
Chapter 9
Circulation and Mixing in Steady-State
Models: Salt Wedge Estuary

Now that we have laid in the previous chapters the basic estuarine hydrodynamic
framework, let us present in the following chapters practical applications of the
analytical and numerical studies on the circulation in estuaries and its influence in
the distributions of properties concentration.

Among the characteristics to be analytically studied in the field of estuary
kinematics and dynamics, there are some which may be approximated using a
simple geometry and steady-state conditions, where the estuary can be theoretically
treated as a one or two-dimensional system. Natural estuarine channels usually
don’t have uniform transverse sections that may expand and contract in an irregular
manner; however, a common characteristic is that a channel’s length is much
greater than its width. With the aim of applying the concepts developed in the
equations of preceding chapters, steady-state analytical solutions for salt wedge,
partially mixed and vertical and laterally well-mixed estuaries will be presented in
the present and following chapters. With some approximations, these estuaries may
have their circulation and salinity stratification simulated with relatively simple
analytical models. Although these solutions will only simulate steady-state condi-
tions, and residual motions and salinity stratifications will be obtained, they are of
great practical importance because: (i) their solutions may indicate if the estuary is
flushing out or not undesirable substances that are discharged into estuaries; and,
(ii) may be used to validate non-steady state numeric solutions.

The general kinematic and dynamic characteristics of estuaries classified as salt
wedge (types A or 4) by Pritchard (1955), Hansen and Rattray (1966) were pre-
sented in Chap. 3. They were studied in laboratory experiments, combining one and
two-dimensional models by several investigators such as Farmer and Morgan
(1953), Sanders et al. (1953). The water masses in the upper layers of salt wedge
estuaries have very low salinities, and their seaward velocities are much higher than
the compensating landward motion below a sharp picnocline; in other words, as
stated by Geyer and Farmer (1989), a salt-wedge occurs in an estuary when the
river discharge is adequate to maintain a strong gradient between fresh and salt
water against the mixing tendency of tide and wind-induced turbulence.
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Due to the continuous seaward motion in the surface layer, the velocity shear at
the picnocline interface between fresh and salt water produces an entrapment of
some salt water from the wedge into the upper fresh water layer. In this situation,
there is little or no mixing of fresh water into the salt wedge. The salt water volume
in the upper layer subsequently increases seaward, and a slow upstream movement
of water in the salt wedge occurs to compensate for the upward loss into the fresh
water.

The water mass in a characteristic salt-wedge has low stratification, with salinity
very close to the one of the coastal water and a sharp halocline is between the
transition of the lower (salt-wedge) and upper layers. The circulation continuity is
provided by the entrainment phenomenon generating slow ascending vertical
motions across the picnocline due to oscillating internal waves. This type of estuary
is usually dominated by the fresh water discharge, and eddy diffusion may only be
important in the surface layer above the halocline. In steady-state conditions and
with lateral homogeneity, the dominant terms in the salt-balance equation are the
vertical and longitudinal advection, and the diffusive longitudinal term can be
disregarded. In the upper layer, the eddy diffusion term may also be taken into
account under the influence of strong winds.

In these estuaries, the upper layer above the halocline has its velocity mainly
forced by the fresh water discharge. A classical example is the South Pass in the
delta of the Mississippi river (Mississippi, USA), which maintains nearly
steady-state conditions characteristics over several tidal cycles; it may however, be
significantly influenced by tidal motions, causing considerable variation in the
vertical structure of salinity and velocity within a tidal cycle (Wright 1970).
Another example is the seaward reaches of the Itajai-açu river (Santa Catarina,
Brazil), which is forced by micro-tides and has been classified as a salt wedge
estuary in conditions where river discharges around 300 m3 s−1, and the saline
wedge is displaced landward up to 18 km from its mouth. However, when the river
discharge reaches values up to 1000 m3 s−1, the seawater is completely evacuated
through its mouth (Döbereiner 1985, quoted in Schettini (2002)). The salt-wedge
extension in the estuarine plume was empirically correlated with the river discharge,
presenting an exponential decay with the increase in river discharge (Schettini and
Truccolo 1999).

Under the assumption of nearly steady-state conditions, the landward salt-wedge
propagation varies mainly at a seasonal time scale, forced by the river discharge.
The theory which will be developed in this chapter can’t be generalized for all salt
wedge estuaries, and holds only for an arrested salt wedge estuaries. According to
classical authors Farmer and Morgan (1953), Schijf and Schonfeld (1963) (quoted
in Geyer and Farmer (1989)); the designation arrested salt-wedge for this estuary
type refers to a regime in which the pressure gradient force is balanced by inertial
and frictional forces within the estuary, and its interfacial structure attains a
quasi-steady-state configuration.

In the literature we find studies of salt wedge estuaries forced by meso-tides, for
example, the Fraser river estuary (Vancouver, Canada). In this river, the salt-wedge
varies along the estuary during the tidal cycle towards an equilibrium condition
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against the free surface slope variations. The advancing of the salt-wedge front
position vs. time, provided by tracking with echo-sounding images for three sets of
observations, indicated that the advance of salt-wedge intrusion length varied from
9 to 18 km for high and low river discharge, respectively (Geyer 1986). The
interaction of the tidal flow with the density-driven motion of the salt-wedge, during
different phases of the tide and river discharge has been clearly illustrated by Geyer
and Farmer (1989), showing that the highly stratified vertical salinity structure,
existing at high and low tides, becomes poorly stratified at the end of the flood tide,
and the salt-wedge water remains under the strong picnocline at the estuary mouth.

