
Estimation of Degree of Connectivity
to Predict Quality of Software Design

S.D. Thilothame, M. Mashetty Chitralekha, U.S. Poornima
and V. Suma

Abstract The main goal of Object Oriented Methodology is to deliver software
which is maintainable. Post_Development_Quality_Requirements such as software
maintainability is depending on design quality. Coupling and Cohesion (C&C) are
two design quality factors which are measurable. C&C are influenced by structure
of a class which is a basic unit of Object Oriented design. Defining the class
structure and their relationships measures the design quality which in turn is
indicator for quality requirements such as maintainability, reusability and scala-
bility. This paper explores how different dependency types between classes adds on
to design complexity and hence software quality by proposing a model which
calculates Degree of Connectivity (DC) between the classes and Coupling Index
(CI) of overall software. Thus, it is now possible to infer that design quality not
only depends on class structure, but also upon the level of relationships such as
inheritance, aggregation, composition and association present in software.

Keywords Design quality ⋅ Class relationships ⋅ C&C ⋅ Degree of Connec-
tivity (DC) ⋅ Coupling Index (CI) ⋅ Post_Development_Quality_Requirements

1 Introduction

Software Engineering domain provides a platform for programmers and researchers
to develop quality software, tools and process methodologies. Object Oriented
Programming is a popular methodology which facilitates to develop complex
software. Complexity increases due to bad design. Researchers are working on

S.D. Thilothame ⋅ M.M. Chitralekha ⋅ U.S. Poornima (✉) ⋅ V. Suma
Dayananda Sagar College of Engineering, Bangalore, India
e-mail: uspaims@gmail.com

V. Suma
e-mail: sumadsce@gmail.com

U.S. Poornima
Raja Reddy Institute of Technology, Bangalore, India

© Springer Nature Singapore Pte Ltd. 2017
S.C. Satapathy et al. (eds.), Proceedings of the 5th International Conference on Frontiers
in Intelligent Computing: Theory and Applications, Advances in Intelligent Systems
and Computing 516, DOI 10.1007/978-981-10-3156-4_62

587



assessing the design quality either at code level (Post Assessment) or during High
Level Design (Pre Assessment) through UML diagrams. Research has been going
on to measure internal binding between attributes, methods and attributes_methods
[1, 2]. Cohesion reflects such binding at code level, namely Low Level Design
(LLD). Author of [3] formed metric to measure the cohesion at High Level Design
(HLD) using UML diagrams. Many such metrics are proposed and mathematically
validated for both LLD and HLDs.

It is difficult to anticipate the complexity only on strength of internal dependency
in a class. Design complexity also depends on external binding of classes. Class
relationships such as inheritance, aggregation, composition and association have
their own impact on design quality. Each class relationship coins at data and
method level. This work considers (1) Data Binding, when two classes binds each
other through object data, (2) Method Binding, when two classes binds each other
through methods, (3) Data_Method Binding, when two classes binds each other
through both data and method. Further, the work considers that aggregation and
composition relationships proposes Data Binding, Dependency relationship pro-
poses Method Binding and Inheritance proposes Data_Method Binding.

This paper proposes a model to measure the Degree of Connectivity (DC) of
different relationships and their individual contribution to design complexity. The
model then calculates Coupling Index (CI) of overall project which is an indicator
of design complexity during maintenance. This part of the research has used a Java
project with 6 classes and different coupling types to calculate DC and CI.

This paper is organised as below, Sect. 2 is on related work, Sect. 3 proposes a
model, Sect. 4 is about the measuring degree of connectivity using matrix repre-
sentation, Sect. 5 is on calculating Coupling Index and Sect. 6 concludes the paper.

2 Related Work

This section summarises the survey of related work on coupling and cohesion.
Author [4] discusses software coupling approach on Object Oriented depen-

dencies between classes mainly concentrated on types of coupling that are
unavailable until after the completion of implementation. The coupling measure
from source code has the advantage of having quantitative and more specific
measure, but information is not available before implementation.

Author [5] made survey on design pattern. The pattern contains the dynamic and
static behaviour of different types of entities which can be traced as functional
diagram with dependency between them. The coupling factor represents the degree
of relationship which the industries perceive and measures for quality of software
design. The main principle of design of pattern is to reduce the coupling index for
minimizing the complexity of design. The entire quality of software design is thus
based on complexity of relationship between modules.

Author [6] discusses the significance of cohesion and coupling on design quality.
Objects and classes are the entities in solution space and software quality directly

588 S.D. Thilothame et al.



depends on design quality of such logical entities. C&C are the two prime factors in
object oriented design, measuring them can become an indicator to reduce the
complexity. In complicated software, architecture of design required to be flexible
and maintainable.

