
Chapter 11
Circulation and Mixing in Steady-State
Models: Partially Mixed Estuary

The first steady-state analytical model for determining time mean longitudinal
velocities in a coastal plain estuary was developed by Pritchard and Kent (1956)
using the lateral and longitudinal components of the equation of motion, the tidal
velocity amplitude, and the relationship between the vertical and lateral eddy stress.
In this article the relationship between the vertical and transverse eddy diffusion
coefficients were demonstrated using the vertical velocity profile near the bottom.
The method was applied and validated with data from stations sampled in the James
river estuary (Virginia, USA) during several tidal cycles in the summer (June and
July, 1950) in a water column with mean depth of 8 m. The theoretical velocity
profiles agreed well with the observational data, showing typical velocity profiles of
partially mixed estuary, with seaward and landward motions in the upper and lower
layers, respectively, and no motion at mid depths. Pritchard and Kent’s paper was
also a pioneering article showing the importance of comparing theoretical results
with observational data.

Complementing the results of this pioneering study. This chapter presents ana-
lytical investigations of relatively narrows estuaries, assumed to be bi-dimensional
systems in the Oxz plane, with vertical salinity stratification, and thus classified as
partially mixed estuaries (types 2 or B). Stable salinity stratification reduces the
intensity and scale turbulence in open channel flow, thereby reducing the rate of
vertical mixing. Theoretically, partially mixed estuaries are adequately represented
by lateral averages of the equations of mass and salt conservation and motion, as
presented in Chaps. 7 and 8 which have as unknowns the density, salinity the
velocity components (u, w) and the slope of free surface as a function of the
independent variables (x, z, t). Laboratory investigations were conducted by Sumer
and Fischer (1977) to investigate whether the rate of transverse mixing is similarly
reduced in this type of estuary. However, to determine relatively simple analytical
solutions, steady-state conditions must be assumed and, for validation, the theo-
retical solutions must be compared with time mean velocity and salinity values
calculated from observational data for one or more tidal cycles.
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The influences of topography, transverse salinity (density) gradient and free
surface elevation, may cause lateral non-homogeneity and circulation in estuaries,
and a simple longitudinal and transverse section will be used (Fig. 11.1). The
estuary width, B = B(x), will be considered only as a function of the longitudinal
distance, and its depth dependence will not be taken into account.

Neglecting topographic effects makes the mathematics considerably more
tractable; however, the features of the depth dependent circulation are still basic,
even though there will be modifications due to transverse effects which are not
accounted for by the laterally averaged equations (Hamilton and Rattray 1978).
With these simplifications, the dynamic influence of the Earth’s rotation may be
disregarded, and the Coriolis acceleration (f0) does not need to be included in the
longitudinal component (Ox) of the equation of motion.

Pioneering investigations by Pritchard (1952a, 1954, 1956) demonstrate that for
coastal plain estuaries, the dynamic balance of the mean motion is predominantly

Fig. 11.1 Longitudinal (a, b) and transverse (c) sections of a bi-dimensional model with the
adopted referential system (Oxz). H0 is the depth in relation to a level surface, and Ho + η is the
local depth, and B = B(x) is the estuary width. The Oz axis is positively oriented in the direction of
the gravity acceleration
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based on the barotropic and baroclinic pressure gradients, the dissipative friction
forces and the tidal non-steady state circulation. The salt balance is mainly main-
tained by the advective and diffusive longitudinal and vertical fluxes. With these
simplifications, for practical purposes, the steady-state equation of motion has its
linearity granted, disregarding the advective acceleration. As indicated by Kjerfve
et al. (1991), the inertial terms may be disregarded in shallow estuarine channels, in
which the bottom friction becomes more important.

11.1 Physical-Mathematical Formulation

The simplified equations of mass conservation (Eq. 7.73a) and motion (Eq. 8.57a),
which are necessary for analytical and numerical treatment of problems related to
steady-state bi-dimensional estuaries, have been presented in Chaps. 7 and 8, and
are reproduced below,
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where B is the estuary width. The gradient pressure force decomposed in the
barotropic and baroclinic pressure gradients are expressed as Eq. (2.10a, b and
Chap. 2), but with the Oz axis oriented in the direction of gravity acceleration ~gð Þ;
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For hydrodynamic closure, the inclusion of the steady-state salt conservation
(Eq. 7.77 and Chap. 7) is necessary
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as well as the linear equation of state of sea water (Eq. 4.11 and Chap. 4),

qðSÞ ¼ q0 1þ b Sð Þ: ð11:5Þ

The analytical solution of the equation system (11.1) to (11.5) is dependent on
the boundary and integral boundary conditions used for the determination of the
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unknowns u, w, η, S and q, under some simplifications. This system has been
solved by Hansen and Rattray (1965), Fisher et al. (1972), Hamilton and Rattray
(1978) among others. In these articles, the main results of which will be presented
in this chapter, the basic foundations for the theoretical determinations of the fol-
lowing were established: the steady-state vertical velocity and salinity profiles
generated by the river discharge, the longitudinal gradient pressure forces due to the
longitudinal density (salinity) gradients caused by the wind stress and mixing
processes (advection and diffusion).

The value of the kinematic eddy viscosity coefficient (Nz), and kinematic dif-
fusion coefficients (Kx and Kz) of the conservation equations are usually unknown,
however, if the solution for the above set of equations can be shown to agree with
or be validated by observational data by proper fitting of these coefficients, one
must assume that either all the neglected terms are zero, or more correctly, that the
neglected terms have been absorbed into these coefficients.

In the analytical simulation of the u-velocity component and salinity profiles, the
estuary mixing zone (MZ) will be approximated by a simple geometry (Fig. 11.1).
For this solution, it will also be necessary to formulate the following simplifying
assumptions:

• The longitudinal salinity (density) gradient is independent of the depth ∂/∂z(∂S/
∂x) = 0 or ∂/∂z(∂q/∂x) = 0.

• The longitudinal term of the turbulent salinity diffusion is disregarded [first term
on the right hand side of Eq. (11.4)].

• The eddy kinematic coefficients of viscosity (Nz) and diffusion (Kz) are inde-
pendent of the depth.

The first assumption may be justified, taking into account the results of Pritchard
(1954, 1956) whose observational data demonstrated that in partially mixed estu-
aries the longitudinal salinity (density) gradient does not vary appreciably with
depth, and the dynamical influence of this term is small in the central region of the
MZ. Therefore, without great alterations in the physical aspects of the results, the
longitudinal salinity (density) gradient, ∂S/∂x (∂q/∂x), will be substituted by the
longitudinal gradients of a depth average salinity (density) @�S=@x @�q=@xð Þ; which
will be calculated by the steady-state mean salinity (density) value in the water
column, which will be denoted by �Sð Þ or �qð Þ; and calculated by,
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and a similar expression for the density, �q:
The second simplifying assumption may also be justified, taking into account the

observational results of Pritchard (1956) in the partially mixed James river estuary
(Virginia, USA). In this estuary, the non-advective longitudinal term of the salt
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conservation equation (Eq. 11.4) (first term on the right hand side) has a relatively
low contribution (about 1%) in comparison to the last term of this equation (vertical
salt diffusion), and may be disregarded. Finally, the third assumption cannot be
easily justified, and these coefficients (kinematic eddy viscosity and diffusion) will
be considered as constants and representative of their mean value in the water
column in order to simplify the mathematics and make the integration of equations
easier.

With these assumptions, combining Eq. (11.3) with the linear equation of state
of seawater (11.5) and substituting the result into the equation of motion (11.2), it
follows that:
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or in terms of the longitudinal salinity gradient,
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where according to the Boussinesq approximation, q0/q � 1, and �q �Sð Þ are vertical
mean values of density (salinity) in the water column.

As the continuity Eq. (11.1) assures the non-divergence of the volume transport
per unit width of the cross-section, it is possible to introduce the stream function
w ¼ wðx; zÞ; with the definitions:
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These equalities identically satisfy the continuity equation, and it should be
pointed out that the stream function, w = w(x, z), with dimension [L3T−1], obeys
the mathematical rules which state that its mixed derivatives should be equal. The
introduction of this function is very convenient because the velocity components, u
and w, may be calculated by a simple derivation.

Performing the derivative of Eq. (11.7b) in relation to z and taking into account
that the barotropic pressure gradient and the longitudinal salinity gradient are
independent of the depth, we have
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and introducing the stream function, w = w(x, z), into this equation, it is reduced to
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The salt conservation Eq. (11.4) may also be combined with the stream function
definition, and is then reduced to
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In this equation, only the salinity in the first term of the left hand side was
substituted by a mean salinity value �Sð Þ; which will be considered a known
quantity, allowing an analytical solution to be found. Only with this artifice the
salinity will remain unknown, and will be determined with the salt balance between
the steady-state longitudinal and vertical advection, and the vertical diffusivity
terms (the first and second terms on the left hand side, and the term on the right
hand side of this equation, respectively).

Equations (11.10) and (11.11) are formulations equivalent to the initial
Eqs. (11.2) and (11.4), respectively. As the mean-depth salinity, �S; and the longi-
tudinal gradient, @�S=@x; are given, this system of equations has two equations of
fourth and second orders, respectively, with two unknowns, w = w(x, z) and S = S
(z), which now govern the dynamics and the mixing processes in the MZ.

The boundary conditions necessary for finding a unique solution for the equation
system (11.10) and (11.11) are the same as previously used in Chap. 10 (Eqs. 10.10
to 10.12), but now they will be expressed in terms of the stream function:

• Upper boundary condition

At the free surface (z = η � 0), the wind shear stress (sWx) acts seaward or
landward (positive or negative) and also may be disregarded, which are expressed
by:
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where Az = qNz, [Az] = [ML−1T−1], is the eddy viscosity coefficient.

• Lower boundary condition

At the bottom, three conditions may be formulated:

(a) Maximum friction (or no slip):
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(b) Moderate friction (or slippery):
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(c) Minimum friction (sBx = 0):
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The upper and lower boundary conditions to be applied for the salt conservation
Eq. (11.1) must specify zero salt flux at the surface and at the bottom, which are
expressed as:
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To close the hydrodynamic system (Eqs. 11.10 and 11.11), it is necessary to
impose integral boundary conditions. The first is formulated by Eq. (11.6), which
defines the mean salinity in the water column, and the second condition is a con-
sequence of the continuity Eq. (11.1). As the solution is under steady-state con-
ditions the mass (fresh water) conservation can be accomplished by
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which, combined with the stream function definition (11.8), is reduced to
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As the stream function has the dimension of volume transport [L3T−1], which
must be zero at the surface and bottom, the integral boundary condition may be
expressed by: wðx; zÞ z¼g

�� ¼ wðx; zÞ z¼0j ¼ 0:
As with most fluid dynamics problems the analytical solution of the system of

Eqs. (11.10 and 11.11) will be developed in a dimensionless form in order to permit
generalized discussions of the results (Fisher et al. 1972). For this purpose, the
following variables are defined:

Z ¼ z=H0; X ¼ x=L; W ¼ w=Qf ; $ ¼ S=S0; ð11:19aÞ
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�$ ¼ �S=S0; TW ¼ sWx=sW0; TB ¼ sBx=sB0: ð11:19bÞ

In these definitions, S0 is the salinity at the coastal region, L is the mixing zone
(MZ) length, and sW0 and sB0 are characteristics values of the wind shear and
bottom stress, respectively. It should be observed that, as the axis Oz is oriented in
the direction of the gravity acceleration, Z = 0 and Z = 1 are the dimensionless
ordinates of the surface and bottom, respectively. With the introduction of the
dimensionless variables, the equations of motion and salt conservation are
expressed as:
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where W, $, $, X and Z are all dimensionless variables. These equations may be
further simplified as,
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with the coefficients, C1(X) and C2(X), expressed by:

C1ðX) ¼ gBH4
0bS0

LNzQf
¼ bgH3

0S0
LNzuf

; ð11:24Þ

and

C2ðX) ¼ BLKz

H0Qf
¼ LKz

H3
0uf

: ð11:25Þ

The differential equations of this system (Eqs. 11.22 and 11.23) are dimen-
sionless and at fourth and second degree, respectively, and its unknowns are:
W = W(X, Z) and $ = $(X, Z). The quantities C1(X) and C2(X) are dimensionless,
and their dependency on X is not well known and will not be taken into account.