In salt wedge estuaries, which will be analytically investigated in this chapter,
the physical process of momentum exchanges in the fresh-salt water interface will
be simulated by a shear named interfacial stress. This stress, which is force per unit
of area, is mainly provided by the river input, and causes a seaward ascending
inclination of the salt-wedge (Fig. 9.1). In this figure, we may observe that the
longitudinal salinity gradients in the layers above and below the halocline are
absent or very low, and in the theoretical treatment of the salt-wedge its dynamical
consequences will be disregarded. This figure also indicates the displacement of the
salt wedge front position due to the influence of the river discharge variation.

Fig. 9.1 Salinity stratification in a salt wedge estuary in conditions of high (a) and low (b) river
discharge in the river Duwamish (Seattle, USA) (according to Dawson and Tilley 1972)
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9.1 Hypothesis and Theoretical Formulation

A salt wedge estuary is schematically represented in Fig. 9.2, with the referential
system and the adopted notation of properties and variables in the upper and lower
layers indicated with indices 1 and 2, respectively. In this development, the estuary
is assumed to be narrow and laterally homogeneous, and the Oz will be oriented in
the gravity acceleration direction, which requires a signal change in the mathe-
matical expression of the longitudinal component of the barotropic gradient pres-
sure force (Eq. 8.18a,b, Chap. 8), as its previous orientation was against the gravity
acceleration. It should be observed that ∂η/∂x is negative and the interface slopes in
the landward direction.

Taking into account the Oxz axis orientation, the gradient pressure force has the
following expression:
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The first theoretical investigations to calculate the vertical velocity profile and
the salt intrusion length of the salt wedge estuary, using the continuity and motion
equations in the upper and lower layers, were developed by Farmer and Morgan
(1953), Sanders et al. (1953), followed by Shi-Igai and Sawamoto (1969). In these
studies, the main results of which are described in this chapter, the motion attains a

Fig. 9.2 Schematic diagram of a salt wedge estuary. Variables and properties used in the
theoretical development for the upper and lower layers are indicated by indices 1 and 2,
respectively. η1,2, u1,2, h1,2 are the slopes of the free surface and the interface in relation to the
surface level, the velocities, and the layers thicknesses, respectively (adapted from Farmer and
Morgan 1953). Xc is the salt-wedge intrusion length and hm is its height at the estuary mouth
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quasi-steady condition, in which the baroclinic pressure gradient is balanced by
inertial and frictional forces within the estuary. In these two-layer motions, the
following simplifying hypotheses were adopted:

• Simple geometry: width (B) and depth (H0) constants;
• No vertical mixing between the upper and lower layers;
• The u-velocity component in the upper layer is generated by the river discharge;
• The wind stress on the surface is disregarded;
• The interfacial shear stress fi fi½ � ¼ ½ML�1T�2�, on the halocline is proportional

to the square of the upper layer velocity, and the proportionality constant, k,
which is non-dimensional,

fi ¼ kq1u
2
1; ð9:2Þ

• The velocity in the salt wedge, u2, is much less than in the upper layer,
u2\\u1;

• The longitudinal acceleration due to the advection, u2 @u2
@x ; and the volume

transport in the salt-wedge, Q2; Q2½ � ¼ ½L3T�1� will be disregarded (Q2 � Qf).

The comparison of the interfacial shear stress fi (Eq. 9.2) with the bottom shear
stress ðsBxÞ of a one-dimensional estuarine channel (Eq. 8.31, Chap. 8) indicates
that the coefficient, k, corresponds to the ratio of the gravity acceleration to the
square of the Chézy coefficient ðg=C2

yÞ.
The theoretical development of this analytical model has the following objec-

tives: (i) Calculate the vertical velocity profile u = u(x, z), the free surface and the
halocline interface slopes dg1 xð Þ=dx and dg2 xð Þ=dx; respectively
(ii) Determination of the salt-wedge intrusion length, XC, (Fig. 9.2) and the energy
dissipation due to the interfacial shear stress and viscosity. To achieve this, the
hydrodynamics formulation must take into account the mass and momentum con-
servation equations, which must be adequately simplified and solved in order to
satisfy the specified boundary and integral boundary conditions.

9.2 Circulation and Salt-Wedge Intrusion

9.2.1 The Upper Layer

The one-dimensional equations of motion and the continuity (Eqs. 8.67 and 8.68,
Chap. 8) are used to formulate the hydrodynamics of the upper layer which,
according to the simplifying conditions, are:

@ðuuA)
@x

¼ �A
q
@p
@x

� 1
q
sBxPm; ð9:3Þ
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and

@ðuA)
@x

¼ 0: ð9:4Þ

The simplified equation of the state of seawater (Eq. 8.71, Chap. 8) will provide
the hydrodynamic closure of this equation system,

qðS) ¼ q0ð1þ bS): ð9:5Þ

The salinity in the upper, S1 � 0, and lower layers, S2 = S0, will be taken as
constants, and the salinity at the coastal region, S0, is the only salt source for the
estuarine water mass formation; from the equation of state of seawater Eq. (9.5), it
follows that the density in these layers are constants and q1\q2.

For the layer above the halocline, the last term on the right-hand-side of
Eq. (9.3), representing the formulation of the bottom energy dissipation, will as a
first approximation be substituted by the interfacial shear stress (Eq. 9.2). As the
estuary width (B) is usually much greater than its depth B � H0ð Þ; the wet
perimeter, Pm, in Eq. (9.3) may be approximated by its width (Pm = B). As in
Eqs. (9.3) and (9.4), the partial derivation may be changed to the total derivation,
because x is only independent variable in these equations, and they may be
rewritten as:

d(uuA)
dx

¼ gA
@g
@x

� Bku2; ð9:6Þ

and

d(uA)
dx

¼ 0: ð9:7Þ

Under the assumption that k is a known coefficient, this equation system is
closed and the two unknowns, u = u(x) and η = η(x), may be calculated.

