
STRIDE Based Analysis of the Chrome
Browser Extensions API

P.K. Akshay Dev and K.P. Jevitha

Abstract Chrome browser extensions have become very popular among the users of
Google Chrome and hence they are used by attackers to perform malicious activities
which lead to loss of user’s sensitive data or damage to the user’s system. In this
study, we have done an analysis on the security of the Chrome extension develop-
ment APIs.We have used the STRIDE approach to identify the possible threats of the
Chrome specific APIs which are used for extension development. The analysis
results show that 23 out of the 63 Chrome specific APIs are having various threats as
per the STRIDE approach. Information disclosure is the threat faced by many APIs
followed by tampering. This threat analysis result can be used as reference for a tool
which can detect whether the extension is malicious or not by deeply analysing the
ways in which the APIs having threats are used in the extension code.

Keywords Chrome extensions ⋅ STRIDE analysis ⋅ Chrome specific APIs ⋅
Malicious extensions

1 Introduction

Google Chrome is the most popular web browser available today and many
extensions are being developed to enhance the features and functionality of the
browser. Extensions are basically small programs developed by browser vendors or
third party developers to improve the functionality of browsers. Due to the wide

P.K. Akshay Dev (✉)
TIFAC CORE in Cyber Security, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Amrita University, Coimbatore, India
e-mail: akshaydev313@gmail.com

K.P. Jevitha
Department of Computer Science and Engineering,
Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham,
Amrita University, Coimbatore, India
e-mail: kp_jevitha@cb.amrita.edu

© Springer Nature Singapore Pte Ltd. 2017
S.C. Satapathy et al. (eds.), Proceedings of the 5th International Conference on Frontiers
in Intelligent Computing: Theory and Applications, Advances in Intelligent Systems
and Computing 516, DOI 10.1007/978-981-10-3156-4_17

169



acceptance of the browser extensions by the users, it has also become the major
target of the attackers [1]. Extensions created by third-party developers may not
have enough security considerations and become vulnerable to attacks. Extensions
once compromised can result in different malicious activities which can affect the
user’s sensitive data and system. Also, malicious extensions are being developed to
attack the user’s system and data. Chrome extensions can have the privilege to
perform many sensitive actions in the browser using the different permissions and
chrome specific APIs available to them. This makes them highly dangerous when
used for malicious purposes.

STRIDE is a threat analysis approach developed by Microsoft for analysing the
possible threats of web applications or components [2]. STRIDE approach can be
used to map the possible threats into six categories namely Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, Elevation of privilege.
Spoofing is impersonating something or someone else. Tampering is malicious
modification of code, data or settings. Repudiation is denial of truth or validity of
something. Information disclosure is exposing information to someone not autho-
rized to see it. Denial of service is denying or degrading service to users. Elevation
of privilege is gaining capabilities without proper authorization [3].

The rest of the paper is organized as follows. Section 2 briefs the related work
done in this area of research. Section 3 describes the security model of the chrome
extensions and Sect. 4 describes the security analysis of the Chrome specific APIs
based on STRIDE. Section 5 explains the statistical results of the analysis and
Sect. 6 concludes the work.

2 Related Work

Different research work has been done in the area of browser extension security
over the past few years. Due to the wide acceptance of extensions by the users of
popular web browsers like Google Chrome and Mozilla Firefox, the security of
those extensions has become a major concern and also gained attention of the
security researchers. An in-depth analysis of the Chrome’s extension security model
was done [1] and they conclude that its vulnerabilities are rooted from the violation
of the principles of least privilege and privilege separation. Using a series of
bot-based attacks, the authors demonstrate that malicious chrome extensions pose
serious threat to Chrome browser. A thorough evaluation of how well the Chrome
extension’s security mechanism defends against the vulnerabilities has been done in
[4] and they found out that developers are not always following the security
mechanisms for developing the extensions which leads to vulnerabilities.
A framework to analyse the security of Chrome extensions has been proposed in
[5]. The framework proposed uses the permission feature of Chrome extensions and
flow of data through the extension’s JavaScript code to detect vulnerabilities and
malicious behaviour of extensions. A systematic review of the different research
work done in the area of browser extension security has been done and the different

170 P.K. Akshay Dev and K.P. Jevitha



security measures that can be taken for browser extension vulnerabilities have been
tabulated in [6].

