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Abstract Respiratory rate is very important vital sign that should be measured and
documented inmanymedical situations.The remotemeasurement of respiration rate can
be especially valuable for medical screening purposes (e.g. severe acute respiratory
syndrome (SARS), pandemic influenza, etc.). In this chapter we present a review of
many different studies focused on the measurements and estimation of respiration rate
using thermal imagingmethods.Additionally,wepresent results of our research focused
on the evaluation of different respiration rate estimators for the needs of data processing
of image sequences recorded by small, mobile thermal cameras.We used small thermal
camera modules in the prototypes of smart glasses for the evaluation of different
parameters related to respiration activities. The chapter presents the used methodology
and results of the respiration rate analysis, detection of apnea events, description of
respiration patterns and other parameters that can be analyzed for respirationwaveforms
derived from the regions of the nostrils or mouth in thermal video sequences.
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1 Introduction

In physiology, respiration can be defined as the two directional exchange of gases.
Oxygen is delivered from the outside air to the cells in tissues and carbon dioxide is
transported from cells to the outside air. The exchange of gases is caused by
differences in the pressure between lungs and surrounding atmosphere. During the
inspiration (inhalation), air enters the lungs, because the air pressure in lungs
(within the alveolar spaces) is lower than the atmospheric pressure. When the air
pressure becomes higher than the atmospheric pressure the expiration (exhalation)
is observed. Therefore, the breathing process can be monitored by the observation
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of two fundamental activities: mechanical changes of chest/abdomen volumes and
airflow changes in nose/mouth regions. Such observations can be described using
quantitative parameters representing properties of the breathing process: respiration
rate, respiration regularity, presence and length of apnea events, etc. Respiration
rate (RR) can be defined as the number of breaths for one minute or “breaths per
minute” (bpm). Respiratory rate can characterize the breathing process indicating if
the respirations are normal, too fast (tachypnea), too slow (bradypnea), or nonex-
istent (apnea). However, threshold values that could be used in differentiation of
different categories of abnormal respiratory rates are sometimes defined for different
categories of subjects. For example, normal respiration rate is changing with age.
Therefore, some organizations propose tachypnea threshold values as [1, 2]:

• Newborn to 2 months: 60 bpm
• Infant 2 months–1 year: 50 bpm
• Preschool Child 1–5 years: 40 bpm
• School age Child: 20–30 bpm
• Adults: 20 bpm.

Respiratory rate is one of three fundamental vital signs (body temperature, heart
rate and RR) and it is a very important parameter indicating potential health problems.
For example, the value of the RR above 27 bpm could be a predictor of cardiac arrest
[3]. The increased RR is used in the prediction of pneumonia [4] or for the prediction
of lower respiratory tract infection [5]. In basic epidemiology, WHO’s guidelines
recommend that pneumonia case detection can be based on clinical signs alone,
mainly respiratory rate [6]. It has been also shown that the respiratory rate is more
discriminatory between stable and unstable patients than pulse rate [3]. Cretikos et al.
[7] specified many recommendations about the measurement of respiratory rates for
patients staying in hospitals. For example, they claimed “the respiratory rate should be
measured and documented accurately in all hospital patients at least once a day, and
should always be documented when other vital signs are measured”.

Apnea is defined by the cessation of respiratory airflow and it is especially
dangerous during sleep. The length of time required to classify the cessation of
respiratory airflow as a true apneic episode is measured in seconds [8], e.g., >10 s
for Central Sleep Apnea [9].

Respiration regularity is characterized by periodical appearance of
inspiration/expiration events and similar amplitudes (depth) of those events.
Abnormalities in respirations may occur in rate, rhythm, and in the effort of
breathing. Different respiration patterns have been observed for some illnesses or
injuries, including [10, 11]: Cheyne-Stokes respirations, Biot’s breathing,
Kussmaul’s respirations, Apneustic respirations, and Ataxia respirations.
Cheyne-Stokes respirations are characterized by periods of respirations, during
which breathing gets progressively deeper and then gets progressively shallower
(crescendo–decrescendo pattern). Similar series of variable in depth breaths are
separated by periods of significant apnea (Fig. 1a). This respiration pattern can be a
result of strokes, brain tumors or injuries, carbon monoxide poisoning, high altitude
sickness and can be observed as a side-effect of morphine administration. Biot’s
breathing (or cluster respiration) pattern has clusters of similar rapid respirations
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separated by apnea periods (Fig. 1b). It could be also a result of stroke or trauma.
Kussmaul’s respirations are characterized by deep and fast breathing (hyperventi-
lation) (Fig. 1c). It is typically observed in the late stages of a severe metabolic
acidosis, for example in diabetic ketoacidosis. Prolonged inspiration and expiration
phases are observed in apneustic respirations (Fig. 1d). The prolonged expiration
phase and following pause phase are interpreted as apneic phases due to long
cessation of air inflow. It is commonly caused by some damages in central nervous
system (CNS). Finally, ataxia (chaotic) respirations constitute a very irregular
respiration pattern with irregular pauses and increasing episodes of apnea (Fig. 1e).
It could be caused by damages in CNS, typically to the medulla oblongata.

Parametric description of respiration patterns should represent changes in rate
and the depth of breathings and should describe the presence and timing of apnea
events. Different methods have been proposed in literature for the monitoring and
description of respiration-related parameters. In this chapter, we are focusing on the
application of thermal imaging for remote monitoring of respiration rhythm. As it
was presented earlier, respiration activities can be analyzed observing mechanical
changes of chest/abdomen volumes or airflow changes in nose/mouth regions. Both
categories of changes can be usually recorded using thermal cameras and analyzed
to present respiration waveforms (patterns) and related parameters. This will be
described in the following sections of this chapter.

2 Review of the Current State of the Art

2.1 Respiratory Rate Estimation and Respiration
Patterns Analysis

Thermal imaging has been often used to analyze different dynamical changes that
could be observed in medical diagnostics or treatment. Some examples include:

Fig. 1 Respiration patterns: a T1—Cheyne-Stokes respirations, b T2—Biot’s breathing,
c T3—Kussmaul’s respirations, d T4—Apneustic respirations, e T5—Ataxia respirations
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wound healing [12, 13], support in cardiosurgery interventions [14, 15], detection
of tumors [16–18], and many other [19, 20]. Thermal imaging was also applied to
the monitoring of respiration activities.

In [21] authors used a narrow band-pass filter to analyze thermal recordings. The
side-view technique was used observing breathing-jet dynamics in the volume of
interest (or region of interest, ROI, in a frame) close to the nostrils or mouth. For the
ROI of each frame the average value was calculated and normalized in reference to
the mean and standard deviation. The autocorrelation sequence was calculated for
the extracted and filtered thermal waveform. Finally, the Fourier Transform was
applied and power density spectrum (PDS) was calculated. The frequency for the
dominated peak in PDS was used as a breathing frequency. The method was
experimentally verified with the participation of 9 subjects (19 thermal clips).
Results showed good correlation between breathing rate measured with the refer-
ence system (respiratory belt with piezo-strap transducer). In both methods the
medium wave infrared (MWIR) camera was used (Focal Plane Array, FPA, reso-
lution 640 � 512, 120 fps, 55 fps used in experiments, sensitivity 0.025 C).

Similar measurement technique was presented in [22]. Statistical methodology
was used to label thermal video frames as expiratory or nonexpiratory. In the
training phase the variant of K-means clustering algorithm was used to cluster “hot”
pixels (expiratory) and “cold” pixels (nonexpiratory) in first, M frames of the
thermal video. Hot and cold pixel values were modeled using normal distributions
with separate parameters (e.g. a mean) for expiratory (hot) and nonexpiratory (cold)
pixels. In each iteration the statistical distance was calculated to expiratory (De) and
nonexpiratory (Dn) distributions from the previous step. The Jeffreys divergence
measure was used with the smallest distance as a criterion. The parameters of the
winning distribution were updated using averaging operation. In the testing phase
each analyzed pixel in the ROI was modeled as a mixture of two distributions:
De + Dn. Initially, both distributions were equiprobable. In next iterations (t > 0),
the current distribution is compared to previous, existing expiration and nonexpi-
ration distributions using the Jeffreys divergence measure and minimal distance
criterion. Finally, pixels in the ROI are labeled as expiratory or nonexpiratory and
frames are also labeled accordingly. Breathing rate is calculated by counting the
labeled framed for each breathing cycle. The method was verified during experi-
ments with 3 subjects (8 thermal clips) for 3 different sizes of ROI. The results
showed that the medium size ROI (21 � 9 pixels) outperformed other ROI sizes.
The achieved accuracy for the small number of subjects was 96.43%.

