
Chapter 7
Hydrodynamic Formulation: Mass
and Salt Conservation Equations

When hydrographic properties and motions in an estuary have spatial and temporal
variation, they are termed as non-uniform and unsteady, as opposed to uniform and
in steady-state. In the previous chapter, salinity in the estuary was, by hypothesis, in
steady-state conditions in longitudinal segments during complete tidal cycles and at
high and low tidal conditions. However, estuaries are dynamic systems, and salinity
and current velocity vary in time and space from almost at rest (slack water) to
speeds of up to several meters per second, in estuaries forced by macro-tides. In
observational data analysis, it is usual to simulate steady-state conditions of
hydrographic properties and circulation by calculating mean values during a time
interval of one or more tidal cycles, under the assumption that the river discharge
remains constant during this time. Tidal co-oscillation is the main driving force of
the non-steady-state condition, however, in some situations other forces may also
be important, such as the abnormal storm surge due to wind shear stress acting on
the continental shelf.

The mathematical development of this chapter starts with the equation of mass
conservation, also named the continuity equation, which complements the equation
of motion, which will be studied in the next chapter. In practical applications it will
be necessary to assume as given the estuary geometry, the river discharge and the
initial and boundary conditions. For investigation of any hydrographic property, it
will also be necessary to use the corresponding conservation equation; in the case of
non-conservative properties, sources and sinks must also be specified.

For the application of the fundamental principles of Fluid Mechanics, it is
necessary to consider an infinitesimally small fluid sample. Usually this sample is
referred as a material element, or more often as a volume element. Another
assumption is that all variables which will represent physical properties (scalar or
vectorial, such as hydrographic properties or current velocity, respectively) are
continuous functions of space and time; in this way the mathematical rules of the
differential and integral calculus can be applied.
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7.1 State of a Volume Element

When the fluid is in motion, its properties (scalar or vector) are functions of space
(x, y, z) and time (t). Then, any property of the fluid, generically indicated by P, is
expressed by the function:

P ¼ Pðx; y; z; tÞ ¼ Pð r!; tÞ; ð7:1Þ

where r!¼ r!ðx; y; zÞ indicating the position vector of a small volume, dV, and x,
y and z being its coordinates in space.

Conceptually, this volume of fluid presents the characteristics of properties
associated with this elementary volume within a given water flow. According to
Symon (1957) and Gill (1982), if this element is at the position r! at the instant of
time t, its position in the space may be generically indicated by the vector position
r!¼ r!½xðtÞ; yðtÞ; zðtÞ� ¼ r!ðtÞ. Then, a generic property of the volume element is
expressed by the following functional relationship:

P ¼ P½xðtÞ; yðtÞ; zðtÞ; t� ¼ P½ r!ðtÞ; t�: ð7:2Þ

From this expression it follows that the total rate of variation (dP/dt) of the
property is,

dP
dt

¼ @P
@t

þ @P
@x

dx
dt

þ @P
@y

dy
dt

þ @P
@z

dz
dt

; ð7:3Þ

or

dP
dt

¼ @P
@t

þ d r!
dt

� rP; ð7:4Þ

where the symbol ∇ is the nabla operator, r ¼ ð @
@xÞ i

!þð @
@yÞ j

!þð @
@zÞ k

!
, and the

dot (•) indicates the scalar product. Equation (7.4) indicates that: (i) the rate at
which the property, P, is changing with time at a fixed point in space is the partial
derivative with respect to time (∂P/∂t), which is itself a function of x, y, z, and;
(ii) the rate at which the property, P, is changing with respect to a point moving

along with the fluid. Another component ðd r!
dt Þ is the variation of the volume

element’s position in space,

d r!
dt

¼ v!¼ v!ðu; v;wÞ ¼ v!ðx; y; z; tÞ; ð7:5Þ

where u = u(x, y, z, t), v = v(x, y, z, t) and w = w(x, y, z, t) are the velocity
components of the velocity vector in the coordinate axes Ox, Oy and Oz,
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respectively, and are functions of time (t). Then, the equation that defines the state
of a volume element, dV, of fluid is given by,

dP
dt

¼ @P
@t

þ v!�rP: ð7:6Þ

Thus, the total time variation of the property, P, is composed of the local
variation (∂P/∂t) and the variation due to the advection, which depends on the fluid
velocity and the property gradient ð v!�rPÞ. When the local variation is zero (∂P/
∂t = 0), the spatial property variation is considered to be in steady-state, and when
it has no spatial variation it is uniform.

To simplify the notation of equations, it is useful to define the total derivative
operator, d/dt, as:

d
dt

¼ @

@t
þ v!�r: ð7:7Þ

This definition is very convenient, as may be seen considering the salt conser-
vation equation of seawater, simply equating P = S. In fact, if the molecular and
turbulent diffusion are neglected, the volume element in motion will retain the same
concentration of its dissociate components, and its mass will remain constant during
the motion. Mathematically,

dS
dt

¼ @S
@t

þ v!�rS ¼ 0: ð7:8aÞ

This equation indicates that during the motion there is an equilibrium between
the local (∂S/∂t) and advective ð v!�rS) variation. In the steady-state of the
salinity field v!�rS ¼ 0, or,

u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ 0: ð7:8bÞ

7.2 Mass and Salt Conservation Equations

Let us consider the fluid motion in a laminar flow regime, which usually holds for
slow motions. Even if the volume element has a constant mass, its volume may vary
due to the pressure acting on its surface during the motion. As density is defined by
the ratio of mass by volume (q = m/V, [q] = [ML−3]), it follows that density, being
a dependant property, may vary with element volume changes. The equation
relating the fluid’s density with its motion (velocity) may be defined by the mass
conservation principle, which is traditionally named continuity equation since it
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follows the conservation laws, and it is related to the density and velocity of a
continuous medium.

The continuity equation is of fundamental importance to studies related to fluid
motion, and its deduction may be obtained with different theoretical developments
(Symon 1957; Brand 1959; Kinsman 1965; Neumann and Pierson 1966; Gill 1982,
and others). A straightforward Eulerian formulation may be made using Gauss’
divergence theorem, equating the local density time rate ð@q=@tÞ, integrated in a
differential volume element, V, enclosed by its area A,

Z

V

ð@q
@t
ÞdV; ð7:9aÞ

with the mass transport into the volume, V, through the closed surface area, A,
which is expressed by:

�
Z

A

q v!� n!dA ¼ �
Z

V

ðr � q v!ÞdV; ð7:9bÞ

where n! is the unity vector orthogonal to the closed surface, oriented outward of
the volume V. Hence, equating the mass transport [MT−1] expressed by Eqs. 7.9a
with the corresponding mass transport on the right-hand-side of Eq. 7.9b,

Z

V

ð@q
@t
ÞdV ¼ �

Z

V

ðr � q v!ÞdV; ð7:9cÞ

it follows the mass conservation property inside the control volume V, or the
continuity equation,

@q
@t

þr � q v!¼ 0: ð7:10Þ

This equation indicates the following physical principle: the local density vari-
ation inside a volume element is due only to the divergence operator of the mass
flux (q v!Þ, ð½q v!� ¼ ½ML�2T�1�) through a closed surface of the fluid element.
Using the divergent operator, the second term of this equation may be written as:

r � q v!¼ v!�rqþ qr � v!; ð7:11Þ

combining expressions (7.11) and (7.10),

@q
@t

þ v!�rqþ qr � v!¼ 0; ð7:12Þ
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and, taking into account the total derivative (7.7), the continuity equation is reduced
to the following expression:

dq
dt

þ qr � v!¼ 0; ð7:13aÞ

or

1
q
dq
dt

þr � v!¼ 0; ð7:13bÞ

which expresses the relationship between the time variation of fluid density and its
velocity.

Equations (7.10) and (7.13b) are different mathematical expressions of the
continuity equation. The first term of Eq. (7.13b) is the relative change of the total
density variation, and the second is the divergent operator of the velocity field. At
this point we should remember that the divergent operator may be positive, negative
or zero, indicating the divergent, convergent or non-divergent fields, respectively.

The continuity equation in the differential form (7.13b) is valid for fluids in
laminar motion with only one component, such as pure water. In the field of
Physical Oceanography, seawater is considered a solution with two components
(pure water + salt) and the mass of a volume element may vary due to salt diffusion
through its geometric boundaries. Thus, when the continuity equation is applied to
seawater, unless this diffusion process is negligible, it must be compensated by the
introduction of a parcel which takes this into account to preserve the mass con-
servation principle.

To demonstrate that the salt diffusion may be disregarded in coastal and estu-
arine water masses which have non-constant ionic composition, Csanady (1982)
presented the following development to the quantitative determination of the rel-
ative density time rate and the divergence of the velocity field of Eq. (7.13b). For a
typical summer day, it is estimated that the time taken to heat the surface layer of
the estuarine water mass by 1.0 °C is three hours. Thus, the temperature time rate
increase is: dT/dt = 1.0 � 10−4 °C s−1. Adopting a typical value of 1.0 � 10−4 °
C−1 to the thermal expansion coefficient, the relative rate at which the density is
changing with time at a fixed point in space (first term of Eq. (7.13b) is estimated to
be 1.0 � 10−8 s−1.

To estimate the molecular salt diffusion on the local density time rate, a value of
1.0 � 10−9 m2 s−1 was adopted for the kinematic salt molecular diffusion coeffi-
cient (D). And, as the salt molecular diffusion obeys the Fickian law,

dS
dt

¼ Dr2S, ð7:14Þ

the total salt variation (dS/dt) may be calculated, for the most unfavorable condition
(∇2S = 1), as equal to 1.010−9 s−1. Using a mean value for the saline contraction
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coefficient (b) of 7.5 � 10−4 � 10−3, the estimated value of the kinematic
molecular salt diffusion coefficient is 1.0 � 10−12 m2 s−1. These results indicate
that the influences of the local heating and salt diffusion on the relative local density
variation are by a magnitude of less than or equal to 1.0 � 10−8 s. For an estuary
with a length of 10 km (1.0 � 104 m), a longitudinal density variation of 10 kg
m−3 between its mouth and its head, and a velocity variation of 1.0 m s−1, it follows
that the relative density time variation (first term of the Eq. 7.13b) is less than or
equal to 1.0 � 10−6 s−1.

Let us now estimate the order of magnitude of the second parcel of Eq. (7.13b),
representing the divergence of the velocity field. Observational data of estuaries
indicate that the u-velocity component may vary from 0 to 1.0 m s−1 over distances
of up to 1.0 � 104 m, and its divergence value is estimated in 1.0 � 10−4 s−1.
Comparing this value with the estimated value with the estimated value for the first
parcel (1.0 � 10−6 s−1), the conclusion is that the influence of the velocity diver-
gence is predominant, even in the extreme conditions of the above example. Then,
for practicality, the continuity equation is reduced to the simple expression in the
Cartesian coordinate system:

r � v!¼ @u
@x

þ @v
@y

þ @w
@z

¼ 0: ð7:15Þ

This mass conservation Eq. (7.15) may also be obtained from Eq. (7.13b) under
the hypothesis that the fluid density is a constant (q = const.) or its relative value
doesn’t change during motion ð1q @q

@t ¼ 0Þ; which corresponds to the behavior of
incompressible fluids. Thus, for practicality, estuarine water mass is considered to
be an incompressible fluid. In some texts of Hydrodynamics, Eq. (7.13a, 7.13b) are
named conservation of mass, and the expression continuity equation is usually used
for Eq. (7.15).

