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Preface

The first manuscript of this book was written in 1984, during the sabbatical year of
Dr. Luiz Bruner de Miranda, as approved by the Oceanographic Institute, São Paulo
University (IOUSP-USP), and financed by the Brazilian fellowship program of the
National Council for the Development of Science and Technology (CNPq). During
that sabbatical, Mr. Miranda worked with Dr. Björn Kjerfve, Belle W. Baruch
Institute of South Carolina University (USA), where he deepened his knowledge on
estuarine dynamics. Since 1986, Dr. Miranda has continuously improved the first
manuscript of this book to incorporate his graduate-level teachings of Kinematics
and Estuarine Dynamics. This book’s first edition (2002) was published in
Portuguese by the São Paulo University’s Editorial Board (Editora da Universidade
de São Paulo (EDUSP)). In 2003, this edition won the first place in the Exact
Science, Technology and Informatics category of the biennial year’s book edition
of the Brazilian Book Chamber (Câmara Brasileira do Livro). Since then, this book
has also been adopted for teaching undergraduate-level students at IOUSP-USP.
The second edition of this book was published in 2012 and, and with Dr. Kjerfve’s
encouragement, an extensively revised and updated English version of this book
was approved by EDUSP.

Estuaries are transitional environments between the continent and the ocean
where rivers empty into the sea, resulting in a measurable dilution of the saltwater.
In natural conditions, estuarine water masses are more productive than rivers and
ocean waters due to its hydrodynamic characteristics which arrest nutrients, sea-
weeds, and plants, thus stimulating the primary and secondary productivities in
these fascinating water bodies.

Investigations of Swedish rivers (Götaelf river) published by F.L. Ekman in
1876, in the Nova Acta Reg. Soc., based on hydrographic and current measure-
ments, indicated that the outflow of river water in the estuary was accompanied by
an inflow of seawater in the lower layers with the circulation continuity provided by
upwelling motions from the bottom water. However, it was only by the middle
of the last century that these ecosystems, very much vulnerable to the human
influence, were more intensively investigated. Ekman’s investigations resulted in
valuable scientific knowledge that contributed to the understanding of how estuaries
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function, which is of fundamental importance to the management of this complex
ecosystem. In physical oceanography, the estuaries investigations are based on
(i) observational experiments in laboratory and in the field; (ii) data interpretation
based on theoretical and semiempirical knowledge; (iii) analytical simulations; and
(iv) numerical modeling.

About 60% of the great cities around the world were founded and have its
development nearby estuaries. However, the estuarine water renewal and depura-
tion of these environments are dependent on the interactions of physical, biologic,
chemical, and geological processes not well known, and the direct and indirect
introduction of substances and energy by the man may reach high concentration
levels, causing the contamination of its waters with harmful influence on the living
resources, danger to the human health, damage to the marine activities and fisheries,
and reduction of its natural attraction.

In the Brazilian coastline with approximately 8500 km, there are thousands of
estuaries, estuarine systems, and coastal lagoons, with extensions of a few kilo-
meters up to hundreds of kilometers, bordered by swamp and mangroves. In the
north of Brazil, we find one of the most spectacular deltaic estuarine systems
formed by the Amazon river and in the south, the Patos lagoon, the biggest in the
South America. The estuarine systems contributed to the development of great and
small Brazilian cities, suffering modifications in its geometry and circulation and,
consequently, in the processes of erosion, transport, and sedimentation, due to
alteration in the hydrographic basin, the water’s natural cycle, and its quality due to
the human’s activities during the last centuries.

Due to the great importance of these coastal environments in the Oceanographic
Institute of the University of São Paulo (IOUSP), and in other Brazilian universities,
there are disciplines, in the undergraduate and graduate levels, related to the
estuarine studies. In this context, the objective of this book is to present twelve
chapters an integrated coverage of the fundamental principles of the physical
oceanography of estuaries based on scientific articles and classical and recent books
written on estuarine physics and interrelated studies. In this book, we also try to
permeate by our experience and expertise which was acquired in the interpretation
of experimental results and publications in these fascinating transitional ecosystems
in the past 60 years.

In Chap. 1, the reader will find the details of the importance of estuaries, its
formation, and its recent geological age. In this chapter, it is also presented classical
concepts and most recent definitions, as well as political actions and laws estab-
lished to the estuaries preservations. In Chap. 2 are described the geomorphologic
conditions and the forces imposed by the river discharge, tidal and density (salinity)
pressure gradients and wind, and its influence on the circulation. In this chapter also
have been introduced some characteristics of the tidal propagation in a uniform
estuarine channel, as well as the velocity associated with this oscillating motion.
Due to the great diversity of the estuaries and the possibility to forecast some
general characteristics of the acting forces, circulation, and mixing processes, in
Chap. 3 are presented the main criteria to estuaries classification taking into account
its genesis, topographic characteristics, and vertical salinity stratification. The
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classical stratification–circulation diagram, the most recent diagrams based on the
Ekman and Kelvin estuarine numbers, and the prognostic estuary classification
based on non-dimensional tidal and freshwater velocities are also presented.

Planning and execution of an oceanographic research in an estuarine environ-
ment are presented in Chap. 4, with the description of the main methods of mea-
surement of hydrographic properties and currents. The methodology applied to
reduce, coordinate, edit, and analyze the experimental data are also presented in this
chapter. The main concepts evolved in the reduction and edition of observational
data to calculate the advective and diffusive flux and transport of properties, which
may also be applied to the concentration of conservative and non-conservative
properties, are presented in Chap. 5.

Studies on the mixing processes in an estuary have the main objective to cal-
culate the classical residence and flushing times of salt and other properties of
concentrations introduced into estuaries. As the freshwater volume may be used, in
the first approximation and steady-state conditions to forecast the longitudinal
salinity variation and flushing times, in Chap. 6 are presented the so-called sim-
plified methods of mixing.

The main concepts related to the momentum, mass, and salt conservation
equations, which are the starting points to formulate the hydrodynamic equations
governing the physical processes in an estuary, are presented in Chaps. 7 and 8.
This formulation initiated with tridimensional equations is reduced to simplified
equations to formulate the two- and one-dimensional analytical methods. Some
applications of integrated formulations of the equations of continuity and motion
are also presented in these chapters.

In Chaps. 9 and 10 are presented steady-state analytical solutions of one- and
two-dimensional of the classical salt wedge and well-mixed estuaries. At the end
of these chapters, solutions of the u-velocity component and salinity vertical pro-
files of these estuaries types are presented.

In Chap. 11, steady-state analytical solutions for one- and two-dimensional
estuaries of the partially mixed type are presented, as well as some classical
solutions to calculate the velocity and salinity profiles and the fundamental concepts
related to the stratification–circulation diagram used in the estuary classification.

As estuaries are three-dimensional and time-dependent, to overcome the sim-
plifications of simple geometry and steady-state formulations to calculate the
estuarine circulation and salinity distributions, numerical models have been
developed. These models integrated numerically at selected grid points spatially
distributed in the system domain and the algebraic expression of governing partial
differential equations using methods of finite difference or finite element in a
curvilinear coordinate system with sigma or non-dimensional vertical coordinates.
The main principles used in the numerical model applications and some results are
presented in Chap. 12.
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Programs in MATLAB® computational environment of the main analytical
equations developed in this book’s chapters, using the Morgan’s SEAWATER
library, may be accessed in the web site of the Laboratory of Coastal and Estuaries
Hydrodynamics, LHiCo (Oceanographic Institute of São Paulo University).

São Paulo, Brazil Luiz Bruner de Miranda
Gold Coast, Australia Fernando Pinheiro Andutta
Sharjah, United Arab Emirates Björn Kjerfve
São Paulo, Brazil Belmiro Mendes de Castro Filho
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Symbols and Dimensions

Arabic Associated with Geometric Characteristics
A(x, t) and A(x) Longitudinal and time variation of a transverse

section area and its steady state [A] = [L2]
A1, A3 and A2, A4 Steady-state areas in the Knudsen theorem [Ai]

= [L2]
Asu Surface area of the estuary [Asu] = [L2]
A and AT Steady-state total areas [A] = [AT] = [L2]
a(x, z) Right estuary margin coordinate [a(x, z)] = [L]
b(x, z) Left estuary margin coordinate [b(x, z)] = [L]
B [B = a(x, z) − b(x, z)] Estuary width [B] = [L]
CLC Coastal boundary limit
CZ Coastal zone
D Estuary depth width [D] = [L] or

non-dimensional vertical scale
g Gravity acceleration (�9.8 m s−2) [g] = [L T−2]
g′ = g(q2 − q1)/q2 Reduce gravity [g′] = [L T−2]
H0 Water column height or depth [H0] = [h] = [L]
H1 Upper layer thickness [H1] = [L]
h(x, y, t) = H0 + η(x, y, t) Local depth time variation [h(x, y, t)] = [L]
H(x, y, t) = h(x, y) + η(x, y, t) Local depth with longitudinal and transverse

bottom variations [H(x, y, t)] = [L]
h(x, t) Local depth time variation [h(x, t)] = [LT-1]
h1(x) and h2(x) Steady-state thicknesses of layers of salt wedge

estuary [h1,2(x)] = [L]
ha; hh i or h xð Þ Steady-state depth value [ha] = [L]
ht(x, t) = h(x, t) − ha Free surface time oscillation [ht] = [LT-1]
L Estuary longitudinal length [L] = [L]
MZ Mixing zone
NTZ Nearshore turbidity zone

xxiii



Oxyz Cartesian reference system: Ox oriented
positively seaward (or land ward), Oy in the
transverse direction, and Oz upward (opposite to
the gravity acceleration) or downward (in the
gravity acceleration direction) with origin
(z = 0) at the free surface or the bottom

TRZ Tidal river zone
V Geometric estuary volume [V] = [L3]
x, y, z Longitudinal, transverse, and vertical coordi-

nates [x, y, z] = [L]
V Geometric estuary volume [V] = [L3]
X = x/L Non-dimensional longitudinal distance
Y = y/L Non-dimensional transverse distance
Z = z/H0) Non-dimensional depth (or sigma coordinate)

Arabic Associated with Physical Properties
a Mean thermal expansion coefficient [a] = [oC−1]

or mixing parameter (dimensionless)
a1(X), a2(X), a3(X), a4(X) Non-dimensional integration variables
Axx = Axy = Ax Turbulent dynamic viscosity coefficients

[Axx = Axy = Ax] = [M L−1 T−1]
Ayx = Ayy = Ay Viscosity turbulent coefficients [Ayx = Ayy = Ay]

= [M L−1 T−1]
Axz = Ayz = Az Viscosity turbulent coefficients [Axz = Ayz = Az]

= [M L−1 T−1]
b1(x), b2(x), b3(x), b4(x), b5, b6 Dimensionless integration variables
2B Dimensionless proportional coefficient
Bc Spectral width band [Bc] = [L]
C Any property concentration [C] = [M M−1] or

[C] = [M L−3]
c or co Wave celerity or of phase velocity of the tidal

wave [c] = [co] = [L T−1]
co = W/Qf Initial concentration of an effluent thrown into a

river [c0] = [M L−3]
c�o ¼ W=Qd Initial concentration of an effluent thrown in the

MZ c�0
� � ¼ ½M L�3�

(cx)d and (cx)u Concentration of any property down and up the
estuary, respectively [cx] = [M L−3] or [cx] = [M
M−1]

CH
n ¼ fHn ; CL

n ¼ fLn Freshwater concentration in high and low tides
(generic segment) [dimensionless]

Co(Co = 1) Freshwater fraction in the estuary head
[dimensionless]
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C1, C2, C3 Integration constants [dimensional or
dimensionless]

CD, CE Shear coefficient (dimensionless)
CP Circulation parameter (dimensionless)
CZ Coastal zone
Cy Chézy coefficient [Cy] = [L1/2 T−1]
CH
n Freshwater concentration with freshwater frac-

tion in a generic segment (dimensionless)
C100 Dimensionless friction coefficient at 1 m from

the bottom
db Pressure unity in decibars (1 db = 10−1 bar = 105

dynes.cm−2) [db] = [M L−1 T−2]
D Magnetic declination [D] = [o], mixing layer

depth [D] = [L] or molecular diffusion coeffi-
cient [M L−1 T−2], of the non-dimensional
vertical length scale

De Salt-wedge thickness scaled by a constant value
and non-dimensional relative salt-wedge intru-
sion scaled by the estuary length [De] = [L]

Di Pipe diameter [Di] = [L]
Dm Longitudinal displacement generated by the tide

[Dm] = [L]
Dt Thickness of the bottom turbulent layer

[Dt] = [L]
dd Current direction [dd] = [o]
ddv Wind direction [ddv] = [o]
Ek Ekman number (dimensionless)
E, Ev Evaporation, potential evapotranspiration

[E] = [L], [Ev] = [L T−1]
EM Tidal excursion [EM] = [L]
e = H/H0 Ratio of the tidal height by the mean depth

(dimensionless)
exp(x) = ex Exponential function (dimensionless)
F Flushing rate, discharge number [F] = [L3 T−1],

or the dimensionless flushing number
FB Internal Froude number (dimensionless)
F1 Flushing rate due to the mixing process

(dimensionless)
Fi Interfacial Froude number (dimensionless)
Fm or c Densimetric Froude number (dimensionless)
FR Flux ratio (dimensionless)
FT Barotropic Froude number (dimensionless)
Fw Mean freshwater concentration in a transversal

section (dimensionless)
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f = f(i, j, k, t) A non-dimensional arbitrary discrete function in
space and time

fni , f
nþ 1
i A mean time discrete value and a forward time

step (dimensionless)
f, fo, f(x, y, z) Freshwater fraction (dimensionless)
f(x, y, z, t) [f]=[LT−1]
fa Sorting frequency [T−1]
f Mean freshwater fraction in the MZ

(dimensionless)
fn Freshwater fraction in a generic segment

(dimensionless)
f0 Coriolis parameter [T−1]
fi Interfacial stress [M L−1 T−2]
∂$/dZ Dimensionless vertical salinity gradient
fx Mean water concentration of freshwater in a

transversal section (dimensionless)
g!, and g Gravity acceleration vector and modulus

[L T−2]
gΔq/q Reduced gravity [LT−2]
G Tidal kinetic energy dissipation tax (per mass)

[L2 T−3] or internal Froude number
(dimensionless)

G/J Stratification parameter (dimensionless)
H(x) Salt-wedge non-dimensional thickness

[H(x) = h2(x)/H0]
Ho Tidal height or mean water depth [L]
H1 Upper layer depth [H1] = [L]
Hm Salt wedge dimensionless thickness at the

estuary mouth
Hmax Maximum tidal height [Hmax] = [L]
hl Logarithmic thickness height [L]
hm Salt-wedge depth at the estuary mouth [L]
I Temperature correction index [oC]
J Potential energy tax gain (per mass) [L2 T−3]
Ke Kelvin number (dimensionless)
K1 Solar diurnal main tidal component [K1] = [L]
K2 Main semidiurnal tidal component [L]
KT Volumetric expansion coefficient [oC L−3]
Kx, Ky, Kz Kinematic eddy diffusion coefficient [L2 T−1]
Kx0 Longitudinal kinematic eddy diffusion coeffi-

cient (in x = 0) [L2 T�1]
k Bed friction coefficient (non-dimensional)

k = 2.5 � 10−3) or k = g/Cy
2

l Wire length [l] = [L]
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L Dimension of length
Llength Theoretical salt-wedge length [L]
LSi Saline intrusion length [L]
ln Neperian logarithmic
M2, S2, N2 Main semidiurnal tidal components [L]
MS Instantaneous advective salt transport [M T−1]
[M] and M Mass dimension and mixing tidal parameter

(dimensionless)
MZ Mixing zone (dimensionless)
m Mass or mass of dissociated salts [M]
n Manning number [L1/6]
N True north [o]
NM Magnetic north [o]
Nb Buoyancy frequency [Nb] = [T−1]
Nf Tidal form number (dimensionless)
Nx = Ax/q and Nz = Az/q Longitudinal and vertical kinematic eddy vis-

cosity coefficient [L2 T−1]
NTZ Nearshore turbid zone (dimensionless)
O1 Solar diurnal main tidal component
P Precipitation height or precipitation tax [L] or

[L T−1] or tidal period [T]
P(x, y, z, t) Generic property in space and time dependent
Pm Wet perimeter [L]
Pn Tidal prism in a generic segment [L3]
Pa (1kPa = 1db) Pressure unity [M L−1 T−2]
P(Z, t) or P(z, t) Instantaneous vertical profile of generic property
P Zj
� �� �

and Pðt) Mean values of a generic property in time and
space

p and pa Pressure and atmospheric pressure [M L−1 T−2]
psu or symbol o/oo Practical salinity unity [M M−1]
Q Volume transport [L3 T−1]
Qd (or �F) Equivalent freshwater transport (or discharge

tax) (non-dimensional)
Qf [or Qt(t)], Q

* and qi Freshwater discharge (or river discharge) [L3

T−1]
Qb or Q1 Volume transport per width [L2 T−1]
Q1 Solar diurnal main tidal component [Q1] = [L]
Q2 Salt wedge volume transport [L3 T−1]
R (R = TQf) River water volume discharged in a tidal cycle

[L3]
R/TP Flux ratio (dimensionless)
Ra Estuarine Rayleigh number (dimensionless)
Rd Deformation radius (dimensionless)
Re Reynolds number (dimensionless)
Ri Richardson number (dimensionless)
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Rie Estuarine Richardson number (dimensionless)
Rig Gradient Richardson number (dimensionless)
RiL Layer Richardson number (dimensionless)
Rt Conductivity ratio (unity in mhos/cm)
RH Hydraulic radius [L]
rn, rn

* Exchanged ratio in a generic segment
(dimensionless)

S, S(x, y, z, t), S(x, y, t), S(x, t)
and S(t)

Salinity (dimensionless)

SA Salinity in the absolute scale (dimensionless)
Sa ¼ S

� �
Steady-state salinity value (dimensionless)

Sn Uniform salinity in a generic segment
(dimensionless)

Sn
H, Sn

L High- and low-tide salinity in generic segment
(dimensionless)

SN
H, SN

L High- and low-tide salinity at the mouth
(dimensionless)

SP Stratification parameter or practical salinity
(dimensionless)

Ss, Sf Steady-state salinity values, at the surface and
bottom (dimensionless)

S0 Salinity in the coast region (not diluted)
(dimensionless)

Ss ¼ Sh i � Sa Baroclinic salinity component (dimensionless)
St ¼ S� Sa Barotropic salinity component (dimensionless)
Sx Longitudinal salinity gradient (∂S/∂x) [L−1]
Sy Transversal salinity gradient (∂S/∂y) [L−1]
S′ Salinity deviation (dimensionless)
S
� � ¼ S Steady-state salinity value in a water column

(dimensionless)
S(t) Time mean salinity variation in the water

column (dimensionless)
S/S0 Dimensionless salinity
Sf�Ss

S
= pe Stratification parameter (dimensionless)

$ = S/So Dimensionless mean salinity in the water
column

(Sn/S0)
H, (Sn/S0)

L Dimensionless relative salinity at high and low
tides

Sq/Fu Proportional ratio of the mixing parameter
(dimensionless)

Sigma-t (or rt) Density anomaly at atmospheric pressure
(dimensionless)

T Temperature (oC or °K), tidal period (T), or time
dimension [T]
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T′ Thermometric reading (oC)
TE Tidal excursion [L]
TPR and Ve Tidal prism [L3]
TV Advective volume transport [L3 T−1]
(TV)L Mean advective volume transport per width

unity [L2 T−1]
TM Advective mass transport [M T−1]
TM Tidal exchange ratio (dimensionless)
TC Net advective transport of any property [Pr/T]
TS Mean advective salt mass transport [M T−1]
t Time [T]
ta Auxiliary thermometer reading [oC]
tq Flushing time—time interval in tidal period unit

(dimensionless)
(tq)n Flushing time in a generic segment [T]
tq
H, tq

L Flushing time at high and low tides [T]
u(x, t) Longitudinal velocity time variation or tidal

induced velocity [L T−1]
û Tidal amplitude [L]
u! = [u, v, w] Velocity vector and components (Ox, Oy, and

Oz, respectively) [L T−1]
u!′ = [u′, v′, w′] Eddy velocity and components (Ox, Oy, and

Oz, respectively) [L T−1]
u Mean velocity in the water column [L T−1]
<u> = ua � uf Steady-state value of the u-velocity component

[L T−1]
uB Bottom velocity [L T−1]
ue Entrainment velocity [L T−1]
uf Freshwater velocity [L T−1]
ug Gravitational circulation intensity [L T−1]
uQ(z) and uW(z) Velocity profile generation of river discharge

and wind [L T−1]
urms Root mean square of velocity (Ox component)

[L T−1]
us = <u> − ua Baroclinic velocity (Ox component) [L T−1]
ut = u − ua Barotropic velocity (Ox component) [L T−1]
ue(x, t) Stationary wave velocity (Ox component) [L

T−1]
uf, uf(x, t) Freshwater velocity and its time variation [L

T−1]
us Velocity at the surface (Ox component) [L T−1]
us/uf Circulation parameter (dimensionless)
u� Friction velocity [L T−1]
u1 and u2 Upper and lower layer velocity in the salt wedge

[L T−1]
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u100, u360 Velocity values at 1.0 and 3.6 m above the
bottom [L T−1]

U Wind intensity in the Ox direction or mean
velocity in a pipe [L T−1]

U0 and UT Tidal velocity amplitude [L T−1]
Ur Reference velocity [LT−1]
UV and VV Ox and Oy wind velocity components, respec-

tively [L T−1]
Us Stokes drift velocity [L T−1]
V Volume [L3]
VM, TP Water volume at high tide (tidal prism) [L3]
V0 Mercury volume in the thermometric bulb at 0 °

C [L3]
Vf Freshwater volume in the mixing zone

(MZ) [L3]
(Vf)n Freshwater volume in a generic segment (n) [L3]
VH

fn;V
L
fn Generic freshwater volume at high and low tides

[L3]
Vn Volume at low tide in a generic segment [L3]
VN Volume at low tide at the estuary mouth [L3]
Xc Salt-wedge length [L]
W Effluent mass transport [M T−1]
We Wedderburn number
z0 Roughness dynamic length (reflecting bottom

roughness) [L]

Greek Associated with Physical Properties
a (a0) Specific volume (reference value) of seawater

[L3/M]
b Coefficient of volume contraction (mean value

�7.0 � 10−4) (dimensionless)
c Rotation angle of the coordinate system [o] or

dimensionless ratio associated with a salt wedge
d Factor of the reduced gravity (dimensionless)
d1, d2 Numeric values (dimensionless)
Δf Surface runoff [L T−1]
Δf/P Runoff ratio (dimensionless)
Δpa Atmospheric pressure variation [M L−1 T−2]
Δt Time interval [T]
Δtm Minimum sampling time interval [T]
ΔT Temperature correction (volumetric expansion)

[o]
Δq Density variation [M L−3]
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ΔqH Density variation along the horizontal distance
[M L−3]

Δη Surface elevation interval [L]
Δx Interval of longitudinal distance [L]
Δz, ΔZ Depth interval, non-dimensional depth interval

[L]
Δf Variation of freshwater volume [L3]
dS/\S[ or dS/S Stratification parameter (dS = Sf − Ss)

(dimensionless)
df/dx, df/dy, df/dz, df/dt Discrete differences in space and time of a

function (dimensionless)
η(t), η(x, t), η(x, y, t), η(x) Tidal oscillation relative to a level surface and

its steady state [L T−1] and [L]
∂η/∂x � dη/dx = ηx Sea surface slope (dimensionless)
∂q/∂x � dq/dx = qx Longitudinal density gradient [M L−4]
∂q/∂y � dq/dy = qy Transverse density gradient [M L−4]
∂S/∂x � dS/dx = Sx Longitudinal salinity gradient [L−1]
∂S/∂y � dS/dy = Sy Transverse salinity gradient [L−1]
ηe Sea surface elevation relative to a level surface

(dimensionless)
ηo Tidal wave amplitude [L]
η1 Upper layer ordinate of surface slope of a salt

wedge [L]
η2 Upper layer ordinate of a salt wedge [L]
h Current velocity direction [o]
# Wind velocity direction [o]
q (q0) Density of estuarine water mass (reference

density) [M L−3]
qar Air density [M L−3]
qη Density at the surface [M L−3]
q Mean density of water column [M L−3]
ΔqH Horizontal density difference in the MZ [M L−3]
ΔqV Vertical density difference in the MZ [M L−3]
ΔSV Vertical salinity difference in the MZ

(dimensionless)
a, a(S, T, p) Specific volume and in situ specific volume

[L3 M−1]
n (n = ufx/Kx0) Dimensionless horizontal distance
k Wave length [L]
j First-order linearized friction coefficient [L T−1]
j = 0.4, j = 2p/k Von Kármán dimensionless and (wave number)

[L−1]
Ua;Ud Advective and diffusive salt flux [M L−2 T−1]
/ or U Phase angle [o]
m½m ¼ Ud=ðUd þUa� Mixing parameter (dimensionless)
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mc Kinematic molecular viscosity coefficient
[L2 T−1]

x (x = 2p/T) Angular frequency [T−1]
X Angular earth velocity modulus [T−1]
rt (or Sigma-t) Density anomaly at atmospheric pressure

[M L−3]
s Shear stress [M L−1 T−2]
sxx, sxy, sxz, syx, syy, syz, szx,
szy, szz

Reynolds shear stress components [M L−1 T−2]

sWx or sW Wind shear stress in the Ox component
[M L−1 T−2]

sBx or so Bottom shear stress [M L−1 T−2]
sW0 Reference value of the wind shear stress

[M L−1 T−2]
sB0 Reference value of the bottom shear stress

[M L−1 T−2]
Tw = sWx/sW0 Dimensionless wind stress
TB = sBx/sB0 Dimensionless bottom shear stress
U First positive arch value of an argument [o]
u Clinometer-measured angle [o]
ua, ud Longitudinal advective and diffusive salt mass

flux [M L−2 T−1]
uV Longitudinal advective volume flux [L1 T−1]
v Anomaly of potential energy [M L2 T−2]
uM Advective flux of mass [M L−2 T−1]
v Dissipative constant, proportional to the inverse

of the wave number [L−1]
W Dimensionless parameter proportional to the

wind velocity
W ¼ W x; zð Þ Two-dimensional current function [L2 T−1]
W ¼ w=Qf Dimensionless current stream function (w is a

tridimensional current function [w] = [L3 T−1]
w = w(x, y) An arbitrary two-dimensional function [L2] or a

dimensionless parameter
f = f(x, t) Used in the place of the u-velocity component

[L T−1]
e Dimensionless normalized error value
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Chapter 1
Introduction to Estuary Studies

1.1 Why to Study Estuaries?

The word estuary is derived from the Latin word aestus which means tide, also the
adjective aestuarium has tidal or abrupt high wave as a meaning, an environment
highly dynamic with changes due to natural forces. This word is generally used to
indicate the place where the river meets the sea, characterizing a coastal river
discharge. It is a transitional ecosystem between the continent and the ocean:
complexity, variability and the human interference are the usual characteristic of all
estuaries. In normal conditions they are biologically more productive than the rivers
and the adjacent ocean, due to their high nutrient concentrations which stimulate
primary production.

Fresh water discharge, incoming sea water from the continental shelf, associated
suspended sediment, and organic and inorganic transport of substances are pro-
cesses that are of great importance to the urban, social and economic development
of the neighborhood of the estuarine regions. Some of these concentrations are used
for the metabolism of marine organisms, and the pollutants which may also be
carried and mixed with the natural substances, and are hazardous to the great variety
of the marine biota and to the health of the populations which use these natural
resources. According to Cronin (1967) it is, therefore, appropriate to identify and
consider the past effects of man on the fundamental processes in estuaries and to
contemplate future beneficial and detrimental influences on these fascinating,
complex and important waters.

The influence of human activities on estuaries was not recognized as important
until the second half of the XIX century. Previously, human impacts were limited to
the outflow of domestic pollutants and, remotely, to the agriculture and farms due to
the increasing discharges of the land sediments into the rivers. Thereafter, there was
a huge expansion near the estuaries of the activities in industrial plants (manu-
facturers of a great diversity of material and substances), in agriculture (with the
utilization of fertilizers and defensives), reservoir constructions (for power plants
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installation), as well as, natural harbors. As a consequence of expanding population
in the cities, and the intensive water intake from river drainage basins, disturbing
the natural equilibrium of estuarine and coastline water masses, there was a great
increase in the human impact the sustainable development of these natural envi-
ronments is put at risk.

The economic activity increase was ultimately associated with the estuaries due
to the following reasons: ideal locations to place harbors and ports; high quantities
of organic matter are produced by their fertility; a convenient inland navigation
route as such, its water masses are periodically renewed under the river and tidal
forcing. As an ecosystem, several vital functions are performed by estuaries, such as
those presented by Ketchum (1983): a natural wildlife (birds, animals and fishes), a
hatching place and nursery environment for several biological communities, and of
fundamental importance as migratory routes for commercial fishes.

One motive for estuarine studies is to understand how this complex system
functions. In the area of Physical Oceanography, experiments are of fundamental
importance, they use these water bodies as a natural laboratory to interpret their
circulation and mixing processes using theoretical and semi-theoretical knowledge.
Small scale physical models may also be used together with analytical and
numerical models. As in others areas of science, experiments and theory are
activities mutually interactive and the results provide the basic knowledge for the
development of the estuarine research.

Besides the scientific motivation, estuaries have a historic and continuing
importance to human activities. Almost 60% of the most populated cities worldwide
lie on or near estuaries, proportionally representing with its dimensions one of the
richest regions of our planet. There is now a growing consciousness of the need to
protect the estuarine environment. Until recently, little thought was given to eco-
logical consequences (Geophysics Study Committee 1977). In Brazil, this pro-
portional value of populated cities near estuaries is almost the same as globally and
the scientific knowledge may be used to solve problems of practical nature, for
instance: impacts related to changes in the hydrographic basin and in the estuary
geometry due to dredging, identification of sedimentation places which represent an
obstacle to the harbor navigation, residence times and effluent dispersal of sub-
stances in its interior, and physical, biological and chemical properties to the
support projects of aquiculture.

As in foreign countries, the reason for the development of Brazilian cities in the
estuaries proximities were: commercial and naval harbor facilities, a natural
capacity for the renewal of the periodic and systematic water masses under tidal
influence, natural communications with mangrove regions, plentiful biological
community, and recreational and economic potentials.

Estuaries have been used as a receptacle of natural substances and wastes of
industrial activities, which may degrade the water quality. An analysis of these
products grouped according to their main sources, were described in detail
according to their menace to human and biologic communities. None of the con-
taminants can be attributed entirely to any one class of activity, but each can be
ascribed to be a major source (Schubel and Pritchard 1972).
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– Pathogenic organisms, organic matter and nutrients: Municipal wastes.
– Pesticides and Herbicides: Agriculture.
– Heavy metal, oil, fresh-tainting, substances, toxic chemicals: Industry, shipping,

from atmosphere, and highways and roads.
– Heat: Power plants.
– Sediments: Agriculture and construction in general

Natural suspended sediment transport in rivers due to the erosion processes in
the hydrographic basin may be increased due to the activities already listed. The
ultimate sedimentation process in an estuary may become a menace to its existence
due to the possibility of an irreversible decrease in the water volume in its interior.
Also, the input of contaminants associated with the sedimentation process may
shorten its geological life and its natural biological health.

Although litter is an item not included in the above-list and is not an indicator of
water quality, it represents a threat to the natural estuarine environment. However,
being a behavioral problem it may be addressed only through environmental edu-
cation, already applied in some countries. For instance, studies by Williams and
Simmons (1997) in England, were carried out to investigate the problem extension
of litter occurrence in beaches, and alarming results were obtained. Hundreds of
plastic bottles, beverage cans and a diversity of variable materials were found on
each kilometer of a beach during summer and winter seasons. Taking into account
these problems, it was evident that further studies are needed at the interface
river/estuary/beach to tackle this problem.

The water mass renewal in an estuary and its capacity to assimilate the
by-products of man’s activities that may lead to degradation of the estuarine
environment, is dependent on the physical, chemical, biological and geological
natural processes, which between them interact in a complex way and are vulner-
able to the water quality. Although high-quality estuarine research programs do
exist, these interactions were not comprehensively studied in an interdisciplinary
way, because most investigations were developed in a specific line and conse-
quently poses a threat to the human health. Therefore, a direct or indirect intro-
duction of substances and energy by man may reach concentration levels so high
that they cause estuary contamination with worse effects to the biota and human
health. These substances may also affect the recreational activities and fisheries, and
the water quality and reduction of its natural attractiveness, which may extend well
beyond the estuary boundaries (Geophysics Study Committee 1977; GESAMEP
1995).

The physical processes common to estuaries are the circulation and the mixing
of water masses with different origins: the fluvial freshwater and the seawater from
the adjacent ocean. The resulting water mass is non-homogeneous and affected by a
range of spatial and time scales: from microscopic to its geometric boundaries, as
well as, time intervals from fractions of seconds to years and centuries.

The processes in estuaries acting on the distribution and variability of physical
properties, the concentration of natural substances (salinity, nutrients, dissolved
oxygen and suspended sediments) and the biological organisms, as well as, the
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local and remote inputs of wastes and pollutants, the research must be conducted on
the basis of multidisciplinary investigations, including its drainage basin and the
adjacent continental shelf, taking into account the interaction of the following main
components (Geophysical Study Committee op. cit.):

– Circulation, transport and mixing of estuarine and coastal water masses.
– Environmental effects on the fauna and flora associated with basic biological

phenomena.
– Erosion, transport and sedimentation.

These components are very interdependent on most estuarine processes.
However, differences may be found between the estuaries or in specific regions of
the estuarine system. The knowledge of these processes must be applied to the
estuary management and decisions to be undertaken, for the best utilization and
survival of local marine species as a natural and productive resource.

This book will focus on the first component which is ultimately related with the
knowledge of the: hydrographic and hydrodynamic characteristic (salinity, tem-
perature, density and circulation), mixing processes (advection and diffusion),
residence times, as well as, the temporal and spatial scales which are important in
focusing on the interdisciplinary characteristic of these environments.

The historic evolution of the ideas of the estuarine circulation related chrono-
logically related with the main results of the Scandinavian and American research
was presented in the article of Beardsley and Boicourt (1981). The first hypotheses
about the bidirectional motions observed in the upper and lower estuarine layers,
and compensation upward motions from below have been set in the pioneer work of
F. L. Ekman in 1876 (quoted in Defant (1961), p. 539) in the analysis of experi-
mental results on the longitudinal salinity distributions at the mouth of the Götaelf
(Sweden) river flowing into a fjord. However, it was only after the Second World
War that interest in the Physical Oceanography of estuaries increased significantly.
This was firstly due to the military necessity and also to the growing concern of the
need to protect the estuarine environment from activities of man.

In the last decades there has been much specialized literature on the investigation
of estuaries. In preparing this book, not only classical books and articles were used,
but also those published with the most recent achievements on the estuarine cir-
culation and mixing processes.

1.2 Origin and Geological Age

With a few exceptions, estuaries were formed in relatively narrow regions between
the sea and continent. They are transitional environments from a very recent geo-
logical epoch (�7 thousand years ago), formed during the last interglacial phe-
nomena eustatic (volume variations of the oceans water), and isostatic (level
changes in Earth crust), and also tectonic processes. Their locations, morphologies
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and lengths are dependent on the sea level, topographic features on the coastline,
river discharges and ice melting. Major/minor alterations were suffered due to the
natural processes of erosion, transport and deposition of sediments, and recently
due to the exploitation of the drainage basins. Eustatic and isostatic sea level
variations are mainly due to:

Eustatic―Mass variations due to the processes of freezing/defrost, and changes in
the volume due to heating/cooling.
Isostatic―Earth’s crust variation due to tectonic processes, geometric changes in
the oceanic basins, and erosion and compaction of non-consolidated earth.

The glacial maximum occurred approximately fifteen or sixteen thousand years
ago, when the sea level was approximately 130 m below the present level. The
level evolution in the last 35 thousand years is shown in the eustatic curve of
Millimann and Emery (1968) (Fig. 1.1). This result was complemented with
samples of the Brazilian continental shelf, dated by the carbon-14 methodology by
Kowsmann et al. (1977). The eustatic variation, affecting the water volume of all
oceans, resulted in the deepest coastline of all continents, and was located
approximately at the continental slope. Furthermore, the pleistocenic sediments
transported during the last regressive event were reworked during a relatively short
time period and transported in suspension by the continental drainage basin and
deposited in the continental shelf and slope.

Due to global climatic changes, the increasing temperature of the Earth, the
progressive defrost of the polar caps has increased the sea level with a ratio esti-
mated at 1 m per century (Fig. 1.1). This last marine transgression (Flandrian
Transgression) commenced about 15 or 17 thousand years ago and about 7 thou-
sand years ago there was a rapid increase in the sea level which was interrupted by
stabilizations around −110 and −60 m depth (Kowsmann et al. 1977). At the end of

Fig. 1.1 Eustatic variation of the sea level in the USA continental shelf, inferred for the last
glacial period (according to Milliman and Emery 1968), complemented with samples collected in
the Brazilian continental shelf analysed by Kowsmann et al. (1977)

1.2 Origin and Geological Age 5



this transgressive event, between 7 and 2 thousand years ago, the sea reached the
approximate current level and the coastal plains and the rivers valleys were slowly
flooded, creating bays, estuaries, straits, inlets, coastal lagoons and inshore waters.

Recent research on sea level oscillations indicates that in the last millennia there
were minor sea level fluctuations, shown in the more detailed eustatic curve of
Fairbridge (1961) showing sea level oscillations of a few meters higher than the
current sea level. This event has also been confirmed on the southeast and southern
Brazilian coast in the investigations of Villwock (1972) and Suguio and Martin
(1978).

Along the coastline of some countries there have been recent changes of sea
level due to secular natural and man-made oscillations of the Earth crust (isostatic),
which may have future implications on estuary life. The Scottish coastline, for
example, is rising at a time rate of 3 mm/year (relative sea-level subsidence of
0.3 m/century), generated by ice melting due to climatic warming. However, the
opposite occurs in the coast of Holland, where a subsidence with a time rate
estimated in 2 mm/year (or 0.2 m/century). The southeast region of England is also
being submitted to a serious overall coastline subsidence due to the simultaneous
occurrence of sea level elevation and the coastline subsidence.

An extreme subsidence has been reported in the Bangkok coastline (Thailand),
mainly due to the removal of subsurface spring water associated with a deltaic
subsidence, representing a relative increase of the sea level at a time rate estimated
as 4.5 m/century. Research on the annual fluctuations of the sea level in New York
(USA) indicates an increase in the relative sea level of approximately
0.25 m/century between 1893 and 1991 (Leathermann et al. 1997).

The temperature of seawater and coastal environments may be regarded as a
measure of the heat content. This physical property has daily, seasonal and secular
variations; the latter is very important to the relative sea level and may be classified
as eustatic because of its relationship with the heat budget of the ocean-atmospheric
system and changes in the hydrologic cycle. In the last hundred years this property
presented an increase of 0.5 °C, mainly due to the increase in the concentration of
gas in the atmosphere (mainly carbon dioxide, methane and freon). These sub-
stances have the ability to absorb infrared radiation from the Earth’s surface, forcing
its reemission causing the warming of the planetary layer and the sea surface. For
the next one hundred years a higher warming increase is expected (between 1.5 and
3.0 °C), then it will be a great influence on the hydrodynamic estuarine behavior
and on other transitional environments and, as a consequence, on the distribution
and productivity of the biological communities.

In the case of a catastrophic increase in the oceans temperature in a short time
period, it is possible to predict great eustatic variations in the sea level. In the
defrost hypothesis of the polar ice cap the sea level will be increased by 30 m (Dyer
1973). In this case, the actual estuaries will be inundated and new estuarine envi-
ronments will be formed in the upper regions of the rivers. The sediment con-
centration of fluvial origin may be less, but due to the coastal erosion a great amount
of sediments may be transported by waves and coastal currents. However, if the
opposite occurs, a decrease of the present sea level may create shallow estuaries
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which, in a short time interval, may be submitted to sediments accretion. In both
cases, there will be geomorphologic and depth changes and, consequently, in the
currents generate by the tidal excursion. Hence, estuaries are coastal environments,
well developed very recent, but in geological time scales their actual conditions
may not last for several centuries from now.

1.3 Definition and Terminology

An estuary definition may be made in several ways and according to the immediate
point of view. However, the definitions must take into account the characteristics
and the essential processes, as well as the context into which the estuary is inserted,
enabling the use of adequate classification criteria (Dyer 1973, 1997). For
oceanographers, engineers, geographers and ecologists, the estuary word is used to
indicate an inner coastal region where the fluvial waters meet the salt water
transported by the tidal currents, extending up-river, as far as the tidal influence
reaches. Due to the inclusion of the tidal river zone in definitions which will be
presented we should mention the pioneer article by the naval official A. Rongel,
published in the Anais Hidrográficos da Marinha do Brasil (Rongel 1943). In this
article, focusing on the tidal wave propagation in estuaries, the superior range of the
tidal influence was defined as the upper reaches of an estuary, later referred the
estuary head. Further, some articles also have included this upper river region, and
the continental shelf which receives the estuarine plume, as an integrated part of the
estuary.

The first definition of an estuary was given by Ketchum (1951), focusing on the
exchanges of fresh and salt water in tidal estuaries, and in this work we find the
definition:

Estuary is a region where river water mixes with, and measurably dilutes, sea water.

The most common definition for an estuary is that of Pritchard (1955); Cameron
and Pritchard (1963) that state of:

An estuary is a semi-enclosed coastal body of water having a free connection with the open
sea and within which sea-water is measurably diluted with fresh water deriving from land
drainage.

An analysis of this definition indicates that the circulation pattern in an estuary is
influenced to a considerable degree by its lateral boundaries, and a fresh water
volume of the river discharge which remains in the mixing zone of the estuary due
to the tidal mixing. Further, being a semi-enclosed coastal feature it limits to some
extent the size of the water bodies under consideration, and the salinity stratification
will also be dependent on the geometry, and must allow an essentially continuous
exchange of water between the estuary and the ocean (Pritchard 1967). In this way,
a detailed understanding of the physical processes occurring in these environments
is difficult to be achieved. As the biological, chemical and geological processes are

1.2 Origin and Geological Age 7



strongly dependent on these forcing and physical variables, interdisciplinary studies
are necessary for a better understanding in the context a coastal environment.

The fresh water discharge effect, which flows constantly from the river, gives
rise to a downstream circulation component at the surface layer, while seawater
dilution due to the mixing with fresh water generates an upstream baroclinic
component which increases towards the bottom. The interaction of several prop-
erties and processes—river discharge, tidal currents, gradient pressure forces,
advection and turbulent diffusion—generates, inside the geometric boundaries of
the estuary, the salinity distribution which is a characteristic of each estuary (Officer
1983).

In the classical definition it is explicit from the measurable dilution of the sea
water by the fresh water from land drainage, the occurrence of the mixing zone
(MZ) and the water budged volume of the water arriving into the estuary due to the
precipitation (P) and the one by the fresh water discharge (Qf), must be higher than
the water volume transferred to the atmosphere due to the evaporation (Ev). Then,
according to the classical definition, the estuary holds the following condition
P + Qf > Ev, and it may be classified as a positive estuary, according to some
authors (e.g. Ketchum 1953). In tropical estuaries the water budget may have the
condition P + Qf < Ev; this environment is usually referred as a negative estuary,
but it may not be classified as an estuary according to the Pritchard’s definition. As
a transitional environment between an estuary and a negative one is P + Qf = Ev, it
is termed as neutral estuary.

The mean horizontal salinity distribution in an estuary is schematically shown in
Fig. 1.2 by isolines with constant salinity values (isohalines), with variations
between 1.0 and 36.0‰ (the salt concentration, in unities of g kg−1, is denoted
symbolically by ‰). This salinity variation shows that the sea water was measur-
ably diluted by the river discharge and a volume parcel of this water was retained in
the estuarine water body, generating the estuarine water mass.

Fig. 1.2 Diagram of an estuary. Isohalines indicate the mean horizontal salinity stratification
between the values S = 1‰ and S = 36‰ in the river vicinity and the coastal region, respectively
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The estuary definition holds for environments with spatial scale much less than,
for instance, the Baltic Sea between the Scandinavian countries and Western
Europe. This sea is characterized by precipitation and fresh water discharge much
higher than evaporation, so its water mass has low salt concentrations (0 < S <
18‰). However, this sea doesn’t fit the estuary definition due to its high spatial
scale and its geometric boundaries form the coast line rather than being a feature of
the coastline (Pritchard 1967). The bays, as the Guanabara Bay in Rio de Janeiro
(Brazil) may, in some seasons, show circulation and mixing processes which have
estuarine characteristics (Bérgamo et al. 2006), however bays are too complex
environments to be classified as estuaries (Kjerfve et al. 1997).

Pritchard’s definition takes into account only the region influenced by the sea-
water or mixing zone, Dionne (1963) suggested the following definition, to con-
template three explicitly sectors of zones along the estuarine domain:

Estuary is an inner coastal region up to the river valley and the limit of the tidal influence,
and generally split into three sectors: (a) Inferior or marine, with a free connection with the
open sea; (b) Medium, subjected to the intense mixing of the sea water and the fresh water
discharge; (c) Upper or fluvial, characterized by fresh water but influenced by tidal
oscillation.

Thus, an estuary may be considered as a system composed of the region where
the seawater dilution occurs (medium zone) up to the river portion subjected to the
tidal oscillation (upper zone with density almost constant), and the inferior or
marine zone near the mouth, and is an extended version of Pritchard’s definition.
The limits between these estuarine zones are variable and dependent of the river
discharge intensity, tidal currents and the wind forcing. Afterwards, in the pre-
sentation of analytical and semi-analytical methods to obtain longitudinal disper-
sion coefficients in estuaries, Harleman (1971) devised the estuary as composed by
two regions: one into which salt intrudes into the estuary (the classical MZ) of
previous definitions, and the river tidal zone (upper and fluvial—the TRZ) as in the
Dionne’s definition.

To take into account aspects related to the estuarine processes of erosion and
sedimentation by the tide, wave and fluvial sources Dalrymple et al. (1992) sug-
gested the following definition:

Estuary is the seaward portion of a drowned valley system which receives sediment from
both fluvial and marine sources and which contains facies influenced by tides, wave and
fluvial processes. The estuary is considered to extend from the landward limit of tidal facies
at his head to the seaward limit of coastal facies at its mouth.

Scientific papers have increased in the last decades in the fields of Physical
Oceanography, Ecology, Hydraulic and Environmental Engineering, focusing on
the solution of pollution problems due to harbor construction, navigation, recre-
ational, fresh water supply, discharges of domestic and industrial wastes, which
may cause ecological impact in the marine environment. The term estuarine zones
has also been used to mean an environmental system consisting of an estuary and
those areas which are consistently influenced or affected by estuarine waters such
as, but not limited to, salt marshes, coastal and intertidal areas, bays, harbors,
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lagoons, channels, inshore and offshore waters. Then, we may recognize that es-
tuarine zone has been introduced to indicate all coastal transitional environments
with higher or lesser influences of the river discharge and tide. As previously said,
estuaries may have different definitions.

A definition by Kjerfve (1987) was proposed to be new, functional and helpful to
those who work with the spectrum of estuaries types, and estuarine systems,
including lagoons, river mouths and deltas.

An estuary is a coastal indentation that has a restrict connection to the ocean and
remains open at least intermittently with the adjacent sea. The estuary can be
subdivided into three regions:

(a) The tidal river zone (TRZ) a fluvial zone characterized by lack of ocean salinity
but subject to tidal rise and fall of sea level.

(b) The mixing zone (MZ) (the estuary proper) characterized by water mass mixing
and existence of strong gradients of physical, chemical and, biotic quantities
reaching from the river tidal zone to the seaward location of a river mouth bar
or ebb-tidal delta.

(c) The nearshore turbid zone (NTZ) in the open ocean between the mixing zone
and the seaward edge of the tidal plume at full ebb tide.

The comparison of this definition with the previous (Dionne 1963) indicates the
following correspondence: zones TRZ and MZ with the upper and medium zone,
respectively. However, this definition differs considerably from those previously
proposed in that it recognizes and includes a near-shore marine component, estu-
arine in character, which should be considered in the treatment of the physical or
chemical dynamics, or ecology, of the estuarine system as a whole. In the interface
of the coastal water and the estuarine water frontal zones and fronts are the lower
and surface interfaces, respectively. The influence of the estuarine plumes in the
biological production is not yet well known, however, there are several examples of
the pollutant concentration increase in these convergent regions (Mann and Lazier
1991).

For a coastal environment as a river subjected to the tidal influence (also named
estuarine channels), the river, mixing and the coastal zones are shown schematically
in Fig. 1.3. This section may be representative of the longitudinal and vertical
steady-state salinity distribution and the bidirectional velocity in the estuary shown
in Fig. 1.2. In the TRZ, the salinity is zero and the motion is unidirectional down
estuary as shown (or up estuary during the flood). The upper tidal limit of this zone
is the region where the tidal current is zero, and is the estuary head. In the MZ there
is a horizontal and vertical salinity changes, because in this region occurs the
dilution of the seawater with the fresh water from the river discharge, and the
isohalines configuration may have a wedge form, named salt-wedge. In the tran-
sitional region between the mixing zone (MZ) and the adjacent coastal region the
estuary entrance or mouth is located; from this region towards the continental shelf
it is possible to observe the near shore turbid zone (NTZ) formed by the river plume
delimited from the oceanic coastal water by the estuary front. In this figure we may
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observe the salinity increase and decrease down and up-estuary on the layers
located above and below the vertical salinity gradients, and the bidirectional mean
circulation is seaward and landward in the surface and bottom layers, respectively.

The boundaries between the zones (TRZ, MZ and NTZ) indicated in Fig. 1.3 are
dynamic, with spatial (longitudinal and lateral) positions and temporal variability
with different time scales (tidal period, seasonal, annual and longer), in order to
reach and equilibrium condition due to the estuary forcing: river discharge, tidal
height, wind and coastal circulation.

Kjerfve (1987) definition takes into account all segments of the estuary, and the
coastal zone during high river discharge may develop salinity stratification similar
to the mixing zone (MZ). Thus, as the NTZ is part of the estuarine system can’t be
investigated separately when an oceanographic or ecologic study is being carried
out. This zone is the oceanic region which is subjected to the highest impact from
the humans and it has a singular effect due to the dynamic influence of the coastal
currents and waves of several periods. The effects of vorticity, wind shear stress
(whose intensity may be higher than the longitudinal gradient pressure force), and
the inner and bottom frictions may also be important, contributing to a higher
contrast of the NTZ physics and the continental shelf. Simple conceptual models of
this zone were developed by Csanady (1977), Garvine (1974, 1975, 1977) just
mentioning only the Garvine’s first investigations on this subject. An up-to-date
review on the dynamics of estuary plumes and fronts may be found in the recent
article of O’Donnell (2010).

Property distributions in the MZ are due to the mixing process of two water
masses with different characteristics: fresh and seawater. According to Garvine
(1977) each one of these water masses must be considered as a reservoir, within
which properties (heat and salt concentrations) vary slowly in time and space, in
comparison with its variations in the estuarine zone (MZ). Off shore there will exist

Fig. 1.3 Longitudinal section of an estuarine system showing: the tidal river (TRZ), the mixing
(MZ) and near-shore turbidity (NTZ) zones. Also are shown characteristics of the vertical salinity
stratification and the mean bidirectional circulation. Qf is the river discharge (Adapted from
Simpson 1997)
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a body of seawater with fairly uniform salinity and temperature which vary
somewhat seasonally which characterizes the NTZ formation. Upstream, at the
estuary head (TRZ) it is also considered as a reservoir of zero salinity, but with
temperature determined by a seasonal time scale related with its variation in the
drainage basin. In the MZ we find only variations of temperature and salinity that
are between the extreme values of these variables.

Due to the dynamical variability of the various estuarine zones (TRZ, MZ and
NTZ) of an estuarine system these zones may not occur simultaneously in extreme
climatic and whether conditions. In the estuaries located in equatorial and dry
regions and forced by moderate tidal heights, the TRZ may not exist in some
periods of the year when P + Qf < Ev. Another extreme condition may occur
during high river discharge, when the MZ may be displaced from the estuary to the
coastal region and during this event the mixing processes of the river and seawater
occurs in the continental shelf (Kjerfve 1987).

The horizontal extent of the influence of the river discharge in the ocean, named
as estuarine or river plume (Garvine and Monk 1974), is dependent on the fresh
water discharge and the coastal circulation. The most spectacular occurrence of this
phenomenon is due to the fresh water discharge of the Amazon river located in the
tropical Brazilian region, which is the highest fresh water source of all oceans. Its
mean discharge, estimated at 1.8 � 105 m3 s−1, is almost 20% of all sources of
continental water discharged in the oceans. The estuarine plume has a high per-
centage of river water, is displaced to the open sea in the NW direction along the
coast and in the open sea, and it is the largest identifiable river plume in the ocean,
with several millions of square kilometers in area within the Tropical Atlantic
Ocean. During the Amazon river flood it is the largest estuarine plume and dom-
inates the continental shelf hydrography of the Amazon Continental Shelf (Curtin
1986; Curtin and Legekis 1986; Geyer et al. 1991). Due to this high river discharge
the MZ is displaced from the estuary to the continental shelf and the mixing of the
river water with the high salinity ocean water occurs in the NTZ (Fig. 1.4a, b). Off
shore of the estuary mouth the vertical salinity structure seems to be an arrested
salt-wedge. In these figures it is possible to observe that the low salinity water
(S < 10‰), usually found in the estuarine inner region (characterizing the MZ), is
located in the inner continental shelf.

The importance of the wind stress of the nearly permanent Trade Winds, the tide,
and the anisotropy of the bottom in the dynamic behavior of the estuarine plume,
and the continental shelf circulation in the Amazon continental shelf was studied by
Fontes (2000), using a tridimensional numerical model.

Interrelated estuarine studies, sampling simultaneously the hydrographic, bio-
logical, chemical and geological characteristics in the zones TRZ, MZ and NTZ, are
not common due to the complicated logistic and the great experimental effort.
However, we find in the Brazilian regional literature the paper by Schettini et al.
(1998), on the analysis of almost simultaneous ecological and oceanographic data
collected in the mixing zone, and the estuarine plume of the Itajaí-Açu river (Santa
Catarina, Brazil). The experiment in these zones was conducted to investigate the
estuarine plume influence in the coastal adjacent region. The results have shown
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that the strong vertical stratification in the inner MZ inhibited the mixing of the
fresh water discharge, with high nutrients concentration, with the salt-wedge water.
Due to this behavior the biogeochemical processes occurred mainly in the

Fig. 1.4 Partial extent of the estuarine plume of the Amazon river shown by the salinity
distribution on the surface (a) and the salt-wedge in the inner continental shelf (b). Experimental
results obtained in February-March, 1990, during the joint project A Multidisciplinary Amazon
Shelf Sediment Study (according to Geyer et al. 1991)
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continental shelf, after the river plume formation, extending its influence up to
almost 10 km off shore of the estuary mouth.

Turbidity plumes of the main estuaries located along the NE/E Brazilian coast
were analyzed for their dispersal patterns of Total Suspended Solids
(TSS) concentration, using Landsat satellite imagery to map the concentrations of
suspended solid particles and its seasonal movements by Oliveira et al. (2012). In
situ sampling data were obtained from various oceanographic campaigns, con-
ducted at the mouth of the rivers between 1994 and 2002. The behavior, dimension
and degree of turbidity of the São Francisco river, during this time period indicated
that estuarine plume have been greatly altered by environmental impacts in the river
hydrological basin, and its turbidity has decreased due to the regulation of river
flow in power plants installations. In contrast, the Doce and Paraíba do Sul rivers
estuarine plumes are still subject to seasonal variations, and showed more turbid
conditions than the São Francisco river. This behavior is because its dams are less
numerous and the natural river flow has been maintained. The São Francisco and
Doce estuarine plumes have the tendency to disperse obliquely along the coast,
while the Paraíba do Sul plumes tend to disperse mainly parallel to the coast,
enhancing near shore TSS retention.

The Caravelas and Peruípe estuarine system, also investigated by Oliveira et al.
(op. cit.) is composed of several meandering channels which are connected to the
ocean by a double inlet system in the north. The Caravelas estuary is tidally
dominated and functions as a trap for inner shelf sediments. However, the Peruípe
river at Nova Viçosa, in the south is forced by a higher river input, and its plume is
restricted to nearshore shallow waters dominated by vertical mixing processes,
producing high concentrations of suspended sediments, mainly in the spring tide
(Schettini and Miranda 2010; Andutta 2011; Schettini et al 2013). During austral
spring and summer, when NE-E winds system prevail, all plumes generally disperse
southward, and northward reversals may occur in winter with the passage of
atmospheric cold fronts. According to Herz (1992) the mangrove vegetation area in
this system is 66.5 km2.

Others definitions were presented, with emphasis in the ecological nature of
these coastal environments, between those we may presente the one by Perillo
(1995):

An estuary is a semi-enclosed coastal body of water that extends to the effective limit of
tidal influence, within which sea water entering from one or more free connections with the
open sea, or any other saline coastal body of water, is significantly diluted with fresh water
derived from land drainage, and can sustain euryhaline biological species from either part
or the whole of their life cycle.

According to the Perillo’s definition, rivers empting into bays or others near-
shore water bodies may also be defined as estuaries. As examples, we may mention
the James river estuary, empting its waters into the Cheasapeake Bay (Virginia,
USA), the Cubatão, Bertioga, Mogi and Piaçaguera Brazilian rivers, discharging its
waters in the upper reachs of the Santos Bay, which may also be classified as
estuaries. Another example is the Paraguaçu river estuary empting into the northern
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region of the Todos os Santos Bay (Bahia, Brazil); the effects of the Pedra do
Cavalo dam in the estuary circulation and stratifiacation was investigated by Genz
(2006).

The definitions along with others by Dionne (1963), Kjerfve (1987), Dalrymple
et al. (1992) and Perillo (1995) have the ability to include all basic marine disci-
plines which are necessary for studying this transitional water body as an ecosys-
tem. There are interchanges between three estuarine domains: the tidal river zone
(TRZ), the mixing zone (MZ) and the nearshore turbid zone (NTZ), which must be
investigated together as a unique transitional system.

As a complement to the definitions already given follows the one by Dyer (1997)
which is an extension of the classical Pritchard’s definition and is possibly con-
venient for the physical oceanographers, this definition emphasizes the mixing and
river zones:

An estuary is a semi-enclosed coastal body of water which has a free connection with the
open sea, extending upriver up to the tidal influence limit, and within which sea water is
measurably diluted with fresh water derive from land drainage.

In a look on the map of a coastal region we observe that the geomorphologic
configuration of an estuary may be more complex than the one presented in
Fig. 1.2. These coastal environments usually were formed by a fluvial net of rivers
discharging its water into several places around the semi-enclose region, including
nearby its mouth, and the estuary is formed by several heads and eventually two or
more mouths interacting with to the coastal ocean. The rivers forming these
environments may have properties distributions and a hydrodynamic behavior like
the one of an estuary, thus forming sub-estuaries systems. Those systems are
referred in the literature as estuarine system in Pritchard’s (1952a) pioneering paper
on the oceanographic characteristics of the complex system of Chesapeake Bay
(Virginia, USA), located in the east coast.

In the papers related to the regional oceanographic estuarine characteristics we
find the terminology system (or complex) estuarine-lagoon, to indicate a coastal
environment composed of several interlinked rivers and channels discharging
through one or several mouths to the coastal region. This terminology has been
widely used in studies of the oceanographic characteristics of the southern, and
southeastern regions of the São Paulo State (Brazil), as the Estuarine-lagoon System
of Cananéia-Iguape (Fig. 1.5), which is dominate by mangroves with an area of
23.5 km2 (Herz 1992). Studies in this system of water properties related to physical,
biological, chemical, ecological processes and material exchange between man-
grove and the continental shelf, have been presented in the articles of Besnard
(1950), Tundisi (1969), Miyao (1977), Tommasi (1979), Miyao et al. (1986),
Tessler (1982), Schaeffer-Novelli et al. (1990) and Tessler and Souza (1998), and
others. The Cananéia-Iguape system has two main mouths in the Cananéia and
Iguape cities, and the Santos-São Vicente-Bertioga system interchanges its waters
with the continental shelf through the Santos Bay and the Bertioga channel
(Fig. 1.5).
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Interconnected to the Estuarine-lagoon System of Cananéia-Iguape is the estu-
arine system of Paranaguá Bay located in a region of least anthropogenic impact,
and the present state of conservation being the result of the regional process of
colonization. A synthesis on the physical, chemical and biotic components of this
system may be found in Lana et al. (2001).

The nomenclature of estuaries and coastal environments will be expanded during
the studies related with its classification (Chap. 3), according to its geomorphologic
characteristics; a short description follows of the coastal and estuarine processes
which exert influence on its dynamical behavior.

In coastal plain estuaries the motions in the tidal river zone (TRZ) are unidi-
rectional up or down river during the flood or ebb tide, respectively, and it is filled
with fluvial water. In the transition between the TRZ and MZ (mixing zone) there is
a region with low or null velocity due to the bidirectional convergent motions. As
the sediment concentration of fluvial or marine origin in this convergent region

Fig. 1.5 The Estuarine-lagoon system of Cananéia-Iguape (Protection Environmental Area -
PEA), the Valo Grande artificial channel, and the Estuarine System of Santos-São
Vicente-Bertioga, in the southern and Southeastern regions of the São Paulo State (Brazil)
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usually is high, it may sink slowly down and thus causing in the bottom zones of
turbidity maximums zones (TM), schematically shown in Fig. 1.6. As the sediment
concentration of fluvial or marine origin in this convergent region is high, it may
sink slowly down and thus originating this zone. Due to the sedimentation process
particles of mineral and organic origin accumulate on the estuary bottom and may
reduce the estuarine channel depth and, in medium and long time scales may
gradually form an obstacle to the navigation and is worst to the estuary environ-
ment. This process, accelerated by river erosion and sediment transport due to the
estuarine circulation promote the sediment arrest in the estuary, prevent and retard
the sediment outflow to the adjacent coastal region. Further details on the marine
sedimentation processes may be found in Postma (1980).

The presence of reefs in the coastal zone off the northeastern Brazilian region
may represent an obstacle to the water interchange between the estuaries and the

Fig. 1.6 Functional estuarine system delimitation. Geomorphologic characteristics and schematic
representation of estuarine processes in the tidal river zone (TRZ), mixing zone (MZ), turbidity
maximum, and nearshore turbidity zone (NTZ)
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continental shelf. The littoral drift generate by the breaking of waves may accu-
mulate sediments in the estuary mouth and coastal lagoons, preventing the water
interchanges between the MZ and the TRZ. The opposite effect, i.e., the erosive
process may also occur at the estuary mouth and thus change its geomorphologic
characteristics. The most energetic components to force these changes are the wind
generated coastal currents and tides, mainly during the atmospheric frontal zones
which may also generate storm surges; the tidal generated circulation has, in
general, its main component of high frequency oriented orthogonally to the coast
(Fig. 1.6).

1.4 Policy and Actions to Estuary Preservation

Until the second half of the XIX century the hydrographic basins feeding fresh
water into the estuaries were subjected to relatively little alterations, and sewerage
from cities being discharged into estuaries was diluted and renewed in these water
bodies almost without serious impacts over these ecosystems. However, with the
population increases in the cities, the agriculture expansion and the industrial
revolution, the harbor workmanship and navigation channels, the quantity and the
diversity of sediments and domestic and industrial sewerage began to increase the
threat in the natural characteristics of the estuaries around the world. The direct and
remote influences of human activities gave rise to the variations with different
degrees of impact on the major environmental degradation in estuaries.

As in others countries, there is today in Brazil an increasing concern to introduce
policy and actions to enable and support the sustainable development of the coastal
regions in general and, particularly, the estuarine systems. The pioneering studies in
the estuaries and coast protection were initiated in the last quarter of the XIX
century, when the Swedish researcher F. L. Ekman performed experiments in the
Götaelf River estuary. In the article by E. Goadoy published in the Nature Magazin,
in 1870 (quoted in Tommasi (1994)), Ekman already foresaw that environmental
impact studies were necessary to the constructions of great navigation channels
(Tommasi 1994).

During decades, estuaries were and continue to be regions of conflict and policy
debates, usually due to industrial and commercial interests. In the USA the legal
question among municipal, state and federal government has always been a con-
troversy question. Only in 1968 was the Protection Decree of Estuaries signed, with
serious limitations in its use and control.

In the following year, 1969, environmental legislation was created in the USA,
aiming to introduce the Environmental Impact Study (EIS) to be applied in January
1, 1970. Later, in 1972, subsequent appeals by the Interior State Department pro-
mulgated the Federal Law of Coastal Zones Control, establishing a planning forum
to the Federal States and demanding that Federal actions in coastal areas were
consistent with the approved State programs. This system has been approved to
solve conflicts related to the maintenance of a health environment and the desired
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development. However, there is a general agreement of the political observers that
the basic problem is that the public support for the system that controls the estuaries
uses is missing.

Several estuarine characteristics that need to be protected don’t affect immedi-
ately its aesthetic aspect, the marine organisms and the public well fair, but eco-
logical studies must be conducted in order to identify in detail the environmental
values to be protected. The most important is to be conscious that estuaries are
environments that must be saved from the environmental degradation (Sewell
1978).

The Environmental Impact Study is considered as a political instrument aimed to
minimize the environmental impact and to reduce its effects to tolerable levels. This
study presents two distinguishable and complementary steps: the diagnostic, when
all positive and negative aspects of the project are considered, and the prognostic
when the structure of the project is made in order to generate the minor possible
numbers of negative environmental and social effects. This system revealed
important benefits to the natural resources uses and identify the social distribution
of the project costs. Further details on the EIS objectives may be found in specific
sources as for instance Tommasi (1994), among others.

The first Environmental Impact Study made in Brazil was the one related to the
effluent toxic throw in the Bahia state elaborated in 1975, using float lines.
A pioneer regulation of the use of the EIS was adopted in Rio de Janeiro State by
means of the Norma Administrativa Ceca-NA-001, in compliment to the 1977
deliberation. However, it was only in August 31, 1981, that the Federal Law,
No. 6.938, established the National Policy for the Environment indicating the
instruments for the Environmental Impact Study (Art. 9o). This law was regulated
by the Decree 88351/83, determining that the EIS be made with basic criteria
established by the National Council for the Environment (NCE) in 1986, by means
of the resolution 001/1986.

In July, 1983, a Sub-Commission of Coastal Administration of the Secretary of
the Inter-Ministerial Commission for the Resources of the Sea (SECIRM) was
designated, with the main attribution to elaborate a project of law for the Coastal
Management. In this context the Coastal Management Program was prepared, under
the coordination by the Sub-Commission, to promote the thematic recognition of
the Brazilian coast, establishing in a great scale the coastal zones to coordinate the
national coastal resources. Aiming to establish systematic work to orientate the
action of the states that integrated the program the SECIRM funded, during the
period of 1984 up to 1987, research activities of the Sectorial Plan for the Sea
Resources of following universities, through its departments and institutes: State
University of Rio de Janeiro (UERJ)―São Paulo State University (USP),
Oceanographic Institute of São Paulo University (IOUSP) and the Geosciences
Institute of the Federal University of Rio de Janeiro (FURJ) (Carvalho and Rizzo
1994).

The policy and actions to the preservation of coastal ecosystems in general and
estuaries, in particular, were asserted by the law no 7661, of May, 18, 1988, who
created the National Plan for the Coastal Management (PNGC), as an integrating
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part of the National Politics for the Sea Resources and the National Policy for the
Environment. Art. 2o of this law established, between other objectives, that its plan
is aimed to orientate the rational utilization of the Coastal Zone, in order to con-
tribute to increase the life quality of the populations and to protect its natural,
historic, ethnic and cultural patrimony.

The activities which generated information on the scope of the PNGC, where
discussed by researchers in specific meetings, including: oceanographic data sam-
pling by remote sensing and simultaneous measurements of physical, biological,
chemical and geological properties, in the water column, ocean bottom and estu-
arine systems (Covre and Calixto 1995; Agra Filho and Viegas 1995).

The Brazilian Federal Constitution, published in October, 1988, presents a
chapter (Chap. 6—The Environment, Title VII—of the Social Order) on the
environment protection, taking into account also the estuaries. Art. 225 (unique) has
the following statement:

All have the right to an environment ecologically equilibrated, as well as, with a common
use by the people and essential to a health life, imposing to the Public Power and to the
collectivity the duty to defend and preserve it to the present and future generations.

To assure this right, according to the insert IV of the first paragraph:

It is a task of the Public Power to demand, according to the law, when the installation of a
workmanship or activity which potentially may cause a meaningful degradation of the
environment, a previous study of the environmental impact.

The importance of this Constitutional Act is related not only to the indication
that the use of the coastal ecosystems must be accomplished in safe conditions to
assure their preservation, but also recognizes their vulnerability and the need for
their preservation for the future generations.

The demand of the Environmental Impact Study is also inserted in the Chap. 4
of the São Paulo State Constitution, which specifies the care that must be taken with
the environment, natural resources and sanitation, including Brazil between the
countries with an advanced environmental legislation.
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Chapter 2
Circulation and Mixing in Estuaries

2.1 Hydrologic Processes: Ocean-Drainage Basin-Estuary

An estuary is a coastal transitional environment between the continental land
masses and the ocean, where the sea water is diluted by fresh water from continental
drainage basin. This environment is forced by local and remote processes generated
by climatic, oceanographic, geological, hydrographic, biological and chemical
events, occurring in the ocean and drainage basin at distances, as far as, thousands
of kilometers away.

The drainage basin is the catchment origin of the river system, which empties
into the estuary, supplying not only water but also sediments, organic and inorganic
substances and eventually pollutants. The fresh water budget of a drainage basin is
dependent on the climatic conditions, soil characteristics, vegetation area and uses
(urban, agriculture and industrial), evaporation and transpiration from surface
water, and its interactions are illustrated in Fig. 2.1, according to Coleman and
Wright (1971). This fresh water budget of a hydrographic basin is only a small
fraction of the global hydrologic cycle, which is defined as the movement and
endless recycling of water between the atmosphere, the land surface, and the
ground.

With human development and occupation of the land adjacent to estuaries
occurring after the second half of the XIX century, the geometry and hydrologic
conditions of the drainage basins of rivers were gradually and drastically altered.
These alterations resulted from the construction of dams, water barriers and
channels (such as the Valo Grande channel in the estuarine- lagoon system of
Cananéia-Iguape—Fig. 1.5), forest destruction, and road and pavement construc-
tion, which interfered deeply in the natural ecological characteristics of these
coastal environments.

Solar radiation is the main energy source in our planet. Its distribution on the
earth’s surface varies according to the geographic latitude and the seasons of the
year. The cloud cover, aerosols and particle concentrations in the atmosphere, also
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influence the solar energy reaching the earth’s and ocean’s surfaces. This energy
flux controls the heat concentration in the oceans and atmosphere. It is the only
energy source that drives the processes of evaporation and transpiration in the
estuary catchment region, and primary production through the photosynthesis of
microscopic organisms (phytoplankton) and zooplankton, which supports the
estuaries feeding chain in the estuaries.

The wind stress forcing promotes the aeration of the estuary surface layers and
the mixing of the estuarine and coastal water masses, and may erode the vertical
salinity gradients, mainly in the estuary’s mouth sheltered from local weather. This
forcing may also generate currents, waves, intensifying the vertical mixing, mainly
in estuaries with large surface area. Characteristics on the induced circulation in the
Potomac river estuary (Virginia, USA), has been investigated in the paper of Elliott
(1978), based on the analysis of meteorological data and current measurements at
three depths. It was shown that the non-tidal currents were responding to two
distinct forcing mechanisms of almost equal importance: the local and non-local
wind effects propagating into the estuary from the Chesapeake Bay.

The precipitation, river discharge and evaporation-transpiration in the estuary
catchment is always positive, i.e., the sum of the fresh-water source (precipitation
and river discharge) is always higher than the sink (evaporation-transpiration). This
is in agreement with the Pritchard (1955) definition, stating that in the estuary the
seawater is measurably diluted by the fresh water discharge. The main factors that
may influence this balance are the temperature and relative air humidity, the wind
direction and intensity, the geomorphology of the catchment region, the soil
characteristics and vegetation (Fig. 2.1).

Fig. 2.1 Local and remote
processes and forces in the
catchments and in the ocean,
which contributes to the
estuaries characteristics and
dynamics (according to
Coleman and Wright 1971)
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The river discharge into the estuary gradually dilutes the sea water due to the
advection and turbulent diffusion, generating the longitudinal salinity (density)
gradient, which are of fundamental importance to the estuary dynamics. The river
discharge (Qf) is physically defined as a volume transport (volume per time unity).
The ratio of the volume transport by any transversal section of the estuary is the
intensity of the mean velocity uf, (distance per time) across the section forced by the
river discharge; these quantities have dimensions of [Qf] = [L3T−1] and
[uf] = [LT−1], respectively. As will be seen later, this quantity is one of the low
frequency components of the estuary seaward motion, and it is the result of the
application of the mass (volume) conservation equation integrated over the estuary
domain.

In most nations, there are governmental entities which are responsible for
monitoring the river discharges of small and large rivers. In medium and high
latitude regions, the snow height accumulated during the winter time is used to
forecast the availability of fresh water; as the snow melts at the end of winter and
during spring, an important volume of fresh water is added to the catchment
regions. In general, the fresh water discharge is monitored with measurements of
the relative height of the river surface (once a day or with continuous sampling),
which are converted to discharge estimates with a calibration equation of the
equipment. In the rivers flowing into the sea, these measurements are made far from
the estuary head or tidal river zone (TRZ), where the motion is unidirectional.
These data are stored in official water and energy management institutions, and may
be easily accessed.

It is desirable that the river discharge (Qf) is considered as known data when
focusing on problems related to estuarine physics, because its long term monitoring
and determination is from the dominion of Hydrology. Because, in general, this
physical quantity is measured for the purpose of controlling the availability of the
fresh water supply for urban communities, industrial plantations and agriculture,
and not specifically for estuarine research.

In Fig. 2.2 is presented schematically a catchment area with river discharge
towards the coastal region occurring through an estuary. Let us assume that this
catchment is composed of several rivers and tributaries with its discharges being
measured at the monitoring stations, indicated by black circles. In this figure, A1 is
the total monitored catchment area and, lets us indicate by qi a generic river dis-
charge of the station i (in this case i = 1, 2, 3 and 4). Then, the river discharge
contribution (Q*) of the monitored area (A1) is calculated by:

Q� ¼
X

i

qi; i ¼ 1; . . .4; ð2:1Þ

which doesn’t take into account the partial catchment area (A2), localized seaward
of the monitoring stations, thus Q* < Qf.

However, as the total river discharge to be calculated is Qf, it is necessary for a
correction to be applied to the partial discharge Q*. In the hypothesis that the
precipitation and evapo-transpiration processes have the same values in both areas
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and are uniform in the total area (A1 + A2) and that the soil characteristics are also
the same, we may estimate a dimensionless correction (c), which is given by:

c ¼ ðA1 þA2Þ
A1

; ð2:2Þ

with c � 1; and c = 1 when A2 ! 0, and the river discharge monitoring stations
are located at the estuary mouth, which is not the case. Then, with these results it
follows that the best value of the river discharge at the estuary head is given by:

Qf ¼ cQ�; ð2:3Þ

where c is a correction factor. From this equation, it follows that if A1 � A2, then
c � 1 and Q* � Qf.

The river discharge input at the estuary head occurs with a delay in relationship
its measurements at the up-river gauging stations. Because gauging stations are
often located further upstream and away from the estuarine zone. In turn, these
measurements also have a delay in relationship to the precipitations at the catch-
ment area, where the processes that determine the water volume of the surface flow
in the river and its tributaries occur; however, in general, these time intervals are
very difficult to calculate and are usually not taken into account. Besides the sea-
sonal time scale dominance in the river discharge (Qf), daily time variations may
also occur due to the abnormal short time precipitations. Then, in order to have
representative values of river discharges for a given experiment, it is advisable to
use daily mean values of a time series measurements.

Fig. 2.2 Schematic diagram
of an estuary catchment area
(A1 + A2) of main rivers and
its tributaries. A1 is the partial
area of the monitored rivers
discharges at the stations
indicated by black dots
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The problem of estimating the river discharge in an estuarine system is illus-
trated for the river system of the catchment area emptying into the Winyah Bay
(33° 15′N), localized in the South Caroline State (USA). Based on monitored river
discharges from the main river and some tributaries, this estuarine system has an
annual mean fresh water discharge of 557 m3 s−1. The fresh water input and low
contributions. Taking into account the monitored main catchment area, (A1), and
the catchment area localized seaward of the monitoring stations (A2), Eq. (2.2) was
used to calculate the correction factor c (c = 2.1). This factor was applied to the
daily discharge values of the tributaries in the area A1 (Eq. 2.3) in order to obtain a
more representative time series of the river discharge into the Winyah Bay
(Fig. 2.3). In this figure it may be observed that the Qf = Qf(t) time series is a
non-stationary quantity, presenting daily and seasonal variability. The following
river discharge regimes were also found in this data analysis:

(i) A moderate river discharge from April to June, varying from 200 to
1000 m3 s−1;

(ii) In the transitional period from June to July, a secondary maximum of
1600 m3 s−1 occurred, which decreased in a few days to reach the lowest
values between August and November (200 m3 s−1);

(iii) As the result of the ice melting at the end of the winter season, the highest
river discharges occurred during February (Qf > 4000 m3 s−1).

River discharges have been monitored for many rivers around the world from the
early 1900s. In Brazil, the National Electricity Agency (ANEEL), trough the
National Water Agency (NWA), is responsible for discharges and water quality
measurements, for most Brazilian states, with exception of the São Paulo state,
whose river discharge measurements are made by the Department of Water and
Electrical Energy (DAEE). In the Jaguaribe river in NE Brazil (Ceará), for example,

Fig. 2.3 Temporal variability of the river discharge into Winyah Bay (South Caroline, USA). Qf

was estimated by the sum of the daily discharges in the catchments of the main tributaries,
extrapolated to the estuary head with the application of the correction factor (Eq. 2.2)
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there are 11 pluviometric stations with 80 years of monitoring, plus 11 river dis-
charges monitoring stations, performing 25 years of continuous data (Lacerda et al.
2002), and the Itajai-açu river (Santa Catarina) has been monitored since 1934
(Schettini 2002). However, it should be noted that major rivers affecting the coastal
zone may have cause environmental problems due to river diversion, damming, and
industrial effluent releases, which affect the river discharge, addition to eutrophi-
cation, pathogen contamination, toxic chemicals, loss of habitat, and declines in fish
and wildlife.

For estuary catchment areas, or any coastal environment (bay, inlet, coastal
lagoon) where rivers discharges have not been monitored, this quantity may be
indirectly estimated using semi-empirical methods. First of all, lets introduce the
definition of surface runoff tax, Df, as the precipitation rate (P) generating a runoff
which discharges into the river; both Df and P are expressed as height per time
[LT−1]. The ratio of these quantities defines the dimensionless surface runoff ratio
(Df/P) as a dimensionless quantity, which must depend on the rainfall itself; when
rainfall is so heavy that evaporation can only remove a small fraction of the annual
water accumulation in the catchment area, the runoff ratio must approach unity
(Df/P ! 1). Conversely, in extreme cases when rainfall is so sparse that evapo-
ration can easily remove the annual water accumulation, the runoff ratio approaches
zero (Df/P ! 0).

The maximum annual evaporation is, of course, strongly dependent on the
intensity of solar radiation. Various functions have been proposed that relate the
runoff ratio (Df/P) to the rainfall, P. The simplest of these functions was introduced
by the German hydrologist P. Schreiber, in 1904 (quoted in Holland 1978), who
found that the runoff ratio for central European rivers was related to the rainfall
(P) by the expression, already adapted for the effect of latitude on the runoff ratio
(Holland, op.cit.):

Df
P

¼ expð�Ev

P
Þ; ð2:4Þ

which states the relationship of the surface runoff ratio and the exponential ratio of
Ev/P (the annual mean potential evapotranspiration rate and the corresponding
precipitation).

The dependence of the first term in Eq. (2.4), on the evaporation rainfall tax, has
already been discussed, and is in agreement with this equation because it decreases
exponentially between the extreme values 0 and 1 when Ev � P and Ev � P,
respectively, and represents the rainfall tax which will effectively take part in the
surface runoff.

Schreiber’s equation (2.4) predicts that the runoff ratio should be latitude
dependent, because the evaporation decreases rapidly due to the low temperatures at
high latitudes, which has been confirmed by Kosoun et al. (1974). Thus, the
exponential decrease of Ev with increasing latitude between the extreme values 0
and 1, for Ev � P and Ev � P, respectively, confirms the physical basis of the
Schreiber’s equation.
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The evapo-transpiration potential (Ev) has an accentuated decrease with tem-
perature towards high latitudes. The runoff ratio’s (Df/P) dependence on latitude
was experimentally obtained with data of representative catchments of Europe,
Asia, Africa, Australia and North and South America, including the Amazon and
São Francisco rivers. Although this dependence indicates a greater scatter at low
latitudes, it was possible to confirm the physical basis of the P. Schreiber equation
(Eq. 2.4) and to establish, with curve fitting procedure, the following equation for
determining Ev as function of the annual mean absolute surface air temperature (T),
according to Holland (1978):

Ev ¼ 1:2� 109 expð� 4:62� 103

T
Þ: ð2:5Þ

In this equation the temperature is expressed as K, and Ev, [Ev] = [LT−1] is
calculated in cm year−1, with satisfactory can be applied in the range from the
Equator to about 70° of latitude (north and south), and thus excluding high latitude
areas. This method only gives representative values when calculated using monthly
or annual mean temperature and precipitation values for long time periods (Kjerfve
1990).

Thus, to estimate the runoff ratio (Df/P), it is necessary to know the mean values
of the surface air temperature (T), the rainfall tax (P), the catchment area (AT), and
the time interval (Dt) used to calculate the mean values of Ev and P. Then, the river
discharge may be obtained with the following equation:

Qf ¼
Df
P
ðPATÞ ¼ DfAT: ð2:6Þ

We can observe in this equation that the river discharge, calculated by the
product of the precipitation tax by the catchment area (PAT), is corrected by the
runoff ratio (Df/P). The result this equation to calculate the river discharge Qf is in
unities of cm3 year−1, according to the units indicated above. However, using a
convenient conversion factor, it is possible to calculate the river discharge in the
International System of Units (m3 s−1).

In order to exemplify this method, the following data of the catchment area and
meteorological data of the Santee river (South Caroline, USA) is used:
AT = 41 � 103 km2 = 41 � 109 m2, T = 20 °C = 293 K and P = 1.25 m year−1.
Applying Eqs. (2.5) and (2.6), it follows: Ev = 170 cm ano−1 and Df/P = 0.25, and
in Eq. (2.6) the final result is: Qf = 1.28 � 1010 m3 ano−1 � 406 m3 s−1; this
value is about 25% lower than the mean river discharge based on river measure-
ments previously indicated (557 m3 s−1).

As already indicated, the factor 1.2 � 109 of the exponential function in
Eq. (2.5) was adjusted for the runoff ratio Df/P to be calculated with Eq. (2.4) in
units of cm3 year−1. However, with monthly mean values of a long time series of
air temperature, it is possible to obtain the monthly and the seasonal variation of the
river discharge in an estuary (or in any other coastal environment). In this case, it is
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easily to shown that to calculate Ev in mm monthly−1, the factor must be altered to
1.0 � 109.

This method has been applied by Medeiros and Kjerfve (1993) to calculate the
seasonal variation of the river discharge into the tropical estuarine system of the
Itamaracá (Pernambuco, Brazil—07° 50′S; 034° 50′W) during the peak rainy
(57.7 m3 s−1) and dry seasons (0.2 m3 s−1). With these results, it was possible to
conclude that the freshwater input variation dominates the system behavior. During
the rainy season the system is partially mixed, and gravitational circulation prevails;
however, in the dry season the estuary becomes well-mixed due to the low fresh-
water discharge. Normalized data of air temperature and precipitation time series of
several years, from meteorological stations representative to the Saquarema and
Araruama coastal lagoons, Guanabara bay (Rio de Janeiro, Brazil) and for the
estuarine-lagoon system of Cananéia-Iguape (Fig. 1.5), were also used to estimate
the freshwater discharges in these systems (Schettini 1994; Kjerfve et al. 1996,
1997; and Bonetti and Miranda 1997).

When the catchment area extends over large areas, the results of the fresh water
discharge will be more representative, if mean data values of air temperature and
rainfall in the subareas of the catchment are known, enabling calculation of partial
results. Applying the procedure presented above, the sum of these partial results
will be the total freshwater discharge into the system.

Equilibrium conditions between the freshwater input in the estuary head and the
outflow to the adjacent coastal region remains, in general, under nearly steady-state
conditions. In this condition, the resulting time mean volume transport during
several tidal cycles, across transversal sections located in the estuary head and
mouth, will have almost the same value. The evaporation, precipitation, spring
water and percolation at the bottom processes, usually have a small contribution to
the freshwater balance in the estuarine system.

Besides the secular influence of the air temperature over the hydrologic cycle in
the last one hundred years, abnormal events of dry weather and flooding related to
the anomalies of the sea surface temperature (SST) have also occurred, with
intervals varying from one to seven years.

The more catastrophic dry climate that remained for 83 days occurred in the
USA in 1986. This was correlated with high sea surface temperatures (>32 °C) in
the North Atlantic, whose influence on the hydrologic cycle caused a reduction by
almost 50% on the rivers discharges. Besides the social and economic problem, this
dry climate also produced an increase in the salinity of the estuarine water masses
with the following consequences to the biological community:

• Great mortality of fishes and crustacean community.
• Reduction of larvae recruitment.
• Turbidity increase in the water mass during the recovery of the normal hydro-

logic cycle, with great impact on biological and algae production.

The SST increase also creates favorable conditions to the occurrence of violent
storms and hurricanes in tropical and subtropical regions. These transient events,
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reaching coastal environments, are usually strong enough to produce impacts with
alterations in the sea level, coastal and estuarine circulation, biological, chemical
and erosive processes. Then, we may propose the following questions of funda-
mental ecological importance:

• What will be the biological and physical alterations in the estuaries, due to the
climatic transient changes, and due to long time periods (decades, centuries and
millennia)?

• When will there be an occurrence of changes in the coastal region?
• How to grant and maintain the sustainability of the estuary development due to

the natural and human alterations?

2.2 Temporal and Spatial Scales of Sea-Level Variations

The formation history and localization of estuaries were dependent on the secular
variations of the relative sea level which occurred during the Holocene sea level
transgression (Fig. 1.1, Chap. 1). After reaching the current sea level, its variation
on time scales of seconds (wind waves), hours (astronomic tidal waves), days
(waves generated by meteorological forcing), months (vortices and meanders of
oceanic currents), annual (seasonal variations in the ocean-atmosphere processes
and steric level variations), inter-annual and decadal (climatic interactions generated
by global processes as El Niño), started to exert influences with different intensities
on the hydrodynamic behavior of estuaries.

The time scales, characterizing the estuarine variability can be described as being
either intratidal or subtidal (Jay 2010):

(a) Intratidal—variability which occurs at semidiurnal or diurnal tidal frequencies
>1 cycle/day (periods of 12–25 h), or shorter time periods (Fig. 2.4a, b), and
their overtides driven by non-linear processes occurring at sums or multiples
of the basic astronomical frequencies, are the most obvious examples of
intratidal variability. Also classified in this category are (i) the variations of
scalar properties (e.g., salinity, temperature and density) driven directly by
tidal currents; (ii) the effects of daily sea breeze, harbor seiches with periods of
minutes to hours; (iii) internal waves; and (iv) in large estuaries inertial motion
at the local pendulum frequency (periods of 12–20 h at mid-latitudes).

(b) Subtidal—variability at frequency of <1 cycle/day. In this category are
included low-frequency tidal motions as the fortnightly and monthly tidal
modulation of the M2 and S2 tidal components—periods of 13–15 days, and
M2 and N2—periods of 28–30 days, and variability related with weather
systems with typical periods 3–10 days (Fig. 2.4c), or even at longer time
periods, such as seasonal in response to the changes in the river discharge and
snow melting events (Fig. 2.4d).
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(c) Motions that do not vary in time and space are classified as steady-state and
uniform, respectively.

Wind waves generally have a greater influence over the mixing processes in
shallow estuaries with large surface area. In some estuarine systems, this influence
is more accentuated at the estuary mouth, which is the region more intensively
forced by these waves remotely generated on the continental shelf and the open
ocean.

The astronomic tide forcing is dominant in generating motions (turbulent and
circulation, in low scale large scale, respectively), producing mixing of the fresh-
water and salt water, thus evolving the processes of advection and diffusion, which
vary spatially and are also influenced by the estuary geometry. In relation to this
forcing, it is necessary to distinguish between the tidal oscillation and tidal
co-oscillation. It is known that the tidal phenomenon is generated by the gravita-
tional attraction of the Moon and the Sun, associated with centripetal acceleration,
acting directly in the great ocean water masses. The action of this gravitational

Fig. 2.4 Time and height variations of the sea level. Intratidal (a, b); wind waves (or gravity
waves) and tidal waves and, subtidal (c, d); synoptic wind waves and seasonal oscillations
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phenomenon on the estuarine water masses is negligible. However, the global tide
generation in the ocean propagates towards the continental shelf in different types of
waves (Kelvin, Poincaré and gravity long waves), being one of the main generating
motions and mixing processes in the estuaries; their influence propagates up and
down estuary as a long wave of gravity. The tidal forcing in the estuary, which has
the same period as the oceanic tide is denominated as co-oscillation tide (Defant
1960).

The origins of the sub-tidal fortnightly modulation are not as simple as the
equilibrium tidal theory implies, and to understand them requires knowledge of
both equilibrium and dynamic tidal theory, and the inter-relationships with the tidal
constituents: synoptically driven neap-spring cycles occurs, when the M2 and S2
tidal constituents dominate the tides, and tropically driven neap-spring cycles
occurs when the tidal constituents O1 and K1 are prevalent (Kvale 2006). In this low
frequency band there is also a distinctive separation between its spectral charac-
teristics. With periods of days and weeks we may observe the random occurrence of
continental shelf waves. These topographic waves are generated by the oscillation
in the synoptic scale of the wind component parallel to the coast (Gill and
Schumann 1979). Also, within this time scale the sea level may respond in phase to
the wind components (mainly parallel to the coast) and to the atmospheric pressure
oscillations generating wind storms. Since the sea surface responds as an inverted
barometer to the atmospheric pressure, these oscillations are also able to rise up or
lower the sea surface level by about one centimeter for each decrease or increase of
one millibar in the atmospheric pressure, respectively.

Meanders and vortices of oceanic currents may propagate through the conti-
nental shelf, reaching the coastline. The typical temporal scale of this process is
about one month, having the same signature of the up and down elevation of the sea
level, considering these to be anti-cyclonic and cyclonic, respectively. However, the
possibility of influence of these phenomena in the estuaries is restricted to narrow
continental shelves with abrupt topography. Seasonal meteorological processes,
such as the predominant wind direction or atmospheric pressure fields over the
continental shelf, may also be the forcing of the annual oscillations of the sea level
at the estuaries mouth.

At larger time scales, such as several years, climatic global processes such as the
El-Niño-Southern Oscillation may influence the sea surface height along the coastline
where its intensity may be stronger and with longer duration. The typical El-Niño
influence, for example, is characterized by the upwelling interruption usually present
along a great extension of the Equatorial South America west coast, mainly Peru. It is
known that the upwelling occurrence is only possible when the sea level at the
coastline remains lower than the mean sea level (from approximately 0.01 to 0.1 m).
Thus, during the time occurrence of this global phenomenon which may last for
severalmonths the sea level in the Peru coast and, consequently, at the estuariesmouth
will remain lower or higher than in normal conditions, with influences on the physical
and ecological characteristics of these transitional water bodies.

However, although this large temporal time scale of the sea level oscillation and
with simultaneous high frequency oscillations, the hydrodynamics characteristics of
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estuaries are mainly controlled by the semi-diurnal and diurnal tidal oscillations.
The differences in magnitude and duration between ebb and flood currents, pro-
duced by the distortion of the tide wave propagating on the costal shelf and entering
bays and estuaries, are named tidal asymmetry.