Applying these equations to the upper layer (1) where g1 xð Þ� z�g2ðxÞ and
h1 xð Þ ¼ g2 xð Þ � g1 xð Þ; and taking into account the particular geometry of the
problem, the continuity equation is simplified to:

d[Bu1ðx)h1ðx)]
dx

¼ 0: ð9:8Þ

In this equation, h1(x) is the thickness of the upper layer, and it is possible to
calculate the uniform velocity field, u1 = u1(x), integrating from the estuary head
(x = 0) seaward up to a generic position x,
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Bu1ðx)h1ðx)� Qf ¼ 0; ð9:9Þ

and

u1ðx) ¼ Qf

Bh1ðx) : ð9:10Þ

This last result indicates that if the halocline or picnocline depth h1(x) is known,
the cross sectional mean velocity, u1 ¼ u1 xð Þ, in the upper layer may be calculated.

As B = const. Equation (9.8) may be rewritten as

d[u1ðx)h1ðx)]
dx

¼ dQ1ðx)
dx

¼ 0; ð9:11Þ

and the product of the mean velocity in the upper layer by the halocline depth,
Q1(x), with dimension Q1½ � ¼ ½L2T�1�; is independent of the longitudinal distance
(x), and this value is equal to Qf/B, or

u1ðx)h1ðx) ¼
Qf

B
; or u1ðx) ¼ Qf

Bh1ðx) : ð9:12Þ

With this procedure applied to the salt-wedge, it follows the trivial result due to
the hypothesis that the volume transport in the lower layer is zero

Bu2ðx)h2ðx) ¼ Q2 ¼ 0; ð9:13Þ

where h2(x) is the lower layer thickness. This result indicates that the mean depth
velocity, �u2ðxÞ, is equal to zero. However, the salt-wedge presents a vertical
velocity gradient (vertical shear), whose profile u2 = u2(z) will be determined
during this theoretical development.

Now, let us continue, applying the equation of motion (9.6) to the upper layer:

d[u1ðx)u1ðx)Bh1ðx)]
dx

¼ gBh1ðx)
dg1ðxÞ
dx

� kBu21ðx): ð9:14Þ

Calculating the derivative of the first term of this equation, it follows that:

u1ðx) d[u1ðx)h1ðx)]dx
þ u1ðx)h1ðx)

du1ðx)
dx

¼ gh1ðx)
dg1ðx)
dx

� ku21ðx), ð9:15Þ

and combining with Eq. (9.11), gives

u1ðx)h1ðx)
du1ðx)
dx

¼ gh1ðx)
dg1ðx)
dx

� ku21ðx): ð9:16Þ
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The only unknown in this equation is the slope of the free surface η1 = η1(x),
because the velocity u1 ¼ u1 xð Þ has already been determined by the Eq. (9.10).
Hence, the unknown g1 ¼ g1 xð Þ may be calculated by the following expression:

g1ðx) ¼
k
g

Zx

0

u21ðx)
h1ðx) dxþ

1
2g

½u21ðx)� u21ð0Þ�; ð9:17Þ

or, taking into account the u1(x) solution (Eq. 9.10), where u1 0ð Þ ¼ Qf=BH0 ¼ uf ;
the solution may also be expressed as:

g1ðx) ¼
kQ2

f

gB2

Zx

0

1

h31ðx)
dxþ 1

2g
½u21ðx)� u2f �: ð9:18Þ

As with Eqs. (9.10) and (9.18), it is possible to calculate u1(x) and η1(x), and
thus the hydrodynamic problem for the upper layer of the salt wedge estuary is
solved.

In the following development, let us calculate the relationship between the first
derivatives of the free surface slope ðdg1=dxÞ and that of the salt-wedge ðdg2=dxÞ,
which will be used later to calculate the salt-wedge intrusion length. Thus, the first
term of Eq. (9.16) may be combined with Eq. (9.10), resulting in:

u1ðx)h1ðx)
d[u1ðx)]

dx
¼ u1ðx)h1ðx)

d
dx

½ Qf

Bh1ðx)� ¼ � ½u1ðx)Qf �
Bh(x)1

d[(h1ðx)]
dx

; ð9:19Þ

or

� u1ðx)Qf

Bh1ðx) ½
dg2ðx)
dx

� dg1ðx)
dx

� ¼ �u21ðx)[
dg2ðx)
dx

� dg1ðx)
dx

�: ð9:20Þ

Combining Eqs. (9.20) and (9.16) and rearranging its terms, it follows that:

½gh1ðx)
u21ðx)

� 1�½dg1ðx)
dx

� dg2ðx)
dx

� ¼ k: ð9:21Þ

Taking into account that

½gh1ðx)
u21ðx)

� � 1; ð9:22Þ

Equation (9.21) is reduced to the following relationship between the first
derivatives of the sea surface slope η1(x) and η2(x):
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gh1ðx)
u21ðx)

½dg1ðx)
dx

� þ dg2ðx)
dx

¼ k: ð9:23Þ

With Eq. (9.10), it is possible to calculate the volume transport per unit width of
the cross-section (Q1),

Qf

B
¼ Q1; ð9:24Þ

which is independent of the longitudinal distance x (Eq. 9.11). Its introduction into
the Eq. (9.23) is convenient, and to achieve this, it is necessary to multiply and
divide the factor dg1 xð Þ=dx by the square of the depth of the upper layer, h21ðx):
Then, according to Officer (1976) the result is:

gh31ðx)
Q2

1

ðdg1ðx)
dx

Þþ dg2ðx)
dx

¼ k: ð9:25Þ

All terms on the left-hand-side of this equation are dimensionless.

