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Abstract Breast cancer is the most common form of cancer among women
globally. Detecting a tumor at its early stages is very crucial for a higher possibility
of successful treatment. Cancerous cells have high metabolic rate which generate
more heat compared to healthy tissue and will be transferred to the skin surface.
Thermography technique has distinguished itself as an adjunctive imaging modality
to the current gold standard mammography approach due to its capability in
measuring the heat radiated from the skin surface for early detection of breast
cancer. It provides an additional set of functional information, describing the
physiological changes of the underlying thermal and vascular properties of the
tissues. However, the thermography technique is shown to be highly dependent on
the trained analyst for image interpretation and most of the analyses were conducted
qualitatively. Therefore, the current ability of this technique is still limited espe-
cially for massive screening activity. This chapter presented a proposed technical
framework for automatic segmentation and classification of abnormality on mul-
tiple in vivo thermography-based images. A new two-tier automatic segmentation
algorithm was developed using a series of thermography screening conducted on
both pathological and healthy Sprague-Dawley rats. Features extracted show that
the mean values for temperature standard deviation and pixel intensity of the
abnormal thermal images are distinctively higher when compared to normal thermal
images. For classification, Artificial Neural Network system was developed and
produced a validation accuracy performance of 92.5% for thermal image
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abnormality detection. In conclusion, this study has successfully demonstrated that
for massive or routine screening activities, the proposed technical framework could
provide a highly reliable clinical decision support to the clinicians in making a
diagnosis based on the medical thermal images.

Keywords Thermography � Thermal image processing � Artificial neural network

1 Introduction

Breast cancer is the most common cancer experienced among women globally [1,
2]. The number of breast cancer incidences has steadily increased, and breast cancer
has recently appeared to be the second leading cause of death in women [3].
National Cancer Institute of Canada has estimated that two out of five women will
develop breast cancer during their lifetime, and approximately one out of four will
die as a result of this disease [2]. Although breast cancer is highly treatable if it is
detected at the early stages, the number of women diagnosed with breast cancer is at
the later stage especially those in developing and third world countries due to the
unavailability of portable breast imaging facilities and lack of awareness [4, 5].

Mammography technique is the current gold standard morphological-based
imaging tool that is used in clinical practices globally. However, this technique
exhibits low sensitivity in dense breast tissue composition or in young women.
Additionally, it requires breast compression during screening and exposes to
harmful radiation [6–9]. On the other hand, infrared thermography technique has
shown to be a potential adjunctive tool for detecting breast cancer [10–12].
Previous studies show that the heat generated by cancerous cells due to the high
metabolic rate will be transferred to the skin surface via heat conduction and heat
convection through both tissue and blood vessel respectively. Infrared thermogra-
phy will then measures the heat radiation emitted from the skin surface and converts
it into a visual thermal image format with its respective temperature values [8, 13].
It is a non-invasive and effective alternative modality for early detection of breast
cancer with simple screening procedure requirement, high accuracy for surface
temperature measurement, low in cost and available in small sizes which allow
mobility for bigger population coverage [10, 11, 14, 15].

With the advances in the infrared camera technology and computerized image
processing system, the subtle alteration of temperature associated with underlying
physiological changes is becoming more accessible in thermography, enabling high
accuracy thermal-based breast cancer detection. However, this technique is highly
dependent on trained analysts for thermal image interpretation which means, a
single thermal image may be interpreted differently by different analysts relative to
their respective skills, experiences, and health conditions [16, 17]. As a result, the
clinical applicability of the thermography technique is still limited, and it is very
crucial to further improve the technical aspects to increase the overall system
reliability for high acceptance into a clinical practice.
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Unlike any other applications of thermography (e.g., image from surveillance
camera) which mainly focus on the presence of overall subject, thermal images
obtained from medical thermography present a different temperature patterns and
contours related to the underlying physiological changes which occur at a specific
area within the subject. Thus, detecting and segmenting the symptomatic region
from the rest could be a very challenging task due to the inhomogeneous nature and
lack of clear limits in each subject. In addition, different camera settings and ini-
tialization that could vary the size of subject in each frame. As a consequence, most
researchers prefer to manually segment or to use a semi-automatic region of interest
(ROI) segmentation method for further measurement and analysis.