Various solutions have been proposed to protect the users from different vul-
nerabilities in extensions and from attacks of malicious extensions. A framework
called LvDetector was proposed, which combines static and dynamic program
analysis techniques for automatic detection of information leakage vulnerabilities in
legitimate browser extensions [7]. A dynamic analysis system called Hulk detects
malicious extensions by monitoring the actions and by creating a dynamic envi-
ronment that adapts to the extension’s needs to trigger the intended malicious
behaviour [8]. Researchers from Google analysed the use of Chrome web store by
criminals to spread malicious extensions and came up with a system called
WebEval that broadly identifies malicious extensions [9]. Apolicy enforcer for
Firefox browser called Sentinel, gives the control to the users over the actions of
existing JavaScript extensions and prevents common attacks on the extensions [10].
A system called Expector automatically inspects and identifies extensions that inject
ads and classifies those ads as malicious or benign based on their landing pages
[11].

3 Security Model of Chrome Extensions

The security model of Chrome extensions is based mainly on three principles. They
are least privilege, privilege separation and strong isolation [1]. Extensions will get
only those privileges requested in their manifest. Least privilege does not protect
users from malicious extensions. Instead, least privileges helps if a benign exten-
sion has a vulnerability. If somehow an extension is compromised, the attacker’s
privileges will be limited. For privilege separation, instead of dumping all the
extension code into a single file, developers divide it into two parts, a background
page and a content script [12]. The background page is given the major share of the
extension’s privileges, but it is isolated from direct contact with webpages. On the
other hand, content scripts has direct contact with webpages, but has fewer privi-
leges. For strong isolation, extension’s content script is run in a separate environ-
ment from that of the websites so that websites can’t access content script’s
variables or functions [4].

Google Chrome is concerned with the security of users of Chrome extensions.
As part of Chrome’s continuing security efforts, from 2013, it is no more possible to
silently install extensions into Chrome on windows using the windows registry
mechanism for extension deployment [13]. Also, from 2014, Chrome supports only
installation of extensions that are hosted in the Chrome web store, in the windows
stable and beta channels [13]. But they continue to support local extension installs
in developer mode as well as installs via enterprise policy. In Chrome web store, all
extensions go through an automated review process, but in most cases, will be
published without any further manual review. Chrome web store will block those

STRIDE Based Analysis of the Chrome Browser Extensions API 171



extensions that violate the Chrome’s malware policy. Despite all these security
checks, malicious extensions are being hosted in the Chrome web store.

4 Security Analysis of Chrome Specific APIs

This section explains the security analysis of the Chrome specific APIs based on
STRIDE approach. Google Chrome provides specific APIs for the extensions to
use, in addition to giving access to all the APIs that web pages and apps can use.
They are often called chrome.* APIs [12]. There are a total of 63 chrome.* APIs.
These APIs allow tight integration with the browser. These chrome.* APIs can be
used to perform specific functions with extensions. These APIs have different
method, events and properties which can be used to do specific tasks. For example,
bookmarks API can be used to create, organize and otherwise manipulate book-
marks [14]. These chrome specific APIs are so powerful in terms of the ways they
can be used to access or modify user data or perform different actions in the
browser. There are different ways in which these APIs can be used in extensions for
performing malicious actions. So, we have used the STRIDE threat analysis
approach to analyse the possible threats of using chrome specific APIs.

