
Chapter 12
Numerical Hydrodynamic Modelling

As estuaries are three dimensional and time dependent, numerical models have been
developed to overcome the simplifications inherent to the already studied analytical
models (simple geometry, steady-state) and calculate estuarine circulation and
salinity distributions. These models can be numerically integrated at selected grid
points spatially distributed in the system domain; the governing partial differential
equations use methods of finite-difference or finite-elements in curvilinear hori-
zontal coordinates or sigma vertical coordinates, respectively.

Numerical models have been developed and published since the end of the
1960s. This method involves replacing the differential partial equations with
equivalent finite difference algebraic equations, which are solved numerically.
Applications of the solutions of time-dependent numerical equations, allowing the
probable distribution of pollutants in coastal regions and estuaries to be determined,
have become increasingly more important with the increase in speed and memory
capacity of computers.

A technical review and critical appraisal of various aspects of numerical mod-
eling techniques of estuaries were made by a selection of eminent scientists and
engineers in the field, and these essays were supplemented by discussions at
technical conferences held during the course of the report’s preparation, edited by
George H. Ward Jr. and William H. Espey Jr., published in early 1971 (Ward and
Espey 1971). Topics discussed included one-, two-, and three-dimensional math-
ematical models for estuarine hydrodynamics, water quality models of chemical
constituents (nitrogen forms) and biological (phytoplankton and zooplankton), and
estuarine temperature field related to modeling thermal discharges, and principles
and applicability of physical models in estuarine analysis. This report also included
a review of solution techniques, with a detailed discussion of finite-difference
methods. Scientists who took part in these discussions were D.W. Pritchard, D.R.F.
Harleman, M. Rattray Jr, D.J. O’Connor, R.V. Thomann, J.E. Edinger, A.T. Ippen,
G.J., Paulik, J.J. Lendertsee, J.A. Harder.
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In the finite-difference method, the fluid domain is subdivided into arbitrary
elements, for instance, a triangular grid format, enabling better adjustment to the
geometric space of the fluid domain, even in complex boundary configurations.
Also, as noted by Lendertsee and Critton (1971) (Lendertsee et al. (1973)), many
different approximations can generally be made for each term of the partial equa-
tions to be solved, resulting in a wide selection of approximations. One approxi-
mation may be considered better than another, depending on the scope of the
investigation and the processes described by the equation for a particular situation.
Useful considerations in the design of numerical computation schemes may also be
found in Lendertsee’s article.

As with other numerical investigations of natural phenomena, using a numerical
model to simulate an estuarine system only works when the modeler fully under-
stands the model’s limitations and the physical processes involved, and conducts
adequate calibration and validation. The complexity of estuaries often requires a
grid that will result in a scientific credible, yet computationally feasible model. The
grid should provide a compromise between depicting the physical realities of the
estuarine system and the computational feasibility. As estuarine channels have
irregular shore-lines, islands and shipping channels, numerical models require very
small grid sizes to resolve these boundaries in detail; in these environments,
curvilinear grids provide a better representation (Ji 2008). Also, as previously seen,
estuarine circulation is driven by tides, river discharge, baroclinic pressure gradient
force and wind, forming a very complex tri-dimensional system. As such, speci-
fication of the open boundary conditions that link the estuarine water mass to the
river, coastal sea, bottom and atmosphere, is also required.

12.1 Briefy Outline on Numerical Models

The Princeton Ocean Model (POM) was originally developed at Princeton
University by G. Mellor and A.F. Blumberg in collaboration with Dybalysis of
Princeton (H.J. Herring and R.C. Patchen). The model incorporates the
Mellor-Yamada turbulence scheme developed in early 1970 by George Mellor and
Ted Yamada, widely used by oceanic and atmospheric models. At the time, early
computer ocean models such as the Bryan–Cox model, which was developed in the
late 1960s at the Geophysical Fluid Dynamics Laboratory and later became the
Modular Ocean Model (MOM), were mostly aimed at coarse-resolution simulations
of the large-scale ocean circulation. Thus, there was a need for a numerical model
that could handle high-resolution coastal ocean processes.

The Blumberg–Mellor model (which later became POM) included new features
such as free surface to handle tides, sigma vertical coordinates (i.e.,
terrain-following) to handle complex topographies and shallow regions, a curvi-
linear grid to better handle coastlines, and a turbulence scheme to handle vertical
mixing. In the early 1980s, the model was primarily used to simulate estuaries such
as the Hudson–Raritan Estuary (by Leo Oey) and the Delaware Bay (Boris
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Galperin). At this time, attempts had also been made to use a sigma coordinate
model for basin-scale problems, with the coarse resolution model of the Gulf of
Mexico (Blumberg and Mellor) and models of the Arctic Ocean (with the inclusion
of ice-ocean coupling by Lakshmi Kantha and Sirpa Hakkinen).

In the late 1990s and the 2000s, many other terrain-following community ocean
models were developed; some of their features can be traced back to those included
in the original POM, while other features are additional numerical and parame-
terization improvements. Several ocean models are direct descendents of POM, for
example, the commercial version of POM known as the Estuarine and Coastal
Ocean Model (ECOM), the Navy Coastal Ocean Model (NCOM) and the
Finite-Volume Coastal Ocean Model (FVCOM).

The Delft Hydraulics MOR module of Delft 3-D Flow fully integrates the effects
of waves, currents and sediment transport for morphological development (e.g. see
Nicholson et al. 1997). The module simulates the processes on the same curvilinear
grid system as used in the flow module, which allows a very efficient and accurate
representation of complex areas. This module is a multi-dimensional (2D or 3D)
hydrodynamic and transport simulation program which calculates the non-steady
state circulation and transport phenomena resulting from tides, river discharge and
meteorological forces due to wind-stress.

The Danish Hydraulic Institute (DHI) developed the version MIKE21 modeling
package. This advanced software employs state-of-the-art computer simulation
techniques to model hurricanes and associated storm surge and waves, and
hydrodynamic processes in coastal and estuarine waters, water quality, sediment
transport processes and morphological changes.

The Environmental Fluid Dynamics Code (EFDC) (Hamrick 1992) is a
public-domain modeling package for simulating three-dimensional (3D) flow,
transport and biogeochemical processes in rivers, lakes, estuaries, reservoirs, wet-
lands and coastal regions. This code was originally developed at the Virginia
Institute of Marine Sciences and is currently supported by the U.S. Environmental
Protection Agency (EPA). The EFDC model has been extensively tested and
documented in more than 100 modeling studies, and is presently being used by
universities, research organizations, governmental agencies, and consulting firms.
This advanced 3D time-variable model provides the capability of internally linking
hydrodynamics, water quality and eutrophication, sediment transport and toxic
chemical transport and fate sub-models in a single source code framework. It
includes four major modules: (i) hydrodynamics; (ii) water quality; (iii) sediment
transport; and, (iv) and toxics substances. The full integration of the four modules is
unique and eliminates the need for complex interfacing of multiple modes to
address different processes. Representative applications of the EFDC model may be
found in Ji (2008).

In this chapter, only simple problems related to the discretization of solutions of
the two-dimensional equation of motion will be treated, and some case studies are
presented to demonstrate how hydrodynamic modeling and validation can be
applied to practical problems of estuarine circulation, tide oscillations and salinity
distributions using the Delft 3-D Flow numeric model.
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12.2 The Finite Difference Method

The basic formulation for establishing an expression of a differential partial equa-
tion using the method of finite differences may be obtained from the Taylor series
expansion, as exemplified in Fig. 12.1, with a simple bi-dimensional (2D) rectan-
gular grid in the Oxy plane. In this example, the indexes i and j denote positions
along the Ox and Oy axes, respectively, and Dxi and Dyj, denote finite increments
along axes directions. To solve a third dimension, such as depth, the Oz axis normal
to the Oxy plane must also be specified, and the index k may be used to denote the
position (zk) and finite intervals (Dzk) along this axis. For a non-steady-state
problem, the discrete time intervals may be referred by the index n, for instance,
preferentially as a superscript of the symbol denoting the function or variable (fn).
Some basic principles will be presented to establish a formulation for finite dif-
ference equations for the dynamics of an estuary, following classical books and
articles of Lendertsee and Criton (1971), Lendertse et al. (1973), Blumberg (1975)
and Roache (1982).

As indicated in Fig. 12.1, the grid spacing in the directions i and j are indicated
by Dx = xi+1−xi,j and Dy = yi,j+1−yi,j and, for the Oz direction, Dz = zi,k+1−zi,k; for
convenience, the intervals Dx, Dy and Dz, which define the elemental volumes
(Dx . Dy . Dz), are considered constant, unless indicated otherwise. Discrete time
intervals will be indicated by Dt = tn+1 − tn.

The symbol f = f(x, y, z, t) (or in two dimensions f = f(x, y, t)) will be used to
denote a continuous function in space and time, with the corresponding discrete
functions, f = f(i, j, k, t) or f = f(i, j, t), in the tri- and bi-dimensional space; the
governing differential equations are replaced with finite difference equations that
operate only on the grid positions. If L, B and H are the estuary’s length, width and
depth, which are subdivided into the positions n, m and k, respectively, the fol-
lowing relations exist according to the discrete format: L/n = Dxi ! L ¼ Pi¼n

i¼1 Dxi

Fig. 12.1 Geometric scheme of an array of points in a Oxy rectangular grid
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B/m = Dyi ! B ¼ Pi¼m
i¼1 Dyi, and H/k = Dki ! H ¼ Pi¼k

i¼1 Dki, respectively. In the
same way, the discrete intervals of the time domain (T) are T/k = Dtj and
T ¼ Pk�1

j¼0 Dtj.
Consider a bi-dimensional space and a continuous function, f = f(x, y, t), with

continuous higher orders derivatives. The first order derivative, ∂f/∂x, may be
deduced by the Taylor series expansion. Then, considering a known continuous
function in the space point (i, j), we may write:

fiþ 1;j ¼ fi;j þ @f
@x

ji;jðxiþ 1;j � xi;jÞþ 1
2
@2f
@x2

ji;jðxiþ 1;j � xi;jÞ2 þ � � � þ SOT, ð12:1aÞ

or

fiþ 1;j ¼ fi;j þ @f
@x

ji;jDxþ
1
2
@2f
@x2

ðDx)2 þ � � � þ SOT, ð12:1bÞ

where SOT indicates “superior order terms”. Solving Eq. (12.1b) for the partial
derivative, ∂f/∂x, gives:

@f
@x

ji;j ¼
1
Dx

ðfiþ 1;j � fi;jÞ � 1
2
@2f
@x2

ji;jðDx)2 þ � � � þ SOT; ð12:2Þ

and the last expression may be written as:

@f
@x

ji;j ¼
1
Dx

ðfi;þ 1;j � fi;jÞþO(Dx), ð12:3Þ

where O(Dx) indicates an approximation error. This approximated expression of
this derivative (∂f/∂x) will be denoted by df/dx, or simplified to dxf; it is a forward
approximation, with the i index increasing in the Ox direction:

@f
@x

ji;j ¼ dxfji;j ¼
1
Dx

ðfiþ 1;j � fi;jÞþO(Dx): ð12:4Þ

The finite difference equations are generally classified according to the lower
power of truncation. In Eq. (12.4) there is a first order error, and the equation is
named a first order equation. Of course, second and third order approximations are
better than first order approximations.

With an analogous procedure, but expanding the function fi,j backwards in order
to obtain the expression for fi−1,j, we have another finite difference approximation
equivalent to (12.4). In this case, the first order approximation is given by:

@f
@x

ji;j ¼ dxfji;j ¼
1
Dx

ðfi;j � fi�1;jÞþO(Dx): ð12:5Þ
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The known central finite difference is obtained by subtracting the backward from
the forward expansion; considering for these expressions the third order approxi-
mation which is expressed by:

fiþ 1;j ¼ fi;j þ @f
@x

ji;jDxþ
1
2
@2f
@x2

ji;jðDx)2 þ
1
6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT, ð12:6Þ

and

fi�1;j ¼ fi;j � @f
@x

ji;jDx�
1
2
@2f
@x2

ji;jðDx)2 �
1
6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT: ð12:7Þ

Subtracting (12.7) from (12.6) yields:

fiþ 1;j � fi�1;j ¼ 2
@f
@x

ji;jDxþ
1
3
@3f
@x3

ji;jðDx)3 þ � � � þ SOT: ð12:8Þ

and solving the last expression for ∂f/∂x,

@f
@x

ji:j ¼
1
2
ðfiþ 1;j � fi�1;jÞDx� 1

6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT, ð12:9aÞ

and using the notation dxf,

dxfji;j ¼
1
2
ðfiþ 1;j � fi�1;jÞDxþO(Dx2Þ: ð12:9bÞ

From this last expression, it follows that the second order approximation of the
partial derivative ∂f/∂x (dxf), using the central difference approach, is calculated by:

df
dx

ji;j ¼ dxfji;j ¼
1

2Dx
ðfiþ 1;j � fi�1;jÞ: ð12:10Þ

Analogous expressions follow immediately for derivations in relation to the
independent variables y and t. Thus, second order central finite differences for the
derivations df/dy and df/dt, for example, are calculated by,

df
dy

ji;j ¼ dyfji;j ¼
1

2Dy
ðfi;jþ 1 � fi;j�1Þ; ð12:11Þ

and

df
dt
jni;j ¼ dtfjni;j ¼

1
2Dt

ðfnþ 1
i;j � fn�1

i;j Þ; ð12:12Þ

where Dt ¼ dt ¼ ðtnþ 1 � tn�1Þ is a constant time interval.
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Let us now determine the second order derivative, d2f/dx2 = d2xf, by central finite
differences. For this purpose, the summation of expressions (12.6) and (12.7) is

fiþ 1;j þ fi�1;j ¼ 2fi;j þ @2f
@x2

ji;jðDxÞ2 þ
1
12

@4f
@x4

ji;jðDxÞ3 þ � � � þ SOT; ð12:13Þ

Solving this equation for d2xf (∂
2f/∂x2)

d2xfji;j ¼
ðfiþ 1;j þ fi�1;j � 2fi;jÞ

ðDx)2 þO[(Dx)2�; ð12:14Þ

or

d2xfji;j ¼
ðfiþ 1;j þ fi�1;j � 2fi;jÞ

ðDx)2 : ð12:15Þ

As an example of the property application of the operator df/dx (dxf), let us make
the deduction of the expression (12.15), starting with an approximation of the first
derivative of Eq. (12.10), and rewriting it in terms of the half interval Dx (Dx/2),

df
dx

ji;j ¼
ðfiþ 1

2;j
� f

i�1
2;j
Þ

Dx
: ð12:16Þ

Taking into account that d2f/d2x = (d/dx(df/dx)) we have,

d2f

dx2
ji;j ¼

½fiþ 1;j � fi;j � ðfi;j � fi�1;jÞ�
ðDxÞ2 ; ð2:17aÞ

then

d2xfji;j ¼
ðfiþ 1;j þ fi�1:j � 2fi;jÞ

ðDxÞ2 ; ð12:17bÞ

which is equivalent to Eq. (12.15).
As another example, let us calculate the approximation by second order finite

differences of the second order derivative of f = f(x, y, t) with two spatial variables,
i.e., d2f/dxdy. The expression of this derivative may be easily deduced if we
observe that,

d2f
dxdy

¼ d
dx

ðdf
dy

Þ: ð12:18Þ
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Applying a similar procedure to this expression, as used for Eq. (12.10),

d2f
dydx

ji;j ¼
d
dy

½ðfiþ 1;j � fi�1;jÞ
2Dx

�; ð12:19Þ

and

d2f
dydx

ji;j ¼
½fiþ 1;jþ 1 � fi�1;jþ 1 � ðfiþ 1;j�1 � fi�1;j�1Þ�

2DxDy
; ð12:20aÞ

or

d2f
dydx

ji;j ¼
½fiþ 1;jþ 1 � fiþ 1;j�1 � fi�1;jþ 1 þ fi�1;j�1Þ�

2DxDy
: ð12:20bÞ

The second order derivative (12.20b) in the x and y coordinates has a truncation
error indicated generically by O[(Dx)2 + (Dy)2]. Also, it should be noted that the
operator, d2f/dxdy, obeys the same rules as the derivation of a continuous function
and, in relation to the mixed derivatives used above, holds the identity,
d2f/dxdy = d2f/dydx.

Finite differences of partial derivatives, such as those presented above, may be
combined in order to obtain an expression of physical-mathematical laws, for
example, the second-order partial differential of the Laplace equation which, in the
two-dimension scalar form, w = w(x, y), is given by,

@2w
@x2

þ @2w
@y2

¼ 0: ð12:21Þ

Combining the developed expression (12.20b) with second order derivatives, we
may write:

d2w

dx2
þ d2w

dy2
¼ 1

ðDxÞ2 ðwiþ 1;j þwi�1;j � 2wi;jÞþ
1

ðDyÞ2 ðwi;jþ 1 þwi;j�1 � 2wi;jÞ ¼ 0;

ð12:22aÞ

or

wiþ 1;j þwi�1;j þ b2ðwi;jþ 1 þwi;j�1Þ � 2ð1þ b2Þwi;j ¼ 0; ð12:22bÞ

where b = Dx/Dy is the characteristic ratio of the grid spacing in the Ox and Oy
directions, respectively. This equation is usually referred to as the five point
approximation of the Laplace equation. In the condition when Dx = Dy, it follows
that the expression for wi,j is:
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wi;j ¼
1
4
ðwiþ 1;j þwi�1;j þwi;jþ 1 þwi;j�1Þ; ð12:23Þ

which shows that in the five point approximation for the Laplace equation the
unknown, wi.j is calculated by its mean value at four neighboring points.

In the following example, let us consider a differential equation (11.24) repre-
senting a linear model which governs the space-time variation of a property defined
in a one-dimensional space f = f(x, t);

@f
@t

þ u
@f
@x

� N
@2f
@x2

¼ 0: ð12:24Þ

If f = f(x, t) is the u-velocity and N the kinematic eddy viscosity coefficient
[N] = [L2T−1], this equation represents the one-dimensional equation of motion (or
momentum equilibrium). The second order approximation of the finite difference in
space (x) and time (t) is written as:

1
2Dt

ðfnþ 1
i � fn�1

i Þþ 1
2Dx

ðufniþ 1 � u fni�1Þ �
N

ðDx)2 ðf
n
iþ 1 þ fni�1 � 2fni Þ ¼ 0:

ð12:25Þ

It should be noted that this equation may be explicitly solved to the unknown
ðfnþ 1

i Þ, taking into account the previous known values in space and time. However,
for N > 0 and Dt > 0, the solution may be numerically unstable, and random
solutions may be generated without any relation to the differential solution. This
clearly indicates the difference between an algebraic finite difference expression,
which is mathematically correct, and the desirable solution to the differential
equation (Roache 1982).

If, for instance, instead of using central differences for all independent variables,
the finite difference of the partial differential (12.24) is calculated by the forward
finite difference scheme, first and second order numerical approximations will be
obtained for time and space, respectively,

ðf
nþ 1
i � fni Þ

Dt
þ ðufniþ 1 � u fni�1Þ

2Dx
� N ðfniþ 1 þ fni�1 � 2fni Þ

ðDx)2 ¼ 0: ð12:26Þ

According to Roche (op. cit.), at least for some conditions of the independent
variables (t, x and intervals Dt, Dx), and for the dependent variables, u and N, this
solution becomes stable.