In the case of qualitative breast cancer diagnosis, the ROI segmented must
include both breasts since clusters of lymph nodes are found in the axillar region,
above the collarbone and chest. Herry and Frize have developed a contour detector
using morphological operators, as a means of comparing the intensity distribution
between both breasts. However, the initial segmentation of the subject has been
carried out manually [18]. Lipari and Head have constructed a semi-automatic
segmentation method, wherein each breast was divided into four distinct quadrants,
and an asymmetrical pattern between the quadrants was used for further. But, lack
of ideal body symmetry in the images has resulted in missing data for comparison
[14]. Another semi-automatic segmentation has been proposed by Scales and others
which comprised of eight different steps. They have reported that only 4 out of 21
images result in satisfactory ROI detection and errors were due to detection of
inframammary fold and bad edge detection [19]. However, for large number of
thermal images that need to be processed, both semi-automatic and manual seg-
mentation will be time consuming with a high chance of result inconsistency due to
fatigue. Motta and others have recently developed a fully automatic segmentation
method based on automatic threshold and border detection, and extraction of infra
mammary folds. They have used mathematical morphology and cubic spline
interpolation to separate both breasts symmetrically. However, the ROI detected
may exclude the portion of upper quadrant of the breast [20]. Therefore, most of the
researchers are currently focusing on developing an autonomous method for breast
segmentation.

Contrarily, in quantitative analysis, important features required to be extracted
from the ROI and to be fed into a classification system for diagnosis purposes. In
this particular case, the presence of breast images for processing is not necessary
but accurate ROI detected is crucial in order to ensure that features extracted from
the thermal images are highly reliable. In Schaefer and others’ studies, the ROIs
were segmented manually by an expert before fuzzy rule-based classification sys-
tem was applied [21, 22]. On the other hand, Ng and Kee have performed manual
segmentation on patients’ thermal images prior feeding them in an advanced
integrated breast thermography classification method [23]. However, fully auto-
matic ROI segmentation is still preferred to reduce overall computational time and
intervention by analysts especially when dealing with numerous thermal images.
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Although infrared thermography has not yet been applied to clinical practice,
this technique otherwise has shown to be an ideal modality for an upfront and
routine breast screening due to its passive nature and simple screening procedure
[10, 11]. However, a reliable classification of thermal image abnormalities would be
a steadfast indicator for further assessment using other sophisticated imaging
techniques. Therefore, this chapter proposed a new technical framework for thermal
image computer-aided diagnosis which integrates automatic segmentation, feature
extraction using both characteristics from visual and temperature data for image
abnormality classification. The main focus is to assist the clinicians in analysing
multiple thermal images accurately with minimal intervention and storage
requirement for mass screening activities.

A process of selecting different features from both visual image (pixel based)
and data temperature (temperature point) is compulsory in order to compose a
feature vector for classification between abnormal and normal thermal images [24].
However, due to storage limitation, most researchers have chosen to process and
extract the pixel related features available on the thermal images. Acharya and
others have measured smoothness, coarseness and regularity of pixels from thermal
images in order to further segregate these textures into two main classes, namely
structural and statistical. Later, they have used support vector machine (SVM)
method for classification [25]. Schaefer and others have extracted basic statistical
features, histogram features, cross co-occurrence matrices and mutual information
from the thermal images [21, 26]. In addition, Kuruganti and Qi have extracted
features such as mean, variance, kurtosis, peak pixel intensity and entropy, in order
to validate their proposed classification method [27]. Jakubowska and others have
extracted four different image features based on histogram, co-occurrence matrix,
gradient and run-length matrix. They have then utilized artificial neural network
(ANN) method for classification. Nevertheless, extracting and analyzing the fea-
tures from the pixel-based aspect alone for classification might introduce asyn-
chronization of data especially when extensive preprocessing technique is carried
out [28]. Therefore, Ng and Kee have extracted thermal information from the data
temperature point with additional history information, to determine breast abnor-
malities [23]. Borchartt and others have considered features including range of
temperature, mean temperature, and standard deviation of temperature in their study
and used SVM to evaluate the selected features [29]. Both studies have achieved a
high accuracy performance of 80.95 and 85.71% respectively.