4.1 STRIDE Threat Analysis

STRIDE approach, developed by Microsoft is used to identify the possible threats
of each Chrome specific API. In the case of extensions, spoofing can occur in the
form of phishing, clickjacking etc. For example, update method of bookmarks API
can be used to update an existing bookmark with a new URL which can be used for
phishing, a form of spoofing. Tampering can occur in the form of XSS, clickjacking
etc. For example, executeScript method of tabs API can be used to perform cross
site scripting attack which is a form of tampering. Repudiation can occur when the
extension hides some activity it is doing. For example, erase method of downloads
API can be used to erase the download information from the browser which can
hide the fact that the extension has downloaded something. Any activity of
extensions that accesses user’s private data can come under information disclosure.
For example, getVisits method of history API can be used to retrieve the history
information from the browser. Any activity of extensions that deny users normal
browsing experience comes under Denial of service. For example, images property
of contentSettings API can be used to block images in webpages. Elevation of
privilege involves doing things without the proper consent of users or doing things
the user thinks the extension can never do. For example, create method of book-
marks API can be used to create new bookmarks and remove method of bookmarks
API can be used to remove existing bookmarks from the web browser.

172 P.K. Akshay Dev and K.P. Jevitha



4.2 Threat Analysis of Chrome Specific APIs

We have used the STRIDE approach to analyse the possible threats of using chrome
specific APIs. Chrome specific APIs have different methods, events and properties
which can be used for different purposes. We have analysed the specific use of
different methods, events and properties of each API and identified the possible
threats based on the STRIDE approach. We have analysed the functionality of
particular methods, events and properties of each API to identify the possible
threats as per STRIDE approach and did not consider the combination of methods
and events or two or more methods to identify the threats. Table 1 lists the STRIDE
analysis results for the Chrome specific APIs that were identified as having threats.

Out of the 40 APIs that are not in the table, 27 were found to have no threats as
per STRIDE approach, 11 APIs works only on the Chrome OS which is not so
popular yet. We have concentrated on the users of Chrome browser. The APIs that
work only on Chrome OS include accessibilityFeatures, documentScan etc. [14].
There are 3 APIs which are called the devTools APIs. They are devtools.in-
spectedWindow, devtools.network and devtools.panels. They work only in the
devTools page which is called only when the devTools window is opened. The rest

Table 1 STRIDE analysis of APIs

Chrome.* APIs Methods/events/properties S T R I D E

bookmarks methods—get, getChildren, getRecent, getTree,
getSubTree & search

✘ ✘ ✘ ✓ ✘ ✘

methods—move, create, remove & removeTree ✘ ✓ ✘ ✘ ✘ ✓

method—update ✓ ✓ ✘ ✘ ✘ ✓

events—onCreated, onRemoved, onChanged,
onMoved, onChildrenReordered, onImportBegan
& onImportEnded

✘ ✘ ✘ ✘ ✘ ✘

browsingData method—settings ✘ ✘ ✘ ✓ ✘ ✘

methods—remove, removeAppcache,
removeCache, removeCookies,
removeDownloads, removeFileSystems,
removeFormData, removeHistory,
removeIndexedDB, removeLocalStorage,
removePluginData, removePasswords &
removeWebSQL

✘ ✓ ✘ ✘ ✘ ✓

contentSettings properties—cookies, images, javascript, location,
plugins, popups, notifications, fullscreen,
mouselock,
unsandboxedPlugins&automaticDownloads

✘ ✓ ✘ ✘ ✓ ✓

cookies methods—get, getAll & getAllCookieStores ✘ ✘ ✘ ✓ ✘ ✘

methods—set, remove ✘ ✓ ✘ ✘ ✘ ✓

event—onChanged ✘ ✘ ✘ ✘ ✘ ✘

(continued)

STRIDE Based Analysis of the Chrome Browser Extensions API 173



Table 1 (continued)