The oceanic tide was one of the first oceanographic phenomena theoretically
studied. Using Newtonian concepts of Mechanics, the equilibrium tidal theory was
developed in the pioneering scientific work of Daniel Bernoulli, in 1740. The main
components of the tidal oscillation were calculated by P.S. Laplace, in 1775. In
subsequent work, the tide effect was subdivided into oceanic and shallow water
tides, with contributions from several notable researchers, for example, those
mentioned in the von Arx (1962) book. However, even with the work of these
researchers and attempts to find the tidal heights in real time using the solutions of
the Laplace equations, the problem of how to compute the theoretical tide forecast
from its basic principles remained to be solved. The previson of tidal heights needs
experimental data from sea level height measurements in coastal and open ocean
tidal stations.

Over the continental shelf, the tide wave is transported by a complex set of
waves influenced by the Earth’s rotation. This transport is highly dependent on the
width and bottom topography on the continental shelf. In continental shelves with
wide width (order of 105 m), the tide co-oscillates with the adjacent deep ocean,
which may present amplifications during its propagation from the continental shelf
break up to the coastline. Poincaré waves predominate in the energy transport
across the continental shelf. However, in narrow continental shelves the tidal wave
is usually a propagate wave; along the coastline it propagates as Kelvin and
Poincaré waves. In general, however, the tidal wave propagation on the continental
shelf is a combination of co-oscillation and propagation and the influence of these
characteristics on estuarine processes are not well understood. Upon entering an
estuary, the water depth becomes shallow and the tidal wave is observed to become
more asymmetric as it travels upstream. The explanation for this increasing
asymmetry lies in the fact that friction causes the wave to travel at a speed (celerity
—Eq. 2.20) governed by the water depth.

The height of the tidal wave (Ho) is defined as the difference in the elevation
between the highest level (crest) and lowest level (trough), indicated by HW and
LW (Fig. 2.5). The distance between two consecutive crests and lows is the wave
length (k) and the time interval of the propagation of these events (tidal cycle) one
or two times per day is the tidal period (TP). The tidal height varies periodically
according to the gravitational intensity, and the time interval of these cycles is
approximately equal to 12.4 and 25.0 h (semi-diurnal or diurnal, respectively). The
highest (higher HW) and lowest (lower LW) tidal wave amplitude occurs when the
Earth, Sun and the Moon are aligned or in quarter, respectively (Fig. 2.5).

The tidal amplitude (η0) is the difference between the crest level (or high water)
and the mean sea level, equal to the half of the height (η0 = Ho/2). The tidal height
in the open sea is usually less than one meter. However, in crossing the continental
shelf, or in semi-closed coastal regions, such as bays, inlets and estuaries, there will
be amplification of the tidal height which may reach heights of several meters.
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Thus, according to the maximum height (HMAX), estuaries are forced by tides
which may be classified as (Davies 1964):

Microtide: HMAX < 2 m.
Mesotide: 2 < HMAX < 4 m.
Macrotide: 4 < HMAX < 6 m.
Hypertide: HMAX > 6 m.

The tidal height importance is related to the fact that the periodic tidal inundated
areas that may have favorable conditions to the development of vegetation, such as
mangroves and salt marshes. The importance of tidal range lies in the fact that these
intertidal habitats will occur only in areas which can be submerged by the tide.
Because the highest elevations are only covered for a short time period around high
tide, they receive less sediment and nutrients than other areas lower down. Hence,
the higher the vegetation, the less nutrients it receives and the slower will be the rate
at which it accretes; this has been confirmed by studies performed in the Severn
estuary (England) by French (1997).

The tidal prism (TPR) is defined as the sea water volume input into the estuary
during the flood tide (from low to high tide), and is related to the tidal height. It may
be approximately calculated as TPR = HoAs, where As is the surface area of the
estuary. In microtidal regions, the capacity of the water renewal during the tidal
cycle is small when compared with estuaries forced by hypertides.

Fig. 2.5 Periodic oscillations of the tide in the Estuarine-lagoon system of Cananéia (Fig. 1.5)
showing the high (HW) and low (LW) water oscillations, the corresponding higher HW and lower
LW heights, the daily high inequality and the tidal period
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To establish the relative importance of the tidal forcing and the river discharge, a
dimensionless number was defined as the ratio of the volume of the fresh water
discharge into the estuary during a tidal cycle (R = QfTP), and the tidal prism (TPR).
This dimensionless number, FR = R/TPR, is named flux ratio. Then, according to
this definition, when FR > 1 or FR < 1 the estuary is dominated by the river dis-
charge or the tide, respectively. An alternative method to calculate the flux ratio will
be presented at the end of this chapter, and as will be seen in Chap. 3, this number
has also been used as a criterion for estuary classification.

Besides the dominant semi-diurnal and diurnal tidal oscillations, the tide has
components of higher periods: fortnightly and seasonally are the main oscillations.
The fortnightly period is the time between successive spring tides and is modulated
by Moon phases; this period is 14.8 days, which is the period of maximum con-
structive interference between the main semi-diurnal tidal constituents M2 and S2,
which reinforce at spring tides and are in opposition at neap tides (Leblond and
Mysak 1978). Its basic modulation features in shallow rivers were explained
through scaling arguments, which show that this wave is generated by the fort-
nightly modulation of frictional forces due to the variation in tidal velocities
(Leblond 1979). There is also a fourth level of height fluctuations, which occurs
over longer periods (18.6 years). This oscillation, with frequencies lower than the
more energetic ones (semidiurnal and diurnal), are in the sub-tidal domain.

The time variability of the tidal height during events of spring and neap tide,
sampled in the estuarine channel of Cananéia (São Paulo State, Brazil), is presented
in Fig. 2.6. This figure clearly shows the fortnightly tidal modulation, and the
occurrence of the highest and lowest tidal heights during spring and neap tide
(Ho � 2.0 and 0.8 m, respectively), and the sub-tidal oscillation. The high fre-
quency oscillations of temperature simultaneously recorded are coherent with the
tidal oscillation, indicating the advective influence of the tidal current in the
redistribution of the heat concentration. The low frequency variations of tide and
temperature, calculated with a low frequency filter to eliminate the periodic and
high energetic variations, are also shown in Fig. 2.6.

The physics of the tidal oscillations decomposition in its components is very
complex, being related to the relative motions of the Earth-Sun-Moon system, and
may be found in specialized books (Defant 1960; von Arx 1962; Franco 1988,
2009, and others). There is another important aspect related to the tidal wave
propagation into the estuary: in this environment, the tidal wave may be composed
of short period harmonic oscillations generated by the local topography, the tidal
excursion is blocked up by the river discharge and, simultaneously, the tidal wave
may be subjected to an energy loss due to the frictional drag in the estuary bottom
and margins. Consequently, the tidal wave propagation up and down the estuary
undergoes significant modification and substantially deforms, as for instance, in
generating the tidal bore.

The interaction between the up estuary tidal wave propagation and the estuary
morphology is responsible for the variations in the tidal height and current inten-
sities. Convergent margins of the estuary forces the tidal wave to be laterally
compressed and, in the absence of friction, there will be an increase in its height due
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to the energy conservation. Inversely, due to the frictional influence, there will be a
decrease in the tidal height (Dyer 1997). According to the relative influence of the
geometric characteristics of the estuarine channel, the following conditions may be
found (Nichols and Biggs 1985; Dyer 1997): (a) hypersynchronous, (b) syn-
chronous and (c) hyposynchronous estuaries.

(a) Hypersynchronous: convergence exceeds friction and, consequently, the tidal
range and tidal currents increase up-estuary until the tidal river zone (TRZ),
where convergence diminishes, friction becomes the larger effect and the tide
height reduces. These estuaries are generally funnel shaped.

(b) Synchronous: friction and convergence have equal and opposite effects on the
tidal height, and range is constant along the estuary until the river zone
(TRZ) is reached.

(c) Hyposynchronous: friction exceeds the effects of convergence, and the tide
range diminishes throughout the estuary. These estuaries tend to have
restricted mouths, with the water entering through the mouth effectively
spreading out within the estuary. The highest velocities occur at the mouth.

In the northern Brazilian coast hypersynchronous conditions may be observed in
shallow estuarine channels in the spring tide and autumn-winter transitional period,
with an increase in the tidal height sufficiently large to produce a tidal bore. This
occurrence was observed in the Mearin river located in the São Marcos Bay
(Maranhão, Brazil), and analyzed in the article of Kjerfve and Ferreirra (1993). In
this semi-diurnal tidal region the time intervals between flood and ebb have an

Fig. 2.6 Tidal record in the Lagoon System of Cananéia (southern São Paulo State) showing high
and low frequency time variations modulated during spring and neap tides, and the corresponding
temperature variations. Time scale in Julian days
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asymmetrical behavior, as observed in the simultaneous records of the estuary
mouth and up-estuary in the Arari community (Fig. 2.7). The comparative analysis
of these records indicates that the sinuous variation changes to a very asymmetric
oscillation, indicating a hyposynchronous condition, with time intervals of flood
and ebb being 4.0 and 9.0 h, respectively. This indicates, as we will see later, the
flood dominance phenomenon.

The phenomenon of diurnal inequalities has also been observed in the Santana
harbor (Pará, Brazil) located in the left margin of the North Channel of the estuarine
delta of the Amazon river, were the time intervals of flood and ebb were 4.0 and
8.0 h, respectively, and similar to the observations in the Mearin River. A simple
physical interpretation of this phenomenon, taking into account the propagation of a
progressive wave in a shallow channel, will be presented in Chap. 8.

In the shallow water of estuaries, two processes affect the tidal wave propagation.
In the first process, even in a frictionless estuary, when the tidal variation of the water
depth is large, thewave crest will movemore quickly than the through. The crest of the
tide may partially overtake the trough, resulting in a shorter flood and longer ebb; the
highest velocities thereby occur in the flood tide. The second is the effect of the bottom
friction. This is a non-linear process which depends on the square of the current
velocity and its effect is to produce greater friction in shallow water. This also slows
down the water movement more at lowwater levels relative to high water levels. Thus
the time delay between low water at the mouth and that at the head is greater than the
time delay of the high water. The combined effects of these two processes produces a
short duration of the flood phase of the tide and the fast flood currents, creating what is
known as flood dominance, which has hypersynchronous characteristics. Ebb

Fig. 2.7 Comparison of the tide forecast in the Mearin River (Maranhão State, Brazil) in Itaqui,
and the tide record in Arari, on August 21, 1990. The sinuous sea level macro oscillation in Itaqui,
contrasting with the amplitude damping and asymmetric oscillation in Arari (bold line) (according
to Kjerfve & Ferreira 1993)

40 2 Circulation and Mixing in Estuaries

http://dx.doi.org/10.1007/978-981-10-3041-3_8


dominance can also be produced within estuaries, essentially through interactions
between deep channels and shallow water areas, and the varying distribution of
friction during the tide (Dyer 1997).

The knowledge of tide asymmetric behavior is very important to estuary man-
agement, particularly in relationship to the sediment erosion, transport and depo-
sition, as indicated in the analysis of French (1997):

The tide moves a set amount of water into and out of an estuary during each tidal cycle. If
the flood and ebb tides are of unequal length, then in the shorter tide, the fixed volume of
water has to move faster than in the longer tide. That is, if the flood tide takes 4.0 h and the
ebb takes 8.0 h, then the estuary has, in effect, 4.0 h to fill and 8.0 h to empty. The only
way that this can be achieved is by variations in velocity and, therefore, energy. If, as in the
situation above, flood periods are shorter, and energy greater, more sediment can be carried
in on the flood tide than can be moved out on the ebb tide (assuming adequate sediment
supply). Hence, the estuary will experience a net input of sediment. In contrast, if the
situations were reversed, and the flood tide took longer than the ebb, there would be greater
velocities and greater energy during the ebb, and, therefore, more sediment moved and a net
sediment loss to the system. This net movement of sediment is also modified by other
factors, such as residual currents, the mechanism of sediment transport (bedload or sus-
pension), sediment stability, and sediment entrapment.

With the development of the classical method of Doodson (1928) to the analysis,
the astronomic tidal height forecast and the techniques using spectral analysis (Franco
1988, 2009), the hourly time series values of the tidal height measurements are able to
be decomposed into a set of harmonic components by a computational procedure
using the Pacmaré (Franco 2000); this program performs analyses for long periods
(18.6 years) and shorter periods (1 year or less). The theoretical foundation of the
classical tidal harmonic analysis has also been presented by Pawlowicz et al. (2002),
and complemented with a set of programs written in MATLAB® to perform analyses
for periods of one year or shorter. The main components are semidiurnal and diurnal,
which take into account about 83% of the total tidal amplitude. Some of these com-
ponents are presented in Table 2.1, with its amplitudes and phase values determined
from a 30 day time series of hourly tidal height records in the Bertioga estuarine
channel (São Paulo, Brazil).

Table 2.1 Harmonic
constants (amplitude and
phase) of the main tidal
components in the Bertioga
estuarine channel, computed
according to Franco (2000),
using a 30 days of hourly
measurements

Diurnal components Amplitude (cm) Phase (°)

O1—main-lunar 11.2 27.5

K1—lunar-solar 6.9 189.5

P1—main-solar 6.3 109.0

Semi-diurnal components Amplitude (cm) Phase (°)

M2—main lunar 32.6 174.9

S2—main solar 23.5 184.3

N2—lunar-elliptic 5.6 240.5
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The relative importance of diurnal and semidiurnal tidal components may be
obtained with the form number (Nf) defined by A. Courtier in 1938 (quoted by
Defant 1960), by the following ratio:

Nf ¼ K1 þO1

M2 þ S2
; ð2:7Þ

where K1, O1, M2 and S2 are the main diurnal (index 1) and semidiurnal (index 2)
tidal components. According to the variation of this dimensionless number the tide
may be classified as:

0 < Nf < 0.25—semidiurnal;
0.25 < Nf < 1.5—mixed, with semidiurnal predominance;
1.5 < Nf < 3.0—mixed, with diurnal predominance;
Nf > 3.0—diurnal.

Using this classification criteria the tidal oscillation in the Bertioga estuarine
channel is Nf = 0.32, classified as mixed, with semidiurnal predominance (Miranda
et al. 1998).

The co-oscillating tide at the estuary mouth propagates up-estuary as a shallow
water wave, because its length is too great in comparison to the estuarine depth. The
horizontal motions associated with the tidal oscillations are named tidal currents.
These motions undergo significant modification due to the frictional drag, mor-
phology, relative vorticity and also by the Earth’s rotation due to the Coriolis
acceleration; this last influence is more evident in estuaries with great dimensions
and forced by diurnal tides. When the natural oscillation period of the water body of
the estuarine system is equal or close to the main tidal component, the resonance
phenomenon may be observed, and the height of the stationary wave may reach
several meters. Classic examples are its occurrence in the Bay of Fundy (Golf of
Maine, USA) and the Igarapé do Inferno in the Amazon continental shelf (Brazil).
In this condition, the tidal prism (TPR) is very large compared with the estuary
volume in low tide, and the water mass renewal in the estuary is efficient in
removing unwanted wastes.

In theoretical problems when the tide variation must be taken into account, it
may be convenient to simplify the theory by considering this forcing to be ana-
lytically represented by only one tidal component as:

gðx; tÞ ¼ go cosðjx� xtÞ; ð2:8Þ

where x = 2p/T and j = 2p/k denote the angular frequency and the wave number,
respectively. This equation may be, for instance, used as a boundary condition to
simulate the tidal forcing at the estuary mouth.
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2.3 Dimensional Analysis Applied to Equations
and Processes

Although simple uses of this technique have already been given in this chapter, the
application of dimensional analysis is very useful in theoretical development of
complex and non-complex processes, and to check the correctness of its interme-
diate and final results. As an introduction to this approach, let us consider some
definitions of non-dimensional parameters already given and a physical problem
related to the main forces which drives the estuarine processes.

In dimensional analysis, the dimension of a quantity is denoted by square
brackets [ ] and is expressed in reference to the fundamental quantities of Physics:
mass (M), length (L) and time (T). As simple examples of applying this analysis let
us take as first the already defined tidal prism TPR = HoAs, which is a volume [L3]
which depends on the product of tidal height (Ho) and the estuary surface area (AS);
then the dimension of TPR are: [TPR] = [LL2], which may also be abbreviated by
[TPR] = [L3], and the water volume R discharged by the river discharge (Qf) into
the estuary during the time interval of one tidal period (TP) is calculated by
R = QfTP and [R] = [L3T−1T] = [L3]. The ratio of these quantities (TPR/R) was
defined as the flux ratio (FR) which, is a non-dimensional quantity, as well as, the
form number Nf (Eq. 2.7).

In the next topic of this chapter we are going to deal with the gradient pressure
force in terms of acceleration, that is, force per unit of mass, which has two main
components: the barotropic and the baroclinic, whose dimensions are,

½g @g
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	 ¼ ½LT�2 L
L
	 ¼ ½LT�2	;

and,
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L
L	 ¼ ½LT�2	:

Another example of using dimensional analysis will follow from the steady-state
equation of motion of a well-mixed and laterally homogeneous estuary, forced by
the barotropic and baroclinic components of the gradient pressure force. Under the
assumption of a constant kinematic eddy viscosity coefficient (Nz), this equation
may be written as (Eq. 10.4, Chap. 10),
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The general solution of this second order differential equation is dependent on
two integrations constants (C1 and C2), which may be calculated under specified
upper and lower boundary conditions,

u(x, z) ¼ 1
6

g
qNz

@q
@x

z3 � 1
2
g
Nz

@g
@x

z2 þC1zþC2:

The dimension of the first member of this equation is [LT−1], and for first and
second terms on the right-hand-side, the analytical expression and the corre-
sponding dimensions are:
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which indicates that the analytical expressions of these terms, as would be expected,
have dimension of velocity.

The analytical expressions of the constants C1 and C2, obtained by applying the
boundary conditions, will have a correct analytic expressions if [C1] = [T−1] and
[C2] = [LT−1], which may be easily checked. Further examples on the application
of dimensional analysis to physical and biological problems may be found in the
book edited by Platt et al. (1981).

2.4 What Generates the Circulation and Mixing
in the Estuary?

To answer this question, which we judge important in this chapter, it is necessary to
use some fundamental concepts and the hydrodynamic equations of sea water,
which are studied in others areas of Physical Oceanography, and will be presented
in detail under the optics of estuarine physics in Chaps. 7 and 8.

The estuary dimension vary between small and medium spatial scales, in relation
to the adjacent ocean, and for most estuaries their lengths (L) is much greater than
their width (B). Between the estuary head and mouth, the salinity varies between
the fluvial water (salinity practically zero), and that of the coastal region (So),
generating a mean longitudinal salinity gradient (DS/Dx) equal to So/L.

The geometric estuarine characteristic has a great influence on its motions and on
the distribution of properties, which are often studied using a right-handed rect-
angular Cartesian co-ordinates system Oxyz (Fig. 2.8a); the origin being in the
mean level of the free surface. Oxy plane is located on the free surface and
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orthogonal to the gravity acceleration, the Ox axis is usually oriented longitudinally
in the positive sense seaward (or eventually landward), the Oy axis, indicating the
transverse estuary dimension, is perpendicular to the Oxz plane and the Oz axis
vertically upwards will be oriented against, or in the same sense of the gravity
acceleration. The velocity components, in relationship to the coordinate axis, are
denoted by u, v, and w, respectively; the components u and v are denominated
longitudinal and transversal (or secondary), respectively.

In the estuary longitudinal section (Fig. 2.8b), the Oxz axes indicates the lon-
gitudinal and depth characteristics of the salinity field by its isohalines distribution
(S = const.). This figure also indicates that the estuarine water mass is also forced
by the tidal co-oscillation in the longitudinal direction, and its height variation is
denoted by η = η(x, y, t).

The motions in this transitional coastal environment are generated by the fol-
lowing forcings: sea level variations, freshwater discharge, gradient pressure force
(due to the thermohaline influence on the density), continental shelf circulation and
wind stress acting on the free surface. These forcings are functions of time and
space and simultaneously act on the estuarine water body. The circulation on the
continental shelf is mainly driven by the wind stress; its influence, generating the
circulation and mixing processes may be observed on synoptic and seasonal time
and space scales. Our study is restricted to the conditions found in the majority of
coastal plain estuaries, and we will examine the motions generated by: the
co-oscillating tide, η = η(x, y, t), the fresh water discharge, Qf; and the longitudinal
salinity (∂S/∂x) or density (∂q/∂x) gradients.

Fig. 2.8 a Scheme of a coastal plain estuary indicating the Oxyz reference system, the u, v, w
velocity components, the cross section with width B and the river discharge Qf. b The longitudinal
section with the isohalines, S, the co-oscillating tide, η(x, y, t), and the depth H0(x, y). The Oz
axis is oriented against the acceleration of gravity

2.4 What Generates the Circulation and Mixing in the Estuary? 45



The time scale of the estuarine water body to the impulsive forces is large, and
usually separated in motions in the dominium of high and low frequency. The
dilution of the sea water by the freshwater of the river discharge will also produce
variations in the longitudinal salinity gradient that will contribute to the estuary’s
dynamic structure.

The various dynamic physical mechanisms that generate the estuarine circulation
and control the salinity distribution and the chemical, biological and geological
properties are liable to a hydrodynamic formulation. This formulation will be
presented later using tools of the geophysical fluid dynamics, aiming to forecast its
motions, the water interchanges with the adjacent ocean and the physical charac-
terization of the estuary.

As the oscillation periods of the co-oscillating tide are well known, it is possible
to separate the effects of the low frequency forces using a statistic procedure of
experimental data. Theoretically, this separation is made with the integration (from
the generic depth z, at a pressure p), up to the free surface η (submitted to the
atmospheric pressure p = pa) of the fundamental hydrostatic equation (∂p/∂z = −qg
or ∂p = −qgdz) with the Oz axis oriented according to Fig. 2.8,

pa � p ¼ �g
Zgðx;tÞ

z

qdz: ð2:9aÞ

To calculate the longitudinal pressure gradient, the expression (2.9a) must be
derived in relation to x, and applying to the term in the right-hand-side the Leibnitz
rule of the derivation of an integral, because its upper integration limit z = η(x, y, t)
is function of x, and the result is:
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Then, calculating from this expression the longitudinal components of the
pressure gradient force per mass unity, which generate motions oriented from high
to low pressure regions, is obtained by multiplying by the factor (−1/q) all terms of
Eq. (2.9b),
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With the approximation qη/q = qo/q � 1. All terms of Eq. (2.9c) have dimen-
sion of acceleration (force per mass unity) and, in the right-hand-side we have the
following longitudinal components of the pressure gradient force: the barometric,
the barotropic and the baroclinic, respectively.
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Lets us consider some simple solutions of the Eq. (2.9c), under steady-state
condition and at the sea surface, z = η(x), then, it is reduced to

0 ¼ � 1
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� g
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@x

: ð2:9dÞ

Solving this equation by finite increments to the estuary free surface elevation
Dη, it follows that:

Dg ¼ � 1
qg

Dpa: ð2:9eÞ

This result indicates that for an increase of the atmospheric pressure (Dpa > 0),
the sea surface responds as an inverted barometer, because Dη < 0, and the fol-
lowing order of magnitude may be estimate: for an increase (decrease) of the
atmospheric pressure of 1.0 mbar = 102 N m−2, the sea surface is depressed (ele-
vated) by 0.01 m. However, in nature, the static influence of low atmospheric
pressure centers are usually related to the low frontal zones propagations, that may
reaches the coastal regions with strong winds, and the association of these influ-
ences (static and dynamic) may generate dangerous storm-surges at the coastline.

As the salinity influences on the density is predominant over the pressure (p) and
temperature (T), the longitudinal density gradient in Eq. (2.9c) may be substituted
by the corresponding longitudinal salinity gradient (∂S/∂x), calculated using a
linear simplified equation of state, q(S) = qo(1 + bS) (Eq. 4.12, Chap. 4), where qo
is a constant density value, and b is the mean saline or haline contraction coeffi-
cient, define by b = (1/q)(∂q/∂S). However, this coefficient varies with the S, T and
p properties, but for estuarine water mass this coefficient may be approximate by a
constant value (b � 7.5 � 10−4 (‰)−1). With these simplifications, and disre-
garding the barometric pressure gradient, the longitudinal component of the pres-
sure gradient force, per mass unity has the following expression:
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dz, ð2:10aÞ

or

� 1
q
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@x

¼ �g
@g
@x

� gb
Zg

z

@S
@x

dz: ð2:10bÞ

It should be noted that in the article published in 1952 (Pritchard 1952), D.V.
Pritchard became the first researcher to link estuarine circulation to the forcing by
horizontal density gradient, using observations from the James river estuary
(Virginia, USA) to demonstrate this mechanism (quoted in Geyer 2010, p. 13).
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The first parcel on the right-hand-side of Eq. (2.10a) indicates that the dynamic
influence generated by the tidal forcing is independent of the depth (barotropic),
and its intensity is proportional to the negative value of the sea surface slope. In
estuaries, the time variations in the velocity intensity sequentially assume the fol-
lowing trend: when ∂η/∂x > 0, reach maximum landward intensity at the mid-flood
tide, the velocity decreases to zero at high and low tide (∂η/∂x = 0), before
reversing (∂η/∂x < 0) to maximum ebb velocity midway through the ebb, where
almost zero intensity is reached closing the tidal cycle.

For an estuary with a length of 104 m (10 km), forced by meso-tidal oscillation
(2 < Ho < 4 m), the maximum intensity, per mass unity may be estimated as
varying between −10−3 and 10−3 m s−2, in the flood and ebb tide, respectively.
Then, this gradient force component varies in the interval −10−3 to 10−3 m s−2,
with the null intensity occurring at high and low tide.

The dynamical influence of the distribution of the longitudinal density (salinity)
gradient is proportional to the longitudinal density gradient, integrated in the
interval from the depth z up to the free surface level, η = η(x, y, t), (Eqs. 2.10a). Its
intensity is zero at the free surface (z = η) and increases with depth, but its value is
always negative because the density (salinity) increases seaward ∂q/∂x > 0 (∂S/
∂x > 0). The dynamical influence of this component of the gradient force (baro-
clinic), per mass unity, always generates landward (flood) motions; its intensity
increases with depth, and its maximum value is on the bottom. For an estuary with a
length of 104 m (10 km), a mean depth of 10 m, and a longitudinal salinity vari-
ation from zero to 30‰ at the head and mouth, respectively, its maximum intensity
may be estimated as a relative value of −10−4 m s−2. Hence, the intensity of this
component varies in the interval −10−4 m s−2 to 0, with zero at the surface. Then,
according to these estimated intensities of the baroclinic pressure gradient com-
ponent, which always generates landward or flood motions, its maximum value is
10 times less than the modulus of the barotropic component. However, its intensity
will be higher than the barotropic component near the slacken water.

The river discharge (Qf), besides to diluting the sea water and generating a
longitudinal density gradient, is also responsible for another low frequency com-
ponent that generates velocity in the estuarine water mass. However, in opposition
to the baroclinic component, the mean steady-state value of this component (uf)
always generates seaward motion. By the volume integrated mass conservation
principle, the intensity of this component is given by the following ratio:

ufðx) ¼ Qfðt)
A(x)

; ð2:11Þ

where A = A(x) is the mean area of a transversal section during the tidal cycles.
The time variation of this velocity component (uf) is dependent on the low fre-
quency variations (usually seasonal) of the river discharge.

Under steady-state conditions the tidal oscillation vanish and so the barotropic
pressure gradient, and the resulting low frequency motion forced by the
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longitudinal baroclinic pressure gradient of density and by the river discharge in
landward and seaward direction, respectively, forces to generate a two layer bidi-
rectional motion. This motion is named gravitational circulation, gravity current or
the classical estuarine circulation. It is essentially a two dimensional advective
motion which drives the volume and salt transports seaward and landward in the
upper and lower layers, respectively.

To illustrate the dynamics effects of the barotropic and baroclinic pressure
gradients in the velocity components, experimental data are presented in Table 2.2.
These vertical velocity profiles were measured in the estuarine channel of Cananéia
sea (Fig. 1.5, Chap. 1), in two times (t1 and t2) of the ebb tide, in the position where
the channel is oriented in the north-south direction.

The experimental data indicate that in the vertical profile at time t1, the estuarine
circulation is southwards (seaward) with direction between 172° and 201°, and with
relatively high speeds from 0.30 to 1.09 m s−1. This physical characteristic indicate
that during this ebbing event the barotropic gradient component of the pressure
gradient force prevailed over the baroclinic component. In the following instant (t2),
the velocity minimum is 0.02 m s−1 at 3 m depth; in this layer between the surface
and 3 m depth, the motion is also southward (direction between 168° and 199°), but
with very low intensities (<0.22 m s−1) compared to the preceding profile (t1). At
depths bellow 3 m, the intensity increases, but the circulation is in the opposite
direction (landward) to the upper layer, as indicated by its direction from 11° to 24°.
These results indicate that the water column, with only seven meters depth, has
bidirectional circulation during the ebbing tide, with the non-motion depth at the
middle of the water column (�3 m). Then, with the decrease in the intensity of the
barotropic component of the pressure gradient force, there was an increase in the
relative importance of the baroclinic pressure gradient in the deepest layers of the
estuarine channel. As demonstrated in this experiment, the baroclinic component of
the pressure gradient force always generates landward circulation, and its intensity
increases with depth (second term on the right-hand-side in Eq. 2.10).

The motions described in the preceding paragraphs are macroscopic, usually
named as advective, to distinguish them from the microscopic or small-scale motions
that generate turbulent diffusion. In the following paragraphs, the influence of the

Table 2.2 Vertical profiles of the intensity and direction of the current (velocity vector) measured
in the Cananéia estuarine channel, at two different times, t1 and t2 of ebb tide

Depth (m) Vel. (m s−1) (t1) Direction (°) (t1) Vel. (m s−1) (t2) Direction (°) (t2)

0.0 1.09 201 0.22 198

1.0 1.09 188 0.21 187

2.0 0.94 187 0.10 199

3.0 0.85 191 0.02 168

4.0 0.74 197 0.19 011

5.0 0.59 198 0.30 024

6.0 0.44 175 0.33 010

7.0 0.30 172 0.47 017
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microscopic motions in the redistributions of properties in the estuarine water mass
by mixing process (advection and diffusion) will be examined. Focusing our
attention on one volume element of control, the local salinity variation (∂S/∂t < 0 or
∂S/∂t > 0) indicates the occurrence of salt dilution (or the salt concentrate)—dilution
by the river water and concentration by the seaward input. This process is a simple
description of the mixing between water masses. Salinity was used as an indicator,
but this process is generated by the salt transport due to the macroscopic motion
(advective) and the simultaneous microscopic flux of properties due to: interchanges
of kinetic energy, heat, salt and contaminants introduced in the estuary. These fluxes
of properties are due to the following motions:

(a) Macroscopic or medium motion (generated by the tide, river discharge and
density gradients); this process contributes to the mixing and is named
advective;

(b) Microscopic and random motions, whose effects on the mixing are denomi-
nated as molecular or turbulent diffusion in laminar and turbulent motions,
respectively.

The advective influence changing the salinity concentration during the tidal
cycle is evidenced in the comparison of the u-velocity component and vertical
salinity profiles (Fig. 2.9a, b), which were simultaneously sampled at half-hourly
time intervals during a semi-diurnal tidal cycle. The turbulent diffusion generates
the erosion of the vertical salinity variation shown in the salinity profiles from
31.0 and �36.0‰ (Fig. 2.9a), which migrate in the water column due to the
velocity intensity variation. This process is due to the turbulent mixing generated by
internal friction water layer with different intensities, and the estuary friction at the
bottom. The layer with the higher vertical salinity gradient is called halocline,
although in oceanic water this term is used to indicate a salinity decrease with
depth.

The time variability of the u-velocity profiles during the ebb (u > 0) and flood
(u < 0) is shown in Fig. 2.9b. The ebbing intensities (�0.6 m s−1) are higher than
in the flood (�−0.3 m s−1), due to the influence of the barotropic gradient pressure
force and the river discharge. This asymmetry, when analysed in terms of
steady-state mean values, indicates the presence of the river discharge and the
influence of the barotropic pressure gradient. It should be also pointed out, that this
figure also indicates the influence of the baroclinic pressure gradient in the
bi-direction characteristic of the vertical velocity profiles in the neighborhood of the
HW and LW tides when the barotropic forcing tends to zero.

By analogy with the tide, the circulation variability in estuaries is classified as
intertidal when it occurs at semi-diurnal or diurnal tidal frequencies (>1 cycle/day),
or subtidal at lower frequencies (<1 cycle/day). The main subtidal frequency is the
fortnightly, and is due to the time period modulation between successive spring
tides (�15 days).

The longitudinal salinity advective flux (/adv) and the diffusive flux (/dif) fluxes,
associated with the macroscopic (mean) and the turbulent (microscopic) motions,
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are defined by: /adv = qSu and /dif = −(qKxS)∂S/∂x, respectively; these fluxes
have both dimensions of [ML−2T−1]. The coefficients KxS and qKxS are the kine-
matic and dynamic eddy diffusion coefficients of salinity, with dimensions
[KxS] = [L2T−1] and [qKxS] = [ML−1T−1]. The formulation of the diffusive flux is
parameterized with the Fickian law, and is oriented from the regions of high

Fig. 2.9 Time variability of half-hour vertical profiles of salinity (a) and the u-velocity
component (b) during a complete semidiurnal tidal cycle. Positive and negative velocity values
indicate flood and ebb, respectively, and Z is the non-dimensional depth (after Andutta 2011)
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concentration to lower concentration. In the SI system of unit these fluxes are
expressed in kg m−2 s−1. The equivalent expressions may be written for concen-
tration of any property, using the corresponding diffusion coefficients.

2.5 Tidal Wave Propagation in an Estuary

The tidal wave propagation in estuaries involves a relatively intense advective
process, usually in a region with complex topography. Some of the inter-connected
features are the phase and the related phase differences of the wave propagation,
tidal current and salinity variations, the tidal excursion and length of the saline
intrusion. The most elaborated theory of tidal wave propagation in a channel, taking
into account the most important characteristics, was developed in the pioneering
paper of H. Poincaré, in 1910. The dynamics of the tidal currents were studied by
Fjeldstad (1929), taking into account the bottom frictional forces (quoted in Defant
1961).

It follows a classical and simplified solution for the wave propagation in estu-
aries, according to Defant (1960), Ippen and Harleman (1961), Dyer (1973) and
others, that is useful to illustrate the physical processes occurring in estuarine
channels, although of limited interest because it uses a simple geometry (long
channel and rectangular transverse section), and doesn’t take to account the
non-linear dissipative frictional forces, it is a useful approach on the wave propa-
gation in channels.

As by hypothesis the estuary depth is small when compared to the wave length
of the tidal co-oscillation, the nature of this oscillatory motion is that of an oscil-
latory wave in shallow water, which differs in physical behavior from that of a short
wave propagation. As the ratio of the water depth (H0) to the wave length (k) is
much less than one [(H0/k) � 1], the solution is reduced to that of a
non-dimensional shallow water problem (Pedloski 1979).

The hypotheses applied to the theoretical development are:

(a) The salinity (density) field is steady and uniform.
(b) The channel length (L) is less than the wave length (L < k).
(c) Channel long and narrow (L � B), one-dimensional motion (v = w = 0),

uniform transversal section, and there is no deflection due to the Earth’s rota-
tion (Coriolis acceleration is disregarded).

(d) With the tidal co-oscillating motion in the channel entrance there is the water
storage in the channel during the flood (tidal prism), and the subsequent exit of
this water in the ebb.

In order to develop the theory of the oscillating tidal motion, a coordinate system
indicated in Fig. 2.10 will be used. The vertical axis (Oz) is oriented positively
against the gravity acceleration ( g!) with its origin on a uniform bottom with the
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water layer undisturbed, indicated by H0. The origin of the horizontal axis (x = 0) is
located at the estuary mouth and oriented positively in the up-channel direction.

In this development, the simplified equation of continuity and the Ox component
of the equation of motion will be used, which are obtained from its tri-dimensional
equations with a mathematical procedure which will be presented in Chap. 7 and 8.
We will be considering the shallow water approximation. As η = η(x, t) is the
oscillation of the free surface related to the depth, H0, and the salinity is constant, the
longitudinal component of the gradient pressure force, per mass unity (Eq. 2.10a),
is simplified, to the barotropic component,

1
q
@p
@x

¼ g
@g
@x

: ð2:12Þ

With the indicated simplifications, the equation of motion is reduce to the fol-
lowing one-dimensional expression (Harleman 1971; Pedloski 1979):
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Under the hypothesis that η(x, t) � H0, this equation may be transformed in a
linear equation disregarding the advective acceleration ðu @u

@x ¼ 0Þ: Then, it is
reduced to:

@u
@t

¼ �g
@g
@x

; ð2:14Þ

Fig. 2.10 Reference system of a wave oscillation, η(x, t) = h(x, t) − H0, in a long shallow water
channel of rectangular cross-section. The longitudinal axis Ox is oriented positively in the
up-channel direction. The salinity (density) field is steady and uniform
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which is the simplified expression of the linear shallow water equation, without
friction and with the assumption that the Coriolis acceleration is negligible The
unknowns of this equation are the u-velocity component, u = u(x, t), and the sea
surface elevation, η = η(x, t).

Taking into account that the motion is one-dimensional, it is necessary to use the
corresponding continuity equation to transform it into a closed hydrodynamic
system; for this to be accomplished, the continuity equation has the following
analytic expression (Pritchard 1958):

@ðuA)
@x

þ @A
@t

¼ 0; ð2:15Þ

where A is the cross section area, A = B(H0 + η). Combining this area with
Eq. (2.15), and performing the derivations in relation to x, it follows:
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: ð2:16Þ

Taking into account the approximation η � H0 the equation reduces to:
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¼ 0; or
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þ @g
@t

¼ 0; ð2:17Þ

which is the simplified form of the continuity equation of shallow water.
Equations (2.14) and (2.17) form a system of two equations of partial derivatives
and two unknowns: the free surface oscillation η = η(x, t) and the velocity u = u
(x, t). The solution of this system of equations, assuming a linear frictional
dependence proportional to the u-velocity in the right-hand-side of Eq. (2.14),
which dissipates the amplitude of the tidal wave with an exponential decrease, e�lx,
with ðl ¼ ðs=2Þ ffiffiffiffiffiffiffiffi

gH0
p Þ, is presented by Blumberg (1975).

Eliminating by cross derivation from Eqs. (2.14) and (2.17) the variables
η = η(x, t) and u = u(x, t), respectively, we have:
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and
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: ð2:19Þ

This equation set is the classical equations of progressive waves (the wave
profile propagates horizontally) in a channel with a uniform transverse section, with
a phase propagation velocity (celerity) c0 expressed by:
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c0 ¼
ffiffiffiffiffiffiffiffi
gH0

p
: ð2:20Þ

A possible solution of Eq. (2.18) is the harmonic function,

gðx, t) ¼ g0 cosðjx� xtþUÞ; ð2:21Þ

simulating the wave propagation in the x > 0 direction (landward). U is an arch of
positive first determination, that is, 0
U
 2p, which may be determined by the initial
and boundary conditions. If, for example, the surface elevation in the estuary mouth at
time t = 0 is equal to η0, then η(0, 0) = η0 and, consequently, cos(U) = 1 and U = 0.
In this case, at the estuary mouth the higher elevation values of the oscillation,
η = η(x, t), will occur at times t = 0, T, 2T, … For x = k and any of multiples of this
length, the wave will occur in phase with the position at x = 0. The simplifying
hypothesis generated a symmetric tidal wave. However, in nature, the wave propa-
gation may be greatly distorted, as exemplified for the Mearin river (Fig. 2.7).

As estuaries have a finite length, which is generally small compared to one
quarter of the tidal wave length (L < k/4), the oscillation of the free surface is
usually uniform along the estuarine channel. Due to this behavior, this oscillation
may be simulated by η(t) = η0 cos(xt), as found in the classical work of Arons and
Stommel (1951), when the stationary salinity distribution in an estuary was studied
with these characteristics (one dimension, simple geometry and frictionless).

As it is a liner problem, velocity solution (Eq. 2.19) is also analytically repre-
sented by the same harmonic dependence:

uðx, tÞ ¼ U0 cosðjx� xtþUÞ: ð2:22Þ

In this solution U0 is the velocity amplitude, which may be determined by
calculating the first derivatives of solutions (2.21) and (2.22) relative to the vari-
ables t and x, respectively, and combining this result with the continuity Eq. (2.17),
resulting the following relationships: U0 = η0x/H0. j = η0k/H0T = η0c0/H0, where
c0 = k/T is the phase velocity of the wave. Then, the solution of Eq. (2.22) may be
re-written as,

u(x, t) ¼ g0c0
H0

cos(jxþxtþUÞ; ð2:23Þ

or, combining with Eq. (2.21),

u(x, t) ¼ c0
H0

gðx, t); ð2:24aÞ

or

u(x, t) ¼ g0

ffiffiffiffiffiffi
g
H0

r
cos(jxþxt): ð2:24bÞ
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From this result it follow that the amplitude U0 of the tidal velocity may be

approximate by U0 ¼ go

ffiffiffiffiffi
g
H0

q
; for a tidal wave with an amplitude η0 = 1 m, and a

channel depth of H0 = 10 m ! U0 � 1 m s−1. As will be seen later (Chap. 8) the
product of a non-dimensional coefficient k by U0H0, may be used to simulate the
vertical kinematic eddy viscosity coefficient (Nz = kU0H0).

Due to the initial hypothesis this solution is valid for η � H0 and, from this
inequality, it follows that for η0 � H0, the amplitude U0 will always be less than c0
(U0/c0 � 1). Despite the approximations made to reach the simplified solution it is
useful to show a fundamental characteristic of the flow: (i) the u-velocity due to the
wave propagation, does not exceed the phase velocity of the proper wave (Mello
1998), and (ii) It may be used to estimate the tidal wave velocity, for example: for a
tidal amplitude η0 = 1 m propagating in an estuary with 10 m depth the maximum
tide velocity will be 1 m s−1.

Equation (2.24a) indicates that the free surface elevation (η) and the velocity
(u) are in phase, which is a characteristic of the gravity progressive wave. As for the
hypothesis that the velocity is uniform in the transversal section, let’s assume that the
tidal wave is forcing a vertically homogeneous estuarine channel. In the case that the
salinity redistribution is only due to advection, and during the flood the salinity
increases gradually towards the mixing zone (MZ). After this flooding event, there
will be a salinity decrease due to the influence of the river discharge dammed during
the flood. Then, the salinity time variation in a determined longitudinal position
(x) will be out of phase by approximately p/2 or a time interval of 3 h, for a
semi-diurnal tidal oscillation in relation to the tidal current as shown in Fig. 2.11.

In this hypothetical estuary, besides the oscillation of the barotropic velocity with
the same frequency as the tide, there will also be a low frequency uniform velocity at

Fig. 2.11 Tidal
co-oscillation at the mouth of
an estuary with infinite length,
generating a wave
propagation, η = η(0, t), a
tidal current, u = u(0, t) and
salinity temporal variation
S = S(t) (adapted from Dyer
1973)
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the cross section area (A). This component is generated by the river discharge (Qf),
and its intensity (uf) is given by the ratio Qf/A. This motion is always oriented
seaward (uf > 0), and the resulting velocity in the estuarine channel is:

uðx; tÞ ¼ uf þU0 cosðjx� xtþUÞ: ð2:25Þ

The tidal excursion (TE) is defined as the distance travelled by a water particle
along the mixing zone, MZ, starting from the rest at the estuarine mouth, during the
elapsed time interval between low and high tide. According to this definition, this
motion occurs during a time interval of half a tidal period (TP/2). In the assumption
that the horizontal axis, Ox, has its origin (x = 0) at the estuary mouth, the landward
velocity of this volume element is, according to Eq. (2.22), u(0, t) = U0cos
(−xt + U). To satisfy the initial condition, u(0, 0) = 0, it is necessary that, U = p/2.
Then, the tidal excursion, TE, may be calculated by the mean velocity at the origin
during the time interval Dt of half a tidal period (Dt = TP/2), times Dt (Harleman
1971) multiplied by the time interval of:

TE ¼ ½ 2
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2
Þ ¼ U0TP

p
: ð2:26Þ

In Eq. (2.26) the quantity 2U0/p is the theoretical mean velocity at the estuary
mouth during the time interval of half a tidal period (TP/2). From this equation it is
possible to verify that the tidal excursion is proportional to the velocity amplitude
(U0) and the tidal period (TP); for a semi-diurnal tide TP = 43082.0 s, and,
TE = 13,713.0U0. Then, if the estuary is forced by semidiurnal tides and the
amplitude of the tidal velocity is 1.4 m s−1, using Eq. (2.26) the following value for
the tidal excursion is calculated: TE = 19,200.0 m (�19 km). This value is only a
first approximation of the tidal excursion and the mixing zone MZ length, because
the energy dissipation and the channel geometry have not been taken into account.
From the relationship between U0 and η0 (η0c0/H0), the tidal excursion may be
calculated as TE = c0η0TP/pH0, and is directly proportional to the tidal amplitude
η0, to the wave celerity and the tidal period TP, and is inversely proportional to the
depth of the estuarine channel, H0.

It should be noted that the tidal excursion and the length of saline intrusion are
different physical quantities and, for the determination of the second property,
extensive theoretical and experimental studies were carried out and presented by
Prandle (2009). Its determination in salt wedge and partially mixed estuaries will be
studied in Chaps. 9 and 11.

Another quantity associated with the velocity, u = u(x, t) (Eq. 2.22) is the mean
root square (urms). This statistical quantity is equal to the positive value of the root
mean square of the mean velocity during one or more complete tidal cycles, that is,
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urms ¼
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This final has been obtained using trigonometric identities and reducing to the
simplest expression.

Let’s consider an estuarine channel with finite length L and a tidal wave trav-
elling landward which is reflected at the estuary head, originating a wave in the
opposite direction to the original wave. According to the superposition principle,
there will be a superposition of these waves. If they have the same frequency, phase
velocity and amplitude, and are propagating in opposite directions, with the free
surface elevation of the incident and reflected waves denoted by η1 = η1(x, t) and
η2 = η2(x, t), respectively, and under the assumption that the phase difference is
zero (U = 0), it follows the expression for the composite wave:

geðx; tÞ ¼ g1ðx; tÞþ g2ðx; tÞ ¼ g0½cosðjx� xtÞþ cosðjxþxtÞ	; ð2:28Þ

where (ηe(x, t) is the resulting oscillation. By applying the cosine of the addition
and subtraction rules to the angles (jx ± xt), this equation may be simplified to:

geðx; tÞ ¼ 2g0 cosðjxÞ cosðxtÞ: ð2:29Þ

This solution indicates that in a x longitudinal position, the motion of all par-
ticles oscillate as a simple harmonic motion. However, the wave amplitude 2ηocos
(jx) varies along the estuary with the following characteristics: it is zero in
determined and fixed points and has extreme positive and negative values, resulting
in an oscillation of a stationary wave. In the above solution (2.29), it is observed
that the motion amplitude has the value of zero when cos(jx) = 0, which occurs at
the longitudinal points x = k/4, 3k/4, 5k/4…, named nodal points In turn, the
maximum and minimum values of the amplitude are 2η0 and −2η0, respectively,
occurring when cos(jx) = ±1, that is, in the points x = 0, k/2, k, 3k/2, …, named
anti-nodal points, which are separated by half a wave length (k/2). The nodal points
are permanently at rest and the wave energy remains steady.

To calculate the longitudinal velocity component of the stationary wave ue =
ue(x, t), it is necessary to use the continuity Eq. (2.17), resulting the following
expression:

ueðx; tÞ ¼ 2
g0x
H0

sinðxtÞ
Z

cosðjxÞdx ¼ 2U0 sinðjxÞ sinðxtÞ; ð2:30Þ

which satisfies the boundary condition ue(0, t) = 0. The amplitude of the longitu-
dinal velocity of the water driven by the stationary wave is also dependent of its
longitudinal position. When sin(jx) = 0, corresponding to the positions x = 0, k/2,
k, 3k/2, …(anti-nodal points), the velocity is zero. When sin(jx) = ±1, that is, in
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the nodal points, x = k/4, 3k/4, 5k/4, … the amplitude of the velocity is equal to
two times those observed in a progressive gravity wave (2U0).

For a fixed longitudinal position (x), Eqs. (2.29) and (2.30) indicate that in the
time domain the nodal and anti-nodal points occur at t = T/4, 3T/4, 5T/4 and t = 0,
T/2, T, 3T/2 …, respectively, and the free surface oscillation and the velocity are
out of phase by a time angle p/2. By analogy in the case of a progressive wave,
considering only the advection of the tidal current in the salinity redistribution of a
vertically homogeneous estuary, and under the assumption that the channel length
is an integer multiple of k/2 (L = k, for example), a stationary oscillations will be
generate in the mixing zone (MZ). In the anti-nodal times the velocity is zero and
the advection in the salinity redistribution is null. However, in the nodal times,
flood and ebb tides will occur, driven by wave advection. In a real estuary, the
salinity will increase during the flood and decrease during the ebb, due to the fresh
water discharge mixing with the coastal saline waters, and the higher salinity values
are out of phase in the stationary wave of a p/2 (Fig. 2.12).

Estuaries don’t have a uniform geometry, and in general they become more
narrow and shallow towards the estuary head. As such, the tidal amplitude has a

Fig. 2.12 Tidal
co-oscillation at the mouth of
an estuarine channel with
finite length generating a
stationary wave ηe(0, t),
forced by the tidal current
ue(0, t) and salinity S(t) local
variations (adapted from Dyer
1973)
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tendency to increase up-estuary, but may simultaneously decrease due to the energy
dissipation resulting from friction drag, which has been neglected in the theoretical
development. As the estuary head usually isn’t a close extremity and there will also
be energy dissipation in the reflected wave, in most estuaries the wave oscillation is
a complex composition of progressive and stationary waves. According to the
relative importance of these interacting waves the resulting surface oscillation, the
tidal currents and the salinity vary from one estuary to another. A possible scenario
is presented in Fig. 2.13.

Applying Eq. (2.27), which defines the root mean square velocity (urms) to the
velocity of the stationary wave (Eq. 2.30), results in:

urms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

ZT

0

u2eðx; tÞdt

vuuut ¼
ffiffiffiffiffiffiffiffi
2U0

p
sinðjxÞ ¼ 1:4U0 sinðjxÞ: ð2:31Þ

Then, the root mean square of a stationary wave depends on the longitudinal
distance (x). As j = 2p/k, it follows that the urms = 0 or urms = 1.4U0 at the nodal
and anti-nodal points, respectively.

If a non-linear friction drag or a simple linear dependence with a friction coefficient
is introduced into the equation of motion (2.14), the solutions for the wave amplitude
η = η(x, t) and the velocity u = u(x, t) will, respectively, show exponential decline
and be out of phase with the longitudinal distance (x). Classical solutions may be
found in Defant (1960) and, more recently, in the article of Melo and Jorden (1999); in
the latter development the channel declivity was also take into account.

Fig. 2.13 Complex
oscillations due to the
composition of progressive
and stationary waves at the
estuary mouth η(0, t), due to
the tidal u(0, t) and salinity S
(0, t) possible scenarios
(adapted from Dyer 1973)

60 2 Circulation and Mixing in Estuaries



2.6 Non-dimensional Numbers

The English physicist and engineer Osborne Reynolds, was able to demonstrate in a
classical paper published in 1883, based in laboratory experiments of fluid flow in
pipes, that the transition of a laminar (well behaved) motion to a turbulent motion
may be determined by the multiplying the product of its mean velocity U by the pipe
diameter (Di), and then dividing by the coefficient of viscosity mc, [mc] = [L2T−1].
Then, this dimensionless number is calculated by the ratio UDi/mc, and now is known
as the Reynolds number; physically, this number compares the relative importance of
inertial and viscous forces to determine the characteristics of the flow.

Further investigations of fluid flow in channels with free surface, demonstrated
that the pipe diameter may be substituted by the channel depth (H0) to forecast the
regime of motion of liquids with uniform density; the Reynolds number is thus
defined as:

Re ¼ UH0

mc
: ð2:32Þ

In general, when Re < 2.0 � 103, the flow regime is laminar; however, when Re
is of the order of 1.0 � 105 or higher, the motion is fully turbulent, and in a
non-homogeneous fluid the mixing is intensified; between the orders of magnitude
2.0 � 103 and 1.0 � 105 the fluid flow regime is transitional.

In estuaries, the mixing of the fresh and salt water is also dependent on the vertical
stability of the layers in motion. In experimental investigations (Sternberg 1968) in
which the Reynolds number was calculated for estuaries forced by tides and with
different bed roughness characteristics, it was observed that Re varied between
1.5 � 105 and 3.6 � 105, for turbulent motions and the flow over geometrically
simple beds became fully turbulent at lower Re values than for beds of complex
roughness. In natural water bodies, such as rivers and estuaries, the Re = 1.5 � 105

always indicates a transitional change from laminar to turbulent motion.
There are several mechanisms that produce turbulent motions in an estuary: the

bed roughness, the velocity vertical shear, the wind stress on the surface, the surface
gravity waves and the internal waves. The intensity of the turbulent motion controls
the vertical distribution of the physical, chemical, biological and geological prop-
erties of the estuarine water mass.

The competition between the vertical stratification and the mixing forms an
important process in estuarine dynamics; if the vertical density (salinity) gradient
opposes the exchanges of motion by turbulence, an extra velocity shear is necessary
to cause mixing (Dyer 1977).

The analysis of the regime of motion in estuaries may also be investigate by the
dimensionless gradient Richardson number (Ri), defined by the English
Meteorologist Lewis Fry Richardson, in 1920, related to studies to forecast of
turbulent motions in the atmosphere. This number compares the stabilizing capacity
of the vertical density gradient (∂q/∂z) with the destabilizing capacity produced by
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the vertical velocity shear (∂u/∂z), and is very important for indicating the turbu-
lence occurrence in the fluid flow. Its analytical differential expression is:

Ri ¼ �
g
q
@q
@z

ð@u@zÞ2
� � gb @S

@z
ð@u@zÞ2

; ð2:33Þ

where the negative signal depends on the orientation of the vertical axis (Oz); in this
expression, it is positively oriented in the direction contrary to the gravity accel-
eration. In the last term on right-hand-side of this definition, it was used the linear
equation of state of seawater, [q(S) = q0(1 + bS), see Chap. 4)], and the simplifi-
cations q/q0 = 1, and b = const. (�7.0 � 10−4 is the approximate value for salinity
contraction coefficient). This number also provides the quantitative information on
the relationship between the buoyancy stabilizing force of the vertical density
(salinity) gradient ∂q/∂z (∂S/∂z), to the destabilizing capacity produced by the
vertical velocity shear ∂u/∂z.

The Ri number also indicates the tendency of the water column to be either: very
stable and stratified, or weak stratified, indicating the possibility of a turbulent fluid
flow. From Eq. (2.33), it follows that Ri > 0 correspond to a vertical stability (∂q/
∂z < 0 or ∂S/∂z < 0), or alternatively for Ri < 0 vertical instability (∂q/∂z > 0 or
∂S/∂z > 0). It should be pointed out that usually the estuarine water mass is in a
non-steady-state and the Richardson number is also time dependent Ri = Ri
(x, y, z, t).

When the vertical salinity gradient in a given depth is negative (∂S/∂z < 0), the
turbulent flow may be attenuated and the flow regime may develop into a laminar
flow. However, above and below this depth the flow regime may be turbulent.
Several scientific theoretical and experimental investigations were conducted to
understand the mechanisms of the formation and increases of instabilities in
stratified fluid interfaces. From these studies it has been found that in uniform
motions the transition of the laminar to the turbulent regimes usually occurs for
Ri = 0.25. When Ri < 0.25, the turbulence surpasses the vertical density stratifi-
cation generating vertical mixing.

The vertical salinity (density) stratification and the velocity shear during a tidal
cycle generate variations in the Richardson number at different positions.

For instance, in a given position in the MZ, due to these variations Ri is usually
named the local Richardson number. An analysis on the variation of this number
was made by Blumberg (1975), with hourly measurements of velocity and salinity
in the Potomac River (Virginia, USA), during tidal cycles in a water column of
10 m depth. From this analysis, the Ri values were found to vary almost randomly
with depth and time, with the maximum positive value occurring at the depth of the
maximum vertical salinity gradient. The vertical distribution of Ri presented high
vertical stability in some depths, separated by layers of low stability. However,
using time mean values of salinity and velocity during the tidal cycle, the highest Ri
values occurred at 6 m depth, associated with the highest vertical salinity gradients.
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The Richardson number was also applied in studies of the internal structure of
the Frazer river estuary (Vancouver, Canada), during length variations of the saline
intrusion forced by the tidal oscillations (Geyer and Farmer 1989). The analysis of
the calculated values at 0.5 m depth intervals were compared to the vertical profiles
of the longitudinal velocity component and the salinity. In the obtained results the
Ri value remained very close to 0.25 in the layers above and below the halocline.
This number presented high values (Ri > 25.0) in the halocline layer with the
maximum density vertical gradient and small velocity shear.

Although the variables needed to calculate the Ri number may be accurately
measured with the equipment now available to perform profiling of physical
properties, it is also useful to use global properties of the water column, and the
layer Richardson number (RiL) has been defined as:

RiLðt) ¼ gh(t)DhV
qu2

� gh(t)DhV
u2

; ð2:34Þ

where h = h(t) is the local depth, Dqv (DSv) is the difference between the bottom
density (salinity) and its value at the surface, and u ¼ uðt) is the mean u-velocity
component in the water column which also varies during the tidal cycle Bowden
(1978). The time dependence of this dimensionless number was investigated by
Dyer and New (1986), showing that; (i) RiL = 20 is the upper limit for which
turbulent mixing occurs near the halocline in partially mixed estuaries; (ii) below
this critical number, RiL < 20, the bottom turbulence becomes effective to the
vertical mixing process in the water column; (iii) below RiL = 2, turbulent mixing
is completely isotropic and the water column is unstable; and (iv) for RiL > 20, the
water column is stable with low vertical mixing.

The criteria of Dyer and New (op.cit.) were applied by Miranda et al. (2012) in
the analysis of hourly current and hydrographic properties measurements during
spring and neap tide in the Piaçaguera estuarine channel, located in the upper
reaches of the Santos-São Vicente estuary (Chap. 1, Fig. 1.5). The sampling was
made in the austral winter, when the channel was partially mixed and weakly
stratified. In the spring tidal cycle (Fig. 2.14a), the calculated values were lower
than the critical value, i.e. RiL < 20 with one exception and it is expected that
bottom turbulent mixing became effective, making easier the interchange of the
water mass of the bottom and upper layers. During the neap tidal cycle, with a few
exceptions, the RiL is higher than 20 (RiL > 20), as shown in Fig. 2.14b, indicating
a stable vertical water column, preventing the water masses vertical interchange.

The river discharge may be thought of as a source of deficit of potential energy
due to the seawater dilution in the MZ, and, due to the density increase, and the tide
as source of kinetic energy to overcome the deficit. Otherwise, the river discharge
may be interpreted as a buoyancy source which may be quantified by the product,
gDqHQf, [gDqHQf] = [MLT−3], where DqH is the density difference between sea-
water and freshwater, and is proportional to the barotropic velocity. These physical
arguments, associated with laboratory experimental results of circulation in open
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channels, were used by Fischer (1972) to define a dimensionless number (Rie)
named Richardson estuarine:

Rie ¼
g DqH

q Qf

Bu3rms

: ð2:35Þ

In this equation, B is the mean (or local) estuary width, q is the mean density of
the estuarine water mass, and u3rms is the third power of the root mean square of the
u-velocity component. When the tidal wave is approximate to a progressive wave,
we have already shown that urms = 0.7U0 (Eq. 2.27, Chap. 2). As the horizontal
stratification of the estuarine water mass is associated with the low frequency
variation of the river, mean density values during tidal cycles must be used to
calculate this dimensionless number. This estuarine number is physically inter-
preted as: when Rie is relatively large, the estuary is highly stratified and dominated
by the river discharge. Alternatively, if Rie has a low value, the estuary is weakly
stratified and forced by the tide. In a first approximation, the transitional regime
occurs when 0.08 < Rie < 0.8 (Fischer et al. 1979).

To forecast the regime of the flow in highly stratified estuaries an alternative
dimensionless number was defined by the comparison of the relative velocity on the
upper layer, u1, with the velocity of the progressive internal wave propagating in the
interface of a highly stratified halocline. Considering a shallow upper layer with
depth, H1, and density, q1, in motion with velocity u1, over a deep layer with
density, q2 (q2 > q1), the internal wave celerity (c0) at the interface, is given by
(Defant 1960):

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H1g
Dq
q2

s

¼
ffiffiffiffiffiffiffiffiffi
H1g0

p
: ð2:36Þ

Fig. 2.14 Hourly variation of the layer Richardson number in the Piaçaguera estuarine channel
(São Paulo State, Brazil) during spring (a) and neap (b) tidal measurements (according to Miranda
et al. 2012)
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In this definition Dq is the density difference of the lower and upper layers
(q2 − q1) and gDq/q2 is the reduced gravity (g′). An alternative number, which has
been called interfacial Froude number 1 (Fi), was defined based on a simple theory
and experimental results (Stommel and Farmer 1952):

Fi ¼ u21
H1g

Dq
q2

¼ u21
c0

; ð2:37Þ

where u1 is the mean velocity in the upper layer. Thus, the interfacial Froude
number compares the fluid speed to the wave speed propagation at the fluid
interface. According to the Dyer (1997) in subcritical condition Fi < 1 the fluid
speed is lower than the internal wave celerity. However, when u1 approaches the
internal wave celerity, a wave or perturbation can only travel upstream very slowly
and, as the wave energy accumulates, the wave amplitude grows until critical
conditions for Fi = 1, and the wave will break with energetic mixing. The thickness
of the flowing layer will abruptly increase generating an increase in fluid velocity,
and the flow changes to a supercritical condition Fi > 1. This situation is known as
the internal hydraulic jump, in analogy to the hydraulic jump phenomenon gen-
erated when a stratified fluid passes over an obstacle located at the bottom.

The interfacial Froude number may be written as a function of the river dis-
charge and geometric dimensions of the estuary, such as the width (B) and depth,
H0. Writing the river discharge as Qf = ufBH0, the densimetric Froude number may
be defined as (Hansen and Rattray 1966):

Fm ¼ ufffiffiffiffiffiffiffiffiffiffiffiffiffi
H1g

Dq
q2

q ¼ Qf

BH0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H1g

Dq
q2

q ¼ Qf

BHo
ffiffiffiffiffiffiffiffiffi
g0H1

p : ð2:38Þ

This number is also known as the estuarine or internal Froude number, and a
critical number can be achieved by a constriction at the mouth or by a shallow sill
depth (Dyer 1997). When the river discharge is weak, Fm ! 0, and the phe-
nomenon of over-mixing can occur, and may be observed when the fluid interface
(H1), between the upper and lower layers, is equal to half of the water depth
(1/2H0). This phenomenon has been investigated in laboratory experiments and
theoretically by Stommel and Farmer (1952), to explain why, for a stratified
estuary, its mouth is a limiting condition to the exchange of salt with the continental
shelf.

Equation (2.38) is equivalent to another dimensionless number obtained by the
ratio, uf/(gH0q

−1Dq)1/2, named densimetric Froude number, which is the ratio the
velocity generated by the river discharge (uf) divided by the internal circulation

1The designation of the Froude number was given in honor of William Froude (1810–1879),
engineer and naval architect who established the main similarity of reduced ship models and the
natural dimensions, introducing the dimensionless number V/(gL)1/2 where V and L are the
velocity and the ship length at the water level, respectively, and g is the gravity acceleration.
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potentially generated by the density gradient (gH0q
−1Dq)1/2 (densimetric velocity),

thus defining the densimetric Froude number. This dimensionless number may be
applied to estuaries that are highly stratified, where the velocity above the halocline
is mainly driven by the river discharge. There is also the internal Froude number
(Fi), expressed by:

Fi ¼ u
ffiffiffiffiffiffiffiffiffiffi
hg Dq

q2

q ¼ u
ffiffiffiffiffiffi
hg0

p ; ð2:39Þ

where the velocity u is a mean velocity value and h is the water layer depth.
The estuary number (Ne) was defined by Dyer (1997) by the following ratio,

Ne ¼ TPRF2m
TPQf

¼ TPF2m
R

: ð2:40Þ

where TPR is the tidal prism, Fm is the densimetric Froude number (Eq. 2.38), and
TP is the tidal period and Qf is the river discharge. This definition involves the ratio
of the tidal prism to the fresh water volume discharged during a tidal cycle
R = TQf, and some experiments indicate that when Ne > 0.1 or Ne < 0.1, the
estuary is well-mixed or stratified, respectively.

When the wind stress on the surface layer is an important driving force its
influence in a highly stratified estuary may be estimated by a dimensionless number
named Wedderburn. It has been used to investigate the influence of the wind stress
in lakes and reservoirs with high vertical temperature stratification. This number,
defined by Thompson and Imberger (1980), is calculate by the ratio of the
Richardson number and the estuary aspect ratio d:

W ¼ Ri
d
; ð2:41Þ

where, d = L/H0, is the ratio of the longitudinal dimension of the water body, L, to
its depth H0.

Considering an estuary that is vertically stratified and forced predominantly by
the wind, the numerator of Eq. (2.41) may be substituted by the following modified
Richardson number:

Ri ¼ gDqHH1

qu21
; ð2:42Þ

In this definition DqH, u1 and H1 are the density variation along the estuary, the
velocity, and the depth of the layer over the halocline, respectively. Combining
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Eqs. (2.41) and (2.42), it follows the analytical expression of the estuarine
Wedderburn number, We:

We ¼ gDqHH
2
1

qu21L
� gDqHH

2
1

swL
; ð2:43Þ

in the last expression the quantity qu21 was approximated by the wind stress shear,
sw.

Equation (2.43) indicates that We is directly proportional to H2
1, the horizontal

density stratification, and is inversely proportional to the wind stress multiplied by
the estuary length. When the wind stress forcing is predominant, We < 1, and it has
the main contribution to the dynamic behavior and mixing of the layer above the
halocline. Alternatively, when We � 1 the longitudinal density stratification and
the buoyancy due to river input prevails over mixing.

An example on the use of the Wedderburn number to establish the importance of
wind stress on the dynamics of two small and shallow (mid-channel depth 1–2 m)
estuaries, the Childs and Quashnet, located in the Waquoit Bay (Cape Cod, USA) is
presented in the article of Geyer (1997). This study demonstrated the strong
influence of wind forcing on salinity structure and flushing characteristics of these
estuaries. For most of the observations We < 1, indicating the important role of
wind stress in these estuaries. The sensitive dependence of this number on depth
explained why the gentle winds observed during the surveys had such a profound
influence on the estuarine dynamics; onshore winds inhibit the estuarine circulation,
increasing the longitudinal estuary salinity gradient, and reducing the flushing rate.
However, offshore winds enhanced the surface outflow, flushed out the freshwater
and reduced the longitudinal salinity gradient.

An alternative expression to the dimensionless flux rate, FR, may be obtained
with theoretical results previously defined in this chapter. This number is deter-
mined by the ratio of the volume of river water discharged during a tidal cycle, R,
and the tidal prism, TPR. If, A, is the mean transversal section of the estuary mouth,
the fresh water volume may be calculated by the product R = QfT = AufT. Thus,
under the assumption of a progressive tidal wave propagating landward, TPR = A
(2U0/p) and 2U0/p, are the tidal prism and mean velocity during half tidal cycle,
respectively. Then, an alternative expression for the flux ratio is:

FR ¼ p
uf
U0

¼ 3:14
uf
U0

; ð2:44Þ

which is directly and inversely proportional to the velocity of the river discharge
and the amplitude of the velocity generated by the tide, respectively. As such, this
number will be large or small or when the estuary is dominated by the river
discharge or the tide, respectively.

Others dimensionless numbers will be defined in the following chapters related
to the estuary classification, according to the acting processes: river discharge,
salinity stratification, and mixing processes. Among these there are the
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dimensionless numbers: (i) Ekman number, Ek = mk/fCD
2, where mk, fC and D are

the kinematic viscosity coefficient, the Coriolis parameter and the vertical length
scale, respectively; and; (ii) Kelvin number, Ke = B/RD, where B is the estuary
width and RD is the deformation radius, RD = (NBV)/fC, with NBV indicating the
Brunt-Väisälä frequency which arises in the presence of a background stratification,
and the fluid parcel perturbed vertically from its starting position experiences a
vertical acceleration.

2.7 Mixing and Entrainment

The term mixing is applied to multitude of physical processes occurring internally in
the seawater, which tend to produce uniformities in concentrations of physical,
chemical, biological and geological properties. There are two processes that con-
tribute to mixing: (a) advection (or advective), characterized by regular patterns of
water movement on a macroscopic scale; and (b) diffusion (or diffusive), charac-
terized by microscopic or small-scale irregular movements called turbulence, which
together with molecular diffusion give rise to the local exchange of property, without
any net transport of water (Okubo 1970; Bowden 1975, 1977). The advective and
diffusive tidal forcing are the main processes which produces to the mixing of the
river and salt water, contributing to the salinity stratification characteristics.

The mixing of salt and fresh water is carried out by a combination of turbulence
generated by the current shear mainly due to tidal currents in the water column, and
at the sea bed. These two effects vary in their magnitudes and timing during the tide,
as well as in different estuarine types, as the salinity stratification and tidal velocities
changes. Competition between stratification and mixing play a crucial part in
estuarine dynamics because when the fluid is stratified, the density gradient resists
to the exchanges of momentum by the turbulence and an extra velocity shear is
necessary to cause mixing, and thus influence the distribution of natural water
properties and those discharged into the estuaries. The role of internal mixing
processes (mixing, turbulent diffusion and internal waves) and its main character-
istics are presented in the Dyer’s (1997) book and a brief outline is given below.

In an estuary with small tidal amplitude that may be neglected and a moderate or
high river discharge, the water discharged into the estuary head moves seaward
flowing persistently on the surface layer due to its relatively low density. During
this flow, and at Ri > 0.25, instabilities at the stratified interface take the form of
cusps or progressive interfacial Holmboe waves, which grow in height and became
sharper crested. Eventually they break, and wip-like elements of denser water are
ejected from the crests into the upper lighter layer. This upward transference of salt
water is unidirectional, and this phenomenon is known as entrainment. Its impor-
tance to the estuarine dynamics has been presented in the pioneering article of
Keulegan (1949) based on laboratory experiments. A vivid description of mixing in
a natural estuary has been given by Farrel (1970—quoted in Dyer 1997, p. 45),
showing that entrainment is a one-way process in which a less turbulent water mass
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become drawn into a turbulent layer; it is an internal mechanism, besides the
advection and turbulent diffusion to the estuarine mixing, occasioning salinity
increase in the upper layer. The balance of the volume transport down and
up-estuary in the upper and lower layers, as well as the transport associated with the
entrainment, were calculated using the continuity of fresh water by Tully (1958).

The above process may be superimposed to the turbulent diffusion which may be
subdivided into three types (Bowden 1977): (1) On or near the bottom due to the
frictional shear, which propagates into the water column; (2) Generated inside the
water layer due to the turbulent diffusion, which may be dumped by the vertical
stratification; and (3) Turbulent diffusion on the free surface due to the wind stress,
generating gravity waves and drift currents. Generally, when the river discharge is
intense and the tidal amplitude is small the entrainment is the mechanism which
predominates; however, the higher the tidal amplitude, the higher is its influence to
generate mixing through the processes of advection and diffusion.

The estuarine flow usually occurs in a transitional regime from laminar to tur-
bulent, generated by microscopic and macroscopic scales of motion, respectively.
Mainly due to tidal oscillations the entrainment, turbulent diffusion and advection
are the processes responsible for the mixing of the fresh and salty water masses, the
local and spatial salinity, and temperature, as well as, the concentrations of natural
properties and pollutants launched into the estuaries. Unfortunately the fresh water
discharged into estuaries and its geometry has been altered and this external
interference will alter the circulation, the assimilation and mixing processes, and
water mass renewal in these very important coastal ecosystems.
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Chapter 3
Estuary Classification

The hydrographic and morphologic characteristics of estuaries are very diverse,
varying with changes in response to natural and non-natural phenomena as climate
changes and human interference, and often show conflicting situations that make
oceanographic generalizations impossible. Until sixty years ago, studies of these
environments interpreted such variations as local phenomena.

Estuary classification criteria were developed with the aim of comparing dif-
ferent estuaries by categorizing them, using a database of their main characteristics.
The known estuary classification schemes are based on salinity-stratification, river
discharge, circulation and mixing and they allow the main characteristics an estu-
ary’s circulation and mixing processes to be forecast.

The first estuary classification was suggested by Stommel (1951), taking into
account the main forces such as tides, fresh water discharge and wind. The estuaries
in the USA, which are formed by the Raritan, Pamlico Sound and Mississippi rivers
in the states of New Jersey, North Caroline and Lousianna have tide, wind and river
discharge, as primary forcing, respectively. The remarkable characteristic of those
estuaries is the vertical salinity stratification. The Raritan estuary, which is the
shallowest, is forced by tides of moderate height and is almost vertically homo-
geneous. The Mississippi estuary, which is the deepest, is forced by micro-tides and
is the most stratified due to the huge river discharge of the Mississippi river into the
Gulf of Mexico characterized by microtides. However, in most estuaries, it is
difficult to identify a single force that predominates the circulation and mixing
processes.

Estuaries forced by tides were the most studied type of estuary in the 1950s.
They were characterised by tidal generate velocities which were more intense than
velocities generated by river discharge. The most noticeable difference between the
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three previously mentioned estuarine types is the vertical salinity stratification, the
most extreme case being the vertically homogeneous Raritan river estuary, with a
mean depth of only 3 m.

One of the classical classification criteria was developed taking into account
geomorphologic characteristics (Pritchard 1952a), which grouped estuaries into the
following types: coastal plain (formed due to the river valleys flooding), fjord and
bar built.

The density (salinity) variations in estuaries that generate currents due to the
mixing of the fresh and salt water, motivated Stommel (1953) to examine the
physical characteristics of estuaries using the following examples: estuaries with
negligible mixing (salt wedge), deep estuaries (such as fjords), and estuaries with
moderate and intense mixing. These classification systems received improvements
through the work of Pritchard (1955) and Cameron and Pritchard (1963), taking
into account characteristics related to vertical salinity stratification, salt budget and
the steady-state circulation. For classification criteria, Simmons (1955) used the flux
ratio (FR) as a parameter defined by the ratio of the fresh water volume discharged
into the estuary in the tidal period (QfTP) by the tidal prism (TPR), FR = QfTP/TPR,
as a parameter to indicate the vertical stratification changes in the estuary. Ippen and
Harleman (1961) and the contemporary papers of Harlemann and Abraham (1966)
and Hansen and Rattray (1966) contributed towards a quantitative estuary classi-
fication system; initially, the stratification number was introduced, followed by the
theoretical development of a classification method with the Stratification-circulation
Diagram, which uses the stratification and circulation parameters.

The Stratification-circulation Diagram was theoretically deduced with the most
complete and comprehensive theoretical development of a steady-state
bi-dimensional analytical model with a simple geometry, whose dynamical for-
mulation will be presented later. In this diagram it is also possible to obtain the
relative contributions of the salt transport due to advection and mixing, which
control the concentration of dissolved substances in the estuary. This diagram,
representing the state of the art of estuary classification, was further complemented
by several researchers, confirming the originality of this classical theoretical
development (Fischer 1972; Hamilton and Rattray 1978; Rattray and Uncles 1983;
Prandle 1985, among others).

It is useful to add the dynamics of the ecology aspects of the estuarine systems to
these classification systems, enabling biologists and ecologists to use comparative
methods more adequately. The main elements of the ecological classification were
chronologically described by Yãnes-Arancibia (1987), emphasizing that the
hydrodynamic and geomorphologic processes are connected to the ecology of
marine ecosystems. In addition, processes such as erosion, deposition and sediment
transport are natural features of coastal environment, and thus also affecting the
ecology of the marine ecosystem. Yãnes-Arancibia (op. cit.) provided the ecolog-
ical classification taking into account interdisciplinary criteria related to the energy
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sources and the ecological diagnostic. Among the studies with ecological scope of
Brazilian estuaries we must mention the works of Tommasi (1979) in the
Santos-São Vicente Estuary (São Paulo), Knoppers et al. (1987) and Brandini et al.
(1988) in the estuarine region of Paranaguá Bay (Paraná), Sankarankutty et al.
(1995) in the Potengi river Estuary (Rio Grande do Norte), and Tundisi and
Matsumura-Tundisi (2001) in the Estuarine-lagoon System of Cananéia (São
Paulo).

3.1 Geomorphologic Types of Estuaries

Geomorphologic classification criteria was presented in Pritchard (1952a, 1967),
grouping the estuaries according to their geomorphological structure into the four
types already mentioned: coastal plain estuaries, fjord, bar built (or coastal
lagoons), and tectonically formed estuaries. Each type exhibits a somewhat similar
dynamic behavior in terms of water circulation and mixing.

3.1.1 Coastal Plain

These estuaries are typical of coastal plain regions and were formed during the
Holocenic sea level transgression, when former river valleys became increasing
more flooded by glaciers melting. The flooding process was more intense than the
sedimentation, and the geomorphic characteristics of the estuaries remained similar
to those of the rivers. These estuaries are relatively shallow, with very few deeper
than 30 m. They are bordered by broad shallow flats, and a typical cross-section
sometimes increases in size down estuary and consists of a V-shaped channel. The
width to depth ratio is usually large, but it depends on the rock type where the river
valley has been formed. Due to recent erosion processes in the river, the bottom in
the upper estuary is filled with mud and fine sediments, but the estuary bed in its
lower reaches may be filled with coarse sediments due to the bottom erosion and
sediment transport.

In general, coastal plain estuaries are localized in tropical and subtropical regions
and are common along the east coast of the USA and South America. These
estuaries vary greatly in size. For example, the Chesapeake Bay with nearly 300 km
of length, and 25 km wide, this is the largest coastal plain estuary in the USA.
Delaware Bay, South Caroline, Charleston Harbor, and the Hudson River are other
examples of coastal plain estuaries. Estuaries of this type are also common in Brazil
and include the Potengi, São Francisco, Doce, Contas, Caravelas and Peruípe rivers
in the east and northeastern Brazilian coast. Others have been described by Officer
(1976), Dyer (1973, 1997) and in South America by Kjerfve (1989).

3 Estuary Classification 75



In these estuaries the width to depth ratio is large, and the flux ratio is dependent
on the river discharge intensity and the tidal height. The suspended sediment
transport in estuaries formed by rivers with high discharge usually is also large.

3.1.2 Fjord

Fjords also owed their origin to the last glaciation cycle during the Pleistocene. Due
to the advance of glaciers, the high pressure of these ice caps over the continental
blocks and their erosive power during melting, tongues of the leading ice edge
scoured out many river valleys in latitudes above 45° (Fairbridge 1980; Dyer 1997).
As a consequence of the decreasing power of this erosive process towards the sea, a
steep rock bar (sill) usually formed seaward of the leading ice edge. This sill is
caused by the scoured material from the basin was pushed forward by the
advancing glacier and deposited at the leading edge. After the retreat of the glacier
the sill remains. Whereas the water column over the sill generally varies between 10
and 90 m, the depth inside the fjord basin often exceeds 800 m, and extends to
several hundred kilometers inland. Fjords are common in both hemispheres in high
latitude regions, where there has been glacial activity (e.g. in South of Chile, New
Zealand, Norway and other).

Because fjords are too deep and the water exchanges with the adjacent ocean is
limited by the sill depth, the fresh water flow and the circulation are confined to a
shallow upper layer; the motion towards the sea, due to the entrainment in the fresh
and salt water interface, generates a salt transport into the upper layer. Below this
and down to the bottom, the water mass is almost isohaline and the fresh water
transport during the spring and summer is dominant in the tidal prism. The upper
layer depth has little variation along the fjord and its volume transport increases
towards the sea.

The water depth above the halocline is almost the same as the sill depth, and
during events of high fresh water discharge it is an almost homogeneous layer; the
entrainment process intensifies generating a moderately or highly stratified salinity
in the upper layer. However, when the river discharge decreases, the upper layer
characteristics change to high stratification near the sill, and high stratification up to
the surface. Due to the large depth, the temperature decreases towards the bottom,
but due to fresh water inflow from ice melting, temperature inversions in subsurface
layers may occurs (Pickard 1961, 1971).

Sill depths restrict the water interchange between the fjord basin and the ocean,
and may cause anoxic conditions which are detrimental to the biological commu-
nity especially during the summer when there is high vertical stability of the water
column. Favorable conditions to the biological community may be re-established in
the autumn and winter, with water renewal occurring by deep convective
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overturning. Examples of deep and very long fjords in Norway are the Sögnne and
Hardanger fjords, which have depths of almost 1200 m Saelen (1967).

As fjords are deep estuaries, their width to depth ratio is relatively small com-
pared with coastal plain estuaries, and they are characterized by an almost rect-
angular vertical section. Their geologic formation justifies both these
characteristics: a rock bottom and recent sedimentation process occurring mainly in
the river mouths. In the winter their fluvial discharge may be very low or even
absent. Due to the higher velocities in the sill, the circulation in the mouth may be
very different from the circulation observed in the shallow mixing zone. Schematic
vertical salinity and velocity profiles are presented in Fig. 3.1.

3.1.3 Bar-Built (or Coastal Lagoons)

The bar-built estuary is the third largest group of estuaries, according to Pritchard
(1952b). They were also formed as the coastal plain estuaries (former river valleys)
became increasingly more flooded by glaciers melting, but the recent coastal sed-
imentation processes caused the development of an offshore bar on a shore line of
shallow water. In general, bar-built estuaries are associated with coastal regions
subjected to erosive processes which can easily produce great quantities of sedi-
ments that are reworked by waves and transported by coastal currents. These
estuaries are usually shallow (less than 20–30 m deep) and may be composed of a
channel and lagoons that may exists between the open sea and the estuary. The
discharging river (or river system) into the estuary, besides its variable discharge
depending on the season, may transport a great quantity of suspended sediments,
generating seasonal changes in the mouth or bar entrance. During the seasons of
high river discharge, bar-built estuaries may be partially or completely eroded, but
they are reestablished in periods of lower river discharge. This estuary type is
common in tropical regions and is referred to in the Brazilian terminology as
estuarine-lagunar, such as in the Cananéia-Iguape region in the Southern São Paulo
State (Fig. 1.5, Chap. 1).

Fig. 3.1 Schematic vertical profiles of salinity and velocity in fjords (according to Dyer 1973)
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Lagoons exhibit a larger fractional area of open surface area oriented parallel to
the coast, whereas coastal plain estuaries are most often oriented normal to the coast
(Fairbridge 1980). Lagoons also have a less well-drained subaqueous drainage
channel and are uniformly shallow over large areas. The physical processes are
mostly wind-dominated, and tidal forcing having a minor influence. Further details
on coastal lagoons will be described later.

3.1.4 Tectonic, Deltas and Rias

Estuaries that do not fit in the preceding geomorphologic classification are cate-
gorized as tectonic estuaries, formed due to: tectonic fault, earth shakes and slides,
and volcanic eruption. This category also includes estuaries affected by morpho-
dynamic processes of sedimentation with emphasis on coastal environments like
deltas and rias.

The best example and extensively studied estuary in this group is San Francisco
Bay (see Officer 1976; Conomos 1979). Tectonically caused estuaries exhibit much
variability, and some may behave oceanographically similarly to coastal plain
estuaries, fjords or lagoons, depending on the local constraints (Kjerfve 1989).

In the age and geological estuary formation presented in Chap. 1, it was stated
that estuary formation was largely due to the extensive glaciations of about
10,000 years ago. From this epoch, these coastal environments were progressively
eroded and filled by sediments furnished by rivers and littoral transports, and
re-worked by the occurrence of eustatic oscillations in this time period (Fairbridge
1980). In the regions forced by large tidal oscillations (macrotides) with moderate
or high waves and fluvial transport with high sediment concentrations, the recent
sedimentary processes resulted in the generation of islands inside the estuary. This
type of estuary is called an estuarine delta or flood delta. One of the most spec-
tacular is the tropical delta of the Amazon River in the Brazilian littoral north, with
a funneled geometry. Again, in the case of high sediment concentrations, but in
regions forced by tides with low height (microtides) with moderate wave energy,
the sedimentation process will be localized in the inner continental shelf and in the
vicinity of the estuary mouth, generating sand banks and islands, forming an ebb
delta or a simple delta. The delta of the Mississippi river, in the Mexican Golf is a
classic example (Wright 1970). These deltaic formations, estuarine deltas or flood
and ebb deltas are dominated by tidal height and river discharge, respectively.

Ria estuaries are typical of high latitude mountain regions, formerly occupied by
glaciers. They originated tectonically due to the increase in elevation of the con-
tinental region where former river valleys were located, as a result of the weight
decrease of the glacial melting. The river valleys were flooded by the sea level rise,
generating the estuaries. In general a ria estuaries has an irregular morphology and
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are fed by rivers basins located in the adjacent region. Their geometry may be a
channel in between mountains or a funneled geometry with depth increasing sea-
ward which may amplify the co-oscillating tide.

Figure 3.2 schematically shows some described estuarine types, according to
their physiographic classification of Fairbridge (1980).

Fig. 3.2 Basic estuarine physiographic types (according to Fairbridge 1980)
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3.2 Salinity Stratification

Estuaries classified according to geomorphologic type, as previously described,
have great differences in their circulation patterns, salinity stratification and mixing
processes. The classification criteria according to the salinity stratification may
enable the main circulation characteristics in the MZ to be quantitatively estab-
lished, taking into account the great majority of coastal plain estuaries. This clas-
sification considers the dominant terms of the steady-state equation of salt
conservation, establishing the balance of the advection and diffusion terms, which
will be studied in detail in Chap. 7. According to the vertical salinity stratification
the following estuary types were defined: salt wedge (type A), moderately or
partially mixed (type B), vertically well-mixed and laterally stratified (type C) and
well-mixed (type D). The transition between these estuarine types is dependent upon
the river discharge, tidal amplitude, the baroclinic component of the gradient
pressure force and the geometric characteristics as the ratio of width/depth
(Pritchard 1955; Cameron and Pritchard 1963).

3.2.1 Salt Wedge Estuary (Type A)

Salt wedge estuaries are typical in regions that experience micro and meso tides and
high river discharge. They are mainly dominated by river discharge, and the
entrainment process causes a seaward increase in salinity in the upper layer, while
the mixing by turbulent diffusion is neglected, and a slow landward circulation in
the bottom layers is observed. Due to variations in the river discharge intensity and
the tidal forcing, the salt water wedge doesn’t remain stationary but has slow
displacements (Stommel 1953; Geyer 1986).

Due to the continuous seaward motion in the surface layer, which may be
deflected by the Coriolis acceleration, the velocity shear in the interface (fresh and
salt water) may led to an entrapment of some salt water from the wedge into the
upper fresh water layer. In this situation there is little or no mixture of fresh water
into the salt wedge. The upper layer now increases its salt water volume as it moves
seaward, and there must be a slow upstream movement of water in the salt water
wedge to compensate for the loss upward into the fresh water. According to
Pritchard (1955) laboratory studies of salt wedge estuaries performed by Keulegan
(1949), utilizing flumes of various sizes, described this process well. When the
relative velocity between these interfaces becomes very intense, the interfacial
Froude number (Fi—Eq. 2.38, Chap. 2) reaches the critical value (Fi = 1.0); in this
condition, internal breaking waves occur in the interface generating turbulent
motion which produces the mixing of the upper and lower layers. In such an
estuarine system, the two dominant terms in the salt balance would be the hori-
zontal and vertical advections. For more details see Pritchard (op. cit.).

This estuarine type is schematically shown in Fig. 3.3 and, in agreement with the
experimental results of Keulegan (1949) it follows that: the mass continuity is
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preserved by the low intensity motion of the salt-wedge up-river, to replace the sea
water parcel that is advected seaward in the upper surface. This process adds salt
water into the estuary’s upper layer separated by sharp halocline (and hence pic-
nocline) and the volume transport and salinity increase towards its mouth. The
depth of null velocity due to the bidirectional motion is located in the halocline, and
the thickness of the salt water layer is controlled by the critical interfacial Froude
number (Stommel and Farmer 1952).

Longitudinal and vertical distributions of salinity and velocity vertical profiles, in
the hypotheses of absence and presence of shear stress due to the interfacial friction
are presented in Fig. 3.4a, b. In this type of estuary, in which the width/depth ratio is
usually great, the flux ratio (the fresh water volume discharged during a tidal cycle is
greater than the input of sea water volume during the low and high water) is great,
showing that the circulation is dominated by the river discharge.

Fig. 3.3 Salt wedge estuary diagram. The vertical arrows in the interface between the
bidirectional motions, indicate the entrainment process occurrence (according to Pritchard 1989)

Fig. 3.4 Schematic diagrams of the salinity stratification and velocity profiles in a salt wedge
estuary. Conditions (a) and (b) indicate without and with interfacial friction, respectively
(according to Dyer 1973)
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The interfacial Froude number, which is an indicator of the vertical stability, was
calculated for the South Channel of the delta of Mississippi river (Mississippi,
USA) in different positions in the salt-wedge, and the values obtained varied from
0.41 (in the upper region of the salt-wedge) to 0.69 and 0.80 in the mouth, showing
a stable vertical stratification at the wedge interface (Wright 1970).

Analytical uni and bi-dimensional models of salt wedge estuary will be studied
in Chap. 9. Specifically, the circulation and the upland distance of the salt-wedge
penetration will be determined by considering the longitudinal pressure gradient
force and intensity of the fresh water input, which is controlled by the friction at the
river/salt water interface. Classical examples of salt-wedge structures have been
observed in several estuaries, such as: Velar estuary in India (Dyer and
Ramamoorthy 1969), the delta of the Mississippi river (Wright 1970), Duwamish
river estuary (Dawson and Tilley 1972) in the USA, and the estuary of the Fraser
river in British Columbia (Canada) which has high fresh water discharge and is
forced by mesotides (Geyer 1986; Geyer and Farmer 1989).

As a synthesis of what has been described above, the salt wedge estuary is
characterized by high river discharge, low tidal currents and entrainment, gener-
ating a highly vertical stratified estuary. Further knowledge on the steady-state
dynamical characteristics of this estuary and the salt-wedge intrusion length will be
studied in Chap. 9.

3.2.2 Moderately or Partially Mixed (Type B)

With the co-oscillating tidal forcing, the entire water mass in the estuary will be
periodically agitated. This occurs even at small tidal heights; however, the agitation
will only be intense enough to bring about an accentuate erosion of the halocline
when the flux ratio is small (<1). Estuaries with moderate vertical salinity gradients
are classified as partially mixed (or type B), and tidal mixing plays an important role
in the circulation in this estuary type (Pritchard 1955).

The tidal kinetic energy involved in this oscillating process must be enough to
not only work against the stabilizing action of the buoyancy, but also to generate
turbulent diffusion at the fluid interface and the friction at the geometric limits of the
estuary. The energy of the turbulent vortices generated at the interface will be
dissipated, and work against the stabilizing buoyancy forces, eroding the vertical
salinity gradients and producing the mixing of the fresh and salt water. Then, there
will be an increase in the potential energy of the water due to the increase in the
salinity (density) of the upper layer, and, consequently, an increase in the seaward
volume transport above the halocline. Simultaneously, due to the mass continuity,
the opposite volume transport of salt water will also be increased below the halo-
cline, developing a bidirectional two layer flow up and down the estuary (Fig. 3.5).
This phenomena has been observed by Pritchard (1955) who estimated that in
steady-state conditions, the volume transport towards the sea and through the
estuary mouth of the James river estuary (USA), in the upper layer above the
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halocline is twenty times larger than the river discharge (20Qf), and a compensating
motion up-estuary below the halocline with a volume transport equivalent to
nineteen times the river discharge (19Qf) has been estimated.

The bidirectional circulation that occurs in the water column is much less intense
than the oscillatory tidal currents. As these circulation motions are superimposed,
the first motions can only be detected by calculating the steady-state temporal
averages during one or more complete tidal cycles.

The longitudinal salinity distribution shows similar vertical profiles; however,
the vertical salinity gradients in the halocline are greater in the seaward direction
(Fig. 3.5). The bottom geometry and the occurrence of transversal (or secondary)
circulation may alter the typical configuration. Due to the increase and decrease of
the potential energy in the layers above and below the halocline, respectively, the
isobaric surfaces have ascending configurations in the upper layer and in the
opposite direction in the bottom layer, forced by the estuarine circulation. These
motions may also be influenced by the Coriolis acceleration, mainly in wide
estuaries and in regions where the diurnal tidal component is predominant.

This estuary type will be studied with uni and bi-dimensional analytical models.
These models have the objective to determine the circulation and mixing processes,
as well as to obtain steady-state vertical profiles of velocity and salinity forced by
gradient pressure forces, fresh water discharge and wind stress.