9.2.2 The Lower Layer (Salt-Wedge)

According to the simplified physics adopted for this estuary, in the salt-wedge
ðg2 � z�g1Þ which has a thickness equal to h2(x), the velocity u2 is much less than
that of the upper layer (u2 � u1), and the advective acceleration may be disre-
garded. This layer characteristic has already been demonstrated in the model that
used only the continuity and salt conservation equations (Eqs. 7.43 and 7.44),
resulting in constant values of the longitudinal velocity component in the upper
layer of the salt wedge estuary, and u1 > u2 (Fig. 7.3, Chap. 7). However, the
motion direction in the halocline is reverted due to the entrainment and the bottom
friction, and it is expected that this velocity component, although with low inten-
sity, should present a vertical shear ð@u2=@z 6¼ 0Þ. Thus, at any given longitudinal
distance this velocity (u2) is dependent on the depth. According to the longitudinal
velocity component of the bi-dimensional equation of motion (equation, 8.57a,
Chap. 8), the hydrodynamic equilibrium is reduced to the balance of the barotropic
pressure gradient generated by the interface slopes η1 and η2 and the frictional
force,

1
q2

@p2
@x

¼ @

@z
½Nz

@u2ðx,z)
@z

�; ð9:26Þ

This equation is a simplified formulation of the bi-dimensional equation of
motion in the Oxz plane, whose gradient pressure force only has the barotropic
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component, because the density (q2) at this layer is independent of the longitudinal
distance. According to the linear equation of state (Eq. 9.5), knowing the salinity,
the value of which may be obtained from experimental results, the density in the
lower layer (q2) is also known. Under the assumption that the kinematic eddy
viscosity coefficient (Nz) is given, the only unknown in the Eq. (9.26) is the
velocity in the salt-wedge, u2 ¼ u2 x; zð Þ, which may be calculate as follows.

The pressure p2 at a depth z of the salt-wedge (Fig. 9.2) may be calculated by:

p2ðx,z) ¼ gq1ðg2 � g1Þþ gq2ðz� g2Þ: ð9:27Þ

By derivation of this equation in relation to the longitudinal distance (x), it
follows that the expression for the barotropic pressure gradient is:

@p2
@x

¼ �gq1½
@g1ðx)
dx

� � g(q2 � q1Þ½
dg2ðx)
dx

�; ð9:28Þ

which is independent of the depth and is dependent only on the slopes of the free
surface and the salt-wedge.

Proceeding with the integration of Eq. (9.26) in the vertical direction of the
salt-wedge, and taking into account that the first term is the barotropic pressure
gradient yields,

@p2
@x

½g3ðx)� g2ðx)] ¼ q2Nz½@u2ðx, z)
@z

jz¼g3
� @u2ðx, z)

@z
jz¼g2

�: ð9:29Þ

Remembering that h2 xð Þ ¼ g3 xð Þ � g2 xð Þ is the salt-wedge thickness, as indi-
cated Fig. 9.2, and the two terms of its right member are the components of the
shear stress acting at the bottom (z = η3) and surface (z = η2) of the salt wedge, this
equation may be rewritten as:

h2ðx) @p2
@x

¼ szxjz¼g3
� szxjz¼g2

: ð9:30Þ

Combining this equation with Eq. (9.28) we have

�gh2ðx)[q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ szxjz¼g3
� szxjz¼g2

: ð9:31Þ

In this equation, the shear stress on the superior interface of the salt-wedge is, by
hypothesis, equal to the interfacial stress (fi ¼ kq1u

2
1). Then,

szxjz¼g3
¼ szxðg2Þ ¼ fi ¼ kq1u

2
1ðx), ð9:32Þ

and the Eq. (9.31) may be rewritten as
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�gh2ðx)[q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ szxjz¼g3
� kq1u

2
1ðx): ð9:33Þ

As the term on the left-hand side of Eq. (9.26) is the barotropic pressure gra-
dient, the velocity may be approximated by the following quadratic expression
(Officer 1976): u2 x; zð Þ ¼ aþ bzþ cz2. The coefficients of this expression may be
determined by applying the boundary and integral boundary conditions, and one of
these coefficients will be function of x. In this development, the Oz axis will have
its origin at the bottom and will be oriented upward, against the gravity accelera-
tion. The new ordinate will be denoted by ðzÞ; it will be related to the orientation of
the first vertical variable (z) orientation by the relation z ¼ H0 � z, and at the
bottom z = H0 and z ¼ 0. With the introduction of this new variable, the vertical
velocity profile in the salt-wedge will be given by

u2ðx, zÞ ¼ aþ bzþ c(zÞ2; ð9:34Þ

and the coefficients a, b and c may be calculated with the following boundary and
integral boundary conditions:

u2ðx, zÞjz¼0 ¼ 0; ð9:35Þ

u2ðx, zÞjz¼h2 ¼ u1ðx), ð9:36Þ

and

Zh2

0

u2ðx, zÞdz ¼ Q2 ¼ 0: ð9:37Þ

The latter condition is due to the hypothesis that the net volume transport in the
salt-wedge is zero.