Chrome.* APIs Methods/events/properties S T R I D E

debugger method—attach ✘ ✓ ✘ ✘ ✓ ✓

method—sendCommand ✘ ✓ ✘ ✘ ✘ ✓

methods—detach & getTargets ✘ ✘ ✘ ✘ ✘ ✘

events—onEvent & onDetach ✘ ✘ ✘ ✘ ✘ ✘

desktopCapture method—chooseDesktopMedia ✘ ✘ ✘ ✓ ✘ ✘

method—cancelChooseDesktopMedia ✘ ✘ ✓ ✘ ✘ ✘

downloads methods—download, pause, resume, cancel, open
& removeFile

✘ ✓ ✘ ✘ ✘ ✓

method—search ✘ ✘ ✘ ✓ ✘ ✘

methods—getFileIcon, show &
showDefaultFolder

✘ ✘ ✘ ✘ ✘ ✘

method—erase ✘ ✘ ✓ ✘ ✘ ✓

methods—acceptDanger, drag & setShelfEnabled ✘ ✘ ✘ ✘ ✘ ✘

events—onCreated, onErased, onChanged &
onDeterminingFilename

✘ ✘ ✘ ✘ ✘ ✘

gcm methods—register & unregister ✘ ✘ ✘ ✘ ✘ ✘

method—send ✘ ✘ ✘ ✓ ✘ ✘

events—onMessage, onMessagesDeleted &
onSendError

✘ ✘ ✘ ✘ ✘ ✘

history methods—search & getVisits ✘ ✘ ✘ ✓ ✘ ✓

methods—addUrl, deleteUrl, deleteRange &
deleteAll

✘ ✓ ✘ ✘ ✘ ✓

events—onVisited & onVisitRemoved ✘ ✘ ✘ ✘ ✘ ✘

management methods—getAll, get,
getPermissionWarningsById &
getPermissionWarningsByManifest

✘ ✘ ✘ ✓ ✘ ✘

method—setEnabled ✘ ✓ ✘ ✘ ✓ ✓

methods—uninstall & launchApp ✘ ✓ ✘ ✘ ✘ ✓

methods—getSelf, uninstallSelf,
createAppShortcut, setLaunchType &
generateAppForLink

✘ ✘ ✘ ✘ ✘ ✘

events—onInstalled, onUninstalled, onEnabled &
onDisabled

✘ ✘ ✘ ✘ ✘ ✘

power method—requestKeepAwake ✘ ✓ ✘ ✘ ✘ ✘

method—releaseKeepAwake ✘ ✘ ✘ ✘ ✘ ✘

privacy property—network ✘ ✘ ✘ ✘ ✘ ✘

properties—services & websites ✘ ✓ ✘ ✘ ✘ ✓

proxy property—settings ✘ ✓ ✘ ✘ ✓ ✓

event—onProxyError ✘ ✘ ✘ ✘ ✘ ✘

sessions methods—getRecentlyClosed & getDevices ✘ ✘ ✘ ✓ ✘ ✘

method—restore ✘ ✘ ✘ ✘ ✘ ✘

event—onChanged ✘ ✘ ✘ ✘ ✘ ✘

(continued)

174 P.K. Akshay Dev and K.P. Jevitha



Table 1 (continued)

Chrome.* APIs Methods/events/properties S T R I D E

storage property—sync ✘ ✘ ✘ ✓ ✘ ✘

properties—local & managed ✘ ✘ ✘ ✘ ✘ ✘

event—onChanged ✘ ✘ ✘ ✘ ✘ ✘

system.cpu method—getInfo ✘ ✘ ✘ ✓ ✘ ✘

system.
memory

method—getInfo ✘ ✘ ✘ ✓ ✘ ✘

system.storage method—getInfo ✘ ✘ ✘ ✓ ✘ ✘

methods—ejectDevice & getAvailableCapacity ✘ ✘ ✘ ✘ ✘ ✘

events—onAttached & onDetached ✘ ✘ ✘ ✘ ✘ ✘

tabCapture method—capture ✘ ✘ ✘ ✓ ✘ ✘

method—getCapturedTabs ✘ ✘ ✘ ✘ ✘ ✘

event—onStatusChanged ✘ ✘ ✘ ✘ ✘ ✘

tabs methods—connect, sendRequest, sendMessage,
getSelected, getAllInWindow, create, duplicate,
query, highlight, move, reload & detectLanguage