In applying the finite-difference scheme to the equation of motion in the Eulerian
formulation, which isn’t a non-linear equation, care must be taken in the formu-
lation. For example, if the term of the advective acceleration is formulated by the
central finite differences scheme, that is,

12.2 The Finite Difference Method 447

http://dx.doi.org/10.1007/978-981-10-3041-3_11


u
@u
@x

¼ udxu ¼ 1
2Dx

unþ 1
i ðuniþ 1 � uni�1Þ; ð12:27Þ

this approximation is not satisfactory, because the von Neumann condition will not
be satisfied for any fixed value of the ratio Dt/Dx, unless for the trivial solution
u = 0. This problem may be solved with the forward and backward finite difference
scheme when u < 0 or u � 0, respectively, using the expression of Richtmeyer
and Morton (1967),

ðunþ 1
i Þ½ 1

Dx
ðuniþ 1 � uni Þ�; ð12:28Þ

where unþ 1
i \0 or unþ 1

i � 0, respectively. Similar expressions may be written for
the remaining non-linear terms of the advective acceleration, or other terms of any
non-linear equation.

Other relations may be obtained from the Taylor’s expansion series, for instance,
adding Eqs. (12.6) and (12.7), we have the following second order approximation:

2fi;j ¼ fiþ 1;j þ fi�1;j þO(Dx)2; ð12:29aÞ

or

fi;j ¼ ðfiþ 1;j þ fi�1;jÞ
2

þO(Dx)2: ð12:29bÞ

If expansions are made in relation to the time variable to investigate the
non-steady-state characteristics of the function f = f(x, y, t), it follows that the
algebraic finite difference approximation is:

fn
i
¼ ðfnþ 1

i þ fn�1
i Þ

2
þO(Dt)2: ð12:30Þ

First order approximations in the time domain may also be taken from the
previous series expansions (12.6 and 12.7), and written as:

fni�1 ¼ fni þO(Dt), ð12:31aÞ

and

fnþ 1
i ¼ fni þO(Dt): ð12:31bÞ

Linearization of the terms of the motion equation (12.24) may also be achieved
from diagonal mean values, yielding:
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fni ¼
1
2
ðfn�1

iþ 1 þ fnþ 1
i�1 ÞþO(Dt), ð12:32aÞ

and

fni�2 ¼
1
2
ðfnþ 1

i�1 þ fn�1
i�3 ÞþO(Dt), ð12:32bÞ

where i = 2, 3, 4, … and n = 1, 2, 3, ….

12.3 Explicit and Implicit Schemes

The numerical schemes for the analytical solution to an equation of finite differ-
ences for a partial differential equation are classified as explicit and implicit. The
difference between these methods will be shown using the particular second order
differential equation (12.24), which represents a one-dimensional space, simulating
the spatial and temporal variations of the property f = f(x, t). This equation has
already been solved by forward and central finite differences and, without loss of
generality, let us assume that to simplify the mathematical treatment, the middle
term may be disregarded (u∂f/∂x = 0). Then, the equation is approximated by finite
differences as,

1
Dt

ðfnþ 1
i � fni Þ ¼

N
ðDx)2 ðf

n
iþ 1 þ fni�1 � 2fni Þ; ð12:33Þ

where i = 1, 2, … I − 1 and n = 0, 1, 2, … I. The boundary and initial conditions
for this equation may be established as,

fn0 ¼ fnI ¼ 0; for n ¼ 0; 1; 2; . . . I� 1; ð12:34aÞ

and

f0i ¼ uðiDxÞ; for i ¼ 0; 1; 2; . . . I: ð12:34bÞ

Then, solving Eq. (12.33) explicitly for fnþ 1
i ; we have:

fnþ 1
i ¼ fni þ ½N(Dt)ðDx)2 �ðf

n
iþ 1 þ fni�1 � 2fni Þ; ð12:35Þ

which may be solved recursively for the determination of all values of fni for
0 � i � I and n � 0. This is named an explicit scheme and one step solution,
meaning that all values of the second member are known and only one calculation
is required to reach the next time step; thus, the solution progresses, and the values
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fnþ 1
iþ 1 do not appear in the second equation member. It is also named two-time-steps
because only two instants of time are necessary to calculate the property value, i.e.,
to calculate the property at the time instant n + 1, it is only necessary to know its
value at t = n. As previously stated, the approximation of this equation is at first and
second order for time and space, respectively {O[Dt,(Dx)2]}; further details related
to the stability of this solution may be found in Richtmyer and Morton (1967) and
Roache (1982).

At this stage, we should mention that although the solution (12.25) centered in
space and time has an approximation order of {O[(Dt)2, (Dx)2]}, it is not acceptable
because it is unstable for any value of the coefficient N and for t > 0. However, if
N = 0 the solution will have stable characteristics and this method is frequently
known as leapfrog; the numerical solution of fnþ 1

i under this simplification is:

fnþ 1
i ¼ fn�1

i � u
Dt
Dx

ðfniþ 1 � fni�1Þ: ð12:36Þ

This solution has second order approximations for space and time and is explicit
with one step. Its solution requires three time instants to be known because values at
times n and n − 1 are necessary to calculate the value of the next time step (n + 1).
Under the same initial and boundary conditions as indicated in (12.34a, b), it
follows from the above solution that the new value of fnþ 1

i is calculated from the
known value fn�1

i minus the last term on the right hand side of Eq. (12.36),
skipping over the value in the time instant n ðfni Þ; this procedure justifies the name,
leapfrog, given to this calculation scheme. At this point, we should be reminded that
the numeric solution (12.36) is the solution to a partial differential equation and an
advective equation when f(x, t) = u(x, t) is a velocity component. An initial con-
dition of this equation may be expressed by f = f(x,0) or f0i and its solution using
the finite difference scheme was demonstrated by Roache (op. cit.).

The presented method is explicit because, as we have seen, it is only necessary to
know the values of f = f(x.t) at time instants t = n, n − 1, n – 2 …, to advance the
computation for the new time n + 1. However, we should note the stability criteria
of Richtmyer and Morton (op. cit.), which indicates that

2N[
Dt

ðDx)2� � 1; ð12:37Þ

i.e., if the value chosen for Dx in the solution is too small, the time step Dt, will also
be small, increasing the computational cycles required to satisfactorily finish the
problem, due to the above relationship between (Dt) and the square (Dx)2.

The implicit method uses values of the spatial derivatives in advanced time
steps, which means that the solution needs a system with (n + 1) equations to
advance the data processing to the next time step. To exemplify this method, let us
start with Eq. (12.24), writing its first two terms on the left hand side with forward
time steps (Dt),
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ðfnþ 1
i � fni Þ

Dt
¼ u

df
dx

: ð12:38Þ

Calculating the derivative of the right hand side by central differences, and
rearranging its terms, this equation is written as:

fnþ 1
i ¼ fni �

uDt
2Dx

ðfiþ 1 � fi�1Þ; ð12:39Þ

and, with an analogous procedure for the non-linear term of Eq. 12.24, and solving
for fnþ 1

i , the result is:

fnþ 1
i ¼ fni þ

NDt

ðDx)2 ðfiþ 1 þ fi�1 � 2fiÞ: ð12:40Þ

If the spatial derivations in Eqs. (12.39) and (12.40) were calculated in the time
instant, n, this method would be explicit. However, if these derivatives were cal-
culated in the time step n + 1, the calculation scheme would be completely implicit.
And, as consequence, expressions (12.39) and (12.40) are calculated by:

ðfnþ 1
i � fni Þ

Dt
¼ u

2Dx
ðfnþ 1

iþ 1 � fnþ 1
i�1 Þ; ð12:41Þ

and

ðfnþ 1
i � fni Þ

Dt
¼ N

ðDx)2 ðf
nþ 1
iþ 1 þ fnþ 1

i�1 �2fnþ 1
i Þ; ð12:42Þ

respectively. These solutions have an estimated error of the order O[Dt,(Dx)2],
however, as indicated in several investigations, this method has advantage in
relation to its stability. The determination of the property, f, in a generic time step,
fnþ 1
i , requires the simultaneous solution of a number of linear algebraic equations,
with M indicating the net knots not specified by known boundary conditions.

For a generalization of the implicit and explicit schemes introduced above, let us
introduce the following notation for a single variable function, generically defined
by f = f(x), to the central finite difference dfi or (df)i, then:

dfi ¼ ðdf)i ¼ f[(iþ 1=2ÞDx� f(i� 1=2ÞDx�; ð12:43Þ

where the index (i) is an integer value. With this notation, the symbols d2fi or (d
2f)i

indicate the following expressions:

d2fi ¼ ðd2f)i ¼ f[(iþ 1ÞDx� f(iDx]� ½f(iDx)� f(i� 1ÞDx)], ð12:44aÞ
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or

d2fi ¼ ðd2f)i ¼ f[(iþ 1ÞDxþ f(i� 1ÞDxÞ� � 2f(iDx)]: ð12:44bÞ

Once the above notation is introduced, lets us consider the following system:

ðfnþ 1
i � fni Þ

Dt
¼ N

Dt(Dx)2
½hðd2fÞnþ 1

i þð1� hÞðd2fÞni �; ð12:45Þ

where h is a real number varying in the interval 0 � h � 1. If h = 0 this algebraic
system becomes explicit, as previously indicated (Eq. 12.33). Each equation of this
system furnishes an unknown ðfnþ 1

i Þ in terms of the quantities ðfni Þ. If h 6¼ 0 it is
necessary to simultaneously solve a set of linear equations to calculate the unknown
in the next time step ðfnþ 1

i Þ and, as previously seen, the system is implicit.
The simultaneous solution of the linear equations of an implicit system is not as

easily solved as an explicit system of equations, because its solution is obtained
iteratively. To illustrate the solution of an implicit system, let us present an example
of the implicit system solution from the Roache (1982), starting with Eq. (12.46)
under the assumption that the initial and boundary conditions are known, i.e., the
n + 1 values of f1 and fI. Then the equation for a generic knot may be written as:

fnþ 1
i�1 þ a fnþ 1

i þ cfnþ 1
iþ 1 ¼ b, ð12:46Þ

where a ¼ 2Dx
uDt, c = −1 and b ¼ �a fni . According to the boundary conditions, the

value of fn1 is known; thus, this equation may be solved to i = 2 and it is possible to
calculate the value of fnþ 1

3 as a function of f1 and f2,

fnþ 1
3 ¼ fðf1; f2Þ; ð12:47Þ

continuing to i = 3, it follows that:

fnþ 1
4 ¼ fðf2; f3Þ; ð12:48Þ

which combined with the functional relation (12.47) yields,

fnþ 1
4 ¼ fðf1; f2Þ: ð12:49Þ

Progressing further with this procedure, for i = I − 2, we have

fnþ 1
I�1 ¼ fðfI�3; fI�2Þ ¼ fðf1; f2Þ; ð12:50Þ
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and finally for i = I − 1 the result is:

fnþ 1
I ¼ fðfI�2; fI�1Þ ¼ fðf1; f2Þ: ð12:51Þ

Thus, as the boundary conditions (f1; fIÞ are known, the last Eq. (12.51) may be
solved for fnþ 1

2 : Subsequently, with a second calculation of Eq. (12.46), the final
results may be obtained. This procedure has only been described to illustrate the
sequence for obtaining the solution; however, it is subject to the influence of
truncation errors, which may be overcome with the utilization of the triangular
algorithmic to simultaneously solve a system of linear equations; this algorithmic is
named as such because the matrix used to solve the system of equations,

A½ � f½ � ¼ B½ �; ð12:52Þ

which must be inverted, is a diagonal matrix, i.e., its elements are only different
from zero in the principal diagonal and at the two adjacent diagonals, and the others
elements are null. A diagonal matrix has an easy solution, and a FORTRAN
computational subroutine is presented in Roache’s book.

12.4 The Volume Method of Finite Difference

As an example of formulating a solution to a hydrodynamic system of equations
using finite difference for this method, let us initially consider the one-dimensional
mass conservation equation (Eq. 7.92a, Chap. 7):

@ðuA)
@x

þ @A
@t

¼ 0; or
@ðuA)
@x

þB
@h
@t

¼ 0; ð12:53Þ

where A is the cross section area, u is the mean u-velocity component in the
transverse section A, B is the width of the estuarine channel, which is assumed to be
uniform (B = cte), and h is a reference level (horizontal datum). Thus, the product
uA = Q is the volume transport [uA] = [Q] = [L3T−1] through the cross section
area A. From this equation, it follows that the quantities Q = Q(x, t) and u = u(x, t)
may be considered as unknowns if the geometric characteristics of the system are
known.

Figure 12.2 schematically presents the spatial-temporal variations of the free
surface height (a), the transverse section A and width B (b), and the bi-dimensional
space-time (c) subdivided into Dx and Dt intervals. Let us also consider a
well-mixed estuary (type 1 or C), and a volume transport (uA) crossing a control
transverse section (i) generated by the tidal oscillation, and thus, forced by the
barotropic pressure gradient force.

Indicating by L the estuary mixing zone (MZ) length, which is subdivided in
I − 1 regular space intervals, the number of knots in the longitudinal direction is
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equal to I (i = 1,2,3,…, I), the Dx length interval is equal to the ratio L/(I − 1), and
the sub-volume of each cell is the cross-section area (A) times (Dx).

According to what we have already seen, the partial differential equation (12.53)
may be approximated by finite differences with different orders. In this application,
the first order approximation, O(Dx, Dt), will be chosen for simplicity. Then,

ðQn
iþ 1 � Qn

i Þ
Dx

þ Bn
i ðhnþ 1

i � hni Þ
Dt

¼ 0; ð12:54aÞ

or

ðQn
iþ 1 � Qn

i Þ
Dx

¼ �Bn
i ðhnþ 1

i � hni Þ
Dt

; ð12:54bÞ

with i = 1, 2, 3, …, I − 1 and n = 0, 1, 2, …. As the right hand side of
Eq. (12.54b) contains the temporal variable, which is a function of known data, the
initial condition of the problem will be imposed naturally. Let us assume that the
longitudinal coordinate, Ox, is oriented seaward, and its origin (x = 0) is located at
the estuary head, which is the transitional zone of the tidal river zone (TRZ) and
mixing zone (MZ). Then, we have the following boundary condition:

Fig. 12.2 a The schematic representation of the tide oscillation h = h(i). b The transverse section
characteristics (A), and c The space-time showing the grid Dx versus Dt of the finite difference
approximation of the continuity equation (after McDowell and O’Connor 1977)
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Qn
i
¼ Qf ; ð12:55Þ

where Qf is the river discharge, which is known and constant.
Under the assumption that the stability conditions are satisfied and solving

Eq. (12.54a) explicitly for the quantity Qn
iþ 1, which is associated with the river

discharge, it follows that the expression to calculate the volume transport across any
transverse section is:

Qn
iþ 1

¼ Qn
i �

Dx
Dt

Bn
i ðhnþ 1

i � hni Þ: ð12:56Þ

This result, with dimension [L3T−1], indicates that the volume transport may be
calculated at any instant of time (n) if the free-surface elevation and the estuary
width are known. In the next along channel time step i = 1,

Qn
2 ¼ Qf �

Dx
Dt

Bn
1ðhnþ 1

1 � hn1Þ: ð12:57Þ

If, in this equation, hnþ 1
1 � hn1, i.e., for i = 1 the time variation of h may be

disregarded, it follows that Qn
2 ¼ Qf, and the tidal influence may be disregarded in

the sub-volume 2. Otherwise, the difference hnþ 1
1 � hn1 may be positive (>0) or

negative (<0), indicating an ebb or a flood tide condition.
Continuing to the next volume (i = 2),

Qn
3 ¼ Qf �

Dx
Dt

Bn
2ðhnþ 1

2 � hn2Þ; ð12:58Þ

and the volume transport in the next sub-volume (3) may be calculated at any time.
The second term on the right hand side may be positive or negative according to
hnþ 1
2 [ hn2 or hnþ 1

2 \hn2, respectively, indicating the ebb or flood tide and will be
subtracted or added to the fresh water discharge Qf.

As this iterative process must proceed to the last sub-volume (i = I − 1), it
follows that,

Qn
I ¼ Qf �

Dx
Dt

Bn
1�1ðhnþ 1

I�1 � hnI�1Þ: ð12:59Þ

Now, taking into account that Qn
iþ 1 ¼ ðAu)nnþ 1, it follows immediately from the

calculated volume transport that the mean value of the u-velocity component is
calculated by:

uniþ 1 ¼
Qn

iþ 1

An
iþ 1

: ð12:60Þ
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The finished iterative process for i = 1, 2, 3, … I − 1 corresponds to the com-
putation along the longitudinal axis, and in turn, a similar procedure must be
applied in the time domain of interest, i.e., for n = 0, 1, 2,…, over one or more tidal
cycles.

This method is named the volume method, which is justified because the second
term on the right hand side of Eq. (12.56) generates volumes per time unit. In
practice, the variable h must be known at regular distances intervals (Dx).
According to McDowell and O’Connors (1977), this quantity must be known with
an accuracy greater than 10−2 m, and the numerical solution must be validated with
experimental results.

12.5 A Simple Unidimensional Numeric Model

12.5.1 Explicit Solution

Under the assumption of a well-mixed estuary, let us formulate the main hydro-
dynamic processes that characterize a one-dimensional estuary using the explicit
method of finite differences. The starting hydrodynamic equations are simplified
expressions of the equations of motion and continuity, which were used in the
development of a mathematical model for prediction of unsteady salinity intrusion
in estuaries by Thatcher and Harleman (1972):

@u
@t

þ @ðuu)
@x

þ g
@h
@x

þ gujuj
C2
yRH

¼ 0; ð12:61aÞ

and

@ðuA)
@x

þB
@h
@t

¼ 0; ð12:61bÞ

where Cy and RH � Ho are the Chézy coefficient and the hydraulic radius,
respectively, as defined in Chap. 8. These equations indicate that the local and
advective accelerations, plus the barotropic gradient, are in balance with the fric-
tional force. These equations will be numerically integrated to calculate the field of
motion, u = u(x, t) or uni , and the elevations of the free surface, h = h(x, t) or hni ,
forced by the tidal oscillation.

As in the preceding application, the plane x-t is subdivided into integration cells
Dx and Dt. The longitudinal number of knots is equal to the ratio L/(I − 1), with I
denoting the numbers of points in the longitudinal direction. As before, the
sub-volumes are equal to A. Dx, and the schemes in Fig. 12.3 indicate the
spatial-temporal grid (a), where the volume transport and velocity will be calcu-
lated, and (b) the longitudinal positions where the velocity and volume transports
will be alternatively calculated.
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In Fig. 12.3a the cell structure and the free surface heights hni and hniþ 1, are
defined at the knots localized in the cell center, and in Fig. 12.3b the u-velocity
components and the volume transport (uA) are calculated at the left and right cell’s
limits indicated by the longitudinal positions o and x, respectively, for example:
uniþ 1=2 and uni�1=2, or, Q

n
iþ 1=2 (uAn

iþ 1=2), and Qn
i�1=2 or (uAn

i�1=2) are calculate for

i = 0, 1, 2, … I − 1.
The formulations using the finite difference scheme of Eqs. (12.61a, b) are

written as:

du
dt

þ dðuu)
dx

þ g
dh
dx

þ gujuj
C2
yHo

¼ 0; ð12:62aÞ

and

dðuA)
dx

þB
dh
dt

¼ 0: ð12:62bÞ

Using the Forward Time Central Scheme (FTCS) in an unique cell spacing
yields the following finite difference expressions for local and advective
accelerations:

du
dt

¼ ð
unþ 1
iþ 1=2 � uniþ 1=2

Dt
Þ; ð12:63aÞ

Fig. 12.3 a Integration cells
in the x-t plane.
b Longitudinal plane section
with positions where the
quantities u (in positions o)
and h (in positions x) and the
transport volume (uA = Q)
will be calculated. Adapted
from Thatcher and Harleman
(1972)
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and

dðuuÞ
dx

¼ ½ðuuÞ
n
iþ 1 � ðuuÞni
Dx

�; ð12:63bÞ

respectively. However, the advective acceleration is non-linear and requires a
redefinition of the u-values at the knots (i ± 1) in terms of its mean values,

uniþ 1 ¼
1
2
ðuniþ 3=2 þ uniþ 1=2Þ; ð12:64aÞ

and

uni ¼
1
2
ðuniþ 1=2 þ uni�1=2Þ: ð12:64bÞ

The barotropic pressure gradient force and the friction due to viscosity are
calculated as:

g
dh
dx

¼ g
Dx

ðhniþ 1 � hni Þ; ð12:65aÞ

and

g(uniþ 1=2juniþ 1=2jÞ
ðCyjniþ 1=2Þ2hniþ 1=2

; ð12:65bÞ

respectively. The last finite difference requires the definition of hniþ 1=2 in terms of a
mean value, and

hniþ 1=2 ¼
1
2
ðhniþ 1 þ hni Þ: ð12:66Þ

In order to eliminate possible instabilities during the computation of the friction
term (last term in Eq. 12.61a), this term must be delayed for one time step, i.e., it
must be calculated by,

g(un�1
iþ 1=2jun�1

iþ 1=2jÞ
ðCyjn�1

iþ 1=2Þ2hn�1
iþ 1=2

: ð12:67Þ

For the continuity Eq. (12.61b), it follows that the finite difference expression is:

½ðAu)niþ 1=2 � ðAu)ni�1=2�
Dx

þ Bn
i ðhnþ 1

i � hni Þ
Dt

¼ 0: ð12:68Þ
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The non-linear term of the advective acceleration (last term in Eq. 12.63b) will
be transformed into a linear term, according to the following approximation:

½ðuu)niþ 1 � ðuu)ni �
Dx

¼ uni ðuniþ 1 � uni�1Þ
Dx

: ð12:69Þ

The term uni�1, on the right hand side of this equation, may be calculated by a
mean equivalent of Eq. (12.64a), which is a linear expression of the advective
acceleration. Another linear expression, suggested by McDowell and O’Connors
(1977), may also be obtained by an artifact of the second member of Eq. (12.68)
and from some approximations which have already been presented. In effect, from
expression (12.30) we have:

uni ¼
ðunþ 1

i þ un�1
i Þ

2
þO(Dt2Þ; ð12:70aÞ

with i = 1, 2,… and n = 0, 1, 2,… I − 1, and, from the approximations (12.32a, b)
we may write,

uniþ 1 ¼
1
2
ðun�1

iþ 2 þ unþ 1
i ÞþO(Dt,Dx), ð12:70bÞ

and

uni�1 ¼
1
2
ðunþ 1

i þ un�1
i�2 ÞþO(Dt,Dx): ð12:70cÞ

Substituting approximations (12.70a, b, c) into expression (12.69) yields,

½ðuu)niþ 1 � ðuu)ni �
Dx

¼ ½ðunþ 1
i þ un�1

i Þðun�1
iþ 2 � un�1

i�2 Þ�
4Dx

; ð12:71aÞ

or alternatively

½ðuu)niþ 1 � ðuu)ni �
Dx

� ½ðunþ 1
i Þðun�1

iþ 2 � un�1
i�2 Þ�

2Dx
; ð12:71bÞ

and

½ðuu)niþ 1 � ðuu)ni �
Dx

� ½ðun�1
i Þðun�1

iþ 2 � un�1
i�2 Þ�

2Dx
: ð12:71cÞ

Expressions (12.71a, b, c) are equivalent to those presented by McDowell and
O’Connors (op. cit.).
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Combining Eqs. (12.63a, b; 12.64a, b; 12.65a, b, 12.67, 12.71a or b, c) yields
the final finite difference expressions of the equations of motion and continuity
equivalent to the corresponding partial differential equations (12.61a, b):

unþ 1
iþ 1=2 ¼ uniþ 1=2 þ

Dt
Dx

½�ðuu)niþ 1 � ðuu)ni � �
g
Dx

ðhniþ 1 � hni Þ

� g

½ðCyÞniþ 1=2�2hniþ 1=2

ðuniþ 1=2juniþ 1=2jÞ;
ð12:72aÞ

and

hnþ 1
i ¼ hni þ

Dt
Bn
i Dx

½ðuA)uiþ 1=2 � ðuA)ni�1=2�: ð12:72bÞ

Assuming that the stability of this analytical system is satisfied, that the initial
and boundary conditions are known, and the geometric characteristics of the estuary
are also known, Eq. (12.72b) may be used at the initial time instant (n = 0) to
calculate the free surface height for i = 1, thus obtaining the first value h11. In the
following step, the second member of Eq. (12.72a) may also be solved. Following
this, in the initial time-space step (n = 0 and i = 1), the second member of
Eq. (12.72a) may be solved, and hn1=2 may be calculated as a mean value and
applied to equation similar to (12.66),

h0i=2 ¼
1
2
ðh01 þ h0�1Þ; ð12:73Þ

where the value of h0�1 is extrapolated from the initial condition. Then, with
Eq. (12.72a), the unknown h1iþ 1=2 may be calculated. In the following step, for
i = 2, 3, 4, …, and from the value at the initial time (n = 0), it is possible to
determine the unknowns, hni and uniþ 1=2 for i = 1, 2, 3, …, I − 1, using iteratively

Eqs. (12.72a, b). This process must be repeated for the other times (n > 0), enabling
knowledge of the unknowns hni and hniþ 1=2, which will satisfy the imposed initial
and boundary conditions.

This method may also be expanded to include in the mass conservation equation,
the lateral fresh water input from tributaries and the free surface processes of
precipitation-evaporation. In the equation of motion, changes in the influences on
the system dynamics, due to variations in the estuary geometry, may also be
included.

When the estuarine channel presents a bifurcation due to the presence of a
tributary, this may also be included in the computational scheme. This may be
accomplished by including a knot located in the neighboring area just before the
junction, which must be the same knot used in the determination of the free-surface
height, as indicated in Fig. (12.4).
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Then, for instance, for the i-knot (x in Fig. 12.4), the free surface elevation must
be calculated by the following expression:

hnþ 1
i ¼ hni þ

Dt
B�n
i Dx

½ðuA)nm � ðuA)ni�1=2�; ð12:74aÞ

and

ðuA)nm ¼ 1
2
½ðuA)niþ 1=2 � ðuA)�n

iþ 1=2�: ð12:74bÞ

Then, in Eq. (12.74a), the term on the right hand side indicates the volume
transport at the bifurcation, and B�n

i ; is the channel width calculated as the mean
value at positions (i − 1/2) and (1 + 1/2). Subsequently, the computation will
follow independently along each one of the channels.

12.5.2 Implicit Solution

The same problem formulated by the differential partial equations of motion and
continuity (12.61a, b) may be solved by the implicit method, and the scheme for the
integration cells is similar to that presented in Fig. 12.3. In this solution, the finite
differences for the equation of motion is calculated in a given time step; however,
the continuity equation must be displaced forward by a space interval, Dx. Then, the
equation system to be numerically integrated is composed of the following alge-
braic equations:

Fig. 12.4 Schematic diagram
indicating a bifurcation in an
estuarine channel. The
symbols • and x indicate the
positions of the u-velocity
component and the surface
height calculations,
respectively
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ðunþ 1
iþ 1=2 � uniþ 1=2Þ

Dt
þ ðuu)nþ 1

iþ 1 � ðuu)nþ 1
i

Dx
þ g

Dx
ðhnþ 1

iþ 1 � hnþ 1
i Þ

þ g

½ðCyÞnþ 1
iþ 1=2�2hnþ 1

iþ 1=2

½unþ 1
iþ 1=2junþ 1

iþ 1=2j� ¼ 0; ð12:75aÞ

and

½ðuA)nþ 1
iþ 3=2 � ðuA)nþ 1

iþ 1=2�
Dx

þ ½Bnþ 1
iþ 1 ðhnþ 1

iþ 1 � hniþ 1Þ�
Dt

¼ 0: ð12:75bÞ

The non-linear terms in Eq. (12.75a) must be written in linear format, and the
advective acceleration will be given by:

½ðuu)nþ 1
iþ 1 � ðuu)nþ 1

i �
Dx

� unþ 1
i ðuniþ 1 � uni Þ

Dx
; if unþ 1

i \0; ð12:76aÞ

and

½ðuu)nþ 1
iþ 1 � ðuu)nþ 1

i �
Dx

� unþ 1
i ðuni � uni�1Þ

Dx
; if unþ 1

i � 0: ð12:76bÞ

The simultaneous application of Eqs. (12.75a, b) with the initial and the asso-
ciated boundary conditions will generate a system of I − 1 equations with same
quantity of unknowns, which must be solved for each time step for n � 0. This
whole process is successively and iteratively repeated for each time interval of
interest (one or more tidal cycles).

Thus, if the initial and boundary conditions and the estuary geometry are known,
it is possible to calculate, with repeated solutions of this linear equation system, the
free surface elevation, h = h(x, t) or the surface elevation (tidal height), and the
longitudinal velocity field, u = u(x, t), during successive time intervals.

12.6 The Blumberg’s Bi-dimensional Model

This classical non-steady-state bi-dimensional (Oxz) numerical model was devel-
oped by Blumberg (1975), applying the explicit method of finite differences to a
system of equations similar to Eqs. (8.55–8.59, Chap. 8), which corresponds
physically to a partially mixed, laterally homogenous estuary (type 2, or B). In this
model, the Ox axis is landward orientated with x = 0 and x = L indicating the
mouth and head positions, and the Oz axis is oriented in the direction contrary to
the acceleration of gravity, with z = −h(x) indicating the estuary depth. Thus, the
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basic equations system which will be numerically integrated, considering for the
turbulence a semi-empirical approach, are:

@ðuB)
@x

þ @ðwB)
@z

¼ 0; ð12:77aÞ

@ðuB)
@t

þ @ðuuB)
@x

þ @ðuwB)
@z

¼ @

@x
ðBNx

@u
@x

Þþ @

@z
ðBNz

@u
@z

Þ

� kujuj @B
@z

� gB
@g
@x

� gB
q

@

@x
ð
Z0

z

qdz), ð12:77bÞ

@ðBS)
@t

þ @ðuBS)
@x

þ @ðwBS)
@z

¼ @

@x
ðBKx

@S
@x

Þþ @

@z
ðBKz

@S
@x

Þ; ð12:77cÞ

In these equations B is the estuary width, qðSÞ ¼ q0ðaþ bSÞ is the density
calculated by the linear equation of state of seawater, with the following numeric
values: q0 = 0.99891 g cm−3, a = 1.0 and for saline contraction coefficient,
b = 7.6 	 10−4 (‰)−1.

The solution of this system of equations is dependent on the following boundary
conditions:

• Salinities at the estuary head, S(L, z, t)|x=L, and mouth, S(0, z, t)|x=0.
• River discharge Qf.
• Elevation in relation to the level surface η = η(z, t)|z=0.
• Wind (sW) and bottom (TB) shear stresses, formulated by:

BNzð@u
@z

Þjz¼g ¼ Bg
sW
q

; and; BNzð@u
@z

Þjz¼�h¼
TB

q
: ð12:78aÞ

In practical applications these stresses are simulated by semi-empirical expres-
sions, such as (Eqs. 8.25 and 8.31, Chap. 8):

sW ¼ qairCDUVjUVj and sB ¼ qkðxÞjuju; ð12:78bÞ

where k = k(x) is a non-dimensional coefficient calculated in function of the
Manning number (n) defined by:

k(x) ¼ gn2

ð8:23Þ2 ½h(x)]
1=3: ð12:79Þ

In this equation, the Manning number is in c.g.s. units, and a typical value for the
Potomac river estuary (Washington, USA) is n = 3.9 	 10−2 (cm)1/6 (Blumberg
1975).
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The precipitation-evaporation balance will be disregarded at the free surface
(z = 0), and at the bottom (z = −h) the salt flux is zero. These boundary conditions
are expressed by:

qKzð@S
@z

Þz¼g ¼ qKzð@S
@z

Þz¼�h ¼ 0: ð12:80Þ

An additional equation used in the Blumberg’s model is obtained from the
vertical integration of the continuity equation (12.77a) from the depth z = −h, up to
the free surface, z = η, resulting in the following expression:

ðwB)jz¼g � ðwB)jz¼�h þ
Zg

�h

½@ðuB)
@x

�dz ¼ 0: ð12:81aÞ

Applying the Leibnitz rule to the last term of this equation yields:

ðwB)jz¼g � ðwB)jz¼�h þðuB)jz¼g
@g
@x

� ðuB)jz¼�h
@ð�h)
@x

þ @

@x
½
Zg

�h

ðuB)dz] ¼ 0:

ð12:81bÞ

For the kinematic boundary conditions, the vertical velocity component at the
bottom (z = −h) is null, w(x, z)|z=−h = 0, and at the surface (z = 0) it is equal to the
time variation of the free surface, w(x, z)|z=η=η(x, t). Thus it follows that:

�ðwB)jz¼�h þðuB)jz¼�h
@ð�h)
@x

¼ 0; ð12:81cÞ

and

ðwB)jz¼g ¼ ðuB)jz¼g
@g
@x

þ @ðBggÞ
@t

: ð12:82Þ

Applying these results to Eq. (12.81b) yields:

@ðBggÞ
@t

þ @

@x
½
Zg

�h

ðuB)dz] ¼ 0: ð12:83Þ

The initial conditions imposed on the hydrodynamics equations may be arbitrary
because they are parabolic in time, and thus any initial value may be chosen for the
forward time solution (t > 0), because they may quickly remove all initial influ-
ences (Blumberg 1975).
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Solutions to the equation system (Eqs. 12.77a, b, c), can not be obtained ana-
lytically. In the Blumberg’s technical article, the explicit finite difference method
was applied, enabling an algebraic solution which conserves mass (volume), salt
and motion in the presence of dissipative effects. To apply this method, the estuary
volume was subdivided into a grid defining the knots of interest, containing
(I − 1) . (K − 1) partial sub-volumes, where I and K indicate the total number of
grid points in the Ox and Oz directions, respectively. Thus, if B is the estuary width
at a given longitudinal position, this sub-volume is calculated by B . Dx . Dz.

The corresponding algebraic equations, which satisfy the conservation laws and
will enable the determination of u, w, η and S as functions of (x, z, t), are defined at
the grid locations shown in Fig. 12.5. This figure indicates that salinity (S) and
pressure (p) are defined at the center of each sub-volume, while the vertical velocity
component (w) is defined at the top and bottom of it. The grid containing the
u-velocity components is staggered with respect to the basic grid as these velocities
are defined at the center of the vertical sides of the sub-volume. This staggered
arrangement permits easy application of the boundary conditions and evaluation of
the dominant pressure gradient forces without interpolation or averaging; the arti-
cles of Bryan (1969) and Lendertse et al. (1973) have used similar grids (quoted in
Blumberg 1975).

Since most partially mixed estuaries (mainly those that are highly stratified) have
higher vertical velocity and salinity gradients than horizontal gradients, the vertical
grid spacing must be made much smaller than the horizontal spacing to ensure an
adequate resolution of the vertical dimension. The vertical thickness of each

Fig. 12.5 Finite difference grid scheme (after Blumberg 1975)
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sub-volume is constant, except in the upper layer where, due to free surface tidal
oscillations, its thickness varies in time and space.

To derive the finite difference equations, the following sum and difference
operators defined by Schuman (1962) (quoted in Blumberg 1975) were used:

f(x, z, t)
x 
 ½f(xþ 1

2Dx, z, t)þ f(x� 1
2Dx, z, t]

2
; ð12:84aÞ

dx½ðf(x, z, t)] ¼
f(xþ Dx

2 ; z, t)� f(x� Dx
2 ; z, t)

Dx
; ð12:84bÞ

and

dxfðx; z; tÞx 
 ½fðxþDx; z; tÞþ fðx� Dx; z; t�
2Dx

: ð12:84cÞ

The f(x)
n
notation is used to mean the function evaluation at a time step, n. The

bar and delta operators form a commutative and distributive algebraic operation.
Similar operators are defined for x ± Dx and also for the independent variables z
and t. Following the method proposed by Lendertse et al. (1973) (quoted in
Blumberg (1975)) for vertical integration, and applying the sum and difference
operators, the partial differential Eqs. (12.77a, b, c) become:

dxðuB)n þ dzðwB)n ¼ 0; ð12:85aÞ

dtðSBÞt þ dxðSxuB)n þ dz½ðwB)Sz�n � dx½BKxdxðS)]n�1

� dz½BKzdzðS)]n�1 ¼ 0;
ð12:85bÞ

@tðuBÞt þ dxðuuxBÞn þ dz½ðwxBÞuz�n � dx½BNxdxðuÞ�n�1

� dz½BNzdzðuÞ�n�1 þ kujujdzðBÞn�1
1=2

þBgdxgn þBgbdxð
Xk
j¼1

SjDzjÞn ¼ 0;

ð12:85cÞ

dt½S1B1ðDzþgÞ�t þ dx½u1B1S1ðDzþgÞx�n � ½ðwBÞ3=2S�z
3=2�n

þ dx½BKxðDzþgÞdxðSÞ�n�1 þ ½BKzdzðSÞn�1
3=2 ¼ 0;

ð12:85dÞ

and, in the top layer, the equations are obtained by vertical integration of
Eqs. (12.77b, c) from z = −Dz to z = η,
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dt½u1B1ðDzþg�xÞ�t þ dx½u1u1xB1ðDzþgÞ�n � ½wxB)3=2u
z
3=2�n

þ dx½ðDzþgÞBNxdxðuÞ�n�1 þ ½BNzdzðuÞ�n�1
3=2

þ ½ku1ju1jðB1=2 � B3=2Þ�n�1 � ½sWB1=2�n�1 þ gBðDzþgxÞndxðgÞn
� gbBDzðDzþg�xÞndxðS1Þn ¼ 0:

ð12:85eÞ

Equation (12.83) was obtained by vertical integration of the continuity equation
over the entire water column depth, and its finite difference expression is written as:

B(gÞ @g
@t

þ @

@x

Z0

�h

ðuB)dzþ @

@x

Zg

0

ðuB)dz ¼ 0; ð12:86Þ

and its middle term may be approximated by

@

@x

Z0

�h

ðuB)dz �
Z0

�h

@ðuB)
@x

dz, ð12:87Þ

because (uB)z=−h � 0, taking into account that by the continuity equation, the

integrated function of this equation may be approximated by � @ðwB)
@x , and it fol-

lows that:

@

@x
ð
Z0

�h

ðuB)dz ¼ �
Z0

�h

@ðwB)
@x

dz � �ðwB)k¼1=2: ð12:88Þ

Under the assumption that the u-velocity component at the free surface is equal
to that of the first sub-volume (k = 1) of this layer (ui+1/2,1), it is possible to obtain
the following approximation for the last term of Eq. (12.86):

@

@x

Zg

0

ðuB)dz � dxðuK¼1Bk¼1=2gÞx: ð12:89Þ

Combining the approximations (12.88) and (12.89) with Eq. (12.86), we have:

dtðBgÞt � ðwB)n1=2 þ dxðu1B1g
xÞn ¼ 0: ð12:90Þ

The algebraic Eqs. (12.85a, b, c, d, e) and (12.90) constitute a finite difference
system. All terms are written in central finite differences in space and time, with the
exception of diffusion and friction; the diffusion terms are delayed by one time step
to simplify the scheme without losing the equation’s conservative property, and the

12.6 The Blumberg’s Bi-dimensional Model 467



friction terms are delayed one time step to maintain the stability. The full program
documentation, a linear stability analysis and its application to the Potomac River
estuary (Washington, DC, USA) are presented in Blumberg’s technical report.

The finite difference formulation for a non-linear equation may give rise to a
special type of instability. As first pointed out by Phillips (1969) (quoted Blumberg
1975), non-linear instability cannot be suppressed by using smaller values of the
time step. Although no rigorous theory exists to explain the phenomena the
instability, which arises when short-wave disturbances are not damped out, must be
removed. In the numeric finite differences program of Blumberg, instability did not
become dominant, primarily because of the lack of substantial horizontal gradients,
and due to the introduction of an artificial viscosity term written as,

Kx ¼ Nx ¼ ðcDx)ffiffiffi
2

p Þ2j @u
@x

j; ð12:91aÞ

where c is an adjustable constant, and Dx is the horizontal grid spacing. Starting
with this coefficient, it was demonstrated that the computational procedure becomes
stable if the following condition is achieved between the diffusion coefficient Kx,
the time step interval (Dt) and the longitudinal grid spacing (Dx):

KxDt

ðDx)2 � 1
4
: ð12:91bÞ

The computational boundary condition for the velocities are that the water
passing through the ocean boundary is constrained to be horizontal (w = 0), and
that there is no momentum flux imparted to the estuary by the ocean. The presence
of salinity requires additional boundary conditions: (i) when inflow occurs, the
salinity is prescribed, and; (ii) in the outflow, hydrodynamic equations governing
the interior region determine the salinity. Since the horizontal gradients of salinity
near the boundary are small and the flow is horizontal, simple advection can be
taken as the governing process for salinity distribution:

@S
@t

þ @ðuS)
@x

¼ 0; ð12:92Þ

and the boundary value is extrapolated along the characteristic solution of the
centered difference analogous to this equation.

In the application of Eqs. (12.85a, b, c, d, e), semi-empirical relationships of the
vertical kinematic eddy viscosity (Nz) and diffusion (Kz) coefficients were used. The
closure of this system of equations is made with a semi-empirical approach using
the following equations (Blumberg 1975):

Kz ¼ k21z
2ð1� z

h
Þ2j @u

@z
jð1� Ri

Ric
Þ1=2; ð12:93Þ

468 12 Numerical Hydrodynamic Modelling



and

Nz ¼ Kzð1þRi), for Ri\Ric; ð12:94aÞ

Nz ¼ ccKz; for Ri3 �Ric; ð12:94bÞ

where cc is a critical condition of the non-dimensional quantity c defined by the
ratio Kz/Nz.

As should be expected, the staggered grid arrangement and the finite difference
increments influence the schematization and the resolution of the velocity and
salinity fields. Thus, the grid spacing should be small enough to describe the estuary
bathymetry and resolve the salt intrusion limit. In the Blumberg’s-2D numerical
model, the vertical grid spacing faced the following constraints: (i) stability arising
from the finite difference method for the diffusive and viscous terms, and; (ii) the
thickness of the upper layer should be larger than the gravity wave amplitude. For
optimal numerical results, the restriction was Dz > 4ηmax, and the equation system
required the use of a semi-implicit method.

The usefulness of the numerical model was assessed with several tests, which
investigated whether the governing equations were correctly formulated and
properly programmed. The first test run checked for the conservation of volume and
simulated a non-tidal river flow demonstrated for the following conditions:
(i) volume transport through any cross-section using an equation similar to Eq. (7.
103c, Chap. 7); (ii) tidal wave propagation for a long channel with uniform
transverse sections; (iii) channel with varying cross-sectional areas; (iv) non--
steady-state comparison between flume measurements and computed solutions for
times of high and low water, and; (v) comparison of time-averaged numeric model
solutions simulated during a tidal cycle with an analytic steady-state solution.

All these tests performed in the numerical model are well documented in
Blumberg’s technical report. For the last condition (v), an analytical steady-state
model was used, with the non-linear terms (advective acceleration) neglected, the
gradient pressure force reduced to the baroclinic component and the kinematic eddy
viscosity coefficient constant. With these simplifications, the longitudinal equation
of motion (Eq. 11.2, combined with 11.3 and 11.5, Chap. 11) is used to calculate
the u-velocity component, according to Hunter (1975, quoted in Blumberg (1975))
is given by:

�gb
@

@x

Z0

z

SdzþNz
@2u
@z2

¼ 0: ð12:95Þ

Disregarding the variation of salinity with depth, @S=@z � 0, (weakly stratified
or well-mixed estuaries) yields:
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gb
@S
@x

þNz
@3u
@z3

¼ 0; ð12:96Þ

which will be solved with the following boundary and integral boundary
conditions:

• Wind stress at the free surface:

qNz
@u
@z

jz¼0 ¼ sW: ð12:97aÞ

• Null velocity at the bottom:

u zð Þjz¼�h ¼ u �hð Þ ¼ 0: ð12:97bÞ

• Fresh water (volume) conservation:

Z0

�h

u(z)dz ¼ Qf

B
; or;

Z0

�1

u(Z)dZ ¼ Qf

Bh
¼ uf ; ð12:97cÞ

where B and h are the estuary width and depth, respectively. In Hunter’s original
article, instead u(−h) = 0 the bottom boundary condition it was assumed that the
bottom shear stress (sBx) is linearly related to the velocity. The integral
boundary condition (12.97c) indicates that the volume (mass) continuity is
preserved.

With three successive integrations of Eq. (12.96) the vertical velocity profile is
calculated by:

u(z) ¼ � gb
Nz

ZZZ
@S
@x

dzdzdz, ð12:98Þ

and the general solution is:

u(z) ¼ � gSxb
6Nz

z3 þ C1

2
z2 þC2zþC3; ð12:99Þ

where @S
@x ¼ Sx, C1, C2 and C3 are integrations constants with the following

dimensions [C1] = [L−1T−1], [C2] = [T−1] and [C3] = [LT−1], respectively.
Applying the first boundary condition (12.97a), it follows immediately that C2 ¼
sW
qNz

and, the boundary conditions (12.97b, c) yield two equations with the

unknowns C1 and C3:

470 12 Numerical Hydrodynamic Modelling



gSxbh
3

6Nz
þ 1

2
h2C1 þC3 � sWh

qNz
¼ 0; ð12:100aÞ

and

1
24

gSxbh
3

Nz
þ 1

6
C1h2 � 1

2
sWh
qNz

þC3 ¼ Qf

Bh
: ð12:100bÞ

Solving this system of equations for the unknowns, C1 and C3, its analytical
expressions are:

C1 ¼ � 3
8
gSxbh
Nz

� 3Qf

2Bh3
þ 3

2
sW
qNzh

; ð12:101aÞ

and

C3 ¼ 1
48

gSxbh
3

Nz
þ 3

2
Qf

Bh
þ 1

4
sWh
qNz

: ð12:101bÞ

Substituting the calculated values of C1, C2 and C3 into the general solution,
(12.99), yields the steady-state vertical velocity profile,

u(z) ¼ � 1
6
gSxbz

3

Nz
þð� 3

16
gSxbh
Nz

þ 3
2
Qf

Bh3
þ 3

4
sW
qNzh

Þz2

þ sW
qNz

zþ 1
48

gSxbh
3

Nz
þ 1

4
sWh
qNz

þ 3
2
Qf

Bh
:

ð12:102aÞ

Factoring to reduce the solution to its simplest expression of the u-velocity
component in terms of the non-dimensional depth (Z = z/h), gives:

u(Z) ¼ � 1
48

gSxbh
3

Nz
ð�8Z3 � 9Z2 þ 1Þþ 3

2
ufðZ2 � 1Þ

þ 1
4
sWh
qNz

ð3Z2 þ 4Zþ 1Þ:
ð12:102bÞ

As would be expected, the vertical velocity profile is driven by the baroclinic
pressure gradient force, river discharge and wind stress, and it is easy to demon-
strate that this solution identically satisfies the surface and bottom boundary con-
ditions and the volume (mass) continuity.

With this analytical solution, the steady-state profile of the u-velocity component
is calculated using the following values: Nz = 1.6 	 10−2 m2 s−1, b = 7.0 	 10−4,
h = 10.5 m, uf = 0.02 m s−1, sW ¼ 0.5 kg m−1 s−2 and @S=@x = 2.3 	 10−2 m−1.
The results are presented comparatively in Fig. 12.6, indicating a good agreement
of the ebb and flood motion with the analytical and numerical profiles obtained by
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Hunter (1975) and Blumberg (1975), respectively. It should be remembered that
Hunter’s analytical profile, shown in this figure, was calculated with moderate
bottom boundary condition.

12.7 Results on Numerical Modelling: Caravelas-Peruípe
Rivers Estuarine System

The coastal plain estuary where the Caravelas and Peruípe rivers empty into the
coastal sea in the southern Bahia State (Bahia, Brazil), is a complex transitional
environment bordering on a mangrove forest and vestigial areas of South Atlantic
Forest. The Caravelas-Peruipe Rivers Estuarine System (CPRES) empties its water
mass almost 60 km west of the Abrolhos National Marine Park (Fig. 12.7).

This system was sampled during an interdisciplinary, inter-university thematic
project “Productivity, Sustainability and Uses of the Abrolhos Banks Ecosystem”,
sponsored by the National Brazilian Council for Research and Technology
Development (CNPq) and the Ministery of Science and Technology (MST). To
accomplish the objective of the project, fortnightly estuarine field work was performed
in spring and neap tidal cycles in the austral winter and summer of 2007 and 2008,
respectively, providing an observational data basis for numerical modeling validation
for the estuarine region (Fig. 12.7). Further investigations of this project may be found
in the special edition of Continental Shelf Research (2013, v. 70, 176 p.).

Fig. 12.6 Validation of the vertical u-velocity component profile calculated by a numeric solution
(dashed line) by comparison with steady-state analytic solutions from the Hunter (1975) model
under the conditions of moderate (thin line) and maximum bottom friction (thick line),
respectively. Negative and positive values indicate ebb and flood tidal conditions, respectively
(adapted from Blumberg 1975)
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An outline of some the numerical model (Delft 3-D Flow) results of the estuarine
system’s spatial and temporal tidal oscillation variability, thermohaline properties,
and circulation will be presented in this topic.

The numerical curvilinear grid used in the simulations is presented in Fig. 12.8. To
allow better resolution, the grid spacingwas locally refined in the estuarine channels to
15 	 15 m2, increasing in the coastal region and reaching up to 300 	 300 m2. The
model results were quantitatively validated using the Skill parameter, with field
measurements of tidal oscillation, currents and salinity during neap and spring tides at
mooring stations. In the numerical data processing, homogeneous conditions were
initially used for the fields of salinity, density and the kinematic vertical coefficients of
viscosity and diffusivity; after four weeks of running simulations, these fields were
saved under spatially varied conditions. These new initial conditions allowed transient
time to be avoided, thus optimizing the simulations.

The model evaluation was performed using field measurements undertaken
during the summer and winter austral seasons, and longitudinal measurements in
the main channel of the Caravelas estuary, presented in the articles of Schettini and
Miranda (2010) and Pereira et al. (2010). River discharge values were taken from
the Brazilian National Water Agency (ANA), and were estimated as �20.0 m3 s−1

with extrapolation of �4.0 m3 s−1, for the unified Cúpido and Jaburuna rivers,
which are tributaries of the Caravelas estuary.

Tidal oscillations at neap and spring tides were well simulated at the four control
sites (A, B, C and D) shown in Fig. 12.7, right, which were also used to validate the
spatial distribution of tidal heights, circulation and salinity. The best results, with

Fig. 12.7 The Caravelas-Peruípe Rivers Estuarine System, the Aracruz—TA harbor, the Sueste
and Abrolhos channels, the Abrolhos National Marine Park (left). Location of the oceanographic
stations in Caravelas (A, B) and Nova Viçosa (C, E) in the North and South, respectively (right)
(according to Andutta 2011)
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mean values of over 0.9 for the Skill parameter, were obtained for tidal amplitudes
between 1.3 and 2.5 m at neap and spring tides (Fig. 12.9), respectively.

Longitudinal velocity component and salinity simulations for January, 2008, at
mooring station, A, during neap and spring tides are shown in Figs. 12.10 and
12.11, respectively. The numerical results of the velocities were simulated better in
spring tides, with the mean skill values in the range of 0.77 and 0.93, while at neap
tides this parameter was lower, with values between 0.38 and 0.65. Good results
were achieved for the salinity structure at spring tide, with mean skill values over
0.83, hence comprising all the control station for validation. At neap tides, the

Fig. 12.8 The curvilinear numeric grid and size distributions in the investigated region (according
to Andutta 2011)

Fig. 12.9 Experimental and theoretical tidal oscillations in the Caravelas estuarine channel at
neap (left) and spring (right) tide in January, 2008 (according to Andutta 2011)
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Fig. 12.10 Comparison of time variability of observational u-velocity profiles (m s−1), the
corresponding theoretical profiles, and the Skill parameter at station, A, during neap (upper) and
spring (lower) tides. Flood and ebb motions are indicated by u > 0 and u < 0, respectively
(according to Andutta 2011)
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Fig. 12.11 Comparison of time variability of observational salinity (‰) profiles, the correspond-
ing theoretical, and the Skill parameter at station A during neap (upper) and spring (lower) tidal
cycles (according to Andutta 2011)
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corresponding mean skill values were relatively high, varying in the range of 0.73–
0.85. In addition, there were difficulties adequately simulating the highly vertical
and longitudinal salinity stratification in the Nova Viçosa estuary (not shown),
which was due to the stronger river inflow on the Peruípe river causing difficulties
in the measurements of hydrographic properties and currents in the field.

Time variations of the u-velocity profile, u = u(Z, t), during a semi-diurnal tidal
cycle calculated by the model are presented comparatively with the experimental
profiles, together with the corresponding Skill parameter. At neap tide (Fig. 12.10,
upper), relatively high Skill values (0.6 to 0.8) were obtained, validating theoretical
results during the higher current intensities between the time period of �12 h to
�16 h, but an accentuated phase difference can be observed between theoretical
and observational data. However, outside of this high intensity period the Skill
parameter indicated very low values (<0.2), reducing its tidal mean value to only
0.38. For the spring tidal period, there was an increase in the mean Skill value,
which was double (0.77) that observed in the neap tidal period, indicating a good
correspondence between observed and simulated salinity variation at the mooring
station (Fig. 12.10, lower).

Variations in the simulated and observational vertical salinity profiles, S = S
(z, t), during the neap and spring tidal cycles are shown in Fig. 12.11, upper. In the
neap tide cycle, the observational and the theoretical salinity profiles varied in the
intervals 32.0–35.8‰ and 34.0–35.8‰, respectively, and the calculated mean skill
value was relatively high (0.85). However, in the time interval between 13 and
16 h, the theoretical simulation indicated only a small vertical salinity stratification
compared with the observed values, and near bottom, low Skill values were
observed (<0.2), and the salt water intrusion near the bottom was well simulated

Fig. 12.12 Longitudinal
section in the Caravelas
estuary used in the numerical
simulation of the longitudinal
salinity intrusions during neap
and spring tidal conditions.
The longitudinal section is
indicated by the red line
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(*35.5‰). In the spring tide cycle (Fig. 12.11, lower), as observed in the velocity
simulation, the experimental and simulated salinity values presented close varia-
tions intervals and the mean skill values were high (0.85 and 0.97).

The Delft3D-Flow numeric model has also been applied to a comparative
analysis on the coastal water mass intrusions in the Caravelas estuarine channel,
shown in Fig. 12.12. For these simulations, experimental results of Schettini and
Miranda (2010) measured in April, 2001 were used in the validation, covering a
longitudinal section distance of 16 and 26 km, for low and high tide salinity
intrusions, respectively.

Although the simulations have been compared and validated with no simulta-
neous observational data and probably under different forcing conditions, the model
parameters were adjusted to a higher validation Skill parameter.

Fig. 12.13 Nearly steady-state longitudinal salinity (‰) distributions in the Caravelas estuary
during the spring low tide. Simulated (upper) and observational data (lower) from Schettini and
Miranda (2010) (according to Andutta 2011)
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During the spring low tide, the nearly steady-state salinity fields indicates a low
vertical salinity stratification, with the theoretical and observational salinity varying
in the intervals �34.5–35.0‰ and �34.0–34.5‰, respectively (Fig. 12.13). About
6 km from the mouth, the theoretical and observational values are very close
varying from �32.0 to �32.5‰, and up to �12 km landward from the estuary
mouth, the salinity decreases to � 30.0 and �28.0–28.5‰ for the observational and
theoretical distributions, respectively.

The longitudinal nearly-state salinity distribution in the Caravelas estuary at spring
high tide is shown in Fig. 12.14. The model results (upper) indicate a vertically
well-mixed estuary, which is in agreement with the observational data (lower). It
should be noted that the highly saline water (>36.0‰) shows the TropicalWater mass
(TW) intrusion advancing up to 6 km into the estuary. A good agreement between the
numerical simulation and the experimental data is also observed up to 12 km from the

Fig. 12.14 Nearly steady-state longitudinal salinity (‰) distribution in the Caravelas estuary
during the spring high tide. Simulated (upper), according to Andutta (2011), and the observational
data (lower) according to Schettini and Miranda (2010)
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estuary mouth, with salinities in the interval 36.0 psu—36.4 psu and�33 psu for the
observational and theoretical longitudinal profiles, respectively. Thus, according to
Andutta (2011), these results conclusively indicate that the Tropical Water
(TW) mass intrusion into the Caravelas estuary was adequately simulated, including
the low salinity estuarine water mass intrusion towards its head.
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