Later, the same group [23, 24] used the thermal sequences recorded collinear to
the subject’s face. They proposed the use of wavelet transformation on the
resampled and normalized thermal signal to analyze it at different scales. It was
assumed that the breathing component exists at a scale Smax, which is identified for
the local maximum of the wavelet energy coefficients. The frequency, fc, that
maximizes the transform for mother wavelet is used to calculate the estimated
respiration rate:
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eRR � Smax ¼ fc � d; ð1Þ

where: eRR—estimated respiration rate, d—downsampling factor (= 10 fps).
Experiments with the participation of 20 subjects [24] were performed using the

same MWIR thermal camera as described for previous works. The mean of the
absolute normalized difference between values obtained using the thermal imaging
method and using the thermistor was 1.73% (accuracy 100 − 1.73% = 98.27%).
The method was also used in experiments with pathological subjects [23].

Many papers of the same group (e.g., [24–26]) present the problem and possible
solutions for the automatic tracking of the nostrils or mouth ROI. Some methods
will be described in the next section.

Abbas et al. [27] proposed to use the long wave infrared (LWIR) camera
underling that in this range (7–14 lm) the emitted energy dominates the total signal
and it is better to measure absolute or relative object irradiance or radiance. The
proposed data acquisition and processing method was similar to previously pro-
posed methods by Pavlidis et al. It extracts the respiratory waveform for the ROI of
the nostrils, performs filtration and the wavelet transform. This is probably the first
time that the method was used for the remote monitoring of neonates. The method
was applied for 5 subjects extracting RR from the ECG signal as a reference. The
mean absolute error was 1.32 bpm.

The automatic detection of respiration-related ROIs in thermal sequences was
proposed by Pereira et al. [28]. First, the face image was segmented using three
stages: multi-level Otsu thresholding. Next, background noise was removed and the
largest area in the binary image was assumed to be a face region, The final stage
was focused on finding the chin contour using method described in [29] and
selecting the ROI after detection of nose edges with the use of Canny edge detector.
The values in each ROI of the thermal video were averaged producing the digital
respiration waveform. After band-pass filtration the adaptive short analysis window
w, was applied to the signal to estimate the local breath-to-breath interval. Three
estimators were used to calculate these local intervals: adaptive window autocor-
relation, adaptive window average magnitude difference function, and maximum
amplitude pairs. The adaptive window autocorrelation method calculates the cor-
relation between m interval samples to the right of the analysis window w[v] and to
the left w[v − m] of the center of the window w[0]. The second estimator locates the
absolute difference between samples. The last estimator is a version of a peak
detector. It calculates the maximum amplitude of any two samples. It reaches its
maximum if two peaks (in a distance of m) are included in the analysis window
w. In experimental verification the LWIR camera was used (resolution 1024 � 768,
sensitivity 0.05 K, 30 fps). Eleven volunteers participated in the study. The refer-
ence measurement was preformed using piezo plethysmograph. The average
breathing rate error for the experiment without user movements was 0.33 bpm with
the mean error spread 0.71 bpm.

The general method for the monitoring of respiration with a thermal imaging
system was also described in the US Patent Application Publication (Xu,
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US2012/0289850 A1) [30]. In the method temperatures of extremities of the head
and face (nose, mouth) are used to locate features, which are associated with
respiration. RGB values of pixels related to those features are tracked over time to
generate pattern of respiration. The respiration rate could be determined from the
pattern of respiration counting peaks over pre-defined period of time. Two methods
are mentioned: Fourier analysis and peak and valleys detectors. However, only
general methods are mentioned. In the document authors underline the use of R, G,
B channels suggesting that R and G channels are more important since these
channels are “associated with warmer temperatures” and “exhaled air is warmer”. It
assumes that the use of colorful (pre-processed) images with the mapping of
temperature values to colors. This is not a case in most other methods operating on
single matrixes with measured temperature values or intensities of radiation. Color
is not a carrier of information in this case, but it is used for the visualization.
Additionally, the dynamics of respiration waveform depends on the temperature
gradient, so inhalation and exhalation phases are both important and can be mon-
itored as a change of temperature with the sign depending on the ambient
temperature.

Lewis et al. [31] used similar methodology to estimate respiratory rate detecting
the frequency with the greatest spectral density after Fourier transformation of the
average respiration signal obtained for the ROI of the nostrils. However, authors
additionally proposed the “integration of the thermal time series generated a
transformed time-series, which contained a component assumed to be linearly
related to tidal volume”. The cubic-polynomial filter was used to remove sources of
variance in thermal time series (existing due to thermal noise). The estimates were
compared to results of the reference method, which was the LifeShirt inductance
plethysmograph. Two LWIR cameras were used: TVS-700 with the resolution of
320 � 240 (sensitivity 0.08 C) and SC-6000 with the resolution 640 � 480 (sen-
sitivity 0.02 C). Sampling rate was about 30 fps for both cameras. Thermal
sequences were measured for 12 subjects with the TVS-700 camera and for
6 subjects with the SC-6000 camera. Similar mean, within-subject correlations
were obtained (� 0.90) between results generated for thermal-based data (eRR an
relative tidal volume) and for the reference system.

In a series of papers, AL-Khalidi et al. [32–35] presented the similar methods of
respiration rate estimation by monitoring of skin surface temperature variations in
the area located around (centered) the tip of the nose. This round area (circle,
ellipse) was divided into eight segments. Pixel values in each segment were
averaged for each frame. As a result, 8 signals were obtained and filtered using
low-pass filter (5th order Butterworth filter) with the cutoff frequency of 1 Hz. The
respiration rate was estimated calculating the average of distances between peaks.
The validation of the method was performed experimental with the participation of
20 children. High correlation was obtained (R2 = 0.994) between the thermal
aiming method and the standard respiratory monitoring method.

Hanawa et al. [36] proposed similar breath detection system using the FWIR
camera (NEC/Avio, TH7102MX, resolution 320 � 240, sensitivity 0.06 C,
30 fps). The camera detects the temperature change at the nasal hole caused by
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respiratory activities. Authors focused on the practical use of the system, analyzing
different factors that can contribute the results: head rotation, the distance between
camera and human, and camera angle. Their used templates ROIs representing
nasal cavity area that were extracted from the first frame. Templates differed in size
of the rectangle. Template matching was then performed on each frame of the video
recording. In all detected regions the average temperature was calculated.
Thresholding operation was applied to calculated average temperature values to
detect frames that indicate breaths. The method was verified with the participation
of 5 subjects. Participants counted their breath during the experiment. The mean
absolute error was about 0.12 bpm. In their later papers [37, 38] they focused on
nasal cavity detection methods that are described in the next section.

2.2 Facial Tracking Methods for the Estimation
of Respiratory Rate

Recently, research of face recognition has rapidly expanded because of a wide range
of possible applications. Face and facial features detection is a first step in many
automatic face-processing systems [39], not only in computer vision communica-
tion or access control systems, but also in medicine. However, face detection is a
quite challenging task because it may suffer from lots of variations of image
appearance. These variations include environment influence, for example illumi-
nation conditions and object influence like facial expressions or pose variation.
Regardless of a kind of image (formed for different ranges of electromagnetic
spectrum) many novel solutions were proposed in literature to resolve object
influence variations, like the template-matching methods [40], the feature invariant
approaches [41] or the appearance-based methods [42]. Some solutions for elimi-
nating typical problems (the effect of the background and of disturbances caused by
the haircut) were also described by Marzec et al. [43]. Nevertheless, coping with
environment influence variations in visible light images is not straightforward and
majority of the existing solutions are not robust enough to be used for face detection
in visible light in uncontrolled environments [44, 45]. Whereas thermal infrared
(IR) record the temperature distribution making them insensitive to variance in
illumination conditions [44]. It makes thermal images processing solutions really
attractive for various applications.