Author of [7] discussed that there are many number of techniques and tools are
available to perform metric analysis on such code or software. The entire software
modularization is partitioned into three main components (1) Use of API (2) Use of
non API (3) Use of shared variable. This study provides a conceptual and practical
framework for measurement of various factors like polymorphism, inheritance,
coupling and cohesion and depth of inheritance. They used “step-in out” technique
to get their functioning therefore increasing the entire quality of software and
productivity.

Author of [8] discusses that earlier coupling measures consider only the static
coupling but they do not consider dynamic coupling because of polymorphism and
may usually deprecate the software complexity and miscalculate the need for
coding inspection, testing and debugging. The proposed method consists of three
steps such as introspection procedure, post processing and coupling measure.
Finally metrics of coupling are evaluated for dynamic coupling. The development
result represent that propose system will accurately evaluate the metrics of coupling
dynamically. Finally author recommended dynamic coupling evaluation techniques
which contain introspection procedure, including trace events into functions of all
classes and anticipating dynamic behaviour at the time of execution of source code.

Author of [9] suggested the basic metric of coupling for object-oriented systems.
In that metric, they stated CBO (Coupling between Objects) metric as number of
non-inheritance dependent couples with other remaining classes.

Author of [10] states that measure the dynamic coupling at phase of analysis
only. They define that dynamic coupling depends on the frequency with which
classes communicate at runtime. They suggested Dynamic or run time Clustering
Mechanism (DCM) that performs by capturing the circumstances for dynamic
coupling at analysis phase.

Author of [11] recommended a dynamic method to calculate coupling index of
software systems. It gives final result that generally used analysis of the and gives
the partial dynamic behaviour of the system.

3 Algorithmic Representation of Proposed Model

The proposed model works as below.

Step 1: Accepts a Java Project
Step 2: Calculates the DC which is overall connection between classes
Step 3: Calculates types of dependency of individual class
Step 4: Calculates Coupling Index of each relationship
Step 5: Reports severity of coupling using severity index table.

Estimation of Degree of Connectivity to Predict Quality … 589



4 Measuring the Degree of Connectivity Using Matrix
Representation of Coupling

To assess the complexity, it is better to have quantitative information on different
types of connectivity between the classes. Hence, this part of the work dealt with
designing a model which takes a moderate size Java project with 6 classes, namely,
A, B, C, D, E and F. The intension is to get a quantitative measure on different types
on connectivity between the classes and to calculate Coupling Index which is an
indicator for project maintainability. The connectivity is represented in matrix form
to identify the degree of connectivity as in Table 1.

In the above Table 1, the value 0 denotes connectivity present between two
classes and 1 denotes no connectivity. The degree of connectivity is formulated as
below.

Degree of Connectivity ðDCÞ= Number of connectivity
Total Number of Connectivity

×100 ð1Þ

Result: DC for sample project = (13/36) × 100 = 36 %.
The sample project has 36 % of overall connectivity between the classes which

is a first level indicator of representing design complexity for maintenance group.
After finding the degree of connectivity, the model determines which type of

dependency exits between two classes. The dependency between classes can be

Table 1 Matrix representation of coupling

Name of classes A B C D E F

A 0 1 0 1 1 0
B 1 0 1 1 1 1
C 0 0 0 1 1 0
D 1 1 0 0 0 0
E 0 0 1 0 0 0
F 1 0 0 0 0 0

Table 2 Matrix representation of class relationships of a sample project

Name of
classes

A B C D E F

A No dependency Inheritance No dependency Aggregation Association No dependency

B Composition No dependency Inheritance Composition Aggregation Association

C No dependency No dependency No dependency Inheritance Inheritance No dependency

D Inheritance Aggregation No dependency No dependency No dependency No dependency

E No dependency No dependency Aggregation No dependency No dependency No dependency

F Inheritance No dependency No dependency No dependency No dependency No dependency

590 S.D. Thilothame et al.



Data Binding (Aggregation, Composition), Method Binding (Dependency) or Data
_Method Binding (Inheritance) as shown in Table 2.

Table 2 Presents relationships between various classes present in project which
is an input to identify individual class relationships to find CI as in Tables 3 and 4.

Similarly, dependency types are calculated for classes C, D, E and F.

5 Calculating the Coupling Index

After finding types of dependency for each class relationship with each class is
tabularised as in Table 5. This is used to calculate CI of a project.

Hence the CI represents strength of each relationship in a project which can be
calculated using the formula as shown below.

Coupling Index CIð Þ= ∑
number of relation present
total number relations

×100 ð2Þ

Result: The following Table 6 lists CI of each relationship in a sample
project.

Using CI, severity index of each class coupling relationship is calculated as
shown in Table 6. The range of 1–4 is taken to fix the severity of each coupling
type (Table 7).