Applying the boundary condition (9.35), it follows immediately that a = 0, and
for the remaining conditions, (9.36) and (9.37), the result is an algebraic system of
two equations and two unknowns b and c,

u1 ¼ bh2 þ ch22; ð9:38Þ

and

1
2
bh22 þ

1
3
ch32 ¼ 0: ð9:39Þ

This system of equations may be solved, giving the results: b = -2u1/h2 and
c ¼ 3u1=h22, and the vertical velocity profile u2 = u2(x, z) has the following
expression:
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u2ðx, zÞ ¼ � 2u1
h2

zþ 3u1
h22

z2; ð9:40Þ

or, returning to the z variable

u2ðx, z) ¼ � 2u1
h2

ðH0 � z)þ 3u1
h22

ðH0 � z)2: ð9:41Þ

Analysis of these solutions indicates that the velocity is zero at z ¼ ð2=3Þh2 and
z ¼ H0 - ð2=3Þh2, and there is a minimum point in this vertical velocity profile at
depth z ¼ ð1=3Þh2 or z ¼ H0 � ð1=3Þh2. At this depth, the minimum velocity at the
salt-wedge is u2 ¼ �ð1=3Þuf .

9.2.3 Vertical Velocity Profile

The combined solutions of Eqs. (9.10) and (9.41), used to calculate the velocities
u1 = u1(x) and u2 = u2(x,z) in the upper and lower layers of the halocline,
respectively, are the theoretical solutions of the vertical velocity profile in the salt
wedge estuary, which are driven by the fresh water discharge and the barotropic
influences of the free surface slope and salt-wedge interface with the river dis-
charge, respectively. The energy dissipating forces, which counteract the river
discharge and baroclinic pressure gradient, are the vertical friction, due to the
viscosity, and the interfacial and bottom shear stresses.

According to classical investigations cited in the article of Geyer and Farmer
(1989), the designation arrested salt wedge for this estuary refers to a regime in
which the baroclinic pressure gradient is balanced by inertial and frictional forces
within the estuary, and its interfacial structure attains a quasi-steady configuration.
A practical example of this theory will be presented at the end of this chapter.

9.2.4 Salt-Wedge Intrusion Length

Knowing the analytical expression of the vertical velocity profile in the salt wedge
estuary (Eqs. 9.40 or 9.41), it is possible to calculate the frictional stresses,
ðszxjz¼g3

Þ and ðszxjz¼g2
Þ at the depths z = H0 (or z ¼ 0) and z = η2 (or z ¼ h2),

respectively,

szxjz¼g3
¼ szxðg3Þ ¼ �q2Nz

@u2
@z

jz¼0 ¼
2q2Nzu1

h2
; ð9:42Þ
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and

szxjz¼g2
¼ szxðg2Þ ¼ �q2Nz

@u2
@z

jZ¼h2
¼ � 4q2Nzu1

h2
: ð9:43Þ

Combining these equations and taking into account that the first term on the
right-hand-side of Eq. (9.43) is the interfacial frictional shear that may be
approximated by Eq. 9.32, it follows that,

szxjz¼0 ¼ � 1
2
szxjz¼h2 ¼

1
2
fi ¼ 1

2
q1ku

2
1: ð9:44Þ

By subtracting Eqs. (9.42) and (9.43),

szxjz¼g3
� szxjz¼g2

¼ 6q2Nzu1
h2

: ð9:45Þ

In this equation, the quantity szxjz¼g2
= szxðg2Þ is equal to the interfacial shear

stress (fi), and the following relationship exists between the coefficients k and the
kinematic eddy viscosity coefficient, Nz,

Nz ¼ k(
q1h2u1
4q2

Þ; ð9:46Þ

and substituting this result into Eq. (9.45),

szxjz¼g3
� szxjz¼g2

¼ 3
2
kq1u

2
1: ð9:47Þ

Finally, combining this result with Eq. (9.31) gives the following relationship of
the derivatives of sea surface (dη1/dx) and salt-wedge (dη2/dx), slopes:

�gh2½q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ 3
2
q1ku

2
1: ð9:48Þ

As an artifice, multiplying the term on the left-hand-side by the ratio h21=h
2
1 and

dividing both equation members by q1u
2
1 and using the approximation q1 � q2,

yields

� gh21h2
Q2

1

½dg1ðx)
dx

þ d
dg2ðx)
dx

� ¼ 3
2
k, ð9:49Þ

where (u1h1)
2 = Q2

1 is the square value of the river discharge per unit width, and the
quantity d is defined by
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d ¼ q2 � q1
q2

¼ Dq
q2

: ð9:50Þ

Equations (9.25) and (9.49) are components of an algebraic system with two
unknowns, dg1 xð Þ=dx and dg2 xð Þ=dx. Then, for the second unknown the result is;

dg2ðx)
dx

½h2ðx)
h1ðx)�

gh21ðx)dh2ðx)
Q2

1

� ¼ k[
h2ðx)
h1ðx) þ

3
2
�: ð9:51Þ

A trivial solution of this equation is to consider that the interfacial shear stress
(fi ¼ kq1u

2
1) is equal to zero, which may be simulated with k = 0. However, for a

salt-wedge occurrence (k 6¼0) the Eq. (9.51) may be solved for dη2/dx and inte-
grated to calculate the unknown, η2 = η2(x),

g2ðx) ¼
Zx

0

f
k[ h2ðx)
h1ðx) þ

3
2�

½h2ðx)
h1ðx)�

g0h2
1ðx)h2ðx)
Q2

1

�
g dx: ð9:52Þ

As the main objective of this topic is to calculate the salt-wedge intrusion length,
Xc, Eq. (9.51) will be used for this purpose. As the ordinate η3 may be taken as a
constant, let us apply the approximation,

d[h2ðx)]
dx

¼ � d[g2ðx)]
dx

; ð9:53Þ

and combining this with Eq. (9.51), factoring in the first term by the ratio h2/h1, and
rearranging the terms, we have,

h2ðx)[1� g0h31ðx)
Q2

1

� dh2ðx)
dx

¼ �k[h2ðx)þ
3h1ðx)