It can be seen that different combinations and flows of image processing
methods have been applied and proposed previously, in accordance with the
specific objectives of each study. In general, the image segmentation and feature
analysis techniques have been developed from a simple single method analysis to
an advanced integration analysis techniques depending on the different objectives
that need to be achieved and also the availability of image data types.
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2 Data Collection

2.1 Animal Preparation

The use of animals in this study was approved by the institutional review board of
the Universiti Kebangsaan Malaysia, Animal Ethics Committee (UKMAEC),
Selangor Malaysia. Two groups of female Sprague-Dawley strain rats consisting of
fifteen pathological (abnormal) rats and fifteen control (normal) rats weighing
between 180 and 250 g were housed in polypropylene cages with wood shavings
used as bedding at an ambient room temperature, as well as access to water and
food ad libitum with a 12 h light/dark cycle. For pathological group, a single dose
of 10 mg of 7, 12-dimethylbenz(a)anthracene (DMBA), a carcinogenic chemical
used widely to produce mammary tumor, was dissolved in 0.5 mL of sesame oil
purchased from Sigma-Aldrich and administered via a subcutaneous injection into
the rats at the average age of 57 days [30]. All rats were palpated weekly to detect
the presence of mammary tumors. The induced rats were then allowed to adapt to a
new environment for two weeks before thermography screenings were carried out.

2.2 In Vivo Thermography Screening

The entire experiment has been conducted in a small preparation room with min-
imal light exposure located in the Clinical Animal Laboratory of the Faculty of
Bioscience and Medical Engineering (FBME) at the Universiti Teknologi Malaysia
(UTM) in Johor, Malaysia. The room temperature was controlled and maintained at
a range of 20–22 °C, using an air-conditioning system with relative humidity of
60–65%. The fluorescent lights available in the room were turned off during
acclimatization and screening processes [31]. This will ensure factors such as high
variations in room temperature, different percentages of light exposure, and other
possible factors that could influence the result in a significant way were minimized.
With this approach, a higher result consistency could be achieved. The images were
acquired using an Epidermal Thermal Imaging Professional (ETIP) infrared
imaging camera system model 7640 P-Series, manufactured by Infrared Camera
Incorporation, Texas USA, with a resolution of 640 � 480 pixel, and a field of
view of 49°/18 mm � 36°/25 mm, using a focal plane array microbolometer type
detector, a spectral range of 7–14 µm, a thermal sensitivity of 0.038 °C with a
temperature range of −40 to 400 °C and an accuracy of ±1% of readings.

The camera was mounted on a flexible arm which was connected to the display
monitor as shown in Fig. 1. The distance between the camera to the sample was
manually controlled, in order to get the best display output. The initialization of the
camera was carried out once prior to screening, in order to reduce noise and
stabilize the system.
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All rats were allowed to acclimate to the room temperature of range from 20 to
22 °C for up to 15 min before screening. Since a still or minimal movement target
is required during the screening process, a single dose of 0.1 ml/100 g of
Ketamine–Zoletil–Xylazine (KTX) anesthetics combination was administered into
each rat via an intramuscular route to provide a light anesthesia for 30–45 min [32].
A polyethylene decapicone restrainer was used for handling and approaching the
rats. Anesthetized rats were placed back in their individual cage until they were
fully unconscious. The rats were weighed and palpated to check for any lumps or
tumor multiplicity as shown in Fig. 2 before the screening and all this data was
measured and recorded accordingly.

Fig. 1 In vivo thermography screening setup

Fig. 2 Frontal view of a a normal rat with symmetrical body shape, b a pathological rat with
palpated lump on the left side of the body and c side view of a pathological rat with palpated lump
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Rats were then placed on the wooden plate in anterior position facing the camera
for ten minutes. Images were captured at a rate of five frames per minute and
thermal image in the joint photographic expert group (jpeg) format and temperature
data point in the comma separated values (csv) file formats were stored for further
analysis and processing. All screened rats were kept in their individual cages, and
were monitored hourly for any post-procedure effects.