✘ ✘ ✘ ✘ ✘ ✘

methods—update & remove ✘ ✘ ✘ ✘ ✓ ✓

methods—get, getCurrent & captureVisibleTab ✘ ✘ ✘ ✓ ✘ ✘

method—executeScript ✘ ✓ ✘ ✘ ✘ ✘

method—insertCSS ✓ ✓ ✘ ✘ ✘ ✘

methods—setZoom, getZoom, setZoomSettings
& getZoomSettings

✘ ✘ ✘ ✘ ✘ ✘

events—onCreated & onActivated ✘ ✘ ✘ ✘ ✓ ✘

events—onUpdated, onMoved,
onSelectionChanged, onActiveChanged,
onHighlightChanged, onHighlighted,
onDetached, onAttached, onRemoved,
onReplaced & onZoomChange

✘ ✘ ✘ ✘ ✘ ✘

topSites method—get ✘ ✘ ✘ ✓ ✘ ✘

webRequest method—handlerBehaviorChanged ✘ ✘ ✘ ✘ ✘ ✘

event—onBeforeRequest ✓ ✓ ✘ ✘ ✓ ✓

events—onBeforeSendHeaders &
onHeadersReceived

✘ ✓ ✘ ✘ ✓ ✓

events—onSendHeaders, onAuthRequired,
onResponseStarted, onBeforeRedirect &
onCompleted

✘ ✓ ✘ ✘ ✘ ✓

event—onErrorOccurred ✘ ✘ ✘ ✘ ✘ ✘

windows method—get, getLastFocused & getAll ✘ ✘ ✘ ✓ ✘ ✘

method—getCurrent ✘ ✘ ✘ ✓ ✓ ✘

method—create ✘ ✘ ✘ ✘ ✘ ✘

methods—update & remove ✘ ✓ ✘ ✘ ✘ ✓

event—onCreated ✘ ✘ ✘ ✘ ✓ ✘

events—onRemoved & onFocusChanged ✘ ✘ ✘ ✘ ✘ ✘

STRIDE Based Analysis of the Chrome Browser Extensions API 175



3 APIs are events, extensionTypes and types. events API is basically a namespace
containing common types used by APIs dispatching events to notify something.
extensionTypes API contain type declarations for Chrome extensions and types API
contains type declarations for Chrome.

5 Results

This section describes the statistical results obtained from our threat analysis of the
Chrome specific APIs based on STRIDE. Chrome provides JavaScript APIs
specifically for developing extensions. These APIs are very powerful in terms of the
activities they can perform. There are a total of 63 Chrome specific APIs that we
have analysed using the STRIDE approach. We have identified that 23 APIs are
having various threats based on the STRIDE approach. Table 1 lists the STRIDE
analysis results for the Chrome specific APIs that were identified as having threats.
In summary, APIs that have threats as per STRIDE approach are: bookmarks,
browsingData, contentSettings, cookies, debugger, desktopCapture, downloads,
gcm, history, management, power, privacy, proxy, sessions, storage, system.cpu,
system.memory, system.storage, tabCapture, tabs, topSites, webRequest and win-
dows. Table 2 lists the count of the APIs, methods, events and properties having
various threats as per STRIDE approach. It is the total count of APIs, methods,
events and properties affected by each threat as per STRIDE approach.