2
�; ð9:54Þ

and analysis of the salt wedge estuary (Fig. 9.2) showed the following
relationships:

H0 ¼ h1 þ h2 þg1 and h1 þ h2 � g1: ð9:55Þ

Thus, Eq. (9.54) may be rewritten as a function of the non-dimensional
salt-wedge height H xð Þ ¼ h2 xð Þ=H0, which varies in the interval 0 � H(x) < 1,
and the differential dh2(x) is

dh2ðx) ¼ H0dH(x); ð9:56Þ

and combined with the relationship (9.55) the initial solution is:
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H(x)[1� g0H3
0½1� H(x)]3

Q2
1

� dH(x)
dx

¼ � k[3� H(x)]
2H0

: ð9:57Þ

Considering the ratio

ð Q2
1

g0H3
0

Þ ¼ c; ð9:58Þ

which may be considered constant, because in the hypothesis of a steady-state
condition the fresh water (Qf) is also constant, Eq. (9.57) can be rewritten as,

H(x)f ½1� H(x)]3 � c
c

g dH(x)
dx

¼ k
½3� H(x)]

2H0
: ð9:59Þ

This equation is an ordinary differential equation with separable variables which
may be integrated from the landward limit of the salt-wedge, x = 0, up to a seaward
longitudinal position, x,

ð kc
2H0

Þx ¼
ZH

0

H(x)[1� H(x)]3 � cH(x)
½3� H(x)]

dH: ð9:60Þ

As a case limit for this result, we may observe that for x ! 0, implies that H
(x) ! 0, because by definition H xð Þ ¼ h2 xð Þ=H0, and h2 0ð Þ ¼ 0 at the interior
limit of the salt-wedge (Fig. 9.2).

Developing the algebraic expression of the integrand in Eq. (9.60), and using the
additive propriety of integrals yields:

ð kc
2H0

Þx ¼ ð1� cÞ
ZH

0

f H(x)
½3� H(x)]

g dH

� 3
ZH

0

f H2ðx)
½3� H(x)]

gdHþ 3
ZH

0

f H3 x)ð Þ
½3� H(x)]

g dH

�
ZH

0

f H4ðx)
½3� H(x)]

g dH: ð9:61Þ

Taking into account the following algebraic equalities:

H2ðx)
½3� H(x)]

¼ �H(x)þ 3
H(x)

½3� H(x)]
; ð9:62Þ
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H3ðx)
½3� H(x)]

¼ �H2ðx)� 3H(x)þ 9
H(x)

½3� H(x)]
; ð9:63Þ

and

H4ðx)
½3� H(x)]

¼ �H3ðx)� 3H2ðx)� 9H(x)þ 27
H(x)

½3� H(x)]
: ð9:64Þ

Substituting them into the integrands of the lasts three terms of the
right-hand-side of expression (9.61) and simplifying the result, we have:

kc
2H0

x ¼ �ðc� 8Þ
ZH

0

f H(x)
½3� H(x)]

g dHþ 3
ZH

0

H(x)dHþ
ZH

0

H3ðx)dH: ð9:65Þ

The first term of the right-hand-side of this equation may be easily integrate
remembering that its indefinite integral is given by (Granville et al. 1956),

Z
H

ð3� H)
dH ¼ 3� H� 3ln(3� H): ð9:66Þ

The integration of the second and third terms is immediate, and follow the
relationship between the longitudinal distance, x, and the non-dimensional
salt-wedge height:

kc
2H0

x ¼ 3
2
H2ðx)þ 1

4
H4ðx)þðcþ 8Þf 3ln[

3� H(x)
3

� þH(x)g : ð9:67Þ

Equation (9.58), which defines the quantity c, is a function of the river dis-
charge, mass stratification and the estuary depth. As Q1 ¼ u1 0ð ÞH0 ¼ ufH0 at the
estuary head, c may be expressed as:

c ¼ u2f
g0H0

¼ u2f
g Dq

q2
H0

: ð9:68Þ

This dimensionless number is equal to the square of the densimetric Froude
number (c = Fm), defined in the Chap. 2 (Eq. 2.39). This number has been
investigated by Farmer and Morgan (1953), who simulated the circulation in salt
wedge estuaries and observed that this number converges to 1 (Fm!1) in the
transition of the fresh water flow to the salt water reservoir. In the salt wedge
estuary, this number may be estimated using the following data: g = 10 ms−2,
uf = 0.1 ms−1, Dq/q2 = 3.0 � 10−4 and H0 = 10 m, resulting in c = 0.3. As
g\1 ! Fm\1, this indicates a subcritical vertical stratification which is
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characteristic of highly stratified estuaries. Usually the parameter c � 8 and may
be disregarded in the last term of Eq. (9.67), which may be simplified for praticality
to:

kc
2H0

x ¼ 3
2
H2ðx)þ 1

4
H4ðx)þ 8f 3ln[

3� H(x)
3

� þH(x)g : ð9:69Þ

To calculate the salt-wedge intrusion length (Xc), let us define its
non-dimensional depth at the estuary mouth as Hm ¼ hm=H0 (Fig. 9.2), which can
be obtained with observational data. Then, if the depth H ! Hm in the second
member of Eq. (9.69), the generic distance x of the first member approaches Xc,
and this may be calculated by:

kc
2H0

Xc ¼ 3
2
H2

m þ 1
4
H4

m þ 8f 3ln[
3� Hm

3
� þHmg : ð9:70Þ

Solving this equation for the salt-wedge intrusion length, Xc, it follows that:

Xc ¼ 2
g0H2

0

ku2f
½3
2
H2

m þ 1
4
H4

m þ 8f 3ln[
ð3� HmÞ

3
� þHmg : ð9:71Þ

This result indicates that Xc is directly proportional to the square of the estuary
depth ðH2

0Þ, and inversely proportional to the coefficient of interfacial frictional
shear (k) and the square of the velocity generated by the river discharge (uf).
Besides the seasonal variation of uf, its input in the estuary may be the altered by
utilization of river water in agriculture, industrial and for domestic use, interfering
with the salt-wedge intrusion length. The estuarine channel depth (H0) may
decrease due to sedimentation processes and may be modified by dredging.
Consequently, the theoretical results (Eq. 9.71) clearly indicate that human inter-
ference may have anomalous influences on this natural environment.