As the result of the more efficient water exchange of the river and the adjacent
sea, due to the turbulent diffusion, the salinity stratification mainly changes in the
following frequencies: (i) intratidal, due to the diurnal or semi-diurnal periodic tidal
variation, and subtidal (fortnightly) which is due to the time period of the modu-
lation between successive spring tides (�15 days), caused by the constructive
interference of the main semi-diurnal tidal components M2 and S2, and; (ii) on a
seasonal time scale (subtidal variability) due to the variations in the river discharge.

3.2.3 Vertically Well-Mixed (Types C and D)

These estuaries are formed in former shallow river valleys. They have low fresh
water discharge and are forced by meso or macro tides, generating a great bottom
turbulent shear stress vigorous enough to vertically mix the water column and

Fig. 3.5 Longitudinal salinity distribution and circulation in a partially mixed estuary (according
to Pritchard 1989)

3.2 Salinity Stratification 83



produce the halocline erosion. In natural conditions these estuaries have low ver-
tical salinity stratification; the upstream flux of salt necessary to balance the
downstream advective flux, due to the river flow through the estuary, must result
from the non-advective flux (Pritchard 1955; Dyer 1973). The intensity of the
longitudinal salinity (density) gradient is less than in partially mixed estuaries, and
its low intensity is unable to generate gravitational circulation. Thus, the
steady-state circulation in a well-mixed estuary is mainly unidirectional and sea-
ward direction, and because the intensity of the longitudinal density gradient force
is obtained by vertical integration (Eq. 2.10a, b), a vertically homogeneous estuary
that is relatively deep may also develop a weak gravitational circulation.

Well-mixed estuaries may be separated into the following sub-types:

(a) Laterally Stratified (type C)

When the estuary has a relatively large width/depth ratio, the Coriolis acceler-
ation deflection may generate a lateral salt stratification. The resulting seaward
cyclic circulation and the up-estuary circulation is intensified to the left in the
Southern Hemisphere, generating lateral salinity variations, although the water
column may remain almost vertically homogeneous (Fig. 3.6).

(b) Non-Laterally Stratified (type D)

In narrow tidal rivers, the vertical and lateral shear stress in their boundaries may
be strong enough to generate laterally homogeneous salinity stratification. In this
condition, the salinity increases gradually down-estuary and the steady-state motion
at all are oriented in this direction at all depths. Although the tendency of this
advective motion is to generate a down estuary salt transport, it is in balance with
the up-estuary turbulent diffusion (or salt dispersion) associated with topographic
irregularities and the bottom shear. Some salt water may be trapped in the inner
embayment during the flood and return to the main channel during the ebbing
current.

In this estuarine type, the current shear, which is homogeneous in the transversal
section, generates and intense turbulent diffusion that is higher than the previously
presented estuarine types. Although the tidal wave has a predominant progressive
component, the flooding and ebbing maxima currents’ intensities are usually out of
phase from the high and low tide, respectively.

Fig. 3.6 Salinity distribution and circulation in a well-mixed estuary with small lateral salinity
stratification (according to Pritchard 1989)
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The important physical parameters that control the sequence of estuarine types
are river flow, tide, and mean depth, width and length of the estuary. Tidal mod-
ulation of these parameters and the influence in the estuarine classification have
been evaluated by Pritchard (1955).

The longitudinal variations in vertical salinity profiles from the head to the
mouth (at positions A, B, C and D) for different estuary types are presented in
Fig. 3.7. This figure shows the vertical salinity gradient attenuations in the fol-
lowing estuary types: salt wedge (dominated by the river discharge), partially mixed
(dominated by the fresh water discharge and the tide), and the vertically homo-
geneous (dominated by the tide). Of course, between the salt wedge and well-mixed
types, there will be a sequence of estuarine types characterized by vertical salinity
gradients.

The classification criteria according to the geomorphology and salinity stratifi-
cation, although separately studied, have some agreement between them. For
instance, coastal plain estuaries are generally partially mixed, but may have a
tendency to be well-mixed if the fresh water discharge decreases and the tidal input

Fig. 3.7 Vertical salinity profiles of salt wedge, partially mixed and well-mixed estuaries. A, B, C
and D are longitudinal positions from the head down to the mouth (according to Pritchard 1989)

3.2 Salinity Stratification 85



changes to macro or hyper tide. In some regions of high river input and micro or
meso-tides, salt wedge and highly stratified estuary types prevail.

Among the first quantitative criteria for estuary classification was that of
Simmons (1955)—contemporary to the Pritchard’s paper—using the flux ratio
number, FR = QfTP/TPR = R/TPR, the ratio of the fresh water volume discharged
into the estuary during the tidal cycle to the tidal prism. The hypothesis was that the
estuarine types form a continuous sequence, which should be classified by the flux
ratio. This value, defined in Chap. 2, was introduced as a control number to indicate
changes in the vertical salinity stratification due to the predominance of the river
discharge or the tide forcing. Using this ratio and taking into account experimental
data of several estuaries, the following sequence of estuarine types was established:

• Highly stratified, when the flux ratio is equal to or higher than one (FR � 1.0).
• Partially mixed and well-mixed, when the flux ratio values are almost 0.25 and

less than 0.1, respectively.

The Simmons (1955) results to classify the estuarine type sequence are too
general, because the geometric characteristics of the estuaries (width, bottom
topography and nature) also have influence in generating the turbulent diffusion that
controls the salinity stratification that a certain tidal height may produced. For
example, according to Dyer (1973), the flux ratio of the Mersey river estuary
(England) is close to 0.01 and 0.02, suggesting a well-mixed estuary, using the
Simmons’s classification criteria. However, by applying the vertical salinity strat-
ification criteria, it is classified as a partially stratified estuary due to the measurable
differences of salinity between the bottom and surface.

It should be pointed out that the estuary classification may be time variable, and
dependent on the position along the estuary. Considering the estuary head as the
transitional limit of the MZ and TRZ, the tidal amplitude reach this region very
attenuated and the river discharge is the main forcing, the entrainment is pre-
dominant and vertical stratification will remain relatively high. Downstream regions
in the estuary, tidal amplitude often increases, as well as the vertical turbulent
diffusion, and the estuary may be classified as partially mixed; however, at the
estuary mouth the high tidal amplitude intensify the vertical mixing.

The variability of the vertical salinity stratification is a complex process on a
large temporal scale. In order to classify an estuary, using classification criteria, we
must use steady-state data. However, the intensity variation of the tidal currents
between the neap and spring tidal cycles (fortnightly tidal modulation) usually have
a significant influence on the vertical salinity stratification, and hence, on the
estuary classification. On a larger temporal scale, the seasonal variations in the fresh
water discharge also influence the vertical salinity stratification and the criteria to be
applied to the estuary classification.

As mentioned already, geometric changes related to the width, depth, length and
bottom characteristics may alter the circulation intensity and the mixing of the fresh
and the salt water, according to the following sequence: when the river discharge
and the tidal amplitude remain constant, but the estuary width increases, the flux
ratio will decrease because of the tidal prism increase, and this result looks similar

86 3 Estuary Classification

http://dx.doi.org/10.1007/978-981-10-3041-3_2


to a decrease in the river discharge. Due to these changes, the vertical salinity
stratification decreases, and the estuary tends to be less stratified or eventually
well-mixed. In the hypothesis of an increase in the estuary depth, the flux ratio
remains unmodified, but as the river induced velocity decreases, the vertical mixing
(in relation to the former case) and the vertical salinity stratification may evolve to a
partially mixed estuary. These effects may occur along the length of the estuary, and
when a given cross section has its area reduced, the currents (tidal and river dis-
charge) increase due to the mass (volume) continuity, and the vertical shear may
promote halocline erosion. Consequently, the vertical salinity stratification tends to
be less intense than in cross sections with higher area.

The problem with the salinity stratification classification criteria is that there is
no an agreement concerning the salinity gradient in the halocline which can be used
to determine the following transitions: highly stratified/partially mixed and partially
mixed/well-mixed. Therefore, it is convenient to introduce the following suggestion
to classify estuaries, according to Officer (1977):

Salt Wedge: there is a distinct interface separating the river discharge from the salt
water, with a low water flux into the upper layer, indicating that the entrainment
process is predominant.
Highly Stratified: the salinity profile has a strong vertical stratification, and the
difference between the bottom and the surface salinities has several unities.
Partially Mixed: the salinity profile has a moderate vertical stratification, and the
salinity difference between the bottom and the surface salinities has a few unities.
Well-mixed: there is practically no difference between the bottom and surface
salinities.

The longitudinal salinity structure in steady-state conditions and its circulation in
the salt wedge, partially mixed and well-mixed estuaries are presented in Fig. 3.8.

Fig. 3.8 Characteristics of the circulation, salinity stratification and typical mean vertical salinity
and longitudinal velocity profiles of the main estuary types classified according to the salinity
stratification, in the following sequence from left to right: salt wedge, partially mixed and
well-mixed (according to Morris 1985)
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In the salt wedge estuary the vertical salinity profile has the halocline with strong
gradient, the circulation is dominated by the river discharge, the entrainment gen-
erates the small salinity increase in the surface layer, and the slow motion of the
salt-wedge is up-estuary. The partially mixed is forced by both the river discharge
and the tidal currents, and its steady-state circulation occurs in two layers. In
well-mixed estuaries the vertical salinity gradient is almost zero, an indication that
this estuary is mainly forced by the tide, and its mean circulation is unidirectional
and seaward and with low intensity.

3.3 Classification Diagrams

The first theoretical classification studies using uni-dimensional parameters were
published in the 1960 decade, and further advances in estuary classification have
more recently been added to the oceanographic literature. Included among these
pioneering studies, whose results were compared with experimental data from
natural estuaries, and physical models with different characteristics of salinity
stratification, circulation and river discharges, were the works of Ippen and
Harleman (1961), Harleman and Abraham (1966) and Hansen and Rattray (1966).
The methods used share a common characteristic of the salinity stratification,
adopting steady-state conditions and a simple geometry. However, in addition to the
salinity structure, the classification diagrams take into account the following pro-
cesses contributing to the vertical mixing: energy dissipation, potential energy gain
by the water column, stationary velocity on the surface, velocity generated by the
input of river discharge, and the gravitational circulation.

The first analytical method to classify estuaries using a stratification parameter
was developed by Ippen and Harleman (1961) taking into account theoretical and
semi-empirical results, obtained in idealized estuaries and with physical models
simulated in channels. These researchers demonstrated experimentally that the
vertical mixing is related to the energy lost by the tidal progressive wave propa-
gation (G) and the corresponding increase in the potential energy gain of the water
column (J) due to the density (salinity) increase of the estuarine water mass. These
energy fluxes, per width and mass unity along the estuary length, are given by:

G ¼ 1
2
c0ðg0H0

Þ2 gH0

L
sinhð2lLÞ
cosð2jLÞ ; ð3:1Þ

J ¼ ðDq
q
ÞgH0

uf
L
; ð3:2Þ
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and its non-dimensional ratio, named stratification number, is expressed by,

G
J
¼ ð q

Dq
Þ 1
2
c0
uf

ðg0
H0

Þ2 sinhð2lLÞ
cosð2jLÞ ; ð3:3Þ

where Dq is the density difference between the river and seawater and Dq/q is a
measure of the channel stratification, uf is the river discharge, H0 and L are the
estuary depth and length, c0 and η0 are the phase velocity and the amplitude of the
simulated tidal wave, l and j are related by l ¼ ðv=2pÞj, with v is a constant
denoting a energy dissipation.

The physical quantities, G and J in the above expressions, are given in units of
the energy per mass and time unities, [G] = [J] = [L2T−3], and the ratio G/J was
named stratification number, which is physically analogous to the estuarine
Richardson number (defined in Chap. 2) and used as a criterion to indicate the
stability of fluids with density stratification. When the relative stratification (Dq=q)
decreases, the ratio G/J increases, and in the limit-case Dq ! 0 it tends to the
infinite (G/J ! ∞), characterizing an estuary that is vertically homogeneous;
however, when this ratio decreases (G/J ! 0), there is an increase in the potential
energy of the water column and the estuary becomes highly stratified. This has been
confirmed by Ippen and Harleman (1961) results: for G/J ratio values from 20 and
200 the estuary is highly stratified and well-mixed, respectively. In the comparison
of the flux ratio FR = (TPQf/TPR) (Eq. 2.43, Chap. 2), with the G/J, we may observe
that both are dependent on the river velocity (uf), but with opposite behavior. In
turn, experiments in physical models, forced by distinct tidal amplitudes, indicated
variations in the stratification number for the same flux ratio. Therefore, the flux
ratio isn’t a criterion to indicate similarities in relationship to the vertical diffusion
(stratification) characteristics; rather the non-dimensional (G/J) number is more
appropriate.

Without going into the theoretical details, which will be presented in Chap. 11,
the classical methodology which uses the orthogonal system of Cartesian coordi-
nates, named Stratification-Circulation Diagram, deduced by Hansen and Rattray
(1966) will be now presented. Various authorities in the field of Physical
Oceanography of estuaries—Dyer (1973, 1986, 1997), Officer (1976), and Pritchard
(1989), among others, consider this to be one of the best methods for estuary
classification. Its theoretical formulation was confirmed with the introduction of
alternative parameters by Fischer (1972), Prandle (1985) and Scott (1993).

The coordinate axes of this diagram are non-dimensional parameters: the
stratification parameter Sb � Ssð Þ=�S ¼ dS=�S ¼ Sp, where Sb, Ss and �S are the
steady-state salinity values at the bottom, surface, and the mean-depth value,
respectively, measuring the vertical stratification of the water column, and the
circulation parameter (us/uf) = CP, which is defined as the ratio of the steady-state
surface velocity, us, by the velocity generate by the river discharge, uf. When the
river discharge isn’t adequately known, instead of uf the mean value (in time and
depth) of the velocity in the water column, known as residual velocity it may be
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substituted by the steady-state mean-depth value of the velocity measured in the
water column, known as residual velocity �uh i ¼ ua is used. This velocity is for-

mally defined as �uh i ¼ ua ¼ ð1=DT)[ R DT
0 ½ 1H

RH
0 u(z; t)dz]dt; where DT is a time

interval of one or more tidal cycles, and H is the local depth; the usual practice to
determine these parameters is illustrated for partially stratified estuaries and
well-mixed estuaries in Fig. 3.9a, c and b, d, respectively.

The circulation parameter (CP) is a measure of the gravitational circulation, and
its variation is from the theoretical value of 1.5, typical for well-mixed estuaries, up
to 103 (for partially stratified estuaries), and reaching higher values as 105 for fjords.
The inequality us > uf is due to the fact that numerator of this non-dimensional
number is the sum of the current velocity generated by the river discharge (uf) plus
the velocity generated by the gravitational circulation due to the entrainment and
mixing processes that elevate salt water into the upper layer. Typical values for the
stratification parameter SP varies between 1.0 � 10−4 and a few unities, for low and
high stratified estuaries.

In deep estuaries, such as fjords, the gravitational circulation is confined in a
relatively shallow surface layer, and, as the velocity generated by the fresh water
discharge usually has very low values, the circulation parameter may reach values
up to 105. In the opposite situation, there is the well-mixed estuary dominated by
tidal forcing; in this estuary, the residual velocity on the surface layer tends to the
velocity generated by the fresh water discharge (us ! uf) and, consequently this
parameter approaches unity (Fig. 3.9b) almost confirming the theoretical value us/
uf = 1.5.

The deduction of the Stratification-circulation diagram was applied for a laterally
homogeneous (narrow) estuary under steady-state conditions. Thus, the quantities,
Sb, Ss, �S, us and uf (or �uh i � ua), used in the definition of the stratification and

Fig. 3.9 Time-mean vertical
velocity and salinity profiles
and the definition of the
quantities uf ≲ �u � ua and
us, and Ss, Sb, which are
necessary to calculate the
circulation (us/uf) and the
stratification (dS/�S)
parameters. Partially mixed
(a–c) and well-mixed (b–
d) estuaries
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circulation parameters are for narrows estuaries, must be time independent, and, in
practice, they are calculated using time mean values for one or more tidal cycles
(Fig. 3.9a–d).

The Hansen-Rattray solution includes another non-dimensional parameter, m,
and shows that this parameter is linked to the salt flux [ML−2T−1] processes by the
equation qKx0ð@S=@xÞ ¼ mquf�S (Eq. 11.96, Chap. 11). The first term of this
equation represents the landward salt flux by all processes other than gravitational
circulation and the seaward salt flux due to the river discharge fraction (named by
Fischer (1972) as non-gravitational). Thus, the difference (1 − m) is the salt flux due
to the gravitational circulation.

The stratification dS=�S and circulation us/uf parameters are theoretically linked to
the mixing parameter (m) which represents the relative proportion of the up estuary
salt transport due to advection and turbulent diffusion, which is formally expressed

by: m ¼ mðdS
S
; us
uf
Þ, or, m = m(SP, CP)]. As will be demonstrated in the Chap. 11, this

correlation is given by the following second order algebraic equation (Hansen and
Rattray 1966):

dS
�S

� ��1

½210þ 252ðus
uf

� 3
2
Þ�m2 þ ½32� ðdS�S Þ�1ð210þ 252ðus

uf
� 3
2
ÞÞ

þ 76ðus
uf

� 3
2
Þþ 152

3
ðus
uf

� 3
2
Þ2�m ¼ 0:

ð3:4Þ

The parameter m, which is the unknown of this equation, vary in the interval
from zero (0) to one (1), that is, 0 < m� 1, indicating, according its definition, that
the salt transport is generated exclusively by the advective process or due to the
turbulent diffusion (dispersion); for m = 1, the salt transport up estuary is generated
exclusively by turbulent diffusion and, for m = 0, the Eq. (3.4) has no physical
meaning; but in the case of the salt transport being generated only by the turbulent
diffusion (m = 1), the equation is reduced to:

32þ 76ðus
uf

� 3
2
Þþ 152

3
ðus
uf

� 3
2
Þ2 ¼ 0: ð3:5Þ

This second order equation in the variable (us/uf − 3/2) only has a real solution if
the numeric term 32 is neglected. If this is the case, the equation has two solutions:
us/uf = 0 and (us/uf = 3/2 = 1.5). The first solution has no physical meaning, and
the second solution indicates that if the up-estuary salt transport is only generated
by turbulent diffusion (m = 1) the solution is independent of the stratification
parameter. Then, disregarding the numeric constant, 32, from Eqs. (3.4) and (3.5),
it is possible to draw a set of parametric curves with the parameter m = const. For
this, we shall calculate the corresponding values of the stratification parameter
using fixed values of the circulation parameter (CP = us/uf) with m varying from
0.01 to 1.0. Thus, it is possible to generate graphically the correlation m = (SP, CP)
in a orthogonal reference system with the parameters SP and CP as ordinate and
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abscissa axis, respectively, which, according to Hansen and Rattray (1966), is
called Stratification-circulation diagram. The solution of Eq. (3.5), determines the
relative contribution of the tidal diffusive (m) and the advective (1 − m) processes,
which are responsible for the up-estuary salt transport. From these results it follows:

(i) When m = 1, there is no gravitational circulation and the up-estuary salt
transport is only due to the tidal turbulent diffusion;

(ii) When m ! 0, the tidal turbulent diffusion is negligible and the advective
process alone is responsible for the up-estuary salt transport.

The Stratification-circulation diagram with its coordinate (dS=�S) and ordinate
(us/uf) axes and a set of isolines of the parameter m (m = 1.0, 0.90, 0.70 and 0.01) is
presented in Fig. 3.10. The S and Q points represent these parameters obtained with
experimental data from the estuarine Channel of Bertioga (Santos-São Vicente
Estuary) and indicate theoretically the relative up-estuary salt transport due to the
advection and turbulent diffusion. These points were obtained from observations
during two complete tidal cycles of neap (Q) and spring (S) conditions, and rep-
resent nearly steady-state conditions. In the neap tide the, m parameter is equal to
0.7 and indicates that the processes of advection (0.3) and turbulent diffusion (0.7)
were important to the up-estuary salt transport. However, in the spring tide, the tidal
currents caused the more mixing between fresh and salt water, this is due to an

Fig. 3.10 Theoretical parametric curves of the mixing parameter (0 < m � 1) due to diffusive and
advective processes obtained using Eq. 3.6, with the correlation of the stratification (dS/�S) and
circulation (us/uf) parameters. Q and S are the images of these parameters in neap and spring tidal
cycles, respectively, in the Bertioga estuary (Santos-São Vicente Estuary, SP). Diagram axis in
log-log scales (adapted from Miranda et al. 1998)
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increase in the turbulent diffusion, with the parameter increased to m = 0.9.
Consequently, the tidal generated mixing process dominated the salt transport and
the advective contribution decreased to 0.1.

A simple procedure for estimating the parameter (m) was presented (Officer and
Kester 1991). In this estimate were used monthly mean salinity, ocean salinity and
freshwater input from observations at different times of the Narragansett Bay
(Rhode Island, USA). The analysis of these data indicated variations from low
values, in the winter m � 0.3, up to higher values in the summer 0.6 < m < 0.8
indicating a salt turbulent tidal diffusion more efficient.

The physical interpretation of the circulation and mixing processes related with
the theoretical results presented in Fig. 3.11, were further used by Hansen and
Rattray (1966) to improve this diagram interpretation, aiming to establish the
Stratification-circulation Diagram as a quantitative estuary classification. As the
stratification parameter is a measure of the vertical stratification of the water col-
umn, the value 10−1 was adopted to indicate the transition between high (type b)
and a low (type a) stratification of estuaries. Hansen and Rattray (op. cit.) confirmed
this theory by analyzing an experimental data set from several estuaries, from which
four previously classified estuarine types emerged.

Fig. 3.11 Stratification-circulation diagram of Hansen and Rattray (1966). X+ and X− indicate
longitudinal variations towards the mouth, respectively, R+ and R− indicate increase and decrease
in the river discharge. Experimental data from various estuaries in conditions of high (h) and low
(l) river discharges, and figures also indicate the longitudinal distance from the mouth. Mh,l, Ch,l,
J17,11, NM, JF and Sh,l are from the following estuaries: Mississippi river mouth, Columbia river,
James river, Narrows of the Mersey river, Strait of San Juan de Fuca and Silver Bay (Diagram axis
in log-log scales according to Dyer 1997)
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According to Hansen and Rattray (1966) estuaries may be classified as the
following types (Fig. 3.11):

Type 1—Well-mixed estuary. The residual flow is seaward at all depths (unidi-
rectional circulation), and the upstream salt transfer is effected by turbulent diffu-
sion with no upstream salt transport by gravitational circulation.
Type 2—Partially mixed estuary. The residual flow reverses at depth (bidirectional
circulation) and both advection and diffusion processes contribute to the upstream
salt flux.
Type 3—Fjord. It is distinguished from Type 2 primary due to the dominance of
gravitational circulation (advection), accounting for over 99% of the upstream salt
transfer.
Type 4—Salty wedge estuary. The stratification is still greater than other estuary
types, and the flow undergoes a gradual change towards the mouth from a thick
upper layer flowing over a thin lower layer near the head, and changes to a thin
upper layer flowing over a thick lower layer near the mouth.

Of course, as pointed out by Hansen and Rattray (1966), a certain arbitrariness
was necessary in the separation of classes. Subdivisions (a) and (b) for types 1, 2
and 3 mean low and high stratification when SP < 0.1 and SP > 0.1, respectively.
Types 2a and 2b, previously classified as partially mixed (low and highly stratified),
include the majority of the coastal plain estuaries, and the inclusion of types 3a and
3b (fjord) and 4 (salt wedge) in the Stratification-circulation Diagram, were based
on experimental results because the theoretical analysis would not apply to this type
of estuary. Further studies on gravitational circulation in fjords may be found in
Hamilton and Rattray (1978).

As we have seen, the theoretical foundation of the Stratification-circulation
Diagram (Fig. 3.11) has been confirmed by experimental data processed according
to the theoretical hypothesis. The circulation and stratification parameters repre-
sented in the diagram were based on experimental results of several estuaries,
confirming its great potential for estuary classification. In this figure it is possible to
observe that, under different intensities of the river discharge and at different lon-
gitudinal positions along the estuary length, the parameters dS=�Sð Þ and (us/uf)
migrate on the diagram. This conclusively shows that straight line segments, rather
than points, better define the estuary classification, enabling to the main charac-
teristics of its driving forces and geometry to be taken into account.

Similarly it is also expected that a straight line segment will better classify
estuaries as a result of the variations in tidal current intensity which result from the
fortnightly tidal modulation generating spring and neap tidal cycles. This is illus-
trated in Fig. 3.12 with experimental results from the Bertioga estuarine channel,
where appreciable fortnightly tidal modulation was observed (Miranda et al. 1998).
In this figure, the channel is classified as type 2 (partially mixed), but it alternates
between type 2a (moderately stratified) and type (2b) (highly stratified) for the
spring (S) and neap (Q), respectively. As seen in the figure, in the first event,
turbulent diffusion and advection were active in the upstream salt flux, with relative
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contributions of 70% (m = 0.7) and 90% (m = 0.9) in the neap and spring tide,
respectively. Others examples of this tidally modulate process may found in
Andutta (2011) and Andutta et al. (2013), for the Caravelas-Peruípe estuarine
system (Southern Bahia State, Brazil).

This classification diagram has also been used to classify the estuarine channel
which links the Patos Lagoon (South of the Rio Grande do Sul, Brazil) to the sea.
A data series of experiments from 1988 was used, the channel was classified as type
1b (well-mixed), with the salt balance dominated by turbulent diffusion. However,
two exceptions were observed due to the abnormal forcing of cold meteorological
fronts, when the estuarine channel classification alternated from being type 2b
(partially mixed) to type 4 (salt wedge), dominated by the increase in the river
discharge due to the post-frontal condition (Möller 1996; Möller and Casting 1999).

In the upper reaches of the Piaçaguera estuarine channel (Santos, Brazil), little
change in estuary classification was observed during the fortnightly tidal modula-
tion in the winter which remaining as type 2a, and the associated estuarine
Richardson number was �1.6 (Miranda et al. 2012).

As another examples of this diagram application, to classify a more complex
estuarine environment as the Paranaguá Bay (Paraná, Brazil), we should mention
the preliminary investigation of Knoppers et al. (1987), which classified the bay as

Fig. 3.12 Stratification-circulation Diagram with the classification of the Bertioga channel
(Santos, SP, Brazil), for the spring (S) and neap (Q) tidal cycles. The alternative axis for the
circulation parameter (Sq/Fu), as proposed by Prandle (1985) was included. Diagram axis in
log-log scales
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type 2a (partially mixed and low stratified), and the more elaborated investigation of
Mantovanelli (1999) and Mantovanelli et al. (2004), which used intensive mea-
surements of eight semidiurnal tidal cycles during the 1997 winter and in the
1997/1998 summer, comprising two spring and two neap cycles in each season. The
sampled transversal section was localized at 25° 30′S 030° 42′W, and the results
indicate that the salinity stratification and the mixing processes were controlled
primarily by tidal currents and secondarily by seasonal freshwater discharge and the
fortnightly tidal modulation. As the results related to this topic, the estuarine
characteristics of the investigate region changed in the summer from being type 2b
(partially mixed and high stratified) to type 2a (partially mixed and low stratified) in
the spring and the neap tidal cycle, respectively. In turn, in the winter observation
period it changed to type 1 (well-mixed) in the spring tidal cycle.

The circulation and the salinity stratification for well-mixed and partially mixed
estuaries are dependent on the river discharge, the tidal oscillation and the estuarine
geometry. These global characteristics may be related to the stratification-
circulation diagram using the following dimensionless bulk parameters: the
Froude densimetric number defined as Fm = uf/(gH0q

−1Dq)1/2, which expresses the
ratio of the river flow to the potential density-induced internal circulation, and the
parameter calculated by the ratio P = uf/urms, where, urms, is the root mean square of
the longitudinal velocity. Using experimental data from coastal plain estuaries and
the analysis of theoretical parameters of the Hansen and Rattray (1965) analytical
model, a reasonable correlation between these parameters were obtained for six
estuaries where observations have been interpreted in terms of the
Stratification-circulation diagram. The indicated straight-line relationships, not
necessarily the best fit, were according to Hansen and Rattray (1966):

us
uf

¼ 1:5þ 1
3
F�3=4
m ; ð3:6Þ

and

dS
�S
½0:125þ 0:15ðus

uf
� 1:5Þ� ¼ 0:05ðP)�7

5; ð3:7Þ

These equations indicate that the circulation parameter (us/uf), depends on the
value of Fm, but the stratification parameter (dS=�S) depends on both Fm and
P. Knowing these functional dependencies, the isolines of P and Fm were included
in the Stratification-circulation Diagram, only approximately as a test, because as
yet there is no reliable set of observations to confirm those theoretical results. A few
years later, Dyer and Ramamoorthy (1969) applied the Stratification-circulation
diagram to classify the Vellar estuary (India), to complement the experimental data
set analysis of salinity and circulation measurements. Their results indicated that
this bar-built estuary was type 4 (salt wedge) and type 1 (well-mixed) at high and
low river discharge, respectively. The bulk parameters, Fm and P were calculated
from the velocity data, fresh water discharge and hydrographic data for the time
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period of sampling. The results were in good agreement with the relationships
between theoretical parameters and those proposed by Hansen and Rattray.

The Stratification-circulation diagram was re-plotted by Fischer (1972) choosing
the Richardson number (Rie—Eq. 2.35, Chap. 2), and the Froude number, Fm, as
parameter in place of P, as presented in Fig. 3.13. This figure shows that the
stratification parameter (dS=�S) also depends primarily on the estuarine Richardson
number Rie (denoted as R in the figure). According to this parameter definition, an
increase in Rie towards 1, correspond with increasing vertical estuarine stratifica-
tion, and, as a first approximation, the transition between the well-mixed and
partially mixed estuaries occurs when 0.08 < Rie < 0.8.

Alternative studies were made by Prandle (1985) focusing on the circulation in
narrow estuaries that are subject to a predominant tidal forcing. The results were
also applied to improve the classical Stratification-circulation diagram with an
analytical delimitation of the estuaries types 3 and 4, and 1 and 2. In relation to the
formulations of Eqs. (3.1) and (3.2) it was suggested the following alternative
expressions to the energy taxes that were introduced in the pioneer paper of Ippen
and Harleman (1961): G = (4/3p)kq(U0)

3L and J = (1/2)Dqg(H0)
2uf, and its ratio

(Eq. 3.3) by Eq. (3.8). In these formulations k, U0 and L are the bottom shear stress
coefficient, the tidal current amplitude and the estuary length, respectively. These
quantities have dimensions of [MLT−3] and the stratification number G/J = St is
now calculated by a simple equation, in comparison to the previous one;

G
J
¼ St ¼ 0:85

kU3
0L

g Dq
q H2

0uf
¼ kU3

0L
g0H2

0uf
: ð3:8Þ

Fig. 3.13 Stratification-circulation diagram with the isolines of the parameter m
(0.01 < m < 0.99), the Froude number (10−4 < Fm < 1), and the Richardson estuarine number
(10−3 < Rie < 1) (denoted in the figure as R), according to Fischer (1972). Estuarine Types 1, 2
and 3, according to Hansen and Rattray (1966), were included. Diagram axis in log-log scales
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This result indicates that the vertical stratification depends on the cubic power of
U0, the length L, and is inversely proportional to the velocity driven by the river
discharge (uf), the reduced gravity (g′), and the second power of the estuary depth
(H0). Computational results of this new formulation of the stratification number,
using experimental data from natural estuaries and from physical models, were
approximately twice the values of those obtained using the Eq. (3.3). This enabled
the following stratification criteria to be established: St < 100 and St > 400 indicate
estuaries with high and low stratification, respectively. Estuaries with a stratification
number between 100 and 400 are classified as partially mixed.

With the purpose to introduce a classification diagram, experimental data from
estuaries and laboratory experiments were used by Prandle (1985), to determine the
correlation of the stratification parameter dS=�S and the stratification number St. The
following exponential expression was obtained, adjusted by mathematical
regression:

dS
�S

¼ 4ðStÞ�0:56: ð3:9Þ

This equation confirmed the conclusions of Ippen and Harleman (1961) and
Hansen and Ratray (1966) related to the use of the stratification parameter dS=�S,
and it was also used as a classification diagram from the correlation dS=�S� St
shown in Fig. 3.14. This figure indicated that the stratification number variations in

Fig. 3.14 Correlation of the stratification parameter (dS/�S) and the stratification number St
(dissipated energy/potential energy gain). Estuarine values (x), physical models (•/+), according to
Prandle (1985). In the diagram are also indicated results for the Bertioga river estuary of the
Santos-São Vicente Estuary System (São Paulo, Brazil)) in spring (S) and neap (Q) tidal cycles.
Diagram axis in log-log scales
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the interval 20 � St � 400 is used to separate the classification of the estuaries
partially stratified from those well-mixed, and it is double than that obtained in the
Ippen and Harleman’s article (20 � St � 200). However, the original theoretical
principle, related to the use of the ratio G/J, in the classification of estuaries was
confirmed. This figure also shows the use of this diagram in the classification of
natural estuaries and laboratory data to indicate the separation of the stratified and
well-mixed estuaries. Exemplifying the use of this diagram, experimental results of
the Bertioga estuarine channel (Santos-São Vicente Estuary System Estuarine
System, Fig. 1.5, Chap. 1) which were calculated for neap Q, and spring S tidal
conditions, indicate that there was a change in the estuary classification from
partially mixed and highly stratified (St < 100) to well-mixed (St > 400).

The Prandle (1985) results were also applied to improve the original
Stratification-circulation diagram of Hansen and Rattray (1966), with the analytic
delimitation of estuaries highly stratified types 3 and 4, and 1 and 2. For the first
delimitation, a well-defined layer thickness (d) may be assigned under the halocline,
and it was theoretically demonstrated that it may be obtained with the following
relationship of the stratification (dS/�S), circulation parameters us=\�u[ð Þ and the
normalized depth D = d/H0:

dS
�S

¼
us
�uh i

us
�uh i � 1:26

; and
dS
�S

¼ 1
D
: ð3:10Þ

These relationships, reproduces analytically the separation line of the estuarine
types 3 and 4 as indicated by the upper thin line in Fig. 3.12.

The delimitation line of the estuarine types 1 and 2 (Fig. 3.12) have also been
theoretically obtained with the following equations:

us
�uh i ¼ 1:14þ 0:036

Sq
Fu

; ð3:11Þ

and

uB
�uh i ¼ 0:70� 0:029

Sq
Fu

; ð3:12Þ

with uS and uB denoting the surface and the bottom velocity, respectively, and the
non-dimensional quantities Sq and Fu are defined by,

Sq ¼ H0

q
@q
@x

; Fu ¼ kU0\�u[
gH0

: ð3:13Þ

In this equation k (k = 2.5 � 10−3) is the bottom friction coefficient taken as
constant. In this theory, as shown by Eqs. (3.11) and (3.12) the transitions, between
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types 1 and 2, always occur when Sq/Fu > 24 or ðus= �uh iÞ[ 2. This result is in
agreement with the Hansen and Ratray theory, and the relationships (3.12 and 3.13)
enable the introduction of an alternative axis to the circulation parameter: the ratio
Sq/Fu, (Fig. 3.12), which is an indicator deduced from the dynamic structure of the
vertical velocity profile.

Another alternative axis was suggested by Scott (1993). In this paper, the
classical mean estuarine circulation forced by the river discharge and the longitu-
dinal mean salinity gradient ð@�S@xÞ was used to obtain an equation similar to
Eqs. (3.8) and (3.11),

us
�uh i ¼ 1:15þ 0:036

ug
�uh i ; ð3:14Þ

where ug ¼ gH2
0bð@�S=@xÞ=kU0 is the gravitational circulation intensity, and the

ratio ðug= �uh iÞ may be used as an alternative axis to the circulation parameter.
Details on the theoretical results may be found in Scott (1993) or in Dyer (1997).

Another estuary classification methodology was developed by Jay and Smith
(1988), based on the perturbation analysis associated with finite amplitude wave
theory by mean of a perturbation analysis of the time-dependent dynamic equations.
This theoretical development takes into account the non-linear estuarine charac-
teristics, barotropic and baroclinic mechanisms resulting in three distinct circulation
types for shallow and estuarine systems (highly stratified, partially mixed and
weakly stratified). The following five criteria where used in the system:

(i) The estuary classification should be related to the dominant vertical turbulent
exchange and residual flow mechanisms.

(ii) The first order properties of estuaries should be used for classification, so that
the major dynamical distinctions are clear.

(iii) Changes in river flow and tidal range should cause different and character-
istic movements of the position of the estuary on the classification plot.

(iv) Baroclinic and barotropic nonlinearities should each be represented by a
separate parameter.

(v) The entire along-channel extent of most systems should occupy a single
position in the classification plot. The very real temporal heterogeneity of
most estuaries and the dominating effects of topography in creating multiple
basins in some other systems cannot and should not, however, be eliminated.

To satisfy these conditions, two new parameters were chosen to quantify the
internal or interfacial processes associated with the baroclinic circulation, and the
bottom-frictional and convective nonlinearities, related to the barotropic tidal wave
in the estuarine basin. The first parameter is an internal Froude number (FB)
(Fig. 3.15), that is, a measure of baroclinic non-linearity (baroclinic Froude
number), being a generalization of that used as the expansion parameter in the
two-layer perturbation (Jay and Smith (1988):
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FB ¼ de
De

ðDqH
DqV

Þ12: ð3:15Þ

where de/De is the ratio of the excursion of the salt-wedge (de) by its mean depth
during the tidal cycle (De), expressed in scaled variables, to indicate the baroclinic
stability of the salt-wedge intrusion. DqH and DqV are the horizontal density dif-
ference between the estuary’s mouth and head, and the vertical density difference
mid-estuary, respectively. FB is a measure of the stability or nonlinearity of the
internal oscillation of the density field. It ranges from close to zero in arrested salt
wedge, like the Mississippi (because the ratio de/De is small), to 0.5 to 1.0, in active
salt wedge as the Fraser river estuary, and to much greater than 1.0 in weakly
stratified estuaries.

Fig. 3.15 Classification diagram for swallow estuary systems based on the barotropic and
baroclinc Froude numbers FT and FB, respectively. Parameters were calculated and plotted with
observational data from various natural estuaries, in high (hf) and low (lf) river discharge.
Du = Duwamish; Ve = Vellar; Au = Aulne; Mi = Mississippi; Fr = Fraser; RW = Rotterdam
channel; CR = Columbia; CB = Chesapeake Bay; LIS = Long Island Sound Channel;
SW = Southampton Water; NS and SS = North and South Santee; BFu = Fundy Bay;
GB = Great Bay and NM = Mersey Narrows (according to Jay and Smith 1988). Diagram axis
in log-log scales

3.3 Classification Diagrams 101



A second parameter of the Jay and Smith (1988) classification diagram is the
barotropic Froude number (FT),

FT ¼ goh i
H0

; ð3:16Þ

where �goh i and H0 are the time mean tidal amplitude and the mean depth over the
basin. This number is a measure of barotropic tidal non-linearity; it is close to zero
in deep estuaries with weak tides and approaches 1 in bays forced by hyper-tides.

The resulting correlation FB � FT plane is shown in Fig. 3.15, with the results
plotted for various estuaries, based on data available in the literature. The
semi-planes of the highly stratified (FB < 1), and partially and weakly stratified
(FB > 1) estuaries are delimited by the FB = 1. The boundary between the partially
mixed and weakly stratified estuaries is a line of constant gradient of the gradient
Richardson number Rig � 1/4, along which FT � (FB)

−1. The proportionality
constant, which determines the intercept of the Rig line with FB = 1, was set using
the critical tidal amplitude of Columbia river estuary (Columbia, USA). Another
system’s geometry might lead to a different proportionality constant and therefore
to a slightly different intercept, but the slope and general location of the line are well
established (Jay and Smith, op. cit.).

The estuarine classification in terms of their longitudinal and secondary circu-
lation structures and exchange flow was given by Valle-Levinson’s (2008, 2010).
The following characteristics of estuary circulation were considered: (i) the struc-
ture of the secondary flow is strongly influenced by bathymetry variations and may
exhibit vertically and laterally sheared net exchange flows, with outflows over
shallow parts of a cross-section and inflows in the channel (e.g. Dyer 1977; Wong
1994), and (ii) the lateral structure of exchange flows may ultimately depend on the
competition of Coriolis deflection and frictional effects (Kasai et al. 2000). Two
non-dimensional parameters were used to link these characteristics in the classifi-
cation diagram (Fig. 3.16): the vertical Ekman (EK)—the ratio of the friction
coefficient to the Coriolis parameter, and Kelvin number (Ke)—the ratio of the
estuary width to the internal radius of deformation (see, Eqs. 2.44 and 2.45,
Chap. 2).

The Fig. 3.16 indicate that Ek low values imply that frictional effects are
restricted to a thin bottom boundary layer, while high EK values indicate that
friction affects the entire water column. The lateral structure density-driven
exchange flows may be described in terms of whether they are vertically sheared or
unidirectional in the deepest part of the cross-section (Valle-Levinson 2008).
Following his analysis, under low EK (<0.001, i.e., <−3 in the abscissa of
Fig. 3.16), the lateral structure of exchange flows depends on the dynamic width of
the system. In wide systems (Ke > 2, i.e., 0.3 in the ordinate of Fig. 3.16), outflows
and inflows are separated laterally according to the Earth’s rotation, i.e., the
exchange flow is laterally sheared. In narrow systems (Ke < 1, i.e., <0 in the
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ordinate Fig. 3.16) and low EK (still <0.001, i.e., <−3 in the abscissa of Fig. 3.16),
exchange flows are vertically sheared. In contrast, under high EK (>0.3, i.e., >−0.5
in the abscissa of Fig. 3.16) and for all Ke, the density-driven exchange is laterally
sheared independently of the width of the system. Finally, under intermediate EK

(0.01 < EK < 0.1, i.e., between −2 and −1 in the abscissa of Fig. 3.16), the
exchange flow is preferentially vertically sheared but exhibiting lateral variations.

The classification diagram developed by Geyer (2010) introduced a prognostic
approach, in which the estuarine is classified based on forcing variables, and its
purpose is to predict the estuarine regime based on these forcing conditions. It is
recognized that due to the complexity and variability within and among estuaries,
this approach could at best provide a rough estimate of the conditions of a particular

Fig. 3.16 Classification of estuarine exchange on the basis of Ekman (EK) and Kelvin (Ke). The
subpanels around the central figure denote cross-sections looking into the estuary, of exchange
flows normalized by the maximum inflow, which are negative and shaded. The vertical and
horizontal axes are non-dimensional depth and width from 0 to 1, respectively. The central figure
illustrates contours of the difference between maximum inflow and outflow over the deepest part of
the channel and for different values of EK and Ke, both in logarithm scale. Dark-shaded contour
regions denote net inflow throughout, i.e., laterally sheared exchange flow as portrayed by
subpanels whose arrows point to the corresponding non-dimensional numbers in the dark shaded
regions. Light contour regions illustrate vertically sheared exchange in the channel as portrayed by
the subpanels whose arrows point to the corresponding EK and Ke numbers in the light-shaded
regions. Intermediated-shaded regions represent vertically and horizontally sheared exchange flow,
similar to the second subpanel on the left, for log(Ke) = 0 and log(Ek) � −3.7 (after
Valle-Levinson (2008, 2010)
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estuary, due to the inherent difficult to predict estuarine processes. In the
steady-state salt balance, the longitudinal salinity stratification (∂S/∂x) depends on
the tidal velocity (UT = U0) and the fresh water velocity (UR = uf), providing the
master variables for the prognostic approach for the estuary classification devel-
oped by Geyer (op. cit). This is illustrated in Fig. 3.17 which uses theoretical and
experimental values of natural estuaries along the USA coastline. In the figure axes,
the master variables (UT and UR) are non-dimensionalized by a densimetric scale
(bgSoh)

1/2 and b is the coefficient of saline contraction (7.0 � 10−5 is a typical
value), So and H0(h) are salinity and depth mean values, respectively The prog-
nostic diagram is subdivided to take into three regions: highly stratified, partially
mixed and well-mixed estuaries. More strongly stratified estuaries appear on the
upper part of the diagram, and weakly stratified on the lower part.

In the diagram three main estuarine types may be distinguished: (i) highly
stratified characterized by the non-dimensional river discharge and tidal velocity
varying in the intervals 0.1–1.0 and 0.2–1.4, respectively, and the short rapid
flushing, with the non-dimensional tidal velocity higher than 1.0; (ii) partially
mixed characterized by the non-dimensional river discharge lower than 0.1, and
those classified as long slow flushing, with non-dimensional river discharge less
than 0.005; and (iii) well-mixed estuaries in the lower right side delimited by the
sloping dashed line, with the non-dimensional river discharge and tidal velocity less
and higher than 0.04 and 0.47, respectively.

Fig. 3.17 A framework for prognostic estuarine classification. Tidal (UT) and freshwater (UR)
velocities are non-dimensionalized by a densimetric velocity scale (bgSoh)

1/2 (according to Geyer
2010). Diagram axis in log-log scales
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3.4 Estuarine Zone

Estuarine zone has been the label applied to an environmental system consisting of
transitional areas which are consistently influenced or affected by water from an
estuary such as, but not limited to, salt marshes, mangroves, coastal and intertidal
areas, bays, lagoons, inshore areas and channels. Bights and inlets are coastal
environments which may be generically classified as estuarine zones (Geophysics
Study Committee 1977). These zones may have a large free surface (>100 km2) and
depths may vary between 20 and 100 m. The bights and inlets are usually sheltered
from the influence of coastal processes; however, there are other coastal systems
that receive these influences more intensively, as the coastal lagoons.

Large bays are common in the coast lines of all continents, particularly in
regions that were tectonically active. If a bay is forced by moderate tidal height and
the fresh water volume transported by the river is relatively small compared to the
tidal prism, its thermohaline characteristics may be similar to those of the water
masses of the continental shelf. Usually, the thermohaline effect is weak and the
influence of the tidal and wind forcing may predominate. When the river discharge
into the bay is relatively high it may present similar features to coastal plain
estuaries, as was demonstrated by Kjerfve et al. (1997) and Bérgamo et al. (2006),
applying the Stratification–circulation diagram to a set of observational data of the
Guanabara Bay (Rio de Janeiro, Brazil). However, these water bodies are too large
and complex to be defined as an estuary, and, due to the tectonic component of their
formation, they should be classified in another category of an estuarine environment
category as stated in the Pritchard (1952b) article. The largest bays along the
Brazilian coast are: São Marcos Bay (2025 km2) in the state of Maranhão, Todos os
Santos Bay (1233 km2) in the state of Bahia; Paranaguá Bay (677 km2) in the state
of Paraná, Guanabara Bay (384 km2) in the state of Rio de Janeiro; the Santos Bay
(54 km2) in the state of São Paulo state is the smallest. The bays receive river
discharge from complex catchment basins, and the ones located along the southern
coast receive weak rivers discharges, compared to the bays in the northern and
northeastern coast. In the almost rectilinear coastline of southern Brazil, which is a
former non-tectonically active region, there are no bays.

Comprehensive study on the oceanographic characteristics of the Todos os
Santos Bay was presented by Cirano and Lessa (2007) and Lessa et al. (2009), and
a descriptive analysis of the seasonal variation of physical characteristics in the
northern region of the bay have been presented by Miranda et al. (2011).
Land-ocean fluxes in the Paranaguá Bay, which comprises an important subtropical
estuarine system, have been investigated by Marone et al. (2005) and ecological
studies have been presented by Lana et al. (2001).

Channels and straits are natural or human-made marine environments that
interconnect two water bodies; they may be shallow or deep and with a simple or
complex geometry. In the estuaries, mainly those used as shelter for harbors, we
find artificial channels used for navigation purposes. These channels are constructed
by bottom dredging, causing serious impacts to the environment. The sediment
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removal, besides being detrimental to the benthonic flora and fauna, may change the
tidal wave characteristics, the current intensities and the tidal prism. The biological
communities from the intra and intertidal regions also may be deeply affected by
dredging.

The majority of artificial channels have resulted from the management of fluvial
water to the hydroelectric power development for industry and urbanization. Most
of the artificial channels have drastically affected the natural estuarine character-
istics. The Valo Grande (former named Vala do Rocio), for example, which
interconnects the Ribeira de Iguape river to Mar Pequeno near the town of Iguape,
with a length of �4.0 km (Fig. 1.5, Chap. 1), was constructed, in 1884, to enable
docking of greater ships. This artificial channel resulted in a gradual decrease in the
salinity in the Cananéia-Iguape Lagunar Estuarine System due to the increase in the
input of fresh water.

The channel project specified a width of 4.40 m and a mean depth of 2–3 m;
however, by the time that the channel opened in 1884, a gradual increase in its
depth (up to �7.0 to 16.0 m) and width (with an estimated erosion tax of
3.3 m/year) reaching up to 235 m was observed. Due to the increase in the fresh
water input to the estuarine system, and subsequent increase in the water velocity in
the channel, the erosion and sediment transport towards the Iguape harbor drasti-
cally decreased its depth.

In contrast to the situation observed in the Valo Grande, we should mention the
channel construction in the Eastmain River, flowing into the James Bay, on the west
Canada coast. In a great engineering project, this subarctic shallow river was
diverted into the La Grande River for hydroelectric development, reducing the river
water input into the eastern portion of the bay by 80%. The project was supported
with monitoring of experimental oceanographic conditions during a 3-year pro-
gram, and the response of the estuary to this major reduction of freshwater input
was simulated with a one-dimensional finite difference explicit scheme numerical
model, validated with the observational data. According to the final results, the tidal
river zone (TRZ) had a salinity increase up to 18‰, and at the diversification end,
the estuary conditions were formed in just 30 days. The low frequency estuary
response to the rapid change in the river discharge occurred much more rapidly for
the velocity regime than for salinity, with its intrusion occurring over approximately
one month. After this transitional period, the estuary presented the classical estu-
arine circulation and was classified as transitional from types 2a to 2b during late
summer (Lepage and Ingram 1986).

3.5 Coastal Lagoons

Coastal lagoons are inland water bodies, found in all continents, usually oriented
parallel to the coast. They have been formed as the result of rising sea level, mostly
during the Holocene, and marine processes generating coastal barriers. They
reached the present elevation level about 2000 years B.P., and evolved seaward
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both during the slow rise of the sea level and their present elevation. They border
more than 13% or 32,000 km of the world’s continental coasts and play a sub-
stantial role in the transport, modification, and accumulation of matter at the
land-sea interface (Kjerfve and Magill 1989; Knoppers 1994). They are often highly
productive and ideal systems for aquaculture projects, and are often impacted by
both natural and anthropogenic influences (Mee 1978; Sikora and Kjerfve 1985).
Depending on local climatic conditions, lagoons exhibit salinities ranging from
completely fresh to hypersaline (Moore and Slinn 1984; Kjerfve 1986; Merino et al.
1990, Knoppers et al. 1991). A comprehensive discussion on the geological pro-
cesses controlling the origin and evolution of these coastal environments, and a
synthesis on the physical and biogeochemical characteristics of coastal lagoons in
southeastern of Brazil are presented by Martin and Dominguez (1994) and
Knoppers and Kjerfve (2010), respectively.

The coastal lagoon environments are not the main subject of this book. However,
as they are of great social and economic importance, some of their main geomor-
phologic characteristics and definitions found in the literature will be presented.
These coastal systems occupy about 13% of coastal areas worldwide, and to enable
their use for future generations, the utilization of these systems has been planned
using experimental observations and taking into account the physical properties of
estuaries, the dynamics of which are reasonably well known. According to Pheleger
(1969) a coastal lagoon has been defined as:

An inner marine water body, usually oriented in the direction parallel to the
coastline, separated from the ocean by a barrier, and connected to the ocean by
one or more restricted inlets.

To this definition, Kjerfve (1994) added that the ocean(s) entrance can at times
be closed off by sediment deposition as a result of wave action and littoral drift, and
suggested the following definition for a coastal lagoon:

A shallow coastal water body separated from the ocean by a barrier, connected
at least intermittently to the ocean by one or more restricted inlets, and usually
oriented shore-parallel.

Coastal lagoons experiences forcing from river input, wind stress, tides, pre-
cipitation to evaporation balance, and surface heat balance, and respond differently
to these driving forces. Water and salt balance, lagoon water quality and
eutrophication depend critically on lagoon circulation, salt and material dispersion,
water exchange through the ocean channel(s), and turn over, residence and flushing
times. The understanding of physical, chemical, geological, and ecological
dynamics of lagoons is important for the planning and implementation of coastal
management strategies in coastal lagoons Kjerfve (op. cit.).

It is very convenient to characterize coastal lagoons according to the volume
transport exchanged with the adjacent coastal region, and also with the tidal activity
in the inner region. These dynamic characteristics are related to the geometric
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characteristics of the channel openings to the ocean. The rate and magnitude of
oceanic exchange reflects both the dominant forcing(s) and the time-scale of the
hydrologic variability. Kjerfve (1986a) sub-divided coastal lagoons into three
geomorphic types according to their exchange with the coastal ocean (Fig. 3.18).

Choked Lagoons usually consist of a series of connected elliptical cells, con-
nected by a single long narrow entrance channel, along coasts with high wave
energy and significant littoral drift.

Although this lagoon type (Fig. 3.18a) experiences tides that co-oscillate with
the coastal ocean, the entrance channel serves as a dynamics filter which largely
eliminates tidal currents and water-level fluctuations inside the lagoon. Tidal
oscillations in choked lagoons are often reduced to 5% or less compared to the
adjacent coastal tide. They are characterized by long flushing times, dominant wind
forcing, and intermittent stratification events due to intense solar radiation or runoff
events.

Examples of choked lagoons in Brazil include: Mundaú and Manguaba
(Alagoas), Maricá and Guarapina and the Saquarema system (Urussanga, Fora and
Araruama (Rio de Janeiro), Lagoa dos Patos (Rio Grande do Sul). (Kjerfve et al.
1990; Kjerfve and Knoppers 1991).

Restricted Lagoons consist of a large and wide body of water, usually oriented
parallel to shore, and exhibit two or more entrance channels or inlets. As a result,
restricted coastal lagoons have a well-defined tidal circulation, are influenced by
winds, are mostly vertically well-mixed, and exhibit salinities from brackish water
to oceanic levels.

In this lagoon type (Fig. 3.18b) flushing times are usually considerably shorter
than for choked coastal lagoons. Examples of restricted lagoons include Laguna de
Terminos (Mexico), and Lake Pontchartrain (USA).

Fig. 3.18 Choked (a),
Restricted (b) and Leaky
(c) coastal lagoons from the
wide geomorphic spectrum
found in coastal regions (after
Kjerfve 1986)
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Leaky Lagoons are elongated shore-parallel water bodies with many ocean
entrance channels, along coasts where tidal currents are sufficiently strong to
overcome the tendencies by wave action and littoral drift to close the channel
entrances.

Leaky lagoons (Fig. 3.18c) are at the opposite end of the spectrum to choked
lagoons. They are characterized by numerous wide tidal passes, unimpaired water
exchange with the ocean on wave, tidal, and longer time scales, strong tidal cur-
rents, and salinities close to that of the coastal ocean. Examples are Mississippi
Sound (Mississippi, USA) and Wadden Zee (The Netherlands-Denmark).

The Lagoa dos Patos, located in the southern Brazilian coast (30°–32°S), is one
of the largest lagoons in the world. It has a length of 250 km, a mean width of
40 km, a mean depth of 5 m, and is connected to the coastal ocean by a narrow
channel with a length of 20 km (1 to 2 km wide). This coastal lagoon is classified
as a choked lagoon (Kjerfve 1986; Möller et al. 1996), may exhibit estuarine
characteristics, and the MZ may be localized up to 70 km from its mouth; however,
research has shown that during dry seasons or periods high river discharge, the MZ
boundary may be displaced northward or southward, and may be found very close
to the channel entrance in occasions of great floods. Therefore, the basic mecha-
nisms causing the formation and displacement of the MZ in the lagoon are: the
baroclinic component of the gradient pressure force, water balance inside the
lagoon forced by river discharge, and the southwestward wind stress forcing
(Möller and Castaing 1999).

Coastal lagoons are environments very vulnerable to anthropogenic influence.
Their existence is dependent on sea level variations and the inner and coastal
sedimentation processes, which are usually intensified due to urban development

Fig. 3.19 Sketch of hyper (a) and sub-saline (b) coastal lagoons
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and farming near the lagoons. As they are shallow and typical of coastal plain
regions, their water mass responds quickly to synoptic and seasonal meteorological
conditions.

The choked coastal lagoons may evolve, according to the climatic conditions,
into concentrated or diluted marine environments. A coastal lagoon that has
evolved to become concentrated is termed as hypersaline; the negative fresh water
balance (precipitation + river discharge-evapotranspiration < 0) generates a water
body with higher salinity than the coastal ocean (Fig. 3.19a). For example, the
Araruama coastal lagoon (Rio de Janeiro, Brazil) is a hypersaline coastal lagoon as
the result of the semi-arid climate conditions, a small drainage basin and choked
entrance channel. This lagoon has been continuously hypersaline for at least 4–5
centuries, but the salinity has varied substantially; it decreased from 57 to 52‰
between 1965 and 1990, as indicated by salinity (density) measurements. The
flushing half-life measures 83.5 days, which is considerably longer for most others
coastal lagoons (Kjerfve et al. 1996).

When climatic conditions generate a fresh water balance positive (precipita-
tion + river discharge-evaporation > 0), the lagoon becomes sub-saline and, in this
condition, the salinity in the lagoon is less than in the coastal region (Fig. 3.19b).

In coastal regions with predominant arid or semi-arid climate, severe wind
wave’s regime, plenty of marine sediments, accentuated coastal drift, and domi-
nated by wind generated dunes, it is possible to observe the formation of a system
of shallow coastal lagoons known as tidal sandbanks or shoal. These environments
have a negative fresh water balance evolving to a hyper-saline condition due to the
mouth closure, which occurs under extreme coastal sedimentation. The closure time
interval may be seasonal or remain for long periods. During some heavy rain
periods the water exchange of the lagoon with the coastal ocean is re-established by
the fluvial erosion forced by the hydraulic gradient. This type of coastal lagoon,
which is usually of great beauty as a coastal environment, is found in the west coast
of Australia and Mexico, and in the northeastern coast of Brazil such as the Macau
lagoon (Rio Grande do Norte), whose planktonic communities have been studied
by Chellappa (1991).

The case study of the Mundau-Manguaba system (Oliveira and Kjerfve 1993) is
an example of a choked sub-saline coastal lagoon. Localized in Maceió (Alagoas,
Brazil), and strongly affected by the input of wastes from the sugar cane industry,
the system was studied as an environmental problem related to ecological processes
to emphasize the inter-relationships of planning and industrial management.

During the rainy season (June to July, 1984), the Mundau lagoon was dominated
by fresh water discharge, and the salinity variation was from zero to 9‰, with weak
vertical variation. The Manguaba lagoon retained a salinity of less than 1‰. Due to
the predominance of water mass with low salinity during this time of the year,
events of great mortality of the abundantly occurring benthic estuarine mussel
(Mytella falcata) were observed, popularly named in the region as sururu.

In the dry season (January to February, 1985) salinities in the
Mundau-Manguaba lagoons system increased and varied in the interval (6–24‰)
and (0.5–8‰), respectively, and the vertical stratification with the larger gradient
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occurred in the channel mouth. The abnormal growth of bacteria (cyanobacteria
blooms) caused by eutrophication due to the contamination of the river discharge
with high concentrations of industrial wastes, occurred frequently and resulted in
mass mortality of fish and shellfish. In these lagoons, the circulation and mixing
processes were dominated by the tidal forcing, but may also be modified by the
wind stress and the river discharge. Maximum current velocities were observed in a
transversal section across the external channel leading into Manguaba lagoon:
maximum flood and ebb currents reaching speeds of 0.6 and 0.4 m s−1, respec-
tively, were measured during the rainy season (July, 1991).

The external lagoon of the Maricá system, directly interconnected with the
coastal sea, is the Guarapina lagoon. It has been studied with a time series of current
and hydrographic properties by Kjerfve and Knoppers (1991). During this exper-
iment, the circulation was predominantly seaward and the direction of the tidal
modulated current was reversed only in a few occasions. The occurrence of this
reversing circulation was during the spring tidal cycle, and caused a quickly input
of salt water into the lagoon system. During these events the salinity increased
rapidly from �7.0 to 34‰. However, during the longer ebbing time intervals the
salinity remained almost constant (�7.0‰) because the volume transport of the
river discharge is small, in comparison with the total volume of the lagoon system.

The hydrographic characteristics and the trophic state of the Maricá coastal
lagoon (the most interior of the Maricá system), has also been studied by Esteves
(1992), using seasonal measurements of physical-chemical properties. In the sam-
pled time period (December, 1989 to April, 1991) the salinity structure indicated
low vertical stratification with bottom minus surface values of less than �1.0‰ and
up to �3.0‰ in the sampling stations located in the western and eastern lagoon
borders, respectively. Mean estimated salinity values varied from �4.1‰ to 7.4‰,
indicating small seasonal variation. However, in February, 1990, the salinity value
in the eastern sampling station reached up to �14.5‰, almost the same time as the
occurrence of an anomaly occasioning a great fish mortality. This lagoon system
presented trophic state during almost the sampling period; however, a hypertrophic
environmental condition was observed in the summer.

The trophic state and water turn-over time in six choked coastal lagoons, located
along the coast of Rio de Janeiro (Brazil), have been compared using the total
phosphorus and chlorophyll-a concentrations and nutrient loading. The results
indicated a clear relationship between the flushing half-life and the trophic state,
based on a scatter diagram analysis of the total phosphorus and chlorophyll-a.
Scatter in the relationships is most evident for the interior lagoons where the
composition of primary producers differs. In this lagoon system the flushing
half-life and nutrient loading was also observed to be related to the total phosphorus
and chlorophyll-a concentrations (Knoppers et al. 1991).
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Chapter 4
Physical Properties and Experiments
in Estuaries

The investigation of processes and how estuarine systems function, presents distinct
aspects, being conducted with various purposes and objectives. The experimental
procedure may include sampling to perform the analysis of spatial and temporal
variations of physical measurements of hydrographical properties (salinity, tem-
perature and pressure), currents, sea level oscillations (waves and mainly tides) are
of fundamental importance in Physical Oceanography. The experimental procedure
may include sampling to perform the analysis of spatial and temporal variations of
chemical substances (natural and anthropogenic), sediments in suspension, dis-
solved gases and marine organisms in the water column and at the bottom.

The physical processes common to all estuaries are their cyclical motions and the
mixing of the water masses with contrasting origins: the fresh water discharged by
rivers and the seawater from the ocean. As result of this process, associated with
generating forces of the motions, the estuaries are non-homogeneous water bodies
and their properties may vary in wide time and spatial scales presented in Chap. 2.

Taking into account the comprehensive and systematic article of Kjerfve (1979)
the basic principles of measurements, reduction and data edition of estuarine
properties will be presented. These data are the result of measurements of vector
and scalar physical properties, and the determination of dependent properties
necessary to the estuarine knowledge to study its environmental and dynamical
properties. According to the technical report of Unesco (1985), the physical
properties must be expressed, whenever possible, in the Standard of International
Unity System, usually abbreviate as SI unity.

4.1 Research Planning

Investigations into the behavior and estuaries characteristics take many forms and
are initiated with varying purposes. Field studies could include water samples to
determine concentrations of nutrients, ATP, plankton, suspended sediments, pH,
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dissolved gases, and many others properties. However, independent of the disci-
pline, all field-oriented estuarine studies include current velocity (speed and
direction), water temperature and salinity measurements, associated with river
discharge, tide measurements and meteorological variables, as wind speed and
direction, and echo sounder measurements. Remote sensing may also be included in
the investigation.

Estuaries typically experience great spatial variations, seasonal, fortnightly,
semi-diurnal and/or diurnal oscillations in water level, velocity and material con-
centrations. This is primarily due to a combination of tidal influence, fresh-water
river discharge, meteorological forcing, and the constraints imposed by the con-
figuration and morphology of the estuary. Thus, the representativeness of any set of
estuarine measurements is highly dependent on the sampling design (choice of
sampling locations, sampling rate, and study duration), as well as a rational pro-
cedure of analysis and synthesis of the data. These results are used not only for the
spatial and temporal variations, but also to the estuary classification and determi-
nation of flux and transports, as well as to validate theoretical results generated by
analytical and numerical models.

Before any experimental investigation, a detailed analysis of the objectives and
the theoretical aspects must be accomplished; this makes it possible to decide what
properties must be measured, and to establish the procedure analysis of each
variable for its convenient reduction.

In the classical book of Dyer (1973), examples are presented of typical estuaries
illustrating the propertie’s variability under the influence of different tidal ampli-
tude, river discharge and geomorphology characteristics. In these examples, the
property descriptions (temperature, salinity and current velocity) were made based
in averaged values in transversal and longitudinal sections, taking into account the
local variability. Other articles (Stommel 1953a; Dyer 1977; Kjerfve and Proehl
1979 and Uncles and Kjerfve 1986) were able to show that transversal motions
induced by bottom topography and channel irregularities may also be as important
as the longitudinal variations. In these works it was also shown that the experiment
time length, to calculate the mean circulation during tidal cycles, takes into account
subtidal frequency variations due to the synoptic and the seasonal meteorological
forcing, as well as the time variability of the river discharge.

The tidal currents and the mixing process generate problems in data reducing
and analysis which can only be solved by calculation of time mean values. The
selection of a suitable sampling duration to determine the time-averaged estuarine
conditions is as critical as the spatial sampling. Elliott’s (1976) study points out
extreme variability in time-averaged estuarine currents from one tidal cycle to
another, and shows how the time-averaged current direction frequently reverses. It
is likely that in most estuaries the greatest portion of the variability, on time scales
from two to 20 days, occurs in response to meteorological forcing such as wind
stress and atmospheric pressure fluctuations (Kjerfve 1979).

In calculating the mean flow in the Providence river estuary (Rhode Island,
USA), frequently forced by the wind, Weisberg (1976) observed that, in general, it
is not enough to calculate time mean values from measurements of only a few tidal
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cycles. Considering wind-induce current fluctuations Weisberg derived, using
spectral analysis techniques, the following equation to arrive a meaningful time
interval Dtmð Þ, which is necessary to the calculation non-tidal circulation or flux
estimates,

Dtm ¼ W2

2Bee2u2m
: ð4:1Þ

In this equation both W W ¼ 2 x 10�2 Uð is the variance of the axial current),
and Be (effective spectral bandwidth) are primarily dependent on the local wind
intensity U cm s�1ð Þ. The symbol e indicates the normalized error and um, the mean
current velocity cm s�1ð Þ may be anticipated from previous estuarine measurements
published data, river discharge or conservations considerations for an idealized
two-layered mean flow.

Let us assume, for example, that the wind speed is 500 cm s�1 W2 ¼ 102 cm s�2
� �

,
e = 0.2, Be = 0.03 cph, and um ¼ 10 cm s�1. Then, in this case, Dtm = 417 h or 33
semi-diurnal tidal cycles. The main conclusion to be drawn from Weisberg’s (1976)
analysis is that if a too short sampling duration is selected, the resulting
time-averages may not be representative of the typical conditions for a particular
estuary (Kjerfve 1979); these results must be carefully interpreted, especially if
during the data sampling the estuary has been forced by strong winds or abnormal
meteorological events. These difficulties may be overcome with the use of con-
tinuous record instrumentation which may be operated during great time intervals.
In the absence of these abnormal meteorological events and in estuaries with rel-
atively small surface area, experiments conducted during a few tidal cycles may
give reliable results.

Another example, on the correlation of the low-frequency response of estuarine
sea level to non-local forcing variability, is found in the article of Kjerfve (1978).
The analysis of one-year time series records of sea level, atmospheric pressure, and
wind (speed and direction), representative to the well-mixed North Inlet estuary
(South Caroline, USA), indicated two important sea level variability due to the
forcing from the coastal ocean: a 3.2 cm high sea level wave at 6.0 days period is
highly correlated with changes in atmospheric pressure, and 6.4 cm high sea level
wave at 9.2 days periods is attributed to continental shelf waves driven by the
along-shore wind stress.

The formulation of a project must be preceded by a scientific hypothesis, and it
is not recommended to start the field sampling without one or more hypotheses,
because they are the basis of the scientific method. As an environmental project,
their stages must be carefully planned taking into account the following activities:

1. Planning: before the measurements and hypothesis extracted from previous
studies and from the theoretical knowledge of the problem, a decision must be
taken about the measurements and what should be done after data quality
control.
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2. Field work: as this stage involve data collection spatially distributed (with an
oceanographic boat), and/or time series measurements of properties (fixed sta-
tions or moorings) with calibrated instruments, it is necessary to take into
account the sampling details: geographic location and geometry (nautical
charts), stations number and/or moorings, sample distribution in the water
column, and logistic aspects related to the time interval between the measure-
ments. It is advisable to start and finish the measurements at high or low water,
mainly when estuary circulation is very low. The field work may also be
associated with remote sensing (airplane or satellite) to observe the estuary in a
time spot or sequentially in time.

3. Control and editing: at this stage, which may be partially accomplished on
board, the experimental data must be carefully examined, to prevent observa-
tional errors and the one due to the malfunction of the equipment sensors. After
that data control, the observational data are reduced and filed in a convenient
format to enable its analysis.

4. Numerical treatment: analytical and numerical modeling are very useful to
theoretically simulate the spatial and temporal properties, currents and transport
forced by the river discharge, tidal oscillation, wind stress and density gradients.
The comparison of theoretical simulations with the observational data is nec-
essary to validate the theoretical results. This stage may also include statistical
treatment of the experimental data with mathematical regressions, time series
analysis (time domain) and spectral analysis (frequency domain).

5. Analysis and synthesis: this stage includes the synthesis of the experimental and
theoretical results in tables and graphics, and its interpretation with known
theories. This stage isn’t a trivial one in a big project.

6. Reports and articles: this is the final step activity and its products are technical
reports and articles submitted to specialized magazines.

Percentage estimation of these activities, in comparison to the work efforts to the
financial cost and their contributions to the final product of the project are presented
in Table 4.1.

Table 4.1 Project
components and percentage
estimation relative to the work
effort, financial cost and the
final product

Component Effort (%) Cost (%) Product (%)

i-Planning 05 05 00

ii-Field work 20 60 05

iii-Control and
editing

10 05 05

iv-Numerical
treatment

40 10 05

v-Analysis and
synthesis

10 05 10

vi-Report and
articles

10 15 75
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When there are no previous studies it is necessary to calculate theoretically the
magnitudes of such variables as: current velocity, tidal height and excursion. With
this information it is possible to specify correctly the equipment to be used in the
measurements, in the planning and logistics to reach the objectives.

Field works, demanding lateral sampling to the knowledge of the mean vertical
structure in the cross-section of a laterally non-homogeneous estuary require at least
in three stations across. It also required the sampling time interval of one or
half-hour (Dt = 1 h, or 0.5 h), and take care if the shallow depths near the margins
are adequately sampled. To well defined vertical profiles in the water column a
minimum of selected depths must be sampled from the surface down to the bottom,
with intervals of Dz = 1.0 or 0.5 m. If a continuous property profiling is used in the
measurements, the interpolation may be made at the same selected time intervals.
When the instruments have no pressure sensors, the sampling depth (z) must be
made taking into account the wire angle (/, measured by a clinometer) and the wire
length (L) of the hanging instruments, generally calculated by z = Lcos(/). In
longitudinal or transversal sections, the distance between the sampling stations
needs to satisfy the following: (i) the difference of the property mean value between
stations must be higher than the measurement error; and (ii) the property gradient
must vary linearly with the distance. An analysis of the decrease in the committed
error in the computation of transport or flux properties, in vertical sections with
number of sampled stations, is presented in detail in the article of Boon III (1978).

The sampling time interval (Dt) during measurements of one or more tidal cycles
is of crucial importance to prevent aliasing; if the sampling frequency is not ade-
quately made in relation to the temporal scale of the phenomenon, it will not be
sampled with the necessary detail.

The description of the motions and physical characteristics of an estuary may be
obtained in two different basic methods which are related to the theoretical aspects
of Fluid Dynamics, namely the Euler and Lagrange formulations. In the Eulerian
description, the properties are measured in the time domain, in a fixed point of
estuary, and in the Lagrangian the measurements are made in a drifting volume and
in the time domain. The first description is the most used in estuarine research. For
instance, in the estuary classification, using the stratification-circulation diagram,
the set of measurements must be made in a fixed station and during the time, during
one of more tidal cycles. Ideally, Eulerian measurements of hydrographic properties
and currents should be made in a set of oceanographic stations distributed in the
estuary space for its adequate sampling.

When, in the experiment, only instrumentation which needs an observer is used,
it is very difficult to perform measurements during several tidal cycles. In these
experiments a series of oceanographic stations may be occupied sequentially in
space and time with only one equipped boat, or several stations may be simulta-
neously sampled with several boats aligned in the estuary cross section, as in the
experiment described in the article of Kjerfve and Proehl (1979), as part of a
multi-disciplinary investigation of the material transport between the cross section
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and the coastal ocean. In this experiment, in a the well-mixed tidally driven North
Inlet estuary (South Caroline, USA), a 320 m wide cross section, with typical
channel depths of 5 m, 11 stations were occupied with simultaneously sampling
taken every 30 min. However, with only one instrumented boat and this sampling
rate, the experimental work may cover partially the estuary and this limitation may
be crucial in large estuaries. The detailed results of this investigation, related to the
total material flux estimates was part of a multi-disciplinary investigation.

4.2 Current Measurements, Tide and Hydrographic
Properties

4.2.1 Current Velocity

As in others branches of Physical Oceanography, among the physical properties of
interest, the most difficult one to be measured is current velocity. It is a vector
property which presents great spatial and time variability both in intensity (speed)
and direction.

The observational procedure of current measurements in estuaries is not trivial,
typically, the speed increases from zero, at slack low water, to maxima values
which can be in excess of 2–3 ms�1 (or higher in some estuaries) at mid tide before
decelerating, reversing at slack high water, and then accelerating to achieve similar
or higher values in the opposite direction (Hardisty 2007).

Velocity measurements may be made using a moored boat or moored equipment
in a fixed position. In the case of measurements with the sailing boat, depending on
the equipment used, it is necessary to know the boat velocity and its direction, to
extract the real current velocity.

In velocity measurements manual, mechanical, electronic, electromagnetic and
automated techniques may be used to measure the speed and direction of the current
in vertical profiles or in time series recording. Usually, current metering is made on
board of a moored boat, performing velocity profiles from the surface down to the
bottom at programmed depths and time intervals. Time series velocity measure-
ments also may be made with more sophisticated electronic equipment as: auton-
omous moorings hanging on surface or bottom buoys, and with Acoustic Doppler
Current Profiles fixed at the bottom. Mechanical devices embodying some form of
rotating element which are used for water velocity measurements are called current
meters, and The Proceedings of the Royal Society of London records descriptions
of such devices from Newton’s time (Hardisty op cit.).

The operation autonomy of this equipment in the field is determined by the time
sampling rate (Dt), storage capacity (memory) and battery life duration. Although
the last generation instruments are very expensive, there are less expensive versions
which work at limited depths (<200 m) and can adequately be used in most
estuaries.
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Current meters record the current velocity (intensity and direction) by two
sensors: one for intensity and other to the direction. However, others sensors may
also be installed in this equipment to simultaneously measure properties as tem-
perature, electrical conductivity, turbidity, oxygen concentration, for example. The
current intensity sensors may be of three types: rotor, acoustic and electromagnetic,
each one with its vantages concerning the resolution. The current direction is
measured in relation to magnetic field of the Earth, with a compass (magnetic or
electronic) and the equipment orientation through a steering device, or an orthog-
onal set of sensors which indicate its orientation with the flow. Consequently, in the
data edition, it is necessary to take into account in the direction angle the magnetic
declination, which depends on the geographic position and time of the
measurement.

In current-meters with propellers or rotors the current intensity is measured by
the time rate of the rotation, calibrated in a experimental channel with the controlled
flow velocity. A type of Savonius rotor has curved plates mounted around a vertical
axis. However, instruments with these types of intensity measurement respond
excessively to the up and down fluctuations of the hanging cable of the instrument.
This undesirable noise is known as wave bombing, resulting in a major intensity in
all frequency energy bands. Equipments with this type of rotor must not be used
hanging on board of boats due to its oscillations, mainly in the presence of moderate
and high wave conditions. When hanging in moored buoys in regions which may
be reached by high wind intensities, or in the proximity of the estuary mouth, which
may be more strongly affected by waves, the time series record must be filtered to
eliminate the undesirable fluctuations.

The rotor with six straight blades mounted around a vertical axis, is being turned
to be a standard one in oceanographic instruments. Although less sensitive to the
wave bombing the conventional equipment which uses this rotor type are not
adequate to be used on the surface layer, due to the motions induced by the gravity
waves, mainly due to the delay into respond to the direction changes. Under this
layer, they may be moored because are less sensitive to the cable oscillations.

There are current meters using data sampling with a system of vector means in
the burst connection. This methodology has a high temporal resolution and alter-
nates between short and relatively long time, with and without measurements,
respectively. The time series of intensity and direction are internally processed to
calculate the mean values of intensity and direction during the sampling time
intervals. This equipment, even when equipped with blade rotors, may be moored
near the water surface mainly because the direction sensor, which consists of a
small blade fixed in the compass has a small inertia.

The acoustic current meter measure the propagation time interval of a high
frequency pulse between a source and the receptor separated by a fixed distance. As
much as is the water velocity in the sound direction propagation, less will be the
measured time interval. These instruments may use two or three pairs of this
transmitter-receptor system disposed in perpendicular axes, two measure the hori-
zontal component or the horizontal and vertical velocity components, respectively.
A compass is used to measure the earth’s magnetic field, and a tilt sensor measures
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the instrument’s angle, and with these data the direction of the instrument is
determined and consequently the current direction. The current direction and speed
is thus measured in relation to the equipment, and an internal compass is use to
determine the true direction. These types of current sensor may be moored even
near the surface layer subjected to the wave motion.

Electromagnetic current meter has its functioning principle base in the Faraday’s
electromagnetic law, and the seawater functions as the electric conductor in motion.
Once crossing the electromagnetic field created by the instrument, the sea water
induces the generation of an electromagnetic force proportional to the current
intensity and perpendicular to the current direction. This equipment has a system
with two axes and an internal compass which measures the velocity horizontal
components. They also may be moored nearby the surface.

The Doppler Current Meter system of acoustic profiling, generally referred as
ADP or ADCP, uses the principle that the sound wave propagating in the seawater
is modified when reflected by an object in motion. The equipment sends pulse
sounds with different intensities which propagate into the water column, and these
pulses are reflected back to the equipment by the reflecting particles in the seawater.
These reflectors may be materials or organisms in suspension in the water, as
sediments in suspension or by planktonic organisms transported by the currents and
by the Doppler effect the frequency of the reflected sound wave length is different
from that originally emitted. The transducer receptor is projected to pick up these
anomalous frequencies and the relative velocity between the reflector and the
instrument is calculated. This equipment has three sets of transducers, each one to
do the measurement of the vector velocity component (two horizontal and one
vertical). As the pulse intensities are calibrated to travel different distances in the
water column, Doppler current meter measures vertical velocity profiles in discrete
cells in the water column. The sensitivity of these instruments is very high to
oscillations, and they have sensors to measure and compensate these oscillations.
They may be used fixed in the boat or in its hull, sampling velocity current during
the ship’s track. There are also ADP versions to be moored for an autonomous
operation, being the substitute of a conventional mooring line of a set of instru-
ments typically used.

The main difficulty for measurements of current in estuarine regions is associ-
ated with the high frequency oscillations of the free surface due to the gravity
waves, intense currents and the biological fouling, accidents and vandalism. Due to
the low depth of coastal plain estuaries, the wave energy usually may reach the
bottom, and it is very important to choose an adequate equipment to measure the
current velocity operated in boats or in equipment installed in moorings. Further,
using sub-superficial moorings, with an underwater buoy in the main branch, as the
classical U type shown in Fig. 4.1 must be preferred, to minimize the noise due to
the waving motion in the surface in the buoy and equipment. This scheme permits
also the use of warning surface flashing signals, preventing boats and fishing boats
with arrested nets to catch and destroy the mooring.

The relatively high speeds which may occur during the sampling produce a drag
in the boat, cables, current meters and sampling bottles. Then, when using a boat as
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working platform, it must be anchored in two positions (aft and fore) to minimize
its motions during the tide inversion from flood to ebb, and vice versa. Attention
also must be paid in the dimension of the buoy lift that will sustain the main
mooring cable. This lift drag must be strong enough for the equilibrium angle,
between the vertical and the main branch inclination due to the current drag, must
be less than the one specified by the current meter manufacturer. It is also desirable
that the current meter has pressure sensors, so, the observed depth variations of the
initial project may be established.

An instrumented mooring must receive frequent maintenance, mainly to clean-
ing of bio-fouling which may alter the sensors sensibility and the current meter
calibration (speed and direction). The fouling may be so critical that may stop the
rotor function, causing not only a gap in the time series measurement, but also
money expenditure; the maintenance time interval depends on the investigated
region and the season of the year. As a general rule, when measurement of current
are made in a shallow water estuary and in warm season, the maintenance to clean
the equipment must be more frequent, sometimes at every one or two weeks’ time
intervals. Recent advances in high sensors performance and anti-fouling technology
is being applied to a new generation of equipment, improving the estuarine
long-term data acquisition.

The equipment lost through accident with fishing nets, fault in the correct use of
cable and launching procedures, inadequate chains and weights, and vandalism is

Fig. 4.1 Schematic displacement of the classical U mooring with a current meter and others
sensors to measure the Eulerian variability of estuarine water mass
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relatively high in estuaries. However, using better technologies and maintenance it
is possible to reaches indexes of recoveries of good measurements higher than 80–
90%.

There is now underway in several estuaries around the world an up to date online
measurements of velocity, meteorological, tidal height measurements and others
properties. One source of these estuarine experiments is the estuarine flow data
long-term acquisition PORTS (Physical Oceanographic Real Time System), oper-
ated in several USA harbors as: New York/New Jersey, Anchorage, Tampa Bay,
Chesapeake Bay, Narragansett Bay, and others. These data will be very helpful for
a better understanding of the Physical Oceanography of estuaries and the related
components as Biological, Chemical and Geological.

4.2.2 Tide

The estuarine water surface oscillates horizontally and vertically forced by several
distinct processes. In temporal scales from seconds to year the main are gravity
waves, tidal co-oscillation, wind shear, seasonal river discharge and atmospheric
pressure, as well as the circulation due to the wind shear stress on the continental
shelf.

The measurement of the sea level oscillation in the intratidal domain are made by
tidal gauges, installed in coastal stations, or rigidly moored on the estuary bottom.
There are two main types of tide gauges: the mechanical driven by a surface buoy,
and the acoustic.

In the mechanical instruments the sensor is a fluctuating buoy installed in the
interior of a tube vertically displaced. The connection between the buoy and the
water is made through a small diameter hole in the lateral, or situated at its bottom.
The correct relationship between the tube and the diameter acts as a filter to the
oscillating non-desirable noise of the gravity waves. The buoy, through a steel
cable, senses the up and down tidal motion which is transferred to a mechanical
devise and a pen that records analogically the tidal motion in function of time. Once
installed, it must be calibrated by leveling in relation to a known datum level, and a
periodic maintenance by cleaning the tube and buoy due to the bio-fouling. In
remote places, it is necessary to take into account the possibility of vandalism.

Electronic pressure tide gauges are usually settled at the bottom in rigid plat-
forms to prevent undesirable motions. The majority pressure sensors use the crystal
piezoelectric effect whose precision is adequate to estuarine investigations. The
equipment configuration must be set previously (time, date, sampling time rate,
maximum tidal height) and, if necessary, signalization surface buoys may be
launched to prevent the mooring to be drag by fishing nets.

The tidal height sampled by tide gauges are used to perform tidal analysis
(components determination) and prediction. The first devices for tidal prediction
were the tide prediction machine invented by Lord Kelvin, who devised the method
of harmonic analysis in the second half of the XIX century. Between the several
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methods we have already mentioned (Chap. 2) the software developed by Franco
(2000), which uses the spectral analysis to tidal and current analysis and prediction
(Pacmaré), using discrete tidal heights or current sampled at different time intervals
(usually Dt = 1.0 or 0.5 h). The Pacmaré has a set of programs which compute the
following correlated tasks: (i) Harmonic analysis for current, and tide and predic-
tion, processing time series up to 3–4 years; (ii) Long time series analysis and
prediction, processing up to 18.6 years. The computed results of set of harmonic
tidal (current) components are used to predict the tidal heights or current speeds for
any desired time and may be extracted in tables or graphic format. To exemplify
one of the results which may be obtained with this software, the tide predicted to the
Natal harbor (Rio Grande do Norte, Brazil) was calculated from an hourly time
series of tidal heights with 1.8 years (Fig. 4.2).

4.2.3 Hydrographic Properties

The temperature and especially the salinity are hydrographic properties to be
sampled in an estuary investigation. As shown in Chaps. 1 and 2, the salinity is a
fundamental property, but also because its longitudinal gradient (or density gradi-
ent) is capable to generate the up-estuary longitudinal circulation due to the

Fig. 4.2 Tide forecast for 24 h (two tidal semi-diurnal cycles) for the Natal harbor using the
Pacmaré developed by Franco (2000)
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baroclinic pressure gradient and its vertical gradient indicates the vertical stratifi-
cation (stability). Knowing the distribution of this property enables its classification
according to the salinity stratification and the calculation of the
Stratification-circulation Diagram, however, for that the longitudinal steady-state
motion also must be known.

The density of the seawater is dependent on the temperature (T), salinity (S) and
pressure (p), usually known as independent variables, and the density as function of
these properties, q = q(S, T, p), is calculated by the Equation of State of Sea Water.
The pressure influence on the density is important to be considered only in type
fjord estuaries, because of the great depth, which may reach 1000 m. As the most
common are coastal plain and shallow estuaries, the pressure influence on the
density is of minor importance, and the density may be considered only as function
of salinity and temperature, q = q(S, T), it may be determined by the equation state
of seawater at atmospheric pressure (p = 0), or with simplified equations. As
studied in the Chap. 2, the density is the physical property necessary to the
determination the baroclinic component of the gradient pressure force (Eq. 2.10a);
this component, associated with the river discharge and the vertical mixing pro-
cesses, generates the gravitational circulation.

Temperature is the thermodynamic property to indicate if two physical bodies
are or are not in thermodynamic equilibrium, or it may be taken as a measure of the
heat content of a volume element. This property has variation in space and time,
T = T(x, y, z, t), due to the advective and diffusive processes and the exchange of
sensible and latent heat with the atmosphere. The temperature may be measured at
different depths in the water column with the classical protected reversing ther-
mometer, having as sensor the differential coefficient of cubic expansion mercury in
glass, was first manufactured in Italy by Negretti and Zambra, in 1874. This
instrument was improved in Germany and, in about ten years, reached the high
precision (±0.02 °C and ±0.005 °C). The detailed description of this thermometer
may be found in classical books of Oceanography (Sverdrup et al. 1942; Defant
1961; Neumann and Pierson 1966, among and others). Nowadays, these classical
thermometers are being replaced by the high precision electronic reversing ther-
mometer with platinum temperature sensors. These thermometers were specially
projected to be installed in bottles of Nansen, Ninskin or Van-Dorn bottles, to
enable water sampling simultaneously to determination of salinity, and others
chemical components and micro-biological micro-specimens of estuarine water
mass.

The temperature (T’) registered in a thermometer of the mercury in glass type is
read in the boat laboratory or on the deck and, at a different temperature measured
in situ (T). Then, it is necessary to apply a correction (DT), due to the volumetric
expansion, because the temperature difference of the water in situ and the one in the
boat (ta), at the reading time of the reversing thermometer. The temperature (ta) is
measured by a thermometer named auxiliary, located at the same protecting glass of
the reversing thermometer. Besides this influence, it is necessary to algebraically
add to the reading T’ (made with a magnifying glass) an experimental correction (I),
named index error obtained in laboratory during the thermometer calibration
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against a standard thermometer, furnished by the manufacturer. Then, the in situ
temperature is determined by:

T ¼ T0 þDTþ I: ð4:2Þ

A detailed revision on the published equations to calculate the volumetric
expansion error (DT) was published in the article of Keyte (1965). To calculate this
error it is necessary the following physical quantities furnished by the manufacturer:
(i) V0—volume of mercury in the capillary tube of the reversing thermometer, at the
temperature 0 °C; (ii) KT the coefficient of volumetric expansion of the thermo-
metric system. For the water mass of the coastal plain estuaries it is enough to use
the simplest correction formula, as the one deduced by G. Ferruglio in 1912:

DT ¼ T0 þV0ð Þ T0 � tað Þ=KT: ð4:3Þ

This DT value combined with the Eq. (4.2), is the accurate value of the in situ
temperature (T).

The great advantage of the electronic thermometers, in relation to the mercury in
glass, is that the reading is made in a display digital and there is no volumetric
expansion of the system. These thermometers have the same characteristics as the
classic ones (they may be fitted to any sampling bottle) and have the following
advantages:

• They are programmed in three operation modes (wait, continuous and sam-
pling), which are selected by a magnetic key;

• There is no correction in the reading and its precision is ±0.015 °C;
• The display electronic can’t be erased by mistake.

The salinity (S) is a physical-chemical property calculated as the ratio of the salt
concentration mass (m, in grams) dissolved in a given mass of seawater (M, in
kilograms): then, it is a non-dimensional property, [S] = [MM−1]. Besides its
importance to the ecologic characterization of the estuary this property it is used to
calculate the density of the seawater. In the estuary the salinity presents great
variability in time and space, S = S(x, y, z, t), mainly due to the process of mixing
(advection and diffusion) and the of river discharge; with some exceptions, the
direct exchanges of the estuarine water mass with the atmosphere (through the
processes of precipitation-evaporation) generally do not have an important contri-
bution to the salinity variations, with exception to the hypersaline estuaries which
may be formed in regions of arid climate.

The history of the salinity definitions and the methodology to its determinations
dates back to 1693, thanks the early work of Robert Boyle, on measuring the
saltiness of the seawater, evaporating the water, and weighing the solid residue
(Hardisty 2007). Without going into the details, several definitions of this property
evolved, and are from the dominion of the physical-chemistry, it follows that the
main results are internationally known.
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(a) Classical definition of Martin Knudsen

The traditional parameter used for estimate salinity is the chlorinity
(Cl) concentration chemically determined in g/Kg (symbolically ‰), which mea-
sures chloride and bromide concentrations in the seawater usually by a volumetric
procedure using a standard sea water as reference (normal seawater). The con-
version of Cl concentration in salinity is made with the equation
S = 0.03 + 1.805 � Cl, named Knudsen equation, and may be used to in the range
from 2.0 to 42.0‰, with an accuracy of ±0.03‰. This procedure was published in
the Hydrographic Table of Knudsen et al. (1902), where the salinity has been
defined as: “The total amount of solid material in grams contained in 1 kg of sea
water when all carbonate has been converted to oxide, the bromine and iodine
replaced by chlorine, and all organic matter completely oxidized”. In the above
equation the constant 0.03 represent approximately the solid content of river water
flowing into the Baltic Sea, being the dominant influence in determining the ratio of
ions in the solution of low salinity water.

(b) Inductive scale

With the advent of the electronic instruments to measure accurately the con-
ductivity ratio (Rt), defined as the conductivity in situ in relation to that of a
standard, in the 1960 decade, the salinity was redefined and the oceanographic
community has started to use this accurate method to obtain this property of sea-
water more quickly and with higher precision.

To maintain the continuity of Knudsen scale and redefine the salinity as an
addictive property, the conversion of chlorinity in salinity was made with the
following equation: S = 1.80655 � Cl. For Cl = 19.374 it follows, from these
equations and the one of Knudsen, the same salinity S = 35.0‰. Using a set of 135
samples of seawater collected in the oceans which were carefully and precisely
analyzed of its chlorinity content (Cl) and conductivity ratio (Rt) values, which
were correlated with multiple correlation techniques, and a 5th° polynomial
equation was fitted to determine salinity as variables Rt and the T, as independent
variables, S = S(Rt, T), with T� 10 °C. This equation was used to calculate the
salinity in the inductive scale, in the same salinity interval of the Knudsen scale, and
the algorithms for its determination were published in the Unesco Technical Papers
in Marine Sciences (UNESC0 1966), enabling the salinity precision of ±0.003‰.
The conductive ratio (Rt) and the simultaneous temperature of the sample (T) to be
converted in salinity are measured with an equipment named Salinometer.

