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Abstract In the recent research, compressive sampling (CS) has received attention

in the area of signal processing and wireless communications for the reconstruc-

tion of signals. CS aids in reducing the sampling rate of received signals thereby

decreasing the processing time of analog-to-digital converters (ADC). The energy

minimization is the key feature of CS. In this work, CS has been applied to spec-

trum sensing in cognitive radio networks (CRN). The primary user (PU) signal is

optimally detected using the sparse representation of received signals. The received

PU signal is compressed in the time domain to extract the minimum energy coef-

ficients and then applied to sensing. Further, the signal is detected using energy

detection technique and recovered using l1-minimization algorithm. The detection

performance for various compression rates is analyzed.

Keywords Energy detection ⋅ Compression rate ⋅ l1-minimization

1 Introduction

Dynamic spectrum access alleviates the problem of spectrum scarcity by introduc-

ing new wireless networks. CRN provides a promising solution for increasing the

spectrum efficiency. Cognitive radio is a smart system that senses the electromag-
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netic spectrum for unused channels and then adapts them for communication without

interfering with the licensed users. The channel is scanned continuously to identify

the presence or absence of the signal using spectrum sensing algorithms. Wideband

spectrum sensing needs efficient techniques to reduce the processing time. The wide-

band signal is filtered using several narrow band filters, and then the detection is

performed. These signals need multi-channel ADCs sampling at a rate greater than

Nyquist rate. Meanwhile, the traditional reconstruction techniques cannot provide

necessary statistic using limited measurements. Therefore, a technique is required

for sampling the signals at a rate lower than Nyquist frequency. CS accomplishes

this task. CS theory refers to perform channel estimation using sparse samples com-

pared to the conventional techniques [1]. A PU localization technique is developed

using CS in order to improve the accuracy of sensing [2].

In [3], the signals are compressed using orthonormal basis functions and recov-

ered using a lp basis pursuit (BP) algorithm. However, the BP and orthogonal match-

ing pursuit (OMP) algorithms use the preliminary information of the sparse nature

for solving the problem. A tree-based OMP is proposed in [4] by exploiting the tree-

like structure as additional information for reconstructing the signals. The advan-

tage of the tree-like structure is that more elements are considered at a time thereby

requiring less computation time than BS and OMP. In contrast with time domain CS,

the multi-band detection technique is modeled in frequency domain [5]. Further, CS

was applied to recognize the type of digital modulations in communication. The

spectrum and moments of higher order are used as a measure to directly identify the

different modulated signals without reconstructing the signals. The incoming radar

pulses have been recovered using a photon-based CS system in [6].

This paper models a generalized framework for compressed spectrum sensing of

a wideband signal and recovery using l1-minimization algorithm. The wideband sig-

nal is first compressed using an orthogonal function in time domain for deriving the

energy coefficients. Each narrow band signal is then detected using energy detec-

tion technique and recovered linearly. The rest of the paper is organized as follows.

Section 2 introduces the compressed spectrum sensing model and Sect. 2 describes

l1-minimization algorithm. The results are discussed in Sect. 3 and finally, Sect. 4

summarizes the conclusions.

2 Compressed Spectrum Sensing Model

Consider a wideband signal x having L non-overlapping channels. The channel occu-

pancy is not balanced at any particular location and time. The number of samples

can be decimated using compression scheme.
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2.1 Compression

Let x be a discrete time signal of size N × 1. The sparse matrix y of size K × 1 can

be obtained as [7]

y = Ax (1)

where A is an orthogonal matrix of size K × N, in which N and K denote the total

number of samples and number of observations. The condition for compression is

K ≪ N. Hence, y is called as a measurement vector that results in reduced sampling

rate. Before applying this signal to sensing, the compressed signal needs to be filtered

using a set of narrow band filters.

2.2 Energy Detection Technique

In general, spectrum sensing model can be formulated as a binary hypothesis prob-

lem having true and null hypothesis [8].