The salt-wedge configuration can be conveniently analysed through its
non-dimensional formulation, which may be obtained by the ratio of Eqs. (9.69)
and (9.70),

x
Xc

¼ ½H
2ðx)
Hm

�:f
3
2 þ H2ðx)

4 þ 8
H2ðx) ½3ln(

3�H(x)
3 ÞþH(x)]

3
2 þ H2

m
4 þ 8

H2
m

½3ln( 3�Hm
3 ÞþHm�

g : ð9:72Þ

From this solution, we have the following limiting cases:

• When H ¼ Hm ! x=Xc ¼ 1; and
• For H ¼ 0 ! x=Xc ¼ 0.

These results are equivalent to the simplest analytical expressions obtained by
Farmer and Morgan (1953); Officer (1976) for determination of the steady-state
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configuration of the salt-wedge. Analysis of Eq. (9.72) indicates that there will be
similarities in the salt wedge configurations for different estuaries. These similarities
are due to the fact that when the interfacial Froude number is less than one, the
salt-wedge configuration is independent of the water mass salinity in the coastal sea
and of the velocity generated by the river discharge. The non-dimensional
salt-wedge configuration deduced by Farmer & Morgan (op. cit), with the notation
adapted to that used in this chapter, is

x
Xc

¼ ðH(x)
Hm

Þ2½3� 2ðH(x)
Hm

Þ�: ð9:73Þ

This analytical solution was compared to observational data of the South Pass of
the Mississippi river delta (Mississippi, USA), and to laboratory experiments, with
the results found to be in close agreement (Fig. 9.3).

The non-dimensional salt-wedge configuration of the South Pass (Mississippi
river) was also simulated by Wright (1970), using the Eq. (9.73) and the following
quantities: H0 = 11.5 m, hm = 7.3 m and Hm = 0.63. Taking h = 0.0; 0.05; 0.1;
0.2; 0.3; 0.4; 0.5 and 0.6, the following values were obtained for the
non-dimensional ratio x/Xc = 0.0; 0.02; 0.08; 0.27; 0.49; 0.70; 0.88 and 1.0,
respectively. The results of the correlation, H/Hm, as a function of the
non-dimensional distance, x/Xc, are shown comparatively in Fig. 9.3 (black points),
and are almost coincident with the classical results of Farmer and Morgan (1953),
with only a small deviation near the estuary mouth. In this figure, it is also possible

Fig. 9.3 Non-dimensional salt-wedge configuration. The continuous line is the theoretical result
obtained with the Eq. (9.73). Observational data from the South Pass of the Mississippi river, and
experimental laboratory data are indicated by o and x, respectively (according to Farmer and
Morgan, 1953). Black points • were introduced to indicate theoretical results calculated with
Equation (9.74)
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to observe that for small values of the non-dimensional depth, that is, in the vicinity
of the interior salt-wedge limit, the non-dimensional profile is approximately
convex, gradually becoming linear in the medium portion of the wedge and, finally,
slightly concave in the proximity of the estuary mouth.

This theoretical model has been generalized by Rattray and Mitsuda (1974) in
order to include the bottom topography, with its declivity and the bottom friction.
Also, in the theoretical development of the upper layer, a simplified equation of
motion was used, which included the advective acceleration. To analytically for-
mulate the motion in the lower layer (salt-wedge), several approximations from the
classical articles also were used.

A theory of the density current in a stratified two-layer estuary flow with
complete vertical mixing in the upper layer was developed by Prandle (1985). This
theory was extended to the special case of a channel with a flat bed, constant
breadth and depth. The theoretical result was further simplified, neglecting some
undesirable effects, and an estimate of the salt-wedge intrusion length, Llength, was
calculated by:

Llength ¼ 0:26
gH2

0

kuu
Dq
q

¼ 0:26
g0H2

0

kuu
: ð9:74aÞ

This result was compared with the following expression of the intrusion length,
LA, of an arrested salt wedge estuary given by G. H. Keulegan in 1949 (quoted in
Ippen & Harleman, 1961), adding useful support to the above expression,

LA ¼ A
g5=4H9=4

0

u5=2
ðDq
q
Þ3=4: ð9:74bÞ

During the investigation of the dynamical interaction of the tidal flow with the
estuarine circulation of the Fraser river salt wedge estuary, which has a charac-
teristic two layer circulation, the internal or densimetric Froude number, G,
(Chap. 2, Eq. 2.39), has been expressed by Geyer and Farmer (1989) as:

G2 ¼ ðF1Þ2 þðF2Þ2; ð9:75Þ

where ðFiÞ2 ¼ u2i =g
0hi, (i = 1, 2), u1 and u2 are velocities in the upper and lower

layers, respectively, g’ is the reduced gravity, and h1 and h2 are the thicknesses of
the upper and lower layers, respectively. For the simplified two-layer flow of a salt
wedge estuary in a rectangular channel with a uniform depth-mean volume trans-
port and a quasi-steady interface elevation, the momentum equations for the upper
and lower layers where combined to form the following equation for density-driven
shear flow (Geyer and Farmer, op. cit.):
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@