Until 1979, the salinity was reported in the same unity as in the classical unity
(grams per kilogram or ‰). In the General Assembly of the International
Association for the Physical Sciences of the Sea (IAPSO), held in December, it was
made the recommendation that the symbol‰, should be replaced by 10−3; thus, for
example, a salinity value of 35.120‰ should be expressed as 35.120 � 10−3 and,
in non-dimensional formulation (kg/kg). However, due to the inconvenience of the
unity change this recommendation has not been used by the oceanographic
community.
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(c) Practical Salinity Scale

As pointed out by Lewis (1980) the conductivity ratio (Rt) defines the salinity
scale better than chlorinity scale for density determinations, and the new Practical
Salinity Scale (1978) has been defined to eliminate the following difficulties of the
former definitions: (i) The standard seawater may the reproduced in laboratory,
independent on the ionic composition of seawater; (ii) The same algorithm
approved by the Joint Panel on Oceanographic Tables and Standard (JPOTS) may
be used for the calculation of the practical salinity from conductivity at all tem-
perature and pressure over the ranges of oceanographic interest, in laboratory
equipment or in with Conductivity-Temperature-Depth instruments; (iii) It turns to
be a conservative property (Unesco 1981a).

Independent of the measured property (chlorinity or electrical conductivity) the
Practical Salinity Scale and the former scales reproduces the same value corre-
sponding to the value S = 35‰. And this value of S = 35‰ has by definition the
conductivity ratio of unity (Rt = 1.0) at 15 °C, with a potassium chloride solution
with concentration of 32.4356 g KCl/Kg. For conductivity ratio measurements in
laboratory (at atmospheric pressure), and the salinometer has been standardize with
a sub-standard of the KCl solution, the determination of the salinity is also made
with a 5th° polynomial equation, but having as independent variable the square root
of the conductivity ratio and the temperature, S = S(Rt

1/2,T) with an accuracy
of ±0.003‰. This polynomial expression may also be used to the determination
salinity values at the atmospheric pressure, which may be accomplished using the
algorithms published in the Technical Reports of Unesco (Unesco 1981a).

As in those former scales, accurate values may be calculated in the range of 2
and 42‰. Further details on the polynomials fitting may found in Perkin and Lewis
(1980), and the algorithms for the salinity determination as function of Rt and T
have been programmed in the MatLab® computational environment by Morgan
(1994). It should be pointed out that it is possible to apply this new salinity defi-
nition to hyper-saline seas, estuaries and coastal lagoons, because the upper limit of
the Practical Salinity Scale (42‰) was increased up to (50‰) by Poisson et al.
(1991).

The described salinity definitions have as fundamental hypothesis the constant
composition of the seawater. However, due to the river and runoff discharges into
estuarine waters, other ions may be found discharged, and this hypothesis may not
be true, and the accuracy of the methods (±0.03‰ Knudsen) and (± 0.003‰
Inductive and Practical scales) are only for oceanic waters. For coastal and estuarine
waters there is no yet detailed information on its correct ionic composition and
errors of ±0.04‰ in salinity and ±5.0 � 10−5 g cm−3 = ± 5.0 � 10−2 kg m−3 in
density may be tolerated. Thus, the Practical Salinity Scale and the International
Equation of State of Seawater can be used for estuarine systems even without the
detailed knowledge of their ionic composition (Millero 1984).

With the advance of the Electronic Engineering applied to Physical
Oceanography, small equipment from the type of Conductivity-Temperature-Depth
(CTD) were developed to operate in estuarine waters. With these instruments it is
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possible to sample continuous vertical salinity profiles, and concentration of others
properties. The electrical conductivity or the conductivity ratio measured with these
instruments, are automatically converted in salinity with the algorithms of the
Practical Salinity (PSS-1978).

Salinity determination in hyper-saline estuaries and coastal lagoons presents
difficulties when values to be sampled are higher than 50‰. These difficulties may
be overcome under the hypothesis that it has the same ionic compositions as
seawater. If so, to reduce the salinity to a determinable value, the sample may be
dissolved with a certain amount of distilled non-ionic water, and the analysis of the
new sample may be made with the methodologies already known, and the salinity
of the original sample may be calculated by applying a correction factor.

Although less precise, the hyper-saline waters (S > 50‰) may have its salinity
determined indirectly using measurements with refractive instruments and an
hydrometer, both graduated with known high salinity samples. The hydrometer, in
the Baumé scale, has the measurements in Be degrees; a measurement value may be
converted in density with the following equation (CRC 1979):

q ¼ 145
145� Beð

� �
x 103; ð4:4Þ

with the density in SI unities. For a distilled sample water at 4 °C and Be = 0o, it
follow from this equation q = 103 kg m−3. This method has been used to determine
the salinity in a study related to the hydrology and salt balance in the hyper-saline
Araruama lagoon (Rio de Janeiro, Brazil). In this study, the following linear cor-
relation between salinity and the Be degrees was determined: S = −2.9 +
11.0 � Be (Kjerfve et al. 1996).

Time series of the longitudinal velocity component (velocity decomposition will
be presented in the next chapter), salinity and tidal measurements were sampled in
the Cananéia-Iguape Estuarine System (Fig. 1.5). The Eulerian temperature and
salinity time series were measured in a self recorder current-meter, moored at 6 m
depth from the bottom and equipped with temperature and salinity sensors. The
hydrographic properties were recorded, and are presented comparatively to the tidal
record (Fig. 4.3). The visual analysis of the intratidal time variability of the current
component (v) indicates the influence of the longitudinal circulation forced by the
barotropic component of the gradient pressure force (tidal forcing). Visually it may
be observed that there is a phase difference of approximately two hours between
current and tidal oscillations, with the tide in advance of the velocity oscillation,
indicating a non-progressive tidal wave. It is also possible to visualize that the ebb
current (v < 0) is more intense than the flood current (v >0), which indicate the
superposition of a seaward residual motion generated by the system of rivers dis-
charges empting into the estuary. The salinity variability also presents a local
variability that, although out of phase with the tidal oscillation, oscillates closely to
the tidal current. Mainly due to the advective salt flux this property increases and
decreases during the flood and ebb tidal oscillations, respectively. Low frequency
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variations, superimposed to the tidal, current and salinity oscillations may also be
seen in this four day time series.

The accuracy of temperature and salinity measurements in estuarine waters are
not so critic as in the open ocean, mainly due to the strong advective and diffusive
influence of the tidal oscillation, and the occurrence of strong horizontal gradients
(mainly salinity) in comparison to the open ocean. However, it should be pointed
out that the longitudinal density gradient, necessary to calculate the baroclinic
component of the gradient pressure force has a great time variability, turning it to be
a very difficult physical quantity to be determined in the estuary. Then, although
every measurement must be made as accurate as possible, and the high accuracy as
in oceanic sea water may not be reached, it is very important in the estuarine
research that measurements should be made as fast as possible to minimize the error
induced by its relative high variability.

(d) Pressure

Around the year 287 (BC), Archimedes formulated the laws of hydrostatics. He
also combined numbers and experiments and gave the principle of the surface level.
These historical facts, which were of fundamental importance to the development of
the Fluid Dynamics and Oceanography, were cited in the von Arx (1962) book
relying on secondary sources of the Mc-Grow Hill series of history books.

Under ideal hydrostatic conditions, the pressure at every level of a water column
is assumed to be equal to the weight of the fluid per unit area [ML−1T−2].

Fig. 4.3 Four day time series of tidal height, longitudinal velocity component and salinity
recorded in the Cananéia-Iguape Estuarine System (São Paulo, Brazil) (November, 1996). The
abscissa axis is graduated in Julian days (according to Miranda and Castro 1998)
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Departures from hydrodynamic balance along the estuary and under normal con-
ditions, it is mainly a consequence of the combined effects of the non-uniform
density distribution and tidal oscillations. The analytical expressions of these
components were presented in Chap. 2 (Eq. 2.10a, b).

The units of pressure usually employed in Oceanography are generally derived
from the c.g.s. (centimeter, gram, second) system of units. In this system the force is
expressed in dyne and, because the average atmospheric pressure (pa) is
�1.01 � 106 dynes cm−2, it become a commonplace to consider pressure in terms
of the bar (1.0 bar = 1.0 � 106 dynes cm−2). The bar unity and its decimal parts as
the decibar (1.0 decibar = 10−1bar = 1.0 � 105 dynes cm−2) is a very convenient
unity of pressure, because the depth in meters in a seawater column may be
numerically approximate to the pressure in decibars. This may be easily understood
by the hydrostatic law written as Dp = qgDz = 1.03 � 9.8 � 102 � 1.0 � 102

which is � 1.0 � 105 dines cm2 = 1.0 decibar; then, for an increase in the depth of
1 m (1.0 � 102 cm) the increase in pressure is 1.0 decibar, with an error less than
2%. This numerical equality is very useful and pressure sensors in CTD’s usually
have a piezoelectric as pressure sensor calibrated in decibar’s.

4.3 Density and Equations of State

The seawater density (q) and the volume specific (a = 1/q), representing physically
the ratio of the mass per volume unity and its inverse, with dimension [ML−3] and
[L3M−1], respectively, are dependent on the salinity (S), temperature (T) and
pressure (p). To the majority of estuaries (coastal plain), with the exception to the
fjord estuaries, the density (volume specific) may be considered as dependent only
on the salinity and temperature. The salinity variation interval usually is great as
compared to the temperature, and the pressure effects on low pressure variations
(p < 100 decibars�100 m) on the density may be disregarded.

Although CTD’s (equipment with conductivity, temperature and pressure sen-
sors) have high sensitivity and their measurements have good precision, as indi-
cated above, this precision is not adequate to the determination of the horizontal
component of the pressure gradient (Chap. 2, Eq. 2.9c) which is used to the
determination of the gradient pressure force per mass unit, and it is impossible
to separate with this measurement, the barotropic and baroclinic components
(Eq. 2.10a, b Chap. 2). Then, this problem may only be resolved if the pressure is
calculated in function of the density and under the assumption of the hydrostatic
equilibrium, dp = −qgdz, remembering that the signal minus indicate in this
equation that the Oz axis is oriented against the gravity acceleration).

There are in some tropical regions that, according to the season of the year, the
river discharge into the estuary is too low, and there are two possibilities: (i) high
evaporation and the estuary turns to be hyper-saline, and (ii) the surface heating is
too intense and capable to cause density gradients, and thus influencing the estu-
arine circulation. In this last condition, due to the diurnal cycle of the temperature
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variation, these effects usually are transitory. In the fjords type estuaries occurring
in high latitudes, the intense cooling on the surface layer during the winter time may
generate deep convection, and thus the increase in the oxygen concentration in
these layers. Hence, according to the estuary characteristics the temperature influ-
ences may not be disregarded (Dyer 1973).

The equation of state of seawater at the atmospheric pressure in function of the
independent variables S and T enabling the determination of the density, q = q(S,
T) was based in laboratory experiments. In between these equations we may detach
the classical Knudsen equation and the International Equation of Seawater
(IESS-1980) (Knudsen 1902; Unesco 1979, 1981b), which have non-linear
dependence on the variables S and T. The classical Knudsen equation is com-
posed of a set of relations obtained in picnometer measurements under controlled
conditions of S and T, using also the well-established state equation of pure water
of E. H. Amagats (1893, quoted in Mamayev (1975)), and the seawater state
equation at 0 °C. Originally it was resolved in relationship to one seawater
parameter (Sigma–t or rt) associate to the density, q = q(S, T), and defined by
rt = [q(S, T)−1] � 103], with the density expressed in the c.g.s system of unity.

The International Equation of State for Seawater, 1980 (IESS-1980) was
determined with highly precision experimental data which were algebraically
manipulated to result a set of equations in the polynomial format (algebraic power
series in the S and T variables). The first equation of this set is the equation of pure
water. The final result of this equation is the density value in units of the
International System of Units (SI), and density is expressed in kg m−3; due to the
use of the SI system the parameter rt (also named density anomaly at the atmo-
spheric pressure) is defined as rt = q(S, T)−103.

Due to the great variability of the ionic composition of the estuarine water mass
and the expected accuracy of ±0.04‰ in the salinity determination, with the PSS
(Millero 1984), the precision in the determination of the seawater density with the
IES-1980 is �0.05 kg m−3. Due to the great variability of the density in estuaries
this accuracy is satisfactory to the solutions of problems related to their hydrody-
namics. These equations are widely found in technical papers and oceanographic
tables (Fofonoff and Millard 1983; Unesco 1987), and all algorithms have been
programmed in the computational MatLab® environment by Morgan (1994).

In the theoretical and numerical treatment of the circulation and mixing pro-
cesses in estuaries, it is necessary to solve a closed hydrodynamic system of
equations, and the state equation, q = q(S, T, p) or q = q(S, T) must take part of
this system. In analytical solutions, simplified linear and non-linear equations that is
reasonably efficient numerically, and has a wide range of application is one
developed by Mellor (1991); this is an equation to calculate density whose inde-
pendent variables are salinity, potential temperature, and pressure, and cover the
small range of pressure and the large range of temperature and salinity found in
estuaries, as well as, the large pressure range for deep basins application.

Due to the difficulties in analytical solutions it is convenient the use of equations
of state in simplified linear and non-linear formulations, so disregarding the
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pressure effect. For deduction of linear equations, according to Mamayv (1975), the
total differential (dq) of the functional relation q = q(S, T), must be obtained,

dq ¼ @q
@S

� �

T; p
dS þ @q

@T

� �

S; p
dT: ð4:5Þ

As the saline @q=@Sð Þ and thermal @q=@Tð Þ gradients, according to their defi-
nitions, are related to the coefficients contraction of salinity (b) and thermal
expansion (ae) by,

bðS;TÞ ¼ 1
qo

� �
@q
@S

� �
; ð4:6Þ

and

aeðS; TÞ ¼ � 1
qo

� �
@q
@T

� �
; ð4:7Þ

where qo is a density reference. Then, the combinations of Eqs. (4.6) and (4.7) with
Eq. (4.5), and the differential dq=qo is expressed by:

dq
qo

¼ bdS � aedT: ð4:8Þ

As known from the Thermodynamic of Seawater the coefficients b and ae are
dependent on the S and T. In the assumption of a mean value for these coefficients
for the estuarine water mass, the differential expression (4.8) turns to be an equation
with constant coefficients, and may be easily integrated,

qðS;TÞ ¼ qo b S� aeTð Þ þ C: ð4:9Þ

the integration constant (C) may be, for simplicity, taken as qo = q(0,0), equal to
the density of pure water at 0 °C (�1.0 � 103 kg m−3), and the linear equation of
state of the estuarine water is given by:

qðS;TÞ ¼ qo 1þ bS � aeTð Þ: ð4:10Þ

When the temperature effects may be disregarded, it follows the linear expres-
sion of the equation of state,

qðS; TÞ ¼ qo 1 þ bSð Þ: ð4:11Þ

or, in terms of the specific volume,
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aðS; TÞ ¼ ao 1 þ bSð Þ�1: ð4:12Þ

The constant values of the saline contraction and thermal expansion in the
preceding equations must be mean values of the thermohaline characteristics of the
estuary under investigation. These coefficients, determined with the analytical
expressions have the following mean values: b = 7.5 � 10−4 and ae = 2.0
10−4 °C−1; these order of magnitudes are valid for the following variation intervals
of salinity and temperature: 15 < T < 30 °C, and S > 10‰. However, the variation
of b with S and T is much less than the dependency of ae with these variables, and
their values must be altered according to the problem to be studied. These values
may be calculated with the Morgan’s (1994) MATLAB® routines for calculating
properties of seawater.

These linear Eqs. (4.11 and 4.12) have been used in solutions the of analytical
steady-state models on gravitational circulation as, for example, in the classical
article of Hansen and Rattray (1965), which resulted in theoretical profiles of the
longitudinal velocity and salinity in estuaries partially mixed. In some solutions, the

longitudinal density gradient @q
@x

� 	
may e substituted by the longitudinal salinity

gradient using the relationship @q
@x ¼ q0b

@S
@x

� 	
:

The non-linear approximations of the equation of state of seawater have been
introduced in order to maintain the main non-linear dependence of the density with
the properties S and T. The first simplified non-liner equation was presented by N.
E. Dorsey in 1968, and later modified in the following more convenient formulation
for practical applications (Mamayev, 1975):

qðS;TÞ ¼ qo þ b T� Toð Þ þ c T� Toð Þ2 þ fþ g T � Toð Þ½ � S � Soð Þ: ð4:13Þ

In this equation the coefficients b, c, f and g are constants to be determined. So
and To are also constant values of salinity and temperature, which may be chosen
according to the variation of these properties. For convenience, the first term of the
equation is qo = q(So, To); with this approximation, the thermal (∂q/∂T) and saline
(∂q/∂S) gradients, with the first calculated with S = So, turns to be linear functions
of the temperature.

Starting from the generic non-linear formulation of Eq. (4.13), and with
So = 35‰ and To = 0.0 °C, Mamayev (1964, quoted in Mamayev (1975)), cal-
culated the following equation to the density determination at atmospheric pressure,
using values of the classical Knudsen equation, expressed in terms of the Sigma-t
(rt) parameter:

rtðS; TÞ ¼ 28:152 � 7:35 � 10�2 T � 4:69
� 10�3 T2 þ 0:802 � 2:0 � 10�3 T

� �ðS � 35Þ; ð4:14aÞ
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and the density, in g cm−3, is determined by;

q S; Tð Þ ¼ 1 þ 10�3rt S; Tð Þ: ð4:14bÞ

This equation may be applied for S and T varying in the following intervals:
0 < S < 40‰ and 0 < T < 30 °C, to calculate the density of the estuarine water
mass. The comparison the results of this Eqs. (4.14a, 4.14b), with the Knudsen
equation used in the determinations of its coefficients, indicate mean deviations
varying from ±5 � 10−5 g cm−3 to ±1.0 � 10−4 g cm−3.

Applying the same procedure, but using the thermal and saline gradients cal-
culated by the IESS-1980, the following simplified non-linear state equation was
obtained:

qðS;TÞ ¼ 1028; 106� 7:18575 � 10�2 T� 4:54944x10�3 T2

þ 7:99667 � 10�1 � 1:84981 � 10�3 T
� �ðS� 35:0Þ: ð4:15Þ

This equation, with the density expressed in the SI units system (kg m−3), may be
applied to the following intervals of S and T: 0 < S < 40.0 ‰ and 0 < T < 40.0°C,
which may be used to calculate the density when the salinity is measured in the
practical scale (PSS-1978). The deviation in comparison with the IESS-1980, are near
the deviations calculated by Millero (1984) which may be expected due to the dif-
ferent ionic composition of the seawater and coastal water masses (±0.05 kg m−3).
This precision is adequate to the purposes of the Physical Oceanography of coastal
plain estuaries.

The analytical expressions of dependent properties of seawater presented in this
chapter, as the equation of state at atmospheric pressure rt = rt(S, T) or q = q(S, T),
the coefficients of saline contraction b = b(S, T), the thermal expansion ae = ae(S, T)
and the algorithmic of the PSS-1978, among others fundamental of sea water
properties, may be easily determined with the Morgan’s (1994) sub-routines.

An up to date item of information on salinity and the state equation of seawater
is that, in 2010, the Intergovernmental Oceanographic Commission (IOC) and
others associations, jointly adopted the new standard for the calculations of the
absolute salinity (SA), and a new standard for the calculation of the thermodynamics
properties of sea water. This new standard, called Thermodynamic Equation of
Ocean Seawater (TEOS-10), has been adopted in substitution the former equation
of state of seawater (IESS-1980). The absolute salinity is defined in function of the
currently used methodology of salinity measurements (PSS-1980), based on con-
ductivity ratio measurements, and depends on the ionic composition of seawater at
a geographical position of latitude (u) longitude (k) and pressure (p), expressed by
Pawlowicz (2010);
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SA ¼ 35:16504
35:0

� �
SP þ dSA u; k; pð Þ: ð4:16Þ

However, due to the difficulties for the accurate determination of the ionic
composition of the estuarine water mass, which is necessary to know according to
the SA expression (4.16), its determination with the classical PSS-1980 salinity
algorithmic will continue to be used in the estuarine research.

The longitudinal salinity and density (rt) distributions, in the estuarine channel
of Bertioga (Fig. 1.5, Chap. 1) are presented in Fig. 4.4. The longitudinal salinity
and density (rt) distributions in the estuarine channel are characterized by the
isohalines and isopicnals with configurations with some similarities, showing that
between the salinity and temperature properties, the first is the main one responsible
to influence the density of the estuarine water mass in this environment.

Fig. 4.4 Longitudinal salinity and density (Sigma-t) distributions in the Bertioga channel in the
Santos-São Vicente Estuarine System (Fig. 1.5)
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Chapter 5
Reduction and Analysis of Observational
Data: Flux and Transport of Properties

Aspects related to the numerical treatment and analysis of observational data, which
were included as items of the project component list (Table 4.1, Chap. 4) necessary
to the project development, will be presented in this chapter. This comprises data
reduction and analysis of scalar (hydrographic properties and tide) and vector
(current velocity) data sampled in the water column (vertical profiles) and/or as
temporal time series.

At this stage is important not to characterize the estuarine environment only in
terms of its spatial and temporal variation of hydrographic properties and circula-
tion. It is also important to value the theoretical interpretation of results. The
hydrographic properties are very important in determining the flux and the transport
of volume, concentration of salt, nutrients, pollutants and suspended sediments, and
to establish the main characteristics of the importation or exportation of these
concentrations. However, they do not provide the full dynamical understanding
about the estuary, which is a much large picture.

5.1 Decomposition of Velocity

The magnetic (or electronic) compass inside the velocity measuring device is ori-
ented to the North magnetic field of Earth, and the measured angle indicates the
direction and its orientation relative to this magnetic field. As with the estuaries,
special attention must be given to the longitudinal and transversal (secondary)
velocity components as well as to the decomposition of the velocity vector.

Before considering the decomposition of velocity measured in an estuary, some
elementary considerations will be given in relation to a vector denoted by~v, relative
to a plane orthogonal reference system (Oxy). According to the reference system in
Fig. 2.8 (Chap. 2), the u and v-velocity components in relationship to the Ox and
Oy axes are calculated, respectively, as
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u ¼ VcosðhÞ; ð5:1Þ

and

v ¼ VsinðhÞ: ð5:2Þ

In these equations V is the intensity of the velocity vector ð~v Þ, and h is the
trigonometric angle formed between the abscissa (Ox), measured in an anti-clock
wise rotation. Then, this vector decomposition will result in u and v-velocity
components that are positive, negative or null, according to the angle.

If the vector ð~v Þ is the velocity at a given position in the estuary, measured by a
current-meter, it has an intensity (V) and a direction denoted by the angle (dd). As
the direction of the current velocity is measured in the clockwise rotation, with its
origin in the North magnetic field (Fig. 5.1b), and the origins of the angles h and dd
aren’t coincidental, it is necessary to answer the following question: how to achieve
the decomposition of the vector velocity in the components u and v, with the system
of Eqs. (5.1) and (5.2)?

To answer this question, the first thing required is to make the origins of these
angles (dd and h) the same, because the trigonometric Eqs. (5.1) and (5.2), may
only be applied for angles with that origin. Secondly, it must be taken into account
whether the rotation angle has opposite directions (clockwise and anti-clockwise).
In Fig. 5.1a it is possible to verify that these origins will be the same if the
trigonometric angle h is calculated by:

h ¼ 90� � dd ð5:3Þ

Now, it is necessary to adjust the magnetic North (NM) to the true North. This
adjustment is of great practical importance when we need to plot the vector velocity
in a nautical chart, because they are displayed in relation to the true north. This may
be done without difficulty if the local magnetic declination angle (D), which is a
deviation of the true North to east or west, is known. Magnetic declination varies

Fig. 5.1 a Decomposition of a velocity vector ð~vÞ in an orthogonal reference system; b the same
velocity vector in relation to the magnetic North (NM) and the true North (N), respectively
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both with time and with geographical location due to astronomic and geophysical
phenomena. Nautical charts present this angle and its annual variation along with
the chart printing date, to enable its extrapolation and correction for the date when
the experiment was performed. Thus, to adjust the magnetic direction, dd, to the
true North, in the case of a declination to the west (anti-clockwise), as shown
schematically in Fig. 5.1b, it is necessary to change the direction angle dd by
(dd − D), in Eq. 5.3. If the magnetic declination is to the east (clockwise), the
substitution should be made by the angle dd + D. Then, it follows that

h ¼ 90� � ðdd� DÞ ð5:4Þ

and the signals + and − (between parenthesis) are applied when the magnetic
declination is to the east or west, respectively.

Finally, let us consider an estuary with its longitudinal axis oriented according to
an angle, c, in relation to the true North, such as in Fig. 5.2. This angle (c)
corresponds to an anti-clockwise rotation for the Ox axis to be in the longitudinal
direction and oriented positively seaward. Thus, for Eqs. 5.1 and 5.2 which are used
in this decomposition, the value h of Eq. 5.4 must be subtracted from the rotation
angle (c); in the case of a clockwise rotation this angle (c) must be added to the
angle (h). Then, the final angle h angle for the decomposition of the velocity vector
in an estuary is:

h ¼ 90� � ðdd� DÞ � c ð5:5Þ

Substitution of the angle (h), into Eqs. (5.1) and (5.2), will enable calculate the
velocity components (u and v) which are necessary for estuarine circulation

Fig. 5.2 Decomposition of a current velocity vector ð~vÞ into u and v components (longitudinal
and transversal, respectively), in relation to the local coordinate system (Oxy)
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analysis, and calculation of advective and diffusive transports. According to the
longitudinal axis orientation (Fig. 5.2), positive and negative values of the
u-velocity component indicates seaward (ebb) and landward (flood) motions,
respectively, or, in relation to the tide motions ebb and flood, respectively.

Wind stress is one of the main forces generating the circulation in the oceanic
and coastal seas and may influence the circulation and vertical stratification in
estuaries (Weisberg 1976; Elliott 1976; Geyer 1997; Valle-Levinson et al. 1998;
and others). It is also necessary to calculate the wind-velocity components which
are required to determine the correlation of wind stress with current velocity
measured on the open sea and in estuaries, to investigate the strength of its influence
on the circulation. However, wind velocity measured with an anemograph often
refers to the direction in which the wind is coming from. This is the opposite
convention to current velocity. Therefore, in such cases it is necessary to rotate the
wind velocity by 180° to match the current velocity convention, so that correlation
between the wind velocity components (Uv, Vv) and the current velocity compo-
nents (u, v) can be measured. Then, the wind velocity decomposition can be made
with the following set of equations:

Uv ¼ Ucosð0Þ; ð5:6Þ

and

Vv ¼ Usinð0Þ; ð5:7Þ

where U indicate the wind intensity and the angle 0 is given by:

0 ¼ 270� � ddV � c; ð5:8Þ

with ddV indicating the wind direction. The 270° angle is 180° out of phase in
relation to Eq. (5.4), and the magnetic declinations have not been taken into
account because, generally, they usually are compensated during the anemograph
installation in coastal meteorological stations. If the wind vector direction is ref-
erenced as the current motions at sea, which has also been used in wind mea-
surements, the 0 angle of Eq. (5.8) must be adjusted to 0 = 90° − ddV ± c.

As an example of decomposition of a velocity vector measured in an estuary,
consider the intensity and direction of velocity presented in Table 2.2 (Chap. 2), in
the assumption that the estuary is oriented in the north-south direction and that the
estuary mouth is located to the south. Then, by rotating the Ox axis 90° clockwise,
it will be oriented southward and towards the estuary mouth. At the position of the
original measurements, the magnetic declination was 20° towards west (D = 20°),
and the final rotation angle is h ¼ 90� � ðdd� 20�Þþ 90� ¼ 180� � ðdd� 20�Þ.
The results obtained by applying Eqs. (5.1) and (5.2) to calculate the vertical
profiles of the u and v-velocity components are presented in Table 5.1. This table
shows that |u| � |v| at times t1 and t2; however, in the experiment, at time t2
(current with low speed near slack water), the signal of the u-component changes
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direction at 3 m depth from seaward to landward, indicating that this direction
change was forced by the intensity increase of the baroclinic component of the
gradient pressure force (Eq. 2.10, Chap. 2).

5.2 Vertical Velocity Profiles

Continuous or discrete profile measurements of hydrographic properties and current
velocity must be interpolated at discrete depths, usually at equidistant depths
between the surface and the bottom. These discrete values may be obtained by
graphical or numeric methods of interpolation, the latter being the best for mini-
mizing errors and when the number of profiles is large. Among the numerical
methods, we may cite the Lagrange and the cubic spline.

In the cubic splines, cubic polynomials are found to approximate the curve
between each pair of data points, and the data adjustment is made by a third degree
polynomial enabling the interpolations at pre-selected points. In the language of
splines, these data points are called the breakpoints, and, since a straight line is
uniquely defined by two points, an infinite number of cubic polynomials can be
used to approximate a curve between two points. If the discrete profile has N
measured quantities from the surface down to the bottom, this method assumes that
the extreme polynomial points have no curvature, that is, the second derivative in
relation to these points is null, or the curvature is constant. Thus, if the angular
coefficient is known, extrapolations may be performed along the water column,
from the surface and down to the bottom (Pennington 1970; Hanselman and
Littlefield 1998). To obtain best results with this method, two conditions must be
satisfied: (i) the experimental measurements must be made as close as possible to
the surface and bottom; and (ii) the number of experimental data points must be
higher than the number of depths to be interpolated in the water column. Further
details on cubic splines processing in MatLab® computational environment may be
found in Hanselman and Littlefield (op. cit).

Table 5.1 Longitudinal (u) and transversal (v) velocity components calculated with vector
velocities and direction from Table 2.2 (Chap. 2)

Depth (m) u (m s−1) (t1) v (m s−1) (t1) u (m s−1) (t2) v (m s−1) (t2)

0.0 1.09 −0.02 0.22 0.01

1.0 1.07 0.23 0.20 0.05

2.0 0.92 0.21 0.10 0.00

3.0 0.84 0.13 −0.02 0.01

4.0 0.74 0.04 −0.19 −0.03

5.0 0.59 0.02 −0.30 −0.02

6.0 0.40 0.19 −0.32 −0.06

7.0 0.26 0.14 −0.47 −0.02

Time measurements on the ebb tide are indicated by t1 and t2
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According to the basic principles of hydrodynamics, the stress is proportional to
the velocity component perpendicular to the motion, and the maximum friction is
related to the water molecules at the bottom solid surface, with no horizontal
significant movement. The friction at the bottom is estimated as a function of the
velocity, called the friction velocity (to be defined in this chapter), or as a function
of the amplitude of the tidal velocity and the water column depth. Due to this
bottom characteristic, the velocity shear has a distinct structure called boundary
layer, where the fluid velocity goes to zero or has a small value indicating a no-slip
and a slippery bottom conditions, respectively.

Under simplified conditions, the velocity intensity increases from the bottom
towards the surface until the motion occurs as if the bottom was a smooth surface
(Chriss and Caldwell 1984), as schematically shown in Fig. 5.3a. Assuming this
figure illustrates the unidirectional motion in an estuary during the ebb tide, in a
later time the flow may be in the opposite direction (tidal flood), or may even be a
bidirectional turbulent motion (flood and ebb), because in these coastal environ-
ments the circulation can be very complex, and turbulent fluctuations of velocity
across the main flow may also occur causing vertical instabilities.

The estuarine water mass circulation has a free surface Newtonian fluid behavior
and its intensity decreases with depth due to internal friction and frictional shear
stress at the boundaries. The turbulence transmission due to velocity shears in the
water column is caused by momentum exchange between layers, which may be
parameterized by an eddy viscosity coefficient. As may be observed, near the
bottom (which is plane and smooth by hypothesis), the fluctuating velocity profile is
gradually damped by the fluid viscosity (Fig. 5.3b). Near the bottom, the shear
stress imposed by the water motion to the solid bottom is transmitted almost
entirely by the molecular viscosity.

Fig. 5.3 a Velocity profile over a smooth bottom surface characterized by the linear viscous
sub-layer near the bottom and the upper logarithmic layer. b Vertical profile showing the
fluctuations and the turbulent motions decrease and turbulent motions in the sub-layer near the
bottom (adapted from Chriss and Caldwell 1984)
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Figure 5.3a shows a theoretical velocity profile composed of two layers: (i) the
logarithmic layer, where the process of vertical diffusion is controlled primarily by
small scale motions (Reynolds stress), characteristic of stable stratified estuarine
water; and (ii) the viscous sub-layer close to the bottom. To describe these layers,
two equations are necessary Chriss and Caldwell (1984); the shear stress (s)
between adjacent fluid layers moving with different velocities is given by:

s ¼ qmc
du
dz

; ð5:9Þ

where mc, [mc] = [L2T−1], is the kinematic coefficient of molecular viscosity, related
to the dynamic coefficient calculates by the product qmc, [qmc] = [ML−1T−1], is the
dynamic viscosity coefficient.

As the density and the shear stress may be approximated by constant values in
this boundary layer, it follows that the ratio (s/q)1/2 is also constant. As this quantity
has dimension of velocity [LT−1], it is conventionally defined as the friction
velocity (u*), and (s/q)1/2 = u*, or s = q(u*)

2, which was introduced to represent the
shear strength. With the origin of the Oz axis on the bottom and positively oriented
upwards, integrating Eq. (5.9), with the adherence principle as the bottom boundary
condition, u|z=0 = u(0) = 0, up to a generic vertical position (z), the vertical velocity
profile as a function of the friction velocity (u*) is:

u(z) ¼ ðu�Þ2
mc

z: ð5:10Þ

This equation shows that the horizontal velocity component varies linearly with
distance from the bottom (Fig. 5.3a). The viscous sub-layer was always present in
the field experiments of Chriss and Caldwell (1984), off the Oregon coast (Oregon,
USA) using a fine resolution velocity profiler, and it may be scaled roughly with the
ratio (mc/u*) which has dimension of length [mc/u*] = [L].

Above the viscous sub-layer, the vertical mixing brought about by the turbu-
lence, associated with the bottom friction or shear flows at mid-depth, is of interest
itself in the dispersion of a pollutant discharge at a given depth (Bowden 1978). The
deflecting influence of the Coriolis acceleration in this layer is not dominant, and
may be disregarded. Experiments indicate that in this layer, the horizontal velocity
increases in proportion to the logarithm of the distance over the bottom (z). This
logarithmic layer, above the viscous sub-layer near the bottom (Fig. 5.3b) is sim-
ulated in steady-state conditions, neutral stability and moderate bottom roughness
by the following equation (Sverdrup et al. 1942):

u(z) ¼ 1
j

ffiffiffi
s
q

r
ln

z
zo

� �
¼ u�

j
ln

z
zo

� �
; ð5:11Þ

assuming u = 0 at z = zo. In this equation, j = 0.40 (or j = 0.41) is a
non-dimensional constant of von Kármán, zo is the depth above the bottom or sea
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floor where the velocity is zero (named roughness dynamic length or roughness
length), and is related to the average height of the roughness elements on the bottom
(Sverdrup et al. 1942), and u* (friction velocity) scale the turbulence of velocity.
This profile is named the logarithm profile Kármán-Prandt and is used to simulate
velocity profiles of one-dimensional motions in the continental shelf and estuaries.
From this equation we can verify that the velocity profile u(z) and the vertical
velocity shear (du/dz) vary linearly with the natural (or neperian) logarithm of the
distance z (ln(z/zo) down to the bottom, and with the inverse of this distance (1/z),
respectively. In both cases, the angular coefficients of the correlations are equal to
(u*/j); however, the intersection of the straight line with the ordinate axis is equal to
the roughness length (zo) in the first case (Fig. 5.4a), and in the second case it is
independent of this length (Fig. 5.4b).

Equations (5.10) and (5.11) assume that the bottom is a plane surface with little
roughness. However, in estuaries the bottom is not perfectly plane, and irregular-
ities or roughness elements (tunnels, holes, ripples, sand and gravel) due to erosion,
sedimentation, and transport, and benthonic communities generate turbulent shear
motions in the bottom viscous sub-layer. If this turbulence is not dissipated by
viscosity, the motion regime becomes turbulent and the sub-layer disappears.
Despite the erosion of this viscous sub-layer the vertical velocity profile may be
approximated by a logarithmic profile which is only related to the vertical exchange
of the turbulent momentum. The influence of turbulent motion on the estuary
bottom is very important to the sediment dynamics and in solving practical prob-
lems related to harbor navigation.

Fig. 5.4 a Linear correlations of the logarithmic profile of von Kárman-Prandt, with the ordinate
axis representing u = u(z) and b du/dz = (1/z), respectively, calculated with u* = 0.1 m s−1 and
zo = 0.1 m

150 5 Reduction and Analysis of Observational Data …



The rough dynamic length (zo) is higher in a turbulent flow regime than in the
laminar flow regime, and its value has been used to estimate dimensions of irreg-
ularities at the bottom. There are several empirical formulations to estimate the zo
value as a function of geometric dimensions, for example, the obstacles mean
height and the bottom sand wave slope.

The characteristics of the friction at the bottom (so) in channels forced by the tide
were examined by several investigators aiming to relate this shear to a
non-dimensional drag coefficient (C100), usually calculated with velocity mea-
surements one meter (100 cm) above the bottom (u100). By analogy with the the-
oretical result s = q(u*)

2, obtained for the viscous sub-layer, experimentation
indicates that a good quadratic approximation to the coefficient for so is:
so = qC100u2

100; then, with the assumption that so � s, it follows that
u* = (C100)

0.5u100. Combining this result with Eq. (5.11), and taking into account
that z = 100 cm, it follows that C100 = [j/ln(100/zo)]

2. This expression for the
coefficient C100 depends on zo, which may be obtained with knowledge of the
longitudinal component of the vertical velocity profile plotted as a function of ln
(z/zo) (Fig. 5.4a). There are also published tables where this quantity is related to
the type of the bottom characteristics (Soulsby 1983; Dyer 1986).

Typical zo values and drag coefficients C100 for different bottom types (from mud
to gravel), using data drawn from several sources (Lesht 1979 and Heathershaw
1981; quoted in Soulsby 1983), are listed in the Soulsby table according to their
observations numbers. The results indicate that the mean zo and C100 values varied
from 5.0 � 10−3 to 0.6 cm, and from 1.6 � 10−3 to 6.1 � 10−3, respectively.

The relationship of C100 with zo was also used by Sternberg (1968) in studies
related to friction factors in six tidal channels in the north-west of the USA (Puget
Sound and the Strait of Juan de Fuca) divided in two regions (transitional and
rough). Among his conclusions, it was identified that the C100 value was not very
sensitive to the bed characteristics, although the roughness elements of bed types
varied from rocks and gravel with maximum heights from 2 to 10 cm, and the mean
C100 values varied by less than a factor of 2 (2.3 � 10−3–4.0 � 10−3). The mean
C100 value for fully turbulent flow, C100 = 3.1 � 10−3, is in agreement with the
ranges found in the Soulsby (op. cit) table.

Another interesting conclusion of Sternberg’s article is that the transition
between fully rough and transitional flow appears to be related to the bottom
configuration, and for simple topographically beds the flow becomes fully rough at
lower Reynolds numbers (less than 1.5 � 105) than those with complex seabed
topographical seabed, for which rough flow conditions occurred at Reynolds
number (Re) greater than 3.6 � 105.

The profile method uses Eq. (5.11) with experimental data of vertical velocity
profiles to calculate the friction velocity (u*) and the rough length (zo) and uses the
relation s = qu*

2 to estimate the shear stress on the bottom. This method is the most
commonly used to estimate the shear stress of geophysical fluids in shallow waters
(channels, estuaries and continental shelf).

This method has been applied to several oceanographic conditions and coastal
environments. In estuaries, the pioneering experiments were performed after the
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1920 decade, thanks to the works of Merz (1921) and Mossby (1947). The
experimental data used by these investigators (vertical velocity profiles) were
sampled in the Dardanelles fjord (Denmark) and in the Avaerströmmem fjord
(Bergen, Norway), respectively. The historical data of A. Merz published in the
Defant (1961) book and reproduced in Fig. (5.5a) is an example of the method used
to determine the analytical expression of the logarithmic velocity profile. The first
member of the left-hand side of Eq. (5.11) is known at discrete points in the water
column; however, in the second term, there are two unknowns, u* and zo. An
alternative way to eliminate one of these unknowns is to calculate the derivative of
this equation in relation to z, resulting in the following expression u* being the only
unknown:

du
dz

¼ u�
j
1
z
: ð5:12Þ

This equation shows that the vertical velocity shear (du/dz) is inversely pro-
portional to the distance from the bottom (z). As the first member of this equation
may be determined by finite differences (du/dz � Du/Dz) with experimental data
(Fig. 5.5a), the angular coefficient of the linear correlation of this quantity with 1/z
is equal to the ratio u*/j (Fig. 5.5b) This procedure results in the following value
for this ratio: 2.5 � 10−2 m s−1. As the constant k = 0.40, it follows that the value
for u* = 1.10 � 10−2 m s−1.

Fig. 5.5 a Vertical velocity profile in the south entrance of the Dardanelles estuary (Denmark),
with data sampling by Merz (1921). b Correlation of the vertical velocity shear (Du/Dz) as a
function of (1/z) (open dots) and the linear adjustment
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With the calculated value of u*, the rough dynamic length, zo, of the logarithmic
profile (Eq. 5.11) may be obtained with successive adjustments, up to the best
linear fit in comparison with the experimental data. Several values were tested, with
the best fit found to be zo = 1.5 m as shown in Fig. 5.6. Then, with this method, the
experimental data is analytically formulated by the following logarithmic profile:

u(z) ¼ 2:5� 10�2ln
z
1:5

� �
; ð5:13Þ

with the ordinate z and u(z) in SI units (m and m s−1), respectively. As the shear
stress (s = qu*

2) is proportional to the square of the friction velocity, the value of
this physical quantity was estimated to be �0 0.11 N m−2, with the assumption
q = 1.02 � 103 kg m−3.

Theoretical simulation of the logarithmic profile is not always possible from the
surface down to the bottom, and the water layer from the bottom up to the best fit is
named height of the logarithmic layer, hL, (Lueck and Lu 1997). In the exemplified
adjustment of the logarithmic profile (Fig. 5.6) this height reached 15 m.

The mean vertical velocity profile used in this example is unidirectional, which
is characteristic of a well-mixed estuary. However, due to the gravitational circu-
lation forcing, the time variability of the velocity during a tidal cycle may be
unsteady, and so the vertical velocity profiles are as shown in Fig. 2.9 (Chap. 2). In
partially mixed estuaries, the vertical velocity profiles indicate the occurrence of
seaward and landward motion, and it will be impossible to simulate their loga-
rithmic velocity profiles.

Vertical velocity profiles in estuaries are often difficult to be sample over several
tidal periods, particularly in harbors which may experience intense maritime traffic,
or due to the weather conditions. However, investigations in estuaries increased
substantially in the decades following on the historical experiment in fjords, as
described above, improving the knowledge of these transitional water bodies.
Further results based on logarithmic profile adjustments are presented in Dyer
(1986).

Fig. 5.6 Adjustment of the
logarithmic profile to
experimental data
(o) measured in the
Dardanelles estuary
(Denmark), presented in the
classical article of Merz, in
1921, in which hL = 15 m
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To describe results of the application of the profile method, based on detailed
time series of bottom-mounted acoustic Doppler profiles (ADP), this topic is
complemented with results from the experiments of Lueck and Lu (1997). In this
experiment 20-min time averaged velocity profiles at 30 m depth were made in the
Cordova channel near Vancouver Island (Canada). The time series of current
measurement where made during 4.5 days, with the objective to study the local
variability in the bottom-boundary layer at 3.6 m and the current profile variability
above this depth. In this investigation, the friction velocity (u*) based on the log-
arithmic profiles, the time variability of the logarithmic height (hL) and the rough
dynamic length (zo) were calculated.

The vertical velocity profiles measured during a time interval of 1.5 days are
one-directional during the ebb (>0) and flood (<0) tides, and their logarithmic
adjustments are presented in Fig. 5.7. A well-defined logarithmic layer is observed
during the events of intense tidal currents, where height (hL) is in the top half of the
water column; however, logarithmic adjustments were not possible during the time
intervals of low current intensity.

An alternative method to calculate the shear stress is possible with the intro-
duction of a non-dimensional drag coefficient, CD. This coefficient is often used in
analytical and numerical models to parameterize the bottom frictional shear as a
function of a velocity of reference (Ur) according to the following expression:

s
q
¼ CDU2

r ; ð5:14Þ

or, taking into account that s/q = u*
2,

CD ¼ u�
Ur

� �2

: ð5:15Þ

The friction velocity (u*) may be determined from the logarithmic profile and can
be used to calculate CD (Eq. 5.15). As the u* velocity is known, it is adequate to
select the reference velocity in the viscous sub-layer from the velocity profile. The

Fig. 5.7 Vertical velocity profiles of the longitudinal component (o) in the Cordoba channel
(Vancouver, Canada). The analytical simulations of the logarithmic layer are indicated by the
continuous lines (according to Lueck and Lu 1997)
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ebb and flood velocity profiles (Fig. 5.7) were used to calculate this coefficient
during a tidal cycle, using as reference velocity (Ur) the following velocity values:
the mean velocity in the water column (um), the velocities at the heights of 1.0 m
(u100) and 3.6 m (u360) above the bottom. According to the results, the lower values
of this coefficient were observed during the ebb tide currents (u > 0):
3.5 � 10−3 < CD < 8.8 � 10−3, with the extreme values obtained for the um and
u100 as reference velocities. During the flood tide currents (u < 0), the variation
interval of this coefficient was higher: 4.0 � 10−3—2.5 � 10−3.

As indicated above, simulation of logarithmic velocity profiles in tidal estuaries
is very important to provide clues on the friction shear at the bottom. However, it
may only be applied for estuaries with predominating longitudinal velocity profiles
(seaward and landward), which are characteristic of well-mixed estuaries.
Analytical simulations of well-mixed, partially mixed and salt wedge estuaries, in
steady-state conditions will be studied later using the hydrodynamic equations of
motion. The vertical profiles of scalar properties, such as temperature, salinity and
density usually have no simple analytical and numerical simulations, and for these
properties numeric values at non-sampled depths may be determined at selected
depths by numeric (cubic splines) or graphical methods.

5.3 Temporal and Spatial Averages

The superposition of motions generated by tide, river discharge, baroclinic gradient
pressure force and wind, create difficulties in the experimental data treatment and
processing, and demonstrates the convenience of using mean values in time and
space to calculate an estuary’s nearly steady-state condition. To better understand
the estuarine processes, we must be able to separate those forcing influences (Dyer
1997).

Measurements of hydrographic properties and current velocity are sampled at
selected positions (stations) and discrete time intervals, or continuous in time and
space. The selection of a suitable sampling duration to determine the time-averaged
estuarine condition is as critical as the spatial sampling. Then, to obtain instanta-
neous or mean values of these properties and the steady-state circulation, it is
necessary to adequately reduce these measurements taking into account the fol-
lowing criteria and results to be accomplished:

(i) Make the data analysis easier;
(ii) Obtain average properties for estuary classification;
(iii) Validate theoretical results of analytical and numerical models;
(iv) Determine the advective and diffusive components of salt flux and transport,

and the net transport of natural substances and pollutants.

In the determination of mean velocity profiles and other properties (hydro-
graphic, chemical, biological, and suspended sediment), it is necessary to take into
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account that the local depth is dependent on the position and time, which may vary
greatly due to the tidal oscillation, η(x, y, t), during the measuring period. This is
because the local depth at any given time is h(x, y, t) = H0(x, y) + η(x, y, t), with
H0 and η representing mean water level and the tidal oscillation, respectively. The
non-dimensional number defined by the ratio of the tidal height (Ho) to the local
depth h(x, y, t) varies in the interval 0 < |Ho|/H0| 	 1. If the tidal height (Ho) is
greater than 30% of the localdepth (H0),

Hoj j
H0j j [ 0:3; ð5:16Þ

this ratio is relatively great in comparison to the water depth, and the time variation
of the sampling depths must be minimized in the determination of the mean vertical
profiles of the properties, as prescribed in the articles of McAlister et al. (1959) and
Kjerfve (1975).

Thus, the periodic fluctuations of the water column layer due to the tidal
oscillation cause variations in the sampling depths along the water column. If these
depth variations are not taken into account when determining the mean values in
space and time, undesirable errors may occur when the inequality expressed in
(5.16) is reached. This correction may be accomplished by determining data values
at equally spaced distances between the surface and bottom, with the
non-dimensional depth Z(t), which depends on the origin (z = 0) and the orientation
of vertical ordinate Oz:

(i) If this origin is at the bottom (positively oriented towards the surface level), h(t)
is the water layer depth and z is the ordinate of the sampling depths, Z(t) is
defined as,

Z(x, y, t) ¼ z� h(t)
h(x, y, t)

; ð5:17aÞ

and varies from zero (Z = 0) for one observation at the surface, z = h(t), to
(Z = −1), for the observation at the bottom, z = 0.

(ii) If the origin of the vertical ordinate is at the surface and positively oriented
against the gravity acceleration, the dimensionless depth is defined by,

Z(x, y, t) ¼ z
h(x, y, t)j j : ð5:17bÞ

Thus, the non-dimensional depth, Z(x, y, t), and varies from 0 (surface) up to
Z = ±1 (bottom), and the signal depends on the Oz axis orientation. In numerical
modeling Z(x, y, t) is called the Sigma coordinate.
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As one of the objectives of estuarine research is to describe the spatial and local
distribution of properties, a common survey goal is to obtain the circulation of a
particular estuary and the net movement, flux and transport of dissolved or sus-
pended constituent. In both cases it is necessary to compute time-averages of tidal
cycles over at least one complete tidal cycle. Due to the expansion and contraction
of the water column height in the flood and ebb tide, this is better accomplished
with data processing in terms of the non-dimensional depth, Z(x, y, t). This pro-
cedure is illustrated in the temperature and salinity profiles measured in an estuarine
channel that is partially mixed estuary (Fig. 5.8). The comparative analysis of these
properties as a function of the dimensional (z) and non-dimensional (Z = z/7.5)
depths, shows the conservation of the profile configurations from the surface down
to the bottom.

With the changes from dimensional (z) to the non-dimensional depth (Z), mean
depths values of properties may be calculated even in the most unfavorable con-
ditions (Eq. 5.16). After, considering the non-dimensional depth form, each mea-
sured property may be interpolated at each non-dimensional depths (Z = 0;
Z = 0.1; … Z = 0.9 and Z = 1.0), as illustrated in Fig. 5.9.

Discrete measurements should be made at a constant time interval (Dt), over at
least one complete tidal cycle. However, if at all possible, sampling should be
continued for the sampling duration indicated by Eq. (4.1, Chap. 4) as net values
may vary drastically from one tidal cycle to the other. It is suggested that the initial
time measurement (t0) should begin at slack water (close to the low or high tide)

Fig. 5.8 Vertical salinity, S = S(z) and S = S(Z), and temperature T = T(z) and T = T(Z) profiles
as functions of dimensional (a) and non-dimensional depths (b). Oz is positively oriented upward
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and at time intervals, Dt, of one or half hour (1.0 or 0.5 h) to minimize possible
averaging errors. In the case of continuous sampling, the time series must be
interpolated for analytical analysis at the Dt interval just specified. Usually, for a
particular tidal cycle period (TP), we have TP = nDt (and n = TP/Dt), where (n + 1)
is the number of required profiles to compute the net profile for a given tidal cycle.
Typically, in semi-diurnal or mixed tide regimes, if n is selected to be 12.4 h, the
sampling rate equals 1.035 h or one lunar hour (Bowden 1963; Kjerfve 1975). In
such cases, it is necessary to plot curves of each variable at all Z-depths as functions
of time and then divide each time series into n equal increments. The interpolated
values for each Z, at n + 1 times would then be used in computing time averages.

If the net value of one measured property, P, at a given non-dimensional depth, Z
(Z = 0.0; 0.1; 0.2;…, 1.0) is expressed as a function of time P(Z, t), its time mean
value during a tidal period (TP) and at each depth is indicated generically by Zj

(j = 0, 1, 2, …, 10), and are calculated by:

P(Zj

� � ¼ 1
TP

ZTP

0

P(Zj; t)dt; ð5:18Þ

where the symbol 〈〉 indicates the time mean value of the property. Taking into
account that the values P(Zj, t) were obtained in n discrete interpolations at constant
time intervals, Dt (TP = nDt), the integral of Eq. (5.18) may be easily calculated for
each depth (Zj) by the following sum:

P(ZjÞ
� � ¼ 1

n

P(Zj; t0Þ
2

þ
X

k

P(Zj; tkÞþ
P(Zj; tnÞ

2

" #

; ð5:19Þ

Fig. 5.9 Water column with
discrete equidistant
non-dimensional depth
intervals DZ and (1/2)DZ of
the non-dimensional depth (Z)
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where k = 1, 2, …, n − 1, and t1 and tn are the first and last time measurements and
(tn − t0) = TP is the tidal period. In this equation, the property values at the initial
and final time (t0 and tn) are multiplied by the factor ½, because it is assumed that
each of these values are representative for only (½ Dt), as shown in Fig. 5.10. It
should be noted that the time mean value at a generic depth, PðZj

� �
, may be almost

independent of time (nearly steady-state).
Equation (5.19) applied for j = 0, 1, …, 10, may be used to calculate the mean

vertical profiles of any scalar property: velocity component, temperature, salinity,
and concentrations of nutrients and suspended sediments. When applied to the
salinity, the time mean values simulate nearly steady-state conditions and the
surface (Ss) and bottom (Sf) values may be used to determine the stratification
parameter, dS= S

� � ¼ Sf � Ssð Þ= S
� �

of the Stratification-circulation Diagram.
Measurements of properties along the transverse section of the estuarine channel
may also be processed in the same way to calculate mean property profiles.

As the velocity is a vector, the method used to calculate its mean value during
tidal cycles is applied to the longitudinal (u) and transversal (v) components, which
may be obtained with the procedure described in this paragraph. For instance, to
find the longitudinal component, the temporal mean value is determined for each
non-dimensional depth Zj with an equation similar to (5.19):

u(ZjÞ
� � ¼ 1

n

u(Zj; t0Þ
2

þ
X

k

uðZj; tkÞþ
u(Zj; tnÞ

2

" #

; ð5:20Þ

where k = 1, 2, …., n − 1.The mean u-velocity component on the surface corre-
sponds to the us value, which simulates a nearly steady-state value and is used to
calculate the circulation parameter (us/uf) of the Stratification-circulation Diagram.

Fig. 5.10 Schematic sequence of time measurements. At the initial (t0) and final (tn) times the
measured property is assumed to be representative for ½ (Dt) time interval
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To calculate the time-mean value of the transversal velocity component (v) this
value must be used in Eq. (5.20) as a substitute for the u component.

Once calculated, the time-mean velocity u and v components for the velocity
vector at each depth along the water column may be calculated by the vectorial
composition:

~vðZjÞ
� � ¼ u(ZjÞ

� �
~iþ v(ZjÞ

� �
~j; ð5:21Þ

where~i and~j are the unity vectors of the coordinate system used. This computation
of time mean velocity components during tidal cycles is very important because:
(i) it indicates the net flow which is a characteristic of import and export of property
concentrations, and; (ii) it may be used to validate analytical and numerical models
(for a bi-dimensional numerical model this procedure has been used by Blumberg
1975).

Let’s now consider a property profile P = P(z, t) or P = P(Z, t) in a determined
time. The mean value ðpðt)) in the water column (0 	 z 	 h or 0 	 Z 	 1) is
given by:

Pðt) ¼ 1
h

Zh

0

P(z, t)dz ¼
Z1

0

P(Z, t)dZ, ð5:22Þ

where the over bar indicates a spatial mean, in this case the depth z and Z, and
taking into account that, by definition, dz = |h|dZ.

As this integral (Eq. 5.22) must be calculated from known values at discrete
points along the water column, for example, spaced 0.1DZ, its mean value is
calculated by an equation similar to (5.19),

Pðt) ¼ 1
10

P(0, t)
2

þ
X

j

ðP(Zj; t)þ
Pð�1; tÞ

2

" #

; ð5:23Þ

where j = 1, 2, …, 9. When the property P(Z, t) is substitute by the velocity
components (u, v) and the no-split condition of the adherence principle at the
bottom adopted for the bottom friction (null velocity), the extrapolation down to the
bottom of the last parcel in this equation is null, because u(−1, t) = v(−1, t) = 0.

5.4 Reduction and Analysis of Temporal Data Series

Time series of properties’ measurements of short or long duration may have their
analysis performed in the time domain and in the frequency domain with spectral
techniques. For example, in the first case the analysis of the current may be made at
selected depths in the form of vector plotted sequentially in time in the graphic
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known as a current rose and as a progressive vectorial diagram, usually applied for
experiments of only a few tidal cycles. The theory evolved in the spectral analysis is
not presented in this text, and may be found in the following books: Bendat and
Piersol 1966; Rayner 1971; Jenkins and Watts 1968; Moretin 1999. Its importance
will be exemplified with hourly time series of tidal height, salinity and temperature.

To give an example, the time series analysis was made for a half-hour current
measurements (intensity and direction) at an anchor station during one spring tidal
cycle in the Caravelas river estuary (Bahia, Brazil). The station is in the position
where the channel orientation is approximately in the E-W direction (Chap. 12,
Fig. 12.7). The current roses (Fig. 5.11) show the velocity vectors plotted during
the semi-diurnal tidal period at two selected depths Z = 0 and Z = −0.9, at surface
(left) and near the bottom (right). The analysis of these results indicate the gradual
decrease of the intensity with depth, and changes in the current directions during the
tidal cycle; from the surface down to mid-depths the current is mainly towards east
(90°), indicating an ebb motion with maximum speed of �1.3 m s−1 (Fig. 5.11-
left). At the middle of the tidal cycle the tidal current direction changed towards the
west (270°), indicating the tidal flood with maximum intensity of �0.9 m s−1.
Close to the bottom (Z = −0.9) the maximum current intensity is �0.6 m s−1

seaward, and due to the baroclinic gradient pressure force, the direction of the
current changes towards west (270°), indicating the motion forced by the tide flood
with slightly higher intensity (�0.7 m s−1) than in the surface (Fig. 5.11-right).

The current roses also indicate that the transverse circulation is very weak, which
also is shown in the comparison of the time variation of the u- and v- velocity
components (Fig. 5.12), which clearly indicates that the main advective influence is
in the estuary longitudinal direction.

As should be expected, the progressive vector diagram shown in Fig. 5.13,
plotted with the u-and v-velocity components of the previously data used in figure

Fig. 5.11 Current roses from half-hourly measurements at the surface (left) and near the bottom
(right), in the Caravelas river estuary (Bahia, Brazil) during spring tide
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(Fig. 5.12), indicates the predominance of the longitudinal motion and almost
negligible transverse motion. At the surface the particle excursion during the flood
and ebb are approximately 22 and 17 km, respectively, and near the bottom the
particle excursion is shorter (�9 km) in the ebb than in the flood (�13 km).

The time variation of the scalar properties temperature, salinity and density
(Sigma-t) at the surface (Z = 0) during the spring tidal cycle, associated with the
velocity (Fig. 5.11), are presented in Fig. 5.14. The small temperature variation
(DT � 0.8 °C) indicated that the salinity is the main property responsible for the
density variation, as also shown in the Sigma-t time variation. Near the bottom the
hydrographic properties indicates small variations in comparison to that observed in
the surface.

To give an example of time series spectral analysis in practice, three simultaneous
records measured during 20.8 days in the estuarine channel of the Cananéia sea
(Fig. 1.5, Chap. 2) located in the southern São Paulo State (Brazil) have been anal-
ysed. The tidal height time series was registered in a recording buoy tidal gauge and
the tidal height values (cm) were digitalized with half hour time intervals (Dt = ½ h).
Simultaneous temperature (°C) and salinity (‰) measurements were recorded at the
same time interval in digital format by the equipment positioned 6.0 above the bottom.
These Eulerian measurements were sampled in 10 m mean water depth, and the time
variability of these properties (In Julian days) is presented in Fig. 5.15.

The tidal height oscillations show semidiurnal variations superimposed to fort-
nightly tidal modulations, with amplitudes higher in the spring tide than in the neap
tide. The visual time series analysis of salinity and temperature records follow the
general trend of the tidal oscillations, showing a quick response to the advection of
salt and heat transport generated by the tidal currents. During the spring tidal
oscillations, the amplitudes of these properties vary more than during the neap tide,
and it is possible to visualize low frequency variations within periods of several
days. However, these temporal variations do not show details of the correlations
between tidal, salinity and temperature oscillations related to its time, periodicity
and phase variations.

Fig. 5.12 Time variation of the u- and v-velocity components at the surface (left) and near the
bottom (right) measured in the Caravelas river estuary (Bahia, Brazil) during spring tide
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The spectral analysis determines the variance in frequency bands. The variance
is a statistical quantity which describes the dynamic component of the time series,
numerically calculated by the quadratic mean value around its mean value. In the
variance spectra, it is possible to do the analysis of the dynamical component
intensity of these properties as function of frequency. The frequency band for which
the variance may be estimated has two limiting factors: the time series length,
T = nDt, and the sampling interval, Dt. For the records of Fig. 5.15, these values
are equal to 20.8 and 0.5 h, respectively.

Fig. 5.13 Progressive vector diagram at the surface (left) and near the bottom (right), based in
current measurements measured in the Caravelas river estuary (Bahia, Brazil) during spring tide.
The initial position of the diagram is indicated by the plus (+) symbol

Fig. 5.14 Time variation of
the hydrographic properties at
the surface (Z = 0) measured
in the Caravelas river estuary
during the spring tidal cycle
(Bahia, Brazil)
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The time series length determines the lowest frequency for which the variance
may be estimated, which is equal to the inverse of the series time length (1/T), and,
in our example, corresponds to the frequency of 0.048 cph. The highest frequency
for determining the variance is called the Nyquist frequency, which is half of the
sampling frequency (fs). As the sampling interval is 0.5 h, it follows that fa = 2
cph, and the Nyquist frequency is equal to (½ fa = 1.0 cph); the variance calculated
for this lower frequency may not be representative because, for this quantity to have
statistical meaning, it must be determined taking into account three or four complete
tidal cycles. Due to this limiting factor, for the 20.8 day time series under analysis,
the longest period that may be adequately resolved is approximately five days
(period of 120 h and frequency of 0.008 cph).

The sampling time interval chosen is very critical. If the property presents
variability with frequencies higher than the Nyquist, the spectra may present a
doubtful increase in low frequencies. This change of the variance from high to low
is called aliasing. Then, the correct use of the sampling time interval (Dt) is of
fundamental importance to apply the techniques of the spectral analysis to obser-
vational oceanographic data. In estuaries the Dt equal to one or half an hour is
usually satisfactory, because the more energetic variance signals are associated with
tidal oscillations, with diurnal od semi-diurnal cyclic oscillations (frequencies of
0.04 and 0.08 cph, respectively).

The variance determinations are calculated at regular frequency intervals
between the extreme points of the domain. The number of variance estimates in this

Fig. 5.15 Time series of tidal height, salinity (psu) and temperature (°C) in the microtidal
Cananéia estuarine channel (time scale in Julian days)
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interval is fixed by the total number of points in the time series divided by the
degrees of freedom. The choice of variance requires a compromise between the
following conflicts of interest: (i) an increase in the degrees of freedom determines
narrows confidence intervals, (ii) a decrease in degrees of freedom increases the
frequency resolution. The latter compromise is favorable when analyzing long time
series. In choosing degrees of freedom, it is necessary to take into account the
frequency interval which has the greatest interest to the processes being investi-
gated. For better resolution at lower or higher of frequencies, it is necessary to
choose the data processing with low or high degrees of freedom, respectively.
Details for obtaining confidence intervals as functions of the degrees of freedom,
which are of fundamental importance to the verify the statistical meaning of the
variance results, may be found in the book of Bendat and Piersol (1966).

In the tidal variance spectra (Fig. 5.16a), it is possible to understand what
processes influence this dynamical component of the sea level oscillations. In this
figure, the extreme points (peaks) in the variance, A, B, C, D and E, between the
domains of low and high frequency, respectively, were inserted to facilitate the
understanding of the analysis of this spectra calculated with 5 degrees of freedom.
In these spectra peaks, the variances are statistically confident within the 95%
interval. The estimated variances for the frequency band A (0.012 cph—period of
83 h) are too low to be adequately solved. This peak (A), although with little
significance, is usually associated with meteorological forcing causing storm surges
against the coastline (Csanady 1982). The remaining peaks are oscillations with the
following frequencies and periods, respectively: diurnal (B) with 0.04 cph and
period of 25.0 h, semidiurnal (C) with 0.08 cph and period of 12.5 h, and the
frequencies in the sub-tidal domain (D) and (E), with frequencies of 0.12 and
0.16 cph, and periods of 8.2 and 6.2 h.

The salinity variance spectra (Fig. 5.16b) is very similar to the tidal variance
spectra, and conclusively indicates the advection process forced by the barotropic
gradient pressure force (tidal forcing) in the salinity redistribution in the Cananéia
main channel.

The generation of internal overtides at multiples of the dominant tidal frequency is
termedbarotropic tidal asymmetry, because it distorts the free surface and causesflood
or ebbdominant currents, dependingon the relative phases of the tides and its overtides
(Fisher et al. 1972; Ianniello 1977; Simpson et al. 1990; Jay andMusiak 1996). Factors
such as friction and channelmorphology generate shallowwater over tides such asM4

andM6.When these tidal components are added toM2 tidal current,maximumebb and
floodmay be shifted close to high and lowwater, resulting in a strong tidal current that
is distorted from that generated by the semi-diurnal M2 tidal component.

Another important result is the cross-correlation between the tidal and salinity
time series. From this correlation, two spectra results: (a) covariance or normalized
coherence, calculated by the ratio of the product of covariance to the individual
square roots, and; (b) the phase spectra (Fig. 5.17a, b). The covariance is a
non-dimensional quantity, which varies between zero and one, and measures any
linear relationship between the individual series, and values equal to zero and one
indicate no correlation or a strong linear correlation between the series and
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processes, respectively. This quantity may be identified as a correlation coefficient
in the frequency domain.

In the covariance spectra, exemplified by the cross correlation of tidal height
versus salinity (Fig. 5.17a), the 95% statistically significant variance with 5 degrees
of freedom has a coherence of over 0.9 in the low frequency domain (0.012 cph and
period of 83 h) and for diurnal frequencies (0.04 cph and period of 25 h). In the
semi and three-diurnal frequencies (periods of 0.08 and 0.12 cph), the coherence is
close to 1.0, decreasing just a little near the frequency of 0.16 cph (fourth-diurnal)
as shown in Fig. 5.17b. These results indicate that in these frequency bands there
are a very strong linear correlation between the tidal height and the salinity.

The final result of the spectral analysis is the phase spectra (Fig. 5.17b), which
gives the phase differences between the series. The phase angle (/) may be con-
verted into time intervals when divided by the product of the angular frequency (x)
by 360°/2p, Dt = //(x � 360°/2p). Then, for example, the diurnal component of
the salinity oscillation is in phase with the tide (/ � 0°) and the semi-diurnal
component is 20° out of phase, or Dt = 0.7 h in relation to the tide.

Fig. 5.16 Variance spectra
of tidal height oscillations
(a) and salinity (b) as
functions of the frequency in
cph in the main channel of the
Cananéia-Iguape estuarine
lagoon (Fig. 1.5, Chap. 1)
showing variability of the
tidal oscillation and salinity
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The spectral analysis is a powerful mathematic tool for quantifying the linearity
(or non-linearity) between time series with complex variability. However, the
interpretation of its results must be made with caution, because statistically sig-
nificant coherence values may not necessary imply cause and effect in the occur-
rence of linear relationships. Small coherence values suggest non-linearity, but
there is the possibility of the existence of relationships between the physical forcing
processes.

5.5 Isopleths Method and Mean Vertical Profiles

After the reduction and final data processing of hydrographic variables and current
velocity components (u, v), graphical representation is necessary to enable inter-
pretation and analysis of the experimental results. When the measurements are
made at a fixed station along the water column for a duration of at least one

Fig. 5.17 Coherence
normalized spectra (a) and
phase spectra (b) of the
cross-correlation of tidal
heights and the salinity in the
main channel of the
Cananéia-Iguape estuarine
lagoon (Fig. 1.5, Chap. 1)
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complete tidal cycle (Eulerian sampling), the isopleths method is convenient for
studying the variability of properties under investigation.

In Fig. 5.18, results are presented for the local variability of the u-velocity
component and salinity in the Bertioga estuarine channel (Fig. 1.5, Chap. 1), during
two semi-diurnal spring tidal cycles (�25 h), measured at a fixed station at hourly
time intervals. The tidal oscillation and the u-velocity time variations are asym-
metric (Fig. 5.18-upper), and the highest velocities (�0.8 m s−1) during the ebb
have a phase difference of �2.5 h in relation to the HW; however, at the flood the
intensities are very low (�0.2 m s−1).

The temporal salinity variation (Fig. 5.18—lower) indicates that the estuarine
channel is highly stratified, and at HW and LW the salinity values are 36.0 and
22.0‰, respectively. The salinity differences between the bottom and the surface
are up to 14 and 6‰ at HW and LW, respectively, and nucleus with maximum
values (36‰) indicate the Tropical Water mass (TW) intrusion into the estuary. The
phase difference between the u-velocity component and the tidal oscillations usually
observed in partially-mixed estuaries (Hunt 1964), is mainly due to frictional
energy dissipation at the bottom. It is also possible to observe at low tide the

Fig. 5.18 Isopleths of the u-velocity component (m s−1) (upper), and salinity (‰) (lower) in the
Bertioga estuarine channel (São Paulo, SP, Brazil) during spring tide, which are in phase with the
slack water (u = 0). Positive and negative velocity values indicates flood and ebb currents,
respectively (after Miranda et al. 1998)
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occurrence of bidirectional motions due by the baroclinic pressure gradient force at
the neighborhood of the u = 0 velocity.

The sub-superficial velocity nucleus of low velocity (0.2 m s−1—Fig. 5.18
upper) during the flood, which is associated with an increase in the halocline
stratification (Fig. 5.18 lower), may be due to the low vorticity shear generated by
the bottom friction stress. An opposite occurrence (halocline erosion during the
tidal ebb) due to the intensification of the vertical mixing is generated by an
increase in the bottom stress vorticity as demonstrated by Zhou (1998).

The time mean salinity and the u-velocity profiles for two semidiurnal tidal
cycles, calculated by Eqs. (5.19) and (5.20), are presented in Fig. 5.19. These
results simulate nearly steady-state conditions and may be used to classify estuaries
with the Stratification-circulation Diagram. The salinity profile has an accentuated
halocline with values varying from the surface (Ss = 15.84‰) to (Sf = 29.95‰) at
the bottom (Fig. 5.19, left), indicating a highly stratified estuary. Its mean depth
average is equal to S ¼ 25:8‰, and the stratification parameter SP ¼ dS/S � 0:55.
The u-velocity component, without the influence of the barotropic gradient pressure
force indicates a bidirectional motion due to the gravitational circulation (seaward
and landward in the upper and lower layer, respectively), which is another char-
acteristic of the partially mixed estuary, with the no-motion depth at Z � −0.5
(z � 3.0 m). The velocity values to calculate the circulation parameter us = 0.15
m s−1 and the residual or net velocity uf � ua � 0.04 m s−1. Thus, the circulation
parameter, CP = us/uf � us/ua = 3.7; finally, with these parameters the investigated
estuarine channel can be classified as type 2b. Finally, it should be pointed out that
although the low net value of the velocity it is responsible for the seaward advective
flux and transport of the concentrations of any property natural or pathogenic.

5.6 Flux and Transport of Properties

The mixing in the estuarine water mass (river + seawater), is physically determined
by the local variation of a property concentration (∂C/∂t) due to the simultaneous
action of turbulent diffusion (dispersion) and the advective processes. As the dif-
fusive and the advection are inherent to the motion of non-homogeneous fluids, it is
opportune to include in this chapter the fundamental concepts related to the ter-
minologies and determinations of flux and transport of volume and mass (salt),
which may also be applied for any conservative property.

Taking into account the physical principles of Hydrodynamics, it is well known
that the volume and mass transports of a property is the volume and mass of the
fluid flow through a transversal section per unit of time. Then, according to this
concept, the instantaneous volume transport, TV = TV(t), [TV] = [L3T−1], and mass
TM = TM(t), [TM] = [MT−1], are expressed in volume and mass per time unity. In
mathematical terms these quantities are calculated, respectively, by the following
surface integrals extended to an area A = A(x, t):
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TV ¼
ZZ

A

~v 
~n dA ¼
ZZ

A

udA ¼ uA, ð5:24Þ

and

TM ¼
ZZ

A

q~v 
~n dA ¼
ZZ

A

qudA ¼ quA, ð5:25Þ

where the dot, •, indicates the scalar product, and in the last term on the
right-hand-side of these equations the mean value theorem was used, in Eqs. (5.24)
and (5.25), the quantities u and q indicate the mean values of the u-velocity
component and density in the area, A, respectively. The transports, TV and TM, in
the SI system of units are given in m3 s−1 and kg s−1, respectively. The same
equations are applied for a transverse cross-sectional area, A, in an estuary; how-
ever, the experimental fields of velocity ð~vÞ and density, q = q(S, T, p), may only
be measured at discrete points or oceanographic stations, distributed in a
cross-section, A, and the area integrals of these equations must be calculated
numerically, because the functional relationship u = u(x, y, z, t) are not analytically
known. Further details on the transport determination methods will be given later.

The instantaneous volume transport, divided by the cross section area (A), is
named volume flux (/V), and it is numerically equal to the mean transport at the

Fig. 5.19 Vertical time mean profiles of salinity and the u-velocity component, determined with
hourly values measured during two tidal cycles, sampled during neap tide in the Bertioga estuarine
channel (São Paulo, Brazil). The vertical mean depth values of salinity and velocity are shown by
vertical lines (adapted from Miranda et al. 1998)

170 5 Reduction and Analysis of Observational Data …



transversal section. Then, this physical quantity is calculated by /V/A, or by
combining this definition with Eq. (5.24),

UV ¼ 1
A

ZZ

A

~v 
~n dA ¼ 1
A

ZZ

A

udA ¼ u: ð5:26Þ

Then, the volume flux is numerically equal to the mean velocity value in the
transversal section A.

By analogy, it is possible to define the mass flux (/M = TM/A) from Eq. (5.25),

UM ¼ 1
A

ZZ

A

q~v 
~n dA ¼ 1
A

ZZ

A

qudA ¼ qu: ð5:27Þ

The salt flux (US) may be calculated by inserting the salinity (S � 10−3, con-
verted in kg/kg units) into the integrand of Eq. (5.27). Hence, the salt flux is
US = qvS � 10−3, [US] = [ML−2T] which, integrated in the area, A, of the
transversal section, results in the salt transport TS, [TS] = [MT−1], and in SI unities,
this quantity is expressed in kg s−1.

Determinations of volume and mass transport in estuarine studies is always
important, particularly when the objectives of the research are to investigate the
import or exportation of natural concentrations of biological, chemical substances,
suspended sediments, and pathogenic substances. In practice, this determination
merits special attention due to the temporal and spatial variability of the evolved
properties and the cross-section area (A).

Let us use an example of the determination of the volume transport across a
transversal section, with the following data known: the area (A) of transverse
section area, and the steady-state velocity field based on measurements at three
oceanographic stations A, B, C shown in Fig. 5.20. After the vector velocity
decomposition, corresponding to the scalar product ~v 
~n ¼ u (the function being
integrated in the first term of Eq. 5.24) with known u-velocity component profiles at
stations A, B and C, it is possible to drawn the vertical velocity field u = u(y, z), as
illustrated in Fig. 5.20.

Figure shows the occurrence of a bi-directional motion, and, as may be observed
in the signal changes of the velocity field, the motion has a layer of null velocity
(u = 0). In the assumption that the motion is occurring in an estuarine channel, it is
characteristic of a partially-mixed estuary (type 2 or B, according to the classifi-
cation criteria) in nearly steady-state, with motions down and up estuary in the
upper and lower layers, respectively. With the velocity isolines (u = const.) drawn
in this figure, it is possible to numerically calculate the volume transport (Eq. 5.24)
with the following steps:

(a) With a planimetry technique, the area [L2] between the velocity isolines may
be determined;

(b) The mean value of the area between the isolines is multiplied by the mean
velocity value between them [L2LT−1]
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(c) The sum of all these numerical value of the integral and the volume transport
through the vertical section.

As the velocity is given in m s−1 and the area calculated in m2, the net volume
transport is approximately—1.2 � 103 m3 s−1 (−3.2 � 103 m3 s−1 and
2.0 � 103 m3 s−1, seaward and landward, respectively). The same procedure may
be used to calculate the mass and salt transport; however, in these cases, in the
transversal section, the isolines of the qu and quS quantities must be drawn, and the
mean velocity multiplied by the corresponding isolines values.

Acoustic Doppler Current Profilers (ADCP) may perform velocity profile
measurements accurately and at short time intervals along estuarine cross sections,
enabling accurate determination of volume transport across transversal sections.
The software of the ADCP equipment may also automatically compute the volume
transport; however, the displayed results must be checked against other
methodologies.

Let’s now consider a non-stationary velocity profile, u = u(x, t), in a known
fixed position in an estuarine transversal cross section. With this profile, it is
possible to calculate its mean velocity value u ¼ uðt) in the water column, with
depth h = h(t), which oscillate periodically with time. With these data it is possible
to calculate the volume transport, (TV)L, per unit of the section width, which is
representative of the neighboring geographic position. Then, the net volume
transport is given by:

Fig. 5.20 Steady-state
vertical structure of the
u-velocity component, u =
(y, z), in m s−1, orthogonal to
the vertical section. A, B, and
C are positions of
oceanographic stations. The
Ox axis is oriented in the
landward direction (u > 0 and
u < 0) indicate flood and ebb,
respectively
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ðTVÞL
� � ¼ 1

T

ZTP

0

uðt)h(t)dt ¼ uhh i: ð5:28Þ

In this equation TP is the tidal period, and the volume transport dimension is
[(TV)L] = [L2T−1]. Under normal meteorological conditions and for a laterally
homogenous estuary with a width, B, the product B 〈(TV)L〉 is the numerical
approximation of the fresh water discharge (Qf) at the estuary head.

Because, in general, the integrand of Eq. (5.28) is not known analytically, this
volume transport may be numerically calculated with an equation similar to
Eq. (5.20);

ðTVÞL
� � ¼ 1

n
uðt0Þh(t0Þ

2
þ

X

k

uðtkÞh(tkÞþ
uðtnÞh(tnÞ

2

" #

; ð5:29Þ

where n is the number of lunar hours of the tidal cycle and k = 1, 2, …, n − 1.
When the functions u ¼ uðt) and h = h(t) of Eq. (5.28) are known, this equation

may be integrated by analytical methods. Under the assumption velocity and level
oscillations may be simulated by sinoidal oscillations, similar to the solutions
obtained for the propagation of a tidal wave in a channel with infinity length
(Eqs. 2.21 and 2.22, Chap. 2),

hðtÞ ¼ H0 þ g0 sinðxt � UÞ; ð5:30Þ

and

uðtÞ ¼ u0 þU0 sinðxtÞ; ð5:31Þ

where the angle, U, is the phase difference between the velocity and the water depth
variations. In these equations, H0 and u0 are the mean sea-level depth and the mean
velocity, which are superimposed to the values η0 and U0, respectively.

Replacing Eqs. (5.30) and (5.31) in Eq. (5.28), simplifying the resulting
expression with trigonometric identities and completing the resulting analytical
integration, it follows that the expression for the mean volume transport is,

ðTVÞL
� � ¼ u0H0 þ U0g0

2
cosðUÞ; ð5:32Þ

This final result indicates the volume transport, per unit of the transversal section,
which may be determined only by the product of the mean values (u0 H0) when the
phase difference is equal to p/2, and the tidal oscillation in the estuarine channel is a
stationary wave. This phenomenon has been observed in some estuaries where time
differences of (TP/4) or phase difference of p/2, between the tidal height oscillations
and the longitudinal velocity differences were detected (Dyer and Ramamoorthy,
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1969; Kjerfve 1970, 1973). However, when the tidal wave propagates as a pro-
gressive wave, U = 0 (Eq. 2.24, Chap. 2), the volume transport is determined
taking into account the tide and velocity amplitudes (uoHo). In partially stratified
estuaries (type 2 or B), the phase differences vary in the interval 0 < U <p/2, and
the volume transport also depends on the product U0η0. If the estuary width may be
approximated by a constant value (B), the volume transport across the transversal
section may be calculated by B〈(TV)L〉.

5.7 Advective Salt Transport Components

The landward salt transport is driven by the current velocity generated during the
tidal flood and gravitational circulation, while the seaward salt transport is driven by
the reversal of the tidal oscillation, the ebb tidal current, the fresh water discharge
and gravitational circulation. To gain a better understanding of these processes,
Pritchard (1954) studied the salinity and current velocity measured in the James
river estuary (Virginia, USA), averaged over several tidal cycles. This study con-
firmed the hypothesis that the mixing processes are related primarily to tidal
forcing, and suggested the possibility of predicting the eddy diffusion terms from
the tidal velocities. Pritchard (op. cit.) also showed that the horizontal advective flux
and the vertical non-advective (diffusive) flux of salt are the most important factors
in maintaining the salt balance; however, although the vertical advective flux is of
secondary importance but still significant, the longitudinal non-advective (diffusive)
salt flux is small. Confirming these results, in studies on the salt dispersion in the
Hudson river estuary (New York, USA), Hunkins (1981) stated that at the simplest
level, an estuary may be considered as a black box which pumps salt upstream
against the mean river flow, and the overall landward mixing is better termed
dispersion, rather than diffusion, and that dispersion is produced primarily by the
effects of winds, tides and gravitational circulation. Thus, the process termed dis-
persion has advection and vertical turbulent diffusion as main components.

For studies on the advective and non-advective salt transport components
through an estuary transverse cross-section, measurements of current velocity and
salinity must be taken at Dt intervals from 30 min to 1 h for a duration at least one
complete tidal cycle, and the profiles of these properties must be interpolated at the
non-dimensional depth (Z). To simplify the mathematical treatment, consider a
lateral homogeneous estuary, which is a simplified version of the non-laterally
homogeneous estuary studied by Hunkins (1981). Under this simplification, it is
assumed that the experimental data are from a single fixed station in the middle of
the channel, and the instantaneous salt transport (MS), per width unit, is determined
by:
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MS ¼
Zh

0

qS~v 
 ~n:dz ¼
Zh

0

quSdz ¼ quSh
� �

; ð5:33Þ

In this equation, the Oz axis is oriented in the~g direction, and in the last term of
this equation ðquSÞ is the mean value of the flux salt, and h is water thickness. The
dimensional analysis of this equation shows that MS, [MS] = [ML−1T−1] is calcu-
lated in the SI system of units, in kg m−1 s−1.

The mean advective salt transport (TS) during one (TP) or more tidal cycles (nTP)
is calculated by:

TS ¼ MSh i ¼ 1
T

ZT

0

MSdt ¼ quSh
� �

: ð5:34Þ

The mean density in the water column, appearing in Eqs. (5.33 and 5.34), is
calculated by a State Equation of Sea Water, at atmospheric pressure.

The term quSh
� �

in Eq. (5.34) is the mean values in space (depth) and time.
Considering u-velocity component and salinity as examples, the time mean depth
value, are calculated by:

uh i ¼ ua ¼ 1
T
½1
h

Zh

0

u(x, z, t)]dt; ð5:35aÞ

and

S
� � ¼ Sa ¼ 1

T
½1
h

Zh

0

S(x, z, t)]dt: ð5:35bÞ

These time-mean values are function of the longitudinal distance and its value
varies according to the cross-sectional area, and u-velocity component may be
considered in first approximation to the velocity component generated by the river
discharge,

uh i ¼ ua � Qf

A
: ð5:36Þ

As demonstrated in the pioneer article of Bowden (1963), the advective salt
transport also has contributions of a diffusive nature that don’t explicitly appear in
Eq. (5.34). This phenomenon may be investigated with the separation of the
periodic tidal forcing (barotropic), the gravitational circulation (baroclinic) and
other effects, such as the turbulence generated by the wind. The main objective of

5.7 Advective Salt Transport Components 175



the following theoretical treatment is to separate the longitudinal salt transport in
dominant parcels. For this purpose, the longitudinal velocity component (u) the
salinity (S) and the water depth (h) must be decomposed in determinate parcels to
make identification of the various correlations possible, which indicate the advec-
tive and dispersive physical processes responsible for the landward and seaward salt
transport. This decomposition process may be used in the determination of the
transport components of any conservative substance dissolved in the seawater.

Using the articles of Bowden (1963), Fischer (1976), Hunkins (1981), Dyer
(1974) and Kjerfve (1986), as references for a laterally homogenous estuarine
channel, the instantaneous velocity and salinity profiles are decomposed into mean,
tidal, steady (subscripts a, t, s) and deviation terms (′):

u(x, z, t) ¼ uaðx)þ utðx,t)þ usðx,z)þ u0ðx, z, t), ð5:37Þ

S(x, z, t) ¼ Saðx)þ Stðx, t)þ Ssðx, z)þ S0ðx, z, t): ð5:38Þ

In the decompositions, the first term on the right-hand-side are the mean values
uaðx) ¼ uh i and Saðx) ¼ S

� �
due to the dominant influence of the river discharge

(advective process). The second and third terms of these equations, ut(x, t), us(x, z),
St(x, t), Ss(x, z), mathematically simulate the cyclic tidal influence and the sta-
tionary influence of the gravitational circulation, respectively, which also are
dominant. These components are defined as,

ut ¼ u� ua; ð5:39Þ

St ¼ S� Sa; ð5:40Þ

us ¼ uh i � ua ð5:41Þ

Ss ¼ Sh i � Sa; ð5:42Þ

where the expressions (5.39 and 5.40) and (5.41 and 5.42) are the tidal and the
steady-state components, respectively. The last terms, u′(x, z, t) and S′(x, z, t), of
Eqs. (5.37) and (5.38) are the deviation components due to the dispersive small
scale physical processes, and are calculated by,

u0 ¼ u x; z; tð Þ � ut x; tð Þ � us x; zð Þ � ua xð Þ; ð5:43Þ

and

S0 ¼ S x; z; tð Þ � St x; tð Þ � Ss x; zð Þ � SaðxÞ: ð5:44Þ

Figure 5.21 shows the velocity decomposition in the parcels ut, us and u′ from
the vertical profiles; profile (a) the nearly steady-state profile (averaged during one
or more tidal cycles) and, (b) the instantaneous profile. The same schematic profiles
may be used for the salinity components (St, Ss and S′).
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As the water column thickness varies with the tidal oscillation it must be sep-
arated into the following components,

h x; tð Þ ¼ ha þ ht x; tð Þ; ð5:45Þ

where ha = 〈h〉 = H0 is the time mean value of the local depth, and ht(x, t) = η(x, t)
is the tidal height.

Replacing the decompositions of Eqs. (5.37), (5.38) and (5.45) in Eq. (5.34), the
salt transport TS, [TS] = [ML−1T−1] will be decomposed into 32 terms.
Disregarding the small terms and others without well-defined physical meaning,
results in only seven terms to calculate the time mean salt transport (per unity
width) during one or more tidal cycles, described by the equation:

TS ¼q:ðua:ha:Sa þ ut:hth iSa þ ut:Sth iha þ ha:us:Ss

þ ha u0:S0
D E

þ ut:St:hth iþ ua: St:hth iÞ; ð5:46Þ

or

TS ¼ AþBþCþDþEþ FþG: ð5:47Þ

The terms A–G are related to the processes responsible for the time-mean salt
transport or net salt transport.

The first term (A) represents the seaward advection of salt by the mean
u-velocity component. The term B is the salt transport generated by the tidal wave
propagation in the estuary, due to the inclined topography of the estuarine channel.
According to the pioneer article by G.G. Stokes, published in 1847, the orientation
of this wave transport is opposite to its propagation, which is known as the Stokes
drift phenomenon (Longuett-Higgins 1969). Thus, its contribution to the salt
transport is generally seaward, and, like the term A, it constitutes an advective
contribution to the salt transport which may be important in macro-tidal estuaries.

Fig. 5.21 Vertical velocity profiles: the instantaneous (a) and time-mean values (b), showing the
decompositions in the parcels ut ¼ u� ua and us ¼ uh i � ua s(according to Fischer et al. 1979)
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The advective processes, A and B, tend to sweep the estuary clear of salt and
sharpen the frontal gradient between the river and ocean (Hunkins 1981).

The remaining terms (C–G) are generally considered to represent up-estuary
dispersion of salt through mixing of various processes. For the physical interpreta-
tion and the orientation (up or down estuary) of these terms, it will be necessary to
anticipate the laterally integrated salt conservation equation from Chap. 7 (Eq. 7.80).
This equation may be further simplified: with constant width (B = const.),
steady-state conditions and vertical velocity component equal to zero (w = 0),
because only the longitudinal salt transport is being calculated. In these conditions,
the salt balance (advective salt flux = diffusive salt flux) is expressed by,

quS ¼ qKE
@S
@x

; ð5:48Þ

where u = ua + Us; Us is the Stokes velocity and KE is the kinematic dispersive
longitudinal coefficient of salt. If all members of this equation are multiplied by the
water layer thickness (h), the first member of this equation is the advective salt
transport per width unit [ML−1T−1], generated by the river discharge and the Stokes
drift (terms A + B). Then, this advective salt transport is in balance with the
up-estuary salt transport generated by others mechanisms, because under
steady-state conditions there is no net transport of salt. Hence, from Eqs. (5.47) and
(5.48) it follows (Fischer et al. 1976):

�KE
@S
@x

¼ CþDþEþ FþG: ð5:49Þ

The terms in the second member of this equation are forced by the combined
influences of the tidal stirring and vertical turbulent fluctuations, which have been
defined as dispersive mechanisms.

Some of the suggested physical mechanisms connected with the terms of
Eq. (5.46) were obtained by Hunkins (1981), through analysis of current and
salinity observations in the lower Hudson estuary (New York, USA), providing a
basis for assessing the relative importance of the following physical processes:

(i) (A) and (B) total discharge and Stokes wave transport, which have the fresh
water discharge as a physical process;

(ii) (C) tidal correlation, with topographic trapping as a physical process;
(iii) (D + E) steady shear dispersion due to the gravitational circulation, bathy-

metric tidal pumping and steady wind effect;
(iv) (F + G) oscillatory dispersion due to tidal shear and unsteady wind.

The sum A + B is positive and represents the advective salt transport by river
discharge. In the case of a standing wave, tidal height and tidal velocity would be
90° out of phase, and the contribution of the term B, which is averaged over the
tidal cycle, would vanish. In a long progressive wave, high water occurs at max-
imum flood and low water at maximum ebb, therefore water is carried up the
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estuary along with and its up-estuary salt content, and this term has a negative
contribution. However, term A incorporates a compensation current which offsets
the landward transport by term B.

The term defined as tidal correlation (C), is determined by the mean correlation
of the product of velocity (ut) and salt (St) multiplied by ha, which may be positive,
indicating a process that acts to carry salt out of the estuary, such as in the Hudson
estuary. In an idealized well-mixed estuary, maximum salinity would be reached at
the end of the flood tide, so there will be a phase difference of 90° between ut and St
with no net contribution from this term since the integral of these terms in
quadrature would be zero. It has been suggested by Fischer et al. (1979) that the
trapping of water by topographic irregularities (topographic trapping) along the
edge of an estuary with its later release during a different tidal stage, could lead to a
phase difference of less than 90°. This would be a dispersive process, leading to a
negative value for term C. It is generally observed in partially mixed estuaries that
the longitudinal salinity gradients are less in the lower layer than they are in the
upper layer; consequently, the tidal salinity oscillation is substantially reduced in
the lower layer. Also, the tidal current near the bottom affects the tidal current in the
upper layer due to the frictional effects. Due to these two well documented char-
acteristics of estuarine circulation, the tidal salinity must lag behind the tidal current
by a phase angle greater than 90°, which makes the term C positive.

The component D, defined as steady shear dispersion, is due to the vertical
gravitational circulation minus the circulation generated by the river discharge. As it
acts up-estuary it is not only the largest contribution to the salt dispersion but is also
subjected to the largest fortnightly and seasonal changes in partially stratified
estuaries. It has a small contribution in well-mixed estuaries. The component E
results from the oscillatory turbulent shear with a time scale less than the tidal
oscillation generated by the wind; it usually has a small contribution to the salt
balance.

The oscillatory dispersion components (F and G) were investigated by Hunkins
(1981) and Kjerfve (1986) and have tidal shear and unsteady wind effect as physical
processes. They were introduced in the decomposition of the advective salt trans-
port because they may be important in well-mixed estuaries forced by mesotides.
The component F, calculated by the triple correlation of the temporal variations of
the u-velocity component (ut), salinity (St) and tide (ht), is by definition the
oscillatory dispersion. In the component G, the mean value of salinity (St) and tidal
height (ht) correlations are multiplied by the river discharge velocity (ua) and is, in
general, dispersive and named oscillatory dispersion. The lack of consistency of its
determinations in the Hudson estuary suggests that they were too small to be
adequately sampled.