Considering non-contact estimation of respiration rate, there is a need to detect
and track facial features automatically [32]. Some approaches have been already
proposed and described for detecting and tracking human face and its characteristic
points in thermal images. Many of them are threshold-based methods or at least use
binarization in preprocessing stage [32, 43–46], utilizing the fact that face has
intensities higher than other regions [43]. Different ideas for proper temperature
value determination were performed and described in [43]. Some of them were not
satisfactory, but in some cases setting the threshold to 28.3 °C allowed eliminating
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most of the problems related to the background and haircut. Al-Khalidi et al. [32]
proposed to use image processing techniques that include segmentation and median
filter to enhance the recorded thermal images and remove unwanted noise. The
segmentation stage consisted of thresholding and edge detection. Then, the nostril
ROI was identified by extracting two warmest regions (points where eye corners
meet the nose) within selected boundary (region between the bridge pointed by the
nose and inner of each eye). The results indicate that the ROI had not been suc-
cessfully located in a very small percentage of images (in almost all cases failure
was less than 1%). Another method for detecting face in thermal images was
described by Bhattacharjee et al. [46]. The preprocessing phase involved bina-
rization of acquired image, marking face area and its centroid. After this phase
specific facial features were extracted and classified using two techniques: Haar
Wavelet Transform and Local Binary Pattern.

Some other approaches are based on Haar-like features [39, 44], which are
descriptors of the local appearance. These features are the main concept of the
Viola–Jones algorithm that is often used because of its high efficiency and preci-
sion. In [44] authors proposed an automatic eye localization method from long
wave infrared images. Described method included eyeglass detection based on a
Support Vector Machine classifiers trained from eyeglass features vector. Before
eye localization, the face region was firstly detected according to intensities dif-
ference between this region and the background. Intensity variations of specific
facial regions were described by Haar features. Proposed algorithm allowed
achieving accurate rate of eye localization around 85%. Similar methodology was
used by Mostafa et al. [39]. In the presented approach Haar features and AdaBoost
algorithm were used to model a local texture around a given facial feature and
create texture based model. The classifier was learned from labeled examples and
used to detect a face. The face recognition process was performed by using nearest
neighbor classifier in feature space defined by three signature extraction approa-
ches: LBP, SIFT and Binary Robust Independent Elementary Features (BRIEF).
Presented results indicate that thermal images have better performance under dif-
ferent illumination conditions but worse under expression variation. It is better to
solve object (expressions) variations in visible images as geometric and appearance
features in thermography are more blurred [44]. Different approach takes advantage
of temperature distribution together with some considerations about face symmetry
[43]. This analysis allows determining characteristic facial points on thermograms
and applying specially prepared pattern to it. As a result, head orientation may be
determined with satisfactory accuracy.

In order to estimate the respiration rate in mobile conditions, face detection and
tracking algorithm should be able to run in real time. Although some methods have
been already proposed for detecting face and its features in thermography, the time
of processing one frame has not been specified in most of them. However, this
parameter is required in order to determine whether the computational performance
of the methods allows to run robustly in real time while achieving reliable feature
detection.
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3 Analysis of Respiration Waveforms

3.1 Heat Flow Near Nasal Cavities

Temperature differences observed at the nostrils or mouth level are a result of heat
flow caused by respiration activities and several components describing the local
environment. Abbas [27] described the total heat flow rate that is related to one
respiration cycle inside the nasal cavity at the nostrils level, as:

QRRðtÞ ¼ QconvðtÞþQradðtÞþQperfðtÞþQevapðtÞþQotherðtÞ; ð2Þ

where:

Qconv(t) convective heat flow related to airflow in nasal cavities, proportional to
the temperature difference between the body (nasal cavity tissue) and the
environment.

Qrad(t) the radiation heat flow.
Qperf(t) heat flow as a result of blood perfusion/flow.
Qevap(t) heat flow caused by evaporation at the nasal surface.
Qother(t) other, secondary heat flow/loss sources

The convective heat transfer is a result of temperature differences between the
body (nasal cavity tissue) and the environment:

QconvðtÞ ¼ k � TeðtÞ � TncðtÞð Þ � Anc ¼ �k � DTðtÞ � Anc; ð3Þ

where: k is the heat transfer coefficient, Te is the local environment temperature, Tnc
is the temperature of nasal cavity tissue, Anc is the internal surface area of the nasal
cavity.

The net radiation loss rate at the nostrils region can be described by

QradðtÞ ¼ e � r � ðT4
nc�T4

e Þ � Anc; ð4Þ

where: e is the emissivity of the nasal tissue, r = 5.6703 10−8 � (W/m2 K4) is the
Stefan-Boltzmann Constant.

The heat flow related to blood perfusion can be usually treated as a distributed
heat source:

QperfðtÞ ¼ x � qb � cb � ð1� kÞ � TaðtÞ � TncðtÞð Þ; ð5Þ

where: x is the perfusion rate (volumetric flow rate of blood per volume of tissue),
qb is the blood density factor, cb is the specific heat capacity of the blood, k < 1 is
the factor representing the incomplete thermal equilibrium between blood and tis-
sue; Ta is the arterial blood temperature.

The overall heat flow is therefore mainly related to changing air temperature and
blood perfusion. The initial state or hypothetical steady state can be defined here as
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a lack of airflow due to the apnea (cessation of respiratory actions). Inspiration or
expiration actions result in airflow that depending on values of parameters in
Eqs. 3–5 and can produce observable changes of intensity of radiation or temper-
ature in nasal/nostrils region of interest (ROI). Due to dynamic character of this
process the observable intensity (I(x, y, t)) or temperature (T(x, y, t)) change is a
function of time and location. In Fig. 2 examples of thermal images are presented,
taken during inspiration (a) and during expiration (b). There is an observable dif-
ference of temperature distributions between both thermograms visible in the
highlighted region of the nostrils.

The heat flow dynamics at nostrils or mouth levels can be observed in measured
sequences of thermal images. These sequences are further processed to extract
respiration-related waveforms (signals).

3.2 Data Acquisition and Preprocessing

Sequences of thermal images are recorded using thermal camera, usually using
LWIR detectors. The goal of the presented work was to evaluate accuracy of
respiration rate analysis using small and portable thermal cameras that can be
embedded in smart glasses. Under the eGlasses platform we are developing the
experimental smart glasses platform that is dedicated to research activities. It can be
easily modified, for example, different electronic modules can be changed; it is
possible to print another cover using 3D printer, add sensors or electrodes, change
the display, etc. The current prototype of eGlasses uses OMAP 4460 processor with
1024 � 768 transparent display (Elvision Company), 1 GB RAM, 5 MPx camera,
WiFi and Bluetooth 4 wireless interfaces, additional sensors (accelerometer,
gyroscope, magnetometer, etc.), eye-tracker and extension slots. The Android 4.1
OS and Linux Ubuntu OS have been already tested. For the goals of this work two

Fig. 2 Examples of thermal images taken during inspiration (a) and during expiration (b). Color
legend is presented in (c). The ambient temperature was 25 °C
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thermal cameras were used: the TAMARISK 320 LWIR camera and FLIR
Lepton LWIR camera module. The first camera, TAMARISK 320, has a spatial
resolution 320 � 240, sensitivity <50 mK and was connected using the frame
grabber. The second camera, FLIR Lepton, has smaller spatial resolution 80 � 60,
sensitivity <50 mK, has a 14-bit dynamics and was connected using SPI (Serial
Peripheral Interface) interface with the use of specially designed electronic circuit.
Figure 3 presents both cameras located is frames of two prototypes of the eGlasses
platform.

In the experimental studies it was assumed that thermal cameras are observing
subjects from short distances (<1.1 m) with at least partially visible nostrils.
Thermal sequences were recorded for several groups of healthy volunteers.
Measurements took place in laboratory rooms at ambient temperature between
23–27 °C. All subjects were asked to rest and not move during the experiment.
Thermal images were recorded during 60 s with the sampling frequency (fs or
frames per seconds, fps) set to about 25 Hz (frame grabber, TAMARISK 320) and
13 Hz (Lepton). In parallel, during all experiments, respiration activities were
additionally monitored using the respiration, pressure belt (Vernier RMB).

