
Single/Double Precision Floating-Point
Division and Square Root Unit
Based on SRT-8 Algorithm

Yuanxi Peng, Tingting He, Yuanwu Lei(&), and Baozhou Zhu

College of Computer, National University of Defense Technology,
Changsha 410073, China

yuanwulei@nudt.edu.cn

Abstract. To meet the precision requirement of different applications and
reduce latency of operation for low precision, a unified structure for IEEE-754
double-precision/SIMD single-precision floating-point division and square root
operation based on SRT-8 algorithm was introduced. Special instructions were
designed and independent mantissa computing unit and normalization unit are
implemented. Moreover, parallel adders and QDS structure was adopted to hide
the latency of look-up table, generating fast addend was used to decrease critical
path, and “On-the-fly” conversion was employed for saving area-cost. Experi-
mental results show that our proposed design can achieve low latency and low
hardware overhead.

Keywords: Single/double precision � SRT-8 � Division � Square root � DSP

1 Introduction

Modern applications have a wide range use of floating-point division and square root
operations [1], however their precision requirement is different. For example, scientific
computation requires as high as possible operational precision, while some applica-
tions, such as grayscale image processing, require lower precision computing. So, this
paper researches a structure easy to implement IEEE-754 single/double precision
floating-point division and square root, to satisfy the precision requirement of different
applications.

Many algorithms [2] are presented to implement division and square root, which
could be divided into two categories. The first category is based on multiplications,
such as Newton algorithm and Goldschmidt algorithm [3], has the character of fast
convergence, but their hardware structures are complicated. The other category, such as
SRT [4–7], is based on addition and subtraction, and its structure is simple and easy to
round with linear convergence. It’s more suitable to design of flexible precision than
these based on multiplication.

This work is supported by the Aerospace Science Foundation of China (No. 2013ZC88003), and the
Natural Science Foundation of China (No. 61402499).

© Springer Nature Singapore Pte Ltd. 2016
W. Xu et al. (Eds.): NCCET 2016, CCIS 666, pp. 3–14, 2016.
DOI: 10.1007/978-981-10-3159-5_1

In order to improve operation efficiency of SRT algorithm, many researchers have
done many related works. In order to reduce hardware resource, [8, 9] integrated
division and square root into a unit according to their similarity of implementation by
reusing, but the latency of square root is obviously longer than division so that iteration
frequency is low [10, 11] adopted redundant digits to express operands to eliminate the
latency of addition carry, and used minimum redundant digit set to simplify generating
remainder. Because the larger the redundant digit set is, the more operations are needed
for generating remainder.

Obviously, there are still many challenges to SRT algorithm in the tradeoff between
performance and consumption. To get a higher efficient design, this work proposed
several methods. The advantages of the proposed design are as following:

(1) Independent mantissa computing and normalization structure and splitting itera-
tive instructions were adopted to implement double-precision or SIMD (single
instruction multiple data) single-precision floating-point operation. Splitting iter-
ative instructions were designed for operating lower precisions cost less latency.

(2) Using simpler logic to implement quotient conversion on-the-fly to minimize
additional required hardware.

(3) In division and square root iteration, their addend is parallel directly generating
instead of computing step by step to reduce latency and improve frequency.

2 Background

SRT is a digit-recurrence algorithm to calculate division and square root. Comparing
with the traditional method to compute division and square root, SRT algorithm
ensures more quotient digits by the function of quotient digit selection each
digit-recurrence. Traditional digit-recurrence radix is 2, 1 bit quotient digit is produced
each iteration. This work researched SRT algorithm with radix 8(SRT-8), and 3-bit
quotient digits are produced at each iteration.

The operation processing is similar for division and square root in SRT-8 algo-
rithm. Equation (1) is consolidated to iteration for division and square root.

W ½jþ 1� ¼ 8�W ½j� þF½j�: ð1Þ

In Eq. (1), W[j] denotes the remainder after jth iteration, and F[j] is the addend for
iteration. As for division, F[j] equals to �d � qjþ 1 where d is divisor, and qjþ 1 is the
quotient digit and selected according to W[j] and divisor. The division iterative can be
written as Eq. (2):

W ½jþ 1� ¼ 8�W ½j� � d � qjþ 1: ð2Þ

For square root, F[j] equals to �2Q½j�qjþ 1 � q2jþ 18
�ðjþ 1Þ, where Q[j] is the quo-

tient after jth iteration, and qjþ 1 is the quotient digits and selected according to W

[j] and Q½j� ¼ Pk
i¼1

qi8�i. The square root iterative can be written as Eq. (3).

4 Y. Peng et al.

W ½jþ 1� ¼ 8�W ½j� � 2Q½j�qjþ 1 � q2jþ 18
�ðjþ 1Þ: ð3Þ

The division or square root result can be reach to target precision by sequential
addition and shifting.

3 Structure Supporting Single/Double Precision Operation

In this section, the structure of double/SIMD single precision floating-point unit for
division and square root based on SRT-8 algorithm is proposed. Special instructions
and novel scheduling process were designed to implement division and square root
operation.

3.1 Structure of Independent Mantissa Computation and Normalization

Because of the similarities in the digit-recurrence algorithm, division and square root
can be integrated into the same unit. The structures of independent mantissa computing
unit and normalization unit are designed for separating division or square root mantissa
operation and normalization, as shown in Fig. 1. The independent structure is easy to
execute flexible precision floating-point operation joined with corresponding splitting
iterative instructions scheduling. Its operation process is sending the operands to
mantissa computing unit for computing mantissa quotient or square root firstly, then,
sending source operands and mantissa operation result to normalization unit for final
processing. Double/SIMD single precision operation is implemented by changing times
of instructions scheduling.

Each iteration of division or square root can be completed within one cycle for
mantissa computing unit. Its iteration begins with SRT-8 core operation, then, storing
the quotient and residue result, and according to the result preparing data and latching
data for the next iteration. The data prepared has two different cases due to whether it is
the first iteration. For the first one, the iteration data is obtained from source operands,
otherwise, the iteration data is obtained from the last iteration results.

To enhance instruction level parallel, the proposed unit supports SIMD operation
by two single-precision data path as show in Fig. 2. Two quotient digit selection
(QDS) modules are set in mantissa computing unit. When operand’s format is
double-precision floating-point, QDS(H) will work, otherwise, the operand’s format is
double single-precision, QDS(H) and QDS(L) will work at same time corresponding to
high-order single-precision operand and low-order single-precision operand.
Double-precision format data and double single-precision format data adopted same 57
bits data path. Normalization unit adopted double path structure supporting
double-precision and single-precision format floating-point operations.

Single/Double Precision Floating-Point Division 5

3.2 Splitting Iteration Instructions

According to IEEE-754 floating-point standard, the mantissas of single-precision and
double-precision floating-point are 24 bits and 53 bits, respectively. The proposed
mantissa computing unit based on SRT-8 algorithm generates 3 bits quotient digits for
each iteration. Then, 8 iterations and 18 iterations are needed for single-precision
operation and double-precision operation, respectively. However, some operations
need lower precision, they can be processed with less iterations.

Splitting iteration instructions are easy to achieve flexible precision floating-point
division and square root operations through different times of execution. In this section,

Fig. 1. Structures of independent mantissa computing unit and normalization unit

Fig. 2. SIMD data path for single-precision operation

6 Y. Peng et al.

7 cycles for double precision and 4 cycle for single precision division and square root
splitting iteration instructions were proposed. They can support different precision
floating-point operations by multiple and combined scheduling instructions.

We designed SRT-8 instructions which were instructions (FSRTDD and FSRTDS)
for supporting division SRT iteration and instructions (FSRTRD and FSRTRS) for
supporting square root SRT-8 iteration. At the same time, normalization instructions
(FNORMD and FNORMS) are designed to final normalization processing, which
executes one cycle.

The double-precision SRT-8 instructions FSRTDD and FSRTRD designed support
six iterations for division and square root, and 18 bits quotient digits are produced each
scheduling instruction, while the SIMD single-precision SRT-8 instructions FSRTDS
and FSRTRS designed support three iterations for division and square root, and 9 bits
quotient digits are produced each scheduling instruction. How many times are needed
to schedule depend on target operation precision. Once the enough precision result is
obtained, the source operands and the mantissa result will be sent to normalization unit
and operated by the normalization instruction corresponding to target precision data
format. When floating-point division or square root is executed, the SRT-8 instruction
need be scheduled three times for single precision or double precision. If operation is
lower precision, flexible precision result matching single or double FP format can be
achieved by changing instruction executing times.

Because of each instruction scheduling supports six or three iterations, the inter-
mediate result need be stored in appointed register files for the next scheduling, which
includes partial quotient, residue and some scheduling information. In the first
scheduling, its source operands are dividend and divisor, while its source operands are
residue, divisor and the third operand for other scheduling. The third operand comes
from destination operand stored in the last scheduling, which is composed of partial
quotient digits and scheduling times.

The following displayed is the scheduling process for two kinds of precision
division. Because of the scheduling process of instruction FSRTRD and FSRTRS for
square root are similar to the division instruction, its description is omitted (Tables 1
and 2).

Table 1. Instruction scheduling of single-
precision division

Cycle Instruction

1 FSRTDS R1, R2, R3, R5:R4;
2–4 SNOP;
5 FSRTDS R5, R2, R4, R7:R6;
6–8 SNOP;
9 FSRTDS R7, R2, R6, R9:R8;
10–12 SNOP;
13 FNORMS R1, R2, R9, R10;

Table 2. Instruction scheduling of double-
precision division

Cycle Instruction

1 FSRTDD R1, R2, R3, R5:R4;
2–7 SNOP;
8 FSRTDD R5, R2, R4, R7:R6;
9–14 SNOP;
15 FSRTDD R7, R2, R6, R9:R8;
16–21 SNOP;
22 FNORMD R1, R2, R9, R10;

Single/Double Precision Floating-Point Division 7

The instruction FSRTRD and FSRTRS need three source operands. In the first
scheduling for division, source operand 1 is dividend, source operand 2 is divisor, and
source operand 3 is zero. In the follow scheduling, source operand 1 is remainder,
source operand 2 is still divisor, and source operand 3 is composed of quotient digits
and recording of iteration scheduling. At the same time, source operand 1 and source
operand 3 are destination operands from last scheduling. The instructions FNORMD
and FNORMS are used for normalization. The instruction SNOP inserted is used to
wait for iteration processing.

4 Implementation of Unified Unit for Division and Square
Root

In this section, the implementation of mantissa computing unit is introduced based on
SRT-8 algorithm.

4.1 Quotient Digit Selection

Quotient Digit Selection (QDS) is significant part of SRT algorithm. The leading digits
of residual and divisor are as inputs for the QDS function, and the quotient digits are
produced corresponding to current iteration.

For constructing the QDS function, some issues need to be solved, including by the
following:

1. The range area of quotient digit selection that is quotient set;
2. How many bits of remainder and divisor the input of the function;
3. How to map quotient from remainder joined on divisor;

A symmetrical redundancy quotient set is used for high speed operation. That is:

q ¼ k 2 f�a; �aþ 1 � � � ;�1; 0; 1; � � � ; a� 1; ag:

The set determines the redundancy factor q, and the factor q is defined by q ¼ a
8�1.

And 1[q[1
2 so, parameter ‘a’ belongs to (5, 6, 7) for SRT-8.

Pmin ¼ Lk ¼ ð�qþ kÞd
Pmax ¼ Uk ¼ ðqþ kÞd

�
: ð4Þ

In Eq. (4), Lk and Uk are the low bound and the up bound of remainder when
quotient is k, and Uk�1 [Lk. f�5; 5g is selected as the range area of quotient.

According to Eq. (4) and the confirmed quotient set, the range of remainder cor-
responding to each quotient can be obtained, as shown in Table 3. Among the overlap
area, the larger quotient digit is selected. Figure 4 is P-D diagram for digit selection.
The largest value of remainder is 40

7 d, so the bits of input W ½j� are larger 3 than input
d at least for meeting the range of remainder.

8 Y. Peng et al.

The divisor d 2 ½1; 2Þ is divided into smaller interval ½di; diþ 1Þ whose length is 2�d,
and d1 ¼ 1=2, diþ 1 ¼ di þ 2�d. Then, the leading d bits of divisor are used to represent
the approximation of divisor. When the internal is in ½di; diþ 1Þ and qjþ 1 equals to k, the
residual belongs to mkðiÞ� 8Qj\mkþ 1ðiÞ, mk needs meet the two constrains as
following:

mkðiÞ�maxfLk dið Þ; Lk diþ 1ð Þg
mkðiÞ�minfUk�1 dið Þ;Uk�1 diþ 1ð Þg

�

The minimum length of the selection constant is arranged C bits, then
mkðiÞ ¼ AkðiÞ2�C, AkðiÞ is integer.

Lk di þ 2�d
� ��AkðiÞ2�C �Uk�1ðdiÞ;Q½j� � 0

LkðdiÞ�AkðiÞ2�C �Uk�1 di þ 2�d
� �

;Q½j�\0

(
:

The worst-case k = 5, d = 1 it derives

d� log2
a� q

2q� 1ð Þdmin
¼ log2 10d e ¼ 4:

The minimum value of d is 4 amount to input d need 4 bits. According the above
analysis, the input W[j] is larger 3 than d, so the minimum value of C is 7.

Square root and division can use the same quotient selection, which is proofed in
[4] in detail.

4.2 Parallel SRT-8 Iteration Unit

As shown in Fig. 3, the iteration unit includes five adders corresponding to five
absolutes of possible quotient in quotient digit set, and a quotient digit selection
(QDS) modules for generating quotient digits each iteration. Addition and QDS can be
parallel execution, then, the next residue is selected from five addition results depend
on the quotient digits selected.

4.3 Parallel Generating Addend F

While QDS function is working, all possible cases for addend F is generated con-
currently, in order to hide the latency of quotient selection, and the all F are sent to five
parallel adders.

Table 3. W[j] bounds/7

Quotient q 0 1 2 3 4 5

Lk (d) −5d 2d 9d 16d 23d 30d
Uk (d) 5d 12d 19d 26d 33d 40d

Single/Double Precision Floating-Point Division 9

In division, the input of adder F is simple. The F ¼ qd includes five cases: d, 2d,
3d, 4d and 5d. All of them, d is divisor. 2d and 4d can be obtained by d shifted. 3d is
the sum of d and 2d. 5d is the sum d and 4d. The F sets generated are sent to five adders
to operate W ½jþ 1� ¼ W ½j� � 8� F½j� for producing next remainder.

In square root, Q and QM representing positive quotient and negative quotient, the
expression of F[j] is converted to the following:

F½j� ¼ �2Q½j�qjþ 1 � q2jþ 18
�ðjþ 1Þ; qjþ 1 � 0

2QM½j� qjþ 1
�� ��þ 2� 8� jqjþ 1j

� �jqjþ 1j8�ðjþ 1Þ; qjþ 1\0

(

The generating process of F is complex from function computing step by step, but
also the process needs longer latency. In order to reduce the latency for generating F,
the design adopted direct look-up table to produce F corresponding to each quotient
digits. The string ‘a..aa’ and ‘b..bb’ replace the value of Q[j] and QM[j] respectively.
Then, the updates of F are as shown in Table 4.

As shown in Fig. 4, 10 possible F sets are generated corresponding to 10 different
quotient digits simultaneously based on values assigned in advance. The right F are
chosen by the logic of multi-Choice, Count_iteration (the signal for recording itera-
tions), Q[j], QM[j] as input index.

Fig. 3. SRT-8 iteration unit

Table 4. Generating F[j] directly

qjþ 1 Expression F[j] item

1 −2Q[j] − 8−(j+1) a..aa0001
−1 2QM[j] + 15 * 8−(j+1) b..bb1111
2 −4Q[j] – 4 * 8−(j+1) a..a00100
−2 4QM[j] + 12 * 8−(j+1) b..b11000
3 −2Q[j] − 4Q[j] – 9 * 8−(j+1) a..aa000110 + a..aa0000
−3 2QM[j] + 4QM[j] + 39 * 8−(j+1) b..bb0101001 + b..bb0000
… … …

10 Y. Peng et al.

4.4 Quotient Conversion “On-the-Fly”

In SRT-8 algorithm, the quotient is typically collected in a representation where the
digits can take on both positive and negative values. Thus, at some point, all of the
values must be combined and converted into a standard representation. This requires a
full-width addition for the conversion, which can be a slow operation. Techniques exist
for performing this conversion “on-the-fly”, therefore the extra cycle may not be
needed [13]. But if this scheme is complex, it will add more required hardware. Then,
this conversion “on-the-fly” may bring the problem that the penalty for requiring the
additional cycle is obviously much larger than the benefit from it. Focused on the issue,
we proposed a conversion “on-the-fly” with little additional required hardware for
controlling logic. The follow equations are the definition of positive quotient and
negative quotient respectively.

Q½j� ¼
Xk
i¼1

qir�i and QM½j� ¼ Q½j� � r�j

As shown in Fig. 5, the implementation in [12] of the algorithm uses two registers
to store Q[j] and QM[j].

These registers can be shifted three digits left with insertion in the least significant
position depend on qjþ 1. They also require parallel loading to replace Q[j] with QM
[j + 1] and vice versa.

Fig. 4. Parallel generating addend F

Fig. 5. Traditional quotient conversion on-the-fly

Single/Double Precision Floating-Point Division 11

The proposed conversion only uses one register to complete on the fly. As shown in
Fig. 6, register Q was set to restore quotient and register E_QMin to restore negative
quotient digits corresponding to each qj. Neg q ¼ 7� qj for q\0; Neg q ¼ qj�1 for
q[0. The next quotient digits are restored in register Q by shifting right. If positive
quotient is selected, the quotient digital qjþ 1 is restored directly, otherwise, the last
restored qj will be replaced the last restored E_QMin, and q’s complement will be
restored as the updating quotient digits.

5 Experiments

We have implemented the proposed single/double precision floating-point division and
square root unit and instructions on X-DSP. All modules were encoded in Verilog and
synthesized with 45 nm technology library in typical conditions (1 V, 25 °C), and
clock cycle was set as 450 ps. At the same time, the other possible designs were
implemented as comparisons which were iteration unit for division and square root
respectively.

As shown in Table 5, experiment results show that unified unit for division and
square root need only be increased by small area cost upon individual SRT-8 division
or square root units.

The implemented unit is capable of calculating single precision a double precision
floating-point data format division and square root. Table 6 describes cycles and
latency according to different target precision operations need.

Error analyze, the precision of divider was verified by recursion division. The
proposed design and C program respectively operated recursion division using same
data. Then, compare their results. C program was run on Intel processor. The experi-
mental results show the design can obtain the precision of floating-point division same
with Intel processor.

Fig. 6. Quotient conversion on-the-y with simple logic

Table 5. Results from synthesis

Operation unit Area (lm2) Power Critical

Division operation unit 12222.63 10.66 427
Square root operation unit 16039.41 12.48 441
Unified operation unit 18589.36 14.10 446

12 Y. Peng et al.

This paper proposed improved implementation of on-the-fly conversion. The
design without on-the-fly conversion, the design with on-the-fly conversion proposed
by [12] and the design with on-the-fly conversion proposed by above section were
implemented respectively and synthesized in same experimental environment. The
experimental data was shown in Table 7 taking double precision operation as example.

Obviously, the design with on-the-fly conversion cost more area than the design
without on-the-fly conversion, but latency is decreased by the structure for computing.
In addition, our design area-cost is decreased by 6% comparing to the [13]’s design.

In previous works [13–15], generation of F in square root was implemented by
complex computing process. Comparing with directly parallel generating F proposed,
previous design will enlarge the latency of critical path, when division and square root
were implemented in unify hardware structure, because generation of F in square root
need larger latency than division by computing. For analyzing the contribution of
design latency, we implemented design unit with past method of generating F for
comparing. The experimental data is shown that its area is 15839.21 lm2 and is
decreased by 15% comparing proposed design, however, its critical path is 570 ps and
is longer than the proposed design.

6 Conclusions

This work presents the design and implementation of single/double precision
floating-point division and square root unit based on SRT-8 algorithm. Structure of
independent mantissa computing and normalization joined with splitting iteration
instructions are adopted for implementing flexible precision floating-point operation.
With the above mentioned improved and optimized strategies, the design obtained
higher performance than others. Especially for low precision operation, make them cost
less latency.

Table 6. Performance of different target precisions

Data format precision Cycles Latency (ns)

Single precision 9-bit 5 2.25
Single precision 18-bit 9 4.05
Single precision 24-bit 15 6.75
Double precision 18-bit 8 3.60
Double precision 32-bit 15 6.75
Double precision 53-bit 22 9.90

Table 7. Comparison of different structures

Structure Area Power Cycles Latency (ns)

Design without on-the-fly 17925.22 12.64 24 13.50
[13] ‘s design 19707.41 15.39 22 12.60
Our design 18589.36 14.10 22 12.60

Single/Double Precision Floating-Point Division 13

References

1. Oberman, S.F., Flynn, M.J.: Design issues in division and other floating-point operations.
J. IEEE Trans. Comput. 46(2), 154–161 (1997)

2. Inwook, K., Earl, E.S.: A Goldschmidt division method with faster than quadratic
convergence. IEEE Trans. Very Large Scale Integr. Syst. 19(4), 759–763 (2011)

3. Stuart, F.O., Michael, J.F.: Division algorithms and implementations. IEEE Trans. Comput.
46(8), 833–854 (1997)

4. Peter, K.: Digit selection for SRT division and square root. IEEE Trans. Comput. 54(3),
727–739 (2005)

5. Dong, W., Milobs, D.E.: A Radix-16 combined complex division/square root unit with
operand prescaling. IEEE Trans. Comput. 61(9), 1243–1255 (2012)

6. Ingo, R., Tobias, G.N.: Digit-set-interleaved Radix-8 division/square root Kernel for
double-precision floating point. In: 2010 International Symposium on System on Chip
(SoC), Tampere, Finland, pp. 150–153 (2010)

7. Ercegovac, M.D., Lang, T.: Division and Square Root: Digit Recurrence Algorithms and
Implementations. Kluwer Academic Publishers, Norwell (1994)

8. Frandrianto, J.: Algorithm for high-speed shared Radix-8 division and Radix-8 square root.
In: Proceedings of 9th Symposium on Computer Arithmetic, pp. 68–75 (1989)

9. Nannarelli, A.: Radix-16 combined division and square root unit. In: 2011 20th IEEE
Symposium on Computer Arithmetic, pp. 169–176 (2011)

10. Amaricai, A., Boncalo, O.: SRT Radix-2 dividers with (5, 4) redundant representation of
partial remainder. IEEE Trans. 1016–1020 (2013)

11. Issad, M., Anane, M., Bessalah, H.: Influence de la Base sur les Performance de la
Division SRT. Journes Francophones sur Adquation algorithm architecture 91–94 (2005)

12. Ercegovac, M.D., Lang, T., Milo, D.: On-the-fly rounding. IEEE Trans. Comput. 41(12),
1497–1503 (1992)

13. Nannarelli, A.: Radix-16 combined division and square root unit. In: 2011 20th IEEE
Symposium on Computer Arithmetic, Germany, pp. 169–176 (2011)

14. Ingo, R., Noll, T.G.: A Digit-set-interleaved Radix-8 division/square root Kernel for
double-precision floating point. In: 2010 International Symposium on System on Chip
(SoC), Tampere, Finland, pp. 150–153 (2010)

15. Wetter, H., Schwarz, E.M., Haess, J.: The IBM eServer z990 floating-point unit. IBM J. Res.
Dev. 48(3), 311–322 (2004)

14 Y. Peng et al.

	Single/Double Precision Floating-Point Division and Square Root Unit Based on SRT-8 Algorithm
	Abstract
	1 Introduction
	2 Background
	3 Structure Supporting Single/Double Precision Operation
	3.1 Structure of Independent Mantissa Computation and Normalization
	3.2 Splitting Iteration Instructions

	4 Implementation of Unified Unit for Division and Square Root
	4.1 Quotient Digit Selection
	4.2 Parallel SRT-8 Iteration Unit
	4.3 Parallel Generating Addend F
	4.4 Quotient Conversion “On-the-Fly”

	5 Experiments
	6 Conclusions
	References