Equations (5.34) and (5.46) are different mathematic expressions of the same
physical quantity, the salt transport. Consequently, the comparison of their results
may be used to verify the computational results, and also to indicate that the
neglected terms in Eq. (5.46) are negligible.

Although there are difficulties in identifying reliable measurements for the
application of this method for the decomposition of the advective salt transport, it has
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been used in studies related to the contribution of various mechanisms in estuaries
with different salinity stratifications (Bowden 1963; Dyer 1974; Hunkins 1981;
Lewis and Lewis 1983; Kjerfve 1986, and others). As an example of this method
applied to a partially mixed estuary (type 2b or B), Table 5.2 presents the results
obtained from measurements made in the Bertioga estuarine channel (Fig. 1.5,
Chap. 1) during neap tide.

In this experiment, the salt transport was dominated by the advective component
(A) and the shear dispersion component (D), generated by the gravitational circu-
lation. In a steady-state condition, the salt transport (TS) should converge to zero. In
this example, TS 6¼ 0, due to seaward net salt transport equal to 3.54 kg m−1 s−1,
calculated by the sum of all individual terms; almost the same value (3.61 kg
m−1 s−1) was obtained applying Eq. (5.34), which confirms the results of the
individual terms.

Among the advective salt transport components in the entrance channel of the
Patos lagoon, which were calculated from the same data set that was used to
classify the estuary as well-mixed (type 1b), the following components were pre-
dominant: the advective term A due to the fresh water discharge, and the oscillatory
dispersion terms (F + G) generated by the up-lagoon salt transport forced by a
meteorological frontal zone (Möller and Castaing 1999).

In laterally non-homogeneous estuaries it is necessary to include the
cross-section variations, A = a(x, t), due to the tidal height oscillation, which is
decomposed into two components, A(x, t) = 〈A〉 + At(x, t), a time mean area and
its time variation, respectively, to take into account its transverse variation. This
procedure will increase the complexity of the mathematical treatment and, for
further details on this subject, we recommend the Hunkins (1981) article, where
advective and dispersive components of salt transport were calculated in transversal
sections of the Hudson estuary (New York, USA).

Table 5.2 Advective salt transport components (in kg m−1 s−1) for an experiment with hourly
measurements during two neap tidal cycles in the Bertioga estuarine channel (SP) (according to
Miranda et al. 1998)

Definition Physical process Formulation Transport

A-Total discharge Fresh water discharge q:ua:ha:Sa 5.97

B-Stokes wave transport Fresh water discharge q: ut:hth iSa −0.16

C-Tidal correlation Topographic trapping q:ha ut:Sth i −0.49

D-Steady shear dispersion Gravitational circulation q:ha:usSs −1.32

E-Steady shear dispersion Bathymetry, tidal pumping,
steady wind effects

qha u0S0
� �

−0.45

F-Oscillatory dispersion Tidal shear q ut:St:hth i −0.04

G-Oscillatory dispersion Unsteady wind effect q:ua St:hth i 0.03

TS = A + B + C + D + F + G 3.54

TS (Eq. 5.34) 3.61
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5.8 Advective Concentration Transport

One of the objectives for measuring velocity, salinity and temperature in estuaries is
to use these properties to calculate the flux and transport concentrations of these
properties. In this case, let us consider a conservative substance concentration (C),
which has been simultaneously measured with the hydrographic properties and
current velocity. As this property may be determined by the ratio of its mass or
volume per unit of mass, its dimensions are [C] = [MM−1] or [L3M−1], these
concentrations must be taken into account in the determinations of the corre-
sponding flux or transport.

For instance, if C is the oxygen concentration dissolved in the estuarine water
mass, which being a non-dimensional property, is usually determined volume of
oxygen per volume [L3L−3]. Then, the mathematical expression to calculate the
time mean flux ðUO2Þ across an area, A, during the tidal cycle is determined by:

UO2 ¼
1
T

ZT

0

½1
A

ZZ

A

ðC~v 
~ndAÞ�dt ¼ cuh i: ð5:50Þ

From this equation, it follows that UO2 has dimension of [L3L−2T−1] = [LT−1].
This result represents the physical dissolved oxygen volume contents crossing the
unity of the transversal section per time unity (oxygen flux). If in Eq. (5.50) the
factor (1/A) is eliminated, the result is the oxygen transport, TO2 (volume per time
unity, and TO2½ � ¼ L3T�1

	 

).

Under the assumption that the concentration, C, of a given property is now
expressed as a generic property (Pr) per mass unity [PrM−1], then its flux UC is
calculated by,

UC ¼ q
T

ZT

0

½1
A

ZZ

A

ðC~v 
~ndA)]dt ¼ q cuh i; ð5:51Þ

where the flux UC and its dimension is expressed by [UC] = [PrL−2T−1]. If the
factor (1/A) is eliminate from this equation, the result is property transport (property
per time unity, in dimension [PrT−1].

Equations (5.50 and 5.51) may also be used to calculate the flux or transport of
any property if the measured concentration is expressed as the salinity unity, which
is non-dimensional. Equations (5.34) and (5.51) are similar, and the only difference
is that the first equation gives salt transport per unit of the transversal section. Then,
it is always possible, with the same treatment as described in the previous topic
(5.7), to perform decomposition of the property transport into advective and dis-
persive components and investigate the main mechanisms and physical processes
responsible for the exportation or importation of substances in estuaries.
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River discharge and Stokes drift are exportation mechanisms which decrease the
concentrations of harmful substances introduced into rivers of directly into estu-
aries. Due to the potential danger to the estuarine environment, the monitoring of
harmful substances is of fundamental importance to estuary management, because
estuaries’ natural conditions may be drastically altered by construction of sand bars,
navigational channels, river diversion and fresh water used for urban, agriculture
and industrial purposes.

The main methods of reduction, and processing hydrographic and velocity data
presented in this chapter have their algorithms programmed in the computational
environment MatLab®, described in Bergamo et al. (2002).

5.9 Tidal Prism Determination

When the u-velocity component, u = u(y, z, t), as presented in Fig. 5.20, is mea-
sured at regular time intervals in a transversal section at the estuary mouth from the
low tide (t = 0) to the high tide (t = TP/2), it is possible to determine the tidal prism
TPR, defined in Chap. 2, by the following mathematical expression:

TPR ¼
ZTP=2

0

½
ZZ

A

u(y, z, t)dA]dt: ð5:52Þ

In this equation the surface integral over the area A (whose numerical integration
has been described), is the volume transport [L3T−1]. The integration in the time
domain between the time interval [0—TP/2] may also be determined numerically
using an algorithm similar to those presented in Eq. (5.20). This integration
(Eq. 5.52) may also be to calculate automatically with an Acoustic Doppler Current
Profiler (ADCP), performing velocity profile measurements accurately and at short
time intervals, but these results must be checked against others methodologies.
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Chapter 6
Mixing Processes in Estuaries:
Simplifyed Methods

The classical definition of an estuary establishes that it is a partially closed water
body with openings to the adjacent ocean, where the seawater is diluted by fresh
water of the fluvial drainage basin. The input of fresh water decreases the potential
energy of the water column, which is supplied by tidal energy through the mixing
process produced on the bottom and internal shear instabilities.

The presence of denser water at the estuary mouth generates a system which
constantly pushes seawater into the estuary. The water mass in the mixing zone
(MZ) is composed of fresh and salt water, which varies along the estuary. Due to the
seaward salinity increase, the horizontal salinity gradient generates the baroclinic
component of the gradient pressure force. The barotropic and the baroclinic com-
ponents of the gradient pressure force, the fresh water input, and the wind shear
cause agitation of the estuarine water mass and generate the mixing processes
(advection and turbulent diffusion).

In this chapter, we take a semi-empirical approach to estuarine processes. The
estuary will be considered as a black box and one-dimensional system, and the
salinity and the fresh water will be used as tracers under steady-state conditions.
The estuary geometry, river discharge (Qf), tidal height (Ho), and the non-diluted
salinity of the adjacent coastal ocean (S0) will be considered as known. The con-
servation of salt and volume, with the assumption of a well-mixed estuary, will be
used to calculate the longitudinal salinity distribution as well as the flushing time,
which indicate the estuary capacity to flush out the salinity and concentrations of
any conservative property.

The non-diluted salinity of the adjacent coastal ocean (S0) is measured outside of
the estuarine plume and, due to mixing processes on the continental shelf, may be
subjected to slow seasonal variation. Then, it is advisable to take monthly time
mean representative values for the seasonal period, if possible. For estuaries on the
Southeastern Brazilian continental shelf (23°S–28°S), S0 values may be found in
Castro and Miranda (1998).

© Springer Nature Singapore Pte Ltd. 2017
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6.1 Fundamental Concepts

The definition of an estuary may follow from the experimental evidence. In fact, the
longitudinal salinity gradient in the mixing zone, shown in Fig. 4.4 (Chap. 4),
indicates conclusively that, due to the measurable dilution of the seawater by the
river fresh water, a parcel of this fresh water remains in the estuarine water body.
According to Ketchum (1950), the flushing time (tq) is the ratio of the fresh water
volume retained in the MZ and the river discharge (Qf), thus,

tq ¼ Vf

Qf
: ð6:1Þ

This property, with dimension [tq] = [T] has also been called mean detention
time by Fischer et al. (1979), and is dependent on two main quantities intimately
related: the fresh water volume retained in the MZ and the river discharge that
dilutes the seawater entering the estuary. It should be noted that the tidal height,
which determines the mixing intensity, and the direct and remote wind stress, which
may dam or remove the estuarine water mass, may be important to determine this
time interval.

In normal conditions, the river discharge (Qf) may be considered constant during
the tidal cycle; however, the fresh water volume (Vf) usually increase and decrease
during the ebb and flood tide, respectively, but in the intratidal time scale it is very
difficult to calculate this quantity. Therefore, it is more common to calculate a
global flushing time, representative for a tidal period; it is an important quantity
because it measures the time interval necessary for the fresh water volume retained
in the mixing zone to be removed from the estuary, along with concentrations of
other substances in the estuarine water mass.

The input of fresh water volume (R) into the estuary, during the time interval of a
complete diurnal or semi-diurnal tidal cycle (TP) is calculated by R = TPQf. If the
MZ of the estuary had already accumulated a fresh water volume, Vf, the flushing
time for the tidal period is the ratio,

tq ¼ Vf þR
R

T: ð6:2Þ

This result indicates that tq is higher than or equal to the tidal period, and tq = TP

only when Vf ! 0. Small values of tq indicate that the removal of all fresh water is
due to macro or hyper tides, and the mean estuarine depth is similar to the tidal
height. In these conditions, the estuarine water mass is completely renewed (the MZ
is flushed out of the estuary) at each tidal cycle, because almost the whole water in
the estuary is flushed out. Therefore, this environment is less susceptible to water
pollution by pathogenic substances.

Let’s now consider influences on the flushing time, which may occur due to the
fortnightly tidal modulation, under the assumption that the river discharge and the
salinity in the continental shelf don’t vary and the wind forcing is negligible.
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During neap tides, the estuarine circulation is less intense and the vertical stratifi-
cation is high; however, during spring tides, the conditions are opposite (intense
circulation and less vertical stratification). Thus, during the spring tidal cycle, less
fresh water is retained than during in the neap tide, (Vf)S < (Vf)N. Applying the
flushing time definition (Eq. 6.1) the corresponding values at the spring (tq)S and
neap (tq)N tides are given by:

ðtqÞS ¼ ðVfÞS
Qf

; and ðtqÞQ ¼ ðVfÞQ
Qf

: ð6:3Þ

By combining these results it follows that:

ðtqÞS ¼
ðVfÞS
ðVfÞQ

ðtqÞQ: ð6:4Þ

Consequently, taking into account the inequalities of the fresh water volumes
retained in the spring and neap tidal conditions, it follows from Eq. (6.4) that
(tq)S < (tq)N. Then, according to the simplified conditions, the fresh water volume
retained in the MZ is removed quickly during the spring tide than the neap tide.

The fresh water volume (Vf) necessary to calculate the flushing time may be
obtained from the knowledge of the non-diluted salinity value at the continental
shelf (S0). But, to do so, it is necessary to define the mean fresh water fraction or
concentration indicated by f. This quantity is defined as the ratio of the fresh water
volume in the MZ (Vf) and the corresponding steady-state geometric volume (V) of
the estuarine water mass,

f ¼ Vf

V
: ð6:5Þ

The fresh water fraction (concentration) is a non-dimensional quantity which
varies between the following extreme values: f ¼ 1, when the estuary is completely
filled with fresh water, and f ¼ 0, when there is no fresh water in the MZ (meaning
Qf � 0). As this quantity is function of the fresh water volume (Vf), which is the
unknown required to calculated the flushing time (Eq. 6.1), then it is necessary to
find an alternative way to calculate f (Eq. 6.5), using another quantity. In this case
we can use the salinity.

Considering a small control volume dV, it is possible to define fresh water
fraction as f = dVf/dV. Following its displacement from the estuary head (where
S = 0 and dV = dVf) to the estuary mouth, where the fresh water influence is small
(dVf � 0), the fresh water fraction of this volume varies from 1 to almost zero
(0 < f� 1). This variation interval is the same as that presented above. Then, using
the salinity definition and the conservation principle of the mass of salt in seawater,
the fresh water fraction may be calculated as function of this physical-chemical
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property. Consider a volume of salt water Vi with the total mass, M, a salinity Si,
and density qi. Then, from the salinity definition,

Si ¼ m
M

¼ m
qiVi

; ð6:6Þ

where m indicates the mass of the dissociated salts in the volume Vi. Adding to a
the fresh water volume DVf, to the initial water volume, the resulting salinity value
S (S < Si) due to this dilution is calculated by,

S ¼ m
qðVi þDVfÞ ; ð6:7Þ

where q indicates the new density value of the solution. Solving these Eqs. (6.6)
and (6.7) for the mass m and equating the results gives,

qiSiVi ¼ qS(Vi þDVfÞ: ð6:8Þ

Disregarding the density variation (q � qi) gives the ratio:

DVf

Vi
¼ Si � S

S
: ð6:9Þ

The first member of this equation is the fresh water fraction in relation to the
initial volume. Then, this final result indicates that is possible to calculate the fresh
water fraction if the initial and final salinity values are known. By analogy, and
considering that in estuaries this fraction varies from 1 to 0, when the control
volume of water is displaced along the estuary from its head down to the mouth, the
mean value of this quantity may be calculated by (Ketchum 1950):

f ¼ Vf

V
¼ ðS0 � S)

S0
; and Vf ¼ ð1� S

S0
ÞV: ð6:10Þ

As previously mentioned, the undiluted salinity value (S0) or the salinity at the
salt source, is known in this equation, and is a characteristic value of the water mass
of the adjacent continental shelf without influence of the estuarine plume.

If the salinity distribution in the estuarine MZ is in steady-state condition, its
spatial distribution depends only its spatial coordinates, S = S(x, y, z). Then under
this condition, if the salinity field is known, it follows from Eq. (6.10) that:

f(x,y,z) ¼ S0 � S(x,y,z)
S0

¼ 1� S(x,y,z)
S0

; ð6:11Þ

and the fresh water concentration is also a function of the spatial coordinates. This
equation may be solved for S = S(x, y, z), if f = f(x, y, z) is known, and we have S
(x, y, z) = S0[1 − f(x, y, z)].
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Applying Eq. (6.5) to a small differential volume dV, the corresponding fresh
water volume is calculated by: dVf = f(x, y, z)dV. Then, integrating in the finite
geometric volume (V) of the estuarine MZ,

Vf ¼
Z

V

fdV ¼
ZZZ

V

f(x,y,z)dxdydz: ð6:12Þ

In this equation the fresh water fraction is calculated by the Eq. (6.11). Applying
the Mean Value Theorem of calculus Eq. (6.12) may be rewritten as,

Vf ¼ fV ¼ ð1� S
S0
ÞV, ð6:13Þ

and the fresh water volume is obtained as a function of the mean salinity and the
geometric volume of the MZ.

Combining the flushing time definition (Eq. 6.1) and Eq. (6.13), it follows that:

tq ¼ Vf

Qf
¼ fV

Qf
¼ ðS0 � SÞ

S0

V
Qf

: ð6:14Þ

This equation indicates that the flushing time is directly proportional to the
difference (S0 � S) and the fresh water volume V, and is inversely proportional to
the fresh water discharge Qf.

As an example of the flushing time determination, let us consider a laterally
homogeneous estuary, with known values for its stationary salinity field S = S(x, z)
and non-diluted salinity (S0) at the coastal region. Then, it is possible with
Eq. (6.11) to convert the isohalines into the corresponding isolines of fresh water
fraction f(x, z) = const., presented in Fig. 6.1. With the assumption that the MZ
width (B) may be considered constant, the fresh water volume (Vf) is calculated
with an equation similar to (6.12):

Vf ¼ B
ZZ

A

f(x,z)dxdz; ð6:15aÞ

or if the estuary has a length, L, and A is the mean cross section area, the fresh
water volume is determined by,

Vf ¼ A
ZL

0

f(x)dx: ð6:15bÞ

With the assumption that the estuary width is 500 m, and numerically calcu-
lating the area integral (Eq. 6.15a) with the data of Fig. 6.1, the computed fresh
water volume (Vf) is approximately 61.0 � 105 m3. In the case of a river discharge
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of 50 m3 s−1, the flushing time of this estuary is approximately 34.0 h, which is
almost three semi-diurnal tidal cycles.

As another example of flushing time and flushing rate calculation is the fol-
lowing from Fischer et al. (1979). “A well-mixed estuary has a constant
cross-sectional area A = 104 m2, a length of L = 30 � 103 m, and a constant
kinematic longitudinal diffusion coefficient KH = K = 102 m2 s−1. The fresh water
inflow is 30 m3 s−1. Find the flushing time and the flushing rate according to
Eqs. (6.1) and (6.15b), respectively”.

To simulate the longitudinal salinity distribution from its mouth, S = S0 at x = 0,
towards its head, S = 0 for x ! −∞, a possible solution of the one-dimensional
salinity variation may be expressed by,

S(x) ¼ S0 exp[ufð
x
K
Þ� ¼ S0 exp(3:0� 10�5Þ;

and the corresponding longitudinal distribution of the fresh water fraction is

f(x) ¼ 1� S(x)
S0

¼ 1� exp(3� 10�5Þ:

The fresh water volume in the estuary volume (Eq. 6.15b) is calculated by the
following integral:

Vf ¼ A
ZL

0

½1� exp(� 3� 10�3Þ�dx ¼ 1:02� 108m3;

and the flushing time tq, and the flux rate F (to be defined in Eq. (6.16), are
calculated by

Fig. 6.1 Longitudinal steady-state distribution of the fresh water fraction f = f(x, z) in a partially
mixed and laterally homogeneous estuary
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tq ¼ Vf

Qf
¼ 1:02� 108

30
¼ 3:41� 106 s � 39:4 days

and

F ¼ V
tq
¼ V

Vf
Qf ¼ 90m3s�1:

In the classical and recent literature there are several examples using the con-
cepts and equations presented here to calculate the flushing time of estuarine sys-
tems: For example, Ketchum et al. (1951) calculated the flushing time near the
Hudson river mouth in the New York Bight (USA) during high (488 m3 s−1) and
low (197 m3 s−1) river discharge volumes, and the flushing time corresponding
values where 6.0 and 10.6 days, respectively. Another classical result was pub-
lished by Hughes (1958), who analyzed data collected during low river discharge
(25.7 m3 s−1) in the Mersey Narrows estuary (Liverpool, England) and the calcu-
lated flushing time to be 5.3 days. The annual variations analysis by Pilson (1985),
using various monthly time intervals of river discharge and salinity obtained in the
Narrangansett Bay (Rhode Island, USA) during 1951 and 1977, indicated large
flushing time variations, from approximately 12 and 40 days, with the extreme
values occurring during periods of high and low river discharges, respectively.
Miranda and Castro (1993) investigated the flushing times associated with fort-
nightly tidal modulation; using data sampled during two spring and neap tide tidal
cycles, in the Bertioga Channel (Chap. 1, Fig. 1.5), and obtained values of 2.5 and
3.2 days, respectively.

This methodology was applied by Geyer (1997) using moored measurements
and along-estuary hydrographic stations in flushing time studies in two small and
shallow (1–2 m depth) sub-estuaries (the Child and the Quashnet) in Waquoit Bay
(Cape Cod, USA). These sub-estuaries were forced by different wind directions and
intensities, had low average rivers discharges of 0.1 and 0.4 m3 s−1, and had weak
spring-neap tidal modulation a tidal height of approximately 0.5 m. This study
demonstrates the strong influence of wind forcing on the salinity structure and
flushing characteristics of these shallow estuaries. According to the article’s con-
clusions, onshore winds inhibit estuarine circulation, increasing the along-estuary
salinity gradient and reducing the flushing rate, due to the landward freshwater
accumulation. Offshore winds enhanced the surface outflow, flushing out the
freshwater and reducing the along-estuary salinity gradient. The flushing time of the
Childs varied from less than one day, in offshore wind conditions, to 2.7 days
during strong onshore winds (6.0 m s−1), with a significant correlation at the 95%
confidence level. Because onshore wind flushes water into the estuary increasing
the MZ geometric volume, the flushing time may be explained by this volume
increase, according to the Eq. (6.14), in which the mean salinity increase com-
pensates for the decrease in the S0 � S. The flushing time of the Quashnet was
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shorter, typically 15 and 17 h, with only one observational in which it was more
than one day, and showed little wind-induced variability.

The flushing time may only be applied with rigor to a conservative pollutant that
is adequately discharged into the estuary head; however, if the substance is dis-
charged at another longitudinal position, its flushing time will be different (Bowden
1967a, b).

Another physical quantity related to the mixing process—combined effects of
salt dilution due to the advection and diffusion, is the time rate exchange of the MZ
volume (V) during the flushing time interval (tq). This quantity (F), named the flux
rate, is calculated by the ratio F = V/tq, and, according to the Eq. (6.14), it may be
calculated as (Officer 1976) and Officer and Kester (1991):

F ¼ V
tq
¼ S0

ðS0 � SÞQf ¼
Qf

f
: ð6:16Þ

This equation indicates that the flushing rate is directly proportional to the river
discharge and inversely proportional to the mean fresh water fraction, which is
dependent on the mixing intensity (non-advective tidal processes and advective
gravitational exchanges). The determination of the flushing rate with the data of the
exercise of this topic (i.e. 50 m3 s−1), and its definition or in function of the Qf and f
(Eq. 6.16), then F = 117 m3 s−1, that is approximately to 2.4 times of the river
discharge.

The mean values ðSÞ and ðfÞ are dependent on the diffusive up-estuary salt
transport generated by the tidal forcing, the fresh water discharge and the gravi-
tational circulation. When the estuary is dominated by the river discharge, and the
mixing zone (MZ) is advected to the coastal region, the mean salinity and the fresh
water fraction tend to zero and one (S ! 0; f ! 1), respectively. Then, from
Eq. (6.16), the flushing rate (F) is equal to the river discharge, and, under this
condition, the angular coefficient of this correlation, F = f(Qf) tends to one. Another
limiting condition is: for Qf ! 0 also F ! 0. When the turbulent diffusive process
generated by the tide is predominant (as in a well-mixed estuary), the mean salinity,
S, may be considered independent on the river discharge. As F is inversely pro-
portional to (S0 � S) it is possible, in first approximation, to also consider this rate
as independent of the river discharge and F = const. The correlations under these
limiting conditions (F = Qf and F = const.) are illustrated in Fig. 6.2.

To first-order effects, the tidal exchange flux should be independent of the
freshwater input into the estuary, disregarding the dependence of the tidal exchange
flux on the vertical shear stratification. If, for example, there were no the tidal
diffusion exchanges, a plot F versus Qf should be a curve with a zero intercept for F
at Qf = 0, and increasing values of F corresponding with increasing river discharge
Qf (Fig. 6.2, continuous line). Thus, for a more general situation, where both tidal
and gravitational circulation processes are operative, the intercept value FI, for F at
Qf = 0, will represent the tidal exchange flux, F values in excess of the intercept
value will represent the various freshwater input conditions, and Qf will represent
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the gravitational circulation influences on salt flux (Officer and Kester 1991). Then,
according to this result, the physical quantities FI (for Qf ! 0) and F are related to
the mixing parameter, m, of the classical Stratification-circulation Diagram of
Hansen and Rattray (1966) (Chap. 3), which indicates the ratio of the up-estuary
salt transport due to diffusion (Udif) and the longitudinal total salt flux due to
diffusion and advection (Uadv) expressed by:

m ¼ FI
F
¼ Udif

Udif þUadv
: ð6:17Þ

From this ratio it follows that when F = FI or FI ! 0 the parameter m is equal to
1 or 0, respectively, and the up-estuary salt transport predominant to the mixing
process is due to tidal diffusion or advection, respectively. This result is in close
agreement with the physical interpretation of the m parameter of the Hansen and
Rattray (1966) (Eq. 11.96b, Chap. 11).

The Pilson (1985) data used to calculate flushing time variation, were revisited
and the corresponding values of flushing rates (F) were calculated by Officer and
Kester (1991). Figure 6.2 is a plot F versus Qf, showing a well-defined dependence
of these variables. An empirical curve has been drawn through the data points, with
a zero intercept value for F, around 700 m3 s−1; this value identifies FI, which is the
diffusive component of the tidal mixing. Values of the mixing parameter, m, were

Fig. 6.2 Correlations of the flushing rate (F) and river discharge (Qf) inferred under conditions
F = Qf and F = const. and with experimental data (o), and the mean correlation, for the estuarine
system of the Narragansett bay (Rhode Island, USA). The intersection with the ordinate axis (FI,
for Qf ! 0) represents the diffusive parcel of tidal mixing. The dashed and dashed-point line
curves indicate the flushing rate due to the diffusive and advective processes, respectively (adapted
from Officer and Kester 1991)
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determined from Eq. (6.17) with tabulated values of F and the zero intercept value,
FI, which were correlated with the river discharge. From this correlation, it was
observed that for Qf ! 0, the parameter m ! 1, showing that under this condition
the estuarine bay, is dominated by tidal mixing. From the tabulated results of
Officer and Kester (op. cit.), it is possible to observe that for Qf = 154 m3 s−1, the
parameter m is equal to 0.52. Then, for this observational period, the dynamic
exchange processes due to tidal diffusion and gravitational circulation forced by the
river discharge had almost the same magnitude.

Although being a simple procedure, estimation of the relative contribution of the
tidal and gravitational circulation to the salt flux, using an alternative methodology
to calculate the estuarine parameter m (Eq. 6.17), requires time series measurements
of river discharge, and mean salinities of the estuary and in the coastal ocean.

The classical concepts we have introduced here are the basic concepts for the
following topics related to the simplified mixing models, which, although
semi-empirical, are important for providing the initial knowledge of the main
estuarine characteristics influenced by the mixing processes (advection and turbu-
lent diffusion). Their objectives are:

• To determine the salinity, fresh water fraction and the concentration of con-
servative substances in the estuary, in steady-state conditions.

• To calculate the time interval that the a small fresh water volume remains inside
the estuary (flushing time).

6.2 Tidal Prism

The presentation of one-dimensional tidal prism mixing models must be initiated
with the tidal prism, which is the simplest of the box model. The tidal prism will be
applied to the salinity determination in an estuary with known tidal amplitude,
estuarine surface area, fresh water discharge (Qf) and coastal ocean salinity (S0). It
is applied to an ideal estuary (Fig. 6.3), with the assumption that the tidal prism
(TPR = VM), defined in Chap. 2) with constant salinity (S0) is completely mixed,
with the fresh water from the river discharge introduced into the estuary during the
flood tide. We also assume that the estuary is well-mixed (Type 1 or A). The fresh
water volume at the disposal of the mixing at high tide is (1/2)VMQf = (1/2)R and,
with the hypothesis that the low tidal water volume does not contribute to the
mixture, it follow that the equality taking into account the salt mass conservation
condition is:

qSðVM þ 1
2
R) ¼ q0S0VM; ð6:18Þ

where VM = TPR. In this equation S and S0 are the mean salinity at high tide and
that at the coastal sea, respectively.
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Solving Eq. (6.18) for the mean salinity value S, it follows that the equation to
calculate this property at high tide is:

S ¼ S0
VM

VM þ 1
2 R

; ð6:19Þ

With this equation, it is possible to calculate the salinity mean value (S) at high
tide, knowing the tidal prism and the river water volume discharged into the estuary
mixing zone (MZ) during half a tidal period, which are quantities that may be
known for well-mixed estuaries. With this result, the mean fresh water fraction (f)
may be calculated by:

f ¼ S0 � S
S0

¼ 1� VM

VM þ 1
2 R

; ð6:20Þ

or

f ¼
1
2 R

VM þ 1
2 R

¼ R
2VM þR

; ð6:21Þ

Taking into account Eqs. (6.1) and (6.5), the fresh water volume (Vf) and the
flushing time (tq) may be calculated by the following equations:

Vf ¼ fV ¼ R
2VM þR

V; ð6:22Þ

and

tq ¼ Vf

Qf
¼ R

ð2VM þR)Qf
V ¼ TP

2VM þR
V: ð6:23Þ

This result indicates that the lowest flushing time interval TP (tidal period)
occurring when the geometric volume of the MZ (V) is equal to 2VM + R, which
corresponds to an ideal condition when this volume is entirely removed to the

Fig. 6.3 Schematic diagram of the tidal prism model. Water exchanges and the salinities at the
boundaries are indicated. For convenience the tidal prism (TPR) will also be denoted by VM
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coastal zone during a complete tidal cycle. In this ideal condition, the mean salinity
at the inner mixing zone tends to zero and the flushing rate is equal to the river
discharge (F = Qf). The flushing time may also be expressed in tidal period units

(TP). Then, it is suitable to divide Eq. (6.23) by TP, and tq ¼ V
ð2VM þR) ; when

expressed in tidal period (TP), the flushing time is directly proportional to the
geometric volume of the MZ and inversely proportional to the tidal prism plus the
fresh water discharged during the tidal cycle.

In Eqs. (6.19) and (6.20), the quantity (1/2)R may be substituted by R, resulting
in approximate mean values for the salinity and fresh water fraction, ðSÞ and ðfÞ,
during a complete tidal cycle. In this condition, it is possible to demonstrate that the
fresh water volume and the flushing time are calculated by: Vf = [R/(VM + R)] and
tq = [V/(VM + R)]TP, respectively.

Finally, with the Eq. (6.23) and the flux rate (F) definition (Eq. 6.16) it follow
that: F = (2VM + R)/TP.

The solution of this simplest box model (tidal prism) to calculate S (Eq. 6.19),
the flushing time tq (Eq. 6.23) and the flux rate F may not give satisfactory results
due to the following approximations:

• The fresh river water doesn’t mix completely with the seawater during the flood
tide or during a complete tidal cycle;

• The coastal region isn’t a perfect sink and a water parcel flushed out to the near
shore turbidity zone (NTZ) may return to the estuary in the next tidal cycle.

6.3 Segmented Tidal Prism Model

The tidal prism model hypothesis assumes a uniform steady-state salinity distri-
bution at high tide, and can be applied to well-mixed estuaries. To eliminate this
restriction, it has been re-worked by several researches aiming to enable its
application to stratified estuaries. In the pioneering article by Ketchum (1951), a
one-dimensional model was presented, where the mixing zone (MZ) was parti-
tioned in segments or cells.

The main hypothesis of the segmented tidal prism model is complete mixing of
the river and sea water in each segment or cell at high tide. The conservation
equation for this model is based on the principle of volume continuity of fresh water
volume in the estuary. According to Ketchum (op. cit.), complete mixing occurs at
high tide in each segment, while in the Dyer and Taylor (1973) model, complete
mixing may occur in the segments at high and low water levels. Then, the seg-
mented tidal prism may be applied to one-dimensional well-mixed estuaries (m = 1,
according to the Hansen and Rattray 1966 classification method), which are
dominated by vertical turbulent tidal diffusion.

Semi-empirical models of Ketchum and Dyer and Taylor will be presented and
applied to an ideal estuary to an ideal estuary, and inter-comparisons will also be
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made with observational data collected in the Winyah Bay estuarine system (South
Carolina, USA).

The Ketchum paper presents a semi-empirical theory on the mixing of fresh river
water with the seawater in selected segments distributed along the estuary
(Fig. 6.4). The theory attempts to predict average conditions in successive volume
segments for a constant river discharge and a mean tidal range. According to this
theory, it is possible to calculate the one-dimensional mean salinity, the fresh water
fraction distribution and the flushing time. This theory uses the fresh water as an
indicator and may be easily adapted to include the one-dimensional variation of any
conservative property concentration dissolved in the mixing zone. This theory
assumes the following hypothesis:

• Steady-state river discharge and salinity field and a balance between inflow and
outflow of sea water.

• Full mixing of fresh and salt water during flood tides.
• During a tidal cycle, a seaward volume of fresh water, equal to the input of fresh

water discharged at the estuary head, must be moved.
• Salinity at the coastal sea has small temporal variation (S0 � const.).

The inner end of the estuary (segment 0) is defined as the section above which
the volume required to raise the water level from low to high water is equal to the
river discharge input during the tidal cycle (Fig. 6.4); during the ebb tide, there will
be a loss through this section of one river flow volume per tide. Then, by this
definition, there is no seawater interchange at the boundary between segments 1 and
0, segment 0 being completely fresh water. During the flood tide and above the
boundary of segments 0 and 1, the salinity value and the fresh water fraction are 0
and 1, respectively. It should be noted that this is a dynamic boundary, not a
geometric definition, since the boundary location will move corresponding to
changes in river discharge (Ketchum 1951).

The segment volumes along the estuarine channel are calculated by their water
volume at low tide (Vn), with their corresponding tidal prism (Pn) volumes added at
high tide, as indicated in Fig. 6.4. Then, at high tide, the segment volume are equal

Fig. 6.4 Segmentation along an estuary model according to Ketchum (1951). Pn and Vn (n = 0, 1,
2, … N) indicate tidal prism and low tidal volumes in a generic segment n. In the inner most
segment (n = 0) there will be only fresh water given by R = TPQf (adapted from Dyer and Taylor
1973). The original notation of the tidal prism as Pi (for i = 0 to N) has been maintained
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to Vn + Pn. It should be noted that, according to this notation, the index n = 0, 1, 2,
… N indicates the segments located along the estuary, from the segment 0 (with
S = 0), up to the segment N, located at the estuary mouth; by hypothesis, this last
segment has the same salinity as the coastal region, S(N) = SN = S0, and along the
estuary the total number of segments is N + 1.

From the definition of the inner most tidal prism segment (segment 0), its tidal
prism is equal to the fresh water volume accumulated during a complete tidal
period, that is, P0 = TPQf = R. As the fresh water volume is filled during the flood
tide, Dyer and Taylor (1973) suggested that this volume should be equal to (1/2)R,
because in the Ketchum’s original theory the corresponding time interval (1/2)T of
the ebb tide has not been taken into account. However, the original theory will be
presented, and later the changes which may be applied following the suggested
correction. Then, the segment 0 volumes are equal to V0 and V0 + P0 at low and
high tidal, respectively.

According to Ketchum (1951), consecutive volume segments are defined so that
the distance between their inner and outer boundaries are equal to the average
excursion of a water element on the flood tide. The average excursion is derived
from the water volume entering each part of the estuary on the flood tide, as well as
on the estuary topography. If the water volume entering with the flood tide was to
act as a piston, displacing and pushing an equivalent volume of water upstream
from the next landward segment, the distance moved would be the average
excursion of a particle of water on the flood tide in that part of estuary. By defi-
nition, the high tide volume of any segment along the estuary length is equal to the
low tide volume in the adjacent seaward segment. Consequently, along the estuary
each segment is defined by the high tide volume in the landward segment, which is
equal to the low tide volume in the adjacent seaward segment. Beginning with the
segment 0, defined above, the entire estuary can thus be subdivided into a series of
volume segments composed of low tide volume (Vn) for a generic segment, and the
local intertidal or tidal prism volume (Pn), as shown in Fig. 6.4. Salinities and
volumes in the segments are distributed as follows: the segment 0 at high tide (P0,
with salinity zero), and the corresponding landward segments, segment n, for n = 1,
2, … N, with volumes equal to Vn + Pn and salinities S(1), S(2), … S(N). By
definition, the segment located at the estuary mouth has salinity equal to the
adjacent coastal sea S0, S(N) = S0.

The tidal excursion, defined in Chap. 2 (Eq. 2.26) is directly proportional to the
amplitude of the velocity generated by the tide, or to the tidal amplitude at the
estuary mouth; high values of these quantities generate high salinity intrusion
lengths, increasing the number of volume segments along the estuary.

With R = TPQf indicating the volume of the river water introduced during the
tidal cycle, and from the above definitions of Pn and Vn as segment volumes, the
following equations summarize these fundamental definitions (Ketchum op. cit.):
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P0 ¼ R; ð6:24Þ

V1 ¼ V0 þ P0; ð6:25Þ

V2 ¼ V1 þ P1 ¼ V0 þ P0 þ P1; ð6:26Þ

V3 ¼ V2 þ P2 ¼ V0 þ P0 þ P1 þ P2;

. . .
ð6:27Þ

VN ¼ VN�1 þ PN�1 ¼ V0 þ
X

i
Pi; i ¼ 1; 2; . . .;N� 1ð Þ; ð6:28Þ

or generically Vn = Vn−1 + Pn−1, with n = 1, 2, …, N.
The next step in performing the practical segmentation of the estuary is the

geometric determination of the volume segments at low tide. A bathymetric nautical
chart can be used to subdivide the estuarine channel into auxiliary cross-sections,
and from this determine the segment areas and volumes. If there is no such nautical
chart for the region being investigated, echo-sounding measurements of the estu-
arine channel must be made.

The volume of each segment is calculated as the product of the distance between
the areas and the mean cross-section of its limiting areas. The chosen distance
between the cross section areas along the estuarine channel and the depths varia-
tions must be as uniform as possible, to minimize errors in the calculations due to
the non-uniformity of the limiting areas. With the data generated from this proce-
dure, it will be possible to calculate the sum of the cumulative low tide volumes
along the estuary, and these cumulative values may be plotted as function of the
longitudinal distance from the head to the estuary mouth.

The tidal prism volumes from each auxiliary partition are calculated from the
product of the surface area between limiting cross-sections and the tidal height;
details of these volume calculations may be obtained in Anderson (1979). These
volumes may also be cumulatively plotted as functions of the longitudinal distance
between the head and estuary mouth. Finally, the sum of the low tide volumes (Vn)
and their corresponding tidal prism volumes (Pn) are equal to the high water vol-
umes (Vn + Pn), which may also be plotted as function of the estuary longitudinal
distance.

The longitudinal variation of the cumulative sum of the high water volumes
(
P

n ðPn þVnÞ), low ðPn VnÞ, and tidal prism volumes ðPn PnÞ, were calculated
for the Winyah Bay estuarine system (South Caroline, USA), and indicated by
curves A, B and C, respectively (Fig. 6.5).

If the fresh water volume discharged by the river during the tidal period (R) is
known, it is possible to perform the estuary segmentation according to the equations
system (6.24–6.28), and determinate its geometric limits along the estuary. In fact,
by plotting the ordinate P0 = R in Fig. 6.5, the interception with curve C (tidal
prism) determines the landward limit of the segment 0. With this abscissa value, it is
possible to determine the ordinates corresponding to the volumes V0 and V0 + P0
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from curves B (low tide) and A (high tide), respectively. In the segmentation system
of equations, the volume segment 1 at low tide is equal to V0 + P0 (Eq. 6.25); then,
on the cumulative curve B, this ordinate determines the landward limit of this
segment in the abscissa axis. In turn, this abscissa value on curve A corresponds to
the volume V1 + P1, which is equal to the volume V2, according to the segmen-
tation equation (Eq. 6.26). Using this V2 value, the process may be repeated con-
sidering curve B.

This procedure will then be repeated until the last estuary segment is found in the
abscissa axis of Fig. 6.5. Then, the volume of each segment at low tide is equal to
the adjacent segment at high tide (Fig. 6.4). As the salt intrusion length limits the
upper MZ position, the segmentation process is very important to this theory
application, enabling the geometric limits of the segments their volumes at low (Vn)
and high (Vn + Pn) tides, from the estuary head down to the mouth, to be obtained.

The estuary divided into volume segments as described above, indicates the
limits of each segment and the average excursion of a water element with the flood
tide. With the assumption that the water within such a volume segment is com-
pletely mixed at high tide, the proportion of water removed on the ebb tide will be
given by the ratio of the local intertidal volume and the high tide volume of the
segment. This proportion of river water will be removed by the ebb tide taking with
it any particles dissolved or suspended in it. Thus, an exchange ratio (r) was defined
by Ketchum (1951), for a generic segment n) as the ratio of the tidal prism (Pn) by
the high tide element volume (Vn + Pn),

Fig. 6.5 Cumulative
volumes at high (A) and low
(B) tides and the tidal prism
(C), as function of the
longitudinal distance in the
Winyah Bay (South Carolina,
USA) estuarine channel
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rn ¼ Pn
Vn þ Pn

: ð6:29Þ

This ratio quantifies the fraction of fresh water renewed of the total fresh water
discharged into the estuary in a complete tidal cycle. Its extreme values are rn = 0
and rn = 1 due to the following conditions:

• rn = 1, when the tidal height is equal to the estuary depth and all water is
removed at the low tide (Vn ! 0 or Vn � Pn);

• rn < 1 or rn � 1, in estuaries forced by regular or micro tidal forcings (Pn < Vn

or Pn � Vn);
• rn = 0, when tidal prism is to low (Pn ! 0).

In the first condition (rn = 1), the estuary is an ideal system to renewing the
salinity or concentration of any substance in its water body, because the water
volume introduced during a complete tidal cycle is completely removed during the
ebbing tide, acting as a perfect sink. In the third condition (rn = 0) there is no water
renewal in the estuary and it may accumulate salt (or other substances). The
intermediate condition is the most common in partially or highly stratified estuaries.

The river water present in the estuary is a mixture of fresh and salt water,
accumulated during many tidal cycles. In the condition of a constant input of fresh
water, during each tidal cycle, each segment receives an influx of river water
(R) equal to the total volume introduced into the estuary by the river during the tidal
period. Taking R1 as the volume of river water entering a segment during the
current tidal cycle (age of one tidal cycle), then the amount removed on the ebb tide
will be rnR

1, and the amount behind will be (1 − rn)R. Considering one step
forward in time, the portion of river water that arrived in the previous time-step, R2,
was not fully removed during ebb currents. Therefore, the remaining portion of
fresh water from previous time-step is required to be taken on the following
time-step (e.g. age of two tidal cycles). For two time steps (or two tidal cycles),
fresh water removed will be rn(1 − rn)R2 and the remaining fresh water for two
successive ebb tides, will be (1 − rn)

2R2. The proportion of water of various tidal
ages which is removed (1, 2, 3,… m), or remaining behind within the segment, as a
result of the exchanges on any given ebb tide, may be summarized as follow in
Table 6.1 (Ketchum 1951).

Table 6.1 Water mass volumes removed and accumulated into the estuary as function of the tidal
age (according to Ketchum 1951)

Tidal age Removed fresh water (volumes) Accumulated fresh water (volumes)

1 rnR (1 − rn)R

2 rn(1 − rn)R (1 − rn)
2R

3 rn(1 − rn)
2R (1 − rn)

3R

… … …

m rn(1 − rn)
m−1R (1 − rn)

mR

R R R/rn
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The parcels summation of the first line of Table 6.1 is the fresh water balance at
the tidal age 1 and, as this result is equal to R, the principle of volume conservation
in this first tidal cycle (tidal age 1) is satisfied. The second column corresponds to
the total water volume removed during the successive tidal cycles. As the ratio of
terms of this row is constant and equal to (1 − rn), its summation may be easily
calculated by the formula of the geometric progression series. Considering a series
with a great number of elements (m ! ∞), it is convergent to R which confirms
the fresh water volume conservation.

As, by hypothesis, the fresh water input is constant, all values R are equal and
the steady-state condition can be assumed. The total volume (Vf) of river water
accumulated within any volume segment (n) of the estuary at high tide, is calculated
by the sum of the remaining volumes given in the final column of Table 6.1. Since
the equation is written for the high tide condition, one volume of the river flow
(R) which has not been depleted is also present, and the fresh water volume, (Vf)n,
accumulated in high tide is:

Vfð Þn¼ R 1þ 1� rnð Þþ 1� rnð Þ2 þ � � � þ 1� rnð Þm
h i

: ð6:30Þ

As the expression between the square bracket is the sum of a geometric pro-
gression with a ratio equal to (1 − rn), the fresh water volume accumulated in the
segment, n, is calculated by:

ðVfÞn ¼
R[1� ð1� rnÞmð1� rnÞ�

½1� ð1� rnÞ� : ð6:31Þ

As (1 − rn)� 1 and the number (m) of tidal cycles (m) is great, the final result
for the fresh water volume is:

ðVfÞn ¼
R
rn
; ð6:32Þ

and is determinate by the volume of the fresh water discharged by the river during
the tidal cycle (R) divided by the exchanged ratio rn (Eq. 6.29). This relationship
states that the volume of fresh water discharge is flowing seaward during the tidal
cycle, and is the product of the exchange ratio (rn) and the accumulated volume of
river water (rQf), satisfying the hypothesis of the steady-state condition.

The exchange ratio was defined on the assumption of complete mixing of the
water mass in each segment at high tide. The average excursion of seawater during
the flood tide is presumed to set the upper limit of the saline intrusion length, over
which complete mixing was assumed.

Before using this method to calculate the fresh water fraction (f), the average
longitudinal salinity, S = S(x), and the flushing time (tq), it is opportune to observe
that Eq. (6.32) allows immediate determination of the flushing time in a generic
segment, using its definition (Eq. 6.1):
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ðtqÞn ¼
ðVfÞn
Qf

¼ R
rnQf

¼ TP

rn
: ð6:33Þ

This equation agree with the result already obtained with the Eq. (6.2); the lower
flushing time (tq = TP) occurs when the exchange ratio is equal to one, rn = 1; also,
tq ! ∞ when rn ! 0.

Combining the previously calculated values for the fresh water volume discharge
(R = TPQf), the tidal prism (C) and the low tidal volumes (B) obtained from
Fig. 6.5, with Eqs. (6.29) and (6.32), it is possible to calculate the accumulated
fresh water volumes in the generic segment (n) applying the fresh water fraction
definition (6.5), and the result is:

fn ¼ Vfn

V
¼ Vfn

Vn þ Pn
¼ R

rnðVn þ PnÞ ¼
R
Pn

: ð6:34Þ

Using Eq. (6.10), which defines the fresh water fraction as a function of the
salinity, it follows that:

fn ¼ S0 � Sn
S0

; ð6:35Þ

and combining this definition with Eq. (6.34), the mean salinity at the segment, n,
may be calculated from the known undiluted salinity at the coastal ocean (S0),

Sn ¼ S0ð1� fnÞ; ð6:36Þ

and, combining with Eq. (6.34),

Sn ¼ S0½1� Vfn

ðPn þV)n
� ¼ S0ð1� R

Pn
Þ: ð6:37Þ

From this result, it is possible to calculate the mean salinity (Sn) at each segment,
for n = 0, 1, 2, 3, … N. It then follows that for the segment 0 the salinity is zero,
because at this segment P0 = R (Eq. 6.24).

The flushing time for the segment n may be calculated by Eq. (6.33) and its sum
for each segment is equal to the estuary flushing time,

tq ¼ TP

X
n

1
rn
; ð6:38Þ

or in tidal period (TP) units,

tq ¼
X
n

1
rn
: ð6:39Þ
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To satisfy the assumption of the complete mixing of the fresh river water discharge
and the seawater at high tide, this method must be applied to well-mixed estuaries
or to low stratified partially mixed estuaries. Thus, the incomplete mixing in the
segments implies difficulty in application of this. However, in such cases, the
exchange ratio (r	n) will be dependent on the segment depth (h) and on the
well-mixed thickness (D) (Ketchum 1951):

r	n ¼
Pn

Vn þ Pn
ðD
H
Þ: ð6:40Þ

In this equation, D is the height of the segment n, and H is the mixed layer thickness
(or also its height). When the exchange ratio is larger (r	n [ rn), then the resulting
accumulation of river water ðVfÞn ¼ R/r	n will be small. In cases, the segmentation
of the estuary is also made using volumes computed to the mixed layer depth. The
entire treatment is therefore developed, with the assumption that the water bellow
the mixed layer takes no part in the tidal mixing.

The Ketchum’s method has been applied for three different estuaries in almost
all characteristics, the Raritan river and Bay (New Jersey, USA), the Alberni Inlet
(Columbia, Canada) and Great Pond (Massachusetts, USA); however, the method
was only described in detail for the Raritan river, and the theoretical results cor-
responded closely to the observed distributions of salinity and fresh water.

For simplicity, the method was applied for a model estuary with rectangular
cross sections and constant depth, and with equal low tide and tidal prism volumes
(Vn = Pn); then, the seaward variations of these cumulative volumes are equal, its
longitudinal distributions are coincident (B = C), and the volumes at high tide
(Vn + Pn) are indicated by (A), as shown in Fig. 6.6. For further simplification, for
the tidal cycle, a fresh water discharge equal to one (R = 1) implying P0 = 1, was
adopted. This ordinate, plotted in the figure, starts the segmentation process,
enabling the determination of the geometric limits of the estuary segments. As
Vn = Pn and R = 1, it is possible, using Eqs. (6.29) and (6.32), to calculate the
exchange ratio (rn) and the fresh water volume (Vf) retained in the segments, which
are constants equal to ½ and 2, respectively.

The calculate values of the exchange rate, fresh water volume, relative salinity
(S/S0) and the flushing time (tq) in tidal period units are presented in Table 6.2. The
relative salinity in the segment 0 is zero, and converges to one (1) at segment 10;
this convergence is accentuated in the first segments and tends asymptotically to
one (1) from segment 4. The flushing time of this model estuary, determined by the
sum of the corresponding value of each segment (2), is 20 tidal periods.

The semi-empirical segmented tidal prism was applied to the estuarine system of
Winyah Bay (South Caroline, USA) (Fig. 6.7). As this estuary is partially mixed, but
with low vertical stratification, the exchange ratio was calculated with the
assumption that it is well-mixed, and its segmentation was performed with the
longitudinal variation of the cumulative tidal prism at low and high tide, as presented
in Fig. 6.5. The results in Table 6.3 were calculated using the following hydrologic
and hydrographic data: input of the average discharge of fresh water by the river
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during a tidal cycle, R = 8.6 � 106 m3, and non-diluted salinity at the coastal sea,
S0 = 34.0‰.

Table indicates that, using this method, only a few segments were determined
along the estuary, and the flushing time was calculated to be 14.4 semi-diurnal tidal
cycles (7.2 days). Of course, the steady-state longitudinal variation of salinity,
forced by river discharge and tide, must be validated with observational data.

To calculate the results presented in Tables 6.2 and 6.3, the estuary segmentation
process from the longitudinal variation of segment volumes A, B and C (Fig. 6.5),
associated with Eqs. (6.24–6.28), were used, along the following equations:

Fig. 6.6 Schematic diagram
of the longitudinal variation
of the cumulative volumes of
high (A) and low (B) tide, and
the tidal prism (C) of an
estuary model with Vn = Pn.,
and R = 1, according to
Miranda (1984)

Table 6.2 Results of the
estuary model (Vn = Pn and
R = 1): exchange ratio (rn),
fresh water volume (Vf)n,
relative salinity (S/S0) and
flushing time (tq)n/T

n Vn Vn + Pn rn (Vf)n fn S/S0 (tq)n/T

0 1 2 ½ 2 1 0 –

1 2 4 ½ 2 0.5 0.5 2

2 4 8 ½ 2 0.25 0.75 2

3 8 16 ½ 2 0.125 0.875 2

4 16 32 ½ 2 0.062 0.938 2

5 32 64 ½ 2 0.032 0.968 2

6 64 128 ½ 2 0.016 0.984 2

7 128 256 ½ 2 0.008 0.992 2

8 256 512 ½ 2 0.004 0.996 2

9 512 1024 ½ 2 0.002 0.998 2

10 1024 2048 ½ 2 0.000 1.000 2
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Fig. 6.7 Winyah Bay estuarine system located SE of South Carolina (USA). The along channel
numbers (1–5) indicate the segments boundaries
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rn ¼ Pn
Vn þ Pn

; ðVfÞn ¼
R
rn
; fn ¼ ðVfÞn

Vn þ Pn
: ð6:41Þ

and

Sn ¼ S0ð1� fnÞ; and ðtqÞn ¼
TP

rn
: ð6:42Þ

In the Ketchum’s theory, the tidal prism volume of the segment 0 was taken as R
(P0 = TPQf = R). However, as previously mentioned, Dyer and Taylor (1973)
suggested a correction for this volume as half of the value in the original paper,
P0 = (1/2)R. Although this correction is applied at the very beginning of the seg-
mentation procedure, and therefore alters the volume of segments along the MZ, all
semi-empirical equations from Ketchum’s original paper remain the same.

This method has been applied in several investigations, and, in some cases, the
longitudinal mean salinity distribution values were acceptable, however, in others
they were not. These inconsistent results indicated that further investigations should
be sought, and a modified version of the original segmented tidal prism model was
developed by Dyer and Taylor (1973). The model presented by Dyer and Taylor
was based partly on a combination of Ketchum’s method and Maximon and
Morgan’s (1955) concepts, allowing for additional inflows into the estuary from
tributaries and outfalls, while keeping the method simple, with more consistent
physical interpretations of the mixing processes and fresh water continuity.

In order to make this second method more comprehensible, the fundamental
differences between the methods of Ketchum (1951) and the Dyer and Taylor
(1973), will be described, including the terminology and notation of variables.
According to Maximon & Morgan’s (op. cit.) theory, the seaward mean salinity is
calculated at high and low tide, allowing for time dependence of various quantities
involved and the introduction of solutes (or salinity) into the estuary. Secondly, in
Dyer and Taylor’s segmentation equations, a non-dimensional mixing parameter
(a) was included, enabling adjustments and validation based on experimental data.
Concerning terminology and notation, the term fresh water concentration (C) in
Dyer and Taylor’s, was used instead fresh water fraction (f); thus C = f, and,

Table 6.3 Results of the
Ketchum (1951) method
applied to the Winyah Bay
estuary

n Vn + Pn rn (Vf)n fn S (tq)n/T

0 25.3 0.17 25.3 1.0 0.0 – –

1 60.5 0.28 30.7 0.87 4.4 3.6

2 111.7 0.31 27.7 0.54 15.6 3.2

3 182.7 0.28 30.8 0.43 19.4 3.6

4 – 0.25 34.4 0.36 21.8 4.0

5 – – – 0.00 34.0 –

Salinity (‰), flushing time [(tq)n/T]. With: R = 8.6 � 106 m3,
S0 = 34.0‰ and Vn and Pn (in unities of 106 m3)
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according to Dyer and Taylor’s original papeer, the conditions at high and low tides
will be identified by upper letters H and L, respectively, and the following equalities
will exist: CH

n ¼ fHn ¼ fn. In this case, the fresh water concentration at high tide in
the segment, n, is numerically computed following similar approach to the fresh
water fraction of Ketchum’s paper.

The segment 0 contains only fresh water, and its fresh water concentration will
be denoted as C0, which by definition is equal to one (C0 = 1). For the segment
located at the estuary mouth (n = N), the fresh water content is practically equal to
zero, following the equality CH

N ¼ CL
Nþ 1 ¼ 0; then, the N + 1 index for the low tide

concentration indicates the segment adjacent to the estuary mouth, located coastal
region.

The segmentation of the Ketchum’s model prescribe that the low tide volume of
a generic segment (n + 1) is equal to the high tide volume of the adjacent segment
n, located landward (Vn+1 = Vn + Pn). This process implies that during the flood a
volume equal to Vn+1 crosses this segment boundary. Also, as R is the fresh water
volume accumulated during the tidal cycle, the water volume transported through
the segment boundary in the ebb tide is equal to Vn+1+R. Then, taking into account
the fresh water concentration (and hence fresh water fraction) for a complete tidal
cycle, the following identity to satisfies the principle of fresh water conservation
(Dyer and Taylor 1973):

ðVnþ 1 þR)CH
n � Vnþ 1:CL

nþ 1 ¼ RC0; n
 0: ð6:43Þ

This identity is satisfied only when CH
n ¼ CL

nþ 1 ¼ C0 ¼ 1. As previously indi-
cated, the fresh water concentration and fresh water fraction are equal numeric
quantities at high tide, that is:

CH
n ¼ fHn ¼ ðVfÞn

ðVn þ PnÞ : ð6:44Þ

However, according to Eqs. (6.29) and (6.32),

ðVfÞn ¼
R
rn

¼ R
ðVn þ PnÞ

Pn
: ð6:45Þ

Combining Eqs. (6.44) and (6.45), it follows that:

CH
n ¼ fHn ¼ R

Pn
¼ C0

R
Pn

: ð6:46Þ

With the fresh water balance expressed by Eq. (6.43), we have already con-
cluded that CH

n ¼ CL
nþ 1 ¼ C0 ¼ 1; this result is incompatible with Eq. (6.46),

because it is true when R = Pn. Then, it was shown that the Ketchum’s model
doesn’t agree completely with the principle of volume conservation, because the
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fresh water concentration is not taken into account during the transition from low to
high tide.

Dyer and Taylor’s model retains the simplicity of the Ketchum’s method and
assures a more consistent fresh water balance, applying the same simplifying
hypothesis: stationary conditions of the mean salinity field and complete mixing at
low and high tide.

The geometric limits of the estuary segments are also determined using prior
knowledge of the cumulative volumes from the head and estuary mouth at low and
high tides, exemplified for the estuary system of Winyah Bay (Fig. 6.5, curves B
and C, respectively). Using the same notation for the identification of the volume
segments at low tide (Vn) and the tidal prism (Pn), the estuary segmentation is
schematically shown in Fig. 6.8.

Volumes (1 − a)Vn at low tide (n = 2, 3,… N) between the segment (sections A
and B in Fig. 6.8), limited by the dashed line in this figure are accounted in the
mixing at high tide. Then, the total volume of this segment at high tide is equal to
(Vn + Pn) because:

ð1� a)Vn þ aVn þ Pn ¼ Vn þ Pn; ð6:47Þ

with n = 1, 2, 3 … N. The parameter associated with the mixing process (a) may
vary from zero to one. It could, in principle, be determined from observational tidal
excursion data, and potentially to vary from one segment to another.

Similar to Ketchum’s method, the upstream end of the model is defined by the
section across which there is no flow during the flood tide. If R is the river flow per
tidal cycle, the tidal prism volume above the segment 0 will be R/2 (not R as stated
by Ketchum). This definition is unaffected if the tidal limit is determined by a weir.
The segmentation equations of this model are (Dyer and Taylor 1973):

Fig. 6.8 Dyer and Taylor’s estuary segmentation. Pn and Vn are the volumes of the tidal prism at
low and high tide in the generic element n (a is the mixing parameter), (1 − a)Vn is the low tide
volume to be used for mixing at high tide. A and B are control boundaries [after Dyer and Taylor
(1973)]
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V1 ¼ R; ð6:48Þ

aV2 ¼ P1; ð6:49Þ

aV3 ¼ aV2 þ P2 ¼ P1 þ P2; ð6:50Þ

aVN ¼ aVN�1 þ PN�1 ¼ RiPi i ¼ 1; 2; 3; . . .N� 1ð Þ; ð6:51Þ

or generally, aVn = aVn−1 + Pn−1, for n = 3, 4, …,N. If the mixing parameter is
equal to one (a = 1), these equations are equal to the Ketchum’s segmentation
(Eqs. 6.26–6.28). In Dyer and Taylor’s analysis, this parameter was assumed to be
constant (a = const.), giving reasonable agreement between computed and observed
high and low tide mean salinity distributions.

Equations (6.48–6.51) indicate that the segments are defined as follows: on the
flood tide, the water volume occupying aVn+1 of the segment n + 1 is moved
up-estuary to occupy the volume aVn + Pn at high tide, or just the volume P1 in the
segment 1. During this process, it is assumed that the volume at high tide is mixed
with the portion of water remaining in the segment, n, from the low, i.e., with
(1 − a)Vn, or with the volume V1, when n = 1, because at low tide this volume is
entirely supplied by the river discharge. Then, the high tide volume at any segment
is equal to Vn + Pn, for n = 1, 2, … N (Fig. 6.8).

This model may be applied for different river discharge volumes, and also taking
into account additional fresh water contributions in the MZ boundaries. The volume
of segments increases seaward, and if a volume aVn+1 crosses the segment
boundary (B in Fig. 6.8) during the flood, due to volume continuity a water volume
equal to aVn+1 + R will cross this boundary during the ebb tide.

After defining the estuary segmentation, the following step is to find the equa-
tions to calculate the concentrations CH

n and CL
n for each segment. This may be

established by applying the volume continuity, to assure that during each tidal cycle
the fresh water volume transport out of the estuary is equal to R.

6.3.1 High Tide Fresh Water Balance

Consider a generic control segment nth, which occupies a volume aVn+1

(aVn+1=aVn + Pn, according to the segmentation Eqs. 6.48–6.51) at high tide, and is
completely mixed with a water volume (1 − a)Vn disposable at low tide (Fig. 6.8).
Then, according to the volume conservation principle, during the flood tide the
following fresh water balance will occur through boundary B of this segment:

ðVn þ PnÞCH
n � ð1� a)VnC

L
n ¼ aVnþ 1CL

nþ 1; n
 2; ð6:52Þ
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or

ðVn þ PnÞCH
n ¼ aVnþ 1CL

nþ 1 þð1� a)VnC
L
n ; n
 2: ð6:53Þ

For the segment n = 1, the fresh water balance, equivalent to the Eq. (6.52) is
given by the following expression:

ðV1 þ P1ÞCH
1 � V1CL

1 ¼ aV2CL
2 : ð6:54Þ

6.3.2 Low Tide Fresh Water Balance

Again considering the nth control segment, in the ebb tide the flow travels from the
adjacent segment (n − 1) to the segment, n, through the control boundary A
(Fig. 6.8). Then, a water volume (aVn + R), with a concentration CH

n�1, will enter
the segment, n, and mix with the water volume (1 − a)Vn − R that remained in this
segment at low tide, with a concentration CH

n , in the segment n. With this procedure,
we are making the assumption that an additional volume, equal to R, is coming
from the water volume (1 − a)Vn−1. Then, to establish the volume conservation it is
necessary that:

VnCL
n ¼ ðaVn þR)CH

n�1 þ ½ð1� a)Vn � R]CH
n ; n
 2: ð6:55Þ

For segment 1 holds the following conservation equation:

V1CL
1 ¼ RC0: ð6:56Þ

As according to the segmentation process, V1 = R (Eq. 6.48), if follows from
this equation that CL

1 ¼ C0 ¼ 1.

6.3.3 Fresh Water Balance During the Tidal Cycle

An additional relationship may be obtained with the assumption, according to the
volume conservation principle, that after a complete tidal cycle the net water vol-
ume flow across any cross section boundary is equal to R = RC0, then:

ðRþ aVnþ 1ÞCH
n � aVnþ 1CL

nþ 1 ¼ RC0; n
 1: ð6:57Þ

Equations (6.53), (6.55) and (6.57) are not independent, and the unique rela-
tionship with the two unknowns CL

n and CH
n may be obtained by combining

Eqs. (6.53) and (6.57). In effect, Eq. (6.57) may have its parcels rearranged as:
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R(C0 � CH
n Þ ¼ aVnþ 1CH

n � aVnþ 1CL
nþ 1; n
 1: ð6:58Þ

Now, the terms of Eq. (6.53) will be rearranged in order to isolate the last parcel
of Eq. (6.58), and the result is:

aVnþ 1CL
nþ 1 ¼ ðVn þ PnÞCH

n � ð1� a)VnC
L
n ; ð6:59Þ

and Eq. (6.58) is rewritten as:

ð1� a)VnC
L
n þ ½aVnþ 1 � ðVn þ PnÞ�CH

n ¼ R(C0 � CH
n Þ: ð6:60Þ

The expression in brackets of the first member of this equation may be rewritten
taking into account the following identity for the high tide volume of the nth
segment (Eq. 6.47):

ðVn þ PnÞ ¼ ð1� a)Vn þ aVn þ Pn; ð6:61Þ

hence, from the segmentation equations system,

ðVn þ PnÞ ¼ ð1� a)Vn þ aVnþ 1: ð6:62Þ

Then,

aVnþ 1 � ðVn þ PnÞ ¼ �ð1� a)Vn; ð6:63Þ

and substituting Eq. (6.63) in Eq. (6.60), it follows that,

ð1� a)VnðCL
n � CH

n Þ ¼ R(C0 � CH
n Þ; ð6:64Þ

or, rearranging its terms,

CL
n ¼ CH

n þ R(C0 � CH
n Þ

ð1� a)Vn
; with n
 2: ð6:65Þ

As the quantities R, a and the volumes Vn are known, Eq. (6.65) has two
unknowns CL

n and CH
n . However, the fresh water concentration, CH

n , may be cal-
culated by Eq. (6.58),

CH
n ¼ RC0 þ aVnþ 1CL

nþ 1

aVnþ 1 þR
: ð6:66Þ

Now, calculating the above equation for n = N and assuming that pure water
enters the estuary mouth on the flood tide (CL

Nþ 1 ¼ 0), it is possible to calculate the
fresh water concentration at high water in the last segment (CH

N),
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CH
N ¼ RC0

ðaVNþ 1 þR)
; ð6:67Þ

and from the segmentation equations aVN+1 = VN + PN, the final value of CH
N is:

CH
N ¼ R

ðaVN þ PN þR)
: ð6:68Þ

As all variables are known to calculate CH
N with this equation, the value of CL

N
may be determined by Eq. (6.65) for n = N. Repeating this procedure, sequentially
for n = N − 1, n = N − 2, …, n = 2, n = 1, Eqs. (6.66) and (6.65) correspond to a
system with two equations and two unknowns (CH

N and CL
N). This equation system

may be solved to obtain high and low volumes of fresh water concentration (or
salinity) starting from the segment n = N, located at the estuary mouth. With these
results, the equations to calculate the salinity values are:

SHn ¼ S0ð1� CH
n Þ; ð6:69Þ

and

SLn ¼ S0ð1� CL
n Þ: ð6:70Þ

The volumes of fresh water retained in the estuary at high and low tide during the
flood (VH

fn) and ebb (VL
fn), respectively, may be calculated with known corre-

sponding geometric volumes,

VH
fn ¼ CH

n ðVn þ PnÞ; ð6:71Þ

and

VL
fn ¼ CL

n ðVnÞ: ð6:72Þ

The flushing time (tq) at high and low tide are functions of the fresh water
volumes and may be calculated by:

tHqn ¼
VH

fn

Qf
; or in tidal cycles tHqn ¼

1
TP

VH
fn

Qf
; ð6:73Þ

and

tLqn ¼
VL

fn

Qf
; or in tidal cycles tLqn ¼

1
TP

VL
fn

Qf
: ð6:74Þ
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In practical applications of the model, negative values of the fresh water volume
concentration in the low tide segment ðCL

n Þ located near the seaward end of the
estuary may be found when (1 − a)Vn < R. If this occurs, the appropriated inter-
pretation is that any salt water passing upstream into the segment (n), on the flood
tide is entirely removed on the ebb tide so that CL

n ¼ C0, and in consequence
CH
n�1 ¼ C0, ðCL

n�1Þ ¼ C0 ¼ 1, which should only occur near the head of the estuary
(Dyer and Taylor 1973).

In order to exemplify the application of this method, it was applied to the same
ideal estuary previously used for Ketchum’s tidal prism segment model with
Vn = Pn, the mixing parameter (a) equal to a = 0.8 and R = 1. The calculated
volumes Vn, Pn, aVn and (1 − a)Vn, using Eqs. (6.48–6.51) are presented in
Table 6.4.

With the results of Table 6.4, Eqs. (6.65) and (6.66) may be calculated suc-
cessively for n = 10, 9, …, 2, 1, and fresh water concentrations at low ðCL

n Þ and
high tide ðCH

n Þ for all segments will be obtained. With Eqs. (6.69) and (6.70), the
relative salinity values for high, ðSn=S0ÞH, and low tide, ðSn=S0ÞL, can be easily
calculated and are presented in Table 6.5. As fresh water volumes are calculated by
the product of the fresh water concentration to the segments at low and high tides,
respectively, the flushing times may also be calculated by Eqs. (6.73) and (6.74).
The results of this table also indicate the convergence of the low ðCL

n Þ and high
ðCH

n Þ fresh water concentrations to the value 1 (one), indicating the absence of salt
water in segments 1 and 2. Therefore, these segments correspond to segment 0 in
the Ketchum’s model. Also, as may be observed, ðCL

n Þ[ ðCH
n Þ and the relative

salinity values are higher at high tide than at low tide. In comparing the flushing
times there is a great difference between results from the two methods. In tidal
periods, these values are 20 and 52 for the Ketchum’s and Dyer and Taylor’s
model, respectively (Tables 6.2 and 6.5).

Results of the longitudinal mean relative salinity variation for the model estuary
(Tables 6.2 and 6.5) calculated with the Ketchum’s (K) and Dyer and Taylor’s

Table 6.4 Partial volumes of
a simple estuary model
(Vn = Pn, R = 1 and a = 0.8),
according to Dyer and Taylor
(1973)

n Vn Pn aVn (1 − a)Vn

1 1.0 1.0 0.8 0.2

2 1.25 1.25 1.0 0.25a

3 2.81 2.81 2.25 0.56a

4 6.33 6.33 5.06 1.26

5 14.24 14.24 11.39 2.85

6 32.04 32.04 25.63 6.41

7 72.08 72.08 56.67 14.42

8 162.20 162.20 129.70 32.44

9 364.90 364.90 292.00 73.00

10 821.12 821.12 656.90 164.22
aNote that (1 − a)Va < R and so CL

3 ¼ 1:0
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(D&T) methods are comparatively presented in Fig. 6.9a, b. Salinity variations
indicates some differences, as should be expected. However, the longitudinal
salinity distributions are very close (Fig. 6.9b).

Dyer and Taylor’s method was also applied to the Raritan river estuary and bay,
using the volumetric data given by Ketchum (1951), with different values of the
mixing parameter (a). A mixing parameter a = 0.5 gave reasonable comparison
with the salinity distribution in high tide observed by Ketchum in the Raritan river.
For further details on these comparisons, as well as for the Thames river estuary,
may be found in the Dyer and Taylor’s original paper.

Dyer and Taylor’s method has also been applied to Winyah Bay (Fig. 6.7), using
the previous volumetric data (Fig. 6.5). The results are in Table 6.6, calculated with
hydrologic measurements and salinity at the coastal sea conditions, as previously
indicated (R = 8.6 � 106 m3, and S0 = 34.0‰), and used in the application of the
first method, and the mixing parameter used a = 0.8. The comparative analysis of
the mean theoretical salinity distribution along the bay, obtained with these

Table 6.5 Results of a
simple estuary model
(Vn = Pn, R = 1 and a = 0.8)
of fresh water concentrations
ðCL

n Þ, ðCH
n Þ, relative salinities

ðSn=S0ÞL, ðSn=S0ÞH and
flushing times ðtqÞHn =T,
according to Dyer and Taylor
(1973)

n ðCL
n Þ ðCH

n Þ ðSn=S0ÞL ðSn=S0ÞH ðtqÞHn =T
1 – – – – –

2 – – – – –

3 1.00 0.92 0.00 0.08 5.17

4 0.91 0.58 0.09 0.42 7.34

5 0.54 0.30 0.46 0.70 8.50

6 0.27 0.13 0.73 0.87 8.33

7 0,12 0.06 0.88 0.94 8.65

8 0.05 0.02 0.95 0.98 6.49

9 0.02 0.01 0.98 0.99 7.43

10 0.01 0.00 0.99 1.00 0.00

Fig. 6.9 Mean longitudinal salinity variation in the estuary model with Vn = Pn. a Values
calculated with Ketchum’s (K) and Dyer and Taylor’s (D&T) methods, with the mixing parameter
a = 0.8. b The best agreement was obtained displacing the second method to the left
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methods, is shown in Fig. 6.10. Similar to the model estuary (Fig. 6.9), differences
were observed in the salinity values, which were also minimized by displacing the
first segment of the Dyer and Taylor’s to the left. The results of this figure indicate
variations which have some dependence on the used method, and, due to the higher
number of segments in it, the salinity varies smoothly from the head down to the
estuary mouth.

The results in Fig. 6.10 indicate the dependence of the longitudinal salinity
variation on the chosen method. The confidence in the Ketchum’s and Dyer and
Taylor’s methods may only be validated by comparing both results with experi-
mental data. However, Dyer and Taylor’s method satisfies the volume conservation
of the fresh water input, and should presents longitudinal salinity distributions and
flushing time more consistently. It may also be observe that the longitudinal salinity
variation is nearly linear in the central MZ (Fig. 6.10), and this result has also been
confirmed with observational data. Another observation of the results of these
methods is that the flushing time from Dyer and Taylor’s (28.9) is twice the
duration calculated by Ketchum’s method (14.4), in tidal periods.

Dyer and Taylor’s model was adapted by Brown and Arellano (1980) for a
branching estuary in order to study the mixing of salt within the Great Bay estuary
(New Hampshire, USA). This estuarine system has two main branches with their
own river discharge, and it was necessary to take into account this particular
morphology. This estuary is classified as vertically well-mixed (type 1) most of the
year, with a few exceptions of highest river discharge periods, when this estuary has
been classified as partially mixed with low stratification (type 2a). In the application
of this model, the mixing parameter (a) was allowed to vary and was chosen on the
basis of a calibration procedure using observational data. The predicted mean
salinity distribution over a range of river discharges volumes were in agreement
with observational data when the flux ratio was higher than 1 (one) (tidal prism
much less than the river discharge per tidal cycle). As another result of the Brown &

Table 6.6 Results of the Dyer and Taylor (1973) method applied to the Winyah Bay estuarine
system

n Vn Pn aVn CL
n CH

n SLn SHn tHqn=T

1 8.6 1.5 6.9 – – – – –

2 21.2 4.2 17.0 – – – – –

3 26.5 6.5 21.2 1.0 1.0 0.00 0.00 3.8

4 34.6 9.7 27.7 1.0 0.99 0.00 0.34 4.6

5 46.7 14.3 37.4 0.99 0.91 0.34 3.10 6.4

6 64.6 21.4 51.7 0.90 0.71 0.34 9.86 7.1

7 91.4 34.8 73.1 0.68 0.40 10.88 20.40 5.9

8 134.8 50.0 107.8 0.35 0.05 22.10 32.30 1.1

9 197.4 – 157.9 0.00 0.00 34.00 34.00 –

Salinities SLn and SHn in ‰. With R = 8.6 � 106 m3, S0 = 34.0‰ and mixing parameter a = 0.8.
Volumes in units of 106 m3
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Arellano (op. cit.) investigation was that related to the flushing times calculations;
for water parcels entering at the estuary head during periods of low and high river
flow the flushing times were 54.5 and 45.9 tidal cycles, respectively.

The Dyer and Taylor (1973) one-dimensional tidal prism model was also been
used by Bradley et al. (1990) to simulate the changes in the longitudinal mean
salinity distribution, which occurred in the Cooper River (South Carolina, USA),
because a diversion in 1985 caused a reduction in the mean river discharge from
442 to 130 m3 s−1. The model simulation indicated that a salinity increased of 10–
14‰, has occurred in the region of the river where the marsh plant community
shifts from a virtual monoculture of Spartina alterniflora to a more diverse brackish
community. The flow reduction, due to the river diversion, and the associated
salinity increase are expected to result in the dominance of the halophyte, S.
alterniflora, and a progressive exclusion of the less halotolerant species that cur-
rently inhabit the region.

A segmented tidal prism model has also been developed by Wood (1979) and
presented comparatively with the previously described methods by Miranda (1984),
and we encourage the reader to follow the analysis of the Wood’s model.

The one-dimensional segmented tidal prism models gives better results to esti-
mate the fresh water, salinity, flushing times in well-mixed estuaries, and could be
also applied to other conservative properties, as long as their input rates are known.
These models are convenient because it is only necessary to know the basic estu-
arine data, such as tidal height, river discharge, geometric characteristics of the
estuary and the salinity in the coastal sea. Of course, to achieve validation,
observational data for the steady-state salinity distribution must also be known.

Fig. 6.10 Theoretical mean
salinity variation in the MZ in
the Winyah Bay estuary.
Ketchum’s (K) and Dyer and
Taylor’s (D&T) methods
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6.4 Concentration Estimates of a Conservative Pollutant

The concepts and semi-empirical models related to the steady-state mean salinity
and fresh water estimates in an estuary, may be applied to other conservative
chemical constituents or pollutants introduced into estuaries, provided their flux or
transport inputs are known. Consider a one-dimensional estuary partially mixed
(type 2 or B), forced by fresh water discharge, with tidal mixing due to horizontal
flow associated with the flood and ebb tidal currents. Its mixing zone (MZ) may
also be schematically segmented according to Fig. 6.11, and R = TPQf is the fresh
water volume disposable to mixing during a complete tidal cycle with period (TP).
In this type of estuary, salinity increases with depth, as well as progressively
increasing seaward due to the mixing process related to advection and turbulent
diffusion. To maintain the volume (mass) conservation, this seaward transport must
be compensated by an equal up-estuary fresh water volume (Q) in the sub-surface
layer; for steady-state volume conservation Q = R.

Due to the tidal forcing attenuation towards the estuary head, in the uppermost
segment the advective influence of the river discharge predominates, and the
entrainment is the main process transporting water into the surface layer. The
landward mass transport of salt in the bottom layer is equivalent to 6Q(1), and 1Q(2)

is the compensating upward transport due to the entrainment between the bottom
and the surface layers (Fig. 6.11). Due to dilution of the upward subsurface water
by the fresh water volume, R, the salinity of this layer increase from 0 at the estuary
head to 3‰ in the upper layer of the adjacent segment; in fact, due to this salt
balance transport it follows that: 6Q = S(2R) and S = 3‰. We must also observe
that in this segment the longitudinal volume and salt balance are equal to
2R − Q = R and 3(2R) − 6Q = 0, respectively.

Fig. 6.11 Schematic changes in the mean salinity and in the volume of fresh water transported by
advection in order to maintain the steady-state balance in an estuary during a complete tidal cycle.
Salinity in ‰. River (nR, n = 1, 2, 4, … 10) and fresh water (mQ, m = 1, 3, 5, … 9) indicate its
contents in seawater volumes, respectively. Landward and seaward, up and downward arrows
indicate interchanges of water volumes (adapted from Ketchum 1953)
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(1) In the salt balance the mass transport is calculated by qSQ. Adopting
q = 1.0 � 103 kg m−3, S in ‰ (g kg−1) and Q in m3, and the mass of salt is
calculated by 1.0 � 103 � S � 10−3� Q = S � Q.

(2) The compensating upward transport (upwelling) of the seaward surface flow
has been observed for the first time by F. Ekman, in 1876, during his studies
on the circulation and salt observations at the mouth of the Gotaelf river
flowing into the Elfsborgsfjord (Sweden).

The tidal mixing increase in the adjacent seaward segment due to turbulent
diffusion surpasses the entrainment, and the net volume transport between the
bottom and surface layers becomes 2Q + (3Q − R); consequently, the seaward
volume transport on the surface layer increase to 4R (Fig. 6.11). By the mass of salt
conservation principle, the seaward salinity in the surface layer increases to 9‰ due
to the salt balance: 12 � 3Q = S � 4R and S = 9‰ on the upper layer. By anal-
ogy, as in the previous segment, the longitudinal volume and salt balance are equal
to: 4R − 3Q = R and 9(4R) − 12(3Q) = 0, respectively, and the seaward transport
of water increases in proportion to its salt content.

This process is repeated in all segments located seaward and, according to the
continuity principle, the net volume and salt mass across any cross section are equal
to R and zero, respectively. Also, as illustrated in Fig. 6.11, there is an increase in
seaward transport of mixed water and the compensating landward transport of salt.
A direct consequence of this simple relationship is that the total circulation in the
estuary increases enormously in volume as the water moves from the river towards
the sea. This volume increase associated with the mixing process is called the
equivalent down-estuary transport, which is a fictitious quantity and would only be
measured under unusual conditions (Officer 1978).

The process just described is related to the volume and salt mass conservation
principle under steady-state conditions or near steady-state conditions, within the
time frame of the tidal period. In the cross section located at the estuary head, where
S = 0 and f = 1, the equivalent down-estuary transport (Qd) is equal to the river
discharge, and Qd = Qf, according to Eq. (6.75), and shown in Fig. 6.12. In any
other section located seaward, the net volume transport is equal to Qf. However, if
f = 0.5 in this section, the equivalent transport is equal to 2Qf, to compensate for
the water parcel retained in the system due to the mixing process. Thus, the ratio
Qd/R = 1/f, is a measure of the total process of removing a pollutant from an
estuary compared with the advection effect due to the river discharge R (Officer
1978).

Qd ¼
R

f
¼ S0

S0 � S
Qf ¼

Qf

f
: ð6:75Þ

As Eq. (6.75) is equal to the Eq. (6.16), which defines the flushing rate F, it has
been proved that this flushing rate and the equivalent down-estuary transport are
the same physical quantity. Hence, the mixing zone (MZ) volume is exchanged in
the time interval equal to the flushing time (tq). Another interpretation is that the
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ratio, Qd/R, is a measure of the total process for removing a conservative pollutant
from an estuary compared to the simple advection effect of the river discharge, Qf.

Let’s consider now a mass transport, W, [W] = [MT−1], of a conservative
effluent that is discharged into a river cross-section (Fig. 6.13). By hypothesis, this
discharge is made through a multiport diffuser system to increase the effectiveness
of the dilution of the less dense ascending plume located at the bottom (not indi-
cated in the figure), extended across the estuarine channel. Then, the initial cross
sectional average concentration per unit volume of sea water (c	o) is calculated by:

c	0 ¼
W
Qf

; ð6:76Þ

where Qf is the steady-state river discharge, and ½c	o� ¼ ½ML�3�, and kg m−3 in units
of the SI.

For an estuary, the river advection must be replaced by the equivalent down-
stream transport (Qd) at the outfall, and the effluent concentration (c0) is determined
by,

c0 ¼ W
Qd

¼ W
F
; ð6:77Þ

or, taking into account Eq. (6.75):

Fig. 6.12 Diagram showing the relationship of the volume transport, Qf, and its equivalent (Qd),
and the fresh water fraction (f) (according to Officer 1978)

Fig. 6.13 Schematic diagram
of the input of a discharge, W,
of a conservative effluent into
a cross-section of a non-tidal
river, or estuary (according to
Officer 1978)
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c0 ¼ W
Qf

fW; ð6:78Þ

where c0 has dimension of [ML−3], and fw is the average fresh water fraction at the
outfall. This result of Ketchum (1955), obtained with the implementation of the
segmented tidal prism model, indicates that under steady-state conditions the initial
concentration is directly proportional to the fresh water fraction, and inversely
proportional to the river discharge which is assumed to be constant.

From Eqs. (6.76) and (6.78) it follows that the relationship between river ðc	oÞ
and estuary (c0) concentrations is,

c0 ¼ ðc	oÞfW: ð6:79Þ

As 0� fW � 1, this implies that c0\c	o. Also, it should be noted that fW ! 0,
and also c0 ! 0 at the estuary mouth.

Downstream of the outfall, when steady-state conditions are achieved, the pol-
lutant must pass a cross section at the same rate it is discharged from the source, and
its concentration is (Officer 1978):

ðcxÞd ¼
W
Qf

fx; ð6:80Þ

where ðcxÞd and fx are the average concentration of pollutant and the fresh water
fraction at the cross-section located at the longitudinal position x, respectively.

Combining Eqs. (6.80) and (6.78) gives the following expression to calculate the
pollutant concentration at the position (x) downstream of the pollutant introduction:

ðcxÞd ¼ c0
fx
fW

: ð6:81Þ

This result indicates that the average concentration in the transversal section is
directly proportional to the initial concentration (c0) and the fresh water fraction at
position x, and inversely proportional to the fresh water concentration at the
position of the pollutant discharge. Using the expressions to calculate the fresh
water fraction as a function of salinity (Eq. 6.10), Eq. (6.81) may be written as:

ðcxÞd ¼ c0
ðS0 � SxÞ
ðS0 � SWÞ : ð6:82Þ

In this equation, S0 and Sx are the salinities at the adjacent coastal sea and in the
cross section downward of position x, respectively.

The pollutant will also be carried upstream from the outfall by the diffusion and
advection of tidal currents during tidal flood and ebb, and above the outfall there
will be no net exchange across any boundary when the steady-state condition is
reached. The pollutant quantity carried up-estuary will be exactly balanced by the
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quantity carried down-estuary. This is the same criterion that applies to the salt
distribution up-estuary from the outfall. Thus, the up-estuary distribution of a
conservative pollutant will be directly proportional to the salinity distribution, as
given by:

ðcxÞu ¼ c0
Sx
S0

: ð6:83Þ

It is clear from these relationships that the knowledge of the distribution of
salinity is essential in order to predict the expected steady-state distribution of
conservative pollutants. These derivations were originally given by Ketchum
(1955) and are a simple and direct method for estimating the distribution of a
conservative pollutant or other index quantity in an estuary, with the knowledge of
the salinity distribution alone. The pollutant distribution is calculated directly in
terms of the salinity distribution without recourse. However, as stated in Officer
(1978), it is important to emphasize that only the longitudinal effects have been
considered and the definition contains the implicit assumption that the ocean at the
mouth of the estuary is a perfect sink.

An observed fresh water concentration and the expected distribution of a con-
servative pollutant has been derived from the salinity distribution and fresh water
fraction in the Raritan river and bay (Fig. 6.14). Four locations (A, B, C and D)
have been arbitrarily selected for its position at an outfall. The horizontal distri-
bution of pollutant concentration in percentage is obtained, assuming that the

Fig. 6.14 The observed average distribution of fresh water fraction (in %) and the calculated
distribution of a conservative pollutant (continuous and dashed lines) in Raritan river and bay for
four possible outfall locations (A, B, C and D) (according to Ketchum 1955)
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pollutant is uniformly mixed in the estuarine water through a multiport diffuser
system.

From Fig. (6.14) and Eq. (6.81), at the pollutant releasing location fx = fw, the
pollutant concentration decreases towards the estuary mouth from the maximum
concentration (point A), as shown by the solid line of the fresh water concentration.
The concentration distribution is directly dependent on its initial value. Therefore,
different release location of pollutant may be less effective to the environment (e.g.
points B,C and D). Up-estuary, from each outfall location, the pollutant distribution
will follow the salinity distribution curve, or its inverse (the fresh water fraction
curve), indicated by the dashed lines in Fig. 6.14). Two important consequences of
moving the outfall downstream or upstream, respectively are (Ketchum 1955;
Officer 1978):

1. As the outfall is progressively moved further down the estuary, the pollutant
concentration up-estuary from the outfall is decreased while the concentration
down-estuary remains the same.

2. The concentration of pollutants upstream from the outfall is decreased.

This method estimates the longitudinal variation of the concentration of a con-
servative pollutant discharged into an estuarine channel, under steady state condi-
tions, and uses the salinity and/or the fresh water concentration as indicators. Thus,
the method sensitivity is dependent on the river discharge and the salinity distri-
bution, with the assumption that the coastal sea is a perfect sink, which is a very
simplified boundary condition.

Pollutants that decay or decrease with time will be less concentrated throughout
the estuary than the predicted concentrations of the conservative pollutants. This
degradation of pollutants over time, which is superimposed on the circulation and
diffusion has also been presented in the Bowden (1955) classical article.

To exemplify some concepts of this topic a practical example will be given
based on Fischer et al. (1979). “During one complete tidal cycle, the multiport
outfall diffuser of an industry discharges 200 m3 s−1 of effluent, containing fifteen
parts per thousand of a toxic material, into an estuary that is less dense than
seawater. The mean river fresh water discharge is 500 m3 s−1, the salinity at the
coastal sea and the mean salinity value, at the outfall point are 34.0 and 20.0‰,
respectively”. Estimate the initial concentration of this substance at the transverse
section, as well as the flushing time and rate, with the assumption that the estuarine
MZ has a volume of 108 m3.

With the Eq. (6.10) the fresh water concentration at the outfall (fW) is deter-
mined by:

fW ¼ 1� 20
34

¼ 0:41: ð6:84Þ

Knowing the exiting transport, and the pollutant concentration within this
transport, then W = 0.015 � 200.0 = 3.0 m3 s−1, and the initial pollutant con-
centration (c0) is calculated by:
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c0 ¼ W
Qf

fW ¼ 2:46 g=kg ¼ 2:46� 10�3 kg=kg; ð6:85Þ

The concentration c0 = 2.46 � 10−3 is an average for the transverse section and
representative if the outfall diffuser was adequately projected. The flushing time (tq)
is calculated by,

tq ¼ Vf

Qf
¼ ðS0 � SÞ

S0

V
Qf

¼ 23 h ð�two semi-diurnal tidal cyclesÞ:

As an exercise, the reader may solve the following expression for tq,

tq ¼ Vf

Qf
¼ Vf

W
c0
fW

¼ Vc0
W

: ð6:86Þ

The flushing rate (F) may also be calculate, combining its definition (Eq. 6.16)
with Eqs. (6.1) and (6.85):

F ¼ V
tq
¼ VQf

Vf
; or F ¼ VQf

Vf
¼ VfWW

Vfc0
: ð6:87Þ

Introducing the known numerical values F � 1214 m3 s−1.

6.5 Water Mass Exchange at the Estuary Mouth

For application in the analysis of water exchange through the estuary mouth, this
method uses steady-state mean salinities in transversal sections to calculate a
non-dimensional parameter named tidal exchange ratio, defined by Fischer et al.
(1979). This method was implemented with the introduction of a second parameter
(volumetric exchange ratio), enabling its use for others coastal transition environ-
ments, such as bays (MacDonald 2006).

A portion of the water volume that enters an estuary forced by tidal flood
currents is composed of water that left the estuary the previous ebb but retained in
the estuarine plume. The remainder is water that we may think of as “new” ocean
water volume (VO); this water volume is what contributes to the dilution of pol-
lutants inside the estuary, and knowledge of this new ocean water volume is
important in the one-dimensional analysis of dilution of the concentration of sub-
stances or pollutants introduced into estuaries (Fischer et al. op. cit). The tidal
exchanged ratio (TER) has been defined as the ratio of new ocean water (VO) to the
total volume of water that enters the estuary during a flood tide (Vf), which has
already been defined as the tidal prism (Vf = TPR, Chap. 2),
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TER ¼ VO

TPR
: ð6:88Þ

This ratio varies between the limits TER = 0 (when VO = 0, in the absence of
new water) and TER = 1 when VO = TPR (i.e., the new water volume is equal to the
total volume of water entering the estuary during the flood); the condition TER = 1
or VO = TPR is the most favorable to dilution of pathogenic substances discharged
in natural coastal environments.

The new water volume (VO), is usually is not possible to be predicted theoret-
ically; it is dependent on coastline circulation, which transports the estuarine plume,
controls the ebb flow along the coast and delivers the supply of new ocean water for
the flood. Without a favorable water mass renewal, the water mass exchange with
the continental shelf offshore of the estuary mouth will be ineffective (VO � VPR),
and eventually estuarine polluted water may return to the estuary. As previously
discussed, using ADCP equipment, the tidal prism TPR may be determined with the
u-velocity component normal to the cross section of the current velocity at the
estuary mouth, u = u(y, z, t). With vertical velocity profiles measured at time
intervals during the food (0 � t � T/2), this volume may be calculate by
numerical integration (Chap. 5, Eq. 5.52).

The tidal exchange ratio, defined in Eq. (6.88), may be determined with known
mean volumes, salinities and densities at the transverse cross section at the estuary
mouth, and tidal exchange ratio is solved taking into account the volume and mass
conservation during the ebb and flood through the estuary mouth. To achieve this,
let us follow the Fischer et al. (1979) empirical determination, using the same
symbols and definitions:

TPR Total volume of seawater entering the estuary on the flood tide (tidal
prism);

VO Volume of the new ocean entering the estuary during the flood tide;
Ve Volume of the estuarine water leaving the system on the ebb tide;
VQ = TPQf Volume of river discharge (fresh water) entering the estuary during the

tidal cycle;
Vfe Part of the volume (Ve) which flowed out of the estuary on the

previous ebb;
Sf(qf) average salinity (density) of water entering the estuary on the flood

tide;
Se(qe) Average salinity (density) of water leaving the estuary on the ebb tide;
S0(q0) Salinity (density) of ocean water

In steady-state conditions, the salinity and the water volume in the estuary
remain constant. Then, the salt mass balance of water entering and leaving the
estuary will be:
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qeSeVe ¼ qfSfTPR: ð6:89Þ

The dimension of each side of the equation is units of mass [M], because the
product (qS) numerically represents the salt concentration per volume unit. The salt
balance of the water mass that enters the estuary during the flood, which has an
increased salinity from the new ocean water (V0), and includes the volume of water
that is re-entering the estuary having previously flowed out of the estuary on the ebb
tide, is given by:

qeSeVe ¼ qfSfTPR þ q0S0V0: ð6:90Þ

The second member of this equation is the mass of salt that flows into the estuary
mixed with the new water mass but without the estuarine plume influence. In
Eqs. (6.89) and (6.90), the quantities qe, qv and q0 are densities of the water masses
which were introduced to maintain the equation with its dimension correctly [M].
However, the following simplification will be made qe � qf � q0.