The first step of data preprocessing was the extraction of intensity of radiation
changes that could represent respiration changes. Since in this experiment motion
compensation was not used therefore changes were observed inside region of
interests (ROI) manually selected at the level of the nostrils or mouth. It was
assumed that due to respiration activities intensities of radiation are changing in the
region of the nose or/and mouth. For each video frame the region of interest is
extracted and corresponding values are averaged (one value for a frame):

sðtiÞ ¼ 1
NROI

XCe

x¼Cs

Xre
y¼rs

Iðx; yÞ; ð6Þ

where: NROI—number of pixels in the nose ROI, rs, cs—first (start) row and column
of the ROI rectangle, re, ce—last (end) row and column of the ROI rectangle, I(x, y)
—pixel value of the data matrix of the ROI, i—the frame number (i = 0 … K − 1,
K—number of frames).

Fig. 3 Smart glasses with thermal cameras: a TAMARISK 320, b FLIR Lepton module
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Finally the set of digital values (respiration-related waveform) are calculated and
normalized to the mean value:

snðtiÞ ¼ sðtiÞ � lðsðtÞÞ: ð7Þ

The ROI selection plays very important role in the extraction of
respiration-related waveforms. In Fig. 4 examples of 3 different ROI locations or
sizes are presented together with the derived s(ti) signals.

In the state of the art the averaging operation is commonly used to calculate the
final aggregate of intensities of pixels inside a ROI. This is justified as it is very fast
operation to implement (near real time estimation of respiration rate) and can
spatially filter (low pass) data. To obtain high signal (respiration-related waveform)
to noise (thermal interferences) the ROI should contain many pixels that represent
skin surface where the respiration-related heat flow changes the local temperature.
Therefore, the size of the ROI should be big enough to compensate small move-
ments of the subject (and other related small temperature interferences) and small
enough to contain majority of pixels representing respiration-related change of
intensity. However, other aggregation operators could be used. For example, we
have experimentally verified that higher 1st order moments can be successfully
used to extract respiration waveforms, assuming that the ROI covers relatively large

Fig. 4 The location of ROIs and extracted (using the average operator) signals for: a the single
pixel ROI in the middle of the nose (no respiration waveform expected), b the ROI covering
nostrils, c the ROI below nostrils. Data acquired using the TAMARISK 320 camera. Decrease in
the periodical signals (b, c) is caused by inspirations (cooling—lower intensity values)

322 J. Ruminski and A. Kwasniewska



area, where there are not other that respiration-related changes. The best results
where obtained for the adjusted Fisher-Pearson coefficient of skewness, calculated
as:

ssðtiÞ ¼ NROI

ðNROI � 1Þ � ðNROI � 2Þ �
XCe

x¼Cs

Xre
y¼rs

Iðx; yÞ � lROI
r

� �3

; ð8Þ

where: lROI is an average pixel value in the ROI, rROI is a standard deviation of
pixel values in the ROI.

Skewness is a measure of symmetry or the lack of symmetry. The skewness for a
normal distribution is zero, and any symmetric around mean data should have a
skewness coefficient value near zero. Inspiration causes the local changes of data
distribution in the analyzed ROI and data are skewed more left or right in reference
to “expiration” or “pause” frames. Subtracting mean value of the skewness lead to
the representation of skewness changes that represent temperature changes in the
ROI. In Fig. 5 some examples of respiration-related signals extracted using the
skewness operator are presented.

Fig. 5 The location, size and extracted (using skewness operator) signals for: a the biggest ROI
covering nostrils, mouth and cheeks, b the middle size ROI covering the nostrils but not mouth,
c the small ROI covering nostrils. The waveform on the bottom was extracted for the biggest ROI
using the average operator. Data acquired using the FLIR Lepton camera
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As it can be observed in Fig. 5 there are only small differences in extracted
signals for different sizes of ROIs. For comparison, the last waveform shown in
Fig. 5 presents the extracted waveform using the averaging operator for the biggest
ROI in the Fig. 5a. It is practically useless for the analysis of respiration changes
since the averaging operation performed on many pixels smoothed the changes
generated by respiration activities. In the contrary, for the skewness operator
extracted waveforms are practically not very sensitive on the size of the ROI,
assuming that (1) it covers nostrils and (2) it is not too small. It was experimentally
verified, that the width of the ROI should be at least equal to the width of nose and
the height of the ROI could be set equal to width (what simplifies calculations). It is
important to underline that using the skewness operator it is not necessary to
precisely locate the ROI or classify the pixels as respiration-related or not. The ROI
could be automatically detected using some predefined proportions in reference to
the detected face area. Methods of face detection for thermal images are described
later in this chapter.

Extracted, respiration-related waveforms are usually corrupted by higher fre-
quency noise and by baseline drift. Therefore, the additional signal filtration is
typically used. Baseline removal was performed using 4th-order high pass
Butterworth filter with cutoff frequency set to 0.1 Hz. The low-pass filtration was
implemented using repeated moving average operation with the window size of fs/2.
The preprocessed signals are further analyze to estimate the respiration rate and
other parameters describing the respiration waveform.

3.3 Respiration Rate Estimators

Different methods have been previously proposed for the determination of the main
frequency (period) of the periodical signal. In the presented studies short time
windows were analyzed in the context of the respiration rate estimation using a
thermal camera embedded in smart glasses. The typically used frequency estimator
is based on the detection of the frequency value (fRR) for the dominating peak
(maximum value) in the frequency domain. It assumes that the respiration signal is
dominating in the analyzed signal spectrum. The method has some disadvantages.
For short time signals it has low frequency resolution. For example, assuming that
the acquisition time Ta is equal to 15 s, sampling frequency fs = 15 Hz, and number
of samples N = 225 then the frequency resolution in frequency domain is equal to:

Df ¼ 1
Ta

¼ fs
N

¼ 1
15

¼ 0:066ð6Þ Hz or
Df ¼ 0:066ð6Þ � 60 s ¼ 4 bpm:

ð9Þ

Therefore, to increase the estimation accuracy of respiration rate longer acqui-
sition times are required. For example, assuming Ta = 30 s the resolution would be
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Df = 1/30 * 60 s = 2 bpm. Such resolution is practically related to the accuracy of
±1 bpm (the actual value is moved to the nearest left or right discrete frequency). In
most medical applications, especially used for screening purposes, such accuracy is
acceptable and could be much better than clinical observations. For example, in
[47] 54 doctors from London were asked to evaluate 3 video recordings of different
respiration activities of mock patients. The observed mean difference between
values measured by doctors and known respiration rate values where up to
5.43 bpm (i.e., 0.02 for video no. 1, 2.46 for video no. 2, and 5.43 for video no. 3).

The RR estimation method based on the dominated peak in the frequency
spectrum (it will be later labeled as eRR_sp) has also other disadvantage. It prac-
tically always returns the result even for a signal that doe not represent respiration
activities (e.g. noise). Therefore, additional measures are required to evaluate the
reliability that the analyzed signal represents respiration activities and the estimated
RR value is probable. It will be analyzed later in this chapter.

Respiratory rate is clinically determined by counting the number of times the
chest rises or falls per minute. Therefore, other respiration rate estimators could rely
in counting events that are related to inspiration and/or expiration. Some examples
were described in the state of the art section. Here, we analyze three additional
estimators that are used in the analysis of signals in time domain: eRR_zc—esti-
mator based on the number of zero-crossings, eRR_pk—estimator based on the
number of detected peaks, and eRR_ap—estimator based on periodicity of peaks
locations for the autocorrelation function in the time domain.

The respiratory rate estimator based on the total number of zero-crossings (nZC)
in the filtered signal computes the frequency as:

fZC ¼ 0:5 � nZC �sfnðtÞ
� �� 1

� � � fs=N ð10Þ

eRR zc ¼ fZC � 60 ð11Þ

The reliable use of this estimator assumes that the analyzed signal is smooth
(without high frequency noise/interferences) without baseline drift.

Another respiratory rate estimator that is based on signal morphology uses
detection of signal peaks. Typically, it calculates the number of
inspiration/expiration peaks in the filtered signal. Assuming that inspiration activ-
ities are more easily detected in thermal-bases respiration waveforms (ambient
temperature is lower that body temperature) then respiration frequency can be
estimated as:

fPK ¼ nPKd �sfnðtÞ
� �� 1

� � � fs=Nd ð12Þ

eRR pk ¼ fPK � 60 ð13Þ

where: nPKd—number of inspiration peaks, Nd—the total number of samples
between the first detected inspiration start and the last one.
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The method requires the use of a peak detector, so in practice many algorithms
could be proposed. In presented studies, the multistep detector was used. First, it is
looking for the local minimum and the following local maximum of the analyzed
signal, for which their difference is greater than the threshold value T:

dj ¼ �sfnðtJþ 1Þ � �sfnðtJÞ; dj [ T ð14Þ

where: �sfnðtJÞ—filtered signal value of the local minimum at j, �sfnðtJþ 1Þ—filtered
signal value of the local maximum at j + 1.

Peak and valleys points are labeled in two phases. In the first phase the threshold
value

T = T1 is calculated as:

T1 ¼ TK1 � max �sfnðtÞ
� ��min �sfnðtÞ

� �� � ð15Þ

where TK1 was the scaling value set to 0.33.
The calculated threshold value is used to detect valleys and corresponding peaks

in the analyzed signal. In the second phase, gradients between the corresponding
valleys and peaks are calculated and the median value is computed. Next, the
calculated median value is used to find the value of the T2 threshold as:

T2 ¼ TK2 �medianðfDigÞ ð16Þ

where fDig is a set of gradient values between the corresponding peaks and valleys.
The new threshold value T2 is next used in the detector based on the first

derivative estimator (4). In the reported study the scaling factor TK2 = 0.25 was
used. The detected peaks are used to calculate the number of peaks () and points in
time of the first inspiration event in the analyzed signal window and of the last
inspiration event. It enables to calculate the total number of samples between the
first detected inspiration start and the last one (Ni).

The next respiration rate estimator used in this study was based on the auto-
correlation function. It is known that the autocorrelation sequence of a periodic
signal has the same cyclic characteristics as the signal itself. Therefore, the auto-
correlation for different time lags is calculated. The period can be further calculated
using Fourier Transform and similar analyzes as for the eRR_sp estimator. This
estimator will be designed further as eRR_af. This method has the practically the
same disadvantages as the eRR_sp. However, the period can be also determined
computing the average time period between detected peaks in time domain.
Therefore, the next estimator is further used (eRR_ap) that detects peaks of the
autocorrelation function using the peak detector method presented above.

The estimated frequencies were multiplied by 60(s) to obtain results in beats per
minute (bpm). All estimators were calculated for thermal-based signals and signals
measured using the reference pressure belt. Reference signals were visually
inspected to manually calculate the respiration rate as a number of respiration
events in time. The first and the inspiration events were visually detected in the
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analyzed signal window. It was assumed that one respiration event longs between
two successive starts of inspiration events. The number of respiration events in the
analyzed time segment was counted (NRE) and the total time of all respiration
events was calculated (TRE). The reference respiration rate was calculated as

RR ¼ ðNRE � 60Þ=TRE ð17Þ

The Mean Absolute Error (MAE) was used in the evaluation of different esti-
mators. It is defined as:

MAE ¼ 1
L

XL
l¼1

eRR xxl � RRlj j ð18Þ

where: L—number of data recordings, eRR_xx—the evaluated estimator (e.g.
eRR_sp), RR—manually calculated respiration rate using belt data (the reference).

Similarly the standard deviation of absolute errors was calculated.
In [48] we have demonstrated the results of the study focused on the analysis of

different respiration rate estimators. Sequences of thermal images were recorded for
16 healthy volunteers (avg. age = 34.75 years ± 13.16) using the TAMARISK
320 LWIR camera. All subjects were asked to breathe naturally and not to move
during the acquisition time (1 min). In parallel reference data were collected using
the chest pressure belt (Vernier RMB). Next, data were processed using methods
described above in this section (the average operator was used as an aggregation
operator in ROIs). The mean absolute error was calculated as a difference between
manually calculated respiration rates and values computed using different respira-
tion rate estimators. The best results were achieved for the eRR_ap estimator
MAE = 0.415 bpm (std. dev. 0.398). The worst results were obtained for the
estimator that was based on counting zero-crossings, eRR_zc. The achieved MAE
was 1.291 bpm (std. dev. 0.93). The same estimators applied to data collected using
the reference belt gave very similar results as for thermal-based data. For example
the MSE for the eRR_ap estimator was 0.295 bpm (std. dev. 0.368), but for the
worst eRR_zc the MSE was 1.584 bpm (std. dev. 0.816). The error lower that
2 bpm is fully acceptable for medical screening what is the main application of the
proposed methodology. It is worth to underline that the implemented estimators
worked properly giving similar results for thermal-based data and for belt-data.
Small differences in results between the best estimator and manually calculated
values were also caused by different number of samples that were analyzed by those
methods. The estimators automatically analyzed the whole 30 s long data window.
For manually calculated respiration rates only full respiration periods were manu-
ally selected from 30 s long data windows.

Similar experiments were described in [49]. Sequences of thermal images were
recorded for 11 healthy volunteers (mean age: 39.73 years ± 11.98) using the
FLIR Lepton LWIR camera. All subjects were asked to breathe naturally and not to
move during the acquisition time (1 min). Also in this experiment reference data
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were collected using chest pressure belt (Vernier RMB). All data were processed
using methods described above in this section (the average operator was used as an
aggregation operator in ROIs). However only two estimators were evaluated:
eRR_sp and eRR_ap. The mean absolute error was calculated as a difference
between manually calculated respiration rates (using Eq. 10) and values computed
using two respiration rate estimators. Similar, good results were obtained for both
estimators. For thermal-based data the MAE for the eRR_ac estimator was
0.501 bpm (std. dev. 0.504) and for the eRR_sp estimator it was 0.525 bpm (std.
dev. 0.454). For belt data results were a little bit better: MAE for the eRR_ac
estimator was 0.194 bpm (std. dev. 0.143) and for the eRR_sp estimator it was
0.418 bpm (std. dev. 0.368).

The above shown results were achieved assuming that subjects do not move and
do not speak. In [50] we wanted to investigate if it is possible to estimate respiration
rate when subjects are talking. We asked 12 healthy volunteers (avg. age = 36.25
years ± 12.08) to continuously speak (small head movements were allowed). This
condition was similar to such situation, when a patient, during the interview,
describes his/her problem. Analyzing the breathing patterns during natural speech
could be interesting for medical purposes but also for proper speech training. In this
study, the general methodology used in data processing was the same as previously
described. However, the average operator was used for ROIs covering mouth areas.
Three respiration rate estimators were evaluated: eRR_zc, eRR_sp and eRR_ap. The
interesting finding of this study was that results automatically obtained for
thermal-based data were generally better than for belt-data. The MAE for the best
eRR_ac estimator was 0.728 bpm (std. dev. 0.597), for the eRR_sp estimator it was
2.089 bpm (std. dev. 2.346) and for the eRR_zc estimator it was 3.575 bpm (std.
dev. 2.864). Results obtained for belt data were: for the eRR_ac estimator
MAE = 2.553 bpm (std. dev. 2.373), for the eRR_sp estimator it was 2.496 bpm
(std. dev. 2.153) and for the eRR_zc estimator it was 1.423 bpm (std. dev. 1.377).
The overall results are worse than those when subjects were not speaking. This is
because the extracted respiration related signals were much more noisy and
sometimes respirations were irregular. In such conditions signals were not sta-
tionary. Some examples are presented in Fig. 6.

The described results were obtained using an average as the aggregation operator
applied for ROIs of the nostrils or mouth. However, we have also compared pre-
viously described estimators for signals extracted using the skewness operator. In
this study the FLIR Lepton camera was used. Data were recorded for 10 healthy
volunteers (age: 38 years ± 9.3; recording time 1 min, sampling frequency
fs = 13 Hz). The respiration, pressure belt (Vernier RMB) was used for reference
measurements. The best results were obtained for three estimators: eRR_sp, eRR_af,
and eRR_ap. In most cases the results of the eRR_sp and eRR_af were similar due to
the used similar method of the frequency estimation. Theoretically, for periodical
signals without noise, values calculated by these estimators should be the same
because the autocorrelation sequence of a periodic signal has the same cyclic
characteristics as the signal itself. So the dominated peaks should be observed for
the same frequency in the frequency spectrum. In Fig. 7 examples of filtered
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signals, their frequency spectrum and autocorrelation signal as a function of time
lags are presented.

In Table 1 values of the mean absolute error, the standard deviation of absolute
error and the coefficient of determination, denoted R2, (representing the correlation
between estimated and reference data) are presented for best estimators in the study.

The best results were achieved using the signals extracted from thermal
recordings as a sequence of normalized skewness values of ROI data. It should be
also underlined that these good results were observed for all estimators. The results
obtained using the skewness operator for thermal data were almost identical to
those obtained for reference belt data. The eRR_ap estimator gave best results for
belt data and for thermal data processed using the skewness operator. In Fig. 8 the
values of MAE are illustrated and graphically compared.

Other aggregation operators were proposed in [51], however the better results
were obtained for the skewness operator.

The obtained results indicate that respiration rate can be reliable estimated using the
analysis of thermal recordings. Different estimators were evaluated for thermal
sequences recorded using two small, portable cameras: TAMARISK 320 and FLIR
Lepton. In all cases the most accurate estimates of respiration rates were achieved for
the eRR_ap estimator. This estimator is based on the calculation of autocorrelation for
different time lags. Peaks of the derived signal are detected in time domain so there are
not such limitations as for methods based on the analysis in frequency domain
(e.g. limited frequency resolution). The periodicity of the derived signal is analyzed so

Fig. 6 Results of extracted respiration waveforms for speaking subjects. S02, S08
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additional measures could be proposed to evaluate if the analyzed signal is periodi-
cally enough to reliable estimate respiration rate. It is also important to underline that if
respirations are irregular then better results should be obtained using estimators based
on the detection (and counting) of peaks in time domain. In such cases respiration
signals are not stationary and results based on the dominating frequency analysis
could lead to higher errors of respiration rate estimates.

Additionally, the very interesting finding is the possibility of estimation of
respiration rate when the observed subject is speaking. In practice, smart glasses
with the embedded thermal camera and required software could be a very useful
tool for a healthcare professional. It can estimate respiration rate more naturally,
during typical interview, without “artificially” connected devices to a patient.

Another interesting observation was related to data aggregation in ROIs. For
thermal sequences recorded using the FLIR Lepton camera module better results
were obtained calculating the skewness value instead of the average value for the
ROI of each frame. It was also important, from the practical point of view, that the
size of the ROI was not so important for obtaining the signal that contained

Fig. 7 The frequency spectrum, the filtered signal and (bottom) the autocorrelation signal as a
function of time lags for the subject S09 for: a belt data, b thermal data—processed using the
average operator, c thermal data—processed using the skewness operator

Table 1 Results of the study with the analysis of signals extracted using the skewness operator

Method Belt Thermal camera (average) Thermal camera (skewness)

Estimator eRR_sp eRR_ap eRR_af eRR_sp eRR_ac eRR_af eRR_sp eRR_ac eRR_af

MAE (bpm) 0.350 0.182 0.428 0.468 0.529 0.622 0.350 0.236 0.350

Std. dev (bpm) 0.314 0.139 0.404 0.440 0.514 0.627 0.314 0.193 0.314

R2 0.991 0.998 0.987 0.982 0.982 0.970 0.991 0.997 0.991
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respiration related changes. It could partially reduce the computational complexity
related to the determination of the best ROI size and location in data frames.
However, this still does not solve a problem of patient movements. In such situa-
tions face/nostril detection and tracking algorithms are required.

3.4 Respiration Pattern Analysis

Respiration rate is the most important parameter that can be computed from the respi-
ration signal. However, other parameters could be valuable for medical diagnostics.
Some examples include: the number and length of apnea events, the depth of breathing
or amplitudes of inspiration/expiration event, the length of inspiration phase, the length
of expiration phase, the regularity of respiration events, etc. These parameters can also
describe and can allow discriminating between different respiration patterns presented
inSect. 1.Most of the parameters aremainly based on the detection of three events: start
of the inspiration event, start of the expiration event and end of the expiration event. For
example, the apnea period can be defined here as a time period between the start of the
inspiration event and the end of previous expiration event.

In the study presented in [49] we investigated whether it is possible to reliable
detect apnea events from respiration waveforms extracted from sequences of
thermal images. During the experiments 12 healthy participants (avg. age =
37.15 years ± 9.16) were asked to follow the T1–T5 respiration patterns. Thermal
sequences were recorded using the TAMARISK 320 camera using the procedure
described earlier for the analysis of respiration rate. To analyze the possibility of
apnea events detection volunteers were asked to hold breath to simulate apnea
periods in T1, T2, T4, and T5 patterns. They could decide when hold the breath and
how long the apnea event should long. In apnea periods of the extracted signals
from thermal recordings the temperature variations were observed. It is caused
many internal (e.g. blood flow) and external (heat flow due to ambient temperature
changes) thermal conditions. In reference to the baseline such changes can be
positive (trend with the positive slope), negative (trend with the negative slope) or

Fig. 8 The comparison of values of mean absolute error for particular methods
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neutral (without slope, normalized mean about 0). The observed rate of such
changes is typically smaller that for respiration rate and the observed temperature
gradient is also significantly smaller than for respiration activity. We proposed the
apnea events detection algorithm (Algorithm 1).

Algorithm 1: DetectApneaEvents(filteredSignal, Fs, K, Tapnea)

sDiff=FirstDerivative(filteredSignal); 
absSDiff=abs(sDiff); 
nAbsSDiff=1/max(absSDiff) * absSDiff; 
IQR=CalculateInterQuartileRange(nAbsSDiff); 
T=K*IQR; 
i=0, tStart=0; 
for j=1:length(nAbsSDiff) 

if (nAbsSDiff (j) <T)  
if (counter==0)  

tStart=j;
else counter++;  
endif;

else if(counter>0){ 
if((counter/Fs)>Tapnea)

apneaStart[i]=tStart;  
apneaStop[i]=j;
apneaPeriods[i]=counter/Fs;  

endif;
endif;
tStart=0;
counter=0;

endif; 
endfor;
return [apneaStart apneaStop apneaPeriods] 

It was based on the first derivative of the filtered signal. The absolute values of
the first derivative signal were normalized in reference to maximum signal value.
Then the algorithm is counting all successive samples, for which values are smaller
than the threshold value. The threshold value, T, is calculated as the weighted
(K) value of the interquartile range (IQR) for the processed signal. The apnea event
is detected if the number of samples (or time period) is higher than the assumed
parameter value, Tapnea (e.g. >10 s).

Some results for the apnea detection algorithm are presented in Fig. 9a, b.
The very interesting result can be observed from the analysis of signals presented in

Fig. 9. For example, thefirst train of respiration events for thermal recording hasmore
events (8 inspiration events) than the signal measured using the respiration belt
(7 events). Similar situation can be observed for the last, 3rd, train. For the pattern T1,
subjects were asked to first increase the respiration effort and then decrease. Very
shallow respirations in the end of 1st and 3rd trains were not observed using the
respiration belt. The pressure difference was too small to be observable. Probably, if
the initial air pressure in the belt were higher then the pressure difference would be
visible. However, that would be very uncomfortable for the participant of the
experiment. It can be concluded that respirationmonitoring using the thermal imaging
is sensitive to inspirations even when the respiration effort is small.

In Fig. 10 examples of the results of apnea detection algorithm are presented for
different respiration patterns extracted from recorded sequences of thermal images.
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Fig. 9 Original respiration waveforms (top) and detected apnea periods using the Algorithm 1 for:
a the signal recorded using the pressure belt, b the signal derived from the thermal recording.
Presented signals were recorded for a subject S01 using the T1 respiration pattern

Fig. 10 Original respiration waveforms (top) and detected apnea periods using the Algorithm 1
for signals derived from the thermal recording for subject S09 and for: a T1 pattern, b T2 pattern,
c T4 pattern, and d T5 pattern. The results for the T3 pattern is not presented since it does not
contain simulated apnea periods
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The mean absolute error calculated for differences between automatically
detected lengths of apnea periods in thermal-based signals and manually calculated
lengths of apnea events for belt-based signals was 0.44 (assuming Tapnea = 4 s
and K = 0.6 in the Algorithm 1). The standard deviation was 0.39. Obtained results
were very similar to the results of automatic processing of belt-based data.
Therefore, it can be concluded that apnea periods can be reliable detected from
different respiration patterns that can be extracted from thermal recordings. In the
description of respiration patterns we proved that respiration rates (in given time
windows) and length of apnea events could be accurately detected from signals
extracted for thermal recordings. Additionally, relative amplitude values of respi-
ration waveforms obtained using the reference belt and using the thermal camera
were analyzed. The amplitudes were compared manually by the comparison of
signal plots in time domain (for the pattern RP1). As it can be observed from Fig. 9
signals derived from thermal recordings do not follow the crescendo–decrescendo
pattern than is easily observable in the signal recorded by the pressure belt. Results
obtained for all volunteers confirmed that it is not possible to reliable correlate
amplitude variations between signals measured with the pressure belt and signals
extracted from thermal recordings. As it was described earlier, the thermal
recording is sensitive to small temperature changes (respiration with very small
effort) but it is not proportional to different effort levels. It can be explained by the
heat flow mechanism assuming the cooling process during the inspiration (in room
temperatures lower that body temperature). In the first phase of inhalation there is a
high gradient of temperatures (air to nasal cavity tissue) that decreases with time of
inhalation. Since the ambient temperature is not changing and, in parallel, nasal
cavity tissue is heated by blood perfusion (and also by other mechanisms) therefore
the observable temperature change is becoming saturated. Therefore, it is practically
impossible to quantitatively compare breathings with different efforts (depths).

In [51] we additionally compared methods of detection of inspiration periods
and expiration periods comparing the results obtained for signals recorded with the
respiration belt and extracted from thermal recordings (using the TAMARISK 320
camera). The peak-and-valleys detector was used twice: analyzing the signal from
the start to the end and from the end to the start. In the first phase starts of
inspiration events and ends of inspiration events were detected. In the second pass
(from the last sample towards the first sample) the end of expiration and the start of
expiration events were detected. The inspiration period It was calculated as the
difference between the time of inspiration end and inspiration start. The same
method was used to calculate the expiration period Et. Values of It and Et were
calculated for signals recorded with the respiration belt and extracted from thermal
recordings. The mean absolute difference was calculated as a normalized mean
absolute difference between values calculated for the belt-based signal and for the
thermal-based signal. The normalization was performed by dividing the absolute
difference value by the inspiration or expiration period value obtained for signals
recorded using the reference pressure belt, i.e.:
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DIt ¼ ItB � ItTj j=ItB; DEt ¼ EtB � EtTj j=EtB; ð19Þ

where:

ItB, EtB inspiration/expiration period calculated for the belt signal,
ItT, EtT inspiration/expiration period calculated for the signal extracted from the

thermal recording.

In Fig. 11 examples of respiration waveforms with automatically detected
inspiration/expiration beginnings and ends are presented. It can be observed that for
the original belt signal the respiration pause can be observed due to small pressure
changes measured in the end of expiration and at the beginning of inspiration.

The results obtained for data recorded for 12 healthy volunteers (avg. age =
36.25 years ± 12.08) shown that inspiration and expiration beginnings and ends
events can be detected with certain accuracy. Some differences were obtained
between inspiration and expiration periods calculated for signals recorded using the
respiration belt and signals extracted from thermal recordings. The normalized,
mean absolute difference was about 19% for inspiration periods and about 15% for
expiration periods. This relatively big difference is caused by several issues. First,
there is a difference between both measurement methods. The start of inspiration
can be earlier detected by the thermal imaging since even very small inspiration
effort is clearly visible as cooling (if the ambient temperature is lower that the body
temperature). For the respiration belt the small pressure change is visible only if the
belt firmly adheres to the body and the initial air pressure in the belt is high enough
to observe the difference related to very small respiration movements. Another
reason for the observed values of mean absolute differences was the role of signal
filtration. The proper use of the peak detector assumes that the signal is smoothed.
The filtered signal has smoothed edges so the accuracy of the detection of exact

Fig. 11 Examples of original (left) and filtered (right) respiration waveforms obtained for the
respiration belt (top) and extracted from the thermal recording (bottom). Automatically detected
inspiration/expiration beginnings and ends are indicated. After low pass filtration inspiration ends
are practically the same as expiration beginnings and expiration ends are the inspiration beginnings
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points in time when the change starts is lower that for the ideal step signal.
Additionally, the analyzed signals have limited resolution. For example, if the
inspiration period longs 1 s (13 samples) then shift by 1 sample in inspiration start
and stop events leads to 2/13 = 14.4% of total difference.

Additionally, inspiration-related slopes (S) were calculated and compared for
signals recorded with the thermal camera and using the reference, pressure belt. The
values of slopes were calculated as the relation of the signal gradient for the
corresponding inspiration start/end events to the time difference between points of
time when those events occurred. The mean difference between inspiration-related
slopes calculated between values obtained for signals recorded using the respiration
belt and signals extracted from thermal recordings was 5.04° (±5.24). The smallest
difference was 0.97, but the highest value was 18.32. Again, reasons of such
differences are similar as described previously, since the calculation of slopes is
based on accurate detection of inspiration beginning and end.

3.5 Automatic Detection of the Nostril Region

To estimate the respiration rate of subjects, the thermal facial image sequences have
to be preprocessed for detecting and tracking face and nostril region. Some ap-
proach for real time nostril area tracking has already been discussed and described
in details [52, 53]. The flow of described solution is presented in Fig. 12. In
face-processing systems face detection is usually a first step [39]. After extracting
facial area from the background it can be processed further in order to analyze its
features.

In thermal imagery, the face is usually distinct from other part of image and can
be easily marked. Most of existing methods extract face by segmentation, which
can be easily achieved with thresholding [32]. On the other hand, Haar-like features

Fig. 12 The flow of proposed solution for tracking nostril region
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are often used as a descriptor of the local appearance, because of high precision and
computation speed of Viola-Jones algorithm [39, 44, 54]. This algorithm, which
can run practically in real time, consists of two steps: training and detection. In a
first phase a special classifier with cascade structure is trained from labeled images.
Features from each image are extracted by encoding the presence of oriented
contrasts between two regions with Haar-features. The resulted classifier is then
used to detect objects in test data set.

In the study presented in [53], thermal video sequences were recorded by using
TAMARISK 320 long wave thermal camera (resolution 320 � 240,
sensitivity <50 mK, 25 fps) on a group of 19 volunteers (age: 23.7 ± 5.2). During
the experiment each volunteer was asked to stand still, turn head slightly left and
turn head slightly right. Then, 12,000 thermal images that portray male and female
faces (positive cases) and 3000 images of other objects (negative cases) were
extracted from recorded sequences and used to train the classifier. Examples of
acquired images are presented in Fig. 13. The result of the training step was the
Haar-feature classifier capable for face detection in the test data set that consisted of
480 images (20 for each volunteer).

The presented research [53] aimed at validating possibilities of tracking nostril
region with acceptable accuracy in real time. In order to measure the precision of
the algorithm, the mean value of pixel intensities in detected and tracked area was
compared with the mean value of pixel intensities in nostril area marked manually
in fixed position (not tracked), see Fig. 14.

Moreover, mean squared error (MSE) and root mean squared error (RMSE) of
mean values were calculated separately for series of images that portray each
volunteer during performing each movement (quiescence, turn left or turn right).

Fig. 13 Examples of acquired images: from the left—2 positive and 2 negative cases

Fig. 14 The nostril area
marked manually
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In thermography most of facial features are usually blurred and undistinguish-
able [39]. Moreover, usable data may be represented by close contrast values. To
make the detection algorithm more robust authors of [53] increased image contrast
by making following improvements: the image conversion to a gray scale and a
histogram equalization. After extracting facial region and enhancing valuable data,
interest points detectors (ORB, SIFT, SURF and Harris Corner Detector) were
applied to this area to find specific facial features. Each detector was tested for
processing time and accuracy, that was measured as a displacement of detected area
from its expected location (specified by an expert) divided by the image height. For
each interest point detector, the subtraction between image with found features and
original image was calculated. The resulted image is presented in Fig. 15.

Then, the image was divided into blocks (30 � 30) and the mean value of pixel
intensities in each block was calculated. In next step, authors applied thresholding
as a segmentation technique, which aimed at partitioning an image into different
components. The image was divided into parts with values higher and lower than
selected threshold. This operation allowed marking blocks that contain interest
points. After that, blocks that were close to each other were classified to the same
group. The most numerous groups were formed from facial contour and they did
not contain information about facial features, so they were removed. From the
remaining groups, interest areas templates were extracted. The whole procedure
was repeated for N initial frames and the average location of each template was
calculated. The resulted locations and sizes were used to extract final templates,
which were matched in next frames using pattern matching technique. The best
match was defined as global minimum of all comparisons between templates and
image patches slid across tested image. At each location, the template was com-
pared against overlapped patch by calculating its metric using ‘CV_TM_SQDIFF’
method from OpenCV library [55].

The number of matched regions was limited to two, by preserving only these,
which distance to nostril area (marked manually) was smallest. Next, the detected
nose area was located in the middle of the horizontal distance between two matched
areas (in all cases they represented eyes) and directly underneath them. Then, this
nostril area was tracked by applying the same pattern matching method.

Fig. 15 The subtraction of
original image and image with
detected interest’s points
(Harris corner detection)
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Undoubtedly, the biggest advantage of described system for automatic tracking
of nostril area is really short processing time [27.7 ms (Harris), 23.9 ms (ORB),
19.7 ms (SIFT), 27.6 ms (SURF)] while preserving satisfactory accuracy of region
detection (displacement for Harris 7.2 ± 4.3%, ORB 9.9 ± 2.2%, SIFT
7.0 ± 1.9%, SURF 8.9 ± 2.7%).

Each interest point detector was used to detect nostril area separately for each
movement. Taking it into account, mean value of pixel intensities in tracked and

Fig. 16 Mean values of pixel intensities for one volunteer while turning head slightly right (all
methods for tracked and fixed localization of nostril region)

Fig. 17 Mean values of pixel intensities for one volunteer for chosen detector (all movements for
tracked and fixed localization of nostril region)
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nostril area marked in fixed position vary depending on used detector and pose of
volunteer. Example values of pixel intensities for all detectors while turning head
slightly right are presented in Fig. 16.

Values of pixel intensities for chosen detector depending on performed move-
ment are presented in Fig. 17.

As can be seen, changes in the mean values were much more considerable for
nostril regions marked in fixed positions. This result was also confirmed by cal-
culated RMSE values (see Table 2). Almost in all cases (instead of 2 pairs of values
marked in table with red color) errors were higher for not tracked areas. Similar
situation may be observed for different pose variations. For tracked regions fluc-
tuations of mean values were smaller. However, the movements analyzed in [53]
were quite inconsiderable and achieved results may be different for other distur-
bances (for example background or haircut influence, as described in [43]).
Currently, algorithm similar to solution presented by authors of [53] is tested for
more noticeable movements (also in other planes) by us.

4 Conclusions

In clinical observations, the respiratory rate is often estimated by counting the
number of times the chest rises or falls per minute [56]. Other, quantitative methods
use different algorithms and techniques, including inductive plethysmographs or
thoracic impedance systems [57], oxygen masks [58], bioacoustic sensors [59],
accelerometers or gyroscope sensors [60], etc. Respiration activities are often
recorded together with other biomedical signals. For example in the sleep studies a
set of signals could be recorded, including electroencephalogram,
electro-oculogram, electromyogram, nasal airflow, abdominal and/or thoracic
movements, body position, snore acoustic signal, electrocardiogram, and blood
oxygen saturation [61, 62]. Respiration rate can be estimated not only from one of
those methods (e.g. nasal airflow) but also from other recorded signals (body
movements, electrocardiogram, etc.). Additionally, in [63] 3D breathing waveforms
can be also recovered out of thermal sequences allowing visualization of subtle
pathological patterns.

The remote measurement of respiration rate is another very important and useful
possibility. It can be especially valuable for medical screening purposes (e.g. severe
acute respiratory syndrome (SARS), pandemic influenza, etc.). In this chapter we
presented many different studies focused on the measurements and estimation of
respiration rate using thermal imaging methods. All of the methods demonstrated
the very good results of the estimation of respiratory rates. In our works we focused
on the evaluation of different respiration rate estimators for the needs of data
processing of image sequences recorded by small, mobile thermal cameras. The
miniaturization of thermal camera allowed embedding such cameras in smart
glasses. In several studies we demonstrated that using image sequences recorded by
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thermal cameras of smart glasses not only respiration rate can be reliable estimated
by also some other parameters that describe respiration patterns.

Respiration rate estimation should be performed as fast as possible. However,
this requires data acquisition during a specific period of time. This is especially
important for typically used data analysis in frequency domain (due to limited
spatial resolution). The presented results of our experiments shown that the best
accuracies had been obtained using the analysis of autocorrelation as a function of
time lags (eRR_ap estimator). Ideally, the correlation of the signal with its shifted
version should produce a value of 1 if the shift is equal to the signal period. In
practice, except for the time offset equal to 0 (the same signal), the values are lower
than 1. However, the absolute correlation values obtained for time offsets equal to
the next multiplicities of signal period can be further used to evaluate if the original
signal is really periodical or not. This could be used to evaluate if it is possible that
the signal contains respiration-related information. Other similar measures or
parameters can be used to evaluate if the signal is less or more periodical. Some
examples include Hijorth parameters [64] or spectral “purity” indexes [65]. We
have used them with success in the evaluation of signals for pulse rate estimation
[66, 67].

In the analysis of respiration rate it is also important to locate pixels, which
values change due to respiration activities. Sometimes data classification procedures
are used but it requires relatively more computational resources. More often pixels
are aggregated in the manually or automatically specified region of interests. In all
papers presented in the state of the art the average operator was used. This requires
that the ROI should contain majority of pixels that values are changing due to
respiration activities. In such cases the specification of ROI location and size could
be critical. In our works we asked if other aggregation operators assuming that
differences in the parameters describing the distribution of values in the ROI could
be useful. We successfully evaluated the skewness parameter calculated for ROI
data of thermal sequences recorded using FLIR Lepton camera. It was interesting
that the extracted signals using the skewness operator were not so highly dependent
on the size of ROI, as it was observed for the average operator. Other parameters
could be analyzed in the future.

Automatic detection and tracking of respiration-related sources of thermal
changes (nostrils, mouth) are also very important for the context of mobile appli-
cations, especially when a patient is not cooperating. Different methods were pre-
sented in the state of the art. In our works we focused on methods that could be fast
and have been previously successful for image sequences captured in visible-light.

Analysis performed for detecting and tracking nostril region showed that it is
possible to process one frame in less than 30 ms for all detectors [27.7 ms (Harris),
23.9 ms (ORB), 19.7 ms (SIFT), 27.6 ms (SURF)]. This high computational per-
formance is indicator for the assumption that analyzed methods could be used for
tracking nostril region in applications running in real-time. Moreover, accuracy of
tracking algorithm was also measured by calculating root mean squared error of
pixel intensities in tracked and fixed localization of nostril area. Almost in all cases
errors for tracked regions were smaller than corresponding not tracked area (for
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chosen movement, volunteer and method), what allowed for reliable feature
tracking. However, analyzed movements were rather small and achieved results are
only preliminary. Considering future work in this area, in order to ensure correct-
ness of results, algorithm should also be tested for more noticeable movements and
other disturbances. Furthermore, for reliable and efficient medical applications we
would like to track facial features without manual alignment, calibration or ini-
tialization. Therefore, a fully automatic system for detection, tracing and calculating
respiration rate parameters should be designed and implemented in future. Recently,
very small thermal cameras have been developed, so a system of this kind could use
them after embedding them into wearable devices, like smart glasses.

In this chapter we analyzed respiration rate estimators that can be used to pro-
cessed sequences of thermal images captured from small thermal camera modules
embedded or connected to smart glasses. After calibration of thermal camera
modules and using the algorithms to estimate pulse rate from video (recorded in
visible light) [68] additional vital signs can be estimated. This could allow obtaining
three the most important vital signs: body temperature, pulse rate and respiration
rate. Using the intelligent patient identification [68, 69] such data can be auto-
matically stored in the Hospital Information System [70] or other system for the
management of Electronic Health Records or Personal Health Records.
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