392 11 Circulation and Mixing in Steady-State …



Before being applied to the new equation system (11.22) and 11.23), the
boundary conditions (11.12) to (11.18) must be altered to the following
expressions:
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and the integral boundary conditions are,

WðX, 0) ¼ 1;WðX, 1) ¼ 0: ð11:31Þ

Taking into account the relations (11.8) and the equalities ∂z = H0∂Z, ∂x = L∂X
and ∂w = Qf∂ W, it follows that,
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11.2 Hydrodynamic Solution: Maximum Bottom Friction

Consider the solution of Eq. (11.22). As the first member of this differential
equation is a function of X and the mean longitudinal salinity gradient should be
known, this equation may be solved for the stream function, W = W(X, Z). By
integrating with Z four times, the general solution is:
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The dimensionless quantities, a1(X), a2(X), a3(X) and a4(X), are all function of X
and are calculated from the application of the boundary conditions (11.26) and
(11.27) and the integral boundary condition (11.31). Applying the last condition
W(X, 0) = 1, it follows immediately that:
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where Az = qNz and

a4ðXÞ ¼ 1: ð11:36Þ

In the following step, with the boundary conditions (11.27) and W(X, 1) = 0
from the integral boundary conditions (11.31), the result is an algebraic equation
system with two unknowns, a1(X) and a3(X),
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Subtracting these equations in order to eliminate a3(X) and solving the result for
a1(X), we have
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Finally, substituting Eqs. (11.39) into (11.37) or (11.38), it follows that the value
for a3(X) is,
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Substituting the expressions a1(X), a2(X), a3(X) and a4(X) into the general
solution (11.34) yields
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Combining this result with the expression of C1(X) (Eq. 11.24), it follows that,
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Rewriting this solution as a function of the dimensional distance (x) and the
salinity (S) yields,
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or, recalculating the numeric coefficients and expressing the result as a function of
the mean value of the longitudinal density gradient and the river velocity uf = Qf/
A = Qf/BH0,
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From this analytical expression the dimensionless stream function, the u- and
w-velocity components may be calculated by derivation, according to the relations
(11.32 and 11.33), and the results are:
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and

wðx, Z) ¼ g
BAz

½@ðBH
4
0Þ

@x
ð@q
@x

Þþ ðBH4
0Þð

@2q
@x2

Þ�
� ð4:17� 10�2Z4 � 6:25� 10�2Z3 þ 2:08� 10�2Z)

þ sWx

BAz
½@ðBH

2
0Þ

@x
�ð�2:5� 10�1Z3 þ 5:0� 10�1Z2 � 2:5� 10�1Z):

ð11:46Þ

When the wind stress is zero (sWx = 0), these solutions are similar to the
solutions deduced in the article of Fisher et al. (1972), and the u-velocity compo-
nent (Eq. 11.45) is also similar to the Officer (1976) solution, but it has been
improved with the introduction of bottom nonlinear tidal frictional influences.

Solutions (11.45) and (11.46) determine the motion in any longitudinal position
of the mixing zone (MZ) of a partially mixed estuary. This result indicates that the
steady-state velocity field is dependent on the longitudinal density (salinity) gra-
dient, the river discharge, and the wind stress. And the first (11.45) and the solution
(10.22 and Chap. 10) are formally identical, even though solution (10.22) was
developed for a well-mixed estuary using a different deduction. This is justifiable
because the initial basic hydrodynamic equations were similar, and in relatively
homogeneous deep estuaries, the integrated influence of the baroclinic pressure
gradient may increase, generating the typical gravitational circulation of
partially-mixed estuaries, characterized by bidirectional circulation.

Calculating the velocity at the surface (Z = 0) from Eqs. (11.45) and (11.46),
gives the following expressions:
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and u(x, 1) = w(x, 0) = w(x, 1) = 0, confirming the superior and inferior boundary
conditions. A convenient expression, equivalent to the analytical profile (11.45),
may be obtained combining with the surface expression, u(x, 0). For this purpose,
we must solve the expression (11.47) for the first term of the right hand side, which
is associated with the baroclinic pressure gradient,
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Combining this expression with solution (11.45), it can be further simplified and
yields:

u(x, Z) ¼ u(x, 0)(8Z3 � 9Z2 þ 1Þþ 12ufð�Z3 þZ2Þ
þ sWxH0

Az
ð�2Z3 þ 3Z2 � Z):

ð11:49Þ
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The power series of the dimensionless variable (Z), on the right hand side of this
equation, determinates the depth variation of the surface velocity, the velocity
generated by the river discharge and, in the last term, the velocity component
generated by the wind shear. Under the assumption that the river discharge and the
wind shear stress may be disregarded, this solution simplifies and yields the the-
oretical profiles obtained by Officer (1976, 1977),

u(x, Z) ¼ u(x, 0)(8Z3 � 9Z2 þ 1Þ: ð11:50Þ

As the u-velocity component has been calculated (Eq. 11.45), we are able to
calculate the free surface slope (∂η/∂x). In order to achieve this, the equation of
motion (11.7b) must be applied to the free surface (z = η) and solved for, ∂η/∂x,
and in terms of the non-dimensional depth (Z = z/H0) the result is,

ð@g
@x

Þjz¼g ¼ gx ¼ � Nz

gH2
0

ð@
2u

@Z2ÞjZ¼0: ð11:51Þ

The final step is to introduce the second derivative of u = u(x, Z) at the surface,
(∂2u/∂Z2)|Z=0, into this equation and further simplified to the following expression:

gx ¼ 0:375
H0

q0

@q
@x

þ 3
Nz

gH2
0

uf � 1:5
sWx

qgH0
: ð11:52aÞ

This equation is equal Eq. (10.19 and Chap. 10), which has been obtained for a
well-mixed estuary; however, for a partially-mixed estuary, the baroclinic pressure
gradient predominates. For example, let us assume the following numeric values:
H0 = 10.0 m, g = 10 m s−2, q = q0 = 103 kg m−3, ∂q/∂x � Dq/Dx = 3.
0 � 10−3 kg m−4, uf = 0.1 m s−1, Nz = 10−2 m2 s−1 and sWx = 0.2 kg m−1 s−2.
Then, it follows that ∂η/∂x > 0 and the first term of Eq. (11.52a) is 10 times greater
than the other terms (10−5 compared to 10−6). Only stronger landward winds may
invert the free surface slope (∂η/∂x < 0). To calculate the analytical expression of
the free surface, η = η(x), the Eq. (11.52a) must be integrated, with the result being
a linear variation from η(x)|x=0 = 0 to η = η(x),

gðx) ¼ ð0:375H0

q0

@q
@x

þ 3
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gH2
0

uf � 1:5
sWx

qgH0
Þx: ð11:52bÞ

11.3 Hydrodynamic Solution: Moderate Bottom Friction

Following the same development as in Topic 10.3 (Chap. 10), let us now adopt the
bottom boundary condition (11.28) expressed by the semi-empirical relation
TB = sBx/sB0, and expressed by the semi-empirical boundary condition
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sBx ¼ sB0TB ¼ qð4=pÞkUTujz¼H0
¼ qð4=pÞkUTuZ¼1, indicating a moderate bottom

friction (slippery condition). As previously indicated, this condition is applied when
the tidal velocity amplitude is UT � u (Bowden 1953). Let us also assume,
according to Prandle (1985), that the kinematic eddy viscosity coefficient may be
empirically simulated by Nz = kUTH0, where the numeric coefficient k = 2.
5 � 10−3 is dimensionless. Applying the upper boundary condition (11.26) and the
integral boundary condition (11.31), expressed by W(x, 0) = 1, to the general
solution (11.34) yields:

a2ðX) ¼ BH2
0

AzQf
sW0TW ¼ BH2

0

AzQf
sWx; ð11:53Þ

and

a4ðX) ¼ 1: ð11:54Þ

Therefore, with the bottom boundary condition (11.28) applied and if a2(X) is
known, we have the following expression for a1(X):

a1ðX) ¼ C1ðXÞ
2

ð@$
@X

Þ � BH2
0

AzQf
ðsWx þ sBxÞ; ð11:55Þ

and, applying the second integral boundary condition (11.31), that is, W(X, 1) = 0,
yields the integration function a3(X),

a3ðX) ¼ �C1ðXÞ
24
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@X

Þþ 1
6
BH2

0

AzQf
ð�2sWx þ sBxÞ � 1: ð11:56Þ

Substituting the integration functions a1(X), a2(X), a3(X) and a4(X), into the
general solution (11.34) and further simplifying to the simplest expression yields
the following expression for the stream function:

WðX;ZÞ ¼ C1ðXÞ
28

ð@$
@X

Þð�Z4 þ 2Z3 � ZÞþ ð�Zþ 1Þ

þ BH2
0

6AzQf
½sWxð�Z3 þ 3Z2 � 2Z)þ sBxð�Z3 þZ):

ð11:57Þ

Substituting the expression of C1(X) (11.24) into (11.57), expressing them in
terms of the dimensional longitudinal distance (x) and the mean salinity ðSÞ; it
follows that:
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Wðx, Z) ¼ bgH3
0
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ð11:58Þ

which is directly proportional to the depth and the longitudinal salinity gradient and
inversely proportional to the dynamic (kinematic) eddy viscosity coefficient. In
function of the longitudinal density gradient and taking into account that
Nz = kUTH0, another expression for the current function is:
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0
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ð11:59Þ

According to the equalities (11.32) and (11.33), which define the u- and
w-velocity components as derivatives of the stream function, the analytical
expression (11.59) is used to calculate these velocity components as:

u(x, Z) ¼ uf þ gH2
0

kUT

1
q0

@q
@x

ð1:67� 10�1Z3 � 2:5� 10�1Z2 þ 4:17� 10�2Þ

þ 1
qkUT

½sWxð5:0� 10�1Z2 � 1:0Zþ 3:33� 10�1Þþ sBxð5:0� 10�1Z2 � 1:67� 10�1Þ�:

ð11:60Þ

and
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ð11:61Þ

These solutions indicate that under normal conditions the u-velocity component
is forced directly by the baroclinic pressure gradient, the river discharge and the
wind stress, but the w-velocity component is dependent only on the density gradient
and its second derivative.

Let us now calculate the u-velocity component (Eq. 11.60) at the bottom
(Z = 1), in order to calculate the bottom stress. In doing so, and after simplifica-
tions, sBx is determined by,
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sBx ¼ �9:2� 10�2qgH2
0
1
q0

@q
@x

þ 2:212ufkUTq� 3:69� 10�1swx: ð11:62Þ

Calculating the magnitude of these terms, it is possible to see that the second
term is of higher magnitude than the others terms, and positive values of the bottom
friction (sBx > 0) are generally found in natural estuarine environment. Combining
this result with Eq. (11.60) and simplifying the resulting expression to a more
convenient solution for practical applications gives,

u(x, Z) ¼ gH2
0

kUT

1
q0

@�q
@x

ð1:67� 10�1Z3 � 2:96� 10�1Z2 � 5:8� 10�2Þ

þ ufð1:106Z2 þ 6:3� 10�1Þþ sWx

qkUT
ð3:16� 10�1Z2 � Zþ 3:95� 10�1Þ:

ð11:63Þ

This solution for the u-velocity component for a partially mixed estuary has the
same formalism as (Eq. 10.48 and Chap. 10) for a well-mixed estuary (type 1 or C).
Calculating this component at the surface (Z = 0) yields the following expression:

u(x, 0) ¼ 5:8� 10�2 gH
2
0

kUT

1
q0

@�q
@x

þ 6:3� 10�1uf þ 3:95� 10�1 sWx

qkUT
; ð11:64Þ

and, with a similar development to that used in the deduction of Eq. (11.49), under
maximum friction at the bottom (non-slippery bottom), the equation to calculating
the u-velocity component (11.63) may be rewritten as,

u(x, Z) ¼ u(x, 0)(2:879Z3 � 5:103Z2 þ 1Þ
þ ufð�1:814Z3 þ 4:321Z2Þþ sWx

qkUT
ð�1:137Z3 þ 2:016Z2 � Z):

ð11:65Þ

This solution is similar to Eq. (10.48), which was calculated with maximum
bottom friction. Comparing these equations, we may observe an increase in the
importance of the baroclinic pressure gradient and the wind stress in driving
the motion, and a decrease in the river discharge forcing. It is also possible to apply
the equality (11.51) to this solution to calculate the steady-state free surface slope
(∂η/∂x),
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Þjz¼g ¼ 5:92� 10�1 H0
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In comparing this result with Eq. (11.52a) we may observe an accentuated
variation in the river discharge coefficient (second term in the right hand side); its
numeric coefficient changes from 3.0 to −2.21. Taking into account the same orders
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of magnitude in these equations, the free surface slope is positive (∂η/∂x > 0) in
both equations, being slightly higher under the first boundary condition.

The development of solutions using zero friction at the bottom as a boundary
condition are easy to be demonstrated, and derived in other books, such as Officer
(1976).

11.4 Theoretical Vertical Salinity Profile

We will now proceed with the solution of the second order partial differential
Eq. (11.23), complemented with its coefficients C1(X) (11.24) and C2(X) (11.25),
to calculate the salinity field; in the first moment the dimensionless $ = $(X, Z) will
be calculated, and further, its transformation to the solution S = S(x, Z) will be
obtained. This solution is dependent on the stream function, W = W(x, Z), which
has already been calculated for distinct boundary conditions (11.43) or (11.44) and
(11.58) or (11.59). Of course, these solutions will be dependent on the upper and
lower boundary conditions (11.29) and (11.30), respectively, and the integral
boundary condition (11.31).

Let us introduce, according to Fisher et al. (1972), an auxiliary (dummy) con-
tinuous function f = f(X, Z), defined as f(X, Z) = ∂$/∂Z, to the solutions of these
differential equations. As its second derivative is ∂f(X, Z)/∂2$/∂Z2, substituting
these quantities into the Eq. (11.23) yields the following first order
non-homogeneous partial differential equation with variable coefficients:

@f
@Z

� B
C2ðX, Z) f(X, Z) ¼

A(X, Z)
C2ðX, Z) : ð11:67Þ

where C2 = C2(X) has previously been defined in (11.25), and the quantities A(X,
Z) and B(X, Z) are expressed by,

A(X, Z) ¼ � @WðX, Z)
@Z

@$

@X
; ð11:68Þ

and

B(X, Z) ¼ @WðX, Z)
@X

: ð11:69Þ
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These quantities are in function of the stream function, W = W(X, Z)

(Eq. 11.57), and the longitudinal salinity gradient ð @$
@XÞ in the A(X, Z) expression is

assumed to be known.
With the definition of f = f(X, Z) yielding the differential Eq. (11.67), the

boundary conditions (11.29) must be applied separately and are given by,

f(X, Z)jz¼0 ¼ ð@$
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ÞjZ¼0 ¼
1
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ð@S
@Z

ÞjZ¼0 ¼ 0: ð11:70Þ

and

f(X, Z)jz¼1 ¼ ð@$
@Z

ÞjZ¼1 ¼
1
S0

ð@S
@Z

ÞjZ¼1 ¼ 0: ð11:71Þ

Therefore, in order for the salt flux (or salt transport) through the free surface and
bottom to be zero, the f = f(X, Z) function must satisfy the conditions f(X, 0) =
f(X, 1) = 0, respectively.

The general solution of Eq. (11.67) may be found in Wylie (1960) and Fisher
et al. (1972) and is given by:

f(X, Z) ¼ expf½
Z

ð B
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ÞdZ]
Z
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Þ½exp½�
Z

ð B
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Z

ð B
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ÞdZ]:
ð11:72Þ

The function b1(X) in the last term of the right hand side of this equation may be
calculated using one of the boundary conditions, (11.70) or (11.71); however, it is
convenient to adopt the latter condition because it equals zero, and then the solution
is reduced to

f(X, Z) ¼ expf½
Z

ð B
C2

ÞdZ]
Z

ðA
C2

Þ½exp½�
Z

ð B
C2

ÞdZgdZ: ð11:73Þ

As the quantities C2(X), A(X, Z) and B(X, Z) are given by (11.25), (11.68) and
(11.69), respectively, and taking into account Eqs. (11.32) and (11.33), the inte-
grand ratios, A/C2 and B/C2, are transformed in,
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Þ; ð11:74Þ

and
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B(X, Z)
C2ðX) ¼ H0Qf

BKzL
ð@W
@X

Þ ¼ wH0

Kz
; ð11:75Þ

where W, u and w are known functions of x and Z, and its analytical expressions are
dependent on the boundary conditions. Then, although the function f = f(X, Z) has
a complicated expression (11.73), it may be numerically calculated without as many
difficulties in terms of the stream function and the velocity components. Using the
velocity components yields the following expression:

f(x, Z) ¼ H2
0

Kz
ð@$
@x

Þexp[ H0

Kz

Z
w(x, Z)dZ�

:

Z
u(x, Z)exp[� H0

Kz

Z
w(x, Z)dZ]dZ:

ð11:76Þ

With the analytical expression of the function f(x, Z) known, the steady-state
vertical salinity profile may be calculated by:

S(x, Z) ¼ S0

Z
ðf(x, Z)dZþ b2ðx); ð11:77Þ

where b2(x) is the integration function, which is calculated by the integral boundary
condition, and S0 is the constant salinity value at the coastal region, as previously
defined. This condition may be expressed by Eq. (11.30) or its equivalent mean
salinity value at the water column,

S ¼
Z1

0

S(x, Z)dZ; ð11:78Þ

yielding,

S ¼ S0

Z1

0

½
Z

f(x, Z)dZ]dZþ
Z1

0

b2ðx)dZ; ð11:79Þ

and the integration function, b2(x), is calculated by

b2ðx) ¼ S�
Z1

0

½S0
Z

f(x, Z)dZ]dZ: ð11:80Þ

Substituting (11.80) into the partial solution (11.77) yields an analytical
expression for calculating the steady-state vertical salinity profile:
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S(x, Z) ¼ Sþ S0

Z
f(x, Z)dZ�

Z1

0

½S0
Z

f(x, Z)dZ]dZ: ð11:81Þ

Although this solution is apparently complicated, when rewritten in terms of the
stream function or the velocity components, it may be calculated by numerical
integration. Combining Eq. (11.76) with the solution (11.81), the result is the
following expression for calculating S = S(x, Z) as function of the velocity com-
ponents (Fisher et al. 1972):
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ð11:82Þ

The second term on the right hand side of this equation is an indefinite integral,
and its result is an expression with Z as an independent variable; the third term is a
definite integral calculated in the closed interval [0 − 1], and its final result is a
numeric value.

It should be noted that the theoretical steady-state velocity and salinity profiles
deduced by Fisher et al. (1972) were evaluated with laboratory experimental data
from the Vicksburg and the Delft Hydraulic Laboratory (Delft, Holland) salinity
flume and observation data from the James River estuary (Virginia, USA). The
combined dataset covered a wide range of flow conditions and degrees of salinity
stratification, some of which may be partially invalidate the model assumptions, but
these studies helped to define the limits of the analytical model application.

As the intensity of the u-velocity component is several orders of magnitude
higher than the vertical component (w), several authors, for example, Officer (1976)
and Hamilton and Wilson (1980), had neglected the vertical salt advection. With
this assumption, the theoretical vertical salinity profile is established by the balance
of the longitudinal advection and the vertical eddy diffusion, according to the
simplified expression of Eq. (11.11):

�ð@w
@z

Þð@S
@x

Þþ u
@S
@x

¼ Kz
@2S
@z2

; ð11:83Þ

and the simplest solution of which may be obtained from Eq. (11.82) with the
simplification w(x, Z) = 0 is:
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S(x, Z) ¼ SþðH
2
0
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@x

Þ½
ZZ

u(x, Z)dZ]dZ�
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0

½
ZZ

u(x, Z)dZdZ]dZ: ð11:84Þ

This solution may also be obtained directly by integrating the differential
Eq. (11.83). In doing so, rewriting this equation in terms of the dimensionless depth
(Z) and separating the variables yields (Officer (1976, 1978):
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@Z

¼ ðH
2
0

Kz
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Þ
Z

u(x, Z)dZþ b3ðx): ð11:85Þ

where the quantity, b3(x), is a dimensionless variable of integration. Taking into
account the assumption that at the upper boundary condition there is no salt flux,
qKz

H0

@S
@Z jz¼0 ¼ 0; it follows that b3(x) = 0. Then, with a new integration,

S(x, Z) ¼ ðH
2
0

Kz

@S
@x

Þ
Z

u(x, Z)dZþ b4ðx): ð11:86Þ

To calculate this second dimensionless variable of integration, b4(x), the integral
boundary condition (11.78) must be applied, and its value is given by

b4ðx) ¼ S� ðH
2
0

Kz

@S
@x

Þf
Z1

0

½
ZZ

uðx, ZÞdZdZ�dZg: ð11:87Þ

Then, substituting b4(x) into solution (11.86), the result is the vertical analytical
salinity profile, S = S(x, Z), which is the same as expression (11.84).

The dependence of the u-velocity and salinity vertical profiles on the Nz (or its
dynamic value, Az), and on the kinematic eddy diffusion coefficient (Kz), which
makes the comparison between experimental and theoretical results more difficult.
However, as we will be seen later in this chapter, the best numerical values for these
coefficients may be estimated, when the validation methodology is applied to
improve the comparison of experimental data and theoretical results.

11.5 Theoretical and Experimental Velocity and Salinity
Profiles

To exemplify the analytical solution of steady-state vertical profiles of the u- and
w-velocity components and the salinity, let us consider an estuary with a transverse
section with width B = 103 m and a depth of 12 m, forced by a river discharge of
Qf = 20 m3 s−1, where the wind stress is disregarded (sWx = 0).
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11.5.1 Longitudinal and Vertical Velocity Profiles

The analytical expressions that will be used to calculate the u-velocity component,
u = u(x, Z) are Eqs. (11.49) and (11.65), respectively, for maximum and moderate
bottom friction, respectively. To calculate the vertical velocity profile, w = w(x, Z),
the corresponding simplified Eqs. (11.46) and (11.61) will be used with the same
bottom friction characteristics.

As the transverse area at a longitudinal position, x, is BH0 = 12 � 103 m2 the
velocity generate by the river discharge is uf � 0.017 m s−1. Let us adopt for the
kinematic eddy viscosity coefficient Nz = kUTH0 = 1.2 � 10−2 m2 s−1, and
k = 2.5 � 10−3, considering the tidal amplitude velocity UT = 0.4 m s−1. Under
the assumption that the mixing zone (MZ) has a length of 104 m (10 km) and the
salinity at the mouth is 30‰, the mean longitudinal salinity gradient has an order of
magnitude of 3.0 � 10−6 m−1 and its second derivative, ∂2S/∂x2, is estimated in
2.5 � 10−8 m−2. These values may be converted in the corresponding values of the
mass field using the linear equation of state of seawater (Eq. 11.5) with the saline
contraction coefficient, b = 7.0 � 10−4 and qo = 1.0 � 103 kg m−3, and the fol-
lowing estimates are obtained: q(30) = 1021.0 kg m−3, @q=@x ¼ 2:1� 10�3 kg
m−4, and @2q=@x2 ¼ 4:0� 10�8 kg m−5.

In the u-velocity profile, u = u(x, Z), shown in Fig. 11.2 upper (a), we may
observe gravitational circulation that is typical of partially mixed estuaries (types 2
or B), which is symmetric to the velocity generated by the river discharge
(�0.017 m s−1). In the moderate bottom friction condition (Fig. 11.2 upper b), the
motion has higher velocity in comparison to the first condition, u(x, 1) = 0, to
compensate due to the moderate bottom friction.

Values of the vertical velocity component, w = w(x, Z), can be various orders of
magnitude lower than the u-velocity component, and its intensity is higher for a
moderate bottom friction condition (Fig. 11.2 lower a, b). The negative value
indicates the occurrence of upward motions (note that the Oz axis is oriented in the
direction of the gravity acceleration), closing the continuity of the longitudinal
motion, and the maximum value occurs at the middle of the water column.

11.5.2 Vertical Salinity Profile

To calculate the vertical salinity profile, S = S(x, Z), it is necessary that the mean
salinity value in the water column is known, and let us adopt the value S ¼ 20‰.
As the salinity is dependent on mixing processes (advection and diffusion), the
advective process will be simulated by the u-velocity profile given by the solution
(11.49) under the assumption that swx = 0, and, for the diffusive process, the
kinematic eddy diffusion coefficient will be taken as: Kz = 1.0 � 10−6 m2 s−1.

Combining the simplified solution of the vertical salinity profile (Eq. 11.84) with
the analytical equation u = u(x, Z) indicated above, which satisfies the bottom
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boundary condition, u(x, 1) = 0, the steady-state vertical salinity profile is calcu-
lated by:

S(x, Z) ¼ SþðH
2
o

Kz

@S
@x

u(x, 0)(8Z3 � 9Z2 þ 1Þ
þ ufð�12Z3 þ 12Z2Þ

ð11:88Þ

where the u-velocity component at the surface, u = u(x, 0), must be calculated by
Eq. (11.64), and its solution is presented in Fig. 11.3a. Using the u-velocity
component with the moderately bottom boundary condition (Eq. 11.65), we have
the following expression for the vertical salinity profile:

Fig. 11.2 Vertical velocity profiles, u = u(x, Z) and w = w(x, Z), calculated with Eqs. (11.49)
and (11.65), and (11.46) and (11.61), respectively, with the following surface and bottom
boundary conditions: zero wind stress (sWx = 0), maximum friction at the bottom, u(x, 1) = 0,
(bold line), and a moderate bottom friction u(x, 1) 6¼ 0 (dashed line)
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S(x, Z) ¼ SþðH
2
0

Kz

@S
@x

Þu(x, 0)[1:44� 10�1Z5 � 4:25� 10�1Z4 þ 5:0� 10�1Z2 � 1:05� 10�1�
þ ufð�9:1� 10�2Z5þ 3:6� 10�1Z4 � 5:7� 10�2�;

ð11:89Þ

where the current velocity at the surface (Z = 0) must be calculated by Eq. (11.64).
The steady-state vertical salinity profiles under these boundary conditions are
presented in Fig. 11.3.

In the Fig. 11.3a we may observe that under maximum friction bottom boundary
condition, u(x, 1) = 0, the stratification parameter (dS=S) is equal to 0.23. However,
with a moderate bottom friction (Fig. 11.3b), there is an increase in the stratification
parameter which is equal to 0.78. This increase is due to a higher influence of the
advection in the vertical salinity distribution as the u-velocity component is higher
under this bottom boundary condition (Fig. 11.2b-upper). Due to these changes in
the vertical stratification, the circulation parameter increases from us/uf = 4.4 to us/
uf = 9.6, and the images of these parameters on the Stratification-Circulation

Fig. 11.3 Steady-state vertical salinity profiles calculated with Eqs. (11.88) and (11.89), under the
assumption of the following surface and bottom boundary conditions: sWx = 0 and u(x, 1) = 0
(bold line), and (b) sWx = 0 and u(x, 1) 6¼0 (dashed line), respectively
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Diagram (Fig. 3.11, Chap. 3) are located in the semi-plane of partially mixed
estuaries and highly stratified (type 2b), because dS=S[ 0:1:

11.5.3 Validation of Experimental Velocity and Salinity
Vertical Profiles

Practical examples on the validation of nearly steady-state observational u-velocity
components and salinity vertical profiles with the solutions using Eqs. 11.45 and
11.84 are shown in Figs. 11.4 (upper and lower), according to the investigations of
Bernardes (2001) and Bernardes and Miranda (2001). The hydrographic and current
velocity were sampled in a mooring station located in the southern region of
Cananéia Estuarine System (Fig. 1.5 and Chap. 1), and good agreement between
theoretical and experimental data may be observed.

11.6 Hansen and Rattray’s Similarity Solution

Hansen and Rattray (1965) theory is a classical theoretical development using the
similarity method to obtain the solution of a coupled set of partial differential
Eqs. (11.1) to (11.4) and associated boundary conditions, in order to describe the
circulation and the salt-flux steady-state processes for coastal plain and laterally
homogeneous estuaries, where turbulent mixing is primarily forced by tidal
currents.

The longitudinal salinity distribution in many coastal plain estuaries takes the
general form of the hyperbolic tangent function, with the maximum gradient in the
estuarine region named central regime and tailing off asymptotically to terminal
values towards the mouth and the estuary head. In the central regime, the vertical
salinity stratification is nearly independent of the longitudinal position, while in the
outer and inner regimes, it is proportional to the departure of the sectional mean
salinities from their asymptotic values.

The salinity stratification characteristic in the central regime makes it possible
for a theoretical treatment to describe the bi-dimensional velocity and salinity fields
generated by external (river discharge and wind), and internal (gradient pressure
and friction) forces. As noted by (Hansen and Rattray, op. cit.), analysis of the
estuarine regime, therefore, constitutes a problem of both forced and free convec-
tion, with the latter influenced by density gradients on the velocity distribution.
Thus, the basic non-tidal circulation associated with, and active in, maintaining the
salinity distribution in estuaries consists of a seaward flow of river water and a
system of currents induced by the density difference between freshwater and
seawater.
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Fig. 11.4 Comparison of the steady-state experimental u-velocity (upper) and salinity (lower)
vertical profiles (thin lines) and the corresponding theoretical results (dashed and bold lines),
calculated with Eqs. (11.45) and (11.84) [adapted from Bernardes (2001) and Bernardes and
Miranda (2001)]
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In the central regime, the following assumptions are made: the estuary has a
laterally homogeneous geometry (width and depth), and the river discharge is
constant and there is a known salinity (S0) at the estuary mouth. The basic partial
differential equations, which formulate the physical-mathematical problem in
relation to the Oxz referential system (Fig. 11.1), in terms of the stream function,
w = w(x, z), and the linear equation of state of seawater, the equation of motion and
the salt conservation equations are:

gb
@S
@x

þ 1
B

@

@z
ðBNz

@3w
@z3

Þ ¼ 0; ð11:90Þ

and

�ð@w
@z

Þð@S
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Þþ ð@w
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Þð@S
@z

Þ ¼ B
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ðKx
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ÞþB
@

@z
ðKz

@S
@z

Þ: ð11:91Þ

The salt conservation equation presents the following differences in relation to
the former formulation (Eq. 11.11): all terms of this equation have the salinity as an
unknown, and the term that formulates the longitudinal salt diffusion (first on the
right hand side) is included.

The boundary conditions that guarantee a unique solution to Eq. (11.90) are: the
wind stress acting on the free surface and maximum bottom friction (non slip
bottom), which are formulated by (11.12) and (11.13), respectively. The net volume
transport is equal to the river discharge (11.18), due to the steady-state hypothesis.
As in the salt conservation Eq. (11.91), the salt fluxes due to advection and tur-
bulent diffusion are included, and the salt balance at the estuary mouth must be null.
With the exception of the surface and bottom boundary conditions which annul the
salt fluxes through these surfaces, it is necessary to impose the following integral
boundary condition:

q
ZH0ðxÞ

0

ð�BSuþBKx
@S
@x

Þdz ¼ 0; ð11:92aÞ

or

ZH0ðxÞ

0

ðS @W
@z

þBKx
@S
@x

Þdz ¼ 0: ð11:92bÞ

In the second integral, it was taken into account that by the current function
definition (11.8), u = −(1/B)∂w/∂z. Then, according the steady-state condition, the
resulting salt transport TS, [TS] = [MT−1], due to the advection and diffusion, must
be null. The sought solutions will portrait the transition from river (S = 0) to the
oceanic conditions, i.e., for ∂S/∂x > 0, and in the classical article of Hansen and
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Rattray (1965), three types of similarity solutions with this property were devel-
oped. The particular conditions required for these solutions indicate relationships
among the external parameters which may be expected to result in particular
velocity and salinity distributions. However, for mathematical simplicity, only the
central regime of an idealized estuary, which has a rectangular cross-section and the
exchange coefficients independent of the depth, will be presented. Further results on
the outer and inner regimes may be found in the Hansen and Rattray’s article.

In the similarity method, solutions for the stream function and salinity fields are
investigated, with the following separation of variables:

wðx, z) ¼ wðZ) ¼ QfWðZÞ; ð11:93Þ

and

Sðn;ZÞ ¼ S0½nmþ S(Z)�; ð11:94Þ

where m is a dimensionless (mixing parameter), Z = z/H0 is the non-dimensional
depth, n = n(x) = Qfx/BH0Kx0 = ufx/Kx0 is the non-dimensional longitudinal dis-
tance, Kx0 is the longitudinal kinematic eddy diffusion coefficient at the estuary
mouth and S0 its mean salinity. As the estuary is laterally homogeneous, S0 is the
mean value in the water column, located at the estuary mouth. Taking into account
these definitions, the stream function and the salinity are now functions of the
dimensional coordinates (z) and (x, z), respectively, because W[Z(z)] = W(z) and S
[n(x), Z(z)] = S(x, z).

As the river discharge, Qf, is taken as constant, the stream function (11.93) is
independent of the longitudinal distance (x). Then, the w-velocity component,
according to its definition in terms of the stream function (Eq. 11.8), is not resolved
by this analytical model, and its influence on the salt conservation Eq. (11.91) is
null.

The linear longitudinal salinity variation in the central regime is assured by the
linear dependence of n = n(x),

@S(x, z)
@x

¼ @S
@n

dn
dx

¼ mS0Qf

BH0Kx0
¼ m

S0uf
Kx0

: ð11:95aÞ

or

ðKx0
@S(x, z)

@x
Þ ¼ mS0uf ; ð11:95bÞ

and the diffusive upstream salt flux (per density unit) at estuary mouth (x = 0) is the
fraction of the mixing parameter (m) of the advective the salt flux advected seaward by
the river flow and is the product of the mean cross-section salinity, S0, and the river
velocity. Solving this equation for the dimensionless mixing parameter (m), we have:
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m ¼ Kx0
@S
@x

ufS0
¼ qKx0

@S
@x

qufS0
¼ Udif

Uadv
: ð11:96aÞ

This result indicates that the mixing parameter, m, is determined by the following
salt flux ratio: the landward salt transport by eddy diffusion to the advective sea-
ward salt transport by the river discharge. To close the salt balance in the central
regime, an advective term related to the up-estuary salt flux due to the gravitational
circulation (Uadv) must be included, and the mixing parameter is defined as:

m ¼ Udif

Udif þUadv
: ð11:96bÞ

From this expression of the mixing parameter, it follows that 0 < m� 1, and
when m = 1, there is no gravitational circulation (Uadv ! 0) and the salt flux ratio
(11.96b) is in balance; otherwise, if m ! 0 the salt transport by diffusion is less
important (Udif 	 Uadv), and the salt flux is mainly due to advection (river dis-
charge and gravitational circulation), and the tidal mixing is very low and may be
disregarded (Hansen and Rattray 1966; Hamilton and Rattray 1978). As we have
seen in the Stratification-circulation Diagram (Chap. 3), for m = 1 and m ! 0
corresponds to estuaries classified as well-mixed and partially mixed, respectively.

The similarity condition in the central regime also needs to satisfy the following
hypothesis: the kinematic eddy viscosity (Nz) and diffusion (Kz) coefficients are
constant, as is the case of the Fisher et al. (1972) analytical model; however, the
kinematic eddy diffusivity, Kx, increases seaward at a rate equivalent to the river
discharge (Hansen and Rattray 1966),

d(KxÞ
dx

¼ Qf

BH0
¼ uf : ð11:97Þ

Introducing the new formulations of the stream function (11.93) and salinity
(11.94) into the Eqs. (11.90) and (11.91), respectively, and taking into account the
last equality (11.97), yields the following dimensionless differential equations:

d4WðZ)
dZ4 þ mRa ¼ 0; ð11:98aÞ

and

d2S(Z)

dZ2 þ m
M

ðdW
dZ

þ 1Þ ¼ 0: ð11:98bÞ
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In these equations, Ra and M, are the dimensionless Rayleigh estuarine number1

and the mixing tidal parameter,2 respectively, which are defined by:

Ra ¼ bgS0H
3
0

NzKx0
; andM ¼ KzKx0B2

Q2
f

¼ KzKx0

H2
0u

2
f

: ð11:99Þ

The Ra number is a measure of how efficiently the salinity (density) generates
gravitational circulation, and M represents the ratio of the tidal mixing to the river
discharge.

The system of differential Eqs. (11.98a) and (11.98b) must be solved in order to
satisfy the following boundary conditions, which may be obtained from the cor-
responding expressions (11.12), (11.13), (11.15), (11.16a, b) and (11.18):

WðZÞjz¼1 ¼ Wð1Þ ¼ 0; and
dW
dZ

jZ¼1 ¼ 0; ð11:100aÞ

WðZÞjz¼0 ¼ Wð0Þ ¼ 1; and
d2W

dZ2 jZ¼0 ¼ TW; ð11:100bÞ

and

d(S(Z))
dZ

jZ¼0 ¼
d(S(Z))
dZ

jZ¼1 ¼ 0: ð11:100cÞ

In the boundary condition (11.100b), the wind stress, Tw is the third dimen-
sionless parameter and is given by: Tw ¼ BH2

0sWx=KzqQf ¼ H0sWx=Azuf .
To complete the boundary conditions of the salt conservation Eq. (11.98b), it is

necessary to use the integral boundary condition (11.92b) in the dimensionless
formulation, taking into account the similarity relations (11.93) and (11.94), and the
expression of the longitudinal salinity gradient, ∂S/∂x = (mS0Qf)/(BH0Kx0),

1This number is an analog of the Rayleigh number, which is used to forecast the convection of
compressible fluids in between plates with different temperatures. This number is proportional to
the cubic power of the distances between the plates and a dimensionless combination of physical
properties such as: density, gravity acceleration, thermal expansion coefficient, viscosity, specific
heat and thermal diffusion.
2M is a non-dimensional number analogue to the ratio G/J defined by Ippen and Harleman (1961),
which introduced the first number used in the estuary classification (see Chap. 3).
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ð11:101Þ

To satisfy the salt conservation, the net salt transport at the estuary mouth
(x = n = 0) must be null, and the equality Kx = Kx0, holds for this position. Then,
the integral boundary condition (11.92b) in terms of the non-dimensional depth is
simplified to:

mþ
Z1

0

½S(Z) dW
dZ

�dZ ¼ 0: ð11:102Þ

The equation of motion (11.98a) may be solved with the same procedure as used
in the non-dimensional Eq. (11.22). Then, by successive integrations, we find the
solution which is equivalent to (11.43). By applying the boundary conditions
(11.100a) and (11.100b), the integration functions a3(X) and a4(X) will be obtained,
yielding the following expression for the stream function (Hansen and Rattray 1965):

WðZÞ ¼ � mRa
48

ð2Z4 � 3Z2 þZ)

þ 1
2
ðZ3 � 3Zþ 2Þ � TW

4
ðZ3 � 2Z2 þZ):

ð11:103Þ

With this analytical expression, which is equivalent to solution (11.43), we can
easily calculate the u-velocity component in the central regime using the rela-
tionship u(Z) = −uf(dW/dZ),

u(Z) ¼ ufmRað0:167Z3 � 0:188Z2 þ 0:0208Þ
þ 1:5ufð�1:0Z2 þ 1Þþ ufTWð0:75Z2 � Zþ 0:25Þ; ð11:104Þ

where TW is the non-dimensional wind stress ðTW ¼ sWx=sW0Þ: This result is
similar to solution (11.45). Comparing these solutions, we may observe that the
dimensionless coefficients mRa and ðgH3

0=Nzufq0Þð@q=@x); are equivalent, per-
forming the same dynamical function (baroclinic pressure gradient) in the gravi-
tational circulation.

Equation (11.104) expresses the steady-state circulation (u-velocity component)
as the sum of three modes: (i) the gravitational-convection mode, associated with
the Rayleigh (Ra) estuarine number; (ii) the river discharge mode; and, (iii) the
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wind-stress mode. If, for example, Ra and TW are null, the u-velocity profile
assumes a parabolic form, which is characteristic of uniform motion and has a
constant eddy viscosity. As mRa increases, the baroclinic pressure gradient asso-
ciated with the density (salinity) field increases and the motion becomes bidirec-
tional for Ra > 30, as illustrated in Fig. 11.5.

The parabolic profile obtained from Eq. (11.104) when mRa = 0 and TW = 0,
shown in Fig. 11.5, has almost the same analytic expression of that obtained from
Eq. (8.86, Chap. 8).

As the stream function, W = W(Z), as a power series of the dimensionless depth,
has already been determined (Eq. 11.103), the salt Eq. (11.98b) only has the
salinity, S = S(Z), as an unknown. Integrating this equation and applying the
boundary condition, (dS/dZ)|Z=0=0, yields the following expression for the vertical
salinity gradient:

dS
dZ

¼ � m
M

ZZ

0

ðdW
dZ

ÞdZ� m
M

ZZ

0

dZþ b5; ð11:105Þ

where b5 is an integration constant. The integration of the first term of the right
hand side of this equation may be completed, and the variable of integration
changes from Z to W and the inferior integration limit becomes 1. Progressing
further with this integration and applying the boundary condition (11.100a), which
states that for Z = 1 ! W(1) = 0, gives:

dS
dZ

¼ � m
M

WðZ)� m
M

Zþ b5: ð11:106Þ

Fig. 11.5 Relative horizontal velocity profiles (u/uf) with sWx = 0, parameterized by the Rayleigh
number multiplied by the mixing parameter (mRa). Observed values (solid dots) are for the River
James estuary (St. 17) (from Hansen and Rattray 1965)
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Applying the boundary conditions (11.100a, b, c), it follows that W(1) = 0,
W(0) = 1 and dS/dZ|Z=1=0, and we find b5 = m/M. Substituting this constant into
expression (11.106) and integrating the result, we find the following solution for the
vertical salinity profile, S = S(Z):

S(Z) ¼ S(0)� m
M

ZZ

0

WðZÞdZþ m
M

ðZ� 1
2
Z2Þþ b6; ð11:107Þ

where S(0) = Ss is the salinity at the surface, and b6 is a new dimensionless inte-
gration constant, which will be calculated with the boundary condition (11.102),
resulting in:
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ð11:108Þ

Completing the integrations and solving to the constant, b6, yields,

b6 ¼ m� S(0)þ m
M
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½
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2
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M

ð�1þ 1
3
Þ: ð11:109Þ

Substituting this expression of the integration constant, b6, into the partial
solution (11.108), we find the solution for the steady-state vertical salinity profile,

S(Z) ¼ mþ m
M

ðZ� 1
2
Þ � 1

2
ðZ2 � 1

3
Þ

�
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WðZÞdZ�dZ;
ð11:110Þ

or, according to the expression (11.94), for S(x, Z) = S[n(x), Z], the final analytical
expression to calculate the steady-state vertical salinity profile, obtained by Hansen
and Rattray (1965), is:

S(x, Z) ¼ S0f1þ mnþ m
M

½ðZ� 1
2
Þ � 1

2
ðZ2 � 1

3
Þ

�
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0
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ð
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0

WðZÞdZÞdZ�g;
ð11:111Þ
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where the integral in the last term on the right hand side of this solution is a constant
value. Analysis of this solution indicates that the vertical salinity profile depends
explicitly on the tidal mixing parameter (M). However, as the stream function
W = W(Z), is dependent on the Rayleigh estuarine number (Ra), this profile
depends simultaneously on these two dimensionless parameters.

The relative salinity profiles, in relation to the salinity at the estuary mouth (S0)
multiplied by the dimensionless ratio M/m, at n = 0 with no wind stress, and
parameterized in the dimensionless product, mRa, are illustrated in Fig. 11.6. The
relative stratification, like the gravitational convection, increases with mRa, but is
also proportional to M/m. Observational steady-state salinity profiles in the James
river estuary (Virginia, USA) indicate good correspondence with the theoretical
profiles for mRa = 750.

The wind forcing influences on the u-velocity component and salinity profiles
were also investigated in the classical articles of Rattray and Hansen (1962) and
Hansen and Rattray (1965). This theoretical study was expanded by Officer (1976,
1977), Prandle (1985), among others, imposing moderate bottom friction, and the
tidal currents are predominantly responsible for the eddy diffusion, but without
other influence in the steady-state circulation.

11.7 Estuary Classification: Stratification-Circulation
Diagram

Applying the integral boundary condition (Eq. 11.102), the mixing parameter (m)
which measures the relative importance of diffusion and advection to the salt fluxes
(Eq. 11.96b), may be correlated with the dimensionless parameters M, Ra and the

Fig. 11.6 Vertical relative salinity profiles (M/m)[(S − S0)/S0] at n = 0 and sWx = 0, parameter-
ized by the Rayleigh number multiplied by the mixing parameter (mRa). Observed values (solid
dots) for the James river estuary (St. 17), with mRa = 750 (from Hansen and Rattray 1965)
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wind stress TW. This correlation may be achieved by finding the positive square
root of the following second degree algebraic equation (Hansen and Rattray 1965):

1680M(1� mÞ ¼ ð32þ 10TW þT2
WÞm

þð76þ 14TWÞRa48 m
2 þ 152

3
ðRa
48

Þ2m3:
ð11:112Þ

In the subsequent article, Hansen and Rattray (1966) used this equation as the
starting point to analytically determine a quantitative method for use in estuary
classification. This method was named the Stratification-circulation Diagram, and
its practical application was presented in Chap. 3. For this purpose, Eq. (11.112) is
simplified, disregarding the wind stress (Tw = 0). As an artifact, the first member of
the equation is multiplied and divided by m, and rearranging its terms yields the
following incomplete second grade equation for the mixing parameter, m:

1680ðM
m
Þm2 þ ½32� 1680ðM

m
Þþ 76ðmRa

48
Þþ 152

3
ðmRa
48

Þ2�m ¼ 0: ð11:113Þ

For practical purposes, considering the parameter m as unknown, this equation
may be expressed as a function of the following dimensionless parameters: the ratio
of the u-velocity at the surface (us) to the fresh water velocity (us/uf), and the ratio of
the salinity at the bottom (Sb) minus the salinity at the surface (Ss), divided by the
mean salinity value in the water column (S), yielding ðSb � SsÞ=S. As previously
presented in Chap. 3, these parameters are the definitions of the circulation and
stratification parameters, respectively. Then, calculating the solution of the u-velocity
component (Eq. 11.104) at the surface (Z = 0), we have the following results:

u(0)
uf

¼ us
uf

¼ 1:5þ 2:08� 10�2mRa ¼ 1:5þ mRa
48

; ð11:114Þ

and

mRa
48

¼ ðus
uf

� 3
2
Þ: ð11:115Þ

In the following step, the vertical salinity profile presented in the Eq. (11.111)
will be solved at the surface (Z = 0) and bottom (Z = 1), and the last two terms on
the right hand side will be integrated in the closed interval [0 – 1], and the results are:

Z0

0

WðZÞdZ ¼ 0; ð11:116aÞ

Z1

0

WðZÞdZ ¼ 3
8
� mRa

320
; ð11:116bÞ

11.7 Estuary Classification: Stratification-Circulation Diagram 419

http://dx.doi.org/10.1007/978-981-10-3041-3_3
http://dx.doi.org/10.1007/978-981-10-3041-3_3


and

Z1

0

½
ZZ

0

WðZÞdZ�dZ ¼ 11
40

� mRa
576

: ð11:116cÞ

Substituting these results into the Eq. (11.111), yields the following values of
the salinity at the surface (Z = 0) and bottom (Z = 1):

S(x, 0)

S
¼ Ss

S
¼ 1þ mn� m

M
ð 7
120

þ mRa
576

Þ; ð11:117Þ

and

S(x, 1)

S
¼ Sb

S
¼ 1þ mn� m

M
ð 1
15

þ mRa
720

Þ: ð11:118Þ

By subtraction of Eqs. (11.117) and (11.118), it follows that the stratification
parameter may be calculated by,

Sb � Ss
S

¼ dS

S
¼ m

M
ð1
8
þ 3:125� 10�3mRa), ð11:119Þ

or

M
m
¼ ðdS

S
Þ�1ð0:125þ 3:125� 10�3mRa): ð11:120Þ

Finally, substituting expressions (11.116a), (11.116b), (11.116c) and (11.120)
into Eq. (11.113) the unknown (m) of this equation may be calculated as a function
of the stratification, dS=S , and circulation, us/uf, parameters. As previously seen,
these parameters may be determined in the estuary region where the central regime
predominates. Although this equation has already been presented and used in the
estuaries classification (Chap. 3), it is presented bellow as a complementary
equation for this topic,

ðdS
S
Þ�1½210þ 252ðus

uf
� 3
2
Þ�m2

þ ½32� ðdS
S
Þ�1ð210þ 252ðus

uf
� 3
2
ÞÞ

þ 76ðus
uf

� 3
2
Þþ 152

3
ðus
uf

� 3
2
Þ2�m ¼ 0:

ð11:121aÞ

This equation indicates the functional relation for the unknown, m,
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m ¼ mðdS
S
;
us
uf
Þ; ð11:121bÞ

which has m = 0 as a trivial solution. However, its solution in the real numeric field
is only possible if the constant, 32, in the third term on the left hand side of the
Eq. (11.121a) is disregarded. With this simplification, for m = 1, when the turbulent
eddy diffusion is predominant to the landward salt transport, the solution is us/
uf = 1.5, and for m ! 0 the advective process is predominant to the seaward salt
flux. Using this solution, Hansen and Rattray (1966) were able to classify estuaries
with correlation of the parameters, (dS=S) and (us/uf), in the
Stratification-circulation Diagram with m (0 < m � 1) as parameter. The graphical
solution of this equation, forming the base of an analytical method of estuary
classification, has already been presented in figures of the Chap. 3, the defined
parametric values enabling four estuary types to be identified, which were closely
checked with observational data of natural estuaries.

11.8 Hansen and Rattray’s Velocity and Salinity Vertical
Profiles: Results and Validation

For practical applications of the vertical u-velocity and salinity profile solutions of
Hansen and Ratttray (1965) (Eqs. 11.104 and 11.111), describing the dynamical
steady-state of the central regime of the mixing zone of estuaries due to the river
discharge, the baroclinic pressure gradient and wind stress are obtained from
derivations of the stream current function, W = W(Z) Eq. (11.103). However, it
should be observed that the theoretical solution, u = u(Z), is only function of the
vertical coordinate (z, or Z); however, the salinity solution, S = S(x, Z) or S = S(x,
z), is also a function of the longitudinal coordinate, x, due to its dependence on the
dimensionless longitudinal coordinate, n = n(x). In these applications, because the
local depth is dependent on the longitudinal position, h = h(x), and the river dis-
charge velocity (uf) must usually be substituted by the vertical mean velocity in
water column (ua) at the transverse section in the longitudinal position x, the
theoretical velocity becomes indirectly dependent on the longitudinal position.
Thus, u = u(x, Z) or u = u(x, z).

In relation to the salinity, the theoretical mean value (S) used in the calculation
the stratification parameter, must be substituted by the corresponding value (Sa),
i.e., the time-mean value at the transverse section. Furthermore, as the velocity is
also dependent on the advective influence of the river velocity, it must be changed
to the corresponding mean value at the section (ua). Then, due to these simplifi-
cations, in practical applications, the analytical expressions of the theoretical
velocity and salinity profiles will be denoted by uc = uc(x, Z) and Sc = Sc(x, Z),
respectively, and their analytical expressions are:
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In these analytical formulae, the vertical Oz axis is oriented in the opposite
direction of the acceleration of gravity, and the dimensionless depth varies from
Z = 0 and Z = −1 at the surface and bottom, respectively. To obtain a detailed
depth discretization, intervals of |DZ| = 0.1 are adequate.

These solutions indicate that others geometric and physical quantities which
must be known are: longitudinal distance, x, the estuary depth, h, the longitudinal
density gradient, ∂q/∂x �Dq/Dx, salinities at the the estuary head, Shead, and
mouth, Smouth, the wind stress, sWx, and the mixing parameter, m, previously
determined by the Stratification-circulation diagram. Taking into account the
hypothesis of Hansen and Rattry’s theory the eddy coefficients Nz, Kz and Kx0, used
in the definitions of the dimensionless quantities n = n(x) and M, and the wind
stress (sWx) are considered free parameters, i.e., they must be conveniently adjusted
to validate theoretical profiles in comparison to those from observational data. It is
known that validation of analytical and numerical models for observational con-
ditions requires a data set of sufficient length to cover variations in tidal cycles, river
discharge and wind conditions.

There are several methods that can be used to establish the relative agreement
between theoretical and experimental results. One of these is the validation method
of the Relative Mean Absolute Error-RMAE (Walstra et al. 2001) and the Skill
proposed by Wilmott (1981) which was further improved by Warner et al. (2005).

The method of the Relative Mean Absolute Error-RMAE is formulated by:

RMAE ¼
V
!

m � V
!

c

���
���

D E

V
!

m

���
���

D E ; ð11:124Þ

where V
!

m and V
!

c are the field measured and the computed velocity vectors,
respectively, and the symbol 〈 〉 indicate time-mean values. This definition has
been particularly applied for comparison of current velocities, but it may also be
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used to scalar properties. A limited and preliminary qualification of the RMAE
ranges of this method indicate a variation between excellent (RMAE < 0.2) and bad
(RMAE > 1.0) validation results.

The Skill method is defined by the following relationship of observed data
(XObs), its time (or space) averaged value ðXObsÞ; and the corresponding theoretical
results (XModel):

Skill ¼ 1�
P jXModel � XObsj2P ðjXModel � XObsj þ jXObs � XObsjÞ2

: ð11:125Þ

According to the definition, the Skill parameter varies between one (1) and zero
(0), indicating a perfect adjustment between calculated and observed values, or a
complete disagreement, respectively. The validation of theroretical results with this
parameter was applied by Andutta et al. (2006), using observational data series over
two tidal cycles to validate the u-velocity component and salinity profiles calculated
with a tridimensional numerical model applied to the Curimatú river estuary (Rio
Grande do Norte, Brazil).

To illustrate a practical exercise to validate the analytical simulation of the
u-velocity component and salinity profiles (Eqs. 11.122 and 11.123), the following
physical quantities, which were calculated from hourly observational data measured
in the Piaçaguera estuarine channel during three semi-diurnal tidal cycles (northern
region of the Santos-São Vicente Estuary, São Paulo, Brazil, Fig. 1.5), whose
time-mean values represent nearly-steady values are listed bellow:

(i) Mean values of velocity (ua � uf). salinity (Sa), and depth (h).
(ii) The mixing parameter, m, obtained from the Stratification-circulation

Diagram.
(iii) Mean salinities at the mouth and head (Smouth, Shead).
(iv) Longitudinal density gradient ∂q/∂x � Dq/Dx, adjusted to the best validated

theoretical result.

Table 11.1 Free parameters
Nz, Kz and KH0 and that
obtained from observational
data (*) used in the theoretical
simulation the steady-state
vertical salinity, Sc = Sc(x, Z),
and the u-velocity component,
uc = uc(x, Z), in the
Piaçaguera channel
(Santos-São Vicente Estuary,
São Paulo)

Free and experimental parameters Numerical values
*uf = ua 0.009 m s−1

*h 11.0 m
*m 0.85
* S ¼ Sa 26.5‰
*Smouth 33.0‰
*Shead 1.0‰
*Lx 20 � 103 m
*x 17 � 103 m

Nz 4.0 � 10−3 m2 s−1

Kz 1.5 � 10−4 m2 s−1

KH0 1.0 � 103 m2 s−1

sWx 2.0 � 10−2 Pa

(According to Miranda et al. 2012)
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Others physical quantities used were the mean depth, estuary length, distance of
the data sampling position to the estuary mouth, wind stress and the free parameters
Nz, Kz and KH0. The numerical values of these quantities are shown in Table 11.1.

Using the time-mean vertical profiles of salinity andthe u-velocity obtained with
the experimental data during three tidal cycles (tick profiles of Fig. 11.7), the
calculate stratification and circulation parameters were SP = 0.07 and CP = 11.4,

Fig. 11.7 Theoretical (dashed line) and observational (tick line) profiles of salinity (upper), and
u-velocity vertical (lower) validated with observational data with the Skill parameter.
Measurements made during three semi-diurnal neap tidal cycles in the Piaçaguera Channel
(Santos-São Vicente Estuary, São Paulo) (according to Miranda et al. 2012)
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respectively, and the estuary was classified as partially mixed and low stratified
(type 2a). The mixing parameter, m = 0.85, associated with these parameters indi-
cate that the diffusion and advection processes were responsible for 85 and 15 % to
the mixing, respectively.

The theoretical vertical profiles of the salinity and the u-velocity component in
comparison to the observational data are presented in the Fig. 11.7. In both profiles
the mean Skill value is 0.96 and 1.0, respectively.

The nearly steady-state salinity stratification and the vertical velocity
shear-stress, observed in these results were forced by the oscillatory motion gen-
erated by the tidal currents during the neap tidal cycle and a small contribution of
the river discharge (�0.01 m s−1); according to Miranda et al. (2012), these cur-
rents were almost the same intensity as those observed during the spring tidal
period. The depth of no-motion at Z = −0.45 (�−5 m) corresponds to a mean value
observed during three semi-diurnal neap-tidal cycles.

11.9 Salinity Intrusion

A steady-state theory on the salinity intrusion length (XC) in salt wedge estuaries
was presented in Chap. 9 (Eq. 9.72), based in classical theories and confirmed by
experimental results. It was shown that this length is directly proportional to the
reduced gravity times the square of the depth at the estuary mouth, and inversely
proportional to the square of the velocity generated by the river discharge.

Due to the great importance on salt intrusion investigations into estuaries,
experiments on these phenomena have been performed since the 1960 decade, in
laboratory experiments at Waterways Experiment Station (WES), Vicksburg, Miss.
(USA), and in the Delft Hydraulics Laboratory (DHL), Delft (Holland). The lab-
oratory results of the maximum and minimum salt intrusions forced by fresh water
discharge, tidal amplitude, mean water depth, roughness, and densities were further
compared with in situ measurements and published in the articles of Ippen and
Harleman (1961) and Rigter (1973).

In the Rigter’s article, experiments in a tidal salinity flume channel (101.5 m
long) are described, taking into account the tidal amplitude induced by sinusoidal
tides, mean-water depth, water input discharge and bottom roughness; the flume has
a vertical scale (1:64) to approximate physical characteristics of Rotterdam
Waterway (Holland). The intrusion length (Li) investigations in these experiments
were supposed to be dependent on eleven physical quantities. Several experiments
were investigated during which some properties were taken as constant, and others
were submitted to controlled variations. A detailed analysis of these experiments,
using the dimensional analysis approach may be found in the Rigter’s original
article.

Further investigations indicated that the following functional equation to cal-
culate the minimum saline intrusion length (Li) in a partially mixed estuary may be
used (Prandle 1985, 2004):
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Li ¼ d
H
k
f
½ðDqq ÞgH]1=2

û
gf

½ðDqq ÞgH]1=2
u

g; ð11:126Þ

where d and k are dimensionless coefficients, H is the channel depth, û is the tidal
velocity and u its mean-depth value. The validity of this equation has been com-
pared with observational data enabling its simplification and the following
expression was suggested:

Li ¼ d1
Dq
q

gH2

kû u
þ d2k: ð11:127Þ

In this equation d1 and d2 are non-dimensional numeric values, k ¼ ðgH)1=2TP

(tidal wave velocity times the tidal period TP), and the second term in the right hand
side (d2k) was introduced to allow for variations in the degree of mixing at the
estuary mouth. A least square fitting procedure was used to determine the constants
d1 and d2 values; in the Rotterdam Water Way the corresponding values were 0.187
and −0.006, respectively. Similar calculations in the WES tank produced values of
d1 = 0.134 and d2 = 0.026. Comparisons of observed and computed values for
intrusions lengths indicated excellent agreement between the in situ results and the
laboratory experiments.

Investigation on the saline intrusion length in an estuary located in the Southern
Brazilian coast (Santa Catarina, Brazil) was published by Döbereiner (1985, quoted
in Schettini (2002)). In this article, the hydraulic and sediment behavior of the
Itajaí-açu river estuary was investigated during low and high river discharges.
A synthesis on the Döbereiner’s results is summarized as follow: for low river
discharge (300 m3 s−1) the saline intrusion length (Li) was located at approximately
18 km landward from the estuary mouth, however, for river’s discharges higher
than 1000 m3 s−1 the salt water was completely removed to the nearshore turbidity
zone (NTZ).

Further studies by Schettini and Truccolo (1999) and Schettini (2002), based on
seasonal observational data of saline intrusion lengths (Li), and the associated river
discharges (Qf), were correlated by the following exponential relationship:

Li ¼ �10:72þ 32:69e�2:17�10�3Qf ;

with the root mean square error estimated in 0.7.

11.10 Secondary Circulation

The hypothesis of a longitudinal circulation laterally uniform should not be gen-
eralized to most natural estuaries, because as a tridimensional system its water
masses are also driven by the flow that is normal to the main along channel flow,
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usually known as secondary circulation. Thus, the composition of the longitudinal
and secondary flow generates along the estuarine channel a complex
tri-dimensional motion similar to a helical lateral flow.

In the decomposition of velocity measurements, it is usually possible to observe
the presence of v-velocity components, although with low intensity. For example,
in the velocity decomposition presented in Table 5.1 (Chap. 5), it is possible to
observe the presence of the secondary flows (v-velocity components).

The occurrence of secondary circulation and the associated transverse mixing
due to turbulent diffusion and advection in estuaries may be generated by the
interaction of the following influences (Pritchard 1956; Dyer 1977; Sumer and
Fischer 1977; Chant 2010):

• Topographic deflection due to natural curvatures along the channel and irreg-
ularities at the bottom and margins;

• Non-uniform lateral and vertical salinity (density) stratification generated by
mixing processes;

• Barotropic and baroclinic pressure gradients;
• Coriolis and centrifuge accelerations.

Formation of fronts may also be observed in estuarine channels, having been
generated by longitudinal and transverse motions. An analysis of these fronts has
been made in terms of density forced motions in laboratory and in situ experiments
by Nunes and Simpson (1985). The occurrence of this phenomenon may be visually
observed because convergence lines frontal zones acts as a filter, gathering organic
and inorganic detritus and debris.

The dynamical balance of the secondary circulation and the relative importance
of its terms in the equation of motion, have been investigated by Pritchard (1956),
Dyer (1973, 1977), Sumer and Fischer, 1977) and Ong et al. (1994) with in situ and
laboratory experiments. Sumer and Fischer (op. cit.), Nunes and Simpson (op. cit.),
Chant (2010) have provided evidence on the secondary circulation in laterally
stratified partially stratified and well-mixed estuaries. Following the theoretical
formulation of Nunes and Simpson (op. cit.) for an analytical solution of the sec-
ondary circulation, it is necessary to formulate some simplifying hypotheses:

• Steady-state bi-dimensional motion in the Oyz plane.
• Cross channel baroclinic pressure gradient force, ∂S/∂y = f(y) and ∂q/∂y = g

(y).
• Transverse density gradient is independent of the depth, ∂/∂z(∂q/∂y) = 0; and
• Uniform longitudinal and transverse sections (centrifugal accelerations are

disregarded).

As in the analytical solutions for calculating steady-state longitudinal circulation,
let us consider an estuary which, by hypothesis, has a constant depth (H0), as
indicated schematically in Fig. 11.8, and a known salinity (density) field. This
figure indicates the reference (Oyz) with the Oz axis origin at the free surface and
oriented in the acceleration gravity ð g!Þ direction, and schematically indicates the
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laterally non-homogeneous density field. Hence, according to the simplifying
hypotheses, the cross-channel baroclinic pressure gradient force is formulated by:

� 1
q
@p
@y

¼ g
@g
@y

� g
q
@q
@y

z: ð11:128Þ

As the transverse density gradient is independent of depth the baroclinic term on
the right hand side of Eq. (11.128) increases linearly with depth.

As the longitudinal motion will not be taken into account in this simple model,
the system of equations to be solved, associated with the linear equation of state of
seawater, q = q0(1 + bS), are expressed by:

g
@g
@y

� g
q
@q
@y

zþNz
@2v
@z2

¼ 0; ð11:129aÞ

@v
@y

þ @w
@z

¼ 0: ð11:129bÞ

The dynamical balance expressed by Eq. (11.129a) does not take into account
the dynamical balance between friction and the Coriolis acceleration, which has
been investigated by Chant (2010). However, according to the latitudinal estuary
position and intensity of the longitudinal and transverse motions, this effect may or
may not be disregarded. Examples of estuaries in which these conditions may be
found are presented in the articles of Dyer (1977) and Ong et al. (1994).

As the geometry of the cross-section, the salinity field and the turbulent kine-
matic eddy viscosity are known, this is a closed hydrodynamic system and the

Fig. 11.8 Transversal section and reference system for an analytical study of the steady-state
secondary circulation in a laterally non-homogeneous estuary
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boundary and integral boundary conditions warrant a unique solution. In the con-
tinuity equation v- and w-velocity components may be expressed in terms of the
current function, W = W(y, z), [W] = [L2T−1], and the velocity components may be
expressed by: v(y, z) ¼ � @w

@z and w(y, z) ¼ @w
@y : Manipulating and rewriting

Eq. (11.129a) in terms of the barotropic and baroclinic pressure gradients, and
using the linear equation of state of seawater, the general solution for the transverse
velocity is:

v(y, z) ¼ � @w
@z

¼ cSy
6

z3 þ agy

2
z2 þC1zþC2; ð11:130Þ

where the notations Sy ¼ @S/@y; gy ¼ @g=@y; and the c and a coefficients are
expressed by c ¼ bg/Nz , and a ¼ �g/Nz , and the integration constants C1 and C2,
with dimensions [C1] = [T−1] and [C2] = [LT−1], must be determined with the
following surface and bottom boundary conditions: wind stress (sWy) and the
maximum friction at the bottom:

qNz
@v
@z

jz¼0 ¼ sWy; ð11:131aÞ

and

vðy; zÞjz¼H0
¼ 0: ð11:131bÞ

Others solutions may be obtained simulating different bottom conditions as, for
example, a moderate (slippery) bottom friction:

qNz
@v
@z

jz¼H0
¼ sBy: ð11:132Þ

Applying the surface and boundary conditions (11.131a), (11.131b) the fol-
lowing values of the integration constants are obtained:

C1 ¼ sWx

qNz
; ð11:133aÞ

and

C2 ¼ � 1
6
cSyH3

0 þ
1
2
agyH

2
0: ð11:133bÞ

Combining these constants with the general solution (11.130) and simplifying
the resulting expression, the solution for the v-velocity component is:
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v(y, z) ¼ 1
6
cSyðz3 � H3

0Þþ
1
2
agyðz2 � H2

0Þþ
sWy

qNz
z, ð11:134aÞ

or in function of the non-dimensional depth Z,

v(y, Z) ¼ H3
0

6
cSyðZ3 � 1Þþ H2

0

2
agyðZ2 � 1Þþ sWyH0

qNz
Z: ð11:134bÞ

This solution isn’t in the most convenient formulation for practical applications,
because it contains the free surface slope (ηy) as an unknown, which may be
calculated with the imposition of an integral boundary condition, that turns the
transversal volume transport to zero:

ZZ
A
v(y, z)dydz ¼ 0; ð11:135aÞ

or

Zb

0

½
ZH0

0

v(y; z)dz]dy ¼ B
ZH0

0

v(y, z)dz ¼ 0; ð11:135bÞ

As the integrand v = v(y, z) is already known (Eq. 11.134a) the integration may
be concluded,

� 1
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cSyH3
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1
3
agyH

3
0 þ

sWy

2Nzq
H0 ¼ 0: ð11:136Þ

Solving this result for the unknown, ηy, and using the expressions a ¼ �g/Nz ,
and c ¼ bg/Nz, we have:

gy ¼
@g
@y

¼ � 3
8
bSyH0 � 3sWy

qgH0
; ð11:137aÞ

or, neglecting the wind stress (sWy = 0),

gy ¼
@g
@y

¼ � 3
8
H0

q0

@q
@y

¼ �0:375
H0

q0

@q
@y

: ð11:137bÞ

This result is similar to the longitudinal component of the free surface slope of
Eq. 10.19 (Chap. 10) with uf = 0 and sWx = 0, and the transverse slope of the free
surface is directly proportional to the corresponding density gradient, but with the
opposite signal (<0), because Ho > 0 and ∂q/∂y > 0. Thus, if ηy is known it may be
substitute into Eq. (11.134a). Simplifying the result and writing the solution in
terms of the non-dimensional depth and the transverse density gradient, it follows
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that the equation to calculate the v-velocity component according to (Nunes and
Simpson 1985) is:

v(y, Z) ¼ gH3
0

Az

@q
@y

ð0:167Z3 � 0:188Z2 þ 0:021Þ: ð11:138Þ

where qoNz = Az. This result indicates that the direction and intensity v-velocity
component is directly dependent on the local depth (H0) and the transverse density
gradient (∂q/∂y), and is inversely proportional to the vertical dynamical eddy
viscosity coefficient. Therefore, transverse intensity variations or orientation
changes in the density gradient may generate convergence or divergence of the
velocity field. When ∂q/∂y > 0, the steady-state free surface slope (Eq. 11.137b) is
negative (∂η/∂y < 0), and velocity of the secondary circulation in the surface is
positive and oriented in the direction of increasing density. If there is a change in
the density gradient (∂q/∂y < 0) at a given depth along the transverse section, the
secondary circulation has its direction inverted.

At the free surface (Z = 0), the solution (11.138) for the v-velocity component is
reduced to:

v(y, 0) ¼ 2:1� 10�2 gH
3
0

Az

@q
@y

: ð11:139Þ

Changes in the transverse density gradient, from ∂q/∂y > 0 to ∂q/∂y < 0 in the
well-mixed Conway estuary (North Wales, Scotch) were successfully used by
Nunes and Simpson (1985) to theoretically explain the visible accumulation of
organic and inorganic matter and debris along axial convergence lines.

The vertical velocity profile of the v-velocity component, calculated with
Eq. (11.138) is presented in Fig. 11.9a to exemplify the bilateral divergence of the
velocity field, and was used to calculate the ascending vertical velocity component
(w < 0). These profiles were calculated for different values of the transverse density
gradient, ∂q/∂y = 2.5 � 10−2 kg m−4 and ∂q/∂y = 1.5 � 10−2 kg m−4, in water
columns separated by a distance of 200 m. For the others quantities, the following
values were used: H0 = 10.0 m, Nz = 1.0 � 10−2 m2 s−1, q0 = 1005.0 kg m−3, and
Az � 10 kg m−1s−1.

Once the transverse vertical velocity profile has been calculated, the profile of
the vertical velocity component w = w(y, Z), generated by the convergence
(divergence) of the v-velocity field, may be calculated using the continuity equation
solved by finite increments,

w(y, Z) ¼ @w
@y

¼ �H0

Z1

0

Dv
Dy

dZ, ð11:140Þ

with the following boundary conditions: w(y, 0) = w(y, 1) = 0. The vertical
velocity profile, w = w(y, Z), calculated by finite increments is presented in
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Figure 11.9b, indicating a flow towards the bottom (w > 0). Comparing the mag-
nitudes of the v- and w-velocity components, we may observe that |w| 	 |v| and
that the highest value of w (5.5 � 10−4 m s−1) is at Z � 0.4.

Let us now apply the general solution (11.130) imposing the moderate bottom
boundary condition (Eq. 11.132) and the no-wind stress (sWx = 0) will remain for
the upper boundary condition. Let us assume, according to Prandle (1985), that the
vertical kinematic eddy viscosity coefficient is given by the relation Nz = kUTHo,
with the non-dimensional coefficient k equal to 2.5 � 10−3. With these boundary
conditions, C1 = 0 and

C2 ¼ 1
3
cSyH3

0 þ
1
2
agyH

2
0: ð11:141Þ

Substituting these values of the integration constants into the general solution
(11.130) and reducing it to the simplest analytical expression, we have the fol-
lowing solution, which is similar to (11.134a):

Fig. 11.9 Steady-state vertical v-velocity profiles (a) and w-velocity profiles (b) calculated with
Eqs. (11.138) and (11.140), respectively, to demonstrate the velocity field divergence (indicated
by the arrows) generating descending motion (w > 0)
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v(y, z) ¼ 1
6
cSyðz3 � 2H3

0Þþ
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2
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0Þ; ð11:142aÞ

or in function of the non-dimensional depth Z,

v(y, Z) ¼ H3
0

6
cSyðZ3 � 2Þþ H2

0

2
agyðZ2 � 1Þ: ð11:142bÞ

As noted previously, this solution isn’t in the most convenient formulation for
practical applications, because it contains the free surface slope (ηy) as an unknown,
which may be calculated with the imposition of the integral boundary condition
(11.135a), and the result is

@g
@y

¼ gy ¼
9
16
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q0
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@y

¼ 0:562
H0

q0

@q
@y

; ð11:143Þ

which is similar to the solution (11.137b), but with a different numeric coefficient.
Substituting this result into Eq. (11.142b), simplifying the result and introducing
the non-dimensional depth (Z = z/H0), an alternative expression to calculate the
transverse vertical velocity profile as a function of the density gradient is

v(y, Z) ¼ gH3
0

Az

@q
@y

ð0:167Z3 � 0:281Z2 þ 0:052Þ; ð11:144aÞ

or using the relation Nz = Az/q0 = kUTH0 (k = 2.5 � 10−3)

v(y, Z) ¼ gH2
0

kUT

1
q0

@q
@y

ð0:167Z3 � 0:281Z2 þ 0:052Þ: ð11:144bÞ

To close the circulation field the w-velocity component generated by the con-
vergence or divergence of the v = v(y, Z) component may be calculated.

Experimental and theoretical investigations of the convergence and divergence
of secondary circulation in well-mixed and laterally homogeneous estuaries may be
found article of Nunes and Simpson (1985).

The simple steady-state analytic model just described, don’t take into account
transverse bottom variations (∂H0/∂y 6¼ 0 or ∂h/∂y 6¼ 0), and has the lateral density
gradients as the main forcing mechanism to drive the secondary circulation and the
related axial convergences. Studies of the non-steady-state analytic model of lateral
flow convergences, arising from the interaction of tidal flow with the estuary
bathymetry are described by Li and Valle-Levinson (1999) and Valle-Levinson
et al. (2000). The models are based on the solution of the depth-averaged, first order
equations for momentum balance, forced by a single-frequency semidiurnal tide at
the estuary mouth. In this model, the energy dissipation is simulated by a linear
friction coefficient, j, with dimension of velocity [j] = [LT−1].
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Considering a channel with straight parallel boundaries, with the Ox axis
extended along the right estuary margin looking into the estuary, and the Oy axis
along the open boundary, and with a laterally variable depth distribution, the
depth-averaged first-order equation for momentum balance is:

@u
@t

¼ �g
@g
@x

� j
h
u: ð11:145aÞ

The second term on the right hand side was introduced to simulate the energy
dissipation by assuming a linear frictional dependence, which is directly and
inversely proportional to the velocity u and depth, h, respectively. To the hydro-
dynamic system closure, the continuity Eq. (7.66a, Chap. 7) is

h
@u
@x

þ @ðvh)
@y

þ @g
@t

¼ 0: ð11:145bÞ

The Equations (11.145a), (11.145b) are formally derived from the Navier-Stokes
equations by integrating these equations over a rectangular cross section, and are
similar to the one-dimensional formulation used by Blumberg (1975) in studies of
the wave propagation in a uniform channel.

For a single-frequency co-oscillating tide the solution for this equation system
can be expressed in terms of the complex exponential number, expressed by (Li and
Valle-Levinson 1999, and Valle-Levinson et al. 2000) as:

u ¼ Ueirt; v ¼ Veirt and g ¼ Aeirt: ð11:146Þ

In these formulations U and V are the complex amplitudes of the longitudinal
and the secondary circulation velocity (m s−1), and A is the amplitude (m) of the
complex tidal elevation, r is the tidal angular frequency (s−1), and i is the imaginary
number unit (

ffiffiffiffiffiffi�i
p

). Substituting (11.146) into (11.145a), (11.145b) yields:

irU ¼ �g
@A
@x

� j
h
U, ð11:147aÞ

and

irAþ h
@U
@x

þ @ðuV)
@y

¼ 0: ð11:147bÞ

Under the assumption that the co-oscillating tidal amplitude is known, and
imposing the following boundary conditions: (i) at the estuary head (x = L) the
velocity is U; and (ii) at the lateral side boundaries (y = 0, D), the velocity
(V) vanishes. Thus, applying these conditions to Eq. (11.147a) yields the solution
for the U-velocity component.
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U ¼ � g
irþ j

h

ð@A
@x

Þ: ð11:148Þ

In this equation, the tidal elevation amplitude (A) may be treated as independent
of the transverse direction (y), as demonstrated by Li (1996); Li and O’Donnell
(1997) and Li et al. (1998). This assumption led to a dramatic simplification of the
problem, and the solution of A may be expressed by (Li and Valle-Levinson 1999):

A ¼ g0
cos½xðx� LÞ�

cosðxLÞ ; ð11:149Þ

where η0 is the tidal amplitude. The longitudinal (U) and transverse (V) velocities
components, and the angular frequency (x) are calculated by,

U ¼ g
irþ j=h

g0x
cosð½xðx� L)]

sin[xðx� L)], ð11:150aÞ

V ¼ �A
h
firyþ

Zy

0

½ ghx2

ðirþ b=h)
�dyg; ð11:150bÞ

and

x2 ¼ irB

� RB
0
ð gh
irþb=hÞdy

: ð11:150cÞ

As pointed out by Li and Valle-Levinson (1999), the transverse velocity (V) is
insensitive to the transverse momentum balance, and may be obtained from the
continuity Eq. (11.145b).

This non-steady-state analytic solution was applied by Li and Valle-Levinson
(1999) and Valle-Levinson et al. (op. cit.) in two transects of the James river estuary
(Virginia, USA), and were compared with observational ADCP measurements. The
analytical model reproduced well the timing and location of the convergences in
agreement with the experimental results. The mechanisms which generates con-
vergences due to the laterally bottom variation, during flood and ebb conditions are
schematically presented in Fig. 11.10.

In addition to the cross-channel the baroclinic pressure gradient force and the
interaction of tidal flow with the estuary bathymetry, a detailed analysis of the
following mechanisms that can drive secondary flows have been presented by
Chant (2010): (i) Ekman forcing characterized by the balance between friction and
the Coriolis acceleration; (ii) flow curvature, which has long been recognized to
drive a helical flow normal to the stream-wise flow; and (iii) diffusive boundary
layers.
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