The water volume entering the estuary on the flood (TPR), added to the volume
of fresh water discharged into the estuary during the tidal cycle (VQ) must be equal
to the volume of water leaving the estuary during the ebb tide, then

TPR þVQ ¼ Ve: ð6:91Þ

As the flood water (VPR) is composed with some water volume that flowed out
of the estuary on the previous ebb (Vfe) plus the new water volume (VO) entering
into the estuary, another relationship may be written for Vf,

VPR ¼ Vfe þVO: ð6:92Þ

Combining Eqs. (6.89), (6.90) and (6.92), the new water volume is given by:

VO ¼ Se
ðVe � VfÞ
ðS0 � SeÞ ; ð6:93Þ

and inserting this result in the definition of tidal exchange ratio (6.88),

TER ¼ VO

TPR
¼ Se

ðS0 � SeÞ ð
Ve

TPR
� 1Þ; ð6:94Þ

and using the Eq. (6.89) transformed as ðVe

TPR
¼ Sf

Se
Þ, the result for the tidal exchange

ratio is given by:

TER ¼ ðSf � SeÞ
ðS0 � SeÞ : ð6:95Þ
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This result indicates that the TER is directly dependent on the differences in the
mean salinity values at the estuary mouth in the flood (Sf) and ebb (Se) tides, and is
inversely proportional to the difference between the non-diluted salinity at the
adjacent coastal ocean (S0) and the average salinity leaving the estuary mouth
during the ebb (Se). Sf = S0 or Sf = Se implies that TER = 1 and TER = 0, which
corresponds to the best and the worst tidal exchange, respectively.

Solving Eq. (6.89) for the flood salinity, Sf, and combining with the TER of
Eq. (6.95) and the equality VQ = Ve − TPR (Eq. 6.91), it follows that a useful
expression of the tidal exchange ratio when in function of VQ = TQf = R (Fischer
et al. 1979) is

TER ¼ Se
ðS0 � SeÞ

VQ

Vf
; ð6:96Þ

where VQ is the volume of the river discharge entering the estuary during the tidal
cycle.

This result indicates that besides the river discharge (Qf), to determine TER and
simulate nearly steady-state conditions during the flood and ebb tides, accurate
observational data are required (hydrographic and current velocity), measured at the
cross section at the estuary mouth during one of or more tidal cycles. Exemplifying,
from salinity values measured at a cross section with an area, A, the averaged value
(Se) leaving the estuary during the ebb tide interval (0 � t � T/2) is calculated as
follows: firstly, its cross-section mean value Se = Se(t) is calculated by:

Seðt) ¼ 1
A(t)

ZZ

A

Seðy,z,t)dydz; ð6:97aÞ

Then, it follows that,

Se ¼ 2
T

ZT
2

0

S(t)dt ¼ 2
T

ZT
2

0

½ 1
A(t)

ZZ

A

S(y,z,t)dA]dt; ð6:97bÞ

where dA indicates the area element at the mouth cross-section. Similar procedure
may be used to calculate mean velocities and the corresponding values of the tidal
prism (Vf = VPR).

Pioneering studies Nelson and Lerseth (1972), quoted Fischer et al. (1979)
describe measurements of the tidal exchange ratio at the entrance of San Francisco
Bay (California, USA). Salinity and current velocity were measured throughout the
tidal cycle at a number of positions along transect at the Golden Gate Bridge.
Measurements were made on two occasions with different tide conditions, and TER
values were calculated by Eq. (6.95). In this article, the authors found that
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increasing the flood tide in the range from 0.30 to 2.3 m increased the tidal
exchange rate (TER) from 0.1 to 0.5, respectively, and thus reducing the effec-
tiveness of pollutant discharges.

To illustrate TER results estimates in the Curimataú river estuary (Rio Grande do
Norte, Brazil) were analysed by Miranda et al. (2005, 2006), using observational
data measured during two neap and spring semi-diurnal tidal cycles in the vicinity
of the estuary mouth. Due the strong river discharge, during the neap tide, the
estuary was classified as partially mixed and highly stratified (type 2b), evolving in
the spring tide to a partially mixed and low stratification (type 2a). In the first
attempt to classify the estuary, Sf < Se and the TER < 0 (Eq. 6.95) has no physical
meaning due to the abnormal river discharge. In the spring tide, the estimated mean
salinity values were Sf = 34.97‰, Se = 34.03‰ and S0 = 36.8‰, and the calcu-
lated TER = 0.3. This result indicates a small new oceanic water volume intrusion
(VO) into the estuary and therefore less effective conditions for the dilution of
pollutants input into the estuary.

6.6 Mixing Diagrams

Mixing diagrams are very useful for investigating the presence of sources and sinks
of natural components and/or pollutant concentrations in the estuarine water, tidal
river or in the adjacent coastal sea. This diagram is a Cartesian orthogonal coor-
dinate system used to correlate a given concentration versus salinity, which has the
coastal sea as its main source and has a well known longitudinal variation.

The classical T-S diagram was introduced in the oceanographic literature by
Björn Helland-Hansen in papers published in 1916 and 1918, as a pioneering study
on classification, distribution and mixing of oceanic water mass. It is a diagram with
temperature and salinity (heat and salt concentrations) in the ordinate and abscissa
axis, respectively. It has also been used as a basic mixing diagram for estuarine
water mass classification.

If the water body is homogeneous in salinity and temperature the image of these
properties on the T-S diagram is a single point, representing the final stage of the
irreversible mixing generate by the advection and diffusion processes. If there is no
homogeneity in the water mass, due to the variations of these properties, the S and
T pairs of points will appear as a set of aligned points on the diagram; the point
distributions indicate the occurrence of changes in the heat and salt concentrations
during mixing.

As the density anomaly at atmospheric pressure (Sigma-t or rt) is dependent
only on the salinity and temperature, it is possible to drawn in the T-S diagram a set
of parametric curves, which represents the state equation of seawater at atmospheric
pressure; this diagram is named state diagram of seawater.

With a few exceptions, salinity and temperature in estuarine water respond more
quickly to mixing processes (advection and turbulent diffusion) than to air-sea
interaction processes. Although these properties have small temporal variability, a
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well defined correlation may exist in the T-S diagram, if the set of (S, T) pairs are
sampled during complete tidal cycles. The set of sampled data is named scatter T-S
diagram, which may be used to identify whether or not the tidal river zone (TRZ),
the mixing zone (MZ) or the adjacent coastal sea have heat and salt sources or
sinks.

The scatter T-S diagram of the Bertioga estuarine channel (Fig. 5, Chap. 1) with
hydrographic data sampled during two complete tidal cycles, in neap and spring
tidal conditions, 5 km landward from its mouth is shown in Fig. 6.15.

In the neap tide experiment, the temperature interval change was 3 °C (from
18.5 to 20.8 °C); however salinities varied over a large interval from �8 to 33‰. In

Fig. 6.15 Scatter T-S
diagram with salinity (S) and
temperature (T) values
sampled during neap (o) and
spring (x) tidal conditions in
the estuarine channel of
Bertioga, in July, 1991,
showing estuarine water mass
with high and low
stratification, respectively.
Continuous lines indicate the
density in Sigma-t units

Fig. 6.16 Scatter T-S
diagram in the mixing
(MZ) and near-shore turbidity
(NTZ) zones of the Itajaí-açu
estuarine system, in a
longitudinal section showing
thermohaline characteristics
of the Estuarine Water Mass
(EW), the Coastal Water Mass
(CW) and the South Atlantic
Central Water Mass
(SAW) (adapted from
Schettini et al. 1998)
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the spring tide, the temperature and salinities varied from 20 to 21.0 °C, and �24 to
33‰, respectively (Fig. 6.15). In the spring, tide the tidal currents were more
intense than in the neap tide, and more energy was available to raise the potential
energy of the water column and non-isopicnal vertical turbulent diffusion.

This diagram is also an indicator of the vertical salinity stratification, and we
may observe that the estuarine water mass changed from highly to moderately
stratified, from the neap and spring tides, respectively, with the (S,T) points pre-
senting a relatively large and small scatter, respectively. The positive correlation
between temperature and salinity indicates that the main source and sink of the heat
and salt concentrations in the estuary were the adjacent coastal waters and the river
water, respectively.

Thermohaline characteristics of the mixing zone (MZ) and the near-shore tur-
bidity zone (NTZ) of the Itajaí-açu river (Santa Catarina State, Brazil) estuarine
system were almost synoptically sampled, and the analysis using the scatter T-S
diagram (Fig. 6.16) was presented in Schettini et al. (1998.

In this diagram (Fig. 6.16), the following water masses were identified: the
Estuarine Water (EW), Coastal Water (CW) and the South Atlantic Central Water
(SACW). It can also be observed that the less dense water formation of the estuarine
plume is due to the non-isopicnal mixing of the EW and CW water masses, and the
upper part of the oceanic water (SACW) with 20 °C < T < 16 °C and
35‰ < S < 36‰) is in agreement with the mean values during the summer, which

Fig. 6.17 Mixing diagrams schematically showing the sources and sinks of conservative or
non-conservative properties’ concentrations along an estuary: a source at the TRZ and sink in the
MZ; b source in the coastal ocean and sink at the estuary head; c source at MZ and sinks at the
head and in the coastal ocean; d and source at the TRZ and sink at the MZ
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were calculated by Castro and Miranda (1998) for the continental shelf waters
offshore of Itajaí (Santa Catarina, Brazil). This water with a higher density is able to
be advected into the estuary by barotropic and baroclinic gradient pressure forces,
generating high vertical stratification in the MZ during seasons with high fresh
water discharge.

The T-S Diagram can be altered to become a mixing diagram, by substituting the
temperature (heat concentration), in the ordinate axis, by an alternative property’s
concentration. According to the immediate purpose of the investigation, the cor-
relation of a given property with salinity may be performed in several ways: with
instantaneous concentration values during high and low tide, or with mean con-
centration values during tidal cycles. Among the numerous correlations which can
be expected, some possibilities to identify concentrations of sources or sinks of the
property are shown schematically in Fig. 6.17a–d.

If the property concentration is not at steady-state and the salinity at the coastal
ocean has short temporal variations, these correlations may be more complex than
those depicted in the figure.
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Chapter 7
Hydrodynamic Formulation: Mass
and Salt Conservation Equations

When hydrographic properties and motions in an estuary have spatial and temporal
variation, they are termed as non-uniform and unsteady, as opposed to uniform and
in steady-state. In the previous chapter, salinity in the estuary was, by hypothesis, in
steady-state conditions in longitudinal segments during complete tidal cycles and at
high and low tidal conditions. However, estuaries are dynamic systems, and salinity
and current velocity vary in time and space from almost at rest (slack water) to
speeds of up to several meters per second, in estuaries forced by macro-tides. In
observational data analysis, it is usual to simulate steady-state conditions of
hydrographic properties and circulation by calculating mean values during a time
interval of one or more tidal cycles, under the assumption that the river discharge
remains constant during this time. Tidal co-oscillation is the main driving force of
the non-steady-state condition, however, in some situations other forces may also
be important, such as the abnormal storm surge due to wind shear stress acting on
the continental shelf.

The mathematical development of this chapter starts with the equation of mass
conservation, also named the continuity equation, which complements the equation
of motion, which will be studied in the next chapter. In practical applications it will
be necessary to assume as given the estuary geometry, the river discharge and the
initial and boundary conditions. For investigation of any hydrographic property, it
will also be necessary to use the corresponding conservation equation; in the case of
non-conservative properties, sources and sinks must also be specified.

For the application of the fundamental principles of Fluid Mechanics, it is
necessary to consider an infinitesimally small fluid sample. Usually this sample is
referred as a material element, or more often as a volume element. Another
assumption is that all variables which will represent physical properties (scalar or
vectorial, such as hydrographic properties or current velocity, respectively) are
continuous functions of space and time; in this way the mathematical rules of the
differential and integral calculus can be applied.
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7.1 State of a Volume Element

When the fluid is in motion, its properties (scalar or vector) are functions of space
(x, y, z) and time (t). Then, any property of the fluid, generically indicated by P, is
expressed by the function:

P ¼ Pðx; y; z; tÞ ¼ Pð r!; tÞ; ð7:1Þ

where r!¼ r!ðx; y; zÞ indicating the position vector of a small volume, dV, and x,
y and z being its coordinates in space.

Conceptually, this volume of fluid presents the characteristics of properties
associated with this elementary volume within a given water flow. According to
Symon (1957) and Gill (1982), if this element is at the position r! at the instant of
time t, its position in the space may be generically indicated by the vector position
r!¼ r!½xðtÞ; yðtÞ; zðtÞ� ¼ r!ðtÞ. Then, a generic property of the volume element is
expressed by the following functional relationship:

P ¼ P½xðtÞ; yðtÞ; zðtÞ; t� ¼ P½ r!ðtÞ; t�: ð7:2Þ

From this expression it follows that the total rate of variation (dP/dt) of the
property is,

dP
dt

¼ @P
@t

þ @P
@x

dx
dt

þ @P
@y

dy
dt

þ @P
@z

dz
dt

; ð7:3Þ

or

dP
dt

¼ @P
@t

þ d r!
dt

� rP; ð7:4Þ

where the symbol ∇ is the nabla operator, r ¼ ð @
@xÞ i

!þð @
@yÞ j

!þð @
@zÞ k

!
, and the

dot (•) indicates the scalar product. Equation (7.4) indicates that: (i) the rate at
which the property, P, is changing with time at a fixed point in space is the partial
derivative with respect to time (∂P/∂t), which is itself a function of x, y, z, and;
(ii) the rate at which the property, P, is changing with respect to a point moving

along with the fluid. Another component ðd r!
dt Þ is the variation of the volume

element’s position in space,

d r!
dt

¼ v!¼ v!ðu; v;wÞ ¼ v!ðx; y; z; tÞ; ð7:5Þ

where u = u(x, y, z, t), v = v(x, y, z, t) and w = w(x, y, z, t) are the velocity
components of the velocity vector in the coordinate axes Ox, Oy and Oz,

234 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations



respectively, and are functions of time (t). Then, the equation that defines the state
of a volume element, dV, of fluid is given by,

dP
dt

¼ @P
@t

þ v!�rP: ð7:6Þ

Thus, the total time variation of the property, P, is composed of the local
variation (∂P/∂t) and the variation due to the advection, which depends on the fluid
velocity and the property gradient ð v!�rPÞ. When the local variation is zero (∂P/
∂t = 0), the spatial property variation is considered to be in steady-state, and when
it has no spatial variation it is uniform.

To simplify the notation of equations, it is useful to define the total derivative
operator, d/dt, as:

d
dt

¼ @

@t
þ v!�r: ð7:7Þ

This definition is very convenient, as may be seen considering the salt conser-
vation equation of seawater, simply equating P = S. In fact, if the molecular and
turbulent diffusion are neglected, the volume element in motion will retain the same
concentration of its dissociate components, and its mass will remain constant during
the motion. Mathematically,

dS
dt

¼ @S
@t

þ v!�rS ¼ 0: ð7:8aÞ

This equation indicates that during the motion there is an equilibrium between
the local (∂S/∂t) and advective ð v!�rS) variation. In the steady-state of the
salinity field v!�rS ¼ 0, or,

u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ 0: ð7:8bÞ

7.2 Mass and Salt Conservation Equations

Let us consider the fluid motion in a laminar flow regime, which usually holds for
slow motions. Even if the volume element has a constant mass, its volume may vary
due to the pressure acting on its surface during the motion. As density is defined by
the ratio of mass by volume (q = m/V, [q] = [ML−3]), it follows that density, being
a dependant property, may vary with element volume changes. The equation
relating the fluid’s density with its motion (velocity) may be defined by the mass
conservation principle, which is traditionally named continuity equation since it
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follows the conservation laws, and it is related to the density and velocity of a
continuous medium.

The continuity equation is of fundamental importance to studies related to fluid
motion, and its deduction may be obtained with different theoretical developments
(Symon 1957; Brand 1959; Kinsman 1965; Neumann and Pierson 1966; Gill 1982,
and others). A straightforward Eulerian formulation may be made using Gauss’
divergence theorem, equating the local density time rate ð@q=@tÞ, integrated in a
differential volume element, V, enclosed by its area A,

Z

V

ð@q
@t
ÞdV; ð7:9aÞ

with the mass transport into the volume, V, through the closed surface area, A,
which is expressed by:

�
Z

A

q v!� n!dA ¼ �
Z

V

ðr � q v!ÞdV; ð7:9bÞ

where n! is the unity vector orthogonal to the closed surface, oriented outward of
the volume V. Hence, equating the mass transport [MT−1] expressed by Eqs. 7.9a
with the corresponding mass transport on the right-hand-side of Eq. 7.9b,

Z

V

ð@q
@t
ÞdV ¼ �

Z

V

ðr � q v!ÞdV; ð7:9cÞ

it follows the mass conservation property inside the control volume V, or the
continuity equation,

@q
@t

þr � q v!¼ 0: ð7:10Þ

This equation indicates the following physical principle: the local density vari-
ation inside a volume element is due only to the divergence operator of the mass
flux (q v!Þ, ð½q v!� ¼ ½ML�2T�1�) through a closed surface of the fluid element.
Using the divergent operator, the second term of this equation may be written as:

r � q v!¼ v!�rqþ qr � v!; ð7:11Þ

combining expressions (7.11) and (7.10),

@q
@t

þ v!�rqþ qr � v!¼ 0; ð7:12Þ
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and, taking into account the total derivative (7.7), the continuity equation is reduced
to the following expression:

dq
dt

þ qr � v!¼ 0; ð7:13aÞ

or

1
q
dq
dt

þr � v!¼ 0; ð7:13bÞ

which expresses the relationship between the time variation of fluid density and its
velocity.

Equations (7.10) and (7.13b) are different mathematical expressions of the
continuity equation. The first term of Eq. (7.13b) is the relative change of the total
density variation, and the second is the divergent operator of the velocity field. At
this point we should remember that the divergent operator may be positive, negative
or zero, indicating the divergent, convergent or non-divergent fields, respectively.

The continuity equation in the differential form (7.13b) is valid for fluids in
laminar motion with only one component, such as pure water. In the field of
Physical Oceanography, seawater is considered a solution with two components
(pure water + salt) and the mass of a volume element may vary due to salt diffusion
through its geometric boundaries. Thus, when the continuity equation is applied to
seawater, unless this diffusion process is negligible, it must be compensated by the
introduction of a parcel which takes this into account to preserve the mass con-
servation principle.

To demonstrate that the salt diffusion may be disregarded in coastal and estu-
arine water masses which have non-constant ionic composition, Csanady (1982)
presented the following development to the quantitative determination of the rel-
ative density time rate and the divergence of the velocity field of Eq. (7.13b). For a
typical summer day, it is estimated that the time taken to heat the surface layer of
the estuarine water mass by 1.0 °C is three hours. Thus, the temperature time rate
increase is: dT/dt = 1.0 � 10−4 °C s−1. Adopting a typical value of 1.0 � 10−4 °
C−1 to the thermal expansion coefficient, the relative rate at which the density is
changing with time at a fixed point in space (first term of Eq. (7.13b) is estimated to
be 1.0 � 10−8 s−1.

To estimate the molecular salt diffusion on the local density time rate, a value of
1.0 � 10−9 m2 s−1 was adopted for the kinematic salt molecular diffusion coeffi-
cient (D). And, as the salt molecular diffusion obeys the Fickian law,

dS
dt

¼ Dr2S, ð7:14Þ

the total salt variation (dS/dt) may be calculated, for the most unfavorable condition
(∇2S = 1), as equal to 1.010−9 s−1. Using a mean value for the saline contraction
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coefficient (b) of 7.5 � 10−4 � 10−3, the estimated value of the kinematic
molecular salt diffusion coefficient is 1.0 � 10−12 m2 s−1. These results indicate
that the influences of the local heating and salt diffusion on the relative local density
variation are by a magnitude of less than or equal to 1.0 � 10−8 s. For an estuary
with a length of 10 km (1.0 � 104 m), a longitudinal density variation of 10 kg
m−3 between its mouth and its head, and a velocity variation of 1.0 m s−1, it follows
that the relative density time variation (first term of the Eq. 7.13b) is less than or
equal to 1.0 � 10−6 s−1.

Let us now estimate the order of magnitude of the second parcel of Eq. (7.13b),
representing the divergence of the velocity field. Observational data of estuaries
indicate that the u-velocity component may vary from 0 to 1.0 m s−1 over distances
of up to 1.0 � 104 m, and its divergence value is estimated in 1.0 � 10−4 s−1.
Comparing this value with the estimated value with the estimated value for the first
parcel (1.0 � 10−6 s−1), the conclusion is that the influence of the velocity diver-
gence is predominant, even in the extreme conditions of the above example. Then,
for practicality, the continuity equation is reduced to the simple expression in the
Cartesian coordinate system:

r � v!¼ @u
@x

þ @v
@y

þ @w
@z

¼ 0: ð7:15Þ

This mass conservation Eq. (7.15) may also be obtained from Eq. (7.13b) under
the hypothesis that the fluid density is a constant (q = const.) or its relative value
doesn’t change during motion ð1q @q

@t ¼ 0Þ; which corresponds to the behavior of
incompressible fluids. Thus, for practicality, estuarine water mass is considered to
be an incompressible fluid. In some texts of Hydrodynamics, Eq. (7.13a, 7.13b) are
named conservation of mass, and the expression continuity equation is usually used
for Eq. (7.15).

As the motion regime in an estuary is transitional, changing from laminar to
turbulent, the continuity equation must be adapted to take into account the turbulent
flow. This may be accomplished by eliminating the random (or turbulent) small
scale velocity fluctuations, dividing the velocity into two terms which are uncor-
related with one another: a mean time ðh v!iÞ, and a turbulence velocity value

ðhv0!iÞ. The mean value h v!i, is calculated from a time interval Dt which is long

enough (generally a few minutes) to eliminate the turbulent fluctuations v0
!
, but

short enough that the larger-scale variations do not affect the mean value. That is,

the average value of the turbulent fluctuations should equal zero ðhv0!i ¼ 0Þ.
Substituting this instantaneous value into Eq. (7.15), gives,

r � ðh v!iþ v0
!Þ ¼ 0; ð7:16Þ

and calculating its mean time value for the time interval (Dt),
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1
Dt

ZDt

0

r � ðh v!iþ h v!0iÞdt ¼ 0: ð7:17Þ

As the divergence is calculated as spatial derivatives of vector velocity, which is
assumed to be a continuous function, according to the Schwartz’s theorem it is
possible to change the order of the derivative and integration operations. Taking

into account that hh v!ii ¼ h v!i and hv0!i ¼ 0, it follows that the expression of the
continuity equation for a turbulent fluid flow is,

r � ðh v!iÞ ¼ r � v!¼ 0; ð7:18Þ

where, to simplify the notation, the time mean value ðh v!iÞ is substituted by v!
(h v!i ¼ v!¼ u i

!þ v j
!þw k

!
). This vector now has u, v and w components,

which are time mean values of a relatively short time interval (Dt). Then, the
continuity equation, for a transitional or turbulent flow in the Cartesian frame of
reference (Oxyz), is formally expressed by a similar equation which holds for
laminar fluid flow (Eq. 7.15),

r � v!¼ @u
@x

þ @v
@y

þ @w
@z

¼ 0: ð7:19Þ

When this expression of the continuity equation is integrated with respect to a
geometric volume, such as for an estuary, at the free surface and bottom layers there
will be sources and sinks of mass (evaporation-precipitation balance, snow, con-
densation on the surface, and bottom spring water), which must be adequately
specified.

Now, let us apply the principle of mass conservation to other properties that are
used to characterize the state of a water mass, such as its salt content. In practice,
the principle of continuity is most often used together with the principle of con-
servation of salt to study the flow of relatively enclosed bodies of water, such as
estuaries. By conservative properties we mean concentrations, such as salinity, that
are altered locally, except at the boundaries, by diffusion and advection only.

The vector which characterizes the advective salt flux ð S!Þ, expressed by mass of

salt per area and time ð½ S!� ¼ ½ML�2T�1�Þ, generated by a laminar motion, v!; is

expressed by S
!¼ qS v!. Substituting in Eq. (7.10) the density, q, with the scalar

quantity, qS, which has the same dimension as density ([qS] = [ML−3]), but
physically represents the concentration of mass of salt dissociated in seawater, it
follows that:
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@ðqSÞ
@t

þr � qS v!¼ 0; ð7:20Þ

or

qð@S
@t

þ v!�rS)þ Sð@q
@t

þr � q v!Þ ¼ 0: ð7:21Þ

These equations are the analytical expressions of the principle of conservation of
salt, only due to the advection. As the expression between the parentheses of the
second parcel of Eq. (7.21) is the continuity Eq. (7.10), and is equal to zero, then

@S
@t

þ v!�rS ¼ 0; ð7:22Þ

or, in the scalar notation

@S
@t

þ u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ dS
dt

¼ 0: ð7:23Þ

As stated previously, dSdt is the total time variation of the salinity. This differ-

ential equation is the principle of the conservation of salt, under the action of
advection for a small volume of seawater, with the assumption that the molecular
diffusion has been disregarded. However, as estuaries usually have a turbulent flow
regime, the salt flux due to the turbulent diffusion is much higher. Thus, the
influence of turbulent motion on the salt balance of estuarine waters must also be
taken into account. Consider a cubic volume with surface area units normal to the
coordinate axis, for an estuarine water mass without free surface. The salt con-
servation equation in the differential form is rigorously written as (Sverdrup et al.
1942; Pritchard 1958; Cameron and Pritchard 1963, and others):

@S
@t

þ u
@S
@x

þ v
@S
@y

þw
@S
@z

¼ @

@x
ðKx

@S
@x

Þþ @

@y
ðKy

@S
@y

Þþ @

@z
ðKz

@S
@z

Þ: ð7:24Þ

In this equation, Kx, Ky and Kz are the kinematic1 coefficients of turbulent
diffusion of salt in the horizontal (Ox and Oy) and vertical (Oz) axes, respectively,
which in general are functions of the spatial and temporal scales of the estuarine
processes, with dimensions [L2T−1]. Equation (7.24) indicates that the local salinity

variation ð@S
@t Þ is dependent on the advection (velocity components u, v and w in the

1The dynamic coefficients of eddy diffusion (dispersion), Ax, Ay and Az, which have dimensions of
[ML−1T−1], is obtained from the product of density, q, by the corresponding kinematic coefficient;
Ax = qKx, Ay = qKy and Az = qKz.
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left-hand-side terms), and turbulent diffusion (terms in the right-hand-side) simu-
lated by the Fickian law.

Another expression for the salt conservation equation may be obtained when
combined with the continuity Eq. (7.19):

@S
@t

þ @ðuS)
@x

þ @ðvS)
@y

þ @ðwS)
@z

¼ @

@x
ðKx

@S
@x

Þþ @

@y
ðKy

@S
@y

Þþ @

@z
ðKz

@S
@z

Þ:
ð7:25Þ

It is implicit in this equation that S = S(x, y, z, t) represents the average salinity
obtained from a time interval that is long enough to eliminate the turbulent varia-
tions (S’), but short enough for this mean value not to be affected by long- term
variations. In the same way, the velocity components u = u(x, y, z, t), v = v(x, y, z,
t) and w = w(x, y, z, t) in the Eqs. (7.24) and (7.25) also represent mean values. If
advection alone is responsible for the mixing process in steady-state conditions,
these equations are reduce to their vector formulation v!�rS ¼ 0; or
r � S v!¼ 0.

The kinematics eddy diffusion coefficients Kx, Ky and Kz, with dimension
[L2T−1], are parameterized by cross correlations of the velocity turbulent fluctua-
tions (u′, v′, w′) and S′, with expressions similar to those of the turbulent or eddy
kinematic viscosity coefficients developed by Osborne Reynolds in 1894 (Pritchard
1954; Bowden 1963; Lacombe 1965, and others):

Kx ¼ �hu0S0i
@S
@x

;Ky ¼ �hv0S0i
@S
@y

;Kz ¼ �hw0S0i
@S
@z

: ð7:26Þ

It should be noted that the numerators of Eq. (7.26), multiplied by the density
ðqhu0S0i; qhv0S0i; qhw0S0iÞ, have dimensions of the salt fluxes generated by tur-
bulent or eddy diffusion. Salinity and current velocity measurements in the James
River estuary (Virginia, USA) taken over several tidal cycles in a cross section,
gave the following results (Pritchard 1954):

• The horizontal advective (qSu) and the vertical non-advective ðqhw0S0iÞ fluxes
of salt were the most important factors in maintaining the salt balance.

• The mean vertical advective (qSw) and the horizontal non-advective ðqhu0S0iÞ
fluxes were of secondary importance, but still significant and small, respectively.

• In addition, the vertical non-advective flux ðqhw0S0iÞ of salt is partly related to
the magnitude of the oscillatory tidal currents, and is dependent on the vertical
salinity stratification.

Pritchard’s work confirmed the hypothesis that the mixing process in an estuary
is mainly related to the tidal forcing, and suggested the possibility of calculating the
turbulent diffusion terms using a modified version of Eq. (7.26) for a laterally
homogeneous estuary, taking into account its width variation.
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A conservation equation, similar to (7.24), may also be used in the mathematical
simulation of a conservative concentration of a property dissociated in an estuary. If
C = C(x, y, z, t) denotes the property’s concentration, [C] = [ML−3], the conser-
vation equation is:

@C
@t

þ u
@C
@x

þ v
@C
@y

þw
@C
@z

¼ @

@x
ðKxC

@C
@x

Þþ @

@y
ðKyC

@C
@y

Þþ @

@z
ðKzC

@C
@z

Þ;
ð7:27Þ

where KxC, KyC and KzC are the kinematic eddy diffusion coefficients of the
property, whose theoretical determinations are given by similar expressions as
presented in Eqs. (7.26).

The quantity C may also represent the concentration of suspended cohesive or
non-cohesive sediments, transported by velocities along the bottom which usually
are very low in comparison to the velocities in the upper layer. For
non-conservative substances, such as nutrients, dissolved oxygen, domestic efflu-
ents and radioactive substances, an additional term must be included in Eq. (7.27)
to analytically represent sources and/or sinks. If the property has a first order

exponential decay, its mathematical simulation is given by @C
@t ¼ �kCC, where kC is

a proportionality coefficient with dimension [T−1]. In any case, it is important to
remember that the velocity components of the advective terms (u, v, w) and the
solution of Eq. (7.27), C = C(x, y, z, t), represent average values for a time interval
Dt, which must be long enough to eliminate the turbulent fluctuations.

The partial differential Eqs. (7.24) or (7.25) and (7.27), which have the salinity,
S = S(x, y, z, t), and concentration, C = C(x, y, z, t) fields as unknowns, are named
as Eulerian formulations. Mathematically, the solutions may be obtained if the
turbulent diffusion coefficients of these properties and the velocity field ð v!Þ are
known quantities. The solutions of these equations are also dependent on the initial
and boundary conditions and the estuary geometry.

7.3 Integral Formulas: Mass and Salt Conservation
Equations

7.3.1 Volume Integration

When the solution to an estuarine physics problem for a water body doesn’t require
detailed knowledge of the interior domain, a simple solution may be obtained by
applying the continuity and salt conservation equations (or any other conservative
property) integrated with respect to the volume domain.

To start, let us integrate the differential expression of the continuity Eq. (7.19)
with respect to a small volume element (DV) limited by a closed continuous surface
(DA). Under the assumption that all regularity conditions necessary for the
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application of Gauss’s divergence theorem are met, the volume integral may be
transformed into an integral in the area,

ZZZ

DV

ðr � v!ÞdV ¼
ZZ

DA

ðv!� n!ÞdA ¼ 0: ð7:28Þ

In this equation, the unitary vector n! ( n!�� �� ¼ 1) is normal to the area DA and it
is oriented from the interior of the volume DV to the exterior of the closed surface.
This equation may be generalized to a finite volume, V, of the estuarine water mass,
limited by an area A, then

ZZZ

V

ðr � v!ÞdV ¼
ZZ

A

v!� dA ¼ 0: ð7:29Þ

The integral over the area in Eq. (7.29) is volume transport [L3T−1], through the
geometric limits of volume V, enclosed by the area, A, and according to these
conservation equations, are equal to zero. In the SI system of units this transport is
calculated in m3 s−1.

To obtain the integrated form of the salt conservation Eq. (7.24), for a differ-
ential water volume forced only by the advective process, the salinity and density
fields in the volume, V, of the estuarine water mass must be, by hypothesis, sta-
tionary fields representing mean values during complete tidal cycles, and the salt
conservation equation is reduced to the simplest differential expression:

r � qS v!¼ 0: ð7:30Þ

Integrating this equation in the geometric volume, V, of the estuarine mixing
zone (MZ), and applying the Gauss theorem, it follows that:

ZZZ

V

ðr � qS v!ÞdV ¼
ZZ

A

qS v!� n!dA ¼ 0: ð7:31Þ

The surface integral in the second member of this equation physically represents
the advective salt transport [MT−1] (kg s−1 in the SI system of units) through the
surface area A, enclosed by the geometric volume of the estuarine water mass. As this
salt transport is equal to zero, the mass of salt entering the volume, V, is counter-
balanced by an equal value exiting, according to the principle of conservation of salt.

Examples of the practical application of the conservation principles of mass and
salt (Eqs. 7.19 and 7.24) applied on a relatively small scale are presented according
to Officer (1976) and Team course (2001). Let us take a water volume, V, bounded
by two vertical transverse sections, where areas A1 and A2 have uniform mean
salinities S1 and S2, respectively. Water enters the channel through A1 and exits
through A2, with mean velocities v1

!¼ u1 n
! and v2

!¼ u2 n
!, respectively (Fig. 7.1).

Two sources of input or output water will be considered: the fresh river discharge
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(Qf) and the input or outflow of fresh water through its free surface (Asu) by
precipitation (P) and evaporation (Ev). Sources of bottom spring water and run-off
will be disregarded.

Denoting r as the mean value of the difference evaporation to precipitation (E-P)
per unit of time, the product r!Asu is the volume transport of fresh water through
the surface layer. Then, if Ev > P or Ev < P, it follows that r[ 0 or r\0,
respectively, and the volume transport across the surface area Asu is exiting or
entering the system, respectively; when there is a counterbalance of precipitation
and evaporation, the transport across the free surface is null ðrAsu ¼ 0Þ. However, it
should be noted that usually Qf � rAsu, with the exception of estuaries in dry
regions where hypersaline (or negative) estuaries are formed.

Under the assumption of steady-state conditions for the inflow and outflow of
fresh water, we may apply the integrated continuity Eq. (7.29). Taking into account
the particular geometry (Fig. 7.1) and the kinematic boundary condition
ð v!� n!¼ 0Þ, the scalar product v!� n!¼ 0 is only different from zero on the
transverse sections A1 and A2. Thus, applying the integrated formulation of con-
tinuity equation, the total volume of water entering this portion of the channel may
be equal to the total volume leaving, resulting in the following expression:

�V1A1 þV2A2 þðQf þ rAsuÞ ¼ 0: ð7:32Þ

Fig. 7.1 Schematic diagram of a stationary estuarine water body bounded by vertical transverse
sections, A1 and A2, and by the free surface (Asu) and the bottom. S1, S2, V1 and V2 are mean
salinities and velocities, respectively (according the Team Course 2001)
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Taking into account the geometric characteristics, the velocity and the salinity
fields, applying Eq. (7.31) will give the following balance of the salt transport
through the closed surface:

�q1S1V1A1 þ q2S2V2A2 ¼ 0; ð7:33Þ

because the salt transport through the bottom and the free surface are equal to zero.
Under the assumption that the density variation may be disregarded in the salt
balance ðq1 � q2Þ this equation may be rewritten as:

�S1V1A1 þ S2V2A2 ¼ 0: ð7:34Þ

This approximation isn’t restrictive, because salinity is a parameter that can be
measured, and the density may be calculated with the equation of state of seawater.
Using SI units for velocity, area, and r, and psu units (S � 10−3) for salinity, the
parcels of Eqs. (7.32) and (7.34) for the volume and salt transports are calculated in
m3 s−1 and kg s−1, respectively.

As salinities S1 and S2 at the transverse sections A1 and A2, respectively, and the
volume transports are known, Eqs. (7.32) and (7.34) may be solved for the
velocities averages velocities in the transverse sections (V1 and V2), and for the
volume transports through the cross sections A1 and A2 (V1A1 and V2A2), and the
results are

V1 ¼ ðrAsu þQfÞS2
A1ðS2 � S1Þ ; and TV1 ¼ V1A1 ¼ ðrAsu þQfÞS2

ðS2 � S1Þ ; ð7:35Þ

and

V2 ¼ ðrAsu þQfÞS1
A2ðS2 � S1Þ ; and TV2 ¼ V2A2 ¼ ðrAsu þQfÞS1

ðS2 � S1Þ ; ð7:36Þ

With all quantities in the second member of these equations in units of the SI
system, the velocity components (V1 and V2) and the volume transports (TV1 and
TV2) are expressed in m s−1 and m3 s−1, respectively.

In extreme conditions where Qf = 0, with evaporation is greater than precipi-
tation (Ev > P, r[ 0) and S2 > S1, analysis of the solutions (7.35 and 7.36) indi-
cates that the velocity directions (V1 > 0 and V2 > 0) are in agreement with those
indicated in Fig. (7.1). For this ideal system, the flow is from the regions of low
salinity towards the high salinity regions, in agreement with the salinity gradient
direction.

Let us now consider the opposite process, that is, the precipitation rate exceeds
the evaporation ðr\0Þ, which corresponds with P > Ev, and seawater is diluted by
fresh water. Also, with S2 > S1 it follows from Eqs. (7.35) and (7.36) that the flow
is in the opposite direction to the former condition (V1 < 0 and V2 < 0) and
opposite to the salinity gradient.
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Finally, with Qf ! 0 and r ! 0, the residual flow and volume transport through
sections A1 and A2 are equal to zero. Hence, the difference of P − Ev determines
the driving motions in water bodies at coastlines, such as choked and hyper-saline
coastal lagoons.

With H0 denoting the mean depth of the water column of the closed water body
shown in Fig. 7.1, the time interval (Dt) required for its interior volume of water to
be completely removed from a choked coastal lagoon may be estimated by:

Dt ¼ H0Asu

V2A2
¼ H0ðS2 � S1Þ

rS1
: ð7:37Þ

With the variables in this equation expressed in the SI units, the time interval Dt
is calculated in seconds, and usually this quantity is converted in hours or days.

Consider now a similar problem, but for a salt wedge estuary in steady-state
condition. The dynamics of this estuary is dominated by the river discharge, and the
vertical salt distribution is generated by the entrainment. The continuity and the salt
conservation equations integrated with respect to the volume (Eqs. 7.29 and 7.31)
may be applied. Because the mean flow is one-dimensional in these equations, it
will be considered along the longitudinal axis (Ox), oriented down-estuary
(Fig. 7.2). This figure indicates the upper and lower salt-wedge transverse sections
A2 and A1, and their mean velocity values are indicated by us and ui, respectively.
The mean salinities in these upper and lower sections are also considered as known,
and are indicated by Ss and Si, respectively. In Chap. 3 (Sect. 3.2) we have seen that
for this estuarine type, the following inequality holds: Si � Ss.

Hence, the integrated equations of continuity (Eq. 7.29) and the corresponding
principle of salt conservation (Eq. 7.31) may be applied in the calculation of the
intensity of the velocities us and ui and the associated volume transports. Taking
into account the MZ geometry and the kinematic boundary condition ( v!� n! 6¼ 0

Fig. 7.2 Schematic diagram of a bidirectional motion through a vertical section localized at the
mouth of a salt wedge estuary. The index of the quantities As,i, us,i and Ss,i indicate the areas of the
upper (s) and lower (i) sections, and the corresponding mean velocity and salinity values,
respectively. The unit vector, n!, (not shown) is normal to the closed surface oriented positively
outward of the volume

246 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations

http://dx.doi.org/10.1007/978-981-10-3041-3_3


only in the transverse sections As and Ai), from the conservation equations we have
the following relationships:

ZZ

A

v!� n!:dA ¼ usAs � uiAi � Qf ¼ 0; ð7:38Þ

and

ZZ

A

qS v!� n!:dA ¼ qsSsusAs � qiSiuiAi ¼ 0: ð7:39Þ

Disregarding the density variations (qs � qi) the equation system (7.38 and
7.39) is reduced to:

usAs � uiAi ¼ Qf ; ð7:40Þ

and

SsusAs ¼ SiuiAi: ð7:41Þ

If the mean salinity values (Ss and Si), the area of the vertical sections (As and
Ai), and the river discharges are all known, this equation system has only two
unknowns, us and ui, and the solutions are:

us ¼ SiQf

AsðSi � SsÞ ¼
Qf

Asð1� Ss

Si
Þ
; ð7:42Þ

and

u1 ¼ SsQf

AiðSi � SsÞ ¼
Qf

AiðSi

Ss
� 1Þ

: ð7:43Þ

With these results, it is also possible to calculate the transport of volumes (usAs

and uiAi) and salt (usSsAs and uiSi Ai) in the upper and lower layers, respectively.
This practical application of the principles of continuity and conservation of salt

integrated with respect to the volume exemplify how it is possible to calculate the
mean velocities in transverse sections and the corresponding values of the volume
and salt transports of a salt wedge estuary, when its geometry and scalar properties
(salinity and river discharge) are known. In relation to Eqs. (7.42 and 7.43), which
are used to calculate the velocities us and ui, it is possible to observe that, even if As

and Ai have the same areas, the velocity of the upper layer is always higher than the
lower layer velocity (us > ui) because Ss � Si. Hence, this result is in agreement
with the salt wedge estuary dynamics.

A numerical application of Eqs. (7.42 and 7.43) is presented to theoretically
estimate the vertical velocity profiles at the mouth of the Fraser River estuary
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(British Columbia, Canada). This estuary is classified as salt wedge (or type 4,
according the Stratification-circulation diagram). The Fraser river estuary is a
typical example of salt wedge estuary in a region of meso-tides. The following data
were estimated from the article of Geyer and Farmer (1989): mean river discharge
Qf = 3000 m3 s−1, geometry at the upper and lower sections As = 3750 m2 and
Ai = 4500 m2, and salinities Ss = 14.0o/oo and Si = 30.0o/oo, respectively, repre-
senting mean values at the upper and lower sections of the halocline, respectively.
The estimated vertical profile of salinity and the theoretical simulations of the
vertical velocity profile are presented in Fig. 7.3; the mean velocities at the upper
and lower vertical sections are us � 1.5 m s−1 and ui � −0.6 m s−1, respectively.
The discontinuity of the vertical salinity profile at depth z = 5 m, generated similar
characteristics in the velocity profile, because theoretical equations don’t include
dissipative forces due to the internal friction and at the bottom.

From the results of the velocity, the volume transport was calculated and its
landward and seaward values were Qs = 5525 m3 s−1 and Qi = −2525 m3 s−1,
respectively. Hence, the volume transport is in balance with the river discharge. The
increase in the volume transport seaward, in comparison with the river discharge
(Qf), clearly indicates the influence on the upper transport, forced by the entrain-
ment of seawater into the layer above the halocline.

We leave it to the reader to demonstrate the following dot marks:

• Solutions (7.42) and (7.43) identically satisfy the principles of mass and salt
conservations;

• The mean speed at the mouth transverse section is calculated by: Qf

ðAs þAiÞ ¼ uf ;

• The salt transports may be determined by qiuiSiAi and qsusSsAs, landward and
seaward, respectively.

Fig. 7.3 Vertical theoretical
velocity profiles of a salt
wedge estuary (a). Estimates
of salinity profile from
experimental data (b),
obtained near the estuary
mouth
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The classical Knudsen hydrographic theorem was presented at the beginning of
the 19th century, stating relationships between a known salinity field and the
velocity under stationary conditions. Let us assume that the estuary is highly
stratified and its geometry and salinity are known. Under these conditions, the mean
longitudinal motion, in relation to the Ox axis, is bidirectional in two layers sep-
arated by a sharp halocline; seaward and landward motions are in the surface and
lower layers, respectively (Fig. 7.4).

Applying the continuity and salt conservation Eqs. (7.29 and 7.31) to the vol-
ume between the transverse sections (A, B), taking into account the channel
geometry and the areas of the upper (A1 + A3) and lower (A2 + A4) layers, and
knowing the salinities S1 and S3 (at A1 and A3), and S2 and S4 (at A2 and A4), the
following volume and salt transport balances may be written:

�u1A1 þ u3A3 ¼ �Qf ; ð7:44Þ

u2A2 � u4A4 ¼ Qf ; ð7:45Þ

�u1A1 þ u3A3 þ u2A2 � u4A4 ¼ 0; ð7:46Þ

and

�S1u1A1 þ S3u3A3 þ S2u2A2 � S4u4A4 ¼ 0; ð7:47Þ

with the approximation q1 � q2 � q3 � q4.
As the net salt transport across the transversal section A (sub-sections A1 and

A3) and section B (sub-sections A2 and A4) must be equal to zero, the following
equalities may be written from Eq. (7.47):

S1u1A1 ¼ S3u3A3; ð7:48aÞ

and

Fig. 7.4 Schematic diagram of bidirectional motion and salt transport through vertical sections, A
and B, of a highly stratified estuary. The indexes 1–2 and 3–4 indicate physical properties in the
upper and lower layers, respectively, bounded by the halocline (adapted from Defant 1961)
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S2u2A2 ¼ S4u4A4: ð7:48bÞ

Equations (7.44), (7.45), (7.48a and 7.48b) form a system of four equations with
four unknowns u1, u2, u3 and u4. Calculating these unknowns and multiplying by
areas we then obtain the volume transports:

u1 ¼ S3Qf

A1ðS3 � S1Þ ;! u1A1 ¼ S3Qf

ðS3 � S1Þ ; ð7:49aÞ

u3 ¼ S1Qf

A3ðS3 � S1Þ ;! u3A3 ¼ S1Qf

ðS3 � S1Þ ; ð7:49bÞ

u2 ¼ S4Qf

A2ðS4 � S2Þ ;! u2A2 ¼ S4Qf

ðS4 � S2Þ ; ð7:49cÞ

and

u4 ¼ S2Qf

A4ðS4 � S2Þ ;! u4A4 ¼ S2Qf

ðS4 � S2Þ : ð7:49dÞ

Then, with knowledge hydrologic and hydrographic data it is possible to calculate
the velocity components (ui, i = 1, 2, 3, 4), the volume (uiAi, i = 1, 2, 3, 4), and salt
transports (uiAiSi, i = 1, 2, 3, 4) across the upper and lower sections shown in
Fig. 7.4. As S3 > S1 and S4 > S2, it follows from these equations that the velocity
and volume transport modules are positive. As the flow direction has already been
taken into account in the water column stratification (S1 < S3), from Eqs. (7.49a and
7.49b) it follows that u1 > u3, and the velocity in the upper layer is higher than the
lower layer velocity. Also, if A2 = A3, from Eqs. (7.49c and 7.49d) it follows that
u2 > u4. These theoretical inequalities, between the mean speeds in the upper and
lower layers separated by the halocline, may be verified experimentally.

Although the Knudsen hydrographic theorem only takes into account the
advective process, it is a good approximation for highly stratified and salt wedge
estuaries, because vertical mixing due to turbulent diffusion is suppressed by the
entrainment. This theorem has been applied by Scandinavian oceanographers in
studies of the circulation in fjord type estuaries, and some examples may be found
in Defant (1961) and Dyer (1973). To estimate the areas Ai (i = 1, 3) and Aj(j = 2,
4) usually the interface between the upper and lower layers is taken as the mean
depth of the halocline.

According to Geyer (2010), let us make as an exercise the following simplifi-
cation of the original Knudsen hydrographic theorem, displacing the cross-section
areas at the positions A and B (Fig. 7.4) towards the estuary head and mouth,
respectively, thus, at the new section A position the velocity and salinity have the
following values: (i) u1 = uf and S1 = Sf = 0, and there will no more the quantities
S3 and u3; ii) at the section B, now located at the estuary mouth, its properties above
and below the halocline will remains with the same previous notations. Thus,

250 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations



applying the volume and salt transport conservations equations the following
expressions of two equations with the unknowns Q2 (or u2) and Q4 (or u4) are
written as:

Q2 ¼ Qf þQ4; and u2A2S2 ¼ u4AaS4;! Q2S2 ¼ Q4S4; ð7:50aÞ

with the simplification q2 � q4. Solving this system of equations we find the
following expressions to calculate volume transports and velocities and at the
estuary head (A) and at position B:

Q2 ¼ u2A2 ¼ S4
S4 � S2

Qf ; and ;Q4 ¼ u4A4 ¼ S2
S4 � S2

Qf ; ð7:50bÞ

or

u2 ¼ 1
A2

S4
ðS4 � S2ÞQf ; and ; u4 ¼

1
A4

S2
ðS4 � S2ÞQf : ð7:50cÞ

We leave to the reader to demonstrate that these solutions satisfy the volume and
salt transport conservation.

To establish the horizontal continuity of the flow, as indicated in Fig. (7.4), an
upward mean velocity ðwÞ, generated by entrainment, is necessary across the
halocline. Thus, if Ah indicates the horizontal area of the halocline, the associate
entrained volume transport is calculated by ðwAhÞ, which is generate by the volume
transport convergence on the lower layer, and may be calculated by:
wAh ¼ u4A4 � u3A3. Then, from the volume transports calculated by Eqs. (7.52)
and (7.54a, 7.54b), it follows that:

wAh ¼ Qfð
S2

S4 � S2
� S1
S3 � S1

Þ; ð7:51aÞ

and

w ¼ Qf

Ah
ð S2
S4 � S2

� S1
S3 � S1

Þ: ð7:51bÞ

In the presented theory, only the principle of mass conservation (continuity) and
salt conservation in its integrated formulation were used, enabling the solutions for
velocity field and transports at the boundaries of the estuary only. The driving
forces were the river discharge input and the evaporation-precipitation rate, but the
dissipative force (friction) and the turbulent diffusion were taken as negligible.
Obtaining a solution for the inner circulation and property distributions in natural
estuaries requires a complete set of differential equations, including the equations of
motion, which will be presented in Chap. 8.
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7.3.2 Bi-Dimensional Formulation: Vertical Integration

Estuaries are transitional water bodies with free surface and morphologic charac-
teristics which may vary from a simply geometry, such as a channel, to complex
system with a net of interconnected channels. The tridimensional equations of
continuity and salt conservation have already been presented (Eqs. 7.19 and 7.24).
Under the assumptions that the turbulent coefficients of salt diffusion and the
velocity components are known, Eq. (7.24) may be solved to calculate the salinity
field, S = S(x, y, z, t). However, its analytical solution is extremely difficult, per-
haps even impossible, particularly for complex geometries.

Coastal plain estuaries which have a longitudinal channel geometry, low river
discharge and high tidal amplitude are practically well-mixed (type 1 or C), and
variations in velocity and property concentrations mainly occur in the transverse
sections (plane Oxy). However, when estuaries are forced by moderate or high river
discharge, variations in property concentrations may occur mainly in the Oxz plane,
such as in partially mixed and salt wedge estuaries (types 2 and 4, or A and B).
With these particular geometries and driving forces, the conservation equations may
be simplified to two dimensions.

Let us now present the deduction of the two-dimensional continuity equation
from its three-dimensional formulation (Eq. 7.19), which is often used in problems
related to well-mixed estuaries. Properties variations in these estuaries are mainly in
the Ox and Oy directions, oriented according to the reference system in Fig. 7.5.

To eliminate variations in the Oz direction, it is sufficient to integrate the con-
tinuity equation using the local depth z = −H0(x, y) and the ordinate of the free
surface z = η(x, y, t) as limits, disregarding the large-scale temporal depth varia-
tions due to erosion and sedimentation,

Zg

�H0

ð@u
@x

Þdzþ
Zg

�H0

ð@v
@y

Þdzþwjg � wj�H0
¼ 0: ð7:52Þ

In this equation, w|η = w(x, y, η, t) and w|−H0 = w(x, y,−H0, t) are values of the
vertical velocity component at the surface and on the bottom, respectively. As its
integration limits are functions of x, y and t, it is necessary simplify the equation to
a more convenient expression for practical applications, using the Leibnitz rule of
an integral derivation2 (Severi 1956, p. 354):

2When the estuary bottom is plane (H0 = const.), and due to the very long tidal wave, the tidal
elevation may be considered uniform along the estuary, η = η(t), and it is possible to change the
order of the integral operator and the derivative. In these conditions w|−H0 = 0 and w|η = dη/
dt = ∂η/∂t are the kinematic boundary conditions.
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Zg

�H0

ð@u
@x

Þdz ¼ @

@x
ð
Zg

�H0

udz)þ uj�H0

@ð�H0Þ
@x

� ujg
@g
@x

; ð7:53aÞ

and

Zg

�H0

ð@v
@y

Þdz ¼ @

@y
ð
Zg

�H0

vdz)þ vj�H0

@ð�H0Þ
@y

� vg
@g
@y

; ð7:53bÞ

where u|η = u(x, y, η, t), v|η = v(x, y, η, t), u|−H0 = u(x, y, −H0, t) and v|−H0 = v(x,
y, −H0, t) are values of velocity horizontal components in the free surface (z = η)
and on the bottom (z = −H0), respectively.

By substituting expressions (7.53a, 7.53b) into Eq. (7.52), and taking into
account the vertical velocity components generated by the bottom topography and
the sea-surface, because H0 = Ho(x, y) and η = η(x, y, t), the following kinematic
boundary conditions must be imposed:

wj�H0
¼ uj�H0

@ð�H0Þ
@x

þ vj�H0

@ð�H0Þ
@y

; ð7:54aÞ

and

wjg ¼ ujg
@g
@x

þ vjg
@g
@y

þ @g
@t

: ð7:54bÞ

Fig. 7.5 Geometric limits of an estuary. The coordinates on the surface and bottom are indicated
by z = η(x, y, t) and z = H0(x, y), and from the right to left, a(x, z) and b(x, z) are lateral
boundaries
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The final result is the expression,

@

@x
ð
Zg

�H0

udz)þ @

@y
ð
Zg

�H0

vdz)þ @g
@t

¼ 0: ð7:55Þ

In this equation, the integrands u and v are, by hypothesis, independent of the
depth. Finalizing the integration, the continuity equation in two dimensions for an
estuary may be given by3:

@ðuh)
@x

þ @ðvh)
@y

þ @g
@t

¼ 0; or rH � h v!¼ � @g
@t

; ð7:56aÞ

or, when the longitudinal depth variation (∂h/∂x) may be disregarded,

h
@u
@x

þ @ðvh)
@y

þ @g
@t

¼ 0: ð7:56bÞ

where,

Zg

�H0

dz ¼ gþH0 ¼ h(x, y, t): ð7:56cÞ

The quantity h(x, y, t) = η(x, y, t) + H0(x, y) is the thickness of the water
column and holds the identity ∂h/∂t = ∂η/∂t.

The bi-dimensional continuity Eq. (7.56a) has the following physical interpre-
tation: the divergence (rH � h v![ 0) or the convergence (rH � h v!\0) must be
compensated by a decrease ð@h/@t\0Þ or an increase ð@h/@t[ 0Þ of the thickness
of water layer, respectively, where the vector h v! is the volume transport vertically
integrated by width unity. As a result of the vertical integration, each term of the
continuity equation has dimension of velocity [LT−1], and the coordinate z was
substituted by a geometric characteristic of the estuary (the depth, h).

By analogy, the vertically integrated deduction of the salt conservation equation
results from the integration of Eq. (7.25) in the following limits: z = −H0(x, y) and
z = η(x, y, t) at the bottom and the free surface, respectively. Then, we have the
following expression:

Zg

�H0

ðdS
dt
Þdz ¼

Zg

�H0

½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ�dzþ
Zg

�H0

@

@z
ðKz

@S
@z

Þdz, ð7:57Þ

3This operation is equivalent to the Mean Value Theorem.
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and the integrand of the term on the left-hand-side is the total derivative of the
salinity (local + advective variations). By completing the integration of the last
term on the right-hand-side of the equation, we have:

Zg

�H0

@

@z
ðKz

@S
@z

Þdz ¼ Kz
@S
@z

jg � Kz
@S
@z

j�H0
: ð7:58Þ

As Kz is the kinematic turbulent diffusion coefficient of salt [Kz] = [L2T−1], the
terms of this equation have dimensions of velocity [LT−1], which may be inter-
preted physically as salt flux per density unit, through the surface (z = η) and the
bottom (z = −H0). As these salt fluxes must be zero within the estuary’s geometric
boundaries, the last parcel in the right-hand-side of Eq. (7.57) is equal to zero.

The vertical integration of the total derivative in the left-hand-side of the
Eq. (7.57) is given by:

Zg

�H0

dS
dt
dz ¼

Zg

�H0

@S
@t
dzþ

Zg

�H0

@ðuS)
@x

dzþ
Zg

�H0

@ðvS)
@y

dzþ
Zg

�H0

@ðwS)
@z

dz:ð7:59Þ

Let us again apply the Leibnitz integration rule to the first three terms of the
right-hand-side of this equation:

Zg

�H0

@S
@t
dz ¼ @

@t
ð
Zg

�H0

Sdz)� Sjg
@g
@t

; ð7:60aÞ

Zg

�H0

@ðuS)
@x

dz ¼ @

@x
ð
Zg

�H0

uSdzÞ � uSjg
@g
@x

þ uSj�H0

@ð�H0Þ
@x

; ð7:60bÞ

and

Zg

�H0

@ðvS)
@y

dz ¼ @

@y
ð
Zg

�H0

vSdzÞ � vSjg
@g
@y

þ vSj�H0

@ð�H0Þ
@y

: ð7:60cÞ

Finally, integrating the last term of the right-hand-side of Eq. (7.59) gives,

Zg

�H0

@ðwS)
@z

dz ¼ wSjg � wSj�H0
: ð7:61Þ
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In these equations, the quantities S|η = S(x, y, η, t) and S|−H0 = S(x, y, −H0, t)
are the salinity values at the surface and bottom, respectively.

At this stage the first two terms of the right-hand-side of Eq. (7.57), relating to
the lateral influence of the turbulent diffusion, are still missing from the vertical
integration of Eq. (7.57). Applying the Leibnitz rule to these terms, and they may
be rewritten as:

Zg

�H0

@

@x
ðKx

@S
@x

Þdz ¼ @

@x
ð
Zg

�H0

Kx
@S
@x

dz)� Kx
@S
@x

jg
@g
@x

þKx
@S
@x

j�H0

@ð�H0Þ
@x

;

ð7:62aÞ

and

Zg

�H0

@

@y
ðKy

@S
@y

Þdz ¼ @

@y
ð
Zg

�H0

Ky
@S
@y

dz)� Ky
@S
@y

jg
@g
@y

þKy
@S
@y

j�H0

@ð�H0Þ
@y

:

ð7:62bÞ

Finally, substituting Eqs. (7.60a, b, c) and (7.62a, b) into Eq. (7.57), and taking
into account that:

• The diffusive salt flux in the estuary boundaries are zero;

Kx
@S
@x

j�H0g ¼ Ky
@S
@y

j�H0g ¼ Kz
@S
@z

j�H0g ¼ 0; ð7:63aÞ

• The kinematic boundary conditions indicated in Eqs. (7.54a, b) are valid when
multiplied by S|−Ho and S|η:

wSj�H0
¼ Sj�H0

½uj�H0

@ð�H0Þ
@x

þ vj�H0

@ð�H0Þ
@y

�; ð7:63bÞ

and

wSjg ¼ Sjg½ujg
@g
@x

þ vjg
@g
@y

þ @g
@t

�: ð7:63cÞ

Then, the following vertically integrated formulation of the continuity equation
has been obtained:
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@

@t
ð
Zg

�H0

Sdz)þ @

@x
½
Zg

�H0

ðuS)dz]þ @

@y
½
Zg

�H0

ðvS)dz]

¼ @

@x
½
Zg

�H0

ðKx
@S
@x

Þdz� þ @

@y
½
Zg

�H0

ðKy
@S
@y

Þdz�:
ð7:64Þ

Imposing the conditions that the estuary is well-mixed (vertically homoge-

neous), the quantities u, S, uS, vS, Kx
@S
@x and Ky

@S
@y are independent of depth, and,

taking into account that the integral of the differential dz in the limits z = −H0 and
z = η is equal to the local depth, h = H0 + η, the integration of Eq. (7.64), yields
the expression for the salt conservation equation:

@ðSh)
@t

þ @ðuSh)
@x

þ @ðvSh)
@y

¼ @

@x
ðKxh

@S
@x

Þþ @

@y
ðKyh

@S
@y

Þ: ð7:65Þ

Some simplifications may be made in this equation if, for instance, the tidal
oscillation is much less than the estuary depth (η � H0), h(x, y) = H0(x, y). Then
the continuity Eq. (7.56a) and the salt conservation (7.65) may be rewritten as:

@ðuH0Þ
@x

þ @ðvH0Þ
@y

þ @g
@t

¼ 0; ð7:66Þ

and

@ðSH0Þ
@t

þ @ðuSH0Þ
@x

þ @ðvSH0Þ
@y

¼ @

@x
ðKxH0

@S
@x

Þþ @

@y
ðKyH0

@S
@y

Þ: ð7:67Þ

Analysis of Eq. (7.66) indicates that when there is divergence (rH � H0 v
![ 0)

or convergence (rH � H0 v
!\0) of the volume transport along the depth axis, they

must be compensated by negative or positive of the vertical velocity component on
the surface (∂η/∂t < 0 or ∂η/∂t > 0, respectively).

A simple salt conservation equation may be obtained from Eq. (7.67) by sepa-
rating derived variables, such as S � h, S � uh and S � vh, and combining these
variables with the continuity Eq. (7.56a) to give,

@S
@t

þ u
@S
@x

þ v
@S
@y

¼ 1
h
½ @
@x

ðKxh
@S
@x

Þþ @

@y
ðKyh

@S
@y

Þ� þ @S
@z

jz¼gðP� EVÞ: ð7:68aÞ

This equation may be further simplified when h = const.,
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@S
@t

þ u
@S
@x

þ v
@S
@y

¼ ½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ� þ @S
@z

jz¼gðP� EVÞ: ð7:68bÞ

In Eqs. (7.68a, b), the last term of the right-hand-side was introduced to simulate
the salinity time variation due to fresh water exchanges at the free surface through
precipitation (P) and evaporation (Ev) rates, [P] = [Ev] = [LT−1]. When P > EV or
P < Ev, there will be a fresh water source or sink at the surface (z = η), respec-
tively; when P = Ev, there will be no fresh water interchanges at the free surface.

Pritchard (1954) used Eq. (7.68b) to study the salt balance in the James river
coastal plain estuary (Virginia, USA) under steady-state conditions (∂S/∂t = 0) and
with P = Ev. Based on a time series over several tidal cycles of salinity and current
velocity, it was observed that the horizontal flux due to advection and the vertical
non-advective salt flux were the most important factors in maintaining a simplified
salt balance equation, such as:

u
@S
@x

þ v
@S
@y

¼ @

@y
ðKy

@S
@y

Þ: ð7:69Þ

Equations (7.65) and (7.68a, 7.68b) are the physical-mathematical formulation of
the Eulerian description of the bi-dimensional salinity field variation S = S(x, y, t) in
the water column. If the estuary geometry, the velocity field, the kinematic coeffi-
cients Kx and Ky, and the initial and boundary conditions are known, these equations
may be integrated to calculate the mean salinity in the water column.

7.3.3 Bi-Dimensional Formulation: Lateral Integration

Let us now consider a second bi-dimensional model, under the assumption that the
estuarine water mass is laterally homogeneous, which is generally the case of narrow
partially-mixed estuaries; its circulation, salinity and others properties are indepen-
dent on the Oy axis. In these conditions, the conservation equations of mass (7.19)
and salt (7.24 or 7.25) must be integrated along the lateral direction, from y = a(x, z)
to y = b(x, z) coordinates, and their mean values calculated. The difference being b(x,
z) − a(x, z) = B(x, z) will indicate the estuary width (Fig. 7.5). The dependence on
the Oz direction will take into account the time variation of the lateral coordinates,
because z is dependent on the time variation of the free surface, η = η(x, t).

By analogy with the mathematical development used for the vertically homo-
geneous estuary, it is necessary to laterally integrate the tri-dimensional equations,
calculate their means and then reduce them, applying the Leibnitz rule, with con-
sideration that the integration limits of the estuary boundaries, a and b are functions
of x and z, a = a(x, z) and b = b(x, z). Following this procedure, it is necessary to
apply the boundary conditions in order to eliminate influences that are topo-
graphically generated by the bottom and margins of the estuarine channel, and
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impose the condition that salt advection and diffusion through its boundaries must
be zero.

Beginning with the continuity Eq. (7.19), it follows that:

Zb

a

@u
@x

dyþ
Zb

a

@v
@y

dyþ
Zb

a

@w
@z

dy ¼ 0: ð7:70Þ

Because the integration of the second parcel is immediate, applying the Leibnitz
rule, this equation is rewritten as:

@

@x
ð
Zb

a

udy)� ujb
@b
@x

þ uja
@a
@x

þ vjb � vja þ
@

@z
ð
Zb

a

wdy)� wjb
@b
@z

þwja
@a
@z

¼ 0;

ð7:71Þ

where u|b = u(x, b, z, t), v|b = v(x, b, z, t), u|a = u(x, a, z, t) and v|a = v(x, a, z, t).
Due to variations in the margin geometry of the estuarine channel, the coordi-

nates a = a(x, z) and b = b(x, z) may induce, due to topographic influences,
transversal components of the velocity, which is necessary the imposition of the
following boundary conditions:

vja ¼ uja
@a
@x

þwja
@a
@z

; ð7:72aÞ

and

vjb ¼ ujb
@b
@x

þwjb
@b
@z

: ð7:72bÞ

For an estuarine channel with a uniform rectangular transversal section, the
adherence principle states that at the margins v|a = v|b = 0.

Finally, with the hypothesis of lateral uniformity, or imposing the conditions that
the velocity components are independent of the variable, y, it follows that the
expression of the laterally integrated continuity equation is:

@ðuB)
@x

þ @ðwB)
@z

¼ 0; ð7:73aÞ

and

Zb

a

dy ¼ b(x, z, t)� a(x, z, t) ¼ B(x, z, t): ð7:73bÞ
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The continuity Eq. (7.73a) for a laterally homogeneous estuary indicates that the

vector v!¼ uB i
!þwB k

!
is non-divergent ðrV � B v!¼ 0Þ, and the associated

current function, W = W(x, z), is defined by,

@wðx; zÞ
@x

¼ w(x, z)B and
@wðx; zÞ

@z
¼ �uðx; zÞB; ð7:73cÞ

and satisfy identically the continuity equation; its dimension is equivalent to the
volume transport [W(x, z)] = [L3T−1].

Applying an analogous procedure, the salt conservation Eq. (7.25) will be lat-
erally integrated from a = a(x, z) to b = b(x, z),

Zb

a

dS
dt

¼
Zb

a

½ @
@x

ðKx
@S
@x

Þþ @

@y
ðKy

@S
@y

Þ�dyþ
Zb

a

ð @
@z

ðKz
@S
@z

Þdy; ð7:74Þ

applying the Leibnitz rule and the following boundary conditions:

vSja ¼ Sja½uja
@a
@x

þwja
@a
@z

�; ð7:75aÞ

and

vSjb ¼ Sjb½uja
@b
@x

þwja
@b
@z

�: ð7:75bÞ

Imposing the lateral homogeneity condition and that the salt flux, per density
unity, at its geometric boundaries is zero,

Kx
@S
@x

ja;b ¼ Kz
@S
@z

ja;b ¼ 0; ð7:75cÞ

it follows that the expression of the salt conservation equation for laterally
homogeneous estuaries is:

@ðBSÞ
@t

þ @ðuBSÞ
@x

þ @ðwBSÞ
@z

¼ @

@x
ðBKx

@S
@x

Þþ @

@z
ðBKz

@S
@z

Þ: ð7:76Þ

Combining this result with the continuity Eq. (7.73a), it follows that the most
usual salt conservation equation is:

@S
@t

þ u
@S
@x

þw
@S
@z

¼ 1
B
½ @
@x

ðBKx
@S
@x

Þþ @

@z
ðBKz

@S
@z

Þ�: ð7:77Þ
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This equation is the Eulerian formulation of the bi-dimensional salinity variation
S = S(x, z, t) of a laterally homogeneous and partially-mixed estuary (type 2 or B).
If the estuary geometry, the velocity field, the turbulent diffusion coefficients and
the initial and boundary conditions are known, this equation may be solved for the
salinity field distribution.

Equation (7.77) may be further simplified according to the estuary characteris-
tics; for a steady-state well-mixed estuary (type 1 or C) with a constant
cross-sectional area A, a width B, and a constant kinematic turbulent diffusion
coefficient (Kx), forced by the river discharge, the Eq. (7.77) is simplified to:

uf
dS
dx

¼ Kxðd
2S

dx2
Þ: ð7:78aÞ

Imposing the following boundary conditions: (i) S(x)|x=0=S0, and;
(ii) S|x!∞ = 0, which indicate the salinity at the estuary mouth and head, respec-
tively, the solution to this equation is:

S(x) ¼ S0expð� uf
Kx

xÞ; ð7:78bÞ

and the salinity decreases exponentially from the head down its mouth.
Another example of simplifying the Eq. (7.77) is presented for a highly stratified

estuary, such as a salt wedge (type 4 or A). In this estuary, the dominant mixing
process is advection, and the salinity increase across the halocline is due to
entrainment. Then, the salt conservation equation is simplified to:

u
@S
@x

þw
@S
@z

¼ 0: ð7:79aÞ

However, with the exception of salt wedge estuaries, in the layer over the
halocline, the diffusion term may still be important and holds the expression,

1
B

@

@z
ðBKz

@S
@z

Þ; ð7:79bÞ

which may be further simplified if the width (B) is constant.
In coastal plain estuaries forced by macro or hyper-tides and with moderate river

discharge, there will be random velocity fluctuations generated by internal turbu-
lence and friction at the estuary boundaries. The vertical mixing of the upper and
lower layers is enhanced, and the halocline is partially eroded. Thus, the salinity
increase in the upper layer, increasing the seaward salt transport, while the salinity
in the lower layer decreases landward, and the estuary becomes partially mixed
(type 2 or B). If the estuary is laterally homogeneous and in steady-state (according
to mean values over tidal cycles), the most important terms of the salt conservation
Eq. (7.77) are the horizontal and vertical advection and the vertical diffusion. Then,
the principle of salt conservation is reduced to:
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u
@S
@x

þw
@S
@z

¼ 1
B

@

@z
ðBKz

@S
@z

Þ; ð7:80Þ

because the non-advective horizontal term is small and may be disregarded
(Pritchard 1954, 1955).

Although the two-dimensional equations in the planes (Ox, y) or (Ox, z) are
simplifications of the tridimensional equation, their steady-state solutions for nat-
ural estuarine systems, from analytical and time dependent numerical methods,
have some complexity. However, analytical solutions were obtained for simple
geometries and steady-state conditions in the classical articles of Pritchard and Kent
(1956), Rattray and Hansen (1962), Hansen and Rattray (1965), Fisher et al. (1972),
Officer (1977), among others. A non-steady-state numerical solution using the
natural geometry of the Potomac river estuary may be found in Blumberg (1975).

As a practical example, under steady-state conditions and with a constant width
(B = const.), Eq. (7.80) will be used to calculate the salinity profile S = S(z) of a
partially mixed estuary, with the following quantities known: the vertical velocity
profile u = u(z) or u = u(Z), the mean longitudinal salinity gradient
ð@S=@X) � Sx), and w = 0. From some algebraic rearrangement, the equation is
reduced to:

@2S
@z2

¼ u(z)
Kz

Sx; or
d2S

dZ2 ¼
h2

Kz
uðZÞSx;

where Z = z/h (0 	 Z 	 1), and with the non-dimensional depth (Z) used in the
latter expression. The general solution of this second order ordinary differential
equation is,

S(Z) ¼ u(Z)h2

2Kz
SxZ2 þC1ZþC2:

The non-dimensional constants C1 and C2 are calculated using the following
boundary conditions: at the surface S(0) = Ss, and at the bottom S(1) = Sb. In the
general solution, they are given by:

C1 ¼ Ss and C2 ¼ ðSb � SsÞ � u(Z)h2

2Kz
Sx;

where the difference Sb − Ss for partially mixed estuaries may vary from just a few
to values to over twenty psu, for weakly and high stratified conditions, respectively.

Substituting the constants C1 and C2 into the general solution, the final vertical
salinity profile is:

262 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations



S(Z) ¼ ½u(Z)h
2

2Kz
Sx�Z2 þ ½ðSb � SsÞ � u(Z)h2

2Kz
Sx�Zþ Ss;

which satisfies the boundary conditions, and may be reduced to a final solution if
the vertical velocity profile u = u(Z) has previously been calculated.

7.3.4 One-Dimensional Formulation: Integration
in an Area

Estuaries that are long, narrow and shallow, with accentuated tidal forcing, and are
vertically non-stratified and laterally homogeneous, can be studied as
one-dimensional system, and the continuity and salt conservation equations may be
simplified to be applied to these well-mixed estuaries (type 1, C). In these estuaries,
the longitudinal variation is prevalent and the velocity, salinity and the concen-
tration of properties may be taken as functions of the longitudinal distance and time,
i.e., u = u(x, t), S = S(x, t) and C = C(x, t), respectively. The one-dimensional
deduction of these equations are not trivial, because the integrated mean values of
Eqs. (7.19), (7.25) and (7.27) must be along the transverse plane (Oyz), orthogonal
to the axis Ox, as illustrated in Fig. 7.6.

Beginning with the integration of the continuity equation,4 let us indicate by
A = A(x, t) the area of the transverse section limited by the closed line c (Fig. 7.6),
which varies both along the estuary and with time

ZZ

A

@u
@x

dydzþ
ZZ

A

@v
@y

dydzþ
ZZ

A

@w
@z

dydz ¼ 0; ð7:81Þ

where dydz = dA is a small elementary area.
The first term of Eq. (7.81) must be transformed by applying the Leibnitz

derivation rule of a double integral, resulting in (Pritchard 1958; Okubo 1964):

@

@x,t
ð
ZZ

A
udydzÞ ¼

ZZ

A

@u
@x,t

dydzþ 1
c
ð@A
@x,t

Þ
I

c
udl: ð7:82Þ

In this equation, c is the length of the continuous curve limiting the area, A,
depicted by the closed line going through in the positive sense of direction
(Fig. 7.6), and dl is the differential arch element.

The remaining terms (second and third) of Eq. (7.82) may be adequately reduce
using the Green’s formula (Severi 1956, p. 369), which transform the surface
integral into a line integral,

4This type of estuary is usually shallow and the influence of the gravitational circulation may be
disregarded and the baroclinic bumping landward is negligible.
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A

@v
@y

dydz ¼
I

c

vdz; ð7:83Þ

and

ZZ

A

@w
@z

dydz ¼ �
I

c

wdy; ð7:84Þ

where, dy and dz are differential elements of the contour line (c).
Substituting Eqs. (7.82), (7.83) and (7.84) into the Eq. (7.81) we have the fol-

lowing expression:

@

@x
ð
ZZ

A
udydz)� 1

c
ð@A
@x

Þ
I

c

ud‘þ
I

c

vdz�
I

c

wdy ¼ 0: ð7:85Þ

As the u-velocity component is uniform in the transversal section A, this
equation may be rewritten as:

@ðuA)
@x

� @A
@x

ujA þ
I

c

vdz�
I

c

wdy ¼ 0; ð7:86Þ

where the following identities have been taken into account:
RR

Adydz ¼ A, and
1
c
H

c
d‘ ¼ 1, and u|A = u, is the velocity mean value in the area A.

Now, for the physical interpretation of the sum of the two last terms of
Eq. (7.86), we may use a consequence the Green theorem, which states that (Severi
1956, p. 369):

Fig. 7.6 Estuary approximated by one-dimensional model with uniform property distributions in
the transversal section A = A(x, t). The boundary of the area, A, is the closed line circulating in the
positive orientation (area is located at left)
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A ¼ 1
2
ð
I

c

ydz�
I

c

zdy): ð7:87Þ

As A = A(x, t), the local variation ∂A/∂t is formulated by:

@A
@t

¼ 1
2
ð
I

c

vdz�
I

c

wdy); or 2
@A
@t

¼ ð
I

c

vdz�
I

c

wdy); ð7:88Þ

and the functions being integrated, v and w are given by

v ¼ dy
dt

;w ¼ dz
dt

: ð7:89Þ

The second term of Eq. (7.86) may be rewritten as:

@A
@x

ujA ¼ @A
@x

dx
dt

¼ @A
@t

; ð7:90Þ

and substituting Eqs. (7.88) and (7.90) into the Eq. (7.86), the result is,

@ðuA)
@x

� @A
@t

þ 2
@A
@t

¼ 0; ð7:91Þ

and the analytical expression of the one-dimensional principle of continuity is
reduced to (Pritchard 1958):

@ðuA)
@x

þ @A
@t

¼ 0: ð7:92aÞ

For a wide shallow estuary (B � H0), A = B(H0 + η) � Bη, this equation is
reduced to

1
B
@ðuA)
@x

þ @g
@t

¼ 0: ð7:92bÞ

As the area, A, is a known geometric property in this equation, it may be solved
using the mean velocity at the transverse section u = u(x, t), as well as to the
volume transport, u(x, t)A = TV(x, t); for convenience, this volume transport may
be also denoted by Q (uA = TV = Q). Then, in order to satisfy the mass conser-
vation principle, if in a longitudinal location, x, the volume transport increases
(∂TV/∂t > 0) or decreases (∂TV/∂t < 0), this must be compensated by a time
decrease (∂A/∂t < 0) or increase (∂A/∂t > 0) of the cross-section area, respectively.
However, in steady-state condition, the continuity equation is reduced to
TV = Qf = uA = const, or u = uf = Qf/A.
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Similar to the mass continuity, the one-dimensional salt conservation equation is
obtained by multiplying the tridimensional expression (7.25) by the differential area
dydz, developing the integral terms using the Leibnitz rule and the Green theorem,
it follows that:
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@S
@z
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ð7:93Þ

Taking into account Eqs. (7.88) and (7.90), and that the salinity, S, and the
u-velocity component are uniform in the area, A, the terms on the left-hand-side of
Eq. (7.93) simplifies to:

@ðAS)
@t

þ @ðuAS)
@x

; ð7:94Þ

because
RR

Adydz ¼ A, and the sum of the remaining terms are equal to zero,

� @A
@t

SjA � @A
@x

uSjA þ SjAð
I

c

vdz�
I

c

wdy) ¼ 0: ð7:95Þ

In the first term on right-hand-side of the Eq. (7.93), salinity and the longitudinal
salt diffusive term, Kx(∂S/∂x), are uniform in the area A. As the line integrals are
equal to zero, these terms are reduced to:

@

@x
ðAKx

@S
@x

Þ; ð7:96Þ

and it follows that the one-dimensional salt conservation equation (Pritchard 1958)
is:

@ðAS)
@t

þ @ðuAS)
@x

¼ @

@x
ðAKx

@S
@x

Þ: ð7:97Þ

Finally, developing the products indicate in the left-hand-side of the differential
equation, and combining the result with the one-dimensional continuity Eq. (7.92a,
7.92b), the salt conservation equation may be simplified to,
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@S
@t

þ u
@S
@x

¼ 1
A
½ @
@x

ðAKx
@S
@x

Þ�: ð7:98Þ

Under steady-state conditions and for A = const., this equation may be further

reduced to ufS ¼ KxðdSdxÞ or qðufS) ¼ q½KxðdSdxÞ�, which states that the downstream

advective salt flux driven by the river velocity (qufS) will counteract the upstream
diffusive flux driven by all other mechanism, qKxð@S/@x): This equation has been
used to estimate the kinematic (or dynamic) eddy diffusion coefficient, which may
be approximated by Kx ¼ ufS/(@S/@x). However, coefficients calculated with this
equation and used in analytical and numerical models are subjected to interpretation
and must be validated with observational results of velocity and salinity profiles.

We have seen that when the geometry of a transverse section (A), the uniform
longitudinal velocity component (u), the kinematic eddy diffusion coefficient (Kx)
and the initial and boundary conditions are known, it is possible to solve the
differential Eq. (7.98) for S = S(x, t) or S = S(x). The following statements,
according to Okubo (1964) and Fischer et al. (1979), should be noted: (i) Time
derivative describes the change of water property per tidal cycle, and A may
indicate the cross-sectional area at mean time interval of the tidal cycle; (ii) Because
of the cross-sectional area divergence, the effective mean flow velocity tends to
decrease towards the sea; (iii) On the other hand, the local fresh water inflow
through the sides of the estuarine may counteract, to some extent, the cross-section
divergence of the mean flow.

Similar expressions to Eqs. (7.97) and (7.98) with a few adaptations, may be
transformed into one-dimensional conservation equations for analysis of the one
dimensional concentration, C = C(x, t), diffusion of pollutants, based on the time
and space averaged equations formulated by:

@C
@t

þ u
@C
@x

¼ 1
A
½ @
@x

ðAKxC
@C
@x

Þ� 
 ðsources or sink termsÞ; ð7:99aÞ

or

A
@C
@t

þQf
@C
@x

¼ ½ @
@x

ðAKxC
@C
@x

Þ� 
 ðsources or sink terms): ð7:99bÞ

In these equations, C, is a non-dimensional concentration [C] = [MM−1] and
KxC [KxC] = [L2T−1] is the kinematic eddy-diffusion coefficient.

For the Eqs. (7.99a, 7.99b) the same restrictions hold as those indicated for
Eq. (7.98). A rigorous deduction of this equation, describing the space and time
variation of the pollutant diffusion in a one-dimensional estuary was developed by
Okubo (1964). The conditions for which it is appropriate to use for pollutant
diffusion in a one-dimensional estuary under steady-state condition are: (i) after a
critical initial time period; (ii) when, due to tidal fluctuations of cross-sectional
areas, the property concentration and density are sufficiently small compared with
the respective mean value; (iii) when tidal mean velocity weighted by
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cross-sectional area is used for velocity (u), instead a simple tidal mean velocity,
and; (iv) when an effective eddy diffusivity is defined, including non-homogeneity
within the cross-section, and the river discharge into the estuary is small.

7.4 Simplifyed Forms of the Continuity Equation

In Chap. 2, a simplified one-dimensional continuity equation was presented for an
estuary with width (B) and depth (H0) constants (Eq. 2.17, Chap. 2). Let us derive
another equation in which the condition that the width B 6¼ const., starting with the
bi-dimensional expression of the continuity (7.56a), performing its lateral integra-
tion from y = a(x, z) to y = b(x, z), the result is:

Zb

a

@ðuh)
@x

dyþ
Zb

a

@ðvh)
@y

dyþ
Zb

a

@h
@t
dy ¼ 0: ð7:100Þ

As h = H0 + η(x, t), in this equation it has been taken into account that ∂η/
∂t = ∂h/∂t. Applying the Leibnitz rule to the first term, calculating the integral in
the second term, and with the boundary conditions vh|x=a = vh|x=b = 0, it follows
that:

@

@x
½
Zb

a

ðuh)dy]þ
Zb

a

ð@h
@t
Þdy ¼ 0: ð7:101Þ

Because an estuary’s length is generally much less than one quarter of the
co-oscillating tidal wave length, the local depth (h) may be considered as inde-
pendent on x and y, and the Eq. (7.101) may be rewritten as:

@

@x
½
Zb

a

ðuh)dy]þ @h
@t

Zb

a

dy ¼0; ð7:102aÞ

and

@

@x
½
Zb

a

ðuh)dy]þB
@h
@t

¼ 0: ð7:102bÞ

As the u-velocity component is independent of the depth (z) and the water
column height (h), in the first term it may be substituted by an integral (as in
Eq. 7.56c); then, this equation may be re-written as:
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Þ¼ 0; ð7:103aÞ

or

@Q
@x

þB(
@g
@t

Þ ¼ 0; ð7:103bÞ

where the volume transport is denoted by Q = Q(x, t) and is calculated by

u[
Zb

a

ð
Zg

�H0

udz)dy] ¼ u(x, t)A ¼ Q(x, t): ð7:103cÞ

By the longitudinal integration of equation of Eq. (7.103b), from the estuary
head (x = 0) down to the mouth (x = L), it follows that,

Qf � QLðt) ¼
@g
@t

ð
ZL

0

Bdx) ¼ ð@g
@t

ÞAsu; ð7:104Þ

where Qf and QL(t) are the river discharge and the time variation of the volume
transport at the estuary mouth, respectively. The integration of the estuary width
(B) along its longitudinal length (L) may be identified as the surface area of the
estuary (Asu), which is dependent on the tidal height, Asu = Asu(η). If the river
discharge (Qf) is disregarded, this solution may be simplified as:

QLðt) ¼ �ð@g
@t

ÞAsu: ð7:105Þ

This equation may be used to estimate the volume transport through the mouth
of a hyper-saline estuary or coastal lagoon in arid regions, and indicates that the
temporal variation of the volume transport is proportional to the surface area and the
tidal oscillation. As this surface area may be determined by the hypsometric
characteristics of the coastal system (Fig. 7.7), with leveling techniques and aerial
pictures, and the tide may be predicted, it is possible to calculate approximately the
volume transport, QL = QL(t).

It should be noted that during the tidal flood (∂η/∂t > 0) and ebb (∂η/∂t < 0)
tides, the volume transport is negative QL < 0 and positive QL > 0, respectively.
Then, the volume transport balance, TC = CQL(t), associated with any known
conservative property concentration (C), may be used to estimate the importation
(TC < 0) or exportation (TC > 0) of substances. With the concentration in units of
property per volume [prL−3], the property transport is calculated in [prT−1].
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7.5 Application of the One-Dimensional Continuity
Equation

To exemplify an application of the one-dimensional continuity Eq. (7.92a, b), let us
investigate its analytical solution for a classical estuarine channel. Under the
assumption that in this estuary the velocity is uniform in the cross-sectional area,
the equation may be integrated from a section located at the estuary head (x = 0)
down to a longitudinal position x (Fig. 7.6):

Zx

0

@ðuA)
@x

dxþ
Zx

0

@A
@t

dx ¼ 0; ð7:106aÞ

or

ðuA)jx � ðuA)jx¼0 þ
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o

@A
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dx ¼ 0; ð7:106bÞ

where (uA)|x=0 = Qf. As the integration limits are independent on the time,

ðuA)jx þ
@

@t
ð
Zx

0

Adx) ¼ Qf ; ð7:107aÞ

or

Fig. 7.7 Schematic diagram
of a coastal lagoon showing
the inflow and outflow of
volume transport (QL) and the
associate maximum and
minimum flooding areas,
which may be calculate by
hypsometric techniques
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ðuA)jx þ
dV
dt

¼ Qf : ð7:107bÞ

In this equation, V is the volume of the estuarine water mass between the
cross-sections located from x = 0 and the arbitrary position x, and dV/dt is its time
variation. Solving this equation for the cross-section mean velocity, u = u(x, t),
gives,

u(x,t) ¼ 1
A
ðQf �

dV
dt
Þ; ð7:108Þ

where u = u(x, t) is the non-steady state u-velocity component generated by the
river discharge and the barotropic gradient pressure force due to tidal oscillation,
and its influence in the volume time variation (dV/dt). From this result, it is possible
to compare the current intensities during the ebb (uE) and flood (uF) tides. In effect,
because the river discharge may be taken as constant during the tidal period uf = Qf/
A, and the ebb velocity (uE) usually is higher than the flood (uF), because the
volume decrease (dV/dt < 0) of the mixing zone (MZ). During the flood,
dV/dt > 0, and its intensity uF < uE. Under steady-state condition dV/dt = 0 then
uf = Qf/A.

Taking into account that the mean free surface Asu is occupied by the MZ,
between the estuary head (x = 0) and the estuary mouth at longitudinal position x,
the geometric volume of the estuarine water mass is calculated by
VðtÞ ¼ Asugðx; t). Thus, the Eq. (7.108) may be rewritten as:

u(x,t) ¼ 1
A
ðQf � Asu

@g
@t

Þ; ð7:109Þ

which confirms that this velocity is generated by the river discharge and the bar-
otropic gradient pressure force. With this equation, the volume transport Q,
[Q] = [L3T−1] may also be calculated by,

Q(x, t) ¼ u(x, t)A ¼ Qf � Asu
@g
@t

¼ Qf �
dV
dt

; ð7:110Þ

which has similarities with Eq. (7.104).
In estuaries, the time-rate of the volume stored in the space between a

cross-section and its head may be approximate by sine functions of time (t) and the
angular frequency (x). Then, the integral of the Eq. (7.107b) during a complete
tidal cycle is given by (Pritchard 1958):

ZT

0

ðuA)dt ¼
ZT

0

Qfdt�
ZT

0

dV
dt

dt: ð7:111Þ
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As the river discharge Qf is constant, and the last integral on the right-hand-side
is equal to zero, as it is supposed that during a complete tidal cycle there will be no

time variation in the stored volume ðdVdt ¼ 0Þ in the mixing zone (MZ), then,

ZT

0

ðuA)dt ¼ QfT ¼ R, ð7:112Þ

This result confirms the fresh water volume conservation during this time
interval, and that the net volume transport is equal to R.

7.6 Application of the One-Dimensional Salt Conservation
Equation

The tidal prism models where semi-empirical developed without the formalism of
the principles of mass and salt conservation presented in this chapter. Additionally,
the basic ideas of Ketchum’s methods were described, taking into account the
physics of the continuum in the classical article of Arons and Stommel (1951),
which will be presented in Chap. 10.

In this topic, the mass and salt conservation equations will be applied with the
same hypothesis as the discrete models: one-dimensional, steady-state and
well-mixed estuaries. Let us consider a simple geometry (A = const.), with the
kinematic effective (eddy) diffusion coefficient (KH) in the MZ taken as constant. In
these conditions, because ∂A/∂t = 0, the continuity Eq. (7.92a, b) is simplified to

ð@uA@x ¼ 0Þ, and uA = Qf is independent of the longitudinal position. In turn, the salt
conservation Eq. (7.98) is simplified to:

uf
@S
@x

¼ KHð@
2S

@x2
Þ: ð7:113Þ

As the river discharge and the estuary geometry are known, the solution S = S
(x) of Eq. (7.113) is dependent only on the boundary conditions and a known KH

coefficient. As the salinity field is uniform in the cross section area, the problem has
been reduced to one dimension, and the differential Eq. (7.113) is an ordinary
second order differential equation with constants coefficients. Rearranging its terms
the equation to be solved is:

d2S

dx2
� uf
KH

dS
dx

¼ 0; ð7:114aÞ

or, reducing its order with a first integration from the river tidal zone (x = 0, where
S = 0), and the longitudinal position x in the mixing zone (MZ), gives

272 7 Hydrodynamic Formulation: Mass and Salt Conservation Equations

http://dx.doi.org/10.1007/978-981-10-3041-3_10


ufS ¼ KH
dS
dx

þA1; ð7:114bÞ

where A1 is an integration constant. Let us solve this equation in relation to a local
coordinate system with Ox oriented positively seaward from x = −L (boundary
TRZ/MZ) to x = 0 (estuary mouth) as shown in Fig. 7.8; with this orientation of the
u-velocity component generated by the river discharge, (uf) is positive.

At x = −L, the salinity and the product KH
dS
dx are equal to zero and the inte-

gration constant A1 = 0. Multiplying both members of the remaining equation by
the density, it follows that the seaward advective salt flux counter balances the eddy
diffusive salt flux due to the tidal forcing.

The simplifying hypothesis of this problem may limit its practical application
because some influences have not been taken in consideration (mainly bottom and
lateral friction, baroclinic forcing and vertical mixing). The solution, however, is
very interesting because it demonstrates the physical nature of the estuary and its
relationship with the main concepts presented in Chap. 6.

Returning to Eq. (7.114b), its solution with A1 = 0 simplifies to

S(x) ¼ S0expð ufKH
x): ð7:115Þ

This solution was determined with the following boundary conditions: the
salinity at the mouth (x = 0) is equal to the salinity at coastal region S(0) = S0 (the
only salt source), and the estuary is long enough that for L ! −∞ the salinity
decreases to zero S(−∞) = 0. As x < 0 and uf > 0, it is easy to show that this
solution identically satisfies these boundary conditions.