H0 ∶ s(n) = w(n) (2)

H1 ∶ s(n) = y(n) + w(n) (3)

where s(n) is the received narrow band signal of each channel to the secondary

user, y(n) is the compressed signal, and w(n) is the Gaussian noise having zero mean

and variance (𝜎
2
𝜔

). The energy detector test statistic is given as [9]

E(s) = 1
N

N∑

n=1
|s(n)|2 (4)

The average energy E(s) is compared with detection threshold T to evaluate the prob-

ability of detection. The performance factors that decide the ability of any sensing

technique are probability of detection (pd) (probability of successful detection under

H1), probability of false alarm (pfa) (probability of incorrectly detecting under H0),

and signal-to-noise (SNR) wall of detection [10] (the minimum SNR value below

which the detection is not possible). The detection threshold [8] is evaluated as

T = Q−1

(
Pfa(n)
√
N

)
+ 1 (5)

where Q(x) is a complementary error function.
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2.3 l𝟏-minimization algorithm

In recent papers, convex optimization methods are used for reconstructing the signals

from insufficient data. Compressed sensing depends on least squares method referred

as lp-norm. In statistics, lp-norm of x is computed as

‖x‖ = p

√∑

i
|xi|p p ∈ ℝ

The mathematical properties of different norms (p ⩾ 1) vary dramatically. Com-

pressed sensing scheme finds the sparsest solution for indeterminated systems. The

vector with few nonzero entries is called as the sparsest solution. This problem is

usually solved using linear programming or optimization methods [11].

The minimum energy x0 can be evaluated using measurement vector y in Eq. (1) as

x0 = A′y (6)

The linear program used for recovery of the original signal is primary dual algo-

rithm [12], stated as

min x0 subject to Ax = b, fi(x0) ≤ 0 (7)

where (search vector) x ∈ ℝN
, b ∈ ℝK

, and fi is a linear function of x0:

fi(x0) =< cix0 > +di ci ∈ ℝN di ∈ ℝ (8)

where ci and di are constants. The optimized solution is picked, if Karush–Kuhn–

Tucker (KKT) conditions are satisfied [12]. These are first-order conditions that can

be used for linear as well as nonlinear programming. The Newton’s iterative method

arrives at an interior point (x0, v, 𝜆) provided fi(x0) < 0, 𝜆 > 0. The parameters v and

𝜆 are duals to x0. The complementary slackness condition used in our problem is

𝜆
∗
i fi(x0) = −1

𝜏

(9)

The parameter 𝜏 is responsible for the iterations in the Newton’s method. The

increase of 𝜏 progresses the interior point toward the solution on the boundary. The

proposed problem quantifies the residuals namely primal, dual, and central as the

modified KKT conditions.

rprimal = Ax0 − b

rcentral =
[
−𝜆1 f1
−𝜆2 f2

]
− 1

𝜏

(10)

rdual =
[
𝜆1 − 𝜆2 + A′v
1 − 𝜆1 − 𝜆2

]
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Algorithm 1 Pseudo-code for primary dual algorithm

Set primary dual tolerance value (pdtol) and maximum number of iterations

(pdmaxiter) to 0.001 and 50, respectively.

Step 1: Generate a minimum energy signal from equation (6)

Step 2: Define linear functions as f1 = x0 − u and f2 = −x0 − u (Eq. 8)

where u = 0.95𝒿x0𝒿 + 0.1𝒿x0𝒿max
Find dual variables 𝜆i = − 1

fi
i ∈ [1, 2]

Also find the third dual variable v = −A(𝜆1 − 𝜆2)
Step 3: Derive the surrogate duality gap (sdg) and 𝜏

sdg = −(f ′1𝜆1 + f ′2𝜆2)
𝜏 = 2𝜇N

sdg
Step 4: Compute rprimal, rdual, and rcentral from equation (10)

