼ 1=
ffiffiffi
2

p
and cðkÞ ¼ 1 for k ¼ 0; 1; . . .;N � 1. As the 8-point DCT is

commonly used in image and video standards [3–5], we can decompose the 8-point
DCT into four parts. First, the 8-point input signals are preprocessed and represented as
follows:

a0 ¼ xð0Þþ xð7Þ
a1 ¼ xð0Þ � xð7Þ

(
;

a2 ¼ xð1Þþ xð6Þ
a3 ¼ xð1Þ � xð6Þ

(

a4 ¼ xð2Þþ xð5Þ
a5 ¼ xð2Þ � xð5Þ

(
;

a6 ¼ xð3Þþ xð4Þ
a7 ¼ xð3Þ � xð4Þ

(ð2Þ

Then, the outputs of the 8-point DCT can be written as:

yð0Þ
yð4Þ

� �
¼ 1ffiffiffi

8
p � 1 1

1 �1

� �
� a0 þ a6

a2 þ a4

� �
ð3Þ

yð2Þ
yð6Þ

� �
¼ 1

2
� c2 �s2

s2 c2

� �
� a0 � a6

a4 � a2

� �
ð4Þ

56 Y. Feng et al.

yð1Þ
yð7Þ

� �
¼ 1

2
� c1 �s1

s1 c1

� �
� a1

�a7

� �
þ 1

2
� c3 s3

�s3 c3

� �
� a3

a5

� �

¼ 1
2
� c1 �s1

s1 c1

� �
� a1

�a7

� �
þ 1ffiffiffi

8
p � c3 �s1

s1 c1

� �
� 1 1

�1 1

� �
� a3

a5

� �

ð5Þ

yð5Þ
yð3Þ

� �
¼ 1

2
� c3 s3

�s3 c3

� �
� a7

a1

� �
� 1
2
� c1 �s1

s1 c1

� �
� a3

a5

� �

¼ 1ffiffiffi
8

p � c1 �s1
s1 c1

� �
� 1 1

�1 1

� �
� a7

a1

� �
� 1
2
� c1 �s1

s1 c1

� �
� a3

a5

� � ð6Þ

in which cm ¼ cosðmp=16Þ and sm ¼ sinðmp=16Þ. As the rearranged 8-point DCT is
presented as vector rotation matrices, it can be realized by CORDIC. For Eqs. (4), (5)
and (6), we can put the constant scale factors into CORDIC to save area and power, and
reduce the truncation and quantization errors.

Figure 1 shows the data flow of the DCT architecture, which consists of three adder
arrays (Adder_1, Adder_2, and Adder_3), two processing elements (PE_1, PE_2) and
the DCT/IDCT mode controller. The Adder_1 and Adder_2 consist of four adders and
four subtractors, and two adders and two subtractors, respectively. The Adder_3 is
made up of one adder, one subtractor and two constant scale factor 1=

ffiffiffi
8

p
compensation

logics. The ARC rotation ARC_1, the rotation angle of which is p=8, and the scale

Fig. 1. Data flow of the DCT architecture.

A Novel Low-Power and High-PSNR Architecture 57

factor is combined with the constant value 1=2, builds the PE_1. The PE_2 consists of
one inverter, five adders, four subtractors, two identical ARC_2 rotators, whose rota-
tion angle is p=16 and the scale factor is combined with 1=2, and two ARC_3, the
rotation angle of which is also p=16, but the scale factor is combined with 1=

ffiffiffi
8

p
.

According to Eqs. (5) and (6), the two outputs of ARC_2 scaled by 1=
ffiffiffi
8

p
pass to the

following adder and subtractor to rotate the results by �3p=16. The inverter and the
following constant adder in the black dotted box are to get the 2’s complementary of.