The equation for the longitudinal distribution of a solute discharged into a
steady-state well-mixed estuary forced by tides and river discharge, with transverse
sections that vary in the longitudinal direction A = A(x), was obtained in the
classical work of Maximon and Morgan (1955). Their solution, when particularized
for a constant transversal section (A = const.), reduces identically to the solution
(7.115).

With this analytical solution for S = S(x), it is possible to apply the Eq. (6.11)
(Chap. 6) to calculate the longitudinal variation of the fresh water fraction, f = f(x),
which is necessary to theoretically calculate the fresh water volume stored in the
estuary. Thus, this expression becomes,

f(x) ¼ 1� expð uf
KH

xÞ; ð7:116Þ

and for x ! −∞, this solution converges to one f(−∞) ! 1.
In these solutions (7.115 and 7.116), the longitudinal kinematic eddy diffusion

coefficient (KH) still remains an unknown physical quantity, which may be theo-
retically calculated by correlation of the turbulent fluctuations of the u-velocity and
salinity (Eq. 7.26). However, its order of magnitude may be estimated if the
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longitudinal distance between the estuary mouth and head (mixing zone length) is
known, along with the physical quantities such as Qf, A and S0. For example, if
Qf = 100 m3 s−1, A = 103 m2, S0 = 35o/oo and S(−L) = 1, Eq. (7.116) may easily
be solved for the coefficient KH, and some results are presented in Table 7.1.

Although this table only shows the coefficient dependence on the mixing zone
length, it is also directly dependent on the river discharge, fresh water fraction, and
the estuary geometry (transverse cross-section area and length). As the transverse
cross-section area usually varies along the estuarine channel, even for a constant
river discharge, this coefficient will be dependent on the longitudinal distance,
KH = KH(x). This dependence was first investigated by Stommel (1953b), solving
the Eq. (7.115) by finite differences around a longitudinal position, x,

KHðx) ¼ ufS(x)
DS

Dx ¼ QfS(x)
A(x)DS

Dx ¼ Qf ½f(x)� 1�
A(x)Df

Dx: ð7:117Þ

In the last term, the salinity S = S(x) was changed by the fresh water fraction, as
S(x) = S0[1−f(x)] and DS(x) = −S0Df(x). In this equation, the salinity and the fresh
water fraction are mean values at the cross-sections separated by a distance Dx, and
DS and Df are finite intervals of salinity and the fresh water fraction, respectively.

Equation (7.117) is a simple and direct method to determine the KH coefficient
using known quantities that may be obtained experimentally. With all variables in
the SI system of units, the kinematic coefficient, KH, is calculated in m2 s−1. For
well-mixed estuaries with mean dimensions and moderate river discharge, we may,

Fig. 7.8 One-dimensional model indicating the landward (x = −L) and seaward (x = 0)
longitudinal coordinates of the mixing zone (MZ) between its head and mouth, respectively

Table 7.1 Estimates of the longitudinal kinematic eddy diffusion coefficient (KH), based on the
mixing zone length (−L) and the following data: Qf = 100 m3 s−1, A = 103 m2 and S0 = 35o/oo

Mixing zone length L (m) Coefficient KH (m2 s−1)

36 1

360 10

3600 100

36,000 1000
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as a first approximation, adopt KH values between 3.0 � 102 m2 s−1 and
5.0 � 102 m2 s−1. Results obtained by various scientists who applied this method
are compared by Officer (1978).

With the theoretical solutions of salinity, S = S(x), and the fresh water fraction
f = f(x), it is possible to calculate the following fundamental physical quantities,
defined in Chap. 6: fresh water volume Vf stored in the MZ, flushing time (tq) and
flushing rate (F). To exemplify this procedure, let us take L = −104 m, and the same
values as we used previously: Qf = 100 m3 s−1, A = 103 m2, and S0 = 35.0o/oo.
With these values, it is easy to show that:

S(x) ¼ 35 expð3:6� 10�4xÞ; ð7:118aÞ

f(x) ¼ 1� S(x)
35

¼ 1� expð3:6� 10�4xÞ; ð7:118bÞ

Vf ¼ A
Z0

�L

f(x)dx ¼ AfLþ 2:8� 103½exp(� 3:6� 10�4L)� 1�g; ð7:118cÞ

and

F ¼ S0
S0 � S

Qf ¼
35

35� 9:5
Qf : ð7:118dÞ

Calculating these analytical solutions with the numerical values given above
gives the following results: Vf = 7.28 � 106 m3, tq = 20.2 h and F = 137 m2 s−1.
As this theory is applied to well-mixed estuaries, the flux rate (F) will be almost
constant due to the dominance of the diffusion in the mixing process. The longi-
tudinal variations of salinity and the fresh water fraction in this steady-state and
one-dimensional model are presented in Figs. 7.9a, b, respectively.

Applying the conservation Eq. (7.114a) to a conservative property, with the
same simplifying conditions as this example, and with its source located at the
estuary mouth, it is easy to verify that the solution is similar to the Eq. (7.115), with
the following substitutions: at the estuary mouth the salinity S0 by the maximum
concentration C0, and KH substituted by the corresponding eddy diffusion coeffi-
cient of the property KHC. Then, the longitudinal distribution of the property
concentration, C = C(x), decreases exponentially landward, following the expo-
nential salinity decrease. This result has already been used qualitatively in Chap. 6,
in a semi-empirical development (Eq. 6.83).

As a complementary exercise at the end of this topic, let us present another
solution of the salt conservation Eq. (7.113), but in terms of the fresh water fraction
(f). After integration of this equation, and considering the integration constant equal
to zero, it may be rewritten as:
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ufS� Kx
dS
dx

¼ 0; ð7:119Þ

and its first term may be associated with the mass conservation equation, for
uf = Qf/A. Taking into account that the fresh water fraction f = f(x) defined in the
Eq. 6.10 (Chap. 6), it follow that the salinity may be expressed in terms of the fresh
water fraction S ¼ S0ð1� fÞ; and

dS
dx

¼ �S0
df
dx

; ð7:120Þ

Fig. 7.9 Simulation of
longitudinal variations of
salinity and fresh water
fraction of a one dimensional
and steady-state well-mixed
estuary, with length L = −104

m, and kinematic coefficient
of eddy diffusion,
KH = 280 m2 s−1
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where 0 	 f 	 1. Combining Eqs. (7.119) and (7.120) and taking into account
the mass conservation equation, it follows:

ðQf

A
ÞSþ S0KHðdfdxÞ ¼ 0: ð7:121Þ

Dividing both members of this equation by S0, and knowing that the ratio S/S0 is
equal to (1 − f), the salt conservation equation in terms of the fresh water fraction is
rewritten as (Officer 1978):

Qf ¼ fQf � KHAðdfdxÞ: ð7:122Þ

Thus, the fresh water fraction, f = f(x), may be calculated solving the following
differential equation:

df
dx

¼ ðf � 1Þ Qf

KHA
; ð7:123aÞ

or

df
dx

¼ ðf � 1Þ uf
KH

: ð7:123bÞ

This equation satisfies identically the longitudinal variation of the fresh water

fraction: at the estuary mouth (f ! 0) and df
dx\0, thus f = f(x) decreases seaward.

Otherwise, at the estuary head df
dx ¼ 0, and f = f(x)|x=1! f = const. = 1. An

exponential solution of f = f(x) has already been presented in Eq. (7.118b).

7.7 Steady-State Concentration Distribution
of a Non-conservative Substance

A study of the longitudinal distribution of the concentration of a non-conservative
property (tracer), C = C(x), in a well-mixed estuary under steady-state conditions is
now presented as a particular solution of Eq. (7.99a). By hypothesis, the concen-
tration is almost invariable from one tidal cycle to the next, and the river and
effluent discharges are also constant during this time interval. As the concentration
of a non-conservative substance will be considered (for conservative, the longitu-
dinal variation follows the salinity very closely), its concentration may decrease
with time even without the influence of tidal diffusion, and it is necessary to add a
term into the equation to take that influence into account. In this case, the decrease
with time may be expressed according to the first order exponential decay,
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C(t) ¼ c0expð�ktÞ; ð7:124Þ

where c0 is the initial concentration, C(0) = c0, and k, [k] = [T−1] is a coefficient of
proportionality, and t = k−1 is the time required for the concentration to decay from
the initial value c0 to c0/e.

With these definitions, the conservation equation for calculation of the
steady-state longitudinal distribution, C = C(x), of a non-conservative substance,
undergoing a first order concentration decay, in a one-dimensional estuarine
channel is reduced to the following second order differential equation:

d2C

dx2
� uf
KHC

dC
dx

þ k
KHC

C ¼ 0; ð7:125Þ

relative to the same referential system presented in Fig. 7.8. The non-dimensional
coefficient KHC is a tracer’s kinematic eddy (effective) horizontal diffusion. Even
though this particular example has limited potential to be directly applied to an
estuary, its solution is of interest in showing the approximate forms of solutions that
can be expected, and it is appropriate to view this equation as a postulate (or
empirical) model, subject to verification (Fischer et al. 1979). This equation has as
general solution C(x) = emx, and the characteristic second grade root of this
equation has two solutions in the real numeric field:

C(x) ¼ c0 exp½ ufx2KHC
ð1
 ffiffiffiffiffiffiffiffiffiffiffiffi

1þW
p Þ�; ð7:126Þ

where W = 4KHCk/uf
2 is a non-dimensional quantity, and the x variable is negative,

according to the reference system used. Because the velocity generated by the river
discharge (uf > 0) in well-mixed estuaries is usually low, and the quantity W is
inversely proportional to uf, the value of W may be very large.

In order to exemplify the application of the solution presented in Eq. (7.126), let
us consider the input of a tracer in an estuary with a mass transport W, in kg s−1, in
the longitudinal position x = xw (xw < 0). Then, the initial condition C(0) = c0 is
satisfied, and the equation’s solution must be separated into two terms (Stommel
1953b, Fischer et al. 1979):

• Landward from the effluent throw position xw (x 	 - xw)

Cacðx) ¼ c0 exp½ uf
2KHC

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p
Þðx� xwÞ�: ð7:127aÞ

• Seaward from the effluent throw position (x 	 - xw)

Cacðx) ¼ c0 exp½ uf
2KHC

ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þw

p
Þðx� xwÞ�: ð7:127bÞ
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In these solutions, it is easy to see that for x = xw the concentration at this point,
C(xw), is equal to c0, C(xw) = c0 and, according to the simplifying hypothesis, the
initial concentration is determined by the equation,

c0 ¼ W
Qf

f0; ð7:128Þ

where f0 is the fresh water fraction at the effluent’s launching position, and W/Qf is
the initial concentration due to dilution by the river discharge (Eq. 6.78, Chap. 6),
without the influence of diffusion or concentration decay.

Let us exemplify numeric results using the above equations under the assump-
tion that the tracer input is made into the estuary whose longitudinal salinity dis-
tribution, S = S(x), and fresh water fraction, f = f(x), were theoretically obtained
and presented in the Eqs. (7.118a, b), which were calculated with A = 103 m2 and
Qf = 100 m3 s−1. For the tracer discharge point, we adopt the following positions:
xW = −3000 m and −5000 m, where, according to the Eq. (7.118b), f(x)|x=0 =
f0 = 0.65 and f0 = 0.83, respectively. Assuming of a tracer transport of 20.0 kg s−1,
KxC = 60 m2 s−1 and k = 2.3 � 10−4 s−1, the longitudinal landward (Cac) and
seaward (Cab) distributions from the discharge positions are given by:

CacðxÞ ¼ 0:13: exp½2:94� 10�3 xþ 3� 103
� ��; ð7:129aÞ

CabðxÞ ¼ 0:13: exp½�1:55� 10�3ðxþ 3� 103Þ�; ð7:129bÞ

and

CacðxÞ ¼ 0:17: exp½2:94� 10�3ðxþ 5� 103Þ�; ð7:130aÞ

CabðxÞ ¼ 0:17: exp½�1:55� 10�3ðxþ 5� 103Þ�: ð7:130bÞ

In these solutions, the initial concentrations C(xw) = c0 = 0.13 kg m−3 and
0.17 kg m−3, were calculated with Eq. (7.128); however, the primary phase of the
tracer decay has not been taken into account. As may be observed, due to the
seaward decrease of the fresh water fraction, the displacement of the tracer input in
this direction reduces the initial tracer concentration (c0).

Distributions of concentrations, C = C(x), for the discharge positions considered
in this exercise, are presented in Fig. 7.10, along with the corresponding salinity
S = S(x) and fresh water fraction f = f(x) variations, representing the longitudinal
behavior of a conservative property above and below the input position,
respectively.

The analytical solution of this problem of a conservative substance is related to
the semi-empirical solution of Ketchum (1955), shown in Fig. (6.14, Chap. 6), and
the analytical solution of Stommel (1953a) may be similarly interpreted. If salinity
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is introduced at the locations x = −6 km and −3 km, upstream of the outfall they
will follow the S = S(x) curves, as shown in Fig. 7.10; however, the remainder of
the solution downstream of the outfall their concentrations will follow the fresh
water concentration curves, f = f(x). In this simple case it is clear that no matter
what the location of the outfall, the concentration is every-where reduced upstream
of the outfall if the location of the outfall is moved towards the sea. This solution
also indicates that, up to the intersection of the curve S = S(x) with fresh water
fraction curve, f = f(x) indicates the maximum input concentration of the effluent.

Solutions for the concentration distribution, C = C(x), for a non-conservative
tracer discharged into the estuary by outfalls located at x = -3.0 � 103 m and
x = -5.0 � 103 m, are also shown in the Fig. 7.10. A remarkable feature of these
distributions is that the peak concentration, even at the outfalls, are very much
reduced in comparison to the conservative tracer. As shown in the figure, the tracer
concentration extends both upstream and downstream of the outfall and, unlike a
conservative tracer, its concentration can be reduced at a point bellow by an
upstream displacement of the outfall (Stommel 1953b; Ketchum, unpublished
report). These theoretical and practical results indicate the following influence of
the river discharge on the tracer longitudinal distribution: an increase in river dis-
charge causes an increase in the fresh water fraction in the mixing zone, reducing
the landward displacement of the tracer, and its initial concentration at the discharge
position, as well as the seaward concentration of a conservative substance.

Fig. 7.10 Longitudinal distributions of the concentration, C = C(x), of a non-conservative tracer
undergoing a first order decay, with the fresh water fraction, f = f(x) and salinity S = S(x),
simulating conservatives properties. The one dimensional solutions were obtained landward and
seaward of the tracer input position at −3000 m and −5000 m. (adapted from Stommel 1953a, b).
The estuary mouth is located at x = 0
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Chapter 8
Hydrodynamic Formulation: Equations
of Motion and Applications

Estuarine hydro- and thermodynamics processes control a variety of physical
phenomena which are described by the water level, field of motion (tidal currents
and gravitational circulation), and hydrographic properties (salinity, temperature,
pressure). These phenomena include the flushing and residence times, as well as
pollutant diffusion, erosion, sediment transport and sedimentation. Marine life is
also strongly influenced by these processes, not only physiological processes of the
individual organisms, their aggregation, stability, population growth and expansion
of populations.

In this chapter, let us assume that the equation of motion of a geophysical fluid is
known. The deduction of the terms of this equation, which formulates the gener-
ating and dissipative forces of the motion, may be found in several books (Sverdrup
et al. 1942; Lacombe 1965; Neumann and Pierson 1966; Pedloski 1979, among
others). However, the estuarine water body is enclosed by a particular geometry,
and special attention will be given to the simplifications of this equation to their
analytical and numerical solutions for the motion and mixing processes.

8.1 Equations of Motion

To formulate a problem related to the conservation equations of mass, salt, or any
property (Chap. 7) of an estuary, it is necessary to associated to them with the
equation of motion to theoretically calculate the estuarine circulation. The equation
of motion is named the Navier-Stokes equation, and has been adapted to geo-
physical fluids. The horizontal components of this equation, in relation to a
Cartesian reference system, Oxyz, are:
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with the Oz axis oriented in the direction contrary to the gravity acceleration ð g!Þ.
The notations u, v and w indicate the velocity components according to the Ox, Oy
and Oz axis, respectively.

The terms ∂u/∂t, ∂v/∂t and ∂w/∂t are the local accelerations components and the
non-linear terms [∂(uu)/∂x, ∂(uv)/∂y and ∂(uw)/∂z, and [∂(vu)/∂x, ∂(vv)/∂y and
∂(vw)/∂z are advective accelerations, introduced according to the Euler’s expan-
sion. When the local and advective accelerations are zero, the motion is said to be in
steady-state. The resulting acceleration or motion attenuations are due to the forces
acting in the second member of Eqs. 8.1 and 8.2; the pressure gradient force
components, per mass unity, first terms on the right-hand-side, are calculated in a
fixed point in space, while the fluid elements themselves move through it. The
motion attenuation is due to the frictional shear stresses forces, and its formulations
are presented in the last three terms of the of equation components.

As the estuarine water mass is a geophysical fluid, its motions are deflected by
the Coriolis acceleration defined by the parameter f0 = 2Xsin(h0), where h0 is the
geographical latitude and X = 7.29 � 10–5 s–1 is the modulus of the angular
velocity of the Earth. The latitude varies between the intervals 0 � h0 � 90 ° and
−90 � h0 � 0 °, in the northern and southern hemispheres, where f0 � 0 and
f0 � 0, respectively. In the southern hemisphere (−f0v), in wide and highly
stratified estuaries forced by diurnal tides, the dynamical influence of the Coriolis
acceleration in the longitudinal component of the equation of motion may produce a
lateral ascending slope of the halocline to the left of the motion; the layer over this
interfaced is deeper and the motion may be more intense. In the article of Chant
(2010), the importance of the dynamical balance between friction and the Coriolis
acceleration (Ekman forcing) has been emphasize that, in fact the Earth’s rotation,
can be an important contributor to the structure not only for lateral, but also along
channels flows, even in estuaries that are significantly narrower than an internal
Rossby radius, which is inversely proportional to f0.

The first term to the right of the second member of Eqs. 8.1 and 8.2 is the
gradient pressure force per unit of mass. As shown by Kinsman (1965) in the
deduction of this simple expression, which has the pressure (p) as the only
unknown, there are two basic simplifications in a cubic volume element: (i) the
density is approximate by a constant value (q = const.), and (ii) the pressure
variation, from one side of the cubic volume to the opposite one, varies linearly
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through the distances dx, dy and dz. The quantities sxx, sxy, sxz, syx, syy and syz are
the Reynolds turbulent shear due to the internal dissipative frictional forces,
expressed in force per unit area, with dimension of [ML–1T–2]. The frictional force,
such as wind shear, acting on the air-sea interaction layer, is responsible for
accelerating the water motion as it transfers some of its energy to the water, being
important mainly in wide estuaries and coastal lagoons. All terms of Eqs. (8.1) and
(8.2) have the dimension of acceleration, or force per unit of mass, but sometimes
they will be referred generically in this text as forces.

Similar to the open ocean, in an estuary the vertical velocity component (w) is
very low in comparison with the horizontal components u and v (w � u, v), Then,
in the Oz component of equation of motion, the local and advective accelerations of
vertical motions have very low orders of magnitude compared with the other terms,
and may be disregarded. As the vertical frictional shear stress szx, szy, and szz are
also parameterized as functions of the shear of the vertical velocity component (w),
they may also be disregarded. The vertical Coriolis component is another term of
the equation of motion which is very small in comparison to the gravity acceler-
ation, and may also be disregarded. Then, the vertical component of the equation of
the motion used to solve problems related to ocean and estuarine circulation is
reduced to the classical hydrostatic equation,

1
q
@p
@z

¼ �g, ð8:3Þ

where g is the modulus of the gravity acceleration (g � 9.8 m s–2).
This approximation, disregarding the vertical accelerations components (local

and advective), but taking into account the vertical velocity component (w) in the
advective accelerations of Eqs. (8.1 and 8.2), may be justified if |w| � O(uH0/L),
where L is the estuary length. Retaining the w-velocity component in the equation
of motion simplifies its solution, and it is possible to calculate the w-component,
closing the tridimensional character of gravitational estuarine circulation (Stommel
1953a). As shown in Chap. 2 (Eq. 2.10a, b), when the hydrostatic equilibrium is
assumed (Eq. 8.3), the gradient pressure force has three components: barometric,
barotropic and baroclinic. Although the tidal oscillation is one of the main forcing
of estuarine circulation, the hydrostatic approximation is valid because the wave
length of the diurnal or semidiurnal components is usually greater than 500 km.

The components of the Reynolds frictional stress are generated by the turbulent
velocity variations. Then, the dependent variables u, v, w, p and q of these com-
ponents are mean values calculated over a time interval that is large enough to
eliminate the turbulent fluctuations of velocity, but short enough for these mean
values to still be functions of time. In the classical work of Osborne Reynolds,
published in 1884, the frictional stress components were defined as functions of the
turbulent velocity fluctuations u′, v′ and w′, and parameterized by the eddy
dynamic viscosity coefficients, Axx, Axy, Axz, Ayx, Ayy and Ayz, which are several
orders of magnitude higher than the corresponding molecular coefficients.
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This parameterization was made semi-empirically and by analogy to the molecular
shear stress, which is characteristic of the laminar motions and are expressed by:

sxx ¼ �q\u0u0 [ ¼ �Axx
@u
@x

; ð8:4Þ

sxy ¼ �q\u0v0 [ ¼ �Axy
@u
@y

; ð8:5Þ

sxz ¼ �q\u0w0 [ ¼ �Axz
@u
@z

; ð8:6Þ

syx ¼ �q\v0u0 [ ¼ �Ayx
@v
@x

; ð8:7Þ

syy ¼ �q\v0v0 [ ¼ �Ayy
@v
@y

; ð8:8Þ

syz ¼ �q\v0w0 [ ¼ �Ayz
@v
@z

: ð8:9Þ

The dynamic coefficients of viscosity have as dimensions [ML–1T–1] (expressed
in kg m–1 s–1 in SI units). According to the notations used, the symbol < > indi-
cates a time mean value, \[ ¼ ð1 =DtÞ R ðÞ dt, and the integral is calculated
between the limits 0 and Δt, and the finite value of this quantity is the correlation of
the turbulent velocity fluctuations, that multiplied by the density has the dimension
of shear stress (force per unit of area [ML–1T–2]), which in SI units is expressed in
Pascal (Pa = 1 N m–2). For these eddy viscosity coefficients, the following sim-
plifications are usually assumed in analytical solutions of the equation of motion:

Axx ¼ Axy ¼ Ax; Ayx ¼ Ayy ¼ Ay; ð8:10Þ

and

Axz ¼ Ayz ¼ Az: ð8:11Þ

As these coefficients are defined by random velocity fluctuations and parame-
terized as functions of the mean velocity (u, v) gradients, they become dependent on
the motion characteristic rather than the estuary’s physical properties. These coef-
ficients also are dependent on the spatial scale of the motion, and there is no simple
method for its determinations unless the random velocity fluctuations are accurately
measured. To date, this has remained difficult to solve. In turn, the vertical eddy
viscosity coefficient (Az) is also dependent on the vertical stability of the water
column; if there is stable stratification, turbulent mixing requires some of the tidal
energy to be used to raise the potential energy of the water column, but most of the
vertical mixing energy is extracted from the bottom and internal shear forced by tidal
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currents (Fischer et al. 1979). Hence, it is natural to find expressions of this eddy
coefficient in function of the Richardson number (Ri) (Eq. 2.34, Chap. 2), such as
the Munk and Anderson (1948) classical expression.

Numerical values of the eddy kinematic viscosity coefficients (Nz = Az/q, is the
kinematic version of Az, and [Nz] = [L2T–1], were calculated from tidal current
measurements off Red Wharf Bay (England) by Bowden and Fairbairn (1952); at a
given depth this coefficient varied during the tidal period and was related to the
amplitudes and phases of the semi-diurnal tidal constituents. To overcome this
difficulty due to its variability, the frictional mean kinematic eddy viscosity coeffi-
cient was defined, and used in the steady-state analytical models as in the articles of
Hansen and Rattray (1965), Officer (1977) and others, with values ranging from
Nz = 4.1 � 10–3 m2 s–1 to 9.0 � 10–5 m2 s–1, at the surface and mid depths,
respectively. The kinematic eddy diffusion coefficient has also been calculated by
Pritchard (1956) and Bowden (1963) for the Mersey estuary (UK), with values
ranging from Kz = 5.0 � 10–2 m2 s–1 to Kz = 7.1 � 10–3 m2 s–1 at the surface and
mid-depths, respectively.

With the parameterizations presented above (Eqs. 8.4 to 8.9) and the approxi-
mations of equalities (8.10) and (8.11), the analytical simulations of the eddy shear
stress, responsible for internal energy dissipation, may be incorporated in the
horizontal equations of motion, which are expressed as:
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There is no clear evidence supporting the simplifications required to obtain the
analytical expressions of Eqs. (8.12 and 8.13), but the hypothesis for the simplest
form of the third component (Eq. 8.3) of the general equation of motion was
justified. Others simplifications will be made to these equations according to the
relative importance of their terms and estuary geometry, enabling relative simple
analytic and numerical solutions. Because the dissipative terms Ax(∂u/∂x), Ax(∂v/
∂y), Ay(∂u/∂y) and Ay(∂v/∂y) generally have orders of magnitude much less than
Az(∂u/∂z) and Az(∂v/∂z), they may be disregarded in analytical solutions. With
these simplifications the horizontal components of the general equation of motion
are reduced to:
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and
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To solve some theoretical problems of estuarine dynamics using a simplified
formula, while taking into account some of the physical characteristics in natural
estuarine systems, a mean depth value for the viscosity coefficient Az (or Nz) may
be used. In these conditions, the equations are simplified to:
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and
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where Nz = Az/q is the mean kinematic eddy viscosity coefficient in the water
column. This coefficient has dimensions of [L2T–1] (m2 s–1 SI units).

As previously shown (Eq. 2.10a, b Chap. 2), the first term in the right-hand-side
of these equations are the barotropic and baroclinic pressure gradient pressure force,
generated by inclinations of the free surface and mass (density or salinity) longi-
tudinal distribution in the estuarine water body, respectively. Disregarding the
barometric component of the gradient pressure force, the Ox and Oy components
are:
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and
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where η = η(x, y, t). Substituting in the baroclinic component the longitudinal the
density gradient by the corresponding salinity gradient using the linear equation of
state of seawater q(S) = q0(1 + bS), it follows:
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with the ratio q/q0 approximate by one (1) in the last expression. As shown in the
Chap. 2, the barotropic component (first terms on the right-hand-side of the
equations) is dependent on the time oscillation and the free surface inclination in the
longitudinal (∂η/∂x) and lateral (∂η/∂y) directions, but is independent on the depth
(z). The barotropic circulation in the longitudinal direction (tidal currents) pre-
dominates in the majority of estuaries. As the longitudinal component varies
periodically, the seaward (∂η/∂x > 0) and the landward (∂η/∂x < 0) intensities are
dependent on the tidal height; at high and low tidal heights, the water motion tends
to zero (slack water). The vertical mixing process is also dependent on the tidal
forcing and on the vertical stratification of the estuarine water mass. As demon-
strated by Pritchard (1954), it is possible to estimate the vertical salt eddy diffusion
coefficient (Kz) if the magnitude of the tidal oscillatory circulation is known.

In the second term on the right-hand-side of Eqs. (8.18a, b and 8.19a, b), the
baroclinic pressure gradient intensity is expressed by the longitudinal (transversal)
density (salinity) gradient, as a function of the depth; it is always oriented landward,
because ∂q/∂x and ∂S/∂x) are positive. As changes in the salinity field occur during
the tidal cycle, this component presents complex time variations during the tidal
cycle. Although the intensity of this component is one order of magnitude less than
the barotropic pressure gradient, and it is an important component of the estuarine
circulation. The increase of the u-velocity component with depth due to the baro-
clinic gradient pressure and the bottom shear stress, is one of the forces responsible
for the vertical velocity shear (∂u/∂z), and the vertical mixing variation due to the
river discharge and/or the tidal forcing intensities may be investigated with the
estuarine Richardson number (Eq. 2.36, Chap. 2). The transversal components of
the baroclinic pressure gradient (Eqs. 8.18b and 8.19b), will be used later in the
presentation of a simple model related to the secondary circulation.

During the ebb tide, the barotropic component of the gradient pressure force acts
in the opposite direction to the baroclinic component, and the intensity of the
u-velocity component decreases with depth; however, during the flood tide, these
components are oriented landward, resulting in the longitudinal velocity increasing
with depth. In partially mixed estuaries, due to the simultaneous action of the
barotropic and baroclinic components and the upward motion due to the vertical
mixing, the time mean vertical velocity profile during one or more tidal cycles,
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simulating nearly steady-state circulation, presents a characteristic bi-directional
motion which is seaward and landward in the upper and lower layers, respectively.

The equations ofmotion (8.14) and (8.15), associatedwith the continuity Eq. (7.19),
were simplified and reduced to a set of equations in the coordinates system Oxz. This
equation system was solved by Ianniello (1979) to derive analytical solutions for the
longitudinal and cross-channel residual currents induced in narrow tidal channels with
variable breadth and depth. The systemwas forced byfirst order non-linear tidal forcing
with the following simplifications: sources of river input, as well as wind stress were
omitted, and the ratio of the tidal amplitude (η0) to the local depth (H0) was supposed to
be much less than one (�1). Solutions for channels with exponentially decreasing
breadth and depth profiles, in comparison to the solutions for a channelwith breadth and
depth constants, indicate significant differences in the residual currents.

The intensity of the baroclinic component is dependent on the longitudinal
density (salinity) gradient and the depth (last term on the right-hand-side of
Eqs. (8.18a and 8.19a). To demonstrate the importance of this component, let us
examine Fig. 8.1, which presents vertical profiles of the isopicnals, q − (1/2q), q,
and q + (1/2q) in an estuary with two distinct vertical stratifications: well-mixed
(vertical isopicnals) and highly stratified, which may be generated by low and high
river discharges, respectively. Using the method of finite differences to calculate the
longitudinal density gradient in the vicinity of the point M, we may observe an
inequality in the gradients Δq/Δx < Δq/Δx′, for Δx′ < Δx. Then, the longitudinal
density gradient and, consequently, the intensity of the baroclinic component are
also dependent on the vertical stratification of the water column, increasing with
higher vertical stratification, and decreasing when the estuary is almost vertically
homogeneous.

Fig. 8.1 Different vertical density stratification to calculate by finite differences the longitudinal
density gradient and the intensity of the baroclinic pressure gradient force in the vicinity of the
point M
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The previously introduced Eqs. (8.1–8.3) and (8.12 and 8.13) associated with
the equations of mass conservation (Eq. 7.19, Chap. 7) and salt conservation (Eq.
7.25, Chap. 7), and a simplified equation of state of seawater (Eq. 4.11, Chap. 4)
constitute an Eulerian equation system with six partial differential equations having
u, v, w, p, q and η as unknowns, and the initial and boundary conditions are
correctly specified, these unknowns may theoretically be calculated in the space and
time (x, y, z, t).

As the objective of a tridimensional model is in generally to theoretically cal-
culate sea-surface elevations, η = η(x, y, t), velocity components, u = u(x, y, z, t),
v = v(x, y, z, t), w = w(x, y, z, t) and salinity S = S(x, y, z, t) fields, this equation
system will be a closed one (number of equations is equal to the number of
unknowns) if the coefficients of eddy viscosity and diffusion are also known.
However, the following quantities are also necessary:

• Estuary geometry;
• River discharge;
• Salinity of the coastal region;
• Amplitude and tidal phase at the estuary mouth;
• Wind field at the free surface.

The components of the equation of motion (Eqs. 8.12 and 8.13) are the starting
point for reducing the tri-dimensional formulation to the bi- and one-dimensional
formulations, using the theoretical procedure already made (Chap. 7) to the equa-
tions (mass conservation) and salt conservation, these simplifications are mainly
necessary for analytic solutions.

8.2 Boundary and Integral Conditions

To guarantee a unique solution to the equation of motion, the determinate initial,
upper and lower boundary conditions and, in some cases, specified conditions
expressed as integrals (boundary integral conditions) must be specified. The initial
conditions states values to the unknowns at the initial instant of time (t = 0), as for
instance, the velocity field is at rest at a given spatial position u(x, y, z, 0) = 0; v(x,
y, z, 0) = 0, w(x, y, z, 0) = 0, and the boundary conditions indicate specified values
at the boundaries of the space occupied by the estuarine water mass.

To simplify the presentation of boundary and integral boundary conditions, let
us start with the equation of motion (8.16). To establish the lower and upper
boundary conditions, both members of the equation must be multiplied by the
differential, dz, whose terms integrate from the bottom (z = −H0) to the surface
(z = η),
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Taking into account that the gradient pressure force has two components, the
barotropic and baroclinic (Eq. 8.18a), the first term on the right-hand-side may be
written as,
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taking into account that η � H0, and that the barotropic component is independent
of depth, @

@z ð@g@xÞ ¼ @
@x ð@g@zÞ ¼ 0: If the longitudinal density gradient is also inde-

pendent of depth (taken, for example, as a depth mean value), it follows that:
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Although this relationship doesn’t characterize a boundary condition, it indicates
that the barotropic and baroclinic components may be considered, as a first
approximation, to be proportional to H0 and H2

0, respectively.
The integral of the shear stress due to the eddy viscosity of the fluid (last term of

the right-hand-side of Eq. 8.20) may be physically interpreted as the difference of
the longitudinal components of the wind stress (sWx) and the bottom friction (sBx),
and it is simplified to
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The quantities sWx and sBx have dimensions of force per unit of area (ML–1T–2).
The wind component (sWx) acts on the estuarine free surface and may accelerate or
non-accelerate the estuarine circulation due to changes in the wind direction, and
the bottom stress sBx attenuates the motion due to the frictional forces on the
bottom; thus, these stresses are the upper and lower boundary conditions,
respectively.
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The wind stress (sWx) must be taken into account in the theoretical simulation of
estuaries which have a large free surface and an energetic wind field. However, this
forcing has also been taken into account in studies of the influence of the wind
stress on the dynamics of shallow and small estuaries as, for example, in those
investigated by Geyer (1997). The imposition of the upper boundary condition is
analytically formulated by,

sWx ¼ qNz
@u
@z

jz¼g ¼ Az
@u
@z

jz¼g; ð8:24Þ

where Az = qNz, [Az] = [ML–1T–1] is the dynamic eddy viscosity coefficient. With
the orientation axis according to Fig. 8.1 and the wind stress is acting in the Ox axis
direction, sWx > 0; when the wind forcing may be disregarded, this boundary
condition is reduced to a null vertical velocity shear, (∂u/∂z|z=η) = 0.

When this boundary condition is applied (sWx 6¼ 0), it will appear explicitly as a
forcing term in the solution of the equation of motion, and the wind speed (U) must
be taken into account for its determination using the semi-empirical relationship:

sWx ¼ qarCDjUjUV: ð8:25Þ

The quantities |U| and UV are the wind intensity modulus and its component in
the direction of the Ox axis, calculated by

UV ¼ Ucos ð#Þ; ð8:26Þ

according the methodology presented in Chap. 5 (Eq. 5.6).
The ocean’s free surface responds to the wind shear stress by generating a

motion intensity that is approximately 1.3% of the wind velocity, measured at a
height of 10 m above the sea-level. This difference between the wind velocity and
that generated at the ocean surface is due to the density differences of the seawater
and the air. If the wind intensity is less than 6 m s–1, a typical value of the drag
coefficient (CD) is 1.1 � 10–3; however, for higher wind intensities this coefficient
increases almost linearly, according to the equation (Smith 1980; Gill 1982)

CD ¼ ð0:61þ 0:063jUjÞ � 10�3; ð8:27Þ

with the wind intensity in m s–1. Alternative equations for calculating the CD

coefficient may be found in the classical Roll’s (1965) and Charnock’s (1981)
books and in Liu et al. (1979).

The bottom boundary condition, denoted by sBx, is a shear stress which dissi-
pates energy and is formulated by

sBx ¼ qNz
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Depending to the problem where this boundary condition will be applied, it may
assume one of the following characteristics for the main estuary axis:

• Maximum friction, when u(x, y, z, t)|z=−H0 = 0;
• Minimum friction, when sBx = 0, or ∂u/∂z|z=−H0 = 0; or
• Moderated friction, when sBx 6¼ 0.

The first condition is often referred as a simplified condition or without slippery,
and is also known as imposition of the adherence principle. In the second case, as
the dynamic eddy viscosity coefficient is different from zero (Az 6¼ 0), this implies
that the vertical velocity shear must be zero at the bottom.

The final characteristic of a moderate bottom friction is usually the best con-
dition to apply to minimize the deviation between theoretical and experimental
results of vertical velocity profiles. Investigations of wide channels with free surface
have indicated that the bottom shear stress may be parameterized as a function of
the square of the velocity. For a partially-mixed estuary (type 2 or B), this
parameterization is given by

sBx ¼ qgu

C2
y

ðu2 þ v2Þ1=2; ð8:29Þ

where Cy is the Chézy coefficient and its dimension [Cy] = [L1/2T–1]. This coeffi-
cient was obtained by the French engineer Antoine Chézy in 1769, to analytically
describe the uniform and one-dimensional velocity in a channel. This equation of
motion may be theoretically obtained from the balance of gravity and frictional
forces. However, in the Chézy’s pioneer investigation, the analytical formulation
was obtained from experimental results in channels with different free surface
slopes, and observational velocity data obtained in the Seine river (Paris, France).
The uniform velocity (u) is expressed by:

u ¼ Cy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RHð@g
@x

Þ
r

; ð8:30aÞ

and the quantities in this equation are:

• The Chézy coefficient calculated by: Cy ¼
ffiffiffiffiffi
2g
fr

q
, where fr is a non-dimensional

parameter (fr = 1 in SI units). Its dimension is [Cy] = [L1/2T–1].
• RH is the hydraulic radius, defined by the ratio of the transversal section area of

the channel (A) and the wet perimeter (PW): RH = A/Pw. The perimeter, PW, is
defined as the contour length of the cross section in contact with the water,
which effectively exerts frictional resistance to the motion. According to this
definition [RH] = [L].

In 1867, almost one century after the Chézy coefficient had been used in
Hydraulics, the French engineer Philippe Gauckler, introduced the known Gauckler
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formula, to calculate the u-velocity in channels, which was later re-developed by
the Irish engineer Robert Manning in 1890, and it is also named Manning’s
formula:

u ¼ g1=2ðRHÞ2=3
n

ð@g
@x

Þ1=2: ð8:30bÞ

In this equation, u has the same meaning as in Eq. (8.30a), and n is the Manning
number which simulates the energy dissipation by frictional forces, and its dimen-
sion is [n] = [L1/6]. Comparing Eqs. (8.30a and b), it follows that the relationship

with the Chézy coefficient is: n ¼ g1=2R1=6
H

Cy
. Values of the Chézy coefficient and the

Manning numbers vary according to the frictional forces at the bottom of the channel
and, according to the literature, have orders of magnitude of 60.0 m1/2s–1 and
0.03 m1/6, respectively. The low values of the Manning’s friction coefficient
(n = 0.015 — 0.020 m1/6) found in the Fly river estuary (Papua New Guinea) and
the South Alligator river (Australia) by King and Wolanski (1996) were attributed to
be due the drag reduction by the suspended clay and/or to fluid mud on the bottom,
thus relaxing the non-slip condition for the bulk of the water column.

As the motion in estuaries is predominantly longitudinal, the bottom shear stress
(Eq. 8.29) simplifies to:

sBx ¼ qg j u j u
C2
y

¼ qk j u j u, ð8:31Þ

where k ¼ g =C2
y is a non-dimensional coefficient named roughness coefficient. This

expression is formally similar to the previously presented analytical expression of
the shear stress as function of a reference velocity (s ¼ qCDU2

r ; Eq. 5.14, Chap. 5).
Because, in the theoretical deduction of the Chézy equation, the frictional force per
unit area was taken as proportional to the square of the velocity, which is uniform in
the cross sectional area, the quantity |u| in the above equation is the velocity
modulus.

Experimental results indicate that the Chézy coefficient depends not only on the
bottom slope, but also on the shear at the bottom and on the channel geometry.
Therefore, care should be taken when applying theoretical models to estuarine
channels and simulating the energy dissipation with Eq. (8.31). The Chézy coef-
ficient variations may be used to calibrate the model results against experimental
data.

As the rough or slippery bottom characteristic of estuarine channels is also
related to tidal currents intensities, another analytical expression which may be
applied under moderate bottom friction was formulated in the classical article of
Bowden (1953) and applied by Prandle (1982):
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sBx ¼ qNzð@u
@z

Þjz¼�H0
¼ q ð4

p
ÞkU0ujz¼�H0

; ð8:32Þ

where U0 is the velocity amplitude generated by the tide, and k is a
non-dimensional coefficient. As this equation is related to a bottom boundary
condition, the velocity at the bottom is theoretically calculated by the general
equation of motion.

Let us now present the integral boundary condition used in bi-dimensional
models in the Oxz space. This boundary condition is obtained from the continuity
equation, and thus represents an alternative formulation of this principle to trans-
form the set of equations to be solved as a hydrodynamic closed system (the
number of equations is equal to the number of unknowns). As a starting point, the
continuity equation is integrated in a transversal section (Eq. 7.92a, Chap. 7);
taking into account that u-velocity component is uniform in the cross-section area,
this equation may be written as:

@

@x
½
ZZ

A

u(x, z, t)dA]þ @A
@t

¼ 0; ð8:33Þ

where:

½
ZZ

A

u(x, z, t)dA] ¼ u(x, z, t)A: ð8:34Þ

Integrating Eq. (8.33) from a position at the estuary head, x = 0, to a generic
seaward position, x, and with a river discharge Qf (Fig. 8.2), the result is (Pritchard
1971):

Fig. 8.2 Schematic diagram of a partially mixed estuary. The river input and the mixing zones are
indicated by TRZ and MZ, respectively. Zero (0) and x indicates the initial and final integration
interval
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ZZ

A

u(x, z, t)dA� Qf þ
@

@t
ð
Zx

0

Adx) ¼0: ð8:35Þ

As the result of Eq. (8.35) is equal to the one obtained in Chap. 7 (Eq. 7.107a, b)
and, as its last term is the water volume landward of the cross-section located in the
position x, it follows that:

ZZ

A

u(x, z, t)dAþ @V
@t

¼ Qf : ð8:36Þ

Under steady-state condition, ∂V/∂t = 0, and taking into account that the inte-
grand in the first term in the left-hand-side is constant in the cross-section area
(laterally homogeneous estuary), this equation is reduced to:

B
Zg

�H0

u(x, z)dz ¼ Qf ð8:37Þ

where the estuary width, B ¼ Rb

a
dy ¼ ðb� a). Under the assumption that

B = const., A = B(H0 + η)�BH0, and Qf = ufBH0, the equation is reduced to:

1
H0

Z0

�H0

u(x,z)dz ¼ Qf

A
¼ uf : ð8:38Þ

Hence, we have an alternative relationship to the continuity equation. As it is
applied by an integral formulation, it is referred to as an integral boundary con-
dition. In particular, if, in a given problem, it is necessary to impose a null volume
transport, this boundary condition is reduced to

Z0

�H0

u(x,z)dz ¼ 0: ð8:39Þ

The equations of motion, continuity and salt conservation, associated with an
equation of state of seawater and the appropriate initial and boundary conditions,
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form a system of equations which includes the main forcing and the energy dis-
sipation that control the circulation and mixing processes of an estuarine system.

8.3 Bi-Dimensional Formulations: Vertical and Lateral
Integration

In Chap. 7, we presented the bi-dimensional formulations of the mass (continuity)
and salt conservation equations used in solutions of vertical and laterally homo-
geneous estuaries, which have (x, y, t) and (x, z, t) as independent variables,
respectively. Similarly, the main principles related to the deduction of the
bi-dimensional circulation, starting with the tridimensional equations of motion,
will be presented in this here.

8.3.1 Vertical Integration

To obtain the vertically integrated equation of motion, which can be applied in
studies of vertically homogeneous estuaries, let us start with the Eqs. (8.14 and
8.15), where the lateral momentum exchanges are considered negligible. The ver-
tical integration of these equations in the water column from z = −H0(x, y) and
z = η(x, y, t) are

Zg

�H0

@u
@t
dzþ

Zg

�H0

@ðuu)
@x

dzþ
Zg

�H0

@ðuv)
@y

dzþ
Zg

�H0

@ðuw)
@z

dz� f0

Zg

�H0

vdz

¼ �
Zg

�H0

1
q
@p
@x

dzþ
Zg

�H0

1
q
@

@z
ðAz

@u
@z

Þdz, ð8:40Þ

and

Zg

�H0

@v
@t
dzþ

Zg

�H0

@ðvu)
@x

dzþ
Zg

�H0

@ðvv)
@y

dzþ
Zg

�H0

@ðvw)
@z

dzþ f0

Zg

�H0

udz

¼ �
Zg

�H0

1
q
@p
@y

dzþ
Zg

�H0

1
q
@

@z
ðAz

@v
@z

Þdz: ð8:41Þ
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Applying the Leibnitz rule of derivation of an integral to the terms in the
left-hand-side of Eq. (8.40), and applying the upper and lower boundary conditions
to the last term of the right-hand-side of this equation it follows that:

@

@t
ð
Zg

�H0

udz)þ @

@x
½
Zg

�H0

ðuu)dz]þ @

@y
½
Zg

�H0

ðuv)dz]

� ujg
@g
@t

þ uj�H0

@ð�H0Þ
@t

� ðuu)jg
@g
@x

þðuu)j�H0

@ð�H0Þ
@x

� ðuv)jg
@g
@y

þðuv)j�H0

@ð�H0Þ
@y

þðuw)jg � ðuw)j�H0 � f0

Zg

�H0

vdz

¼ �
Zg

�H0

ð1
q
@p
@x

Þdzþ 1
q
ðsWx � sBxÞ:

ð8:42Þ

Factoring the terms of the left-hand-side of the equation, which becomes zero
due to the surface and bottom boundary conditions (u|−H0 = u|η = 0),

uj�H0
½@ð�H0Þ

@t
þ uj�H0

@ð�H0Þ
@x

þ vj�H0

@ð�H0Þ
@y

� wj�H0
	 ¼ 0; ð8:43Þ

and

ujg½
@g
@t

þ ujg
@g
@x

þ vjg
@g
@y

� wjg	 ¼ 0: ð8:44Þ

Thus, the Ox component of the equation of motion is reduced to the following
expression:

@

@t
ð
Zg

�H0

udz)þ @

@x
½
Zg

�H0

ðuu)dz]þ @

@y
½
Zg

�H0

ðuv)dz]� f0

Zg

�H0

vdz

¼ �
Zg

�H0

1
q
@p
@x

dzþ 1
q
ðsWx � sBxÞ: ð8:45Þ

As the estuary is vertically homogeneous, the integration may be completed, and
the longitudinal component of the general equation of motion is simplified to:

@ðuh)
@t

þ @ðuuh)
@x

þ @ðuvh)
@y

� f0vh ¼ � h
q
@p
@x

þ 1
q
ðsWx � sBxÞ: ð8:46Þ
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With a similar procedure, it follows that the equation to calculate the transversal
vertically integrated velocity component (v) is:

@ðvh)
@t

þ @ðuvh)
@x

þ @ðvvh)
@y

þ f0uh ¼ � h
q
@p
@y

þ 1
q
ðsWy � sByÞ: ð8:47Þ

When combined with the corresponding bi-dimensional form of the continuity
Eq. 7.56a (Chap. 7), Eqs. (8.46) and (8.47) may be transformed into expressions
that are more convenient for practical applications. Thus, they are simplified to:

@u
@t

þ u
@u
@x

þ v
@u
@y

� f0v ¼ � 1
q
@p
@x

þ 1
qh

ðsWx � sBxÞ; ð8:48Þ

and

@v
@t

þ u
@v
@x

þ v
@v
@y

þ f0u ¼ � 1
q
@p
@y

þ 1
qh

ðsWy � sByÞ: ð8:49Þ

It should be noted that in the longitudinal component (Eq. 8.48), the gradient
pressure force has two mainly components: the barotropic and baroclinic pressure
gradients (Eq. 8.18a, b or 8.19a, b). As the baroclinic component is dependent on
the mass or density (salinity) distribution, for a complete closed hydrodynamic
system it is necessary to associate these equations with the vertically integrated salt
conservation (Eq. 7.68a, b, Chap. 7).

@S
@t

þ u
@S
@x

þ v
@S
@y

¼ 1
h
½ @
@x

ðKxh
@S
@x

Þþ @

@y
ðKyh

@S
@y

Þ	 þ @S
@z

jz¼0ðP� EVÞ; ð8:50Þ

and a simplified equation of state of seawater,

qðS) ¼ q0ð1þ bS), ð8:51Þ

where q0 is a density constant, and b is the mean coefficient of saline contraction in
the estuarine MZ.

Equations (8.48 to 8.51) are analytical formulations of the main processes that
control the circulation and the mixing processes in a well-mixed estuary. If the
initial, boundary and integral boundary conditions, the eddy viscosity and diffusion
coefficients are known, these equations, combined with the continuity Eq. (7.56a,
Chap. 7), may be solved by numerical or analytical methods (under simplifying
conditions) to obtain the following unknowns: the free surface elevation, η = η(x,
y, t), the velocity components u = u(x, y, t) and v = v(x, y, t), and the salinity S = S
(x, y, t).

The pioneering work of Ferraz (1975), investigating the tidal heights and tidal
currents in the Northern channel of the Amazon river, between the estuarine mouth
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and the Macapá (Amapá, Brazil), is an example of this equation system being
solved numerically, approximated by the barotropic condition (q = cte).

The following studies of other Brazilian estuarine systems should also be sited:

• Results of the circulation of the estuarine region of the Patos Lagoon during the
summer season, obtained from time series analysis of the wind stress, tidal
heights and river discharges, combined with simulation of the barotropic mean
vertical velocity, were presented by Möller et al. (1996). In this study, it was
observed that wind stress oriented towards NE and SW, forced by the passages
of meteorological systems frontal zones, generated ebbing and flooding oscil-
latory motions with nodal points at the central region of the lagoon.

• Intensive field observations and a vertically-averaged two-dimensional hydro-
dynamic model were used in dynamical studies of the well-mixed Fly River
estuary (Papua New Guinea) by Wolanski et al. (1997). Tidal currents were
successfully reproduced by the model, which was coupled with a non-steady
state dispersive model to calculate the longitudinal distribution of salinity in the
estuary. The main conclusions were that: (i) the river discharge, the spring-neap
tidal cycle, the wind and the presence of fluid mud are all important in deter-
mining the salinity distribution in the estuary; (ii) the water slope, necessary to
evacuate the fresh water input in the estuary, was at its largest and lowest at
spring and neap tides, respectively.

• The tidally generated barotropic circulation in the Santos-São Vicente Bay (São
Paulo, Brazil) and in estuarine channels of São Vicente, Santos and Bertioga
were investigated by Harari and Camargo (1998).

8.3.2 Cross-Section Integration

Relatively narrow partially mixed estuaries (type 2 or B) forced by meso-tides may
be approximated by a laterally homogeneous condition, and the tridimensional
equations may be reduced to two-dimensions in the Oxz plane. In these estuaries,
both tidal and gravitational circulations are important. Using a mathematical
development similar to that used in the deduction of the bi-dimensional equations of
continuity (Eq. 7.73a) and salt conservation (Eq. 7.77), it is necessary to laterally
integrate the tri-dimensional equations of motion (8.14) between the coordinates
a = a(x, z) and b = b(x, z) located at the estuary margins (Fig. 7.5, Chap. 7).
Applying the Leibnitz rule to the derivation of an integral, and factorizing the
common parcels u|a and u|b, and the kinematic boundary conditions (Eqs. 7.72a and
b, Chap. 7) to the u-velocity component, yields

ujaðuja
@a
@x

� vja þwja
@a
@z

Þ ¼ 0; ð8:52Þ
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and

ujbðujb
@b
@x

� vjb þwjb
@b
@z

Þ ¼ 0: ð8:53Þ

Thus, the equation of motion is reduced to
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As this model doesn’t take into account the Oy direction, the component of the
equation of motion in the Oy direction and the Coriolis acceleration were omitted in
this equation. Applying the condition of transverse homogeneity, the indicated
integration may be calculated, resulting in:
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¼ � 1
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Þþ 1

q
@

@z
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@u
@z

Þ; ð8:55Þ

where B = b − a is the estuarine channel width.
Combining the Eq. (8.55) with the laterally integrated continuity equation

(Eq. 7.73a, Chap. 7)

@ðuB)
@x

þ @ðwB)
@z

¼ 0; ð8:56Þ

it follows that the laterally integrated equation of motion is,
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Þ; ð8:57aÞ

or, in terms of the barotropic and baroclinic pressure gradient,

@u
@t

þ u
@u
@x

þw
@u
@z

¼ �g
@g
@x

� g
q

Zg

z

@q
@x

dzþ 1
B

@

@z
ðBNz

@u
@z

Þ: ð8:57bÞ

In these equations, Nz is the kinematic eddy viscosity coefficient and has the
dimension [Nz] = [L2T–1]. As the baroclinic component of the gradient pressure
force is dependent on the density (Eq. 8.57b), which also depends on the salinity
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distribution, it is necessary to associate the equation of motion with laterally inte-
grated salt conservation equation and a linear equation of state of sea water,
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½ @
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Þ	 þ @S
@z

jz¼0ðP� EvÞ; ð8:58Þ

and

q ¼ q0ð1þ bS): ð8:59Þ

This system of Eqs. (8.56)–(8.59) constitutes a physical-mathematical formu-
lation of the main processes that control the motions and mixing processes in a
laterally homogeneous estuary. Under the assumption that the eddy viscosity
coefficients are known, this is a closed hydrodynamic equation system. Imposing
the initial and boundary conditions, it may be solved by analytical methods (Rattray
and Hansen 1962; Fisher et al. 1972; Hamilton and Rattray 1978) and by numerical
methods as a function of the non-dimensional depth (Blumberg 1975; Paiva and
Rosman 1993, and others). From this solution, it is possible to calculate transverse
mean values of the following quantities:

• The longitudinal and vertical velocity components u = u(x, z, t) and w = w(x, z,
t);

• The salinity field S = S(x, z, t).

8.4 One-Dimensional Formulation

In relatively shallow and straits estuarine systems with low fresh water discharge
and forced by medium and high tidal heights, hydrographic properties are almost
uniformly distributed in transverse sections; such estuaries are generally considered
to be well-mixed estuaries (types 1 or C). Under these conditions, as previously
seen in the development of the one-dimensional equations of mass and salt con-
servation, the tri-dimensional equations of motion (Eq. 8.14) may be reduced to a
simple formulation with only a single spatial variable and time (x, t) in the lon-
gitudinal direction (Ox).

The mathematical procedure is the same procedure used previously in the
one-dimensional formulation of the mass and salt conservation equations. As
before, we must integrate of the tri-dimensional equation in the area normal to the
longitudinal axis (Ox), under the assumption that all properties are uniform in this
area. The mathematical development follow that presented by Pritchard (1958),
where we find an analysis of the main physical and mathematical concepts evolved
in the deduction of these equations, formerly used without the application of the
correct mathematical formalism.
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Multiplying the Ox-longitudinal component of the equation of motion (Eq. 8.14)
by a differential element dA = dxdz and integrating all terms in the cross-sectional
area A = A(x, t) yields,
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ð8:60Þ

The first and second terms on the left-hand-side of this equation may be reduced
by applying the Leibnitz rule of the derivation of a double integral, as used in the
Eq. (7.82) (Chap. 7). The third and fourth terms of the left-hand-side and the last
term on the right-hand-side of this equation may be transformed by applying the
Green’s formula and its consequences (as applied in the Chap. 7.) in the closed line
(c) integrals around the area A. Then, the equation may be rewritten as
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In this equation, the volume transport generated by the Coriolis acceleration is
null and has been neglected because the model doesn’t solve the lateral dimension.
This equation may be further simplified, taking into account the following
equalities:
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Then
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Imposing the condition that the physical properties are constant in the transversal
section (A), this equation is simplified to
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As the line integral in the last term of the right-hand-side of this equation must
be calculated around the perimeter, c, of the area A (Fig. 7.8, Chap. 7), it physically
represents the wind stress acting on the estuary’s free surface, plus the frictional
stress acting in the wet perimeter (Pm) of the transversal section A. Then, the
following equality holds:
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Combining the results of Eqs. (8.65) and (8.66), we have:
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Finally, this equation may be simplified taking into account the one-dimensional
expression of the continuity equation (Eq. 7.92, Chap. 7),
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and the one-dimensional equation of motion takes the following expression:

@u
@t

þ u
@u
@x

¼ � 1
q
@p
@x

þ 1
qA

ðsWxB� sBxPmÞ; ð8:69aÞ

or

@u
@t

þ u
@u
@x

¼ �g
@g
@x

� g
q

Zg

�H0

@q
@x

dzþ 1
qA

ðsWxB� sBxPmÞ: ð8:69bÞ

As the mean value of the baroclinic gradient pressure force is dependent on the
longitudinalmass distribution in the estuary, and hence on the salinity distribution, it is
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necessary to associate the last equation with the salt conservation equation (Eq. 7.98,
Chap. 7), in which was introduced in the right-hand-side the term to take into account
the salinity variations at the surface due to precipitation and evaporation.

@S
@t

þ u
@S
@x

¼ 1
A

@

@x
ðKxA

@S
@x

Þþ @S
@z

jz¼0ðP� EvÞ ð8:70Þ

and an equation of state of seawater or one of its simplified expressions, such as the
linear expression,

q ðSÞ ¼ q0ð1þ bSÞ: ð8:71Þ

The equation system, 8.68–8.71, is the physical-mathematical formulation of the
main processes that control the circulation and mixing in estuaries which have
geometries and physical characteristics that approximate a one-dimensional model.
When the initial conditions, the boundary and integral boundary conditions, and the
values of the eddy viscosity, diffusion coefficients and the P − Ev rates are known,
these equations may be solved by analytical and numerical models (Ippen and
Harleman 1961; Harleman and Ippen 1967; Thatcher and Harleman 1972, and
others), enabling determination of the unknowns:

• Surface elevation η = η(x, t).
• The u-velocity component, u = u(x, t), and
• Salinity S = S(x, t).

In the last term of the one-dimensional equation of motion (8.69a, b), as pre-
viously indicated, the wind stress may be calculated by semi-empirical equations
when the wind speed is known (Eq. 8.25). As such, the bottom frictional stress
formulated in Eq. 8.29 is reduced to

sBx ¼ g

C2
y

q uj ju, ð8:72Þ

To introduce the volume transport (Q) in this equation and the wet perimeter
(Pm), as an artifact, the term on the right-hand-side must be multiplied and divided
by the square of the cross-section area (A2), and the result of which is multiplied by
the wet perimeter, Pm. Then, the bottom stress is calculated by

sBxPm ¼ PMqg
C2
yA

jQ jQ; ð8:73Þ

where Q is the volume transport [Q] = [L3T–1], and the ratio A/Pm is the hydraulic
radius (RH = A/Pm), which substituted in the above equation gives,

sBx ¼ g
C2
y

q
jQ jQ
PmRH

: ð8:74Þ
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In these conditions, combining the parametric formulation of the longitudinal
wind shear stress (Eq. 8.25), the bottom shear (Eq. 8.74), and the decomposition of
the gradient pressure force in its barotropic and baroclinic components (Eq. 8.18a),
it follows that another expression for the one-dimensional equation of motion
(Eq. 8.67) with the volume transport (uA = Q) as an unknown, is:

@Q
@t

þ u
@Q
@x

þQ
@u
@x

¼ �gA
@g
@x

� gAh
q

@q
@x

þ qar
q

CDjU jUWB� g jQ jQ
C2
yARH

; ð8:75Þ

where the longitudinal density gradient (∂q/∂x) is independent of depth.
In the case of a steady-state well-mixed estuary (type 1 or C) which has a small

river discharge, and where the wind-stress may be disregarded, Eq. (8.75) is sim-
plified to the following dynamical equilibrium:

g
@g
@x

þ g jQ jQ
A2C2

yRH
j ¼ 0: ð8:76Þ

This result expresses the balance between the barotropic component of the
gradient pressure force and the bottom dissipative shear stress. This simplification
holds for shallow estuaries because the high intensity of frictional forces reduces the
importance of the local and advective accelerations terms.

The equation of motion (8.76) has two unknowns, η = η(x) and Q = Q(x), and
to solve this equation it must be associated with the following continuity equation,
which may be obtained from its one-dimensional formulation (Eq. 7.108, Chap. 7),
integrated between the longitudinal positions x and x + dx, which yields:

dV
dt

¼ Qjx � Qjxþ dx; ð8:77Þ

which is simplified with a null fresh water discharge (Qf = 0).
An implicit bi-dimensional numerical model developed by Wolanski et al.

(1980), based on the solution of Eqs. (8.76 and 8.77), was applied by Kjerfve et al.
(1991) in studies of the circulation of the complex system of interconnected estu-
arine channels in the North Inlet (South Caroline, USA). This is a well-mixed
estuary, consisting of inundated channels with depths varying from 2 m and 5 m.
Due to the medium semi-diurnal tidal heights, the banks of the channel are vege-
tated with Spartina-alterniflora. The channel system was subdivided in 75 cells,
delimitated by transverse sections. Simulations of the mean u-velocity component
at cross-sectional areas were compared with direct velocity measurements from
experimental data for several cells, and, with adjustments of the Manning’s
(Chézy’s) coefficient, the results were very close.
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8.5 Simplifyed Formulation and Application

The velocity generated by the fresh water discharge (uf = Qf/A) may be calculated
with the application of the continuity Eq. (7.92b, Chap. 7) under steady conditions.
However, to calculate deviations of the constant value uf, it is necessary to take into
account the energy dissipation due to the internal and bottom friction, which is
dependent of the eddy viscosity coefficient, and the bottom stress. Due to these
frictional forces, the velocity generated by the fresh water discharge will present a
vertical shear (∂uf/∂z 6¼ 0) due to the energy dissipation. The basic equations which
formulate this behavior are the bi-dimensional hydrodynamic equations in the Oxz
plane (Eq. 8.57b) under steady-state conditions, with the gradient pressure force
decomposed in the barotropic and baroclinic components (Eq. 8.18a), and the con-
tinuity equation formulated as integral boundary condition, expressed in Eq. (8.38).

The theoretical development will follow the articles of Prandle (1985, 2004,
2009), focusing on the investigations of the characteristics of the vertical velocity
profile forced by the river discharge and the wind stress, considering bottom
boundary conditions.

8.5.1 Velocity Generate by the River Discharge

To investigate the velocity structure generated by the river discharge, let us consider
the density constant (q = const.), eliminating the local and advective acceleration
and the wind stress on the free surface. For the bottom boundary conditions, the
following hypothesis will be taken into account: maximum shear or non-slip con-
ditions, and moderate friction (slippery bottom). To proceed with this investigation,
the Oxz referential (Fig. 8.3) will be adopted, with the origin of the vertical axis at
the estuary bottom and with the following simplifying hypothesis:

Fig. 8.3 Referential to investigate the analytical velocity profile generated by the fresh water
discharge (a) and the wind shear stress (b), in a bi-dimensional estuary (Oxz). The origin of the
vertical axis is located on the bottom (according to Prandle 1985)

308 8 Hydrodynamic Formulation: Equations of Motion and Applications

http://dx.doi.org/10.1007/978-981-10-3041-3_7


• Constant transversal section area (B and H0 = const.) and kinematic eddy vis-
cosity coefficient constant (Nz = const.).

• Steady-state and uniform motion.

Under these simplifications, the linear steady-state equation of motion is forced
by the barotropic component of the gradient pressure force, and Eq. (8.57b) is
simplified to the following ordinary equation:

�g
dg
dx

þNz
d2u

dz2
¼ 0; or � ggQ þNz

d2u

dz2
¼ 0: ð8:78Þ

In this equation, dη/dx = ηQ is the steady-state slope of the free surface gener-
ated by the river discharge (Qf), and indicates a balance, per unit of mass, between
the barotropic component and the dissipating energy due to the vertical velocity
shear. As there are two unknowns in this equation, u = u(z) and ηQ, its solution will
only be obtainable using the integral boundary condition,

1
H0

ZH0

0

u(z)dz ¼ Qf

BH0
¼ uf : ð8:79Þ

As Eq. (8.78) is a second order differential equation with constant coefficients, it
must be integrated two times in relation to the independent variable, z, and the
result is the general solution:

u(z) ¼ g
2Nz

gQz
2 þA1zþA2; ð8:80Þ

where A1 and A2 are integration constants with the dimensions [A1] = [T–1] and
[A2] = [LT–1].

Initially, under the assumption of maximum bottom friction, these constants may
be calculated with the following boundary conditions,

• Null wind stress on the surface, sWx = qNz(du/dz)|z=H0 = 0, and
• Maximum friction on the bottom u(0) = u|z=0 = 0.

With these boundary conditions applied to the general solution (Eq. 8.80), it
follows the analytical expressions for the A1 and A2,

A1 ¼ � ggQ

Nz
H0; and A2 ¼ 0; ð8:81Þ

and the particular solution of Eq. (8.80) is

uQðz) ¼ g
Nz

gQð
z2

2
� H0z), ð8:82Þ
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where uQ = uQ(z) is the velocity component generated by the river discharge.
Factoring the second member of this equation by H2

0 and introducing the
non-dimensional depth, Z = z/|H0|, which is more convenient for practical appli-
cations, yields the solution

uQðZ) ¼ gH2
0

Nz
gQð

Z2

2
� Z): ð8:83Þ

As this solution still has the unknown, ηQ, it may be determined applying the
integral boundary condition (8.79), which written as a function of the
non-dimensional depth, taking into account that u(z) = uQ(z), is

1
H0

ZH0

0

uQðz)dz ¼
Z1

0

uQðZ)dZ ¼ uf : ð8:84Þ

Substituting the analytical expression, uQ = uQ(Z), of Eq. (8.83) into Eq. 8.84,
completing the integration and solving the equation for the second unknown, ηQ, its
expression as a function of known quantities is

gQ ¼ dg
dx

¼ �3
NzQf

gBH3
0

¼ �3
Nzuf
gH2

0

: ð8:85Þ

The steady-state free surface slope is directly proportional to the river discharge
(Qf) (or its velocity uf) and inversely proportional to the third (or second) power of
the channel depth. Because ηQ (dηQ/dx) is negative, the free surface slopes
downward and varies linearly with the longitudinal distance (Fig. 8.3a).
Substituting the solution (8.85) into Eq. (8.83), the vertical velocity profile1 is given
by

uQðZ) ¼ dg
dx

¼ Qf

BH0
ð� 3

2
Z2 þ 3Z) ¼ 3ufð� 1

2
Z2 þZ): ð8:86Þ

This solution agrees with the integral boundary condition (Eq. 8.84) and indi-
cates that when the internal and bottom friction are taken into account, the velocity
generated by the river discharge has a parabolic profile and the vertical velocity
shear (∂uQ/∂z) increases linearly from uf = 0 at the surface to 3uf, at the bottom.

To investigate the influence of the wind stress (sWx 6¼ 0), a second particular
solution for Eq. (8.80) may be obtained, maintaining the maximum friction at the
bottom. Let us consider the following upper boundary condition:

1This velocity profile is equal to the one obtained by Officer (1978) with the Oz axis also oriented
against the gravity acceleration, but with its origin at the free surface.
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• Wind stress on the surface, sWx = −qNz(du/dz)|z=H0.

As du/dz < 0, the wind stress is being applied in the orientation indicated in
Fig. 8.3b. Applying this condition, the values of the integration constants, A1 and
A2, are:

A1 ¼ ð� sWx

qNz
� ggQH0

Nz
Þ; and A2 ¼ 0: ð8:87Þ

Combining these results with the general solution (8.80), the vertical velocity
profile usw = usw(z), forced by the wind stress (sW), the slope of the sea surface
(ηQ), is calculated by

uswðz) ¼
ggQ

2Nz
z2 þð� sW

qNz
� ggQH0

Nz
Þz, ð8:88aÞ

and as function of the non-dimensional depth (Z = z/|H0|),

usWðZ) ¼
ggQH

2
0

2Nz
Z2 � ðsWH0

qNz
þ ggQH

2
0

Nz
ÞZ: ð8:88bÞ

As seen in the previous solution, the surface slope generated by the river dis-
charge (ηQ) is still unknown, which may be determined by applying the integral
boundary condition (8.84), in which the function to be integrated is usw(z). Then,
solving for ηQ,

gQ ¼ 3Nz

gH2
0

ðuf þ sWxH0

qNz
Þ ð8:89Þ

To obtain the free surface slope due to only the wind stress (ηsw), it is sufficient
to eliminate the river velocity (uf = 0) from this equation,

gsw ¼ 3
sWx

qgH0
: ð8:90Þ

This result indicates that the free surface slopes upward in the seaward direction,
as indicated in Fig. 8.3b, and is directly proportional to the wind stress and
inversely proportional to the channel depth. Combining this result with the
Eq. (8.88b), the final result for the vertical velocity profile is directly proportional to
the wind stress and the depth, and is given by,
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usWðZ) ¼
H0sWx

qNz
ð1:5Z2 � Z): ð8:91Þ

The theoretical profile of Eq. (8.86) was superimposed onto the experimental
results of Prandle (1982, 1985) as the dashed line in Fig. (8.4a). Analysis of this
figure indicates that the maximum friction at the bottom, uQ(0) = 0, doesn’t cor-
rectly simulate experimental data; therefore, it is apparent that a moderate condition
for the bottom friction is more adequate for theoretical simulation of the vertical
profile generated by the river discharge. In Prandle’s articles, this problem has been
solved using a bottom boundary condition expressed by Eq. (8.32),

• sBx ¼ qNzð@u@zÞjz¼�H0
¼ q ð4pÞkU0ujz¼�H0

;

where the bottom friction is directly proportional to the velocity amplitude gener-
ated by the tide (U0),

2 and to the slip bottom velocity (u|z=0 6¼ 0). Comparing this
expression of sBx with Eqs. (8.31) or (8.72), verifies that they are formally similar,
and the constant 4 k/p may be considered proportional to g =C2

y.
As demonstrate by Bowden (1953), the coefficient 4kU0/p may be applied when

U0 
 u, and this condition is generally holds to partially mixed estuaries (type 2 or
B). In the expression sBx, the kinematic eddy viscosity coefficient, Nz, was taken as
directly proportional to the velocity generated by the tide velocity amplitude (U0)
and the depth (H0), expressed as Nz = kU0H0, where the coefficient, k, known as
bed friction coefficient, was taken as constant and equal to k = 1.5 � 10–3 (Bowden
1967b), or k = 2.5 � 10–3 according to Ianniello (1977) and Prandle (1982).

With this new expression for the bottom boundary condition ðsBxÞ, the inte-
gration constants A1 and A2 are,

A1 ¼ � ggQH0

Nz
; A2 ¼ � ggQpH0

4kU0
: ð8:92Þ

Substituting these constants into the general solution (Eq. 8.80), it follows that
the new expressions for the velocity generated by the river discharge are,

uQðz) ¼
ggQ

2Nz
ðz2 � 2H0z� pNzH0

2kU0
Þ; ð8:93Þ

or in terms of the non-dimensional depth Z,

uQðZ) ¼
ggQ

2Nz
H2

0
ðZ2 � 2Z� pNz

2kH0U0
Þ: ð8:94Þ

2For a frictionless estuary the order of magnitude of U0 may be estimated by Eq. (2.24a, b, Chap. 2).
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These solutions, similar to Eqs. (8.82) and (8.83), are still functions of the
unknown, ηQ, which is the free surface slope generate by the river discharge. As
with the previous solution, this unknown may be calculated by applying the integral
boundary condition (Eq. 8.84). Then, substituting the condition into the expression
uQ = uQ(Z) (Eq. 8.94), completing the integration and solving the result to the
unknown dηQ/dx = ηQ, yields

gQ ¼ � uf

g( H
2
0

3Nz
þ pH0

4kU0
Þ
¼ �0:89

kU0uf
gH0

¼ �0:89
kU0Qf

gBH2
0

: ð8:95Þ

In this equation, it has been taken into account that Nz = kU0H0 and uf = Qf/
BH0. Similar to Eq. (8.85), all quantities in the last member have positive values,
and the free surface slope, ηQ, is constant and negative, decreasing in the seaward
direction, and is directly proportional to the river discharge (Qf) and the tidal
amplitude velocity (U0), but it is inversely proportional to the estuary width (B) and
the square of its depth (H0).

Combining the Eqs. (8.95) and (8.93) and reducing the result to the simplest
expression gives us the following equation to calculate the velocity generated by the
river discharge:

uQðz) ¼ uf
1
3 þð pNz

4kH0U0
Þ
ð� z2

2H2
0

þ z
H0

þ pNz

4kH0U0
Þ

¼ 0:89ufð� z2

2H2
0

þ z
H0

þ p
4
Þ;

ð8:96Þ

or, introducing the dimensionless depth, Z,

uQðZ) ¼ 0:89ufð�Z2

2
þZþ p

4
Þ: ð8:97Þ

The vertical relative velocity profile (uQ/uf) generated by the river discharge is
presented in Fig. 8.4a in comparison with experimental results. We may observe
that the theoretical solution calculated with moderate bottom friction (Eq. 8.92)
reproduces the vertical velocity profile more accurately than maximum bottom
friction.

8.5.2 Velocity Generate by the Wind Stress

As another example, let us investigate the influence of the wind stress forcing (swx)
as a surface boundary condition, under the assumption that the fresh water dis-
charge may be disregarded. Adopting the same simplifying hypothesis and solving
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the problem with two alternate bottom boundary conditions (maximum and mod-
erate friction), these solutions are similar to the former. Then, the constants of the
integration of the general solution will be calculated with the following conditions:

• Wind stress on the surface: sWx = −qNz(∂u/∂z)|z=H0.
• Maximum friction at the bottom: u(0) = u|z=0 = 0, or
• Moderate friction at the bottom: sBx = qNz(∂u/∂z)|z=0 = q(4/p)kU0u|z=0.

With the first two boundary conditions applied to the general solution (Eq. 8.80),
the integration constants A1 and A2 are:

A1 ¼ sWx � qggWH0

qNz
; and A2 ¼ 0; ð8:98Þ

where ηW = dηw/dx is the free surface slope generated by the wind. Substituting
these constants into the general solution, it follows that the vertical velocity profile,
uw = uw(z), generate by steady-state wind is expressed by:

Fig. 8.4 Vertical velocity profiles generated by the river discharge (a), in comparison with
experimental data measured at three depths (filled circle, open circel, filled triangle), and by the
wind stress (b), according to Prandle (1985). Continuous and dashed lines are profiles calculated
with moderate and maximum bottom friction, respectively

314 8 Hydrodynamic Formulation: Equations of Motion and Applications



uWðz) ¼ ggW

2Nz
ðz2 � 2H0z)þ sWx

qNz
z: ð8:99Þ

As a function of the non-dimensional depth, Z = z/H0, this velocity component
is given by

uWðZ) ¼ ggWH
2
0

2Nz
ðZ2 � 2Z)þ sWxH0

qNz
Z: ð8:100Þ

This result is dependent on the second unknown, ηW, which may be calculated
by applying the integral boundary condition. Under steady-state conditions and
with river discharge equal to zero (Qf = 0), the net volume transport during a tidal
cycle is also zero; this boundary condition is equivalent to a mean velocity in the
water column ð�uwÞ equal to zero, which is analytically expressed by:

�uw ¼ 1
H0

ZH0

0

uWðz)dz ¼
Z1

0

uWðZ)dZ ¼ 0: ð8:101Þ

As the function being integrated, uw = uw(z) or uw = uw(Z), is known (Eqs. 8.94
and 8.95), this equation may be integrated and the final result resolved for ηw is
given by:

gw ¼ dgw

dx
¼ 1:5

sw
qgH0

: ð8:102Þ

This result indicates that the free surface displacement, ηw = ηw(x), varies lin-
early with the longitudinal distance, and is directly dependent on the wind stress
and inversely dependent on the local depth. The only quantity which may be
positive or negative is the wind stress (sw), and the free surface slope may be
positive or negative when the wind direction is seaward or landward, respectively.
Combining the solutions of Eqs. (8.100) and (8.102), the analytical expression to
calculate the vertical velocity profile forced by the wind is:

uwðZ) ¼ sWH0

qNz
ð0:75Z2 � 0:5Z), ð8:103Þ

where Z is the non-dimensional depth. As the factor, swH0/qNz, has the dimension
of velocity [LT–1], the ratio uw(Z)/(swH0/qNz) is a non-dimensional quantity and

u(Z)

ðsWH0

qNz
Þ
¼ ð0:75Z2 � 0:5Z), ð8:104Þ

8.5 Simplifyed Formulation and Application 315



This non-dimensional vertical velocity profile generated by the wind stress is
presented in Fig. 8.4b as a dashed-line profile.

Lets us now solve the problem applying the bottom boundary condition of
moderate friction formulated by: sBx = q(4/p)kU0u|z=0. Applying this condition to
the general solution (8.80) yields the following expressions for the integration
constants A1 and A2:

A1 ¼ ggwH0

Nz
þ sW

qNz
; ð8:105Þ

and

A2 ¼ pggWH0

4kU0
þ psW

4qqk0
: ð8:106Þ

Substituting these constants into the general solution (8.80), simplifying the
result and expressing the final solution as a function of the non-dimensional depth,
gives the solution:

uWðZ) ¼ ggWH
2
0

Nz
ð1
2
Z2 � Z� p

4
Þþ sWH0

qNz
ðZþ p

4
Þ: ð8:107Þ

This solution is still a function of the surface slope (ηW), but this dependence
may be eliminated by applying the integral boundary condition (8.101) which,
when reduced to the simplest expression yields,

gW ¼ dg
dx

¼ 1:149
sW

qgH0
� 1:15

sW
qgH0

: ð8:108Þ

This result has the same analytical expression as the surface slope presented in
(8.102), but with a lower coefficient of proportionality, indicating that this slope is,
to some extent, independent on the bottom friction characteristics.

Substituting the expression (8.108) into Eq. (8.107) and simplifying the result,
the steady-state vertical velocity profile generated by the wind stress is given by
(Prandle 1982, 1985):

uWðZ) ¼ sWH0

qNz
ð0:574Z2 � 0:149Z� 0:117Þ; ð8:109Þ

and the non-dimensional vertical velocity profile is

uWðZ)
sWH0

qNz

¼ ð0:574Z2 � 0:149Z� 0:117Þ: ð8:110Þ
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This velocity profile, for the moderate friction at the bottom, is presented in
Fig. 8.4b (continuous line) in comparison with the profile for maximum bottom
friction (dashed line). This figure indicates that the changes from maximum to
moderate bottom friction produced significant changes in the u-velocity component
of the bottom layers.

So far we have demonstrated simplified analytical solutions of the equation of
motion for one-dimensional motions, which is the starting point for solutions of the
salt conservation equation. Let us complete this topic with a simple solution of the
following problem: with a known steady-state velocity profile u = u(Z), calculate
the corresponding salinity profile S = S(Z).

The appropriate salt conservation equation to be used will be a simplified
expression of Eq. (8.58), i.e., steady-state, vertical velocity component much less
than the longitudinal (w � u), B = const. and (P − Ev = 0) and, in terms of the
non-dimensional depth,

u(Z)
dS
dx

¼ Kz

H2
0

ðd
2S

dZ2Þ or
d2S

dZ2 ¼ SX
H2

0

Kz
u(Z): ð8:111Þ

Adopting for the vertical velocity profile the one generate by the fresh water
discharge (Eq. 8.86), i.e., u(Z) ¼ ufð� 3

2 Z
2 þ 3Z), the salt conservation equation is

given by,

d2S

dZ2 ¼ SX
H2

0

Kz
½3ufð�Z2

2
þZ)], ð8:112aÞ

or

d2S

dZ2 ¼
3SxH2

0uf
Kz

ð�Z2

2
þZ) ð8:112bÞ

This differential equation will be solved with the following known boundary
conditions: S(1) = SS and S(0) = SF are surface and bottom salinities, respectively.
With two successive integrations,

S(Z) ¼ 3
ZZ

SxH2
0uf

Kz
ð�Z2

2
þZ)dZdZ, ð8:113aÞ

its general solution is

S(Z) ¼ SxH2
0uf

2KZ
ð�Z4

6
þZ3ÞþC1ZþC2: ð8:113bÞ

Applying the boundary conditions at depths Z = 0 and the surface Z = 1, the
dimensionless integration constants C1 and C2 are calculated by,
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C1 ¼ � 5
12

SxH2
0uf

Kz
� ðSF � SSÞ; and C2 ¼ SS: ð8:114Þ

Substituting C1 and C2 in the general solution (8.113b), and simplifying the
resulting expression, the steady-state salinity vertical profile is given by

S(Z) ¼ 1
12

SxH2
0uf

Kz
ð�Z4 þ 6Z3 � 5Z)� ðSF � SSÞZþ SF; ð8:115Þ

which identically satisfies the boundary conditions at free surface and at the bottom.
The theoretical profiles of the vertical u-velocity component and the salinity,

calculated with Eqs. (8.86) and (8.115) are shown in Fig. 8.5. The following
parameters values were used in the calculations: Smouth = 35.0o/oo, Shead = 1.0o/oo,
estuary mixing length L = 104 m, and Sx = 3.4 � 10–5 m–1, H0 = 10.0 m, uf =
0.5 m s–1, Kz = 5.0 � 10–3 m2 s–1, and surface and bottom salinities SS = 30o/oo
and SF = 35o/oo, respectively, indicating a high stratified partially mixed estuary.

The salinity profile in this figure indicates the advective influence of the river
discharge generating a low vertical salinity gradient in the upper layer, and a highly
stratified condition towards the bottom layers.

8.6 Shallow Water Tidal Current and Phase Velocity

The topic presented in Chap. 2, related to the progressive wave propagation in a
one-dimensional channel, will be now implemented. The analytical treatment of the
velocity and the associated free surface oscillation of a frictionless fluid with
constant density (q) will be presented according Pugh (1987) and Franco (1988).

Fig. 8.5 Steady-state theoretical vertical profiles of the u-velocity component (left) and salinity
(right)
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In this development, the following simplifications were applied: (i) channel with
constant width (B) and infinite length; (ii) small wave amplitude η(x, t) � H0;
(iii) the wave height is comparable with the water depth, η(x, t) � H0, and
(iv) energy dissipation due to friction is neglected.

Taking into account these simplifications, the main characteristics of the wave
propagation is formulated by the equations of continuity (8.68) and motion (8.69a),
reducing these equation system into the following analytical expressions:

ðH0 þgÞ @u
@x

þ u
@g
@x

¼ � @g
@t

; ð8:116aÞ

and

@u
@t

þ u
@u
@x

¼ �g
@g
@x

: ð8:116bÞ

The simplification of the continuity Eq. (8.116a) was obtained taking into
account that the transverse section has an area A = B(H0 + η) and that H0 is the
mean channel depth.3

In the De Saint Venant’s pioneer work, published in 1871, the following general
solution was obtained for the tidal velocity generated by the barotropic influence,

u ðx,t) ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g[H0 þg ðx, t)]

p
� C2; ð8:117Þ

where C1 and C2 are constants to be determined. Adopting to this solution the initial
conditions, η(x, 0) = 0 and u(x, 0) = 0 at the initial instant of time (t = 0), the
barotropic tidal influence on the velocity is null, and the relationship between C1

and C2 is:

C2 ¼ C1
ffiffiffiffiffiffiffiffi
gH0

p
: ð8:118Þ

In comparison to Eq. (2.20, Chap. 2), the barotropic value of the tidal current in
shallow water now has the proportionality coefficient C1.

Combining Eqs. (8.117) and (8.118), the tidal velocity in shallow water is cal-
culated by

u ðx,t) ¼ C1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g[H0 þg ðx,t)]

p
� ffiffiffiffiffiffiffiffi

gH0

p 	: ð8:119Þ

This is an intermediate solution, which is dependent on the constant C1 and the
tidal oscillation, η = η(x, t). To calculate C1, it is necessary to derive this equation
in relation to x and t, and combine the result with the continuity Eq. (8.116a),

3If the advective acceleration is disregarded and, η � H0, this system of equations is reduced to
the Eqs. (2.14) and (2.17) (Chap. 2).
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taking into account the analytical expression (8.119). Following this procedure,
according to Franco (1988), yields:

@u
@x

¼ gC1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(H0 þgÞp

@g
@x

; ð8:120aÞ

@u
@t

¼ gC1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðH0 þgÞp

@g
@t

; ð8:120bÞ

and combining this result with Eq. (8.116a)

@g
@t

¼ ½� 3C1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðH0 þgÞ

p
þC1

ffiffiffiffiffiffiffiffi
gH0

p @g
@x

	: ð8:121Þ

Combining this result with Eq. (8.120b), we have:

@u
@t

¼ ½� 3gC2
1

4
þ gC2

1
ffiffiffiffiffiffiffiffi
gH0

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðH0 þgÞp 	 @g

@x
: ð8:122Þ

Substituting the expressions of u, ∂u/∂x and ∂u/∂t in the equation of motion
(8.116b) and simplifying the result, gives

ð� gC2
1

4
þ g)

@g
@x

¼ 0: ð8:123Þ

As ∂η/∂x 6¼ 0, with exception of high and low water, it follows from this
equation that C1 = ±2. Using the positive value (C1 = 2) in order to obtain a result
in the real numeric field, the final solution of Eq. (8.119) is the De Saint Venant
solution for the tidal velocity

u ðx, t) ¼ 2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(H0 þgÞ

p
� ffiffiffiffiffiffiffiffi

gH0

p 	: ð8:124Þ

From this equation, it follows that the velocity is zero at the equilibrium tide
(η = 0) However, during the flood tide (η > 0) and, g(H0 + η)1/2 > (gH0)

1/2 and
there will be a gradual increase in the velocity, reaching its highest value at the
flood tide. During the ebb tide, the motion occurs in the opposite direction, and the
highest velocity will be at the ebb tide.

If C1 = 2 is also substituted into the Eq. (8.121) the result for the tidal phase
velocity (c0) is:

� dx
dt

¼ c0 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðH0 þgÞ

p
� 2

ffiffiffiffiffiffiffiffi
gH0

p
: ð8:125Þ
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Then, c0 is dependent on the tidal height, η = η(x, t), and only when η � H0

this solution is equal to that of Eq. (2.20, Chap. 2), where this quantity is dependent
only on the channel’s mean water depth (H0).

Equation (8.125) was applied by Franco (1988, 2009) to investigate the diurnal
inequality observed in the North Channel of the Amazon river (Amazon, Brazil).
The occurrence of this phenomenon was also investigate by Kjerfve and Ferreira
(1993), who’s studies were based on time-series of currents measured in the Mearin
river (Maranhão, Brazil), illustrated in Chap. 2 (Fig. 2.7). In the figure, it can be
observed that the free surface elevation η = η(x, t) is positive during the flood and
negative during the ebb tide, generating high and low phase velocities in the flood
and ebb tides, respectively. Further analysis, using Eq. (8.125), indicates high and
low tidal velocities during the flood and ebb tides, respectively. This phenomenon
causes the tidal bore in estuaries in the Brazilian states Pará and Amazon, during the
April and May full moon.

As the wave amplitude is comparable with the total water depth the wave celerity
may be approximate by (Pugh 1987; Lessa 1996):

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g ðH0 þ 1:5g

p
ð8:126Þ

and the wave speed decreases as the water depth decreases, which causes the crest
of the wave to move closer to the through ahead, resulting in a distorted tidal wave
shape with a steep face and a gentle back-slope due to bottom friction and the
associated non-linearity.

8.7 Periodic Stratification Tidal Generate: Potential
Energy Anomaly

The energy resulting from cyclic tidal pumping at different time scales, mainly
semi-diurnal, diurnal and fortnightly, and the influence of this energy on the vertical
stability of an estuary, may be calculated by the potential energy anomaly (U),
defined by Simpson et al. (1990),

U ¼ 1
h

Zg

�h

g ð�q� qÞ zdz; ð8:127Þ

where h is the depth, q = q(z), and �q is the depth mean density in the water column,

½�q ¼ 1
h
R0

�h
q ðz) dz	. This physical quantity has dimension [U] = [ML2T–1/L3] and is

calculated in J/m3 in SI units. Physically, this quantity is the energy per volume unit
required to generate vertical mixing processes. In other words, according to Prandle
(2009), it represents the amount of energy required to mix the water column to a
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uniform density and hence, it is inversely the effectiveness of the vertical mixing of
stratified estuarine water mass. When the estuary is well-mixed U ! 0, and U
increases with vertical stratification, this process is named Strain-Induced Periodic
Stratification (SIPS).

Under the assumption that the depth is either independent of the tidal oscillation,
or is higher than the tidal height, the expression of the time variation (∂U/∂t) may
be calculated by

@U
@t

¼ g
h

Z0

�h

ð@�q
@t

� @q
@t
Þ zdz, ð8:128Þ

with the approximation η=0.
For a one-dimensional fluid motion in the Ox direction, it is possible to verify in

the continuity equation (Eq. 7.12, Chap. 7) that for a non-divergent field of motion
ðr �~v ¼ 0Þ, the local variation of density (∂q/∂t) is related to the advective term
with the advection of density equation,

@q
@t

¼ �u
@q
@x

and
@�q
@t

¼ ��u
@�q
@x

: ð8:129Þ

In this equation, �u is the depth-mean value in the water column, and the lon-
gitudinal density gradient is independent of the depth. Combining this result with
Eq. (8.128), it follows that the expression of the time variation of the potential
energy (∂U/∂t) as function of the u-velocity component, u = u(z), is

@U
@t

¼ g
h
@q
@x

Z0

�h

½u(z)� �uÞ	 zdz: ð8:130Þ

In this equation, the vertical velocity profile u = u(z) may be based in experi-
mental data or theoretically calculated. In terms of the non-dimensional depth
(Z = z/|h|), this equation is expressed by

@U
@t

¼ gh
@q
@x

Z0

�1

½u(Z)� �uÞ	ZdZ: ð8:131Þ

The time variation of the potential energy anomaly (∂U/∂t) is used to investigate
the tidal mixing processes; the calculated values of this physical quantity depend on
the vertical salinity stratification. Forecast criterion on the SIPS occurrence using
theoretical velocity profiles and variability characteristics of the potential energy
anomaly are presented in the Simpson’s et al. article.

An alternative expression to calculate the potential energy anomaly (U) was
suggested by Prandle (2004), taking into account the steady-state vertical salinity
profile calculated by Officer (1976),
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S(z) ¼ Sþ q
gS2x
NzKz

h2

104
ð�83z5 þ 224z4 � 62z3 � 146z2 þ 33Þ; ð8:132Þ

and, using the definition of the potential energy anomaly as a function of the
salinity, we have:

UE ¼ 1
h

Zh

0

½S(z)� S	 g ðz� h)dz, ð8:133Þ

and substituting (8.132) into the Eq. (8.133), we can obtain its time-averaged value:

UE ¼ 7:10�4qg2S2xh
6

NzKz
: ð8:134Þ

Tidal cycle simulations of the potential energy anomaly (UE) were analysed by
Prandle (2004) and, for some experiments, the results indicated reasonable agree-
ment with observational data, indicating a complete vertical mixing for a period of
approximately one-third of the tidal cycle, following the maximum flood current.

Nearly steady-state vertical profiles of the u-velocity component calculated from
hourly profiles sampled during three complete tidal cycles in the Piaçaguera estu-
arine channel, located in the upper reaches of the (Santos-São Vicente Estuary
System (Fig. 1.5, Chap. 1) were used to estimate the time variation of the potential
energy anomaly according to the equation (8.130). From the observations made
during neap and spring tidal cycle in June/July, 2001, the channel was classified as
partially mixed and weakly stratified (type 2a). These measurements used to cal-
culate the time variation of the potential energy anomaly (Eq. 8.130). Adopting the
value of 1.2 � 10–4 kg m–4 for the longitudinal density gradient, and with theo-
retical simulations of the steady-state u-velocity profiles using the Hansen and
Rattray (1966) analytical model, the results indicated the potential energy anomaly
rate decreased from 1.5 � 10–3 J m–3 s–1 to 0.56 J m–3 s–1, for the neap to the
spring tide transitional period (Miranda et al. 2012).