@t
ðu2 � u1Þ ¼ �½ð1� G2Þg0 @g

@x
þ CDju2ju1

h2
þCEð 1h1 þ 1

h2
Þ u2 � u1j jðu2 � u1Þ�:

ð9:76Þ

In this equation, g ¼ g xð Þ is the interface elevation, CD and CE are the bottom
and interfacial drag coefficients, respectively; CE � CD unless the interface is
unstable. Since the interface slopes downward in the landward direction (Fig. 9.2),
the first term on the right-hand-side of Eq. (9.76) will be positive or negative for
subcritical and supercritical flows, respectively. The bottom drag term will be
positive or negative, depending on the direction of the near-bottom flow. The
magnitude of the interfacial drag term is difficult to ascertain, since it depends on
the stability of the interface; however, its sign will always be such that it acts in
opposition to the shear.

The solution of an arrested salt wedge is obtained when the left-hand-side of
Eq. (9.76) vanishes and the baroclinic pressure gradient balances the drag terms.
For this to occur, the flow must be subcritical, with the baroclinic pressure gradient
balancing the drag of the landward deep flow.

Studies of the time dependent mixing in salt wedge estuary were presented by
Partch and Smith (1978), analyzing measurements of salinity and velocity profiles,
taken at short time intervals in comparison to the tidal period, as well as direct
measurements of vertical turbulent salt flux and turbulent kinetic energy. Their
results indicated that the turbulent mixing through the density interface is highly
time dependent with the most intense mixing occurring at the maximum speed, and
when the flow approaches critical conditions.

9.3 Theory and Experiment

Exemplifying the theory that has been developed, let us perform an analysis of the
longitudinal salinity stratification presented in Fig. 9.1a. As previously indicated,
this experimental result, which was observed during a period of high river discharge
(Qf � 148 m3 s−1) in the salt wedge estuary of the Duwamish river (Seattle,
Washington, USA), was published by Dawson and Tilley (1972).

To adequate this experimental result to the presented theory, it is necessary to
approximate the estuary with a simple geometry, for example: the bottom with a
planel surface, with a mean depth of 10 m (H0 = 10 m) and a constant width
(B = 140 m, from hydrographic charts, Corps of Engineers 1973, quoted in Rattray
and Mitsuda 1974). From Fig. 9.1a, it is possible to estimate the salt-wedge
intrusion length as 104 m with a mean slope estimated as dη2/dx = 2.0 � 10−4

(approximately 1.0 m for a length of 5000 m). The fresh water velocity at the
estuary head is estimated as 0.10 ms−1. Another quantity which may be estimated
from the figure is the non-dimensional depth of the salt-wedge at the estuary mouth,
calculated by the ratio Hm = hm/H0 � 0.4 (hm = 4 m and H0 = 10.0 m). With this
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value, using Eq. (9.73), it is possible to calculate the non-dimensional configuration
of the salt wedge, which is similar to that presented in Fig. 9.3.

These results show that it is possible to have good agreement between values
obtained theoretically and experimentally, such as the salt-wedge intrusion length,
using a determined value for the interfacial friction coefficient, k. However, this
doesn’t represent proof of the hypothesis used in the theory, because k is a measure
of the eddy shear at the salt and fresh water interface, and its value varies not only
with different estuary conditions, but also from one estuary to the other (Farmer and
Morgan 1953; Rattray and Mitsuda 1974).

Let us continue to theoretically calculate the vertical velocity profile at the
landward position, x�7.8 km, in the salt wedge estuary (Fig. 9.1a). At this position,
the thicknesses of the upper and lower layers during high river discharge are
approximately h1 = 4.0 m, h2 = 6.0 m. Then, according to Eq. (9.10), the velocity
in the upper layer (0 � z � 4 m) is calculated by

u1ðx) ¼ uf ¼ Qf

Bh1ðx) ¼ 0:26ms�1:

The lower layer (salt-wedge) is delimited by the depth interval (4 m � z
10 m), and the theoretical vertical velocity profile is calculated by Eq. (9.41). Using
the values already determined for this profile, we have:

Fig. 9.4 a Theoretical vertical velocity profile in the salt wedge estuary of the Duwamish river.
b Experimental vertical salinity profile. The physical quantities necessary to calculate these
profiles were estimated from Fig. 9.1a
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u2ðx,z) ¼ �ð0:52
6

Þð10� z)þð0:78
36

Þð10� z)2;

or

u2ðx,z) ¼ �8:7x10�2ð10� z)þ 2:2x10�2ð10� z)2:

Composing the profiles, u1(x) and u2(x, z), in the upper (0 � z � 4 m) and
lower (10 m � z � 4 m) layers, we obtain the theoretical velocity profile in the
water column, as shown in Fig. 9.4a; this solution is represented graphically, with
the vertical salinity profile (Fig. 9.4b estimated from Fig. 9.1a. Figure 9.4a indicate
that above the halocline, the flow is seaward with constant velocity,
u1 xð Þ ¼ 0:26ms�1. In the salt-wedge, an accentuated decrease is observed in the
velocity, u2(x, z), and at 6 m depth the velocity is zero. For greater depths, the
motion is landward and reaches a velocity of �0:09ms�1. At the depth interval of
the salt-wedge the vertical velocity shear is forced by the barotropic pressure
gradient and the free surface slope, and due to the imposed boundary condition the
velocity at the bottom is zero.

As the theoretical velocity profile has been obtained with simplifying hypothesis,
it must be validated by comparison with experimental velocity profiles.
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