In the meantime, the 8-point IDCT is represented as:

xðnÞ ¼
ffiffiffiffi
2
N

r
�
XN�1

n¼0

cðkÞ � yðkÞ � cos
ð2nþ 1Þkp

2N

� �
; ðn ¼ 0; 1; . . .;N � 1Þ ð7Þ

We can also use the decomposition method. First, the input {y(n), n = 0, 1, 2,…,
N−1} are proprocessed and expressed as

b1
b0

� �
¼ 1ffiffi

8
p � 1 1

�1 1

� �
� yð0Þ

yð4Þ
� �

;
b3
b2

� �
¼ 1

2 �
c2 �s2
s2 c2

� �
� yð6Þ

yð2Þ
� �

b5
b4

� �
¼ 1

2 �
c1 �s1
s1 c1

� �
� yð7Þ

yð1Þ
� �

;
b7
b6

� �
¼ 1

2 �
c1 �s1
s1 c1

� �
� yð3Þ

yð5Þ
� �

b9
b8

� �
¼ 1ffiffi

8
p � c1 �s1

s1 c1

� �
� 1 1

�1 1

� �
� yð7Þ

yð1Þ
� �

b11
b10

� �
¼ 1ffiffi

8
p � c1 �s1

s1 c1

� �
� 1 1

�1 1

� �
� yð3Þ

yð5Þ
� �

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ

Substituting Eq. (8) into (7), we can get

xð0Þ ¼ ðb1 þ b2Þþ ðb4 þ b11Þ
xð7Þ ¼ ðb1 þ b2Þ � ðb4 þ b11Þ

(
;

xð2Þ ¼ ðb0 þ b3Þþ ðb9 � b7Þ
xð5Þ ¼ ðb0 þ b3Þ � ðb9 � b7Þ

(

xð1Þ ¼ ðb0 � b3Þþ ðb8 � b6Þ
xð6Þ ¼ ðb0 � b3Þ � ðb8 � b6Þ

(
;

xð3Þ ¼ ðb1 � b2Þþ ðb10 � b5Þ
xð4Þ ¼ ðb1 � b2Þ � ðb10 � b5Þ

(ð9Þ

The corresponding data flow of the IDCT architecture is shown in Fig. 2.
Note that the dataflow is from right to left to keep the layout of the functional units

the same as in Fig. 1. The required modules in the IDCT, including Adder_1, Adder_2,
Adder_3 and PE_1, are the same as the ones in the DCT except for PE_2. The inverter
and the adder in the black dotted box in PE_2 of the IDCT is connected to the output of
ARC_3, while the output of the black dotted box in PE_2 of the DCT is at the input of
ARC_3. Meanwhile, the signal flows between these modules of IDCT and DCT are
different.

Figure 3 shows the data flow of the unified architecture for DCT and IDCT, which
consists of three adder arrays (Adder_1, Adder_2, and Adder_3), two processing ele-
ments (PE_1, PE_2) and the DCT/IDCT mode controller. The DCT/IDCT mode
controller is to reconfigure the architecture to ensure the unified structure can work well

58 Y. Feng et al.

for DCT mode and IDCT mode, the signals of which are illustrated as the purple
arrows. The inverter in the PE_2 marked with black dotted arrows are the DCT and
IDCT data flows respectively, and the blue arrows are the signals which can either be
DCT or IDCT data flows.

Fig. 2. Data flow of the IDCT architecture.

Fig. 3. Data flow of unified DCT and IDCT.

A Novel Low-Power and High-PSNR Architecture 59

3 ARC Rotation

As discussed in Sect. 2, the unified DCT and IDCT architecture requires three different
vector rotation: ARC_1, ARC_2 and ARC_3. In this Section, we will analyze how to
realize these rotations based on ARC. Meanwhile, the scale factor compensation for in
the Adder_3 is also discussed. To conduct a fair comparison, we also assume the word
length is 12-bit, and the natural number 1 equals 12’b010000000000.

3.1 First Rotation ARC_1

The rotation angle p=
ffiffiffi
8

p
of ARC_1 is represented as 12’b010000000000. We first

implement the two conventional i ¼ 2 and i ¼ 3 CORDIC iterations to diminish the
rotation angle, and then use i ¼ 7 and i ¼ 8 iterations of ARC to finish the residual
angle rotation.