Step 5: Check for the stopping criterion variable done
done = (sdg < pdtol)𝒿(pditer ≥ pdmaxiter)
Step 6: Newton’s method [12]

while (∼ done) do
Step 6.1:
Calculate w1, w2 and w3:

w1 = −1
𝜏
(− 1

f1
+ 1

f2
) − A′v

w2 = −1 − 1
𝜏
( 1
f1
+ 1

f2
)

w3 = −rprimal
Step 6.2:
Calculate sigma1, sigma2 and sigmax:
sigma1 = − 𝜆1

f1
− 𝜆2

f2
sigma2 =

𝜆1
f1
− 𝜆2

f2

sigmax = sigma1 −
sigma22
sigma1

Step 6.3:
Calculate the deviation parameters dx, du, and dv using steps 6.1 and 6.2

Step 6.4:
Calculate the partial change in the dual variable 𝜆i
Step 6.5:
Calculate the suitable step size s
Find the reconstructed signal xp using back tracing search method

xp = x0 + sdx
x0 = xp
repeat until done is true

end while

The feasible step size s specifies the next move direction (0 < s < 1) to derive the

minimum energy coefficients of the signal. The complete process of recovering the

signal is given in Algorithm 1. This algorithm can be employed for face recognition

due to the sparse nature of human features [13].
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3 Simulation Results

The wideband PU signal used in simulations is QPSK signal with five channels. The

SNR assumption is 0 to−14 dB. The number of samples (N) is 512. The compression

rate (K∕N) varied from 10 to 100%. The SNR wall is evaluated at pd = 0.9 and pfa =

0.1 respectively. The detection performance of each narrow band-compressed signal

is analyzed using ROC curves.

Figure 1 illustrates the original, minimum energy, and the recovered signals. The

rate of compression assumed here is 50%, where K = 256 and N = 512. The original

signal shown in Fig. 1a is the filtered narrowband signal of one channel. Figure 1b

shows the compressed signal in time domain, evaluated using Eq. (6). It consists

of minimum energy coefficients of the original signal. The recovery is made using

Algorithm 1, shown in Fig. 1c. The figures clearly depict that most of the samples

are successfully reconstructed even with 50% compression rate. The sparse nature of

the compressed signal enables any spectrum sensing technique to identify the vacant

spectrum bands in less time.
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Fig. 1 a Received PU signal for single narrowband channel b Minimum energy signal c Recovery

of compressed QPSK signal with K∕N = 50%
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Fig. 2 SNR verses pd of proposed CSS technique for different compression rates

Table 1 Comparison of

SNR wall of the proposed

method with variable

compression rates

Compression rate in % SNR wall (dB)

10 −3
30 −6.6
50 −7.6
80 −8.5
100 −9.2

Figure 2 shows the receiver operating characteristics (ROC) for observing the

detection performance through pd for each SNR value. The SNR wall of detection

of the proposed technique is shown clearly for various compression rates. The 10%
compressed signal is identified at −3 dB, 30% at −6.6 dB, 50% at −7.6 dB, 80% at

−8.5 dB, and 100% at −9.2 dB SNR respectively. Table 1 shows these results. The

detection strategy increases linearly with compression rate, but the increase in the

compression rate increments the number of samples that add up the processing time.

On an average, 50% compression can be chosen to detect the PU signals at −7.6 dB

which achieves better performance than traditional energy detection technique. The

same compression rates are considered for plotting pd against pfa in Fig. 3.
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Fig. 3 pd verses pfa of proposed CSS technique for different compression rates

4 Conclusion

The computational complexity plays a significant role in wideband spectrum sensing.

CS provides an optimal solution by compressing the samples at a rate less than 50%.

The proposed work performs compression of a wideband signal and senses each nar-

rowband channel using energy detection technique. In this work, a unique measure-

ment matrix is produced to obtain minimum energy coefficients of the received sig-

nal. The spectrum sensing is initiated upon these condensed samples to analyze the

performance of detection. The minimum energy signal is then reconstructed using

l1-minimization algorithm. The reconstruction can also be made feasible by adopting

the optimization methods as a future direction of research. Furthermore, the simula-

tion results are discussed for different compression rates making sparsest detection

possible.
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