2.3 Disease Verification

After 12 weeks of consecutive screening, histology test and disease verification
procedure were carried out to ensure that the symptomatic hotspot areas detected on
the thermal images were due to the cancer disease and not any other pathologies.
All surviving rats were euthanized by using drug overdose method to harvest the
breast tissue sample. Before excision, the fur around the breast area was shaven and
tissue samples were cut into smaller pieces and immersed inside 10% buffered
formalin solution for fixation and preservation purposes. The tissue were processed,
embedded in paraffin and section at 5 µm. The sections were then mounted on the

Fig. 3 Histological view of a–b cell arrangement in healthy breast tissue and c–d cell
arrangement in cancerous tissue
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glass slides and stained with haematoxylin and eosin to give contract to the tissue as
well as to visualize the microscopic structures.

An expert from Pathology and Clinical Laboratory, Johor, Malaysia has clas-
sified both normal and pathological samples based on gross morphologic appear-
ance of the tissue as shown in Fig. 3. Obtained histology results have confirmed
that all specimens within the pathological group had high grade invasive ductal
carcinoma of the mammary gland, with the presence of the syringomatous carci-
noma component in certain samples, while healthy group specimens were con-
firmed to be normal without the presence of any cancerous cells.

3 Image Processing

A two-tier segmentation algorithm was developed in order to detect the symp-
tomatic regions on the visual image and mapped them to the corresponding tem-
perature data file for feature extraction and classification purposes. This will assist
the clinician in diagnosing the thermal image by focusing only on the data extracted
from affected area and not having to examine the whole image captured.

3.1 First Tier: Segmentation for Subject of Interest (SOI)

The first segmentation process involved separating the subject from the background
in the thermal images using histogram based separation method. This eliminates the
possibility of the system to detect any hot spot area in the background as one of the
possible symptomatic region of interest since each pixel in the visual image cor-
responding one temperature value. Two vertical points namely x1, y1 and x2, y2 need
to be chosen by the analyst once during system initialization, in order to approx-
imately mark the subject position based on laboratory setting as shown in Fig. 4.

Fig. 4 Example of selection
of two vertical points
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Local information such as the overall intensity and vertical profile based on the
selected vertical points were utilized in order to perform an individual image
background correction. This particular step will allow flexibility alteration to dif-
ferent types of room and equipment settings including distance of the subject to the
camera, the zooming function and the various physical sizes of the subjects.

Figure 5 shows a flowchart of new algorithms proposed for SOI segmentation.
The raw image obtained from the thermography screening was preprocessed. Since
different system have different color schemes (e.g., RGB, thermal, rainbow), analyst
has to select one channel that suit the system best during initialization phase. The
calculation of the mean intensity (li) value as shown in Eq. 1 was used to generate
a new matrix layout mapping with identical intensity value.

li ¼
1
N

XN
i¼1

xi ð1Þ

where N is the total pixel determined using vertical range (0—y1 and y2—max
vertical pixel number) and xi is the intensity value of each pixel measured.

Fig. 5 Flowchart for SOI segmentation
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Each pixel value in the output image, I 0ði;jÞ, was generated by the subtraction of

the mean intensity value from the pixel value in the input image, Iði;jÞ, as shown in
Eq. 2.

I 0ði;jÞ ¼ Iði;jÞ � li ð2Þ

Next, the image was converted into a binary format background and was
remapped onto a new image. Subject edge detection was performed within the
subject with a flood-fill operation applied in order to eliminate any brightness
discontinuity and to allow only one subject boundary to be detected. For perfor-
mance evaluation, a comparative study between the proposed algorithm and the
conventional segmentation methods namely the Otsu and Active Contours was
performed.

3.2 First Tier: Result and Discussion

Figure 6 shows the output of the SOI segmentation carried out on multiple thermal
images using the newly developed algorithm. It can be seen that although each
thermal image has a different image background profile, the proposed algorithm is
capable of detecting the SOI accurately, while manual segmentation requires longer
time due to the complicated subject outline.

On the other hand, Fig. 7 shows the segmented image using Otsu’s method. It
can be clearly observed that the segmented image did not show any distinct
boundary between the subject and the background. This is due to the default
thresholding applied in Otsu’s method which is not suitable for use in thermal

Fig. 6 Segmentation of multiple thermal images using a new developed algorithm
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images due to its inhomogeneous color contours. However, for images with
homogeneous objects and backgrounds Otsu’s method has been shown to be very
precise.