The basic rotation Matrix of the conventional CORDIC is expressed as

xiþ 1

yiþ 1

� �
¼ 1 �2�i

2�i 1

� �
� yi

xi

� �
ð10Þ

and the basic iteration of ARC is written as

xiþ 1

yiþ 1

� �
¼ 1� 2�2iþ 1 �2�iþ 1

�2�iþ 1 1� 2�2iþ 1

� �
� yi

xi

� �
ð11Þ

Therefore, the iteration sequencing of ARC_1 is

1 �2�2

2�2 1

� �
;

1 �2�3

2�3 1

� �
;

1 �2�6

2�6 1

� �
;

1 �2�7

2�7 1

� �
ð12Þ

where the first and the fourth iterations, and the other two iterations can be replaced by
two iterations to accelerate the rotation process, respectively. The replaced iterations
are illustrated as

1 �2�2 � 2�7

2�2 þ 2�7 1

� �
;

1 �2�3 � 2�6

2�3 þ 2�6 1

� �
ð13Þ

where the components right shifting 9 bits have been eliminated not only to simplify
the architecture, but also to save hardware resources.

Compared to the separate iterations, the results have been slightly amplified after
operated by Eq. (13). However, we can compensate for the rounding errors in the scale
factor compensation units.

As the scale factor cosðarctanð2�2Þ � cos tanð2�3ÞÞ of conventional CORDIC
needs to be scaled by 1=2, it is hard for hardware implementation. We propose an adder
and shifter-based approximation to approach the new scale factor, the method is shown
in Algorithm 1.

60 Y. Feng et al.

The scale factor ki of ARC_1, the required accuracy R_Accuracy and the initial
value of the achieved accuracy A_Accuracy are first set. For lines 5–9, we propose five
different approximation expressions to approach the scale factor, and each part of the
proposed expressions has the same critical path delay as the required iterations depicted
in Eq. (13). As the scale factor is always smaller than natural number 1, lines 5–9 cover
all the cases of two separate parts multiplication. The reason for using two parts
multiplication to approximate the scale factor is that only one separate part cannot
satisfy the required accuracy. Then, the approximation expression which has the
smallest error is computed and set to the calculated accuracy in line 10. Third, the
C_Accruacy is assigned to the A_Accuracy and the corresponding values consisted of
the approximation expression are stored under the condition that if the C_Accuracy is
smaller than the R_Accuracy and the A_Accuracy in lines 11–16. After opeated by
lines 1–20, we can get the best approximation expression and the corresponding values
of its components, the accuracy of which is highest for all tested values.

The A_Accuracy, the corresponding values and the type of the approximation
expression are returned in line 21. After using Algorithm 1, the scale factor k1 is
represented as:

A Novel Low-Power and High-PSNR Architecture 61

k1 ¼ 1=2 � cosðarctanð2�2Þ � cos tanð2�3ÞÞ
¼ 1

2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�4

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�6

p

ffi ð1� 2�1 þ 2�6Þ � ð1� 2�4 � 2�8Þ

ð14Þ

To compensate for the rounding errors in Eq. (13), we scale the approximation
Eq. (14) into ð1� 2�1 þ 2�6Þ � ð1� 2�4 � 2�8Þ after using Matlab to verify the
accuracy of the results.

Figure 4 shows the data flow of ARC_1, which only consist of shifters and adders,
and the “−” symbols placed near the arrows represent subtractions A pipeline balancing
method is proposed to implement the architecture, which is divided into four stages.
The first two stages are to execute the required iterations, and the scale factor com-
pensation is implemented in the remaining stages. We have split the bigger shifter in
evert stage into two subshifters: one has the same right shifting bits as the smaller
shifter and the other executes the rest bits shifting, which means that the bigger shifter
can be realized based on the smaller shifting to save hardware resources. The critical
path delay of each stage is two shifts and two additions.

3.2 First Rotation ARC_2

As mentioned in Sect. 2, ARC_2 actually need to rotate the input vector by �3p=16.
Hence, we combine ARC_2 with one adder and one subtractor to fulfill the rotation,
and the scale factor of ARC_2 needs to multiply 1=

ffiffiffi
8

p
. Due to the scaling-free property

of ARC, if ARC_2 only adopts ARC, it would require extra resources to execute the
scale factor compensation. Hence, we combine the conventional CORDIC with ARC to
implement p=16 rotation, and then the constant value 1=

ffiffiffi
8

p
compensation can be

combined with the scale factor of the conventional CORDIC.
As p=16 is expressed as 12’b000011001001, the conventional i = 3 iteration is first

implemented, and then the i = 5, i = 8 and i = 10 iterations of ARC are executed.
Meanwhile, we can also put the conventional i = 3 iteration and ARC i = 10 iteration
into one iteration, and the rest are also rearranged into one iteration to get an area
efficient architecture. The new iterations are expressed as:

Fig. 4. Data flow of ARC_1

62 Y. Feng et al.

1 �2�3 � 2�9

2�3 þ 2�9 1

� �
;

1 �2�4 � 2�7

2�4 þ 2�7 1

� �
ð15Þ

where the components right shifting over 10 bits which equals machine zero have been
eliminated. Compared to the separate iterations, the results of Eq. (15) have also been
slightly amplified.

After using the scale factor k2 of ARC_2 to replace the k1 in Algorithm 1, the k2 is
represented as:

k2 ¼ 1=
ffiffiffi
8

p
� cosðcos tanð2�3ÞÞ

¼ 1ffiffiffi
8

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�6

p

ffi ð1� 2�1 � 2�3Þ � ð1� 2�4 � 2�9Þ

ð16Þ

Using the same method as ARC_1, the approximation Eq. (16) is scaled into to
compensate for the errors introduced in Eq. (15). The data flow of the ARC_2 is shown
in Fig. 3, which is also divided into four stages to keep the critical path delay constant
with ARC_1. The required iterations are realized in the first two stages, and the
remaining stages are to execute the scale factor compensation. Meanwhile, the bigger
shifters are also split into two subshifters to save area (Fig. 5).

3.3 First Rotation ARC_3

The rotation angle of ARC_3 is the same as ARC_2, but the scale factor is different,
which only needs to be scaled by 1=2 through right shifting the results one bit.

Hence, we only adopt ARC ði ¼ 4; i ¼ 5; i ¼ 8; i ¼ 11Þ to design ARC_3, and the
i = 8 and i = 11 iterations combined with 1=2 are put together into one iteration. The
rotation sequencing of ARC_3 is

1� 2�7 �2�3

2�3 1� 2�7

� �
;

1� 2�9 �2�4

2�4 1� 2�9

� �
;

2�1 �2�8

2�8 2�1

� �
ð17Þ

Fig. 5. Data flow of ARC_2

A Novel Low-Power and High-PSNR Architecture 63

which is realized by three stages as illustrated in Fig. 6. As ARC_3 does not need scale
factor compensation, all the stages are to execute the required iterations. We also split
the bigger into two sub-shifters to reduce area.

3.4 Scale Factor Compensation for Adder_3

The scale factor in the Adder_3 is 1=
ffiffiffi
8

p
. After operated by Algorithm 1, it is

approximated as:

KAdder 3 ¼ 1=
ffiffiffi
8

p
ffi ð1� 2�1 � 2�5Þ � ð1� 2�2 þ 2�8Þ ð18Þ

where the achieved accuracy is above 1.6E-4. The corresponding date flow the scale
factor compensation is shown in Fig. 7, which requires two clock cycles. The splitting
scheme is also used to reduce the required resources.

4 Performance Evaluation and Comparison

In this section, we compare our design with the state-of-the-art DCT discussed in [12]
and the newest unified DCT and IDCT architecture presented in [10]. Meanwhile, as
there are some different architectures proposed in [10, 12], we only focus on the

Fig. 6. Data flow of ARC_3

Fig. 7. Scale factor compensation for Adder_3

64 Y. Feng et al.

common architectures, which can process 8-point concurrently and do not save the
hardware resources at the expense of PSNR.

4.1 Area Comparison

As the Lee architecture only works in DCT mode, we synthe-size both the Huang and
the proposed architectures under DCT mode and DCT/IDCT mode, respectively. The
required hardware resources of the three different architecture are all shown in Table 1.
For DCT mode, compared with the Lee architecture, the proposed architecture uses 52
and 1 more Slice Registers and LUT-FF pairs respectively, but requires 52 less Slice
LUTs. Compared with the Huang architecture, due to the proposed vector rotation
schemes, no matter working in which mode, the proposed architecture uses less
hardware resources. Taking Slice Registers under DCT/IDCT mode as an example, the
required number of the proposed architecture is reduced by 37.6%.

4.2 Speed Comparison

We compare the speed in terms of critical path delay, latency, processing time and
throughput. As shown in Table 1, CPD means Critical Path Delay, PTime means
Processing Time, T means Throughput. The latencies of the Lee, the Huang and the
proposed architectures 6, 13 and 6, respectively. For DCT mode, the critical path
delays of the three different architectures are 3.16 ns, 3.05 ns and 3.08 ns, respectively.
After the pipelines set up, the throughput of the Lee, the Huang and the proposed
architectures are 2532(M samples/s), 2623(M samples/s) and 2597(M samples/s),
respectively, which means the throughput of the proposed architecture is slightly lower
than the Huang architecture, but exceeds the Lee architecture. The processing time is
defined as how long the pipeline needs to finish a complete computation, which equals
the critical path delay times and latency. The processing time of the Lee and Huang are
18.96 ns and 39.65 ns, respectively, but the proposed architecture only requires
18.47 ns. For DCT/IDCT mode, compared to the Huang architecture, even the critical

Table 1. Area, speed and power comparisons.

Comparison Lee. [12] Huang. [10] Proposed arch.
Mode DCT DCT DCT/IDCT DCT DCT/IDCT

Slice registers 992 1506 1714 1044 1070
Slice LUTs 1172 1526 1812 1502
LUT-FF pairs 1216 1660 2019 1120

1217
1517

CPD (ns) 3.16 3.05 3.2 3.08 3.23
Latency 6 13 113 6 6
PTime(ns) 18.96 39.65 41.6 19.38
T (M samples/s) 2532 2623 2500 18.48

2597
2477

Power(mW) 98 148 212 90 145

A Novel Low-Power and High-PSNR Architecture 65

path delay and throughput of the proposed architecture are slightly worse, the pro-
cessing time provides a factor of 41.6/19.38 = 2.15-fold improvement because of its
less latency.

4.3 Accuracy Comparison

We first investigate the accuracy of the rotation because they have an impact on the
PSNR [16] of the full DCT and IDCT blocks.

We use bit error ratio (BER) to compare the accuracy of the proposed rotation
elements with the Huang CORDIC [12] and the Lee CORDIC [10]. Taking the rotation
angle �3p=16 as an example, a pseudorandom sequence of 1000 vectors lying evenly
in the convergence range ½0; 28 � 1Þ is generated. We use these vectors as the inputs of
the proposed ARC_2, Huang CORDIC and Lee CORDIC, the corresponding BERs of
rotation of the three different architectures are shown in Fig. 8. The BERs of the
proposed ARC_2 are the smallest, which are below 3E – 4, while the BERs of the
Huang CORDIC are the biggest and exceed 2E – 3, and the BERs of the Lee CORDIC
approximately equal 1E – 3. The reason that ARC_2 has improved BERs is that it uses
ARC combined with conventional CORDIC to implement the rotation elements and the
proposed scale factor approximation scheme.

Using PSNR to evaluate the performance of the three different DCT architectures,
including the Lee architecture [10], the Huang architecture [12] and the proposed
architecture, we generate 500 8 � 8 test matrices to obtain the average PSNR. The
PSNRs of the Lee, the Huang and the proposed architectures are 43.16 dB, 45.98 dB
and 46.37 dB, respectively, which means that the PSNR of the proposed architecture

Fig. 8. BER comparison

66 Y. Feng et al.

exceeds the Lee architecture is improved by 3.21 dB. The reason for the improved
PSNR is that the BERs of rotation elements of the proposed architecture are lower than
the rotation elements in the Lee architecture. Compared with the Huang architecture,
the PSNR of the proposed architecture is also higher. The reason is not only the
proposed novel architecture, which shortens the required number of iterations to reduce
the errors, but also the rotation elements based on the efficient ARC combined with
conventional CORDIC, which have higher accuracy.

4.4 Power Comparison

We use the Xpower tool [15] to estimate the power dissipation of the Lee, the Huang
and the proposed architectures. The method used is to build a harness that can connect
to all of the inputs and outputs of the circuit. Xpower is used to estimate the power of
the device with and without the measured circuit in the harness. The difference between
the two versions is the power dissipation of the circuit of interest. This approach is
described in more detail in [18]. Since the power estimation is a function of the toggle
rate of the signals, we set the toggle rate of the signals to 12.5% to bracket the
estimated power dissipation.

As illustrated in Table 1, for DCT mode, the three different architectures dissipate
98 mW, 148 mW and 30 mW, respectively, which means the proposed architecture
dissipates 8.2% and 39.2% less power than the Lee and the Huang architectures,
respectively. For DCT/IDCT mode, the Huang and the proposed architectures consume
212 mW and 145 mW, respectively, which means the dissipated power of the proposed
architecture is reduced by 31.6%.

5 Conclusion

This paper has presented an Improved FPGA implementation of DCT/IDCT archi-
tecture based on ARC. An efficient architecture for DCT/IDCT is first described. For
the different vector rotations, we adopt ARC and conventional CORDIC combined
with different scale factors to simplify the architecture and improve the accuracy. The
result demonstrate that the proposed architecture has the best PSNR and dissipate the
least power. Compared with the Lee architecture, both the throughput and the pro-
cessing time of the proposed architecture are also slightly better. Compared with the
Huang architecture, all of the required hardware resources, the latency and the pro-
cessing time are highly reduced with a little loss in critical path delay and throughput.

Acknowledgments. This work is supported by Xilinx. We also would like to thank Jianfeng
Zhang and the reviewer for their revisions and suggestions.

A Novel Low-Power and High-PSNR Architecture 67

References

1. Rao, K.R., Yip, P.: Discrete Cosine Transform: Algorithms, Advantages. Applications.
Academic press, New York (2014)

2. Clarke, R.: Relation between the Karhunen Loèvet and cosine transforms. Commun. Rada
Signal Process. IEE Proc. F 128(6), 359–360 (1981)

3. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron.
38(1), xviii–xxxiv (1992)

4. Le Gall, D.: MPEG: a video compression standard for multimedia applications. Commun.
ACM 34(4), 46–58 (1991)

5. Ahmed, A., Shahid, M.U.: N point DCT VLSI architecture for emerging HEVC standard.
VLSI Des. 2012, 6 (2012)

6. Li, C.-Y., et al.: A probabilistic estimation bias circuit for fixed-width booth multiplier and
its DCT applications. IEEE Trans. Circuits Syst. II Express Briefs 58(4), 215–219 (2011)

7. Yu, S., Swartziander, E.: DCT implementation with distributed arithmetic. IEEE Trans.
Comput. 50(9), 985–991 (2001)

8. Xiao, L., Huang, H.: A novel CORDIC based unified architecture for DCT and IDCT. In:
2012 International Conference on Optoelectronics and Microelectronics (ICOM). IEEE
(2012)

9. Huang, H., Xiao, L.: CORDIC based fast radix-2 DCT algorithm. IEEE Sig. Process. Lett.
20(5), 483–486 (2013)

10. Huang, H., Xiao, L.: CORDIC based fast algorithm for power-of-two point DCT and its
efficient VLSI implementation. Microelectron. J. 45(11), 1480–1488 (2014)

11. Huang, H., Xiao, L., Liu, J.: CORDIC-Based Unified Architectures for Computation of
DCT/IDCT/DST/IDST. Circ. Syst. Sig. Process. 33(3), 799–814 (2014)

12. Lee, M.W., Yoon, J.H., Park, J.: Reconfigurable CORDIC-based low-power DCT
architecture based on data priority. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22
(5), 1060–1068 (2014)

13. Zhang, J., et al.: Adaptive recoding CORDIC. IEICE Electron. Express 9(8), 765–771
(2012)

14. Meher, P.K., et al.: 50 years of CORDIC: algorithms, architectures, and applications. IEEE
Trans. Circ. Syst. I Regul. Pap. 56(9), 1893–1907 (2009)

15. Xilinx, X.E.U.G., Xilinx power tools tutorial (2010). 2012
16. Zhang, J., Chow, P., Liu, H.: An efficient FPGA implementation of QR decomposition using

a novel systolic array architecture based on enhanced vectoring CORDIC. In: 2014
International Conference on Field-Programmable Technology (FPT). IEEE (2014)

68 Y. Feng et al.

	A Novel Low-Power and High-PSNR Architecture Based on ARC for DCT/IDCT
	Abstract
	1 Introduction
	2 Efficient Unified DCT/IDCT Architecture
	3 ARC Rotation
	3.1 First Rotation ARC_1
	3.2 First Rotation ARC_2
	3.3 First Rotation ARC_3
	3.4 Scale Factor Compensation for Adder_3

	4 Performance Evaluation and Comparison
	4.1 Area Comparison
	4.2 Speed Comparison
	4.3 Accuracy Comparison
	4.4 Power Comparison

	5 Conclusion
	Acknowledgments
	References

