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Abstract. Monaural speech separation is a challenging problem in
practical audio analysis applications. Non-negative matrix factorization
(NMF) is one of the most effective methods to solve this problem because
it can learn meaningful features from a speech dataset in a supervised
manner. Recently, a semi-supervised method, i.e., transductive NMF
(TNMF), has shown great power to separate speeches from different
individuals by incorporating both training and testing data in learning
the dictionary. However, both NMF-based and TNMF-based monau-
ral speech separation approaches have high computational complexity,
and prohibit them from real-time processing. In this paper, we imple-
ment TNMF-based monaural speech separation on many integrated core
(MIC) architecture to meet the requirement of real-time speech separa-
tion. This approach conducts parallelism based on the OpenMP technol-
ogy, and performs the computing intensitive matrix manipulations on a
MIC coprocessor. The experimental results confirm the efficiency of our
implementation of monaural speech separation on MIC architecture.

Keywords: Monaural speech separation · Intel many integrated core
architecture · Non-negative matrix factorization

1 Introduction

Speech separation plays an important role in many practical applications, e.g.,
noise reduction and speech recognition [1,2], singing voice separation [3,4], etc.
Monaural speech separation aims to recover the source speeches from a single
channel signal, which makes this problem even more challengeable. Traditional
methods include non-negative matrix factorization (NMF) [5–7] and deep neural
network (DNN) [8,9].

NMF is a linear model with non-negativity constraint incorporated. Before
applying NMF to speech separation problem, the signals should be transformed
to frequency-domain. The operation is based on the matrix constructed with
modulus of the frequency-domain speech signals. In the training stage, NMF
based speech separation first learns phonemic features on the training speech
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signals, and these phonemic features take the form of spectral bases. Then in
the testing stage, after learning the test mixture speech signals, the speeches of
each speaker can be recovered according to the spectral bases. Another widely
used technique to speech separation is DNN, which is a nonlinear model. DNN
constructs deep neural networks to learn features of speech signals and has shown
its efficiency in many practical tasks [10–12].

In particular, both NMF-based methods and DNN-based methods improve
the separation accuracy significantly, but the computational complexities
increases quickly with the increase of data. So it is difficult to apply these meth-
ods to real-time speech separation, as real-time speech separation requires the
feedback time as short as possible. One useful method to solve this problem is
to make use of accelerators to implement these algorithms. Nowadays, various
accelerators developed quickly, including Intel MIC coprocessor [13,14] and gen-
eral purpose computation on graphics processing units (GPGPU) [15,16], etc.
With the help of accelerators, high parallel computations can be accelerated
easily. Previous work on accelerating NMF include using graphics processing
units (GPUs) to accelerate NMF [17,18], and parallel version of NMF on mul-
ticore architecture [19]. In order to meet the requirement of real-time speech
separation applications, this paper proposes to implement the most effective
monaural speech separation method called transductive NMF (TNMF) on Intel
Many Integrated Core (MIC) architecture to reduce the execution time. As tra-
ditional NMF methods cannot utilize the training data when learning features,
Guan et al. [20] proposed a semi-supervised variation of NMF, i.e., TNMF, to
perform monaural speech separation. The MIC-based algorithm greatly acceler-
ates the TNMF-based monaural speech separation with the help of Intel MIC
coprocessor. Experiments on TIMIT dataset confirm its efficiency.

The remainder of the paper is organized as follows. Section 2 introduces
related work, including speech separation with NMF and the Intel Many Inte-
grated Core architecture. Section 3 introduces how to use MIC to accelerate NMF
based monaural speech separation and Sect. 4 shows the experimental results. In
Sect. 5, we conclude the paper.

2 Background

2.1 Monaural Speech Separation with NMF

Assuming V ∈ Rm×n
+ is a non-negative matrix, NMF aims to find non-negative

approximation of V , i.e.,
V ≈ W × H. (1)

where W ∈ Rm×r
+ and H ∈ Rr×n

+ , and r is usually smaller than m and n.
In particular, W and H can be optimized by solving the following problem:

min
W≥0,H≥0

||V − WH||2F , (2)

where ||·||F denotes the Frobenius norm. The objective function of this optimiza-
tion problem measures the divergence between V and WH. As NMF incorporates
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non-negativity constraints over factor matrices, when applied to speech separa-
tion tasks, the original speech signals should be transformed from time-domain to
frequency-domain, as time-domain signals has negative entries. The transforma-
tion can be implemented by using short-time Fourier transform (STFT).