Figure 8 shows the segmented thermal image, using the Active Contour method
with a different iteration number used. Interestingly, it can be observed that the
higher the iteration, the detected edge becomes smoother and clearer. However, the
disadvantage of larger iteration numbers is that they require higher computational
loads and longer times to process. In addition, for the large number of images which
need to be processed, single settings on iteration number may not be suitable to be
used and could result in subject segmentation inconsistency.

Further morphological and quantitative comparisons were made based on the
edge detection line drawn on each SOI segmented image and time taken for each
segmentation as shown in Fig. 9 and Table 1 separately. It was observed that the

Fig. 7 Thermal image
segmentation using Otsu’s
method

Fig. 8 Thermal image segmentation using the Active Contour method including a the raw
thermal image b after 300 iterations c after 600 iterations and d after 700 iterations

In Vivo Thermography-Based Image for Early Detection … 119



Fig. 9 Comparison of segmentation methods using a the Otsu’s method b the Active Contour
with 700 iterations and c the newly proposed SOI algorithm

Table 1 Processing time
comparison

Method Time (mean ± std) (s)

SOI segmentation 0.6415 ± 0.0429

Otsu’s method 0.7130 ± 0.0651

Active Contour (700) 30.318 ± 1.0519
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newly proposed SOI segmentation algorithm has outperformed the existing meth-
ods in both aspects, producing a distinguished boundary line between SOI and clear
image background with lowest processing time. However, since initial image
cropping can be controlled, analyst may choose to exclude the lower part of the
body to minimize the undesirable noise captured along the tail. In previous clinical
case study, areas such as face, neck and lower body were excluded during image
processing. A corrected background profile shows a smooth and consistent pixel
arrangement.

Segmented SOI from Otsu’s method is shown to be the least accurate with a
comparable processing time to the newly developed algorithm. The thermal image
output was shown to capture the largest amount of background information. This
may reduce the ROI segmentation accuracy in the later stage. Likewise, the
background profile displayed a polluted pixel arrangement. Otsu’s method has a
drawback as it uses a single parameter setting, although this method is generally
preferred in other digital image processing field, it seems to be not suitable for SOI
segmentation in medical thermal image processing.

Contrariwise, the Active Contour method with 700 iterations produced a better
cut-off line between the subject and background than Otsu’s method with a small
background area captured, but this method requires the longest processing time and
highest load among others.

Therefore, the newly proposed SOI segmentation algorithm has proven to be
capable for segmenting the SOI in different thermal images automatically with high
accuracy and requires less processing load and time.

3.3 Second Tier: Segmentation for Region of Interest (ROI)

The second-tier segmentation algorithm was developed to detect the possible ROIs
within the subject, where any presence of hotspots outside the SOI boundary will be
disregarded in this stage.

Figure 10 shows the overall flow chart for the ROI segmentation process. By
using the mean intensity value calculated previously in the SOI segmentation stage
as a new threshold, all possible ROIs could be determined. Equation 3 shows the
possible ROIs selection criteria where value ‘1’ represents positive possible ROIs
and value ‘0’ represent non-ROI hotspots.

Rposs ¼ 1 if Ri [ li
0 otherwise

�
ði ¼ 1; 2; 3. . .nÞ; ð3Þ

where Rposs are the possible regions which have pixel value larger than the mean
value and Ri are all hot spot in the SOI segmented. Figure 11 shows the output of
possible regions detected within the subject using two different regions selection
schemes.
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Fig. 10 Flowchart for ROI segmentation
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Local parameter properties, such as the intensity, centroid value, diameter and
area of each identified region were measured and tabulated for all possible symp-
tomatic ROIs. Two parameters namely mean area (la) and mean intensity (li) were
calculated and used to determine the final ROIs (Rfinal) selection as shown in Eq. 4.

Rfinal ¼ Rposs [ ðla \liÞ ð4Þ

Mean area was used to eliminate the presence of smaller hotspots which are
insignificant, while mean intensity was used to eliminate low temperature areas.
Areas which satisfied both criterions were masked on the SOI segmented thermal
image. Regions that not belong to these criterions were ignored, and if there were
none detected, the image is considered normal and the algorithm will be terminated.

Finally, the output result of the ROI segmented image was compared to the
temperature data contour plot, in order to validate and verify whether the final ROIs
detected from the thermal image are in the same position as those generated from
the raw temperature data file. This is a very important step as processing a raw
temperate data file in the ‘comma separated value’ or csv format can significantly
increase the processing load requirement by thrice. However, qualitative compar-
ison alone is insufficient to evaluate the performance of the developed ROI seg-
mentation method. Hence, four different area based evaluation methods namely
Dice Similarity Coefficient (DSC), Jaccard Index (JI), Relative Area Different
(RAD) and Area Overlap Error (AOE) were used to analyze and compare ROI
obtained via automated segmentation and using manual tracing for all samples
[33–35].

DSC identifies the degree of area that is overlapping between automated and
manual segmentation. On the other hand, Jaccard Index study the ratio of area in
common of both automated and manual segmentation methods. RAD calculates the
difference between area of the automated segmentation and the one from manual
tracing where negative values indicate that the region segmented by the proposed

Fig. 11 Example of possible hotspot regions detected with a color highlighted and b numbered
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method is smaller than that by manual tracing. Positive values indicate that the
region segmented manually is smaller than the one segmented by the system. AOE,
which is based on JI, shows that ratio of the area that is not intersecting between
both regions.

Hence, segmenting the ROI in its visual format and extracting features based on
the ROI mapped onto the temperature data file will certainly increase the overall
processing efficiency.

3.4 Second Tier: Results and Discussion

Figures 12 and 13 show the results of ROI segmented in both normal and abnormal
thermal images respectively.

It was observed that for normal thermal image, no symptomatic region was
detected and mapped onto the SOI segmented image. However, for the abnormal
thermal image, few distinctive symptomatic regions were detected and mapped onto
the SOI segmented image. Although a large hotspot could be seen clearly on the
raw thermal image, only areas which satisfied the criterion set earlier were selected.
This is crucial to guide and assist the clinicians in diagnosing a patient. As visual
image only carries pixel information, it is important to ensure that ROI segmented
corresponded to the highest temperature on the raw thermal image.

Based on the output result obtained in Fig. 14a, it is clearly shown that the ROIs
detected have correspondingly matched their respective temperature data shown in
Fig. 14b, c. In addition, an automated segmentation method developed shown to
have high similarity coefficient to manual tracing with 97.38 and 94.89% for both
DSC and JI respectively as shown in Table 2. RAD shows a positive value of 5.38
which indicates that bigger region segmented using manual tracing than the one
segmented automatically. This is due to the small temperature changes along the
border of symptomatic regions that was not able to be differentiated visually.

Fig. 12 ROI segmentation of normal thermal image a raw thermal image, and b ROI masked on
raw image
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Fig. 13 ROI segmentation of abnormal thermal image a raw thermal image, and b ROI masked
on raw image

Fig. 14 Comparative analysis between a ROI segmented thermal image and b, c temperature data
plot in 2D and 3D respectively
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Finally, AOE result obtained shows that there was a high resemblance between both
regions segmented using manual and automated methods.

4 Automatic Abnormalities Detection

Once the final ROIs were detected, the pixel number lies within the ROI boundary
will be used as a reference to extract the temperature related information from the
temperature data file. For normal thermal images with no ROI boundary detected,
temperature information within an area of size 50 � 50 pixels from the subject
midpoint were extracted. Five different features including mean intensity, mean
temperature, maximum temperature, minimum temperature and standard deviation
were extracted. These data which were taken from a total of 200 sets of thermal
images and were then sampled into three different categories namely training,
testing, and validation. Target value of ‘1’ was assigned to all pathological images
and target value ‘0’ was assigned to all thermal images captured on normal samples.
In this study, an artificial neural network (ANN), a widely used classification
method in medical diagnosis has been utilized to classify whether the thermal image
is belong to the abnormal group or otherwise [36, 37]. ANN processes the data in
parallel distributed mainframe and has the ability to learn on the basis of the input
data they fed. The network was first trained using back propagation algorithm
which employs steepest gradient descent with momentum and consists of one input
layer, two hidden layers and one output layer with sigmoid and linear transfer
function were applied in the hidden layers. The network was then optimized to
reduce over fitting before data testing and validation can be performed by varying
the training parameters including number of neuron, learning rate, momentum
constant, and iteration rate. The values of each parameter was considered optimum
when the network produces the lower mean squared error (MSE) value with high
prediction accuracy performance. The prediction values obtained from both testing
and validation steps were further evaluated for group recognition and accuracy
measurement. The MSE calculation is shown is Eq. 5.

Ek ¼ 1
2

XN
j¼1

Tkj � Okj
� �2

; ð5Þ

where Ek is the MSE value, Tkj represent target value for jth output neuron, Okj is
the actual output and N is the total output number of neuron. The range used for

Table 2 Quantitative performance measurement between automated and manual segmentation

Dice similarity
coefficient (%)

Jaccard index
(%)

Relative area
difference (%)

Area overlap error
(%)

97.38 94.89 5.38 5.10
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both groups are shown in Eqs. 6 and 7. While the accuracy calculation was made
based on conditions in Eq. 8.

�0:2\Pnormal\0:2 ð6Þ

0:8\Pabnormal\1:2 ð7Þ

Accuracy %ð Þ ¼ Total of Correct Detection
Total Detection

� 100 ð8Þ

4.1 Features Extraction and Classification

Figure 15 shows the comparison of temperature and mean intensity values for all
features extracted including maximum temperature, minimum temperature, mean
temperature and standard deviation from data temperature file and mean intensity
values from thermal image for both normal and pathological rats separately. The
temperature standard deviation and mean intensity values for both groups were
shown to be the most significant distinguishable features among others. Mean
values (°C) of 0.433 ± 0.1547 and 0.109 ± 0.037 for both the abnormal and
normal groups were observed in temperature standard deviation while distinctive
values of 216.9417 ± 8.6471 and 167.0467 ± 3.708 were obtained in pixel mean
intensity.

Maximum temperature and mean temperature showed a comparably significant
difference with minimal correlation, while the minimum temperature was observed
to have the least significant difference where values from the third quartile (Q3) of a
normal group could be mistakenly assigned to the abnormal group. Data which
have outlier values were excluded for classification. Nonetheless, these features
have been considered with additional selected features from image processing to be
used in the development of ANN as they fulfil the least requirements needed for
robust prediction.

For classification, a total of 120 sets of data (60 normal and 60 abnormal images)
were used in the training process, 40 sets of data (20 normal and 20 abnormal
images) for testing and another 40 sets of data (20 normal and 20 abnormal images)
were used for validation purposes. A final optimized network architecture consists
of 5 network inputs, 2 neurons in the hidden layer and 1 network output with
learning rate of 0.3, an iteration rate of 200,000 and momentum constant of 0.2.

Figure 16 shows the result plot between actual classification output value and
the predicted classification output value for validation data set from the optimized
network while Table 3 shows the final classification performance for both testing
and validation data with a training performance of 98.45% and an MSE of 0.015.

The prediction results obtained showed that the ANN developed for the image
abnormality classification was capable of achieving an overall accuracy of 97.5 and
92.5% for both testing and validation data, respectively, which is comparable to the
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performance achieved by other techniques [23, 29, 38]. This finding indicates the
higher possibility of using features extracted from both visual image and temper-
ature data in assisting clinicians to improve the current breast oncology diagnosis
process.

Fig. 15 Comparison of a maximum temperature, b minimum temperature, c mean temperature,
d standard deviation of temperature and e mean intensity value for both abnormal and normal
groups
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5 Conclusion

In this chapter, a two-tier segmentation method was proposed to automatically
segment the symptomatic regions lie within the subject of interest. Features from
both thermal visual image and data temperature file were extracted and fed into
ANN classification system to assist the analyst in diagnosing multiple thermal
images with low processing time and computational load required. A total of 200
thermal images were used to test the framework and show that the proposed method
is capable in processing a large number of images from mass screening activities.
This approach has produced a high accuracy of 92.5%. For future clinical study, a
large data set from both healthy and cancer patients is required in both thermal
visual and data temperature point formats to confirm the efficacy of this method.
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Fig. 16 Plot of actual classification value against predicted classification value for thermal image
abnormality detection

Table 3 Classification
results for abnormality
detection

Data Testing Validation

Abnormal Normal Abnormal Normal

Actual data 20 20 20 20

ANN prediction 20 19 19 18

Group accuracy (%) 100 95 95 90

Total accuracy (%) 97.5 92.5
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