Table 2 Summary of API
threat analysis

Threats
(STRIDE)

APIs Methods Events Properties

Spoofing 3 2 1 0
Tampering 14 40 8 14
Repudiation 2 2 0 0

Information
disclosure

17 33 0 1

Denial of
service

7 5 6 12

Elevation of
privilege

13 42 8 14

176 P.K. Akshay Dev and K.P. Jevitha



6 Conclusion

Chrome extensions are getting wide acceptance among the users of Google Chrome
and hence are being widely used for malicious purposes by attackers. The research
work has revealed the potential dangers the users of Chrome extensions are facing
when they use the extensions which can use all the Chrome specific APIs for its
own purposes. Table 1 shows the various threats different Chrome APIs are having
and the attackers can use any of these APIs in the extensions to perform malicious
activities. The APIs having threats are so powerful that when used in a malicious
way can lead to loss of user’s sensitive data or damage to user’s system. This threat
analysis results can help in the identification of the malicious behaviour of chrome
extensions. This threat analysis has only considered the functionality of each
Chrome specific API for identifying the threats. This work can be extended by
analysing the possible threats considering the different combinations of Chrome
specific APIs, as it can serve different purposes and can be used for more malicious
activities in the extension code.

References

1. L. Liu, X. Zhang, G. Yan, S. Chen, Chrome extensions: threat analysis and countermeasures,
in NDSS (2012)

2. Microsoft STRIDE threat model, https://msdn.microsoft.com/en-us/library/ee823878%28v=
cs.20%29.aspx

3. S.F. Burns, Threat modeling: a process to ensure application security, in GIAC Security
Essentials Certification (GSEC) Practical Assignment (2005)

4. N. Carlini, A. Porter Felt, D. Wagner, An evaluation of the google chrome extension security
architecture, in Presented as Part of the 21st USENIX Security Symposium (USENIX Security
12), pp. 97–111 (2012)

5. V. Aravind, M. Sethumadhavan, A framework for analysing the security of chrome
extensions. Adv. Comput. Netw. Inf. 2, 267–272 (2014)

6. J. Arunagiri, S. Rakhi, K.P. Jevitha, A systematic review of security measures for web
browser extension vulnerabilities, in Proceedings of the International Conference on Soft
Computing Systems (Springer India, 2016)

7. R. Zhao, C. Yue, Q. Yi, Automatic detection of information leakage vulnerabilities in browser
extensions, in Proceedings of the 24th International Conference on World Wide Web
(International World Wide Web Conferences Steering Committee, 2015)

8. A. Kapravelos, et al., Hulk: eliciting malicious behavior in browser extensions, in 23rd
USENIX Security Symposium (USENIX Security 14) (2014)

9. N. Jagpal, et al., Trends and lessons from three years fighting malicious extensions, in 24th
USENIX Security Symposium (USENIX Security 15) (2015)

10. K. Onarlioglu, et al., Sentinel: securing legacy firefox extensions. Comput. Secur. 49,
147–161 (2015)

STRIDE Based Analysis of the Chrome Browser Extensions API 177

https://msdn.microsoft.com/en-us/library/ee823878%2528v%3dcs.20%2529.aspx
https://msdn.microsoft.com/en-us/library/ee823878%2528v%3dcs.20%2529.aspx


11. X. Xing, et al., Understanding malvertising through ad-injecting browser extensions, in
Proceedings of the 24th International Conference on World Wide Web (International World
Wide Web Conferences Steering Committee, 2015)

12. Chrome extension developer guide, https://developer.chrome.com/extensions/overview
13. Chromium blog, http://blog.chromium.org/
14. Chrome extension specific API index, https://developer.chrome.com/extensions/api_index

178 P.K. Akshay Dev and K.P. Jevitha

https://developer.chrome.com/extensions/overview
http://blog.chromium.org/
https://developer.chrome.com/extensions/api_index

	17 STRIDE Based Analysis of the Chrome Browser Extensions API
	Abstract
	1 Introduction
	2 Related Work
	3 Security Model of Chrome Extensions
	4 Security Analysis of Chrome Specific APIs
	4.1 STRIDE Threat Analysis
	4.2 Threat Analysis of Chrome Specific APIs

	5 Results
	6 Conclusion
	References