Using the severity index table, the sensitivity of coupling for the sample is
calculated which shows that Inheritance coupling in a project is extremely coupled,

Table 3 Types of dependency for class A

Name of class Inheritance Aggregation Association Composition

A 1 1 1 0

Table 4 Types of dependency for class B

Name of class Inheritance Aggregation Association Composition

B 1 1 1 1

Table 5 Class with total dependency

Name of classes Inheritance Aggregation Association Composition

A 1 1 1 0
B 1 1 1 2
C 2 0 0 0
D 1 1 0 0
E 0 1 0 0

F 1 0 0 0

Estimation of Degree of Connectivity to Predict Quality … 591



aggregation is tightly coupled and both association and composition are loosely
coupled.

Thus, CI decides the severity of each relationship in software. Depending on CI
value, the software maintainability can be identified as high risk, medium risk and
low risk which mirrors the design complexity.

6 Conclusion

Software Engineering domain invites researchers and programmers to improve
development process, Techniques and Tools to provide quality software. Improving
design quality facilitates Post_Development_Quality_Requirements such as soft-
ware maintainability, reusability at ease. Quality design is achieved through well
defined class in Object Oriented Programming. Much research has been going on
Coupling and Cohesion which are two design quality decisive factors represents
dependency between classes and attributes within a class respectively. This paper
proposes a model to calculate overall Degree of Connectivity (DC) and Coupling
Index (CI) of a project to find the level of complexity which becomes an indicator
for maintainability in future.

Data Binding (Aggregation, Composition), Method Binding (Dependency) or
Data _Method Binding (Inheritance) are major coupling types exists between the
classes. Since Coupling and Cohesion are closed knitted, the other features of
Object Oriented Programming such as dynamic binding, polymorphism in coupling
types would influences the cohesion and vice versa.

Acknowledgments The authors would like to sincerely acknowledge all the industry personnel
for their valuable suggestions, help and guidance in carrying out this part of research. The com-
plete work is undertaken under the framework of Non Disclosure Agreement.

Table 6 CI of each
relationship

Name of relationship Formula CI in percentage (%)

Inheritance 6/14 42.85
Aggregation 4/14 28.57
Association 2/14 14.28
Composition 2/14 14.28

Table 7 Severity index of
each coupling using CI

Coupling
range

Percentage
(%)

Severity of coupling
type

More than 4 40 Extremely coupled
2–3 30 Tightly coupled
1–2 20 Moderately coupled
0–1 10 Loosely coupled

592 S.D. Thilothame et al.



References

1. Al Dallal, Jehad, L.C. Briand, A precise method-method interaction-based cohesion metric for
object-oriented classes. ACM Trans. Softw. Eng. Methodol. (TOSEM) 21(2) (2012)

2. Al Dallal, Jehad, Incorporating transitive relations in low‐level design‐based class cohesion
measurement. Softw.: Pract. Exp. 43(6), 685–704 (2013)

3. Al Dallal, Jehad, L.C. Briand, An object-oriented high-level design-based class cohesion
metric. Inf. Softw. Technol. 52(12), 1346–1361 (2010)

4. J. Offutt, A. Abdurazik, S.R. Schach, Quantitatively measuring object-oriented couplings.
Softw. Qual. J. 16(4), 489–512 (2008)

5. P. Wolfgang, Design patterns for object-oriented software development (Addison-Wesley,
Reading, Mass, 1994)

6. U.S. Poornima, Factors modulating software design quality (2014). arXiv:1402.2374
7. Deepti Gupta, Coupling based structural metrics—an quality assessment of software

modularization. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6) (2013). ISSN: 2277 128X
8. S. Babu, Dr. R.M.S. Parvathi, Development of dynamic coupling measurement of distributed

object oriented software based on trace events. Int. J. Softw. Eng. Appl. (IJSEA) 3(1) (2012)
9. S.R. Chidamber, C.F. Kemerer, Towards a metrics suite for object-oriented design, in

Proceedings of the Conference on Object-Oriented Programming: Systems, Languages and
Applications, (OOPSLA’ 91), SIGPLAN Notices, vol. 26, no. 11 (1991), pp. 197–211

10. H. Paques, L. Delcambre, A mechanism for assessing class interactions using dynamic
coupling during the analysis phase, in Proceedings of XVIII Brazilian Symposium on Software
Engineering—SBES’99, Florianopolis, Santa Catarina, Brasil (1999)

11. E. Schikuta, Dynamic Coupling Metrics (1993)

Estimation of Degree of Connectivity to Predict Quality … 593

http://arxiv.org/abs/1402.2374

	62 Estimation of Degree of Connectivity to Predict Quality of Software Design
	Abstract
	1 Introduction
	2 Related Work
	3 Algorithmic Representation of Proposed Model
	4 Measuring the Degree of Connectivity Using Matrix Representation of Coupling
	5 Calculating the Coupling Index
	6 Conclusion
	Acknowledgments
	References