As stated by Simpson et al. (1990), the level of stratification in water column is
crucial in controlling the intensity of vertical mixing and hence the vertical fluxes of
water properties as heat, salt, momentum, and nutrients elements. The latter may be
of critical importance in limiting biological productivity. By inhibiting vertical
displacement, stratification also serves to influence the degree of light exposure
experienced by marine organisms. Phytoplankton located in shallow layer above a
strong pycnocline receive a much more generous input of light energy than in an
environment where vertical mixing is complete and these organisms are regularly
displaced over the full water column depth. In the example presented above, on the
maintenance of the partially mixed conditions in the Piaçaguera channel, during a
fortnightly transitional period, the vertical stability of the water column may be
helpful to the living organisms on the shallow upper layer above the picnocline.
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Chapter 9
Circulation and Mixing in Steady-State
Models: Salt Wedge Estuary

Now that we have laid in the previous chapters the basic estuarine hydrodynamic
framework, let us present in the following chapters practical applications of the
analytical and numerical studies on the circulation in estuaries and its influence in
the distributions of properties concentration.

Among the characteristics to be analytically studied in the field of estuary
kinematics and dynamics, there are some which may be approximated using a
simple geometry and steady-state conditions, where the estuary can be theoretically
treated as a one or two-dimensional system. Natural estuarine channels usually
don’t have uniform transverse sections that may expand and contract in an irregular
manner; however, a common characteristic is that a channel’s length is much
greater than its width. With the aim of applying the concepts developed in the
equations of preceding chapters, steady-state analytical solutions for salt wedge,
partially mixed and vertical and laterally well-mixed estuaries will be presented in
the present and following chapters. With some approximations, these estuaries may
have their circulation and salinity stratification simulated with relatively simple
analytical models. Although these solutions will only simulate steady-state condi-
tions, and residual motions and salinity stratifications will be obtained, they are of
great practical importance because: (i) their solutions may indicate if the estuary is
flushing out or not undesirable substances that are discharged into estuaries; and,
(ii) may be used to validate non-steady state numeric solutions.

The general kinematic and dynamic characteristics of estuaries classified as salt
wedge (types A or 4) by Pritchard (1955), Hansen and Rattray (1966) were pre-
sented in Chap. 3. They were studied in laboratory experiments, combining one and
two-dimensional models by several investigators such as Farmer and Morgan
(1953), Sanders et al. (1953). The water masses in the upper layers of salt wedge
estuaries have very low salinities, and their seaward velocities are much higher than
the compensating landward motion below a sharp picnocline; in other words, as
stated by Geyer and Farmer (1989), a salt-wedge occurs in an estuary when the
river discharge is adequate to maintain a strong gradient between fresh and salt
water against the mixing tendency of tide and wind-induced turbulence.
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Due to the continuous seaward motion in the surface layer, the velocity shear at
the picnocline interface between fresh and salt water produces an entrapment of
some salt water from the wedge into the upper fresh water layer. In this situation,
there is little or no mixing of fresh water into the salt wedge. The salt water volume
in the upper layer subsequently increases seaward, and a slow upstream movement
of water in the salt wedge occurs to compensate for the upward loss into the fresh
water.

The water mass in a characteristic salt-wedge has low stratification, with salinity
very close to the one of the coastal water and a sharp halocline is between the
transition of the lower (salt-wedge) and upper layers. The circulation continuity is
provided by the entrainment phenomenon generating slow ascending vertical
motions across the picnocline due to oscillating internal waves. This type of estuary
is usually dominated by the fresh water discharge, and eddy diffusion may only be
important in the surface layer above the halocline. In steady-state conditions and
with lateral homogeneity, the dominant terms in the salt-balance equation are the
vertical and longitudinal advection, and the diffusive longitudinal term can be
disregarded. In the upper layer, the eddy diffusion term may also be taken into
account under the influence of strong winds.

In these estuaries, the upper layer above the halocline has its velocity mainly
forced by the fresh water discharge. A classical example is the South Pass in the
delta of the Mississippi river (Mississippi, USA), which maintains nearly
steady-state conditions characteristics over several tidal cycles; it may however, be
significantly influenced by tidal motions, causing considerable variation in the
vertical structure of salinity and velocity within a tidal cycle (Wright 1970).
Another example is the seaward reaches of the Itajai-açu river (Santa Catarina,
Brazil), which is forced by micro-tides and has been classified as a salt wedge
estuary in conditions where river discharges around 300 m3 s−1, and the saline
wedge is displaced landward up to 18 km from its mouth. However, when the river
discharge reaches values up to 1000 m3 s−1, the seawater is completely evacuated
through its mouth (Döbereiner 1985, quoted in Schettini (2002)). The salt-wedge
extension in the estuarine plume was empirically correlated with the river discharge,
presenting an exponential decay with the increase in river discharge (Schettini and
Truccolo 1999).

Under the assumption of nearly steady-state conditions, the landward salt-wedge
propagation varies mainly at a seasonal time scale, forced by the river discharge.
The theory which will be developed in this chapter can’t be generalized for all salt
wedge estuaries, and holds only for an arrested salt wedge estuaries. According to
classical authors Farmer and Morgan (1953), Schijf and Schonfeld (1963) (quoted
in Geyer and Farmer (1989)); the designation arrested salt-wedge for this estuary
type refers to a regime in which the pressure gradient force is balanced by inertial
and frictional forces within the estuary, and its interfacial structure attains a
quasi-steady-state configuration.

In the literature we find studies of salt wedge estuaries forced by meso-tides, for
example, the Fraser river estuary (Vancouver, Canada). In this river, the salt-wedge
varies along the estuary during the tidal cycle towards an equilibrium condition
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against the free surface slope variations. The advancing of the salt-wedge front
position vs. time, provided by tracking with echo-sounding images for three sets of
observations, indicated that the advance of salt-wedge intrusion length varied from
9 to 18 km for high and low river discharge, respectively (Geyer 1986). The
interaction of the tidal flow with the density-driven motion of the salt-wedge, during
different phases of the tide and river discharge has been clearly illustrated by Geyer
and Farmer (1989), showing that the highly stratified vertical salinity structure,
existing at high and low tides, becomes poorly stratified at the end of the flood tide,
and the salt-wedge water remains under the strong picnocline at the estuary mouth.

In salt wedge estuaries, which will be analytically investigated in this chapter,
the physical process of momentum exchanges in the fresh-salt water interface will
be simulated by a shear named interfacial stress. This stress, which is force per unit
of area, is mainly provided by the river input, and causes a seaward ascending
inclination of the salt-wedge (Fig. 9.1). In this figure, we may observe that the
longitudinal salinity gradients in the layers above and below the halocline are
absent or very low, and in the theoretical treatment of the salt-wedge its dynamical
consequences will be disregarded. This figure also indicates the displacement of the
salt wedge front position due to the influence of the river discharge variation.

Fig. 9.1 Salinity stratification in a salt wedge estuary in conditions of high (a) and low (b) river
discharge in the river Duwamish (Seattle, USA) (according to Dawson and Tilley 1972)
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9.1 Hypothesis and Theoretical Formulation

A salt wedge estuary is schematically represented in Fig. 9.2, with the referential
system and the adopted notation of properties and variables in the upper and lower
layers indicated with indices 1 and 2, respectively. In this development, the estuary
is assumed to be narrow and laterally homogeneous, and the Oz will be oriented in
the gravity acceleration direction, which requires a signal change in the mathe-
matical expression of the longitudinal component of the barotropic gradient pres-
sure force (Eq. 8.18a,b, Chap. 8), as its previous orientation was against the gravity
acceleration. It should be observed that ∂η/∂x is negative and the interface slopes in
the landward direction.

Taking into account the Oxz axis orientation, the gradient pressure force has the
following expression:

� 1
q
ð@p
@x

Þ ¼ g(
@g
@x

Þ � g
q
ð
Zg

z

@q
@x

dz): ð9:1Þ

The first theoretical investigations to calculate the vertical velocity profile and
the salt intrusion length of the salt wedge estuary, using the continuity and motion
equations in the upper and lower layers, were developed by Farmer and Morgan
(1953), Sanders et al. (1953), followed by Shi-Igai and Sawamoto (1969). In these
studies, the main results of which are described in this chapter, the motion attains a

Fig. 9.2 Schematic diagram of a salt wedge estuary. Variables and properties used in the
theoretical development for the upper and lower layers are indicated by indices 1 and 2,
respectively. η1,2, u1,2, h1,2 are the slopes of the free surface and the interface in relation to the
surface level, the velocities, and the layers thicknesses, respectively (adapted from Farmer and
Morgan 1953). Xc is the salt-wedge intrusion length and hm is its height at the estuary mouth
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quasi-steady condition, in which the baroclinic pressure gradient is balanced by
inertial and frictional forces within the estuary. In these two-layer motions, the
following simplifying hypotheses were adopted:

• Simple geometry: width (B) and depth (H0) constants;
• No vertical mixing between the upper and lower layers;
• The u-velocity component in the upper layer is generated by the river discharge;
• The wind stress on the surface is disregarded;
• The interfacial shear stress fi fi½ � ¼ ½ML�1T�2�, on the halocline is proportional

to the square of the upper layer velocity, and the proportionality constant, k,
which is non-dimensional,

fi ¼ kq1u
2
1; ð9:2Þ

• The velocity in the salt wedge, u2, is much less than in the upper layer,
u2\\u1;

• The longitudinal acceleration due to the advection, u2 @u2
@x ; and the volume

transport in the salt-wedge, Q2; Q2½ � ¼ ½L3T�1� will be disregarded (Q2 � Qf).

The comparison of the interfacial shear stress fi (Eq. 9.2) with the bottom shear
stress ðsBxÞ of a one-dimensional estuarine channel (Eq. 8.31, Chap. 8) indicates
that the coefficient, k, corresponds to the ratio of the gravity acceleration to the
square of the Chézy coefficient ðg=C2

yÞ.
The theoretical development of this analytical model has the following objec-

tives: (i) Calculate the vertical velocity profile u = u(x, z), the free surface and the
halocline interface slopes dg1 xð Þ=dx and dg2 xð Þ=dx; respectively
(ii) Determination of the salt-wedge intrusion length, XC, (Fig. 9.2) and the energy
dissipation due to the interfacial shear stress and viscosity. To achieve this, the
hydrodynamics formulation must take into account the mass and momentum con-
servation equations, which must be adequately simplified and solved in order to
satisfy the specified boundary and integral boundary conditions.

9.2 Circulation and Salt-Wedge Intrusion

9.2.1 The Upper Layer

The one-dimensional equations of motion and the continuity (Eqs. 8.67 and 8.68,
Chap. 8) are used to formulate the hydrodynamics of the upper layer which,
according to the simplifying conditions, are:

@ðuuA)
@x

¼ �A
q
@p
@x

� 1
q
sBxPm; ð9:3Þ
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and

@ðuA)
@x

¼ 0: ð9:4Þ

The simplified equation of the state of seawater (Eq. 8.71, Chap. 8) will provide
the hydrodynamic closure of this equation system,

qðS) ¼ q0ð1þ bS): ð9:5Þ

The salinity in the upper, S1 � 0, and lower layers, S2 = S0, will be taken as
constants, and the salinity at the coastal region, S0, is the only salt source for the
estuarine water mass formation; from the equation of state of seawater Eq. (9.5), it
follows that the density in these layers are constants and q1\q2.

For the layer above the halocline, the last term on the right-hand-side of
Eq. (9.3), representing the formulation of the bottom energy dissipation, will as a
first approximation be substituted by the interfacial shear stress (Eq. 9.2). As the
estuary width (B) is usually much greater than its depth B � H0ð Þ; the wet
perimeter, Pm, in Eq. (9.3) may be approximated by its width (Pm = B). As in
Eqs. (9.3) and (9.4), the partial derivation may be changed to the total derivation,
because x is only independent variable in these equations, and they may be
rewritten as:

d(uuA)
dx

¼ gA
@g
@x

� Bku2; ð9:6Þ

and

d(uA)
dx

¼ 0: ð9:7Þ

Under the assumption that k is a known coefficient, this equation system is
closed and the two unknowns, u = u(x) and η = η(x), may be calculated.

Applying these equations to the upper layer (1) where g1 xð Þ� z�g2ðxÞ and
h1 xð Þ ¼ g2 xð Þ � g1 xð Þ; and taking into account the particular geometry of the
problem, the continuity equation is simplified to:

d[Bu1ðx)h1ðx)]
dx

¼ 0: ð9:8Þ

In this equation, h1(x) is the thickness of the upper layer, and it is possible to
calculate the uniform velocity field, u1 = u1(x), integrating from the estuary head
(x = 0) seaward up to a generic position x,
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Bu1ðx)h1ðx)� Qf ¼ 0; ð9:9Þ

and

u1ðx) ¼ Qf

Bh1ðx) : ð9:10Þ

This last result indicates that if the halocline or picnocline depth h1(x) is known,
the cross sectional mean velocity, u1 ¼ u1 xð Þ, in the upper layer may be calculated.

As B = const. Equation (9.8) may be rewritten as

d[u1ðx)h1ðx)]
dx

¼ dQ1ðx)
dx

¼ 0; ð9:11Þ

and the product of the mean velocity in the upper layer by the halocline depth,
Q1(x), with dimension Q1½ � ¼ ½L2T�1�; is independent of the longitudinal distance
(x), and this value is equal to Qf/B, or

u1ðx)h1ðx) ¼
Qf

B
; or u1ðx) ¼ Qf

Bh1ðx) : ð9:12Þ

With this procedure applied to the salt-wedge, it follows the trivial result due to
the hypothesis that the volume transport in the lower layer is zero

Bu2ðx)h2ðx) ¼ Q2 ¼ 0; ð9:13Þ

where h2(x) is the lower layer thickness. This result indicates that the mean depth
velocity, �u2ðxÞ, is equal to zero. However, the salt-wedge presents a vertical
velocity gradient (vertical shear), whose profile u2 = u2(z) will be determined
during this theoretical development.

Now, let us continue, applying the equation of motion (9.6) to the upper layer:

d[u1ðx)u1ðx)Bh1ðx)]
dx

¼ gBh1ðx)
dg1ðxÞ
dx

� kBu21ðx): ð9:14Þ

Calculating the derivative of the first term of this equation, it follows that:

u1ðx) d[u1ðx)h1ðx)]dx
þ u1ðx)h1ðx)

du1ðx)
dx

¼ gh1ðx)
dg1ðx)
dx

� ku21ðx), ð9:15Þ

and combining with Eq. (9.11), gives

u1ðx)h1ðx)
du1ðx)
dx

¼ gh1ðx)
dg1ðx)
dx

� ku21ðx): ð9:16Þ
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The only unknown in this equation is the slope of the free surface η1 = η1(x),
because the velocity u1 ¼ u1 xð Þ has already been determined by the Eq. (9.10).
Hence, the unknown g1 ¼ g1 xð Þ may be calculated by the following expression:

g1ðx) ¼
k
g

Zx

0

u21ðx)
h1ðx) dxþ

1
2g

½u21ðx)� u21ð0Þ�; ð9:17Þ

or, taking into account the u1(x) solution (Eq. 9.10), where u1 0ð Þ ¼ Qf=BH0 ¼ uf ;
the solution may also be expressed as:

g1ðx) ¼
kQ2

f

gB2

Zx

0

1

h31ðx)
dxþ 1

2g
½u21ðx)� u2f �: ð9:18Þ

As with Eqs. (9.10) and (9.18), it is possible to calculate u1(x) and η1(x), and
thus the hydrodynamic problem for the upper layer of the salt wedge estuary is
solved.

In the following development, let us calculate the relationship between the first
derivatives of the free surface slope ðdg1=dxÞ and that of the salt-wedge ðdg2=dxÞ,
which will be used later to calculate the salt-wedge intrusion length. Thus, the first
term of Eq. (9.16) may be combined with Eq. (9.10), resulting in:

u1ðx)h1ðx)
d[u1ðx)]

dx
¼ u1ðx)h1ðx)

d
dx

½ Qf

Bh1ðx)� ¼ � ½u1ðx)Qf �
Bh(x)1

d[(h1ðx)]
dx

; ð9:19Þ

or

� u1ðx)Qf

Bh1ðx) ½
dg2ðx)
dx

� dg1ðx)
dx

� ¼ �u21ðx)[
dg2ðx)
dx

� dg1ðx)
dx

�: ð9:20Þ

Combining Eqs. (9.20) and (9.16) and rearranging its terms, it follows that:

½gh1ðx)
u21ðx)

� 1�½dg1ðx)
dx

� dg2ðx)
dx

� ¼ k: ð9:21Þ

Taking into account that

½gh1ðx)
u21ðx)

� � 1; ð9:22Þ

Equation (9.21) is reduced to the following relationship between the first
derivatives of the sea surface slope η1(x) and η2(x):
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gh1ðx)
u21ðx)

½dg1ðx)
dx

� þ dg2ðx)
dx

¼ k: ð9:23Þ

With Eq. (9.10), it is possible to calculate the volume transport per unit width of
the cross-section (Q1),

Qf

B
¼ Q1; ð9:24Þ

which is independent of the longitudinal distance x (Eq. 9.11). Its introduction into
the Eq. (9.23) is convenient, and to achieve this, it is necessary to multiply and
divide the factor dg1 xð Þ=dx by the square of the depth of the upper layer, h21ðx):
Then, according to Officer (1976) the result is:

gh31ðx)
Q2

1

ðdg1ðx)
dx

Þþ dg2ðx)
dx

¼ k: ð9:25Þ

All terms on the left-hand-side of this equation are dimensionless.

9.2.2 The Lower Layer (Salt-Wedge)

According to the simplified physics adopted for this estuary, in the salt-wedge
ðg2 � z�g1Þ which has a thickness equal to h2(x), the velocity u2 is much less than
that of the upper layer (u2 � u1), and the advective acceleration may be disre-
garded. This layer characteristic has already been demonstrated in the model that
used only the continuity and salt conservation equations (Eqs. 7.43 and 7.44),
resulting in constant values of the longitudinal velocity component in the upper
layer of the salt wedge estuary, and u1 > u2 (Fig. 7.3, Chap. 7). However, the
motion direction in the halocline is reverted due to the entrainment and the bottom
friction, and it is expected that this velocity component, although with low inten-
sity, should present a vertical shear ð@u2=@z 6¼ 0Þ. Thus, at any given longitudinal
distance this velocity (u2) is dependent on the depth. According to the longitudinal
velocity component of the bi-dimensional equation of motion (equation, 8.57a,
Chap. 8), the hydrodynamic equilibrium is reduced to the balance of the barotropic
pressure gradient generated by the interface slopes η1 and η2 and the frictional
force,

1
q2

@p2
@x

¼ @

@z
½Nz

@u2ðx,z)
@z

�; ð9:26Þ

This equation is a simplified formulation of the bi-dimensional equation of
motion in the Oxz plane, whose gradient pressure force only has the barotropic
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component, because the density (q2) at this layer is independent of the longitudinal
distance. According to the linear equation of state (Eq. 9.5), knowing the salinity,
the value of which may be obtained from experimental results, the density in the
lower layer (q2) is also known. Under the assumption that the kinematic eddy
viscosity coefficient (Nz) is given, the only unknown in the Eq. (9.26) is the
velocity in the salt-wedge, u2 ¼ u2 x; zð Þ, which may be calculate as follows.

The pressure p2 at a depth z of the salt-wedge (Fig. 9.2) may be calculated by:

p2ðx,z) ¼ gq1ðg2 � g1Þþ gq2ðz� g2Þ: ð9:27Þ

By derivation of this equation in relation to the longitudinal distance (x), it
follows that the expression for the barotropic pressure gradient is:

@p2
@x

¼ �gq1½
@g1ðx)
dx

� � g(q2 � q1Þ½
dg2ðx)
dx

�; ð9:28Þ

which is independent of the depth and is dependent only on the slopes of the free
surface and the salt-wedge.

Proceeding with the integration of Eq. (9.26) in the vertical direction of the
salt-wedge, and taking into account that the first term is the barotropic pressure
gradient yields,

@p2
@x

½g3ðx)� g2ðx)] ¼ q2Nz½@u2ðx, z)
@z

jz¼g3
� @u2ðx, z)

@z
jz¼g2

�: ð9:29Þ

Remembering that h2 xð Þ ¼ g3 xð Þ � g2 xð Þ is the salt-wedge thickness, as indi-
cated Fig. 9.2, and the two terms of its right member are the components of the
shear stress acting at the bottom (z = η3) and surface (z = η2) of the salt wedge, this
equation may be rewritten as:

h2ðx) @p2
@x

¼ szxjz¼g3
� szxjz¼g2

: ð9:30Þ

Combining this equation with Eq. (9.28) we have

�gh2ðx)[q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ szxjz¼g3
� szxjz¼g2

: ð9:31Þ

In this equation, the shear stress on the superior interface of the salt-wedge is, by
hypothesis, equal to the interfacial stress (fi ¼ kq1u

2
1). Then,

szxjz¼g3
¼ szxðg2Þ ¼ fi ¼ kq1u

2
1ðx), ð9:32Þ

and the Eq. (9.31) may be rewritten as
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�gh2ðx)[q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ szxjz¼g3
� kq1u

2
1ðx): ð9:33Þ

As the term on the left-hand side of Eq. (9.26) is the barotropic pressure gra-
dient, the velocity may be approximated by the following quadratic expression
(Officer 1976): u2 x; zð Þ ¼ aþ bzþ cz2. The coefficients of this expression may be
determined by applying the boundary and integral boundary conditions, and one of
these coefficients will be function of x. In this development, the Oz axis will have
its origin at the bottom and will be oriented upward, against the gravity accelera-
tion. The new ordinate will be denoted by ðzÞ; it will be related to the orientation of
the first vertical variable (z) orientation by the relation z ¼ H0 � z, and at the
bottom z = H0 and z ¼ 0. With the introduction of this new variable, the vertical
velocity profile in the salt-wedge will be given by

u2ðx, zÞ ¼ aþ bzþ c(zÞ2; ð9:34Þ

and the coefficients a, b and c may be calculated with the following boundary and
integral boundary conditions:

u2ðx, zÞjz¼0 ¼ 0; ð9:35Þ

u2ðx, zÞjz¼h2 ¼ u1ðx), ð9:36Þ

and

Zh2

0

u2ðx, zÞdz ¼ Q2 ¼ 0: ð9:37Þ

The latter condition is due to the hypothesis that the net volume transport in the
salt-wedge is zero.

Applying the boundary condition (9.35), it follows immediately that a = 0, and
for the remaining conditions, (9.36) and (9.37), the result is an algebraic system of
two equations and two unknowns b and c,

u1 ¼ bh2 þ ch22; ð9:38Þ

and

1
2
bh22 þ

1
3
ch32 ¼ 0: ð9:39Þ

This system of equations may be solved, giving the results: b = -2u1/h2 and
c ¼ 3u1=h22, and the vertical velocity profile u2 = u2(x, z) has the following
expression:
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u2ðx, zÞ ¼ � 2u1
h2

zþ 3u1
h22

z2; ð9:40Þ

or, returning to the z variable

u2ðx, z) ¼ � 2u1
h2

ðH0 � z)þ 3u1
h22

ðH0 � z)2: ð9:41Þ

Analysis of these solutions indicates that the velocity is zero at z ¼ ð2=3Þh2 and
z ¼ H0 - ð2=3Þh2, and there is a minimum point in this vertical velocity profile at
depth z ¼ ð1=3Þh2 or z ¼ H0 � ð1=3Þh2. At this depth, the minimum velocity at the
salt-wedge is u2 ¼ �ð1=3Þuf .

9.2.3 Vertical Velocity Profile

The combined solutions of Eqs. (9.10) and (9.41), used to calculate the velocities
u1 = u1(x) and u2 = u2(x,z) in the upper and lower layers of the halocline,
respectively, are the theoretical solutions of the vertical velocity profile in the salt
wedge estuary, which are driven by the fresh water discharge and the barotropic
influences of the free surface slope and salt-wedge interface with the river dis-
charge, respectively. The energy dissipating forces, which counteract the river
discharge and baroclinic pressure gradient, are the vertical friction, due to the
viscosity, and the interfacial and bottom shear stresses.

According to classical investigations cited in the article of Geyer and Farmer
(1989), the designation arrested salt wedge for this estuary refers to a regime in
which the baroclinic pressure gradient is balanced by inertial and frictional forces
within the estuary, and its interfacial structure attains a quasi-steady configuration.
A practical example of this theory will be presented at the end of this chapter.

9.2.4 Salt-Wedge Intrusion Length

Knowing the analytical expression of the vertical velocity profile in the salt wedge
estuary (Eqs. 9.40 or 9.41), it is possible to calculate the frictional stresses,
ðszxjz¼g3

Þ and ðszxjz¼g2
Þ at the depths z = H0 (or z ¼ 0) and z = η2 (or z ¼ h2),

respectively,

szxjz¼g3
¼ szxðg3Þ ¼ �q2Nz

@u2
@z

jz¼0 ¼
2q2Nzu1

h2
; ð9:42Þ
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and

szxjz¼g2
¼ szxðg2Þ ¼ �q2Nz

@u2
@z

jZ¼h2
¼ � 4q2Nzu1

h2
: ð9:43Þ

Combining these equations and taking into account that the first term on the
right-hand-side of Eq. (9.43) is the interfacial frictional shear that may be
approximated by Eq. 9.32, it follows that,

szxjz¼0 ¼ � 1
2
szxjz¼h2 ¼

1
2
fi ¼ 1

2
q1ku

2
1: ð9:44Þ

By subtracting Eqs. (9.42) and (9.43),

szxjz¼g3
� szxjz¼g2

¼ 6q2Nzu1
h2

: ð9:45Þ

In this equation, the quantity szxjz¼g2
= szxðg2Þ is equal to the interfacial shear

stress (fi), and the following relationship exists between the coefficients k and the
kinematic eddy viscosity coefficient, Nz,

Nz ¼ k(
q1h2u1
4q2

Þ; ð9:46Þ

and substituting this result into Eq. (9.45),

szxjz¼g3
� szxjz¼g2

¼ 3
2
kq1u

2
1: ð9:47Þ

Finally, combining this result with Eq. (9.31) gives the following relationship of
the derivatives of sea surface (dη1/dx) and salt-wedge (dη2/dx), slopes:

�gh2½q1
dg1ðx)
dx

þðq2 � q1Þ
dg2ðx)
dx

� ¼ 3
2
q1ku

2
1: ð9:48Þ

As an artifice, multiplying the term on the left-hand-side by the ratio h21=h
2
1 and

dividing both equation members by q1u
2
1 and using the approximation q1 � q2,

yields

� gh21h2
Q2

1

½dg1ðx)
dx

þ d
dg2ðx)
dx

� ¼ 3
2
k, ð9:49Þ

where (u1h1)
2 = Q2

1 is the square value of the river discharge per unit width, and the
quantity d is defined by
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d ¼ q2 � q1
q2

¼ Dq
q2

: ð9:50Þ

Equations (9.25) and (9.49) are components of an algebraic system with two
unknowns, dg1 xð Þ=dx and dg2 xð Þ=dx. Then, for the second unknown the result is;

dg2ðx)
dx

½h2ðx)
h1ðx)�

gh21ðx)dh2ðx)
Q2

1

� ¼ k[
h2ðx)
h1ðx) þ

3
2
�: ð9:51Þ

A trivial solution of this equation is to consider that the interfacial shear stress
(fi ¼ kq1u

2
1) is equal to zero, which may be simulated with k = 0. However, for a

salt-wedge occurrence (k 6¼0) the Eq. (9.51) may be solved for dη2/dx and inte-
grated to calculate the unknown, η2 = η2(x),

g2ðx) ¼
Zx

0

f
k[ h2ðx)
h1ðx) þ

3
2�

½h2ðx)
h1ðx)�

g0h2
1ðx)h2ðx)
Q2

1

�
g dx: ð9:52Þ

As the main objective of this topic is to calculate the salt-wedge intrusion length,
Xc, Eq. (9.51) will be used for this purpose. As the ordinate η3 may be taken as a
constant, let us apply the approximation,

d[h2ðx)]
dx

¼ � d[g2ðx)]
dx

; ð9:53Þ

and combining this with Eq. (9.51), factoring in the first term by the ratio h2/h1, and
rearranging the terms, we have,

h2ðx)[1� g0h31ðx)
Q2

1

� dh2ðx)
dx

¼ �k[h2ðx)þ
3h1ðx)

2
�; ð9:54Þ

and analysis of the salt wedge estuary (Fig. 9.2) showed the following
relationships:

H0 ¼ h1 þ h2 þg1 and h1 þ h2 � g1: ð9:55Þ

Thus, Eq. (9.54) may be rewritten as a function of the non-dimensional
salt-wedge height H xð Þ ¼ h2 xð Þ=H0, which varies in the interval 0 � H(x) < 1,
and the differential dh2(x) is

dh2ðx) ¼ H0dH(x); ð9:56Þ

and combined with the relationship (9.55) the initial solution is:
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H(x)[1� g0H3
0½1� H(x)]3

Q2
1

� dH(x)
dx

¼ � k[3� H(x)]
2H0

: ð9:57Þ

Considering the ratio

ð Q2
1

g0H3
0

Þ ¼ c; ð9:58Þ

which may be considered constant, because in the hypothesis of a steady-state
condition the fresh water (Qf) is also constant, Eq. (9.57) can be rewritten as,

H(x)f ½1� H(x)]3 � c
c

g dH(x)
dx

¼ k
½3� H(x)]

2H0
: ð9:59Þ

This equation is an ordinary differential equation with separable variables which
may be integrated from the landward limit of the salt-wedge, x = 0, up to a seaward
longitudinal position, x,

ð kc
2H0

Þx ¼
ZH

0

H(x)[1� H(x)]3 � cH(x)
½3� H(x)]

dH: ð9:60Þ

As a case limit for this result, we may observe that for x ! 0, implies that H
(x) ! 0, because by definition H xð Þ ¼ h2 xð Þ=H0, and h2 0ð Þ ¼ 0 at the interior
limit of the salt-wedge (Fig. 9.2).

Developing the algebraic expression of the integrand in Eq. (9.60), and using the
additive propriety of integrals yields:

ð kc
2H0

Þx ¼ ð1� cÞ
ZH

0

f H(x)
½3� H(x)]

g dH

� 3
ZH

0

f H2ðx)
½3� H(x)]

gdHþ 3
ZH

0

f H3 x)ð Þ
½3� H(x)]

g dH

�
ZH

0

f H4ðx)
½3� H(x)]

g dH: ð9:61Þ

Taking into account the following algebraic equalities:

H2ðx)
½3� H(x)]

¼ �H(x)þ 3
H(x)

½3� H(x)]
; ð9:62Þ
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H3ðx)
½3� H(x)]

¼ �H2ðx)� 3H(x)þ 9
H(x)

½3� H(x)]
; ð9:63Þ

and

H4ðx)
½3� H(x)]

¼ �H3ðx)� 3H2ðx)� 9H(x)þ 27
H(x)

½3� H(x)]
: ð9:64Þ

Substituting them into the integrands of the lasts three terms of the
right-hand-side of expression (9.61) and simplifying the result, we have:

kc
2H0

x ¼ �ðc� 8Þ
ZH

0

f H(x)
½3� H(x)]

g dHþ 3
ZH

0

H(x)dHþ
ZH

0

H3ðx)dH: ð9:65Þ

The first term of the right-hand-side of this equation may be easily integrate
remembering that its indefinite integral is given by (Granville et al. 1956),

Z
H

ð3� H)
dH ¼ 3� H� 3ln(3� H): ð9:66Þ

The integration of the second and third terms is immediate, and follow the
relationship between the longitudinal distance, x, and the non-dimensional
salt-wedge height:

kc
2H0

x ¼ 3
2
H2ðx)þ 1

4
H4ðx)þðcþ 8Þf 3ln[

3� H(x)
3

� þH(x)g : ð9:67Þ

Equation (9.58), which defines the quantity c, is a function of the river dis-
charge, mass stratification and the estuary depth. As Q1 ¼ u1 0ð ÞH0 ¼ ufH0 at the
estuary head, c may be expressed as:

c ¼ u2f
g0H0

¼ u2f
g Dq

q2
H0

: ð9:68Þ

This dimensionless number is equal to the square of the densimetric Froude
number (c = Fm), defined in the Chap. 2 (Eq. 2.39). This number has been
investigated by Farmer and Morgan (1953), who simulated the circulation in salt
wedge estuaries and observed that this number converges to 1 (Fm!1) in the
transition of the fresh water flow to the salt water reservoir. In the salt wedge
estuary, this number may be estimated using the following data: g = 10 ms−2,
uf = 0.1 ms−1, Dq/q2 = 3.0 � 10−4 and H0 = 10 m, resulting in c = 0.3. As
g\1 ! Fm\1, this indicates a subcritical vertical stratification which is

342 9 Circulation and Mixing in Steady-State Models …

http://dx.doi.org/10.1007/978-981-10-3041-3_2


characteristic of highly stratified estuaries. Usually the parameter c � 8 and may
be disregarded in the last term of Eq. (9.67), which may be simplified for praticality
to:

kc
2H0

x ¼ 3
2
H2ðx)þ 1

4
H4ðx)þ 8f 3ln[

3� H(x)
3

� þH(x)g : ð9:69Þ

To calculate the salt-wedge intrusion length (Xc), let us define its
non-dimensional depth at the estuary mouth as Hm ¼ hm=H0 (Fig. 9.2), which can
be obtained with observational data. Then, if the depth H ! Hm in the second
member of Eq. (9.69), the generic distance x of the first member approaches Xc,
and this may be calculated by:

kc
2H0

Xc ¼ 3
2
H2

m þ 1
4
H4

m þ 8f 3ln[
3� Hm

3
� þHmg : ð9:70Þ

Solving this equation for the salt-wedge intrusion length, Xc, it follows that:

Xc ¼ 2
g0H2

0

ku2f
½3
2
H2

m þ 1
4
H4

m þ 8f 3ln[
ð3� HmÞ

3
� þHmg : ð9:71Þ

This result indicates that Xc is directly proportional to the square of the estuary
depth ðH2

0Þ, and inversely proportional to the coefficient of interfacial frictional
shear (k) and the square of the velocity generated by the river discharge (uf).
Besides the seasonal variation of uf, its input in the estuary may be the altered by
utilization of river water in agriculture, industrial and for domestic use, interfering
with the salt-wedge intrusion length. The estuarine channel depth (H0) may
decrease due to sedimentation processes and may be modified by dredging.
Consequently, the theoretical results (Eq. 9.71) clearly indicate that human inter-
ference may have anomalous influences on this natural environment.

The salt-wedge configuration can be conveniently analysed through its
non-dimensional formulation, which may be obtained by the ratio of Eqs. (9.69)
and (9.70),

x
Xc

¼ ½H
2ðx)
Hm

�:f
3
2 þ H2ðx)

4 þ 8
H2ðx) ½3ln(

3�H(x)
3 ÞþH(x)]

3
2 þ H2

m
4 þ 8

H2
m

½3ln( 3�Hm
3 ÞþHm�

g : ð9:72Þ

From this solution, we have the following limiting cases:

• When H ¼ Hm ! x=Xc ¼ 1; and
• For H ¼ 0 ! x=Xc ¼ 0.

These results are equivalent to the simplest analytical expressions obtained by
Farmer and Morgan (1953); Officer (1976) for determination of the steady-state
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configuration of the salt-wedge. Analysis of Eq. (9.72) indicates that there will be
similarities in the salt wedge configurations for different estuaries. These similarities
are due to the fact that when the interfacial Froude number is less than one, the
salt-wedge configuration is independent of the water mass salinity in the coastal sea
and of the velocity generated by the river discharge. The non-dimensional
salt-wedge configuration deduced by Farmer & Morgan (op. cit), with the notation
adapted to that used in this chapter, is

x
Xc

¼ ðH(x)
Hm

Þ2½3� 2ðH(x)
Hm

Þ�: ð9:73Þ

This analytical solution was compared to observational data of the South Pass of
the Mississippi river delta (Mississippi, USA), and to laboratory experiments, with
the results found to be in close agreement (Fig. 9.3).

The non-dimensional salt-wedge configuration of the South Pass (Mississippi
river) was also simulated by Wright (1970), using the Eq. (9.73) and the following
quantities: H0 = 11.5 m, hm = 7.3 m and Hm = 0.63. Taking h = 0.0; 0.05; 0.1;
0.2; 0.3; 0.4; 0.5 and 0.6, the following values were obtained for the
non-dimensional ratio x/Xc = 0.0; 0.02; 0.08; 0.27; 0.49; 0.70; 0.88 and 1.0,
respectively. The results of the correlation, H/Hm, as a function of the
non-dimensional distance, x/Xc, are shown comparatively in Fig. 9.3 (black points),
and are almost coincident with the classical results of Farmer and Morgan (1953),
with only a small deviation near the estuary mouth. In this figure, it is also possible

Fig. 9.3 Non-dimensional salt-wedge configuration. The continuous line is the theoretical result
obtained with the Eq. (9.73). Observational data from the South Pass of the Mississippi river, and
experimental laboratory data are indicated by o and x, respectively (according to Farmer and
Morgan, 1953). Black points • were introduced to indicate theoretical results calculated with
Equation (9.74)
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to observe that for small values of the non-dimensional depth, that is, in the vicinity
of the interior salt-wedge limit, the non-dimensional profile is approximately
convex, gradually becoming linear in the medium portion of the wedge and, finally,
slightly concave in the proximity of the estuary mouth.

This theoretical model has been generalized by Rattray and Mitsuda (1974) in
order to include the bottom topography, with its declivity and the bottom friction.
Also, in the theoretical development of the upper layer, a simplified equation of
motion was used, which included the advective acceleration. To analytically for-
mulate the motion in the lower layer (salt-wedge), several approximations from the
classical articles also were used.

A theory of the density current in a stratified two-layer estuary flow with
complete vertical mixing in the upper layer was developed by Prandle (1985). This
theory was extended to the special case of a channel with a flat bed, constant
breadth and depth. The theoretical result was further simplified, neglecting some
undesirable effects, and an estimate of the salt-wedge intrusion length, Llength, was
calculated by:

Llength ¼ 0:26
gH2

0

kuu
Dq
q

¼ 0:26
g0H2

0

kuu
: ð9:74aÞ

This result was compared with the following expression of the intrusion length,
LA, of an arrested salt wedge estuary given by G. H. Keulegan in 1949 (quoted in
Ippen & Harleman, 1961), adding useful support to the above expression,

LA ¼ A
g5=4H9=4

0

u5=2
ðDq
q
Þ3=4: ð9:74bÞ

During the investigation of the dynamical interaction of the tidal flow with the
estuarine circulation of the Fraser river salt wedge estuary, which has a charac-
teristic two layer circulation, the internal or densimetric Froude number, G,
(Chap. 2, Eq. 2.39), has been expressed by Geyer and Farmer (1989) as:

G2 ¼ ðF1Þ2 þðF2Þ2; ð9:75Þ

where ðFiÞ2 ¼ u2i =g
0hi, (i = 1, 2), u1 and u2 are velocities in the upper and lower

layers, respectively, g’ is the reduced gravity, and h1 and h2 are the thicknesses of
the upper and lower layers, respectively. For the simplified two-layer flow of a salt
wedge estuary in a rectangular channel with a uniform depth-mean volume trans-
port and a quasi-steady interface elevation, the momentum equations for the upper
and lower layers where combined to form the following equation for density-driven
shear flow (Geyer and Farmer, op. cit.):
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@

@t
ðu2 � u1Þ ¼ �½ð1� G2Þg0 @g

@x
þ CDju2ju1

h2
þCEð 1h1 þ 1

h2
Þ u2 � u1j jðu2 � u1Þ�:

ð9:76Þ

In this equation, g ¼ g xð Þ is the interface elevation, CD and CE are the bottom
and interfacial drag coefficients, respectively; CE � CD unless the interface is
unstable. Since the interface slopes downward in the landward direction (Fig. 9.2),
the first term on the right-hand-side of Eq. (9.76) will be positive or negative for
subcritical and supercritical flows, respectively. The bottom drag term will be
positive or negative, depending on the direction of the near-bottom flow. The
magnitude of the interfacial drag term is difficult to ascertain, since it depends on
the stability of the interface; however, its sign will always be such that it acts in
opposition to the shear.

The solution of an arrested salt wedge is obtained when the left-hand-side of
Eq. (9.76) vanishes and the baroclinic pressure gradient balances the drag terms.
For this to occur, the flow must be subcritical, with the baroclinic pressure gradient
balancing the drag of the landward deep flow.

Studies of the time dependent mixing in salt wedge estuary were presented by
Partch and Smith (1978), analyzing measurements of salinity and velocity profiles,
taken at short time intervals in comparison to the tidal period, as well as direct
measurements of vertical turbulent salt flux and turbulent kinetic energy. Their
results indicated that the turbulent mixing through the density interface is highly
time dependent with the most intense mixing occurring at the maximum speed, and
when the flow approaches critical conditions.

9.3 Theory and Experiment

Exemplifying the theory that has been developed, let us perform an analysis of the
longitudinal salinity stratification presented in Fig. 9.1a. As previously indicated,
this experimental result, which was observed during a period of high river discharge
(Qf � 148 m3 s−1) in the salt wedge estuary of the Duwamish river (Seattle,
Washington, USA), was published by Dawson and Tilley (1972).

To adequate this experimental result to the presented theory, it is necessary to
approximate the estuary with a simple geometry, for example: the bottom with a
planel surface, with a mean depth of 10 m (H0 = 10 m) and a constant width
(B = 140 m, from hydrographic charts, Corps of Engineers 1973, quoted in Rattray
and Mitsuda 1974). From Fig. 9.1a, it is possible to estimate the salt-wedge
intrusion length as 104 m with a mean slope estimated as dη2/dx = 2.0 � 10−4

(approximately 1.0 m for a length of 5000 m). The fresh water velocity at the
estuary head is estimated as 0.10 ms−1. Another quantity which may be estimated
from the figure is the non-dimensional depth of the salt-wedge at the estuary mouth,
calculated by the ratio Hm = hm/H0 � 0.4 (hm = 4 m and H0 = 10.0 m). With this
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value, using Eq. (9.73), it is possible to calculate the non-dimensional configuration
of the salt wedge, which is similar to that presented in Fig. 9.3.

These results show that it is possible to have good agreement between values
obtained theoretically and experimentally, such as the salt-wedge intrusion length,
using a determined value for the interfacial friction coefficient, k. However, this
doesn’t represent proof of the hypothesis used in the theory, because k is a measure
of the eddy shear at the salt and fresh water interface, and its value varies not only
with different estuary conditions, but also from one estuary to the other (Farmer and
Morgan 1953; Rattray and Mitsuda 1974).

Let us continue to theoretically calculate the vertical velocity profile at the
landward position, x�7.8 km, in the salt wedge estuary (Fig. 9.1a). At this position,
the thicknesses of the upper and lower layers during high river discharge are
approximately h1 = 4.0 m, h2 = 6.0 m. Then, according to Eq. (9.10), the velocity
in the upper layer (0 � z � 4 m) is calculated by

u1ðx) ¼ uf ¼ Qf

Bh1ðx) ¼ 0:26ms�1:

The lower layer (salt-wedge) is delimited by the depth interval (4 m � z
10 m), and the theoretical vertical velocity profile is calculated by Eq. (9.41). Using
the values already determined for this profile, we have:

Fig. 9.4 a Theoretical vertical velocity profile in the salt wedge estuary of the Duwamish river.
b Experimental vertical salinity profile. The physical quantities necessary to calculate these
profiles were estimated from Fig. 9.1a
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u2ðx,z) ¼ �ð0:52
6

Þð10� z)þð0:78
36

Þð10� z)2;

or

u2ðx,z) ¼ �8:7x10�2ð10� z)þ 2:2x10�2ð10� z)2:

Composing the profiles, u1(x) and u2(x, z), in the upper (0 � z � 4 m) and
lower (10 m � z � 4 m) layers, we obtain the theoretical velocity profile in the
water column, as shown in Fig. 9.4a; this solution is represented graphically, with
the vertical salinity profile (Fig. 9.4b estimated from Fig. 9.1a. Figure 9.4a indicate
that above the halocline, the flow is seaward with constant velocity,
u1 xð Þ ¼ 0:26ms�1. In the salt-wedge, an accentuated decrease is observed in the
velocity, u2(x, z), and at 6 m depth the velocity is zero. For greater depths, the
motion is landward and reaches a velocity of �0:09ms�1. At the depth interval of
the salt-wedge the vertical velocity shear is forced by the barotropic pressure
gradient and the free surface slope, and due to the imposed boundary condition the
velocity at the bottom is zero.

As the theoretical velocity profile has been obtained with simplifying hypothesis,
it must be validated by comparison with experimental velocity profiles.

References

Dawson, W. A. & Tilley, L. J. 1972. Measurement of Salt Wedge Excursion Distance in the
Duwamish River Estuary, Seattle, Washington, by Means of the Dissolved-Oxygen Gradient.
Geological Survey Water-Supply. Washington, D. C., U. S. Department of Interior, Paper
1873-D, pp. D1–D27.

Farmer, H. G. & Morgan, G. W. 1953. The Salt Wedge. In: Johnson, J. W. (ed.). Proc. of Third
Conference on Coastal Engineering. Council on Wave Research. Cambridge, The Engineering
Foundation, pp. 54–64.

Geyer, W. R. 1986. The Advance of a Salt Wedge Front: Observations and a Dynamical Model.
In: Dronkers, J & Van Leussen W. (eds.). Physical Processes in Estuaries. Berlin,
Springer-Verlag, pp. 181–195.

Geyer, W. R. & Farmer, D. M. 1989. Tide-Induced Variations of the Dynamics of a Salt Wedge
Estuary. J. Phys. Oceanogr., v.19, pp.1060–1072.

Granville, W. A.; Smith, P. F. & Longley, W. R. 1956. Elementos de Cálculo Diferencial e
Integral. Trad. J. Abdelhay. 2 ed., Rio de Janeiro, Editora Científica. 695 p.

Hansen, D. V. & Rattray Jr., M. 1966. New Dimensions in Estuary Classification. Limnol.
Oceanogr., 11(3):319–325.

Harleman, D. R. F. & Ippen, A. T. 1967. Two-Dimensional Aspects of Salinity Intrusion in
Estuaries: Analysis and Velocity Distributions. Committee on Tidal Hydraulics. Tech. Bull.,
Corps of Engineers, U. S. Army, n. 13.

Keulegan, G. H. 1949. Interfacial Instability and Mixing in Stratified Flows. J. Res. U. S. Geol.
Surv., 43:487–500.

348 9 Circulation and Mixing in Steady-State Models …



Officer, C. B. 1976. Physical Oceanography of Estuaries (and Associated Coastal Waters). New
York, Wiley. 465 p.

Partch, E.N. & Smith, J.D. 1978, Time Dependent Mixing in a Salt Wedge Estuary. Estuarine and
Coastal Marine Science. 6, pp. 3–19.

Prandle, D. 1985. On salinity Regimes and the Vertical Structure of Residual Flows in Narrow
Tidal Estuaries. Estuar. Coast. Shelf Sci., 20:615–635.

Pritchard, D. W. 1955. Estuarine Circulation Patterns. Proc. Am. Soc. Civ. Eng., 81:717:1–11.
Rattray Jr., M. & Mitsuda, E. 1974. Theoretical Analysis of Conditions in a Salt Wedge. Estuar.

Coast. Mar. Sci., 2:375–394.
Sanders, J. L.; Maximon, L. C. & Morgan, G. W. 1953. On the Stationary Salt Wedge – a Two

Layer Free Surface Flow. Tech. Rept., Brown University, n. 1. 44 p.
Schettini, C. A. F. 2002. Caracterização Física do Estuário do Rio Itajaí-açu, SC. Revista Brasileira

Recursos Hídricos, 7(1):123–142.
Schettini & Truccolo. E. C. 1999. Dinâmica da Intrusão Salina no Estuário do Rio Itajaí-açu. In:

Congresso Latino Americano de Ciências do Mar, 8, Trujillo, Peru, Resumenes ampliados,
Tomo II, UNT/ALICMAR, p. 639–640.

Shi-Igai, H. & Sawamoto, M. 1969. Experimental and Theoretical Modeling of Saline Wedges.
Proc. of the 13th Congress Internat. Assoc. Hydraulic Res., Kyoto. Science Council of Japan, 3
(C): 29–36.

Wright, L. D. 1970. Circulation, Effluent Diffusion and Sediment Transport, Mouth of South Pass,
Mississippi River Delta. Baton Rouge, Louisiana State University Press. 56 p.

Quoted References

Corps of Engineers. 1973 (quoted in Rattray & Mitsuda, 1974. Theoretical Analysis of Conditions
in a Salt-Wedge. Estuar. Coast. Mar. Sci., 2:375–394).

Döbereiner, C.E. 1985. Comportamento hidráulico e sedimentológico do estuário do rio Itajaí, SC.
Rio de Janeiro, Instituto Nacional de Pesquisas Hidroviárias (INPH), Relatório 700/03, 34
p. (quoted in Schettini (2002), p. 132).

Ippen, A. T. & Harleman, D. R. F. 1961. One-Dimensional Analysis of Salinity Intrusion in
Estuaries. Committee on Tidal Hydraulics. Tech. Bull. Corps of Engineers U. S. Army, n. 5.
120 p.

Schijf, J.B. & Schonfeld, 1963. Theoretical considerations on the motion of salt and fresh water.
Proc. Minnesota Int. Hydraul. Conv. 5th Congress I.A.H.R., pp. 321–333. (quoted in Geyer &
Farmer (1989), p. 1060).

References 349



Chapter 10
Circulation and Mixing in Steady-State
Models: Well-Mixed Estuary

In this chapter, the analytic model of circulation and mixing in a well-mixed and
laterally homogeneous estuary (Types 1 or D) will be presented. In contrast to that
of the salt wedge estuary, the vertical salinity stratification of a well-mixed estuary
is the complete opposite, being very weak. These conditions are characteristic of
estuaries in regions of low river discharge, where the circulation and mixing pro-
cesses are dominated by tidal forcing. As the vertical salinity (density) gradient is
very low, it may be practically neglected, and in steady-state conditions, the fresh
water discharge and tidal forcing remain constant during tidal cycles. In practice,
these simplifying conditions are simulated by mean values during tidal cycles,
resulting in a one-directional seaward circulation (Fig. 10.1).

In the mixing zone (MZ), the longitudinal salinity (density) gradient is much less
intense than that observed in partially mixed estuaries, as indicated in Chap. 8 (Fig.
8.1). However, the integrated influence of the baroclinic pressure gradient associ-
ated with the internal friction is one of the processes responsible for the occurrence
of the small vertical velocity shear. Eventually, in relatively deep estuaries, this
integrated influence may generate weak gravitational circulation and landward
motions in bottom layers.

10.1 Hydrodynamic Formulation and Hypothesys

Let us consider a laterally homogeneous, well-mixed estuary with the objective of
introduce an analytical model to calculate the vertical velocity profile, u = u(x, z),
the free surface slope, ∂η/∂x, and the longitudinal salinity variation S = S(x, z),
which are generated by the fresh water discharge, the gradient pressure force and
the surface wind stress. The approach we will take to achieve this follows the
articles of Arons and Stommel (1951), Maximon and Morgan (1955), Officer (1976,
1977) and Prandle (1985). By hypothesis, the estuary has a simple geometry with
constant width (B) and depth (h), as schematically shown in Fig. 10.2. The Oxz

© Springer Nature Singapore Pte Ltd. 2017
L. Bruner de Miranda et al., Fundamentals of Estuarine Physical Oceanography,
Ocean Engineering & Oceanography 8, DOI 10.1007/978-981-10-3041-3_10

351

http://dx.doi.org/10.1007/978-981-10-3041-3_8
http://dx.doi.org/10.1007/978-981-10-3041-3_8


referential system will be used, with the vertical axis (Oz) originating at the free
surface and oriented in the direction of the gravity acceleration ð g!Þ, and the Ox
axis oriented seaward. Then, according to the barotropic and baroclinic pressure
gradients (Eq. 8.18 and Chap. 8), it follows that,

� 1
q
@p
@x

¼ g
@g
@x

� g
q

Zz

g

@q
@x

dz: ð10:1Þ

As the longitudinal density gradient is taken as independent of the depth,
@
@z

@q
@x

� �
¼ 0, the longitudinal density (salinity) gradient is substituted by the

depth-mean value @q
@x

@S
@x

� �
, this equation is simplified to

� 1
q
@p
@x

¼ g
@g
@x

� g
q
@q
@x

ðz� gÞ ¼ g
@g
@x

� g
q
@q
@z

z: ð10:2Þ

Fig. 10.1 Steady-state vertical salinity and velocity distribution in a well-mixed estuary, with
small vertical salinity gradients which may be found in nature. S0 is the salinity at the coastal
ocean, which is a boundary condition to the salt conservation equation

Fig. 10.2 Diagram of a well-mixed estuary and the coordinate system used in the theoretical
development. S = S(x, z) or q = q(x, z), η = η(x) and H0 indicate the longitudinal salinity or
density distribution, the free surface slope and the depth at the estuary head, respectively
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In the last term of the right-hand-side of this equation, the approximation
z − η � z was made, and the baroclinic pressure gradient increases linearly with
depth. In some cases, although the density gradient is considered to be independent
of the depth, it may vary along the longitudinal distance, @q=@x ¼ gðxÞ, where
g = g(x) is a function which remains to be determined.

To satisfy the mass continuity principle, the free surface must slope downward in
the seaward direction (∂η/∂x > 0) generating the barotropic pressure gradient,
which physically simulates the motion generated by the fresh water discharge.

The following simplifying assumption must be specified:

• Local, advective and Coriolis accelerations are disregarded;
• The lateral friction has low intensity in comparison to the energy dissipation due

to the vertical eddy diffusion.
• The vertical kinematic eddy viscosity (Nz) and diffusivity (Kz) coefficients are

supposed to be independent of the depth.

Taking into account these simplifications, the laterally integrated continuity and
motion Eqs. (8.56 and 8.57b, Chap. 8), combined with the gradient pressure force
(Eq. 10.2) may be simplified, and reduced to

@u
@x

þ @w
@z

¼ 0; ð10:3Þ

and

g
@g
@x

� g
q
@q
@x

zþNz
@2u
@z2

¼ 0: ð10:4Þ

It should be noted that in the equation of motion, a simple balance of the
barotropic and baroclinic pressure gradients and the energy dissipation due to the
friction is taken into account. These equations must be complemented with the
one-dimensional salt conservation equation (Eq. 7.78a Chap. 7), in steady-state
condition, along with the linear state of seawater equation

uf
@S
@x

¼ Kx
@2S
@z2

� �
; ð10:5Þ

qðS) ¼ q0ð1þ bS); ð10:6Þ

where the saline contraction coefficient, b, may be approximated by a constant.
Under the assumption that the kinematic eddy viscosity (Nz) and diffusion (Kz)

coefficients are constants and known, Eqs. (10.3) to (10.6) form a closed hydro-
dynamic system. Its solution, satisfying the boundary and integral boundary con-
ditions, will give the following unknowns: u = u(x, z), η = η(x), S = S(x, z) and
q = q(x).
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As the coefficient, Nz, is known, Eq. (10.4) may be rewritten as

@2u
@z2

¼ � g
Nz

@g
@x

þ g
qNz

@q
@x

z; ð10:7aÞ

or in terms of the longitudinal salinity gradient,

@2u
@z2

¼ � g
Nz

@g
@x

þ q0gb
qNz

@S
@x

z: ð10:7bÞ

In Eq. (10.7b), the longitudinal density gradient has been substituted by the
salinity gradient, using the simplified equation of state (10.6); this gradient may be
calculated using steady-state salinity values, or theoretically estimated with the salt
conservation Eq. (10.5).

The salt conservation equation was solved in Chap. 7 (Eq. 7.113) as a first
approximation of the mixing process in a well-mixed estuary. In this solution,
the salinity distribution presented an exponential decrease in the mixing zone,
S(x) = S0.exp(ufx/Kx), and its longitudinal salinity gradient (∂S/∂x) behaved
similarly.

For the solution of the equation of motion (10.7b), it is convenient to rewrite the
equation as

@2u
@z2

¼ agx þ cSxz; ð10:8Þ

where the following coefficient changes have been used: a ¼ �g/Nz and c ¼ bg/Nz,
both with dimensions a; c½ � = [L−1T−1], and the approximation q0/q � 1. In this
equation, the non-dimensional surface slope (∂η/∂x) and the longitudinal salinity

gradient, @S
@x ¼ Sx, [Sx] = [L−1], are denoted by ηx and Sx, respectively.

The non-homogeneous second order differential equation with constant coeffi-
cients (Eq. 10.8) may be integrated twice

u(x, z) ¼
ZZ

ðagx þ cSxz)dzdz; ð10:9aÞ

with the general solution:

u(x, z) ¼ 1
6
cSxz3 þ 1

2
agxz

2 þC1zþC2: ð10:9bÞ

In this equation, the integration constants, C1 and C2, have the dimensions
[C1] = [T−1] and [C2] = [LT−1], and will be determined with the following
boundary conditions:
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• Wind stress at the surface, sWx;

qNz
@u
@z

jz¼0 ¼ Az
@u
@z

jz¼0 ¼ �sWx; ð10:10Þ

where Az, is the dynamic eddy viscosity coefficient, and the wind is oriented in
the seaward direction, and sWx > 0 because (∂u/∂z < 0).

• Maximum friction (non-slippery) at the bottom (z = H0 − η � H0);

u(x, z)jz¼H0
¼ 0: ð10:11Þ

Another bottom boundary condition which may be applied is a slippery bottom,
simulated by,

qNz
@u
@z

jz¼H0
¼ Az

@u
@z

jz¼H0
¼ sBx: ð10:12Þ

In this last boundary condition, sBx, is the bottom frictional which is a dissipative
energy source.

10.2 Solution with Maximum Bottom Friction

Applying the boundary conditions (10.10) and (10.11) to the general solution
(Eq. 10.9b) the integration constants are expressed by,

C1 ¼ � sWx

Az
; ð10:13Þ

and

C2 ¼ � 1
6
cSxH3

0 �
1
2
agxH

2
0 þ

sWx

Az
H0; ð10:14Þ

with dimensions [C1] = [T−1] and [C2] = [LT−1].
Substituting these constants into the general solution (10.9b) we have

u(x, z) ¼ 1
6
cSxðz3 � H3

0Þþ
1
2
agxðz2 � H2

0Þ �
sWx

Az
ðz� H0Þ: ð10:15Þ

It is easy to verify that this solution has the dimension of velocity [u(x,
z)] = [LT−1], but it is still dependent on the free surface slope (ηx), which is an
unknown and is calculated using the continuity equation in the form of an integral
boundary condition, which is given by,
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ZH0

0

u(x, z)dz ¼ Qf

B
; and uf ¼ Qf

BH0
: ð10:16Þ

Substituting the solution (10.15) into the integrand, and completing the inte-
gration, we have

Qf

B
¼ � 1

8
cSxH4

0 �
1
3
agxH

3
0 þ

sWx

2Az
H2

0; ð10:17Þ

where the approximation η + H0 � H0 was made under the assumption that
η � H0. Solving expression (10.17) for the unknown, ηx, and taking into account
the expressions a ¼ �g/Nz and c ¼ bg/Nz, we have:

@g
@x

¼ gx ¼ 3
Nzuf
gH2

0

þ 3
8
bSxH0 � 3

2
sWx

qgH0
; ð10:18Þ

or

gx ¼ 3
Nzuf
gH2

0

þ 0:375
H0

q0

@q
@x

� 1:5
sWx

qgH0
: ð10:19Þ

Without the wind stress forcing (sWx = 0) this result is close to that calculated by
Geyer (2010). In this solution uf = Qf/BH0, and it has been taken into account that
bSx = (1/q0)∂q/∂x), which was obtained using the linear equation of state (10.6).
The first and second terms on the right-hand-side of this equation are proportional
to the fresh water discharge and the longitudinal density (salinity) gradient, ∂q/∂x,
and always have positive contributions (uf > 0 and ∂q/∂x > 0). The wind forcing
however, may change its direction (sWx > 0 or sWx < 0 seaward or landward,
respectively). Hence, the steady-state free surface slope is controlled by the forc-
ings: river discharge, longitudinal density (salinity) gradient and wind stress. In
normal conditions, ηx > 0 and the free surface slope is seaward; however, in
abnormal wind conditions, the wind stress may be higher than the other forces.
With the following order of magnitude: Nz = 0.05 m2 s−1, uf = 0.1 m s−1,
H0 = 10 m and (1/q0)∂q/∂x = 3 � 10−6 m−1 (density variation of 30 kg m−3 for
an estuary with length of 104 m), the right-hand-side terms of Eq. (10.19) have the
following orders of magnitude:

O
3Nzuf
gH2

0

����

����

� �
� 10�5; ð10:20Þ

O 0:375
H0

q0

@q
@x

����

����

� �
�10�5: ð10:21Þ
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These results indicate that the river discharge and the longitudinal density
(salinity) gradient are positive and have the same order of magnitude, but this
situation may change for longer estuaries (�104 m). However, due to particular
strong seaward or landward winds, its forcing influence may be higher than the
combined effects of the river discharge and the longitudinal density (salinity)
gradient, generating an ascending free surface from the estuary head towards the
mouth and a bidirectional circulation, as shown in Fig. 10.3.

Substituting Eq. (10.18) into solution (10.15) simplifying the result and
rewriting it in terms of the non-dimensional depth (Z = z/|H0|), yields the following
expression for calculation of the vertical u-velocity profile (Officer 1976, 1977):

u(x, Z) ¼ bgSxH
3
0

48Nz

� �
ð1� 9Z2 þ 8Z3Þ

þ 3
2
ufð1� Z2Þþ sWxH0

4Az
ð1� 4Zþ 3Z2Þ;

ð10:22Þ

where Az = qNz is the dynamic viscosity coefficient [Az] = [ML−1T−1].
Recalculating the numerical coefficients and rewriting the results as functions of the
longitudinal density gradient, gives

u(x, Z) ¼ gH3
0

q0Nz

@q
@x

ð0:167Z3 � 0:188Z2 þ 0:0208Þ

� ufð1:5Z2 � 1:5Þþ sWxH0

Az
ð0:75Z2 � Zþ 0:25Þ:

ð10:23Þ

Fig. 10.3 Vertical u-velocity
profiles of a well-mixed
estuary. Under normal
steady-state conditions, the
u-velocity profile is
one-directional (black line);
strong wind flowing seaward
and landward generating a
bidirectional flow (dashed and
dash-point lines, respectively)
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The analysis of the relative importance of the forces on the right-hand-side of
this equation may be made using the same values previously used to estimate the
terms of Eq. (10.19), complemented with the wind stress, sWx = 0.2 N m−2:

O
gH3

0

Nz

1
q0

@q
@x

����

����

� �
� 5� 10�2 m s�1; ð10:24Þ

O ufj jð Þ ¼ 1� 10�1 m s�1; ð10:25Þ

O
sWxH0

Az

����

����

� �
¼ 8� 10�2 m s�1: ð10:26Þ

These results indicate that these forces may have different orders of magnitude,
to generate the one-directional u-velocity component of well-mixed estuaries.
However, the estuary circulation may be substantially altered by abnormal weather
events (wind intensity) and changes in the river discharge. Vertical u-velocity
profiles were calculated with Eq. (10.23), using the order of magnitude values
presented in (10.24) and (10.25), but with strong wind intensities oriented seaward
and landward generating bidirectional circulation as shown in the Fig. (10.3).
Another example, showing the influence of baroclinic pressure gradient force to
generate bi-directional motion may be found in Fontes et al. (2015).

In normal conditions, the motion is seaward and its velocity decreases with
depth, characterizing the classical steady-state circulation of a well-mixed estuary.

For this type of estuary, the circulation parameter pc ¼ us
uf

� �
calculated in the

analytical theory of Hansen and Rattray (1966) was 1.5; in the profile presented in
Fig. 10.3, this parameter is equal to 1.7, which agrees closely to the theoretical
value.

The dynamical influence of strong winds generating bi-directional motions
forced by the barotropic pressure gradient, seaward and landward directions due to
positive and negative free surface slopes, respectively, may be investigated with
Eq. (10.23). For strong local wind generating a positive surface slope (∂η/∂x > 0),
the velocity at the surface layer is positively composed with the river velocity, and
may generate higher intensities than those generated by an opposing wind direction,
as shown in Fig. 10.3.

Using Eq. (10.23) to calculate the surface and bottom velocities, the following
results will be obtained:

u(x; 0Þ ¼ 2:08� 10�2 gH3
0

Nz

1
q
@q
@x

� �
þ 1:5uf þ 2:5� 10�1 sWxH0

Az

� �
; ð10:27Þ

and
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u(x, 1) ¼ 0; ð10:28Þ

due to the maximum friction at the bottom.
If the first term on the left-hand-side of Eq. (10.27) is calculated from obser-

vational data and the surface wind stress is also known, Eq. (10.27) may be used to
estimate the dynamic viscosity coefficient, Az (or Nz = Az/q); solving Eq. (10.27)
for this coefficient yields the expression:

Az ¼ 1
½2u(x; 0Þ � 3uf � 4:16� 10�2 gH3

0
@q
@x

� �
þ 5� 10�1sWxH0

� �
: ð10:29Þ

Calculating the orders of magnitude of the expression between right brackets on
the numerator of the right-hand-side, it is possible to verify that under normal
conditions, the term of the longitudinal density gradient is one order of magnitude
higher than that associated with the wind stress term, and the expression may be
simplified to

Az �
4:16� 10�1g H3

0
@q
@x

� �

½2u(x; 0Þ � 3ufÞ� : ð10:30Þ

In this result, it was assumed that g � 10 m s−2. With u(x, 0) = 0.2 m s−1 and
the same values previously used for the others variables, it follows that
Az � 1.0 � 102 kg m−1s−1.

The occurrence of extreme points in the vertical velocity profile (Eq. 10.22) may
be identified by a simple mathematical treatment, consisting of its derivation, and
equating to zero the result, we have:

@u
@Z

¼ bgSxH
3
0

48Nz
ð�18Zþ 24Z2Þ � 3ufZþ sWxH0

4Nzq
ð�4þ 6Z) ¼ 0: ð10:31Þ

Under the assumption that the wind stress may be disregarded, this equation is
reduced to

@u
@Z

¼ bgSxH
3
0

48Nz
ð�18Zþ 24Z2Þ � 3ufZ ¼ 0: ð10:32Þ

As the derivative value is zero for Z = 0, and at this point Eq. (10.22) has a
positive value, u(x, 0) > 0, it follows that it is of maximum value, and the vertical
velocity profile may be calculated with Eq. (10.23), using the definition of the
dynamic eddy viscosity coefficient q0Nz = Az,

u(x;Z) ¼ gH3
0

Az

@q
@x

ð0:167Z3 � 0:188Z2 þ 0:0208Þ � ufð1:5Z2 � 1:5Þ: ð10:33Þ

10.2 Solution with Maximum Bottom Friction 359



In estuaries where the fresh water discharge is the main driving force and the
influence of the baroclinic pressure gradient may be disregarded, but the vertical
diffusion generated by the tidal energy is great enough for the estuary to be clas-
sified as well mixed, the vertical velocity profile in calm weather (swx � 0) is
reduced to:

u(x, Z) ¼ �ufð1:5Z2 � 1:5Þ; ð10:34Þ

and its mean value in the water column is

Z1

0

u(x;Z)dZ ¼ uf

Z1

0

ð�1:5Z2 þ 1:5ÞdZ ¼ uf : ð10:35Þ

Thus, the free surface slope Eq. (10.19) is simplified to

@g
@x

¼ gx ¼ 3uf
Nz

gH2
0

; ð10:36Þ

and, from the Eq. (10.34), the relative velocity is:

u(x, Z)
uf

¼ �1:5ðZ2 � 1Þ; ð10:37Þ

which is presented in Fig. 10.4. The vertical velocity shear observed in this figure is
only due to the vertical eddy diffusion (inner friction), because the baroclinic
pressure gradient has been disregarded.

Fig. 10.4 Vertical relative
velocity profile in a
well-mixed estuary with the
longitudinal density (salinity)
and wind stress disregarded
(∂q/∂x = 0 and sWx = 0),
calculated with Eq. (10.37).
The constant value for u(x,
Z)/uf = 1 is the relative value
of the mean velocity in the
water column
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10.3 Vertical Velocity Profile: Moderate Bottom Friction

Let us now calculate the vertical profile of the u-velocity component with the
bottom boundary condition, sBx, simulated with a slippery bottom, according to
formulation (10.12). However, in this case, the frictional bottom stress expressed by
the semi-empirical relationship sBx = q(4/p)kUTu|z=Ho (Eq. 8.32 and Chap. 8),
which may be applied when the tidal velocity amplitude (UT) is much higher than
the u-velocity component (UT � u), according to Bowden (1953). Taking into
account the boundary condition at the free surface (10.10), the integration constants
C1 of the general solution (10.9b) is expressed by:

C1 ¼ � sWx

qNz
¼ � sWx

Az
; ð10:38Þ

which is equal to that obtained in (10.13). As the bottom shear stress will be
simulated by sBx = q(4/p)kUTu|z=Ho, applying the bottom boundary condition
(10.12) the expression for the integration constant C2, is formulated by:

C2 ¼ cSxH3
0

p
8
� 1
6

� �
þ agxH

2
0

p
4
� 1
2

� �
� sWxH0

Az

p
4
� 1

� �
; ð10:39Þ

and its dimension is [C2] = [LT−1].
Substituting the integration constants C1 and C2 into the general solution

(Eq. 10.9b), reducing to the result to the simplest expression in terms of the
non-dimensional depth (Z) and taking into account that a ¼ �g/Nz and c ¼ bg/Nz,
the final expression of the u-velocity profile is

u(x;Z) ¼ bgSxH
2
0

kUT

Z3

6
þ p

8
� 1
6

� �� �

� gxgH0

kUT

Z2

2
þ p

4
� 1
2

� �� �
� sWx

qkUT
Zþ p

4
� 1

� �h i
:

ð10:40Þ

This expression is still a function of the free surface slope (ηx), to its determi-
nation as a function of a known physical quantity, it is necessary to apply the
integral boundary condition expressed by,

1
ðH0 þgÞ

ZH0

g

u(x, z)dz ¼
Z1

0

u(x, Z)dZ ¼ uf ; ð10:41Þ

where the approximation H0 + η � H0 will be made. From Eqs. (10.40) and
(10.41), we have for ηx the following expression:
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" #
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 : ð10:42Þ

Reducing this equation to a more simple expression, it may be rewritten as

gx ¼ �2:212
kUTuf
gH0

þ 5:92x10�1bSxH0 � 0:631
sWx

qgH0
ð10:43Þ

or as a function of the longitudinal density gradient,

gx ¼ �2:212
kUTuf
gH0

þ 5:92x10�1 H0

q0

@q
@x

� 0:631
sWx

qgH0
: ð10:44Þ

If the river discharge velocity (uf), the longitudinal salinity (density) gradient and
the wind stress are known, it is possible to calculate ηx with Eq. (10.43) or (10.44);
the quantities UT and H0 are supposed to be known. Comparing Eqs. (10.44) and
(10.19), it is possible to verify the following changes, which are due to the bottom
boundary condition changes:

• For the river discharge velocity (uf) and the wind stress (sWx), the factors of
these terms decreased from 3.0 to �−2.2, and from 1.5 to �0.63, respectively;

• The factor of the longitudinal density gradient increased from �0.37 to �0.59.

To evaluate the importance of the forces producing the steady-state free surface
slope (Eq. 10.44), the following orders of magnitude of its terms were calculated:

O 2:212
kUTuf
gH0

����

����

� �
� 2:7� 10�6; ð10:45Þ

O 0:592
H0

q0

@q
@x

����

����

� �
� 3:5� 10�5; ð10:46Þ

and

O 0:631
sWx

qgH0

����

����

� �
� 6:3� 10�7; ð10:47Þ

where the following numeric values were applied: k = 2.5 � 10−3, UT = 1.0 m s−1,
H0 = 20 m (Nz = 5 � 10−2 m2 s−1), uf = 0.1 m s−1, (1/q0)∂q/∂x = 3 � 10−6 m−1

(density variation of 30 kg m−3 for a distance of 10 km) and sWx = 0.2 Pa.
These orders of magnitude (10.45) to (10.47) indicate that the influence of the

longitudinal density gradient predominates and, although the river discharge
velocity term is negative, the combination of these terms generates a positive free
surface slope (downward towards the estuary mouth), as also observed in
Eq. (10.19). The wind stress has the least influence, but intense landward wind
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forcing (sWx < 0) generates a positive free surface slope; or, intense seaward wind
stress (sWx > 0) may generate negative slopes if its intensity is higher than the
combined influences of the longitudinal density gradient and the river velocity input.

Substituting the equation of the free surface slope (10.44) into Eq. (10.40),
numerically simplifying the result, and solving it as a function of the longitudinal
density gradient, the analytic velocity profile has the following expression:

u(x;Z) ¼ gH2
0

kUT

1
q0

@q
@x

ð0:167Z3 � 0:296Z2 þ 0:058Þ

þ ufð1:106Z2 þ 0:630Þþ sWx

qkUT
ð0:316Z2 � Zþ 0:395Þ:

ð10:48Þ

This solution has some similarities to Eq. (10.23) with the non-slippery bottom
boundary condition, u(x, z)|z=H0 = 0.

Theoretical simulations of the steady-state u-velocity component with
Eq. (10.48) under different intensities of the longitudinal density gradient, river
discharge velocity and wind stress are presented in Fig. 10.5. To calculate these
velocity profiles, the coefficient k and the quantities U0 and H0 were taken as
k = 2.5 � 10−3, UT = 0.7 m s−1 and H0 = 10 m.

The intensity decreases in the profiles shown in Fig. 10.5a were due to the
decrease in the longitudinal density gradient from 4.8 � 10−4 to 2.4 � 10−4 kg
m−4. At the bottom, we may observe the influence of the slippery bottom boundary
condition generating a landward motion (very attenuated in the simulation with the
weakest longitudinal density gradient).

Fig. 10.5 Vertical velocity
profiles simulated with the
one-dimensional analytic
model with the slippery
bottom boundary condition
(Eq. 10.49). a Normal wind
conditions. b Profiles showing
the reverted motions when
local high intensity wind
stress force the circulation
seaward (sWx > 0) and
landward (sWx < 0)
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The profiles shown in Fig. 10.5b were calculated with the same longitudinal
density gradient as Fig. 10.5a, to demonstrate only the influence of high wind stress
acting seaward (sWx = 1.0 Pa) and landward (sWx = −1.0 Pa). For the seaward
wind direction sWx > 0 the velocity in the layer deeper than |Z| > 0.57 is a rela-
tively intense motion in both the seaward and landward directions (Fig. 10.5a),
deviating from the classical estuarine circulation of a well-mixed estuary. For the
landward wind direction (sWx < 0), the balance of forces that drive the well-mixed
estuary circulation is suppressed, and the circulation changes to the opposite
direction: landward above |Z| < 0.25 and seaward bellow |Z| > 0.25.

In the next topic, these theoretical results will be compared with nearly
steady-state observational velocity profiles.

10.4 Theory and Observational Data

In the literature of estuarine dynamics, there is a great number of articles focusing
on the comparison of theoretical values and observational data of steady-state
estuarine circulation. To address this, we will compare experimental data from
well-mixed (or almost well-mixed) estuaries with the solutions of the theoretical
Eqs. (10.23) and (10.48). In this process, the nearly steady-state vertical velocity
profiles were calculated from time-mean observational values, measured over one
or more complete tidal cycles, which satisfies, as a first approximation, the
hypothesis for steady-state estuarine conditions used in the theoretical development.

Under these hypotheses, the estuarine circulation is driven by the longitudinal
density (salinity) gradient, by the river discharge, represented by the volume
transport, Qf (or the velocity uf), and a constant wind stress. However, for most
estuaries in this study, these data weren’t simultaneously measured with the
experimental velocity data used in the validation process. As such, the comparison
of theory and experimental data must be taken only as a test of the theoretical
development.

For the first comparison, consider the theoretical vertical velocity profile calcu-
lated by Eqs. (10.22) or (10.23), exemplified with observational data obtained in the
estuary of the Cananéia-Iguape estuarine system (Fig. 1.5 and Chap. 1).
Experimental data obtained during the spring tide indicated a weakly stratified
vertical salinity profile (Fig. 10.6b), with salinities differing between the bottom and
surface by less than 1.0‰ (dS = Sf − Ss � 0.6‰), with time-mean values calcu-
lated for a period of two semi-diurnal tidal cycles. According to the classification
criteria of Pritchard (1955), this estuary may be classified as well-mixed. The ana-
lytical simulation of the u-velocity component presented by Miranda et al. (1995),
and its comparative analysis with the experimental data (Fig. 10.6b) indicated good
agreement between these results. In this figure, for |Z| > 0.55 it is also possible to
observe the influence of the baroclinic pressure gradient, indicated by landward
motions, because at the mooring station the estuary was relatively deep (�10 m),
increasing the baroclinic component influence in the gradient pressure force.
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Let us use the same set of observational data measured in the same estuary
system for comparison with the analytical model of Eq. (10.48), obtained with the
moderate bottom friction conditions. As we have seen in (Eq. 10.40), the bottom
friction may be adjusted with the tidal velocity amplitude (UT), and the coefficient
k. The best theoretical profiles in comparison to the experimental data (Fig. 10.7),

Fig. 10.6 a Steady-state
time-mean vertical salinity
profile, exhibiting a well
mixed condition (type C or 1).
b u-velocity profile from
experimental data of the
Cananéia estuarine channel,
shown comparatively with the
simulation with the
steady-state one-dimensional
analytical model with
maximum friction at the
bottom (Eq. 10.22).
b According to Miranda and
Castro (1996)

Fig. 10.7 Vertical mean
u-velocity profile calculated
with measurements in the
Cananéia estuarine channel in
comparison with the
analytical profile calculated
with the steady-state
analytical model (Eq. 10.48)
with moderate slippery
bottom boundary condition
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was calculated with the following numeric values: H0 = 10.0 m; ∂q/∂x = 4.0
10−4 kg m−4; UT = 0.5 m s−1; q0 = 103 kg m−3, k = 2.5 � 10−3 and
sWx = 0.2 Pa. The results presented in this figure, indicate a reasonable agreement
between the theory and the observational data, and confirm that the main basic
physical principles have been taken into account in the theoretical calculations.

10.5 Longitudinal Salinity Simulation

The longitudinal salinity distribution in an idealized well-mixed estuary, with the
vertical eddy diffusion predominantly forced by tidal oscillation, was calculated
analytically and compared with experimental data in the classical articles of
Stommel (1951) and Arons and Stommel (1951), using the basic principle of
physics of continuous medium. The development is similar to that presented in
(Eq. 7.113 and Chap. 7), where the eddy diffusion coefficient was assumed to be
constant. However, the basic difference is that in the Arons-Stommel’s article, the
current function and the tidal advective displacement due to the barotropic pressure
gradient were taken into account. As in the previous simulations, the simplifying
hypotheses for a laterally homogeneous estuary with simple geometry and uniform
transverse section and depth are:

• The river discharge, the baroclinic pressure gradient and bottom friction are
disregarded.

• The channel length is small in comparison to a quarter tidal wave length, thus
the tidal elevation will be simultaneous and uniform over the entire channel.

In this simulation, the circulation and the salinity distribution analysis is made in
relation to the longitudinal axis (Ox), oriented positively seaward with its origin
(x = 0) at the TRZ/MZ interface. As in the previous solutions, the salinities at the
estuary head and coastal ocean S|x=0 = 0, S|x=L = S0, respectively, are the boundary
conditions.

According to the second hypothesis, the tidal height, η = η(t), is expressed as:

gðt) ¼ g0cos(xt), ð10:49Þ

where x = p/TP is the angular frequency. The velocity generated by the barotropic
pressure gradient has already been determined from the simplified expressions of
the continuity and motion equations (Eqs. 2.17 and 2.22, Chap. 2),

u(x; t) ¼ U0sin(xt), ð10:50Þ

with the velocity amplitude calculated by,
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U0 ¼ g0xx
H0

: ð10:51Þ

As the longitudinal velocity (Eq. 10.50) is known, the displacement (DM)
generated by the tidal current may be calculated by

DM ¼
Z

uðx; tÞdt ¼ U0

Z
sinðxtÞdt ¼ �U0

x
cosðxtÞ ¼ D0 cosðxtÞþ const:

ð10:52Þ

The amplitude of the advective displacement, D0 = −U0/x, may be combined
with the amplitude of barotropic velocity (Eq. 10.51),

D0 ¼ �U0

x
¼ �g0x

H0
: ð10:53Þ

Applying the one-dimensional salt conservation equation under steady-state
conditions (Eq. 7.98 and Chap. 7) with the integration constant equal to zero,

ufS ¼ Kx
dS
dx

; ð10:54aÞ

To integrate this equation for an estuary with finite length it is convenient to
introduce the non-dimensional longitudinal distance defined by X = x/L. As x = 0
and x = L indicate the interior limits of the MZ and the estuary mouth, respectively,
it follows that X = 0 and X = 1, indicate these positions, respectively. With the
introduction of the longitudinal ordinate X, the differential Eq. (10.54a) is rewritten
as

ufS ¼ Kx

L
dS
dX

: ð10:54bÞ

The kinematic longitudinal eddy diffusivity, Kx, is expressed in terms of the tidal
velocity, U0, and the modulus of a characteristic length (D0), which has been taken
as the total excursion of a particle due to the tides, and the following analytical
expression may be assumed:

Kx ¼ 2BU0 D0j j; ð10:55Þ

where 2B is a non-dimensional coefficient. This form of diffusion coefficient
regards the tides as a turbulent motion superposed upon the steady-state river flow
through the estuary (Arons and Stommel 1951). Taking into account the expres-
sions of U0 and D0 (Eqs. 10.51 and 10.53), the Kx coefficient may be expressed by
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Kx ¼ 2Bg2
0xx

2

H2
0

¼ 2Bg2
0x

H2
0

ðLX)2: ð10:56Þ

Substituting of this expression of Kx into the salt conservation Eq. (10.54b), and
integrating by separation of variables, yields the following expression:

dS
S

¼ F
X2 dX; ð10:57Þ

where the non-dimensional number F (flushing number) is defined by

F ¼ ufH2
0

2Bg2
0xL

¼ ufH2
0T

4pBg20L
: ð10:58Þ

Integrating the differential Eq. (10.57), follows the general solution:

ln(S) ¼ � F
X

þA1; ð10:59Þ

where A1 is the integration constant, which may be easily calculated with the mouth
boundary condition: for X = 1!S(1) = S0 and A2 = ln(S0) + F. Combining this
integration constant with Eq. (10.59) the following expression is obtained:

ln
S
S0

� �
¼ F 1� 1

X

� �
; ð10:60Þ

or

S
S0

¼ exp F 1� 1
X

� �� �
: ð10:61Þ

Parametric curves of the flushing number (F) calculated from the correlation of
the relative salinity (S/S0) versus the non-dimensional longitudinal distance (X), for
an idealized estuary is shown in Fig. 10.8. According to Arons and Stommel (1951)
these curves were developed for a much idealized situation, and it is somewhat
surprising and encouraging to find that the empirical data from actual surveys can
be plotted on these curves with such good agreement for the parameters. The figure
is also very illustrative and presents the following characteristics: for X ! 0 and
X ! 1, the curvatures bend towards minimum and maximum longitudinal gradi-
ents of the relative salinity values, and the longitudinal variation for the Alberni
Inlet and the Raritan estuaries are close to the experimental data for F = 0.3 and
F = 0.8, respectively. An attempt to calculate the proportionality factor between
these results was unsuccessful, with the values being an order of magnitude dif-
ferent for these estuaries. Therefore, it appears that although the theoretical curves
are in good agreement with the observational data, an a priori calculation of the
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flushing number, F, is not yet feasible; nevertheless, this number may be a con-
venient concept to characterize estuaries, just as the family of curves themselves is a
convenient semi-empirical expression of the mean salinity longitudinal distribution
(Arons and Stommel 1951).

10.6 Analytical Simulation

Let us present in this topic some examples of the determination of the steady-state
u-velocity component and salinity vertical profiles of a well-mixed estuary, with
constant width and uniform depth. The equations of continuity and motion (10.3)
and (10.4) and salt conservation Eq. (10.5) will be solved with different boundary
conditions, and kinematic eddy viscosity coefficient expressed by Nz = jUTH0,
with and j = 2.5 � 10−3, and UT � u, according to Bowden and Fairbain (1952),
Bowden (1953) and Prandle (2009).

10.6.1 Basic Equations: Upper and Lower Boundary
Conditions and Integral Boundary Condition

For an estuary under steady-state conditions, with width B = constant, referred to
the Oxz reference system (with z = 0 and z = H0 the surface and bottom, respec-
tively)) and forced by the barotropic pressure gradient force, the equations of

Fig. 10.8 Parametric curves
of the flushing number
(F) from the correlation of the
relative salinity (S/S0) versus
the non-dimensional
longitudinal distance (X). The
curves were developed for an
idealized estuary, shown
comparatively with
observational data of Alberni
Inlet (triangle) and Raritan
river estuary (circle).
According to Arons and
Stommel (1951)
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motion (8.57b, Chap. 8), continuity and salt conservation (7.73a, and 7.78a, Chap.
7), are approximate by,

g
@g
@x

þNz
@2u
@z2

¼ 0; ð10:62Þ

@u
@x

þ @w
@z

¼ 0; ð10:63Þ

and

u(z, x)
@S
@x

¼ @

@z
Kz

@S
@z

� �
: ð10:64Þ

In the continuity Eq. (10.63), the u- and w-velocity components may be
expressed in terms of the current function W = W(x, z), [W] = [L2T−1], with
u(x, z) ¼ � @w

@z, and w(x, z) ¼ @w
@x. Thus the general solution of Eq. (10.62) is

u(x, z) ¼ � @w
@z

¼ � ggx

2Nz
z2 þC1zþC2: ð10:65Þ

In this solution, the surface slope due to the barotropic forcing @g
@x ¼ gx

� �
may

be positive, negative, and null during the flood, ebb or at high and low water,
respectively. The integrations constants, with dimensions [C1] = [T−1] and
[C2] = [LT−1] are calculated applying the following boundary conditions:

• Upper boundary condition.

The wind stress (sW) is applied on the free surface z = 0:

qNz
@u
@z

� �� �

z¼0
¼ �qNz

@2w
@z2

� �
jz¼0 ¼ sW; ð10:66aÞ

• Lower boundary condition.

This boundary condition is expressed according to the bottom characteristics; for
maximum friction it is simulated by:

u(x, z)jz¼H0
¼ � @w

@z
jz¼H0

¼ 0; ð10:66bÞ

and for moderate bottom stress (sB):
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�qNz
@u
@z

� �
jz¼H0

¼ @2w
@z2

jz¼H0
¼ sB: ð10:66cÞ

• Integral boundary condition is formulated by:

Qf

BH0
¼ uf ¼ 1

H0

ZH0

0

u(x; z)dz ¼
Z1

0

u(x, Z)dZ: ð10:66dÞ

In the integral boundary condition, Z is the non-dimensional depth, and indicates
the volume conservation of the river volume transport.

10.6.2 Barotropic Pressure Gradient, Wind Stress
and Maximum Bottom Friction

Considering the surface slope (ηx) as known the integration constant C1 of
Eq. (10.65) is calculated applying the upper boundary condition (10.66a),

qNz � g
Nz

� �
gxzþC1

� �

z¼0
¼ sW; ð10:67aÞ

and C1 ¼ sW
qNz

:

The integration constant C2 is calculated applying the bottom boundary condi-
tion (10.66b). After derivation of the stream function in relation to the depth and
calculating the result for z = H0, this constant is:

C2 ¼ ggxH
2
0

2Nz
� sWH0

qNz
: ð10:67bÞ

Substituting the expressions of C1 and C2 into the general solution (10.65), and
rearranging its terms the solution for the u-velocity component is,

u(x; z) ¼ � 1
2
ggx

Nz
ðz2 � H2

0Þþ
sW
qNz

ðz� H0Þ; ð10:68Þ

or, in function of the non-dimensional depth, ðZ ¼ z
jH0jÞ;
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u(x;Z) ¼ � 1
2
gH2

0

Nz
gxðZ2 � 1Þþ H0

qNz
sWðZ� 1Þ: ð10:69Þ

Taking into account that Nz = jUTH0, this result may be rewritten as:

u(x;Z) ¼ � 1
2
gH0

jUT
gxðZ2 � 1Þ � 2sW

qgH0
ðZ� 1Þ

� �
: ð10:70Þ

This solution identically satisfies the surface and bottom boundary conditions,
the flood and ebb circulation are generated by the barotropic forcing during ebb (∂η/
∂x > 0) and flood (∂η/∂x < 0), and the wind stress may be seaward (sW > 0) or
landward (sW < 0).

Figure 10.9 presents the u-vertical velocity profile using Eq. (10.69). This
simulation were used the following numerical values: H0 = h = 9.6 m;
Nz = jUTH0 = 2.5 � 10−3 m.2 s−1; q = 1020.0 kg m−3; g = 9.80 m s−2;
@g
@x � Dg

Dx ¼ 10:0� 10�6 (ebb tide) and sW = 0. This theoretical profile is shown in
comparison to the nearly steady-state profile sampled in the Peruípe river estuary
(Nova Viçosa, BA, Brazil), classified as well-mixed estuary during spring tide,
according to the observational data of Andutta et al. (2013).

Under this advective influence the theoretical vertical salinity profile is calcu-
lated from the Eq. (10.64) written in terms of the non-dimensional depth (Z),

@2S
@Z2 ¼

Sxh2

Kz
u(x;Z); ð10:71Þ

where Sx is a known positive longitudinal salinity gradient and u = u(x, Z) is given
by the solution (10.69). Thus the vertical salinity profile S = S(x, Z) is obtained by
the integration of the following second order differential equation:

Fig. 10.9 Comparison of the
u-velocity component of a
steady-state theoretical
vertical velocity profile
(dashed line), and the
observational data (thin line),
forced by barotropic pressure
gradient during spring tide in
the Peruípe river Estuary
(after Andutta et al. 2013)
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@2S
@Z2 ¼

Sxh2

Kz

1
2
gh2gx

Nz
ðZ2 � 1Þþ swh

qNz
ðZ� 1Þ

� �
; ð10:72aÞ

or

@2S
@Z2 ¼

Sxgh4gx

2NzKz
ðZ2 � 1Þþ Sxh3sw

qNzKz
ðZ� 1Þ: ð10:72bÞ

In this equation the barotropic pressure gradient (gηx) during the flood and ebb
tide conditions are positive and negative, respectively. Its solution is obtained from
two successive integrations, and the result is:

S(Z) ¼ � Sxgh4gx

2KzNz
ð 1
12

Z4 � 1
2
Z2Þþ Sxh3sw

qNzKz
ð1
6
Z3 þ 1

2
Z2ÞþC1ZþC2; ð10:73Þ

where C1 and C2 are constants of integration to be calculated with the imposition of
the following boundary conditions:

S Zð Þz¼0¼ S(0) ¼ S0; ð10:74aÞ

and

qKz

h
@S
@Z

jz¼1 ¼ 0: ð10:74bÞ

Applying the first condition it follows that C2 = S0, which is the salinity at the
free surface. The second bottom boundary condition specify that the salt flux
through the bottom is zero, and this will imply that [C1] = [ML−2T−1], but from
(10.73) it must be non-dimensional quantity; then, as (qKz/h 6¼ 0) the boundary
condition to be applied must be reduced to (∂S/∂Z)|z=1 = 0 and the integration
constant C1 is expressed by:

C1 ¼ � 1
3
gh4Sxgx

NzKz
þ 1

2q
Sxh3sw
NzKz

: ð10:75Þ

Substituting the expressions C1 and C2 in the general solution (10.73) the final
solution for the vertical salinity profile is

S(Z) ¼ S0 þ gh4Sxgx

2KzNz

1
12

Z4 � 1
2
Z2

� �
� 1

3
gh4Sxgx

NzKz
� 1
2q

Sxh3sw
NzKz

� �
Z; ð10:76aÞ
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or

S(Z) ¼ S0 þ gh4Sxgx

4KzNz

1
6
Z4 � Z2 � 8

3
Z

� �
þ 1

2q
Sxh3sw
NzKz

ÞZ: ð10:76bÞ

For no wind stress (sw = 0) the solution simplify to:

S(Z) ¼ S0 þ gh4Sxgx

4KzNz

1
6
Z4 � Z2 � 4

3
Z

� �
: ð10:76cÞ

The vertical salinity profile S = S(Z), calculated with the following values:
h = H0 = 9.6 m; S0 = 30‰; Kz = 1.0 � 10−2 m2 s−1; Nz = 1.0 � 10−3 m2 s−1;
Sx ¼ �3:5�10�6m�1, |ηx| = 1.0 � 10−4 and sw = 0, is shown in Fig. 10.10.

10.6.3 Barotropic Pressure Gradient, Wind Stress, River
Discharge and Maximum Bottom Friction

The general solution (10.65) was developed under the hypothesis that the barotropic

forcing @g
@x ¼ gx

� �
was known, but as the river discharge is a given property, the

solution may be made using the integral boundary condition (10.66d) with the
already known analytic profile (10.70) