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Abstract. Kernel independent component analysis (KICA) penalizes
the correlations among components in a reproducing kernel Hilbert space
(RKHS) and performs well in many practical tasks such as speech sep-
aration due to its robustness on varying source distributions. Recently,
Nyström-KICA (NKICA) incorporates a low-rank approximation and
low-complexity sampling method to reduce the computational complex-
ity of KICA. In this paper, we show that the computational complexity
of NKICA can be further decreased by implementing the algorithm on
the many integrated core (MIC) architecture to meet the requirement of
large data processing. Particularly, we parallelize the critical segments
with the OpenMP technology and perform the intensive matrix manipu-
lations on a MIC coprocessor. This MIC-based approach has been eval-
uated on both simulated dataset and the TIMIT dataset. The experi-
mental results confirm the efficiency of our implementation of NKICA
on the MIC architecture, and show that it achieves a consistent speedup
rate of around 10 on average, and of 12.3 at best, comparing with that
performed on single CPU.
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1 Introduction

Independent component analysis (ICA) [1] is a signal processing technique of
recovering sources from observation data. The observations are linear combi-
nations of statistic independent sources. ICA aims to find out the latent inde-
pendent components with a set of observations of random variables, which has
been widely used in practice, e.g., blind source separation, speech separation
and feature extraction [2,3], etc. The traditional ICA algorithms were based on
objective functions defined in terms of expectations of a single fixed nonlinear
function, which makes them suitable for some specific problems. Kennel ICA
(KICA, [4]) define the objective function in a reproducing kernel Hilbert space
(RKHS), and make use of the “kernel trick” to search over this space efficiently.
The use of a function space makes it possible to adapt to a variety of sources
and thus makes KICA algorithm more robust to varying source distributions.
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Although KICA algorithm is very effective, the high computational complex-
ity prohibits it form practical applications [5]. The kernel matrices get larger and
larger, and the computational complexity has a cubic growth when the scale of
data to be processed increases. A usual solution to this problem is construct-
ing low-rank approximations of the kernel matrices because the spectra of kernel
matrices decays rapidly [6]. Recently, Wang et al. use Nyström [8] method to con-
struct such low-rank approximation termed Nyström KICA (NKICA). NKICA
is proposed to solve the computation problem of prior incomplete Cholesky
decomposition KICA (IDC-KICA). With the increase of the scale of data, both
time and space complexities of ICD-KICA are unacceptable. In contrast to ICD
method, the Nyström method uses a low-complexity sampling technique [7].
NKICA cuts down the computational complexity of KICA effectively, from
O(m3N3) to O(mM2N).

Although NKICA reduces the computational complexity effectively, with
the scale of practical data increases, the computation complexity of algorithm
grows quickly. It prohibits NKICA form big data applications. To solve the
problem, we consider hardware implementation to accelerate computation of
NKICA. Nowadays, various accelerators developed quickly, including Intel MIC
coprocessor [9,10] and general purpose computation on graphics processing units
(GPGPU) [12,13], etc. With the help of the accelerators, highly parallel compu-
tations can be accelerated easily.

Intel MIC architecture provides many computational cores, and conveniently
exploits parallelism with technology such as OpenMP and TBB. On the other
hand, MIC is very suitable for matrix manipulations, which are the most manip-
ulations in NKICA. In this paper, we implement the NKICA on Intel Many
Integrated Core (MIC) architecture to reduce the computational complexity of
KICA to meet the requirement of large data processing. Particularly, we paral-
lelize the critical segments with the OpenMP technology and perform the inten-
sive matrix manipulations on a MIC coprocessor. Experiments on both simulated
dataset and the TIMIT dataset confirm its efficiency.

The remainder of the paper is organized as follows. Section 2 introduces
related work including Nystrom Fast KICA and nd the Intel Many Integrated
Core architecture. Section 3 discusses how to use MIC to accelerate Nystrom
KICA algorithm and Sect. 4 presents the experimental results. Section 5 con-
cludes the paper.

2 Background

2.1 Kernel Independent Component Analysis

Independent component analysis (ICA) [3] aims to recover a latent random vec-
tor s = (s1; . . . ; sm) from observations of m unknown linear functions of that
vector. The components of s are assumed to be mutually independent, and their
distributions are usually assumed unknown. x is modeled as

x = As, (1)
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where s is the independent components, and A is A is an m × m mixing matrix
of parameters. ICA finds the optimal demixing matrix W = A−1 by solving
a objective function, and recovers s = Wx. The traditional ICA algorithms
were based on objective functions defined in terms of expectations of a single
fixed nonlinear function, such as kurtosis, negentropy. KICA define the objective
function in a reproducing kernel Hilbert space(RKHS), and make use of the
“kernel trick” to search over this space efficiently. The objective function of
KICA is relates to the kernelized first canonical correlation between variables.
Mathematically, the kernalized first canonical correlation can be obtained by
finding the minimal eigenvalue of the following matrix.

˜Kk =

⎛

⎜

⎜

⎜

⎝

I rk(K1)rk(K2) · · · rk(K1)rk(Km)
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⎟

⎠

, (2)

where K1, . . . ,Km denote the kernel matrices of the observations, where
rk(Ki) = Ki(Ki + Nk

2 I)−1, and Ki + Nk
2 I denotes the regularization of Ki

and Nk
2 is called jitter factor [6]. The minimal generalized eigenvalue, denoted

as λmin, and the objective function can be defined as C(W ) = − 1
2 log λmin. The

value of the objective function is nonnegative, and equals zero if and only if the
variables are pairwise independent [4].

An ICA objective function is actually a function of demixing matrix W .
Estimating the independent components means minimizing the objective func-
tion with respect to W . It is quite challenging because the scale of the
constructed kernel matrices are quite large. Recently, Wang et al. proposed
Nyström KICA(NICA) to perform low-rank approximations of the kernel matri-
ces. NKICA randomly sample M data points form the observations consist of
N samples, M � N . The NKICA algorithm is shown in Algorithm 1. The total
computational complexity of NKICA Algorithm 1 is O(mM2N).

2.2 Intel Many Integrated Core Architecture

Intel many integrated core (MIC) architecture is designed to accelerate highly
parallel and computational intensive applications. Intel Xeon Phi coprocessor is
a commercial product based on MIC architecture. One coprocessor consists of
up to 61 cores. Each core has two level caches, includs a 32 KB L1 data cache and
L1 instruction cache, and a 512 KB private L2 cache. A 512 bits vector processor
unit (VPU) based on Single Instruction Multiple Data (SIMD) architecture is
implemented on MIC.

Intel MIC architecture is easy to program for developers. Applications on
other platform can also be ported to MIC with little modification. The MIC
coprocessor is supported by a variety of libraries, compilers and tuning tools,
etc. In practical, developers usually use the parallel programming interface, such
as OpenMP and TBB, to utilize the abundant computational core resources. The
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Algorithm 1. NKICA Algorithm[8]
Input : Data vectors x1, x2, · · · , xN ,

Kernel function K(x, y).
Output: Estimated independent components s.

1 Whiten the data
2 perform the low-rank approximation via Nyström method, randomly choose

M × M , Ki ≈ PiA
−1
i PT

i

3 Compute the orthogonal eigenvectors and eigenvalues of Ki, Ui and Li,

Ki ≈ UiLiU
T
i

4 Compute the kernel matrix RK based on Ui and Li, find the minimal eigenvalue
of RK λmin

5 Define objective function C(W ) = − 1
2

log λmin

6 Minimize the objective function, obtain the demixing matrix W
7 Output the estimated independent components s = Wx.

MIC coprocessor is often treated as an accelerator to perform the computational
intensive tasks offloaded from CPU. Lager scale matrix computations are main
tasks for MIC coprocessor. With the help of Intel math kernel libraryMKL,
matrix computations can be performed effectively on MIC.

3 Analysis of Parallelism

This paper aims to parallelly accelerate NKICA algorithm on MIC. So the main
work is to parallelize the most time consuming parts, i.e. the critical segments,
of the algorithm, and perform the computations on the MIC. By analysing the
NKICA algorithm in Algorithm 1, we find the critical segment is the computation
of the objective function. The objective function is computed many times in
Algorithm 1 to find the minimal value. Table 1 shows the simulated execution
of NKICA, the components number sets to 2, 6, 10. We can see the total time
of computing objective function accounts for more than 80% of the execution
time of NKICA algorithm. Therefore, the computation of objective function is
the critical segment needs to be parallelized.

Table 1. Simulated excution of NKICA

Number of independent components 2 6 10

Execution time of NKICA Algorithm 8.25 s 86.06 s 316.68

Total time of computing objective function 7.33 s 73.98 s 267.51

Percentage 88.85% 85.96% 84.47%

There are two levels of parallelism inhered in NKICA algorithm. The first
level is the parallelism of computing Ki of each observation, and the second level
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is the parallelism inhered in matrix manipulations, including matrix multiplica-
tion, singular value decomposition and eigenvalues decomposition. In practical,
We use OpenMP technology to exploit the first level of parallelism, and Intel
math kernel library (MKL) to realize the second level of parallelism. MKL has
rich functions and can perform matrix manipulation with high-efficiency. The
data needed in the algorithm are constructed as matrix, so we can utilize the
computational ability of coprocessors VPU. Algorithm 2 summarizes the NKICA
algorithm with MIC.

Algorithm 2. NKICA algorithm with MIC
Input : Data vectors x1, x2, · · · , xN ,

Kernel function K(x, y).
Output: Estimated independent components s.

1 Whiten the data
2 Generate the initial demixing matrix W ′, compute the corresponding source

s′ = W ′y
3 offload s′ and Kernel function K(x, y) from CPU to MIC
4 perform the low-rank approximation via Nyström method, randomly choose

M × M , Ki ≈ PiA
−1
i PT

i

5 Compute the orthogonal eigenvectors and eigenvalues of Ki, Ui and Li,

Ki ≈ UiLiU
T
i

6 Compute the kernel matrix RK based on Ui and Li, find the minimal eigenvalue
of RK λmin

7 Return objective function C(W ) = − 1
2

log λmin to CPU
8 Minimize the objective function, obtain the demixing matrix W
9 Output the estimated independent components x = Wy.

In Algorithm 2, Step 3 to step 7 are performed on MIC, use OPENMP tech-
nology to realize parallelization, and MKL to perform the matrix manipulation.
We adopt offload mode of MIC in Step 3. Step 5 and step 6 perform singular
value decomposition and eigenvalues decomposition on Ai and RK respectively.
In practice, the regularization scheme in NKICA enables us to ignore the eigen-
values less than the jitter factor, which significantly reduces the computational
complexity.

4 Experiments

To verify the performance of the accelerated algorithm, we compare the execution
time between MIC-based NKICA algorithm and original non-accelerated one
only on CPU. The CPU is Intel Xeon server CPU, 2.6 GHz, two way 8 cores.
the only CPU-based algorithm also uses MKL to perform matrix manipulation.
The datasets used in experiments include the simulated dataset and the TIMIT
dataset. The input kernel function is Gaussian Kernel in all experiments. All the
experiment results are averages of 10 replications.
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There are three parameters have significant influence on execution time,
which are components number m, observations data size N and sampling num-
ber M . When m and N increases, we can perform NKICA algorithm on larger
datasete. When M increases, the results will be more accurate. Meanwhile, the
computational complexity increases along with the increase of the three parame-
ters. We set the three parameters to different values respectively, and record the
execution time of the MIC-based algorithm and the only CPU-based algorithm
on different dataset.

4.1 Simulated Dataset

The simulated dataset consists of data obtained from a variety of source distrib-
utions. In this paper, we use five basic distributions to generate a large dataset.
Figure 1 shows the five basic distributions. We set different parameters to the
distributions to get different data.

(a) (b) (c) (d) (e)

Fig. 1. Probability density functions of sources in simulated dataset with their kurtoses:
(a) Mixtures of four Gaussians; (b) Student; (c) Double exponential; (d) Mixture of
two Gaussians; (e) Mixtures of two double exponential.

Figure 2 shows the results of two experiment sets on simulated dataset. We
compare the execution time between the MIC-based and the only CPU-based
NKICA algorithm. The results show that the MIC-based algorithm runs much
faster than the only CPU-based one, an around 10 times speedup is achieved by
MIC-based algorithm, when the three parameters set to different values.
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Fig. 2. Execution time with different parameter values: (a) Components; (b) Data
points; (c) Sampling points.
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4.2 TIMIT Dataset

TIMIT dataset [14] consists of large amount of speech segments of different
speakers. We use it to test our MIC-based algorithm for practical applications,
such as speech separation [15]. Speech segments are all sampled at a rate of
16 kHz.

Figure 3 compares the original speech signals, which used to generate obser-
vation data, and the recovered speech signals by MIC-based NKICA algorithm.
The first row shows the time-domain signals, while the second row shows the
frequency-domain signals. The estimated 1 signal is the corresponding recov-
ery of the source 1, while the estimated 2 corresponds to source 2. The results
demonstrate that MIC-based NKICA algorithm can perform speech separation
effectively.

Figure 4 shows the results of the two experiment sets on TIMIT dataset. We
also compare the execution time between the MIC-based and only CPU-based
NKICA algorithm. The results show that the performance of MIC-based algo-
rithm is also much better than the only CPU-based one on TIMIT dataset.
An around 10 times speedup is achieved by MIC-based algorithm, when the
three parameters set to different values. The best speedup is 12.3, when m set
to 100, M set to 40, and N set to 50000. In the two experiments, the MIC
architecture shows its great effectiveness in performing NKICA algorithm. The
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Fig. 3. Decomposition result on TIMIT dataset by NKICA. The first row shows the
time-domain signals of original speech and recovered speech, and the second row shows
the frequency-domain signals of original speech and recovered speech
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Accelerating Nyström Kernel Independent Component Analysis 175

intensive matrix manipulations are offloaded to coprocessor and performed par-
allel, which makes the NKICA algorithm has a much shorter execution time
on MIC. In summary, MIC implementation is a very effective way to accelerate
NKICA algorithm.

5 Conclusion

The NKICA algorithm reduces the computational complexity of the KICA algo-
rithm effectively. However, with the scale of the dataset increases, the compu-
tational complexity of NKICA algorithm grows quickly. This paper presented
a MIC-based implementation of the NKICA algorithm. We analyzed the par-
allelism of the NKICA algorithm, and parallelized the critical segments by
offloaded the intensive computations to MIC. Our implementation took advan-
tage of the OPENMP and MKL technology, and made best use of the par-
allelism provided by MIC. The experiment results on simulated dataset and
TIMIT dataset show that MIC-based NKICA algorithm costs much less exe-
cution time, When comparing with the only CPU-based one. The speedup is
around 10 on average, and 12.3 at best. The experiment results confirmed that
MIC-architecture is suitable for accelerating NKICA algorithm.
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