As the motion regime in an estuary is transitional, changing from laminar to
turbulent, the continuity equation must be adapted to take into account the turbulent
flow. This may be accomplished by eliminating the random (or turbulent) small
scale velocity fluctuations, dividing the velocity into two terms which are uncor-
related with one another: a mean time ðh v!iÞ, and a turbulence velocity value

ðhv0!iÞ. The mean value h v!i, is calculated from a time interval Dt which is long

enough (generally a few minutes) to eliminate the turbulent fluctuations v0
!
, but

short enough that the larger-scale variations do not affect the mean value. That is,

the average value of the turbulent fluctuations should equal zero ðhv0!i ¼ 0Þ.
Substituting this instantaneous value into Eq. (7.15), gives,

r � ðh v!iþ v0
!Þ ¼ 0; ð7:16Þ

and calculating its mean time value for the time interval (Dt),

238 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations



1
Dt

ZDt

0

r � ðh v!iþ h v!0iÞdt ¼ 0: ð7:17Þ

As the divergence is calculated as spatial derivatives of vector velocity, which is
assumed to be a continuous function, according to the Schwartz’s theorem it is
possible to change the order of the derivative and integration operations. Taking

into account that hh v!ii ¼ h v!i and hv0!i ¼ 0, it follows that the expression of the
continuity equation for a turbulent fluid flow is,

r � ðh v!iÞ ¼ r � v!¼ 0; ð7:18Þ

where, to simplify the notation, the time mean value ðh v!iÞ is substituted by v!
(h v!i ¼ v!¼ u i

!þ v j
!þw k

!
). This vector now has u, v and w components,

which are time mean values of a relatively short time interval (Dt). Then, the
continuity equation, for a transitional or turbulent flow in the Cartesian frame of
reference (Oxyz), is formally expressed by a similar equation which holds for
laminar fluid flow (Eq. 7.15),

r � v!¼ @u
@x

þ @v
@y

þ @w
@z

¼ 0: ð7:19Þ

When this expression of the continuity equation is integrated with respect to a
geometric volume, such as for an estuary, at the free surface and bottom layers there
will be sources and sinks of mass (evaporation-precipitation balance, snow, con-
densation on the surface, and bottom spring water), which must be adequately
specified.

Now, let us apply the principle of mass conservation to other properties that are
used to characterize the state of a water mass, such as its salt content. In practice,
the principle of continuity is most often used together with the principle of con-
servation of salt to study the flow of relatively enclosed bodies of water, such as
estuaries. By conservative properties we mean concentrations, such as salinity, that
are altered locally, except at the boundaries, by diffusion and advection only.

The vector which characterizes the advective salt flux ð S!Þ, expressed by mass of

salt per area and time ð½ S!� ¼ ½ML�2T�1�Þ, generated by a laminar motion, v!; is

expressed by S
!¼ qS v!. Substituting in Eq. (7.10) the density, q, with the scalar

quantity, qS, which has the same dimension as density ([qS] = [ML−3]), but
physically represents the concentration of mass of salt dissociated in seawater, it
follows that:
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@ðqSÞ
@t

þr � qS v!¼ 0; ð7:20Þ

or

qð@S
@t

þ v!�rS)þ Sð@q
@t

þr � q v!Þ ¼ 0: ð7:21Þ

These equations are the analytical expressions of the principle of conservation of
salt, only due to the advection. As the expression between the parentheses of the
second parcel of Eq. (7.21) is the continuity Eq. (7.10), and is equal to zero, then

@S
@t

þ v!�rS ¼ 0; ð7:22Þ

or, in the scalar notation

@S
@t

þ u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ dS
dt

¼ 0: ð7:23Þ

As stated previously, dSdt is the total time variation of the salinity. This differ-

ential equation is the principle of the conservation of salt, under the action of
advection for a small volume of seawater, with the assumption that the molecular
diffusion has been disregarded. However, as estuaries usually have a turbulent flow
regime, the salt flux due to the turbulent diffusion is much higher. Thus, the
influence of turbulent motion on the salt balance of estuarine waters must also be
taken into account. Consider a cubic volume with surface area units normal to the
coordinate axis, for an estuarine water mass without free surface. The salt con-
servation equation in the differential form is rigorously written as (Sverdrup et al.
1942; Pritchard 1958; Cameron and Pritchard 1963, and others):

@S
@t

þ u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ @

@x
ðKx

@S
@x

Þþ @

@y
ðKy

@S
@y

Þþ @

@z
ðKz

@S
@z

Þ: ð7:24Þ

In this equation, Kx, Ky and Kz are the kinematic1 coefficients of turbulent
diffusion of salt in the horizontal (Ox and Oy) and vertical (Oz) axes, respectively,
which in general are functions of the spatial and temporal scales of the estuarine
processes, with dimensions [L2T−1]. Equation (7.24) indicates that the local salinity

variation ð@S
@t Þ is dependent on the advection (velocity components u, v and w in the

1The dynamic coefficients of eddy diffusion (dispersion), Ax, Ay and Az, which have dimensions of
[ML−1T−1], is obtained from the product of density, q, by the corresponding kinematic coefficient;
Ax = qKx, Ay = qKy and Az = qKz.
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left-hand-side terms), and turbulent diffusion (terms in the right-hand-side) simu-
lated by the Fickian law.

Another expression for the salt conservation equation may be obtained when
combined with the continuity Eq. (7.19):

@S
@t

þ @ðuS)
@x

þ @ðvS)
@y

þ @ðwS)
@z

¼ @

@x
ðKx

@S
@x

Þþ @

@y
ðKy

@S
@y

Þþ @

@z
ðKz

@S
@z

Þ:
ð7:25Þ

It is implicit in this equation that S = S(x, y, z, t) represents the average salinity
obtained from a time interval that is long enough to eliminate the turbulent varia-
tions (S’), but short enough for this mean value not to be affected by long- term
variations. In the same way, the velocity components u = u(x, y, z, t), v = v(x, y, z,
t) and w = w(x, y, z, t) in the Eqs. (7.24) and (7.25) also represent mean values. If
advection alone is responsible for the mixing process in steady-state conditions,
these equations are reduce to their vector formulation v!�rS ¼ 0; or
r � S v!¼ 0.

The kinematics eddy diffusion coefficients Kx, Ky and Kz, with dimension
[L2T−1], are parameterized by cross correlations of the velocity turbulent fluctua-
tions (u′, v′, w′) and S′, with expressions similar to those of the turbulent or eddy
kinematic viscosity coefficients developed by Osborne Reynolds in 1894 (Pritchard
1954; Bowden 1963; Lacombe 1965, and others):

Kx ¼ �hu0S0i
@S
@x

;Ky ¼ �hv0S0i
@S
@y

;Kz ¼ �hw0S0i
@S
@z

: ð7:26Þ

It should be noted that the numerators of Eq. (7.26), multiplied by the density
ðqhu0S0i; qhv0S0i; qhw0S0iÞ, have dimensions of the salt fluxes generated by tur-
bulent or eddy diffusion. Salinity and current velocity measurements in the James
River estuary (Virginia, USA) taken over several tidal cycles in a cross section,
gave the following results (Pritchard 1954):

• The horizontal advective (qSu) and the vertical non-advective ðqhw0S0iÞ fluxes
of salt were the most important factors in maintaining the salt balance.

• The mean vertical advective (qSw) and the horizontal non-advective ðqhu0S0iÞ
fluxes were of secondary importance, but still significant and small, respectively.

• In addition, the vertical non-advective flux ðqhw0S0iÞ of salt is partly related to
the magnitude of the oscillatory tidal currents, and is dependent on the vertical
salinity stratification.

Pritchard’s work confirmed the hypothesis that the mixing process in an estuary
is mainly related to the tidal forcing, and suggested the possibility of calculating the
turbulent diffusion terms using a modified version of Eq. (7.26) for a laterally
homogeneous estuary, taking into account its width variation.

7.2 Mass and Salt Conservation Equations 241



A conservation equation, similar to (7.24), may also be used in the mathematical
simulation of a conservative concentration of a property dissociated in an estuary. If
C = C(x, y, z, t) denotes the property’s concentration, [C] = [ML−3], the conser-
vation equation is:

@C
@t

þ u
@C
@x

þ v
@C
@y

þw
@C
@z

¼ @

@x
ðKxC

@C
@x

Þþ @

@y
ðKyC

@C
@y

Þþ @

@z
ðKzC

@C
@z

Þ;
ð7:27Þ

where KxC, KyC and KzC are the kinematic eddy diffusion coefficients of the
property, whose theoretical determinations are given by similar expressions as
presented in Eqs. (7.26).

The quantity C may also represent the concentration of suspended cohesive or
non-cohesive sediments, transported by velocities along the bottom which usually
are very low in comparison to the velocities in the upper layer. For
non-conservative substances, such as nutrients, dissolved oxygen, domestic efflu-
ents and radioactive substances, an additional term must be included in Eq. (7.27)
to analytically represent sources and/or sinks. If the property has a first order

exponential decay, its mathematical simulation is given by @C
@t ¼ �kCC, where kC is

a proportionality coefficient with dimension [T−1]. In any case, it is important to
remember that the velocity components of the advective terms (u, v, w) and the
solution of Eq. (7.27), C = C(x, y, z, t), represent average values for a time interval
Dt, which must be long enough to eliminate the turbulent fluctuations.

The partial differential Eqs. (7.24) or (7.25) and (7.27), which have the salinity,
S = S(x, y, z, t), and concentration, C = C(x, y, z, t) fields as unknowns, are named
as Eulerian formulations. Mathematically, the solutions may be obtained if the
turbulent diffusion coefficients of these properties and the velocity field ð v!Þ are
known quantities. The solutions of these equations are also dependent on the initial
and boundary conditions and the estuary geometry.

7.3 Integral Formulas: Mass and Salt Conservation
Equations

7.3.1 Volume Integration

When the solution to an estuarine physics problem for a water body doesn’t require
detailed knowledge of the interior domain, a simple solution may be obtained by
applying the continuity and salt conservation equations (or any other conservative
property) integrated with respect to the volume domain.

To start, let us integrate the differential expression of the continuity Eq. (7.19)
with respect to a small volume element (DV) limited by a closed continuous surface
(DA). Under the assumption that all regularity conditions necessary for the
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application of Gauss’s divergence theorem are met, the volume integral may be
transformed into an integral in the area,

ZZZ

DV

ðr � v!ÞdV ¼
ZZ

DA

ðv!� n!ÞdA ¼ 0: ð7:28Þ

In this equation, the unitary vector n! ( n!�� �� ¼ 1) is normal to the area DA and it
is oriented from the interior of the volume DV to the exterior of the closed surface.
This equation may be generalized to a finite volume, V, of the estuarine water mass,
limited by an area A, then

ZZZ

V

ðr � v!ÞdV ¼
ZZ

A

v!� dA ¼ 0: ð7:29Þ

The integral over the area in Eq. (7.29) is volume transport [L3T−1], through the
geometric limits of volume V, enclosed by the area, A, and according to these
conservation equations, are equal to zero. In the SI system of units this transport is
calculated in m3 s−1.

To obtain the integrated form of the salt conservation Eq. (7.24), for a differ-
ential water volume forced only by the advective process, the salinity and density
fields in the volume, V, of the estuarine water mass must be, by hypothesis, sta-
tionary fields representing mean values during complete tidal cycles, and the salt
conservation equation is reduced to the simplest differential expression:

r � qS v!¼ 0: ð7:30Þ

Integrating this equation in the geometric volume, V, of the estuarine mixing
zone (MZ), and applying the Gauss theorem, it follows that:

ZZZ

V

ðr � qS v!ÞdV ¼
ZZ

A

qS v!� n!dA ¼ 0: ð7:31Þ

The surface integral in the second member of this equation physically represents
the advective salt transport [MT−1] (kg s−1 in the SI system of units) through the
surface area A, enclosed by the geometric volume of the estuarine water mass. As this
salt transport is equal to zero, the mass of salt entering the volume, V, is counter-
balanced by an equal value exiting, according to the principle of conservation of salt.

Examples of the practical application of the conservation principles of mass and
salt (Eqs. 7.19 and 7.24) applied on a relatively small scale are presented according
to Officer (1976) and Team course (2001). Let us take a water volume, V, bounded
by two vertical transverse sections, where areas A1 and A2 have uniform mean
salinities S1 and S2, respectively. Water enters the channel through A1 and exits
through A2, with mean velocities v1

!¼ u1 n
! and v2

!¼ u2 n
!, respectively (Fig. 7.1).

Two sources of input or output water will be considered: the fresh river discharge
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(Qf) and the input or outflow of fresh water through its free surface (Asu) by
precipitation (P) and evaporation (Ev). Sources of bottom spring water and run-off
will be disregarded.

Denoting r as the mean value of the difference evaporation to precipitation (E-P)
per unit of time, the product r!Asu is the volume transport of fresh water through
the surface layer. Then, if Ev > P or Ev < P, it follows that r[ 0 or r\0,
respectively, and the volume transport across the surface area Asu is exiting or
entering the system, respectively; when there is a counterbalance of precipitation
and evaporation, the transport across the free surface is null ðrAsu ¼ 0Þ. However, it
should be noted that usually Qf � rAsu, with the exception of estuaries in dry
regions where hypersaline (or negative) estuaries are formed.

Under the assumption of steady-state conditions for the inflow and outflow of
fresh water, we may apply the integrated continuity Eq. (7.29). Taking into account
the particular geometry (Fig. 7.1) and the kinematic boundary condition
ð v!� n!¼ 0Þ, the scalar product v!� n!¼ 0 is only different from zero on the
transverse sections A1 and A2. Thus, applying the integrated formulation of con-
tinuity equation, the total volume of water entering this portion of the channel may
be equal to the total volume leaving, resulting in the following expression:

�V1A1 þV2A2 þðQf þ rAsuÞ ¼ 0: ð7:32Þ

Fig. 7.1 Schematic diagram of a stationary estuarine water body bounded by vertical transverse
sections, A1 and A2, and by the free surface (Asu) and the bottom. S1, S2, V1 and V2 are mean
salinities and velocities, respectively (according the Team Course 2001)
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Taking into account the geometric characteristics, the velocity and the salinity
fields, applying Eq. (7.31) will give the following balance of the salt transport
through the closed surface:

�q1S1V1A1 þ q2S2V2A2 ¼ 0; ð7:33Þ

because the salt transport through the bottom and the free surface are equal to zero.
Under the assumption that the density variation may be disregarded in the salt
balance ðq1 � q2Þ this equation may be rewritten as:

�S1V1A1 þ S2V2A2 ¼ 0: ð7:34Þ

This approximation isn’t restrictive, because salinity is a parameter that can be
measured, and the density may be calculated with the equation of state of seawater.
Using SI units for velocity, area, and r, and psu units (S � 10−3) for salinity, the
parcels of Eqs. (7.32) and (7.34) for the volume and salt transports are calculated in
m3 s−1 and kg s−1, respectively.

As salinities S1 and S2 at the transverse sections A1 and A2, respectively, and the
volume transports are known, Eqs. (7.32) and (7.34) may be solved for the
velocities averages velocities in the transverse sections (V1 and V2), and for the
volume transports through the cross sections A1 and A2 (V1A1 and V2A2), and the
results are

V1 ¼ ðrAsu þQfÞS2
A1ðS2 � S1Þ ; and TV1 ¼ V1A1 ¼ ðrAsu þQfÞS2

ðS2 � S1Þ ; ð7:35Þ

and

V2 ¼ ðrAsu þQfÞS1
A2ðS2 � S1Þ ; and TV2 ¼ V2A2 ¼ ðrAsu þQfÞS1

ðS2 � S1Þ ; ð7:36Þ

With all quantities in the second member of these equations in units of the SI
system, the velocity components (V1 and V2) and the volume transports (TV1 and
TV2) are expressed in m s−1 and m3 s−1, respectively.

In extreme conditions where Qf = 0, with evaporation is greater than precipi-
tation (Ev > P, r[ 0) and S2 > S1, analysis of the solutions (7.35 and 7.36) indi-
cates that the velocity directions (V1 > 0 and V2 > 0) are in agreement with those
indicated in Fig. (7.1). For this ideal system, the flow is from the regions of low
salinity towards the high salinity regions, in agreement with the salinity gradient
direction.

Let us now consider the opposite process, that is, the precipitation rate exceeds
the evaporation ðr\0Þ, which corresponds with P > Ev, and seawater is diluted by
fresh water. Also, with S2 > S1 it follows from Eqs. (7.35) and (7.36) that the flow
is in the opposite direction to the former condition (V1 < 0 and V2 < 0) and
opposite to the salinity gradient.
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Finally, with Qf ! 0 and r ! 0, the residual flow and volume transport through
sections A1 and A2 are equal to zero. Hence, the difference of P − Ev determines
the driving motions in water bodies at coastlines, such as choked and hyper-saline
coastal lagoons.

With H0 denoting the mean depth of the water column of the closed water body
shown in Fig. 7.1, the time interval (Dt) required for its interior volume of water to
be completely removed from a choked coastal lagoon may be estimated by:

Dt ¼ H0Asu

V2A2
¼ H0ðS2 � S1Þ

rS1
: ð7:37Þ

With the variables in this equation expressed in the SI units, the time interval Dt
is calculated in seconds, and usually this quantity is converted in hours or days.

Consider now a similar problem, but for a salt wedge estuary in steady-state
condition. The dynamics of this estuary is dominated by the river discharge, and the
vertical salt distribution is generated by the entrainment. The continuity and the salt
conservation equations integrated with respect to the volume (Eqs. 7.29 and 7.31)
may be applied. Because the mean flow is one-dimensional in these equations, it
will be considered along the longitudinal axis (Ox), oriented down-estuary
(Fig. 7.2). This figure indicates the upper and lower salt-wedge transverse sections
A2 and A1, and their mean velocity values are indicated by us and ui, respectively.
The mean salinities in these upper and lower sections are also considered as known,
and are indicated by Ss and Si, respectively. In Chap. 3 (Sect. 3.2) we have seen that
for this estuarine type, the following inequality holds: Si � Ss.

Hence, the integrated equations of continuity (Eq. 7.29) and the corresponding
principle of salt conservation (Eq. 7.31) may be applied in the calculation of the
intensity of the velocities us and ui and the associated volume transports. Taking
into account the MZ geometry and the kinematic boundary condition ( v!� n! 6¼ 0

Fig. 7.2 Schematic diagram of a bidirectional motion through a vertical section localized at the
mouth of a salt wedge estuary. The index of the quantities As,i, us,i and Ss,i indicate the areas of the
upper (s) and lower (i) sections, and the corresponding mean velocity and salinity values,
respectively. The unit vector, n!, (not shown) is normal to the closed surface oriented positively
outward of the volume
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only in the transverse sections As and Ai), from the conservation equations we have
the following relationships:

ZZ

A

v!� n!:dA ¼ usAs � uiAi � Qf ¼ 0; ð7:38Þ

and

ZZ

A

qS v!� n!:dA ¼ qsSsusAs � qiSiuiAi ¼ 0: ð7:39Þ

Disregarding the density variations (qs � qi) the equation system (7.38 and
7.39) is reduced to:

usAs � uiAi ¼ Qf ; ð7:40Þ

and

SsusAs ¼ SiuiAi: ð7:41Þ

If the mean salinity values (Ss and Si), the area of the vertical sections (As and
Ai), and the river discharges are all known, this equation system has only two
unknowns, us and ui, and the solutions are:

us ¼ SiQf

AsðSi � SsÞ ¼
Qf

Asð1� Ss

Si
Þ
; ð7:42Þ

and

u1 ¼ SsQf

AiðSi � SsÞ ¼
Qf

AiðSi

Ss
� 1Þ

: ð7:43Þ

With these results, it is also possible to calculate the transport of volumes (usAs

and uiAi) and salt (usSsAs and uiSi Ai) in the upper and lower layers, respectively.
This practical application of the principles of continuity and conservation of salt

integrated with respect to the volume exemplify how it is possible to calculate the
mean velocities in transverse sections and the corresponding values of the volume
and salt transports of a salt wedge estuary, when its geometry and scalar properties
(salinity and river discharge) are known. In relation to Eqs. (7.42 and 7.43), which
are used to calculate the velocities us and ui, it is possible to observe that, even if As

and Ai have the same areas, the velocity of the upper layer is always higher than the
lower layer velocity (us > ui) because Ss � Si. Hence, this result is in agreement
with the salt wedge estuary dynamics.

A numerical application of Eqs. (7.42 and 7.43) is presented to theoretically
estimate the vertical velocity profiles at the mouth of the Fraser River estuary
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(British Columbia, Canada). This estuary is classified as salt wedge (or type 4,
according the Stratification-circulation diagram). The Fraser river estuary is a
typical example of salt wedge estuary in a region of meso-tides. The following data
were estimated from the article of Geyer and Farmer (1989): mean river discharge
Qf = 3000 m3 s−1, geometry at the upper and lower sections As = 3750 m2 and
Ai = 4500 m2, and salinities Ss = 14.0o/oo and Si = 30.0o/oo, respectively, repre-
senting mean values at the upper and lower sections of the halocline, respectively.
The estimated vertical profile of salinity and the theoretical simulations of the
vertical velocity profile are presented in Fig. 7.3; the mean velocities at the upper
and lower vertical sections are us � 1.5 m s−1 and ui � −0.6 m s−1, respectively.
The discontinuity of the vertical salinity profile at depth z = 5 m, generated similar
characteristics in the velocity profile, because theoretical equations don’t include
dissipative forces due to the internal friction and at the bottom.

From the results of the velocity, the volume transport was calculated and its
landward and seaward values were Qs = 5525 m3 s−1 and Qi = −2525 m3 s−1,
respectively. Hence, the volume transport is in balance with the river discharge. The
increase in the volume transport seaward, in comparison with the river discharge
(Qf), clearly indicates the influence on the upper transport, forced by the entrain-
ment of seawater into the layer above the halocline.

We leave it to the reader to demonstrate the following dot marks:

• Solutions (7.42) and (7.43) identically satisfy the principles of mass and salt
conservations;

• The mean speed at the mouth transverse section is calculated by: Qf

ðAs þAiÞ ¼ uf ;

• The salt transports may be determined by qiuiSiAi and qsusSsAs, landward and
seaward, respectively.

Fig. 7.3 Vertical theoretical
velocity profiles of a salt
wedge estuary (a). Estimates
of salinity profile from
experimental data (b),
obtained near the estuary
mouth
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The classical Knudsen hydrographic theorem was presented at the beginning of
the 19th century, stating relationships between a known salinity field and the
velocity under stationary conditions. Let us assume that the estuary is highly
stratified and its geometry and salinity are known. Under these conditions, the mean
longitudinal motion, in relation to the Ox axis, is bidirectional in two layers sep-
arated by a sharp halocline; seaward and landward motions are in the surface and
lower layers, respectively (Fig. 7.4).

Applying the continuity and salt conservation Eqs. (7.29 and 7.31) to the vol-
ume between the transverse sections (A, B), taking into account the channel
geometry and the areas of the upper (A1 + A3) and lower (A2 + A4) layers, and
knowing the salinities S1 and S3 (at A1 and A3), and S2 and S4 (at A2 and A4), the
following volume and salt transport balances may be written:

�u1A1 þ u3A3 ¼ �Qf ; ð7:44Þ

u2A2 � u4A4 ¼ Qf ; ð7:45Þ

�u1A1 þ u3A3 þ u2A2 � u4A4 ¼ 0; ð7:46Þ

and

�S1u1A1 þ S3u3A3 þ S2u2A2 � S4u4A4 ¼ 0; ð7:47Þ

with the approximation q1 � q2 � q3 � q4.
As the net salt transport across the transversal section A (sub-sections A1 and

A3) and section B (sub-sections A2 and A4) must be equal to zero, the following
equalities may be written from Eq. (7.47):

S1u1A1 ¼ S3u3A3; ð7:48aÞ

and

Fig. 7.4 Schematic diagram of bidirectional motion and salt transport through vertical sections, A
and B, of a highly stratified estuary. The indexes 1–2 and 3–4 indicate physical properties in the
upper and lower layers, respectively, bounded by the halocline (adapted from Defant 1961)
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S2u2A2 ¼ S4u4A4: ð7:48bÞ

Equations (7.44), (7.45), (7.48a and 7.48b) form a system of four equations with
four unknowns u1, u2, u3 and u4. Calculating these unknowns and multiplying by
areas we then obtain the volume transports:

u1 ¼ S3Qf

A1ðS3 � S1Þ ;! u1A1 ¼ S3Qf

ðS3 � S1Þ ; ð7:49aÞ

u3 ¼ S1Qf

A3ðS3 � S1Þ ;! u3A3 ¼ S1Qf

ðS3 � S1Þ ; ð7:49bÞ

u2 ¼ S4Qf

A2ðS4 � S2Þ ;! u2A2 ¼ S4Qf

ðS4 � S2Þ ; ð7:49cÞ

and

u4 ¼ S2Qf

A4ðS4 � S2Þ ;! u4A4 ¼ S2Qf

ðS4 � S2Þ : ð7:49dÞ

Then, with knowledge hydrologic and hydrographic data it is possible to calculate
the velocity components (ui, i = 1, 2, 3, 4), the volume (uiAi, i = 1, 2, 3, 4), and salt
transports (uiAiSi, i = 1, 2, 3, 4) across the upper and lower sections shown in
Fig. 7.4. As S3 > S1 and S4 > S2, it follows from these equations that the velocity
and volume transport modules are positive. As the flow direction has already been
taken into account in the water column stratification (S1 < S3), from Eqs. (7.49a and
7.49b) it follows that u1 > u3, and the velocity in the upper layer is higher than the
lower layer velocity. Also, if A2 = A3, from Eqs. (7.49c and 7.49d) it follows that
u2 > u4. These theoretical inequalities, between the mean speeds in the upper and
lower layers separated by the halocline, may be verified experimentally.

Although the Knudsen hydrographic theorem only takes into account the
advective process, it is a good approximation for highly stratified and salt wedge
estuaries, because vertical mixing due to turbulent diffusion is suppressed by the
entrainment. This theorem has been applied by Scandinavian oceanographers in
studies of the circulation in fjord type estuaries, and some examples may be found
in Defant (1961) and Dyer (1973). To estimate the areas Ai (i = 1, 3) and Aj(j = 2,
4) usually the interface between the upper and lower layers is taken as the mean
depth of the halocline.

According to Geyer (2010), let us make as an exercise the following simplifi-
cation of the original Knudsen hydrographic theorem, displacing the cross-section
areas at the positions A and B (Fig. 7.4) towards the estuary head and mouth,
respectively, thus, at the new section A position the velocity and salinity have the
following values: (i) u1 = uf and S1 = Sf = 0, and there will no more the quantities
S3 and u3; ii) at the section B, now located at the estuary mouth, its properties above
and below the halocline will remains with the same previous notations. Thus,
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applying the volume and salt transport conservations equations the following
expressions of two equations with the unknowns Q2 (or u2) and Q4 (or u4) are
written as:

Q2 ¼ Qf þQ4; and u2A2S2 ¼ u4AaS4;! Q2S2 ¼ Q4S4; ð7:50aÞ

with the simplification q2 � q4. Solving this system of equations we find the
following expressions to calculate volume transports and velocities and at the
estuary head (A) and at position B:

Q2 ¼ u2A2 ¼ S4
S4 � S2

Qf ; and ;Q4 ¼ u4A4 ¼ S2
S4 � S2

Qf ; ð7:50bÞ

or

u2 ¼ 1
A2

S4
ðS4 � S2ÞQf ; and ; u4 ¼

1
A4

S2
ðS4 � S2ÞQf : ð7:50cÞ

We leave to the reader to demonstrate that these solutions satisfy the volume and
salt transport conservation.

To establish the horizontal continuity of the flow, as indicated in Fig. (7.4), an
upward mean velocity ðwÞ, generated by entrainment, is necessary across the
halocline. Thus, if Ah indicates the horizontal area of the halocline, the associate
entrained volume transport is calculated by ðwAhÞ, which is generate by the volume
transport convergence on the lower layer, and may be calculated by:
wAh ¼ u4A4 � u3A3. Then, from the volume transports calculated by Eqs. (7.52)
and (7.54a, 7.54b), it follows that:

wAh ¼ Qfð
S2

S4 � S2
� S1
S3 � S1

Þ; ð7:51aÞ

and

w ¼ Qf

Ah
ð S2
S4 � S2

� S1
S3 � S1

Þ: ð7:51bÞ

In the presented theory, only the principle of mass conservation (continuity) and
salt conservation in its integrated formulation were used, enabling the solutions for
velocity field and transports at the boundaries of the estuary only. The driving
forces were the river discharge input and the evaporation-precipitation rate, but the
dissipative force (friction) and the turbulent diffusion were taken as negligible.
Obtaining a solution for the inner circulation and property distributions in natural
estuaries requires a complete set of differential equations, including the equations of
motion, which will be presented in Chap. 8.
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7.3.2 Bi-Dimensional Formulation: Vertical Integration

Estuaries are transitional water bodies with free surface and morphologic charac-
teristics which may vary from a simply geometry, such as a channel, to complex
system with a net of interconnected channels. The tridimensional equations of
continuity and salt conservation have already been presented (Eqs. 7.19 and 7.24).
Under the assumptions that the turbulent coefficients of salt diffusion and the
velocity components are known, Eq. (7.24) may be solved to calculate the salinity
field, S = S(x, y, z, t). However, its analytical solution is extremely difficult, per-
haps even impossible, particularly for complex geometries.

Coastal plain estuaries which have a longitudinal channel geometry, low river
discharge and high tidal amplitude are practically well-mixed (type 1 or C), and
variations in velocity and property concentrations mainly occur in the transverse
sections (plane Oxy). However, when estuaries are forced by moderate or high river
discharge, variations in property concentrations may occur mainly in the Oxz plane,
such as in partially mixed and salt wedge estuaries (types 2 and 4, or A and B).
With these particular geometries and driving forces, the conservation equations may
be simplified to two dimensions.

Let us now present the deduction of the two-dimensional continuity equation
from its three-dimensional formulation (Eq. 7.19), which is often used in problems
related to well-mixed estuaries. Properties variations in these estuaries are mainly in
the Ox and Oy directions, oriented according to the reference system in Fig. 7.5.

To eliminate variations in the Oz direction, it is sufficient to integrate the con-
tinuity equation using the local depth z = −H0(x, y) and the ordinate of the free
surface z = η(x, y, t) as limits, disregarding the large-scale temporal depth varia-
tions due to erosion and sedimentation,

Zg

�H0

ð@u
@x

Þdzþ
Zg

�H0

ð@v
@y

Þdzþwjg � wj�H0
¼ 0: ð7:52Þ

In this equation, w|η = w(x, y, η, t) and w|−H0 = w(x, y,−H0, t) are values of the
vertical velocity component at the surface and on the bottom, respectively. As its
integration limits are functions of x, y and t, it is necessary simplify the equation to
a more convenient expression for practical applications, using the Leibnitz rule of
an integral derivation2 (Severi 1956, p. 354):

2When the estuary bottom is plane (H0 = const.), and due to the very long tidal wave, the tidal
elevation may be considered uniform along the estuary, η = η(t), and it is possible to change the
order of the integral operator and the derivative. In these conditions w|−H0 = 0 and w|η = dη/
dt = ∂η/∂t are the kinematic boundary conditions.

252 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations



Zg

�H0

ð@u
@x

Þdz ¼ @

@x
ð
Zg

�H0

udz)þ uj�H0

@ð�H0Þ
@x

� ujg
@g
@x

; ð7:53aÞ

and

Zg

�H0

ð@v
@y

Þdz ¼ @

@y
ð
Zg

�H0

vdz)þ vj�H0

@ð�H0Þ
@y

� vg
@g
@y

; ð7:53bÞ

where u|η = u(x, y, η, t), v|η = v(x, y, η, t), u|−H0 = u(x, y, −H0, t) and v|−H0 = v(x,
y, −H0, t) are values of velocity horizontal components in the free surface (z = η)
and on the bottom (z = −H0), respectively.

By substituting expressions (7.53a, 7.53b) into Eq. (7.52), and taking into
account the vertical velocity components generated by the bottom topography and
the sea-surface, because H0 = Ho(x, y) and η = η(x, y, t), the following kinematic
boundary conditions must be imposed:

wj�H0
¼ uj�H0

@ð�H0Þ
@x

þ vj�H0

@ð�H0Þ
@y

; ð7:54aÞ

and

wjg ¼ ujg
@g
@x

þ vjg
@g
@y

þ @g
@t

: ð7:54bÞ

Fig. 7.5 Geometric limits of an estuary. The coordinates on the surface and bottom are indicated
by z = η(x, y, t) and z = H0(x, y), and from the right to left, a(x, z) and b(x, z) are lateral
boundaries
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The final result is the expression,

@

@x
ð
Zg

�H0

udz)þ @

@y
ð
Zg

�H0

vdz)þ @g
@t

¼ 0: ð7:55Þ

In this equation, the integrands u and v are, by hypothesis, independent of the
depth. Finalizing the integration, the continuity equation in two dimensions for an
estuary may be given by3:

@ðuh)
@x

þ @ðvh)
@y

þ @g
@t

¼ 0; or rH � h v!¼ � @g
@t

; ð7:56aÞ

or, when the longitudinal depth variation (∂h/∂x) may be disregarded,

h
@u
@x

þ @ðvh)
@y

þ @g
@t

¼ 0: ð7:56bÞ

where,

Zg

�H0

dz ¼ gþH0 ¼ h(x, y, t): ð7:56cÞ

The quantity h(x, y, t) = η(x, y, t) + H0(x, y) is the thickness of the water
column and holds the identity ∂h/∂t = ∂η/∂t.

The bi-dimensional continuity Eq. (7.56a) has the following physical interpre-
tation: the divergence (rH � h v![ 0) or the convergence (rH � h v!\0) must be
compensated by a decrease ð@h/@t\0Þ or an increase ð@h/@t[ 0Þ of the thickness
of water layer, respectively, where the vector h v! is the volume transport vertically
integrated by width unity. As a result of the vertical integration, each term of the
continuity equation has dimension of velocity [LT−1], and the coordinate z was
substituted by a geometric characteristic of the estuary (the depth, h).

By analogy, the vertically integrated deduction of the salt conservation equation
results from the integration of Eq. (7.25) in the following limits: z = −H0(x, y) and
z = η(x, y, t) at the bottom and the free surface, respectively. Then, we have the
following expression:

Zg

�H0

ðdS
dt
Þdz ¼

Zg

�H0

½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ�dzþ
Zg

�H0

@

@z
ðKz

@S
@z

Þdz, ð7:57Þ

3This operation is equivalent to the Mean Value Theorem.
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and the integrand of the term on the left-hand-side is the total derivative of the
salinity (local + advective variations). By completing the integration of the last
term on the right-hand-side of the equation, we have:

Zg

�H0

@

@z
ðKz

@S
@z

Þdz ¼ Kz
@S
@z

jg � Kz
@S
@z

j�H0
: ð7:58Þ

As Kz is the kinematic turbulent diffusion coefficient of salt [Kz] = [L2T−1], the
terms of this equation have dimensions of velocity [LT−1], which may be inter-
preted physically as salt flux per density unit, through the surface (z = η) and the
bottom (z = −H0). As these salt fluxes must be zero within the estuary’s geometric
boundaries, the last parcel in the right-hand-side of Eq. (7.57) is equal to zero.

The vertical integration of the total derivative in the left-hand-side of the
Eq. (7.57) is given by:

Zg

�H0

dS
dt
dz ¼

Zg

�H0

@S
@t
dzþ

Zg

�H0

@ðuS)
@x

dzþ
Zg

�H0

@ðvS)
@y

dzþ
Zg

�H0

@ðwS)
@z

dz:ð7:59Þ

Let us again apply the Leibnitz integration rule to the first three terms of the
right-hand-side of this equation:

Zg

�H0

@S
@t
dz ¼ @

@t
ð
Zg

�H0

Sdz)� Sjg
@g
@t

; ð7:60aÞ

Zg

�H0

@ðuS)
@x

dz ¼ @

@x
ð
Zg

�H0

uSdzÞ � uSjg
@g
@x

þ uSj�H0

@ð�H0Þ
@x

; ð7:60bÞ

and

Zg

�H0

@ðvS)
@y

dz ¼ @

@y
ð
Zg

�H0

vSdzÞ � vSjg
@g
@y

þ vSj�H0

@ð�H0Þ
@y

: ð7:60cÞ

Finally, integrating the last term of the right-hand-side of Eq. (7.59) gives,

Zg

�H0

@ðwS)
@z

dz ¼ wSjg � wSj�H0
: ð7:61Þ
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In these equations, the quantities S|η = S(x, y, η, t) and S|−H0 = S(x, y, −H0, t)
are the salinity values at the surface and bottom, respectively.

At this stage the first two terms of the right-hand-side of Eq. (7.57), relating to
the lateral influence of the turbulent diffusion, are still missing from the vertical
integration of Eq. (7.57). Applying the Leibnitz rule to these terms, and they may
be rewritten as:

Zg

�H0

@

@x
ðKx

@S
@x

Þdz ¼ @

@x
ð
Zg

�H0

Kx
@S
@x

dz)� Kx
@S
@x

jg
@g
@x

þKx
@S
@x

j�H0

@ð�H0Þ
@x

;

ð7:62aÞ

and

Zg

�H0

@

@y
ðKy

@S
@y

Þdz ¼ @

@y
ð
Zg

�H0

Ky
@S
@y

dz)� Ky
@S
@y

jg
@g
@y

þKy
@S
@y

j�H0

@ð�H0Þ
@y

:

ð7:62bÞ

Finally, substituting Eqs. (7.60a, b, c) and (7.62a, b) into Eq. (7.57), and taking
into account that:

• The diffusive salt flux in the estuary boundaries are zero;

Kx
@S
@x

j�H0g ¼ Ky
@S
@y

j�H0g ¼ Kz
@S
@z

j�H0g ¼ 0; ð7:63aÞ

• The kinematic boundary conditions indicated in Eqs. (7.54a, b) are valid when
multiplied by S|−Ho and S|η:

wSj�H0
¼ Sj�H0

½uj�H0

@ð�H0Þ
@x

þ vj�H0

@ð�H0Þ
@y

�; ð7:63bÞ

and

wSjg ¼ Sjg½ujg
@g
@x

þ vjg
@g
@y

þ @g
@t

�: ð7:63cÞ

Then, the following vertically integrated formulation of the continuity equation
has been obtained:
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@

@t
ð
Zg

�H0

Sdz)þ @

@x
½
Zg

�H0

ðuS)dz]þ @

@y
½
Zg

�H0

ðvS)dz]

¼ @

@x
½
Zg

�H0

ðKx
@S
@x

Þdz� þ @

@y
½
Zg

�H0

ðKy
@S
@y

Þdz�:
ð7:64Þ

Imposing the conditions that the estuary is well-mixed (vertically homoge-

neous), the quantities u, S, uS, vS, Kx
@S
@x and Ky

@S
@y are independent of depth, and,

taking into account that the integral of the differential dz in the limits z = −H0 and
z = η is equal to the local depth, h = H0 + η, the integration of Eq. (7.64), yields
the expression for the salt conservation equation:

@ðSh)
@t

þ @ðuSh)
@x

þ @ðvSh)
@y

¼ @

@x
ðKxh

@S
@x

Þþ @

@y
ðKyh

@S
@y

Þ: ð7:65Þ

Some simplifications may be made in this equation if, for instance, the tidal
oscillation is much less than the estuary depth (η � H0), h(x, y) = H0(x, y). Then
the continuity Eq. (7.56a) and the salt conservation (7.65) may be rewritten as:

@ðuH0Þ
@x

þ @ðvH0Þ
@y

þ @g
@t

¼ 0; ð7:66Þ

and

@ðSH0Þ
@t

þ @ðuSH0Þ
@x

þ @ðvSH0Þ
@y

¼ @

@x
ðKxH0

@S
@x

Þþ @

@y
ðKyH0

@S
@y

Þ: ð7:67Þ

Analysis of Eq. (7.66) indicates that when there is divergence (rH � H0 v
![ 0)

or convergence (rH � H0 v
!\0) of the volume transport along the depth axis, they

must be compensated by negative or positive of the vertical velocity component on
the surface (∂η/∂t < 0 or ∂η/∂t > 0, respectively).

A simple salt conservation equation may be obtained from Eq. (7.67) by sepa-
rating derived variables, such as S � h, S � uh and S � vh, and combining these
variables with the continuity Eq. (7.56a) to give,

@S
@t

þ u
@S
@x

þ v
@S
@y

¼ 1
h
½ @
@x

ðKxh
@S
@x

Þþ @

@y
ðKyh

@S
@y

Þ� þ @S
@z

jz¼gðP� EVÞ: ð7:68aÞ

This equation may be further simplified when h = const.,
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@S
@t

þ u
@S
@x

þ v
@S
@y

¼ ½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ� þ @S
@z

jz¼gðP� EVÞ: ð7:68bÞ

In Eqs. (7.68a, b), the last term of the right-hand-side was introduced to simulate
the salinity time variation due to fresh water exchanges at the free surface through
precipitation (P) and evaporation (Ev) rates, [P] = [Ev] = [LT−1]. When P > EV or
P < Ev, there will be a fresh water source or sink at the surface (z = η), respec-
tively; when P = Ev, there will be no fresh water interchanges at the free surface.

Pritchard (1954) used Eq. (7.68b) to study the salt balance in the James river
coastal plain estuary (Virginia, USA) under steady-state conditions (∂S/∂t = 0) and
with P = Ev. Based on a time series over several tidal cycles of salinity and current
velocity, it was observed that the horizontal flux due to advection and the vertical
non-advective salt flux were the most important factors in maintaining a simplified
salt balance equation, such as:

u
@S
@x

þ v
@S
@y

¼ @

@y
ðKy

@S
@y

Þ: ð7:69Þ

Equations (7.65) and (7.68a, 7.68b) are the physical-mathematical formulation of
the Eulerian description of the bi-dimensional salinity field variation S = S(x, y, t) in
the water column. If the estuary geometry, the velocity field, the kinematic coeffi-
cients Kx and Ky, and the initial and boundary conditions are known, these equations
may be integrated to calculate the mean salinity in the water column.

7.3.3 Bi-Dimensional Formulation: Lateral Integration

Let us now consider a second bi-dimensional model, under the assumption that the
estuarine water mass is laterally homogeneous, which is generally the case of narrow
partially-mixed estuaries; its circulation, salinity and others properties are indepen-
dent on the Oy axis. In these conditions, the conservation equations of mass (7.19)
and salt (7.24 or 7.25) must be integrated along the lateral direction, from y = a(x, z)
to y = b(x, z) coordinates, and their mean values calculated. The difference being b(x,
z) − a(x, z) = B(x, z) will indicate the estuary width (Fig. 7.5). The dependence on
the Oz direction will take into account the time variation of the lateral coordinates,
because z is dependent on the time variation of the free surface, η = η(x, t).

By analogy with the mathematical development used for the vertically homo-
geneous estuary, it is necessary to laterally integrate the tri-dimensional equations,
calculate their means and then reduce them, applying the Leibnitz rule, with con-
sideration that the integration limits of the estuary boundaries, a and b are functions
of x and z, a = a(x, z) and b = b(x, z). Following this procedure, it is necessary to
apply the boundary conditions in order to eliminate influences that are topo-
graphically generated by the bottom and margins of the estuarine channel, and
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impose the condition that salt advection and diffusion through its boundaries must
be zero.

Beginning with the continuity Eq. (7.19), it follows that:

Zb

a

@u
@x

dyþ
Zb

a

@v
@y

dyþ
Zb

a

@w
@z

dy ¼ 0: ð7:70Þ

Because the integration of the second parcel is immediate, applying the Leibnitz
rule, this equation is rewritten as:

@

@x
ð
Zb

a

udy)� ujb
@b
@x

þ uja
@a
@x

þ vjb � vja þ
@

@z
ð
Zb

a

wdy)� wjb
@b
@z

þwja
@a
@z

¼ 0;

ð7:71Þ

where u|b = u(x, b, z, t), v|b = v(x, b, z, t), u|a = u(x, a, z, t) and v|a = v(x, a, z, t).
Due to variations in the margin geometry of the estuarine channel, the coordi-

nates a = a(x, z) and b = b(x, z) may induce, due to topographic influences,
transversal components of the velocity, which is necessary the imposition of the
following boundary conditions:

vja ¼ uja
@a
@x

þwja
@a
@z

; ð7:72aÞ

and

vjb ¼ ujb
@b
@x

þwjb
@b
@z

: ð7:72bÞ

For an estuarine channel with a uniform rectangular transversal section, the
adherence principle states that at the margins v|a = v|b = 0.

Finally, with the hypothesis of lateral uniformity, or imposing the conditions that
the velocity components are independent of the variable, y, it follows that the
expression of the laterally integrated continuity equation is:

@ðuB)
@x

þ @ðwB)
@z

¼ 0; ð7:73aÞ

and

Zb

a

dy ¼ b(x, z, t)� a(x, z, t) ¼ B(x, z, t): ð7:73bÞ
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The continuity Eq. (7.73a) for a laterally homogeneous estuary indicates that the

vector v!¼ uB i
!þwB k

!
is non-divergent ðrV � B v!¼ 0Þ, and the associated

current function, W = W(x, z), is defined by,

@wðx; zÞ
@x

¼ w(x, z)B and
@wðx; zÞ

@z
¼ �uðx; zÞB; ð7:73cÞ

and satisfy identically the continuity equation; its dimension is equivalent to the
volume transport [W(x, z)] = [L3T−1].

Applying an analogous procedure, the salt conservation Eq. (7.25) will be lat-
erally integrated from a = a(x, z) to b = b(x, z),

Zb

a

dS
dt

¼
Zb

a

½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ�dyþ
Zb

a

ð @
@z

ðKz
@S
@z

Þdy; ð7:74Þ

applying the Leibnitz rule and the following boundary conditions:

vSja ¼ Sja½uja
@a
@x

þwja
@a
@z

�; ð7:75aÞ

and

vSjb ¼ Sjb½uja
@b
@x

þwja
@b
@z

�: ð7:75bÞ

Imposing the lateral homogeneity condition and that the salt flux, per density
unity, at its geometric boundaries is zero,

Kx
@S
@x

ja;b ¼ Kz
@S
@z

ja;b ¼ 0; ð7:75cÞ

it follows that the expression of the salt conservation equation for laterally
homogeneous estuaries is:

@ðBSÞ
@t

þ @ðuBSÞ
@x

þ @ðwBSÞ
@z

¼ @

@x
ðBKx

@S
@x

Þþ @

@z
ðBKz

@S
@z

Þ: ð7:76Þ

Combining this result with the continuity Eq. (7.73a), it follows that the most
usual salt conservation equation is:

@S
@t

þ u
@S
@x

þw
@S
@z

¼ 1
B
½ @
@x

ðBKx
@S
@x

Þþ @

@z
ðBKz

@S
@z

Þ�: ð7:77Þ
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This equation is the Eulerian formulation of the bi-dimensional salinity variation
S = S(x, z, t) of a laterally homogeneous and partially-mixed estuary (type 2 or B).
If the estuary geometry, the velocity field, the turbulent diffusion coefficients and
the initial and boundary conditions are known, this equation may be solved for the
salinity field distribution.

Equation (7.77) may be further simplified according to the estuary characteris-
tics; for a steady-state well-mixed estuary (type 1 or C) with a constant
cross-sectional area A, a width B, and a constant kinematic turbulent diffusion
coefficient (Kx), forced by the river discharge, the Eq. (7.77) is simplified to:

uf
dS
dx

¼ Kxðd
2S

dx2
Þ: ð7:78aÞ

Imposing the following boundary conditions: (i) S(x)|x=0=S0, and;
(ii) S|x!∞ = 0, which indicate the salinity at the estuary mouth and head, respec-
tively, the solution to this equation is:

S(x) ¼ S0expð� uf
Kx

xÞ; ð7:78bÞ

and the salinity decreases exponentially from the head down its mouth.
Another example of simplifying the Eq. (7.77) is presented for a highly stratified

estuary, such as a salt wedge (type 4 or A). In this estuary, the dominant mixing
process is advection, and the salinity increase across the halocline is due to
entrainment. Then, the salt conservation equation is simplified to:

u
@S
@x

þw
@S
@z

¼ 0: ð7:79aÞ

However, with the exception of salt wedge estuaries, in the layer over the
halocline, the diffusion term may still be important and holds the expression,

1
B

@

@z
ðBKz

@S
@z

Þ; ð7:79bÞ

which may be further simplified if the width (B) is constant.
In coastal plain estuaries forced by macro or hyper-tides and with moderate river

discharge, there will be random velocity fluctuations generated by internal turbu-
lence and friction at the estuary boundaries. The vertical mixing of the upper and
lower layers is enhanced, and the halocline is partially eroded. Thus, the salinity
increase in the upper layer, increasing the seaward salt transport, while the salinity
in the lower layer decreases landward, and the estuary becomes partially mixed
(type 2 or B). If the estuary is laterally homogeneous and in steady-state (according
to mean values over tidal cycles), the most important terms of the salt conservation
Eq. (7.77) are the horizontal and vertical advection and the vertical diffusion. Then,
the principle of salt conservation is reduced to:
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u
@S
@x

þw
@S
@z

¼ 1
B

@

@z
ðBKz

@S
@z

Þ; ð7:80Þ

because the non-advective horizontal term is small and may be disregarded
(Pritchard 1954, 1955).

Although the two-dimensional equations in the planes (Ox, y) or (Ox, z) are
simplifications of the tridimensional equation, their steady-state solutions for nat-
ural estuarine systems, from analytical and time dependent numerical methods,
have some complexity. However, analytical solutions were obtained for simple
geometries and steady-state conditions in the classical articles of Pritchard and Kent
(1956), Rattray and Hansen (1962), Hansen and Rattray (1965), Fisher et al. (1972),
Officer (1977), among others. A non-steady-state numerical solution using the
natural geometry of the Potomac river estuary may be found in Blumberg (1975).

As a practical example, under steady-state conditions and with a constant width
(B = const.), Eq. (7.80) will be used to calculate the salinity profile S = S(z) of a
partially mixed estuary, with the following quantities known: the vertical velocity
profile u = u(z) or u = u(Z), the mean longitudinal salinity gradient
ð@S=@X) � Sx), and w = 0. From some algebraic rearrangement, the equation is
reduced to:

@2S
@z2

¼ u(z)
Kz

Sx; or
d2S

dZ2 ¼
h2

Kz
uðZÞSx;

where Z = z/h (0 	 Z 	 1), and with the non-dimensional depth (Z) used in the
latter expression. The general solution of this second order ordinary differential
equation is,

S(Z) ¼ u(Z)h2

2Kz
SxZ2 þC1ZþC2:

The non-dimensional constants C1 and C2 are calculated using the following
boundary conditions: at the surface S(0) = Ss, and at the bottom S(1) = Sb. In the
general solution, they are given by:

C1 ¼ Ss and C2 ¼ ðSb � SsÞ � u(Z)h2

2Kz
Sx;

where the difference Sb − Ss for partially mixed estuaries may vary from just a few
to values to over twenty psu, for weakly and high stratified conditions, respectively.

Substituting the constants C1 and C2 into the general solution, the final vertical
salinity profile is:
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S(Z) ¼ ½u(Z)h
2

2Kz
Sx�Z2 þ ½ðSb � SsÞ � u(Z)h2

2Kz
Sx�Zþ Ss;

which satisfies the boundary conditions, and may be reduced to a final solution if
the vertical velocity profile u = u(Z) has previously been calculated.

7.3.4 One-Dimensional Formulation: Integration
in an Area

Estuaries that are long, narrow and shallow, with accentuated tidal forcing, and are
vertically non-stratified and laterally homogeneous, can be studied as
one-dimensional system, and the continuity and salt conservation equations may be
simplified to be applied to these well-mixed estuaries (type 1, C). In these estuaries,
the longitudinal variation is prevalent and the velocity, salinity and the concen-
tration of properties may be taken as functions of the longitudinal distance and time,
i.e., u = u(x, t), S = S(x, t) and C = C(x, t), respectively. The one-dimensional
deduction of these equations are not trivial, because the integrated mean values of
Eqs. (7.19), (7.25) and (7.27) must be along the transverse plane (Oyz), orthogonal
to the axis Ox, as illustrated in Fig. 7.6.

Beginning with the integration of the continuity equation,4 let us indicate by
A = A(x, t) the area of the transverse section limited by the closed line c (Fig. 7.6),
which varies both along the estuary and with time

ZZ
A

@u
@x

dydzþ
ZZ

A

@v
@y

dydzþ
ZZ

A

@w
@z

dydz ¼ 0; ð7:81Þ

where dydz = dA is a small elementary area.
The first term of Eq. (7.81) must be transformed by applying the Leibnitz

derivation rule of a double integral, resulting in (Pritchard 1958; Okubo 1964):

@

@x,t
ð
ZZ

A
udydzÞ ¼

ZZ
A

@u
@x,t

dydzþ 1
c
ð@A
@x,t

Þ
I
c
udl: ð7:82Þ

In this equation, c is the length of the continuous curve limiting the area, A,
depicted by the closed line going through in the positive sense of direction
(Fig. 7.6), and dl is the differential arch element.

The remaining terms (second and third) of Eq. (7.82) may be adequately reduce
using the Green’s formula (Severi 1956, p. 369), which transform the surface
integral into a line integral,

4This type of estuary is usually shallow and the influence of the gravitational circulation may be
disregarded and the baroclinic bumping landward is negligible.
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I
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vdz; ð7:83Þ

and

ZZ
A

@w
@z

dydz ¼ �
I
c

wdy; ð7:84Þ

where, dy and dz are differential elements of the contour line (c).
Substituting Eqs. (7.82), (7.83) and (7.84) into the Eq. (7.81) we have the fol-

lowing expression:
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@x
ð
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A
udydz)� 1

c
ð@A
@x

Þ
I
c

ud‘þ
I
c

vdz�
I
c

wdy ¼ 0: ð7:85Þ

As the u-velocity component is uniform in the transversal section A, this
equation may be rewritten as:

@ðuA)
@x

� @A
@x

ujA þ
I
c

vdz�
I
c

wdy ¼ 0; ð7:86Þ

where the following identities have been taken into account:
RR

Adydz ¼ A, and
1
c
H
c
d‘ ¼ 1, and u|A = u, is the velocity mean value in the area A.

Now, for the physical interpretation of the sum of the two last terms of
Eq. (7.86), we may use a consequence the Green theorem, which states that (Severi
1956, p. 369):

Fig. 7.6 Estuary approximated by one-dimensional model with uniform property distributions in
the transversal section A = A(x, t). The boundary of the area, A, is the closed line circulating in the
positive orientation (area is located at left)
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A ¼ 1
2
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I
c
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I
c

zdy): ð7:87Þ

As A = A(x, t), the local variation ∂A/∂t is formulated by:
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¼ 1
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vdz�
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vdz�
I
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and the functions being integrated, v and w are given by

v ¼ dy
dt

;w ¼ dz
dt

: ð7:89Þ

The second term of Eq. (7.86) may be rewritten as:

@A
@x

ujA ¼ @A
@x

dx
dt

¼ @A
@t

; ð7:90Þ

and substituting Eqs. (7.88) and (7.90) into the Eq. (7.86), the result is,

@ðuA)
@x

� @A
@t

þ 2
@A
@t

¼ 0; ð7:91Þ

and the analytical expression of the one-dimensional principle of continuity is
reduced to (Pritchard 1958):

@ðuA)
@x

þ @A
@t

¼ 0: ð7:92aÞ

For a wide shallow estuary (B � H0), A = B(H0 + η) � Bη, this equation is
reduced to

1
B
@ðuA)
@x

þ @g
@t

¼ 0: ð7:92bÞ

As the area, A, is a known geometric property in this equation, it may be solved
using the mean velocity at the transverse section u = u(x, t), as well as to the
volume transport, u(x, t)A = TV(x, t); for convenience, this volume transport may
be also denoted by Q (uA = TV = Q). Then, in order to satisfy the mass conser-
vation principle, if in a longitudinal location, x, the volume transport increases
(∂TV/∂t > 0) or decreases (∂TV/∂t < 0), this must be compensated by a time
decrease (∂A/∂t < 0) or increase (∂A/∂t > 0) of the cross-section area, respectively.
However, in steady-state condition, the continuity equation is reduced to
TV = Qf = uA = const, or u = uf = Qf/A.
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Similar to the mass continuity, the one-dimensional salt conservation equation is
obtained by multiplying the tridimensional expression (7.25) by the differential area
dydz, developing the integral terms using the Leibnitz rule and the Green theorem,
it follows that:
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ð7:93Þ

Taking into account Eqs. (7.88) and (7.90), and that the salinity, S, and the
u-velocity component are uniform in the area, A, the terms on the left-hand-side of
Eq. (7.93) simplifies to:

@ðAS)
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þ @ðuAS)
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; ð7:94Þ

because
RR

Adydz ¼ A, and the sum of the remaining terms are equal to zero,
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wdy) ¼ 0: ð7:95Þ

In the first term on right-hand-side of the Eq. (7.93), salinity and the longitudinal
salt diffusive term, Kx(∂S/∂x), are uniform in the area A. As the line integrals are
equal to zero, these terms are reduced to:
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Þ; ð7:96Þ

and it follows that the one-dimensional salt conservation equation (Pritchard 1958)
is:

@ðAS)
@t

þ @ðuAS)
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¼ @
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ðAKx
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Þ: ð7:97Þ

Finally, developing the products indicate in the left-hand-side of the differential
equation, and combining the result with the one-dimensional continuity Eq. (7.92a,
7.92b), the salt conservation equation may be simplified to,
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¼ 1
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ðAKx
@S
@x

Þ�: ð7:98Þ

Under steady-state conditions and for A = const., this equation may be further

reduced to ufS ¼ KxðdSdxÞ or qðufS) ¼ q½KxðdSdxÞ�, which states that the downstream

advective salt flux driven by the river velocity (qufS) will counteract the upstream
diffusive flux driven by all other mechanism, qKxð@S/@x): This equation has been
used to estimate the kinematic (or dynamic) eddy diffusion coefficient, which may
be approximated by Kx ¼ ufS/(@S/@x). However, coefficients calculated with this
equation and used in analytical and numerical models are subjected to interpretation
and must be validated with observational results of velocity and salinity profiles.

We have seen that when the geometry of a transverse section (A), the uniform
longitudinal velocity component (u), the kinematic eddy diffusion coefficient (Kx)
and the initial and boundary conditions are known, it is possible to solve the
differential Eq. (7.98) for S = S(x, t) or S = S(x). The following statements,
according to Okubo (1964) and Fischer et al. (1979), should be noted: (i) Time
derivative describes the change of water property per tidal cycle, and A may
indicate the cross-sectional area at mean time interval of the tidal cycle; (ii) Because
of the cross-sectional area divergence, the effective mean flow velocity tends to
decrease towards the sea; (iii) On the other hand, the local fresh water inflow
through the sides of the estuarine may counteract, to some extent, the cross-section
divergence of the mean flow.

Similar expressions to Eqs. (7.97) and (7.98) with a few adaptations, may be
transformed into one-dimensional conservation equations for analysis of the one
dimensional concentration, C = C(x, t), diffusion of pollutants, based on the time
and space averaged equations formulated by:
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þ u
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¼ 1
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Þ� 
 ðsources or sink termsÞ; ð7:99aÞ

or
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¼ ½ @
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ðAKxC
@C
@x

Þ� 
 ðsources or sink terms): ð7:99bÞ

In these equations, C, is a non-dimensional concentration [C] = [MM−1] and
KxC [KxC] = [L2T−1] is the kinematic eddy-diffusion coefficient.

For the Eqs. (7.99a, 7.99b) the same restrictions hold as those indicated for
Eq. (7.98). A rigorous deduction of this equation, describing the space and time
variation of the pollutant diffusion in a one-dimensional estuary was developed by
Okubo (1964). The conditions for which it is appropriate to use for pollutant
diffusion in a one-dimensional estuary under steady-state condition are: (i) after a
critical initial time period; (ii) when, due to tidal fluctuations of cross-sectional
areas, the property concentration and density are sufficiently small compared with
the respective mean value; (iii) when tidal mean velocity weighted by
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cross-sectional area is used for velocity (u), instead a simple tidal mean velocity,
and; (iv) when an effective eddy diffusivity is defined, including non-homogeneity
within the cross-section, and the river discharge into the estuary is small.

7.4 Simplifyed Forms of the Continuity Equation

In Chap. 2, a simplified one-dimensional continuity equation was presented for an
estuary with width (B) and depth (H0) constants (Eq. 2.17, Chap. 2). Let us derive
another equation in which the condition that the width B 6¼ const., starting with the
bi-dimensional expression of the continuity (7.56a), performing its lateral integra-
tion from y = a(x, z) to y = b(x, z), the result is:

Zb

a

@ðuh)
@x

dyþ
Zb

a

@ðvh)
@y

dyþ
Zb

a

@h
@t
dy ¼ 0: ð7:100Þ

As h = H0 + η(x, t), in this equation it has been taken into account that ∂η/
∂t = ∂h/∂t. Applying the Leibnitz rule to the first term, calculating the integral in
the second term, and with the boundary conditions vh|x=a = vh|x=b = 0, it follows
that:

@

@x
½
Zb

a

ðuh)dy]þ
Zb

a

ð@h
@t
Þdy ¼ 0: ð7:101Þ

Because an estuary’s length is generally much less than one quarter of the
co-oscillating tidal wave length, the local depth (h) may be considered as inde-
pendent on x and y, and the Eq. (7.101) may be rewritten as:

@

@x
½
Zb

a

ðuh)dy]þ @h
@t

Zb

a

dy ¼0; ð7:102aÞ

and

@

@x
½
Zb

a

ðuh)dy]þB
@h
@t

¼ 0: ð7:102bÞ

As the u-velocity component is independent of the depth (z) and the water
column height (h), in the first term it may be substituted by an integral (as in
Eq. 7.56c); then, this equation may be re-written as:
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@

@x
½u
Zb

a

ð
Zg

�H0

dz)dy]þB(
@h
@t
Þ¼ 0; ð7:103aÞ

or

@Q
@x

þB(
@g
@t

Þ ¼ 0; ð7:103bÞ

where the volume transport is denoted by Q = Q(x, t) and is calculated by

u[
Zb

a

ð
Zg

�H0

udz)dy] ¼ u(x, t)A ¼ Q(x, t): ð7:103cÞ

By the longitudinal integration of equation of Eq. (7.103b), from the estuary
head (x = 0) down to the mouth (x = L), it follows that,

Qf � QLðt) ¼
@g
@t

ð
ZL

0

Bdx) ¼ ð@g
@t

ÞAsu; ð7:104Þ

where Qf and QL(t) are the river discharge and the time variation of the volume
transport at the estuary mouth, respectively. The integration of the estuary width
(B) along its longitudinal length (L) may be identified as the surface area of the
estuary (Asu), which is dependent on the tidal height, Asu = Asu(η). If the river
discharge (Qf) is disregarded, this solution may be simplified as:

QLðt) ¼ �ð@g
@t

ÞAsu: ð7:105Þ

This equation may be used to estimate the volume transport through the mouth
of a hyper-saline estuary or coastal lagoon in arid regions, and indicates that the
temporal variation of the volume transport is proportional to the surface area and the
tidal oscillation. As this surface area may be determined by the hypsometric
characteristics of the coastal system (Fig. 7.7), with leveling techniques and aerial
pictures, and the tide may be predicted, it is possible to calculate approximately the
volume transport, QL = QL(t).

It should be noted that during the tidal flood (∂η/∂t > 0) and ebb (∂η/∂t < 0)
tides, the volume transport is negative QL < 0 and positive QL > 0, respectively.
Then, the volume transport balance, TC = CQL(t), associated with any known
conservative property concentration (C), may be used to estimate the importation
(TC < 0) or exportation (TC > 0) of substances. With the concentration in units of
property per volume [prL−3], the property transport is calculated in [prT−1].
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7.5 Application of the One-Dimensional Continuity
Equation

To exemplify an application of the one-dimensional continuity Eq. (7.92a, b), let us
investigate its analytical solution for a classical estuarine channel. Under the
assumption that in this estuary the velocity is uniform in the cross-sectional area,
the equation may be integrated from a section located at the estuary head (x = 0)
down to a longitudinal position x (Fig. 7.6):

Zx

0

@ðuA)
@x

dxþ
Zx

0

@A
@t

dx ¼ 0; ð7:106aÞ

or

ðuA)jx � ðuA)jx¼0 þ
Zx

o

@A
@t

dx ¼ 0; ð7:106bÞ

where (uA)|x=0 = Qf. As the integration limits are independent on the time,

ðuA)jx þ
@

@t
ð
Zx

0

Adx) ¼ Qf ; ð7:107aÞ

or

Fig. 7.7 Schematic diagram
of a coastal lagoon showing
the inflow and outflow of
volume transport (QL) and the
associate maximum and
minimum flooding areas,
which may be calculate by
hypsometric techniques
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ðuA)jx þ
dV
dt

¼ Qf : ð7:107bÞ

In this equation, V is the volume of the estuarine water mass between the
cross-sections located from x = 0 and the arbitrary position x, and dV/dt is its time
variation. Solving this equation for the cross-section mean velocity, u = u(x, t),
gives,

u(x,t) ¼ 1
A
ðQf �

dV
dt
Þ; ð7:108Þ

where u = u(x, t) is the non-steady state u-velocity component generated by the
river discharge and the barotropic gradient pressure force due to tidal oscillation,
and its influence in the volume time variation (dV/dt). From this result, it is possible
to compare the current intensities during the ebb (uE) and flood (uF) tides. In effect,
because the river discharge may be taken as constant during the tidal period uf = Qf/
A, and the ebb velocity (uE) usually is higher than the flood (uF), because the
volume decrease (dV/dt < 0) of the mixing zone (MZ). During the flood,
dV/dt > 0, and its intensity uF < uE. Under steady-state condition dV/dt = 0 then
uf = Qf/A.

Taking into account that the mean free surface Asu is occupied by the MZ,
between the estuary head (x = 0) and the estuary mouth at longitudinal position x,
the geometric volume of the estuarine water mass is calculated by
VðtÞ ¼ Asugðx; t). Thus, the Eq. (7.108) may be rewritten as:

u(x,t) ¼ 1
A
ðQf � Asu

@g
@t

Þ; ð7:109Þ

which confirms that this velocity is generated by the river discharge and the bar-
otropic gradient pressure force. With this equation, the volume transport Q,
[Q] = [L3T−1] may also be calculated by,

Q(x, t) ¼ u(x, t)A ¼ Qf � Asu
@g
@t

¼ Qf �
dV
dt

; ð7:110Þ

which has similarities with Eq. (7.104).
In estuaries, the time-rate of the volume stored in the space between a

cross-section and its head may be approximate by sine functions of time (t) and the
angular frequency (x). Then, the integral of the Eq. (7.107b) during a complete
tidal cycle is given by (Pritchard 1958):

ZT

0

ðuA)dt ¼
ZT

0

Qfdt�
ZT

0

dV
dt

dt: ð7:111Þ
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As the river discharge Qf is constant, and the last integral on the right-hand-side
is equal to zero, as it is supposed that during a complete tidal cycle there will be no

time variation in the stored volume ðdVdt ¼ 0Þ in the mixing zone (MZ), then,

ZT

0

ðuA)dt ¼ QfT ¼ R, ð7:112Þ

This result confirms the fresh water volume conservation during this time
interval, and that the net volume transport is equal to R.

7.6 Application of the One-Dimensional Salt Conservation
Equation

The tidal prism models where semi-empirical developed without the formalism of
the principles of mass and salt conservation presented in this chapter. Additionally,
the basic ideas of Ketchum’s methods were described, taking into account the
physics of the continuum in the classical article of Arons and Stommel (1951),
which will be presented in Chap. 10.

In this topic, the mass and salt conservation equations will be applied with the
same hypothesis as the discrete models: one-dimensional, steady-state and
well-mixed estuaries. Let us consider a simple geometry (A = const.), with the
kinematic effective (eddy) diffusion coefficient (KH) in the MZ taken as constant. In
these conditions, because ∂A/∂t = 0, the continuity Eq. (7.92a, b) is simplified to

ð@uA@x ¼ 0Þ, and uA = Qf is independent of the longitudinal position. In turn, the salt
conservation Eq. (7.98) is simplified to:

uf
@S
@x

¼ KHð@
2S

@x2
Þ: ð7:113Þ

As the river discharge and the estuary geometry are known, the solution S = S
(x) of Eq. (7.113) is dependent only on the boundary conditions and a known KH

coefficient. As the salinity field is uniform in the cross section area, the problem has
been reduced to one dimension, and the differential Eq. (7.113) is an ordinary
second order differential equation with constants coefficients. Rearranging its terms
the equation to be solved is:

d2S

dx2
� uf
KH

dS
dx

¼ 0; ð7:114aÞ

or, reducing its order with a first integration from the river tidal zone (x = 0, where
S = 0), and the longitudinal position x in the mixing zone (MZ), gives
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ufS ¼ KH
dS
dx

þA1; ð7:114bÞ

where A1 is an integration constant. Let us solve this equation in relation to a local
coordinate system with Ox oriented positively seaward from x = −L (boundary
TRZ/MZ) to x = 0 (estuary mouth) as shown in Fig. 7.8; with this orientation of the
u-velocity component generated by the river discharge, (uf) is positive.

At x = −L, the salinity and the product KH
dS
dx are equal to zero and the inte-

gration constant A1 = 0. Multiplying both members of the remaining equation by
the density, it follows that the seaward advective salt flux counter balances the eddy
diffusive salt flux due to the tidal forcing.

The simplifying hypothesis of this problem may limit its practical application
because some influences have not been taken in consideration (mainly bottom and
lateral friction, baroclinic forcing and vertical mixing). The solution, however, is
very interesting because it demonstrates the physical nature of the estuary and its
relationship with the main concepts presented in Chap. 6.

Returning to Eq. (7.114b), its solution with A1 = 0 simplifies to

S(x) ¼ S0expð ufKH
x): ð7:115Þ

This solution was determined with the following boundary conditions: the
salinity at the mouth (x = 0) is equal to the salinity at coastal region S(0) = S0 (the
only salt source), and the estuary is long enough that for L ! −∞ the salinity
decreases to zero S(−∞) = 0. As x < 0 and uf > 0, it is easy to show that this
solution identically satisfies these boundary conditions.

The equation for the longitudinal distribution of a solute discharged into a
steady-state well-mixed estuary forced by tides and river discharge, with transverse
sections that vary in the longitudinal direction A = A(x), was obtained in the
classical work of Maximon and Morgan (1955). Their solution, when particularized
for a constant transversal section (A = const.), reduces identically to the solution
(7.115).

With this analytical solution for S = S(x), it is possible to apply the Eq. (6.11)
(Chap. 6) to calculate the longitudinal variation of the fresh water fraction, f = f(x),
which is necessary to theoretically calculate the fresh water volume stored in the
estuary. Thus, this expression becomes,

f(x) ¼ 1� expð uf
KH

xÞ; ð7:116Þ

and for x ! −∞, this solution converges to one f(−∞) ! 1.
In these solutions (7.115 and 7.116), the longitudinal kinematic eddy diffusion

coefficient (KH) still remains an unknown physical quantity, which may be theo-
retically calculated by correlation of the turbulent fluctuations of the u-velocity and
salinity (Eq. 7.26). However, its order of magnitude may be estimated if the
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longitudinal distance between the estuary mouth and head (mixing zone length) is
known, along with the physical quantities such as Qf, A and S0. For example, if
Qf = 100 m3 s−1, A = 103 m2, S0 = 35o/oo and S(−L) = 1, Eq. (7.116) may easily
be solved for the coefficient KH, and some results are presented in Table 7.1.

Although this table only shows the coefficient dependence on the mixing zone
length, it is also directly dependent on the river discharge, fresh water fraction, and
the estuary geometry (transverse cross-section area and length). As the transverse
cross-section area usually varies along the estuarine channel, even for a constant
river discharge, this coefficient will be dependent on the longitudinal distance,
KH = KH(x). This dependence was first investigated by Stommel (1953b), solving
the Eq. (7.115) by finite differences around a longitudinal position, x,

KHðx) ¼ ufS(x)
DS

Dx ¼ QfS(x)
A(x)DS

Dx ¼ Qf ½f(x)� 1�
A(x)Df

Dx: ð7:117Þ

In the last term, the salinity S = S(x) was changed by the fresh water fraction, as
S(x) = S0[1−f(x)] and DS(x) = −S0Df(x). In this equation, the salinity and the fresh
water fraction are mean values at the cross-sections separated by a distance Dx, and
DS and Df are finite intervals of salinity and the fresh water fraction, respectively.

Equation (7.117) is a simple and direct method to determine the KH coefficient
using known quantities that may be obtained experimentally. With all variables in
the SI system of units, the kinematic coefficient, KH, is calculated in m2 s−1. For
well-mixed estuaries with mean dimensions and moderate river discharge, we may,

Fig. 7.8 One-dimensional model indicating the landward (x = −L) and seaward (x = 0)
longitudinal coordinates of the mixing zone (MZ) between its head and mouth, respectively

Table 7.1 Estimates of the longitudinal kinematic eddy diffusion coefficient (KH), based on the
mixing zone length (−L) and the following data: Qf = 100 m3 s−1, A = 103 m2 and S0 = 35o/oo

Mixing zone length L (m) Coefficient KH (m2 s−1)

36 1

360 10

3600 100

36,000 1000
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as a first approximation, adopt KH values between 3.0 � 102 m2 s−1 and
5.0 � 102 m2 s−1. Results obtained by various scientists who applied this method
are compared by Officer (1978).

With the theoretical solutions of salinity, S = S(x), and the fresh water fraction
f = f(x), it is possible to calculate the following fundamental physical quantities,
defined in Chap. 6: fresh water volume Vf stored in the MZ, flushing time (tq) and
flushing rate (F). To exemplify this procedure, let us take L = −104 m, and the same
values as we used previously: Qf = 100 m3 s−1, A = 103 m2, and S0 = 35.0o/oo.
With these values, it is easy to show that:

S(x) ¼ 35 expð3:6� 10�4xÞ; ð7:118aÞ

f(x) ¼ 1� S(x)
35

¼ 1� expð3:6� 10�4xÞ; ð7:118bÞ

Vf ¼ A
Z0

�L

f(x)dx ¼ AfLþ 2:8� 103½exp(� 3:6� 10�4L)� 1�g; ð7:118cÞ

and

F ¼ S0
S0 � S

Qf ¼
35

35� 9:5
Qf : ð7:118dÞ

Calculating these analytical solutions with the numerical values given above
gives the following results: Vf = 7.28 � 106 m3, tq = 20.2 h and F = 137 m2 s−1.
As this theory is applied to well-mixed estuaries, the flux rate (F) will be almost
constant due to the dominance of the diffusion in the mixing process. The longi-
tudinal variations of salinity and the fresh water fraction in this steady-state and
one-dimensional model are presented in Figs. 7.9a, b, respectively.

Applying the conservation Eq. (7.114a) to a conservative property, with the
same simplifying conditions as this example, and with its source located at the
estuary mouth, it is easy to verify that the solution is similar to the Eq. (7.115), with
the following substitutions: at the estuary mouth the salinity S0 by the maximum
concentration C0, and KH substituted by the corresponding eddy diffusion coeffi-
cient of the property KHC. Then, the longitudinal distribution of the property
concentration, C = C(x), decreases exponentially landward, following the expo-
nential salinity decrease. This result has already been used qualitatively in Chap. 6,
in a semi-empirical development (Eq. 6.83).

As a complementary exercise at the end of this topic, let us present another
solution of the salt conservation Eq. (7.113), but in terms of the fresh water fraction
(f). After integration of this equation, and considering the integration constant equal
to zero, it may be rewritten as:
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ufS� Kx
dS
dx

¼ 0; ð7:119Þ

and its first term may be associated with the mass conservation equation, for
uf = Qf/A. Taking into account that the fresh water fraction f = f(x) defined in the
Eq. 6.10 (Chap. 6), it follow that the salinity may be expressed in terms of the fresh
water fraction S ¼ S0ð1� fÞ; and

dS
dx

¼ �S0
df
dx

; ð7:120Þ

Fig. 7.9 Simulation of
longitudinal variations of
salinity and fresh water
fraction of a one dimensional
and steady-state well-mixed
estuary, with length L = −104

m, and kinematic coefficient
of eddy diffusion,
KH = 280 m2 s−1
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where 0 	 f 	 1. Combining Eqs. (7.119) and (7.120) and taking into account
the mass conservation equation, it follows:

ðQf

A
ÞSþ S0KHðdfdxÞ ¼ 0: ð7:121Þ

Dividing both members of this equation by S0, and knowing that the ratio S/S0 is
equal to (1 − f), the salt conservation equation in terms of the fresh water fraction is
rewritten as (Officer 1978):

Qf ¼ fQf � KHAðdfdxÞ: ð7:122Þ

Thus, the fresh water fraction, f = f(x), may be calculated solving the following
differential equation:

df
dx

¼ ðf � 1Þ Qf

KHA
; ð7:123aÞ

or

df
dx

¼ ðf � 1Þ uf
KH

: ð7:123bÞ

This equation satisfies identically the longitudinal variation of the fresh water

fraction: at the estuary mouth (f ! 0) and df
dx\0, thus f = f(x) decreases seaward.

Otherwise, at the estuary head df
dx ¼ 0, and f = f(x)|x=1! f = const. = 1. An

exponential solution of f = f(x) has already been presented in Eq. (7.118b).

7.7 Steady-State Concentration Distribution
of a Non-conservative Substance

A study of the longitudinal distribution of the concentration of a non-conservative
property (tracer), C = C(x), in a well-mixed estuary under steady-state conditions is
now presented as a particular solution of Eq. (7.99a). By hypothesis, the concen-
tration is almost invariable from one tidal cycle to the next, and the river and
effluent discharges are also constant during this time interval. As the concentration
of a non-conservative substance will be considered (for conservative, the longitu-
dinal variation follows the salinity very closely), its concentration may decrease
with time even without the influence of tidal diffusion, and it is necessary to add a
term into the equation to take that influence into account. In this case, the decrease
with time may be expressed according to the first order exponential decay,
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C(t) ¼ c0expð�ktÞ; ð7:124Þ

where c0 is the initial concentration, C(0) = c0, and k, [k] = [T−1] is a coefficient of
proportionality, and t = k−1 is the time required for the concentration to decay from
the initial value c0 to c0/e.

With these definitions, the conservation equation for calculation of the
steady-state longitudinal distribution, C = C(x), of a non-conservative substance,
undergoing a first order concentration decay, in a one-dimensional estuarine
channel is reduced to the following second order differential equation:

d2C

dx2
� uf
KHC

dC
dx

þ k
KHC

C ¼ 0; ð7:125Þ

relative to the same referential system presented in Fig. 7.8. The non-dimensional
coefficient KHC is a tracer’s kinematic eddy (effective) horizontal diffusion. Even
though this particular example has limited potential to be directly applied to an
estuary, its solution is of interest in showing the approximate forms of solutions that
can be expected, and it is appropriate to view this equation as a postulate (or
empirical) model, subject to verification (Fischer et al. 1979). This equation has as
general solution C(x) = emx, and the characteristic second grade root of this
equation has two solutions in the real numeric field:

C(x) ¼ c0 exp½ ufx2KHC
ð1
 ffiffiffiffiffiffiffiffiffiffiffiffi

1þW
p Þ�; ð7:126Þ

where W = 4KHCk/uf
2 is a non-dimensional quantity, and the x variable is negative,

according to the reference system used. Because the velocity generated by the river
discharge (uf > 0) in well-mixed estuaries is usually low, and the quantity W is
inversely proportional to uf, the value of W may be very large.

In order to exemplify the application of the solution presented in Eq. (7.126), let
us consider the input of a tracer in an estuary with a mass transport W, in kg s−1, in
the longitudinal position x = xw (xw < 0). Then, the initial condition C(0) = c0 is
satisfied, and the equation’s solution must be separated into two terms (Stommel
1953b, Fischer et al. 1979):

• Landward from the effluent throw position xw (x 	 - xw)

Cacðx) ¼ c0 exp½ uf
2KHC

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p
Þðx� xwÞ�: ð7:127aÞ

• Seaward from the effluent throw position (x 	 - xw)

Cacðx) ¼ c0 exp½ uf
2KHC

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p
Þðx� xwÞ�: ð7:127bÞ
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In these solutions, it is easy to see that for x = xw the concentration at this point,
C(xw), is equal to c0, C(xw) = c0 and, according to the simplifying hypothesis, the
initial concentration is determined by the equation,

c0 ¼ W
Qf

f0; ð7:128Þ

where f0 is the fresh water fraction at the effluent’s launching position, and W/Qf is
the initial concentration due to dilution by the river discharge (Eq. 6.78, Chap. 6),
without the influence of diffusion or concentration decay.

Let us exemplify numeric results using the above equations under the assump-
tion that the tracer input is made into the estuary whose longitudinal salinity dis-
tribution, S = S(x), and fresh water fraction, f = f(x), were theoretically obtained
and presented in the Eqs. (7.118a, b), which were calculated with A = 103 m2 and
Qf = 100 m3 s−1. For the tracer discharge point, we adopt the following positions:
xW = −3000 m and −5000 m, where, according to the Eq. (7.118b), f(x)|x=0 =
f0 = 0.65 and f0 = 0.83, respectively. Assuming of a tracer transport of 20.0 kg s−1,
KxC = 60 m2 s−1 and k = 2.3 � 10−4 s−1, the longitudinal landward (Cac) and
seaward (Cab) distributions from the discharge positions are given by:

CacðxÞ ¼ 0:13: exp½2:94� 10�3 xþ 3� 103
� ��; ð7:129aÞ

CabðxÞ ¼ 0:13: exp½�1:55� 10�3ðxþ 3� 103Þ�; ð7:129bÞ

and

CacðxÞ ¼ 0:17: exp½2:94� 10�3ðxþ 5� 103Þ�; ð7:130aÞ

CabðxÞ ¼ 0:17: exp½�1:55� 10�3ðxþ 5� 103Þ�: ð7:130bÞ

In these solutions, the initial concentrations C(xw) = c0 = 0.13 kg m−3 and
0.17 kg m−3, were calculated with Eq. (7.128); however, the primary phase of the
tracer decay has not been taken into account. As may be observed, due to the
seaward decrease of the fresh water fraction, the displacement of the tracer input in
this direction reduces the initial tracer concentration (c0).

Distributions of concentrations, C = C(x), for the discharge positions considered
in this exercise, are presented in Fig. 7.10, along with the corresponding salinity
S = S(x) and fresh water fraction f = f(x) variations, representing the longitudinal
behavior of a conservative property above and below the input position,
respectively.

The analytical solution of this problem of a conservative substance is related to
the semi-empirical solution of Ketchum (1955), shown in Fig. (6.14, Chap. 6), and
the analytical solution of Stommel (1953a) may be similarly interpreted. If salinity
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is introduced at the locations x = −6 km and −3 km, upstream of the outfall they
will follow the S = S(x) curves, as shown in Fig. 7.10; however, the remainder of
the solution downstream of the outfall their concentrations will follow the fresh
water concentration curves, f = f(x). In this simple case it is clear that no matter
what the location of the outfall, the concentration is every-where reduced upstream
of the outfall if the location of the outfall is moved towards the sea. This solution
also indicates that, up to the intersection of the curve S = S(x) with fresh water
fraction curve, f = f(x) indicates the maximum input concentration of the effluent.

Solutions for the concentration distribution, C = C(x), for a non-conservative
tracer discharged into the estuary by outfalls located at x = -3.0 � 103 m and
x = -5.0 � 103 m, are also shown in the Fig. 7.10. A remarkable feature of these
distributions is that the peak concentration, even at the outfalls, are very much
reduced in comparison to the conservative tracer. As shown in the figure, the tracer
concentration extends both upstream and downstream of the outfall and, unlike a
conservative tracer, its concentration can be reduced at a point bellow by an
upstream displacement of the outfall (Stommel 1953b; Ketchum, unpublished
report). These theoretical and practical results indicate the following influence of
the river discharge on the tracer longitudinal distribution: an increase in river dis-
charge causes an increase in the fresh water fraction in the mixing zone, reducing
the landward displacement of the tracer, and its initial concentration at the discharge
position, as well as the seaward concentration of a conservative substance.

Fig. 7.10 Longitudinal distributions of the concentration, C = C(x), of a non-conservative tracer
undergoing a first order decay, with the fresh water fraction, f = f(x) and salinity S = S(x),
simulating conservatives properties. The one dimensional solutions were obtained landward and
seaward of the tracer input position at −3000 m and −5000 m. (adapted from Stommel 1953a, b).
The estuary mouth is located at x = 0
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