Assuming we have p speakers and their corresponding speeches, let Vk ∈
Rm×nk

+ denote the matrix constructed with modulus of frequency-domain signal
of k-th speaker. In order to conduct speech separation, we use NMF to factorize
each Vk independently in the training stage, i.e.,

Vk ≈ WkHk, (3)

where Wk ∈ Rm×r
+ denotes the learned phonemic features of k-th speaker,

namely spectral bases, and Hk ∈ Rr×n
+ denotes the activations corresponding to

Wk. Let V m ∈ Rm×n
+ denotes the matrix constructed with modulus of frequency-

domain mixture signals.. In testing stage, we should decompose V m with NMF
as follows:

V m ≈ WmHm, (4)

where Wm = [W1, · · · ,Wp] is constructed by the spectral bases of corresponding
speakers, Hm ∈ Rrp×n

+ denotes the obtained activations. To separate the mixture
speech signal, we should decompose Hm into Hm = [HmT

1 , · · · ,HmT
p ]T according

to Wm. So the separated speech is

V m
k ≈ WkH

m
k . (5)

However, the NMF algorithms based on objective function (2) cannot utilize
mixture signals in the training stage. To solve this problem and to improve the
accuracy, a semi-supervised algorithm called transductive non-negative matrix
factorization (TNMF) was presented [20]. The objective function of TNMF is

min
∀1≤k≤p,Wk≥0,Hk≥0,Hm≥0

{
p∑

k=1

||Vk − WkHk||2F + λ||V m − WmHm||2F }. (6)

where λ is the trade-off parameter to balance the influence of two parts of the
objective function.

The TNMF model can be solved by using the multiplicative update rule
(MUR) [20,21] as follows:

Wk ← Wk · VkH
T
k + λV mHmT

k

WkHkHT
k + λWmHmHmT

k

, (7)

Hk ← Hk · WT
k Vk

WT
k WkHk

, (8)

Hm ← Hm · WmTV m

WmTWmHm
. (9)

Based on the obtained solution, i.e., Wk, Hk and Hm, we can easily separate
the mixture speech according to [20].
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2.2 Intel Many Integrated Core Architecture

The Intel many integrated core (MIC) architecture aims to accelerate highly
parallel and computationally intensive programs. The Intel Xeon Phi coprocessor
based on the Intel MIC architecture consists of 61 cores. Each core has two
level caches, includes a 32 KB L1 data cache and L1 instruction cache, and
a 512 KB private L2 cache. And the Intel Xeon phi coprocessor also has a
512 bits vector processor unit (VPU) with Single Instruction Multiple Data
(SIMD) architecture [22]. An important advantage of Intel MIC architecture is
its compatibility with original programs, which makes it easy for developers to
accelerate their programs. The Intel coprocessor is supported by a variety of
numerous libraries, compilers and tuning tools, etc.

To utilize the Intel Xeon Phi coprocessor, we have both the offload mode
and the native mode. The machine executes main program on the processor and
offloads the selected sections to coprocessor in offload mode. The program is
executed in both processor and coprocessor locally in native mode. The offload
mode can further be divided into two modes, namely pragma offload mode and
shared virtual memory model mode.

3 Parallel TNMF Algorithm for MIC Architecture

This paper pays attention to the TNMF-based monaural speech separation algo-
rithm. To accelerate the TNMF-based algorithm, the main work is to parallel
the matrix manipulation in Eqs. (7) to (9). In practical, we use Intel math kernel
library (MKL) [24] to perform the matrix manipulation. MKL has rich functions
and can compute the operations with high-efficiency.

We use OpenMP technology to perform the parallel operations on multicores.
The data needed in the algorithm are constructed as matrix, so we can utilize
the computational ability of coprocessor’s VPU. Algorithm 1 summarizes the
MIC-based monaural speech separation algorithm.

Algorithm 1. MIC-based monaural speech separation algorithm
Input : Training speech signals S1 and S2,

Testing mixture speech signal Sm

Output: Recovered speech signals Sm
1 and Sm

2

1 Transform the original speech signals from time-domain to frequency-domain,
and get the signals’ modulus:V1,V2,V

m

2 Offload V1, V2, V
m from CPU to coprocessor

3 Update Wk, Hk and Hm until converge with TNMF algorithm’s update rules
4 Offload Wk, Hk and Hm from coprocessor to CPU
5 Compute the recovered signals: V m

k ≈ WkH
m
k

6 Recover the signals to time-domain speech signals, obtain Sm
1 and Sm

2 .

The input of this algorithm is speech signals of training speeches and test-
ing mixture speech. The first step of the algorithm is to transform the signals
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from time-domain to frequency-domain by STFT. Then we can get the modulus
of transformed signals, as V1, V2 and V m. To accelerate the computation, we
offload the matrices to coprocessor, and update them in coprocessor. MKL has
two offload modes, including automatic and compiler assisted. We use compiler
assisted mode here to offload the data to coprocessor automatically. When the
update stage finished, the obtained matrice Wk, Hk and Hm will be offloaded to
CPU. The magnitude spectrogram of each recovered speech can be obtained by
V m
k ≈ WkH

m
k . Then we can easily get the time-domain signals of the recovered

signals.

4 Experiments

To verify the performance of the accelerated algorithm, we compare the execu-
tion time between MIC-based monaural speech separation algorithm and orig-
inal non-accelerated one. The dataset utilized in this experiment is the TIMIT
dataset [23]. We randomly choose some speech segments from two speakers.
The testing speech signal is generated by summing two segments from different
speakers. Another two segments from the corresponding two speakers are chosen
as the training data. The training speech segments is about 23 s long and the
testing speech segments is about 3 s long. These speech segments are all sampled
at a rate of 16 kHz. In experiments, the FFT size in all examples is set to 1024,
the trade-off parameter λ is set to 0.1. All the experiment results are averages
of 10 replications.

Figure 1 gives the original speech signals, which generate the testing speech
segments, and the recovered speech signals by MIC-based monaural speech sepa-
ration. The first row shows the time-domain signals, while the second row shows
the frequency-domain signals. In particular, column (a) and column (c) repre-
sent the same speech signal while column (b) and column (c) represent the same
speech signal. The original speech signals are listed in column (a) and (b) while
the recovered speech signals are listed in column (c) and (d).

To verify the computational efficiency of MIC-based algorithm and the orig-
inal non-accelerated one, we compare the execution time between the two algo-
rithms in different parameters. In experiments, two parameters have significant
influence on execution time, which are spectral bases number and iteration num-
ber. When spectral bases number increases, we can learn the features of speech
signals more accurately, and when the iteration number increases, the decom-
position result will be more accurate. Meanwhile, the computational complexity
increases along with the increase of the two parameters. We set the spectral
bases numbers and iteration number to different values respectively, and record
the execution time of MIC-based algorithm and original algorithm. In MIC-based
algorithm, the thread number is set to 8. In experiments, when the spectral bases
number was set to different values, the iteration number is set to 1000. When
the iteration number was set to different values, the spectral bases number is set
to 120. Figure 2 presents the results.

It is obvious that MIC-based algorithm costs much less execution time. And
more importantly, when the computational complexity increases, the execution
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Fig. 1. The top and bottom rows represent time-domain and frequency-domain signals.
Column (a) and (b) represent original signals, column (c) and (d) represent recovered
signals. Columns (a) and (c) represent the same speech signals while column (b) and
(d) represent the same speech signals.
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Fig. 2. Execution time with different parameter values.

time of MIC-based algorithm increases more slowly compared with the original
non-accelerated algorithm.

Then, we set the thread number from 2 to 16 to test the influence of multi-
thread parallelization on MIC-based algorithm. The spectral bases number is set
to 120 while the iteration number is set to 1000. Table 1 shows the results.

Table 1. Execution time with different thread number

Thread number 2 4 8 16

MIC-based (Sec) 6.337 3.477 2.857 3.044

With the increase of thread number, the execution time of MIC-based algo-
rithm has a trend of decrease. However, as the thread number is set to 16, it
has a longer execution time than the thread number is set to 8. In practical, it
is important to choose the correct thread number to get the best performance
according to different situations.
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In experiments, the MIC architecture shows its great effectiveness in NMF-
based monaural speech separation. The intensitive matrix manipulations are
offloaded to coprocessor and performed parallel, which makes the MIC-based
monaural speech separation has a much shorter execution time than original
non-accelerated algorithm. The thread number should also be chosen correctly
to get a better performance. In summary, MIC-based monaural speech separation
is more suitable for real-time speech separation applications.

5 Conclusion

This paper presented a MIC-based monaural speech separation. This algorithm
is a parallel version of TNMF-based monaural speech separation algorithm.
In practical, MIC architecture shows its power on accelerating highly parallel
workloads. To verify the effectiveness of the MIC-based algorithm, we conduct
experiments on TIMIT dataset to separate mixture speech signals. We com-
pare the execution time of MIC-based algorithm and original non-accelerated
algorithm under different conditions. The experiment results confirm that MIC-
based monaural speech separation has much less execution time than original
non-accelerated algorithm, so it is more suitable for real-time speech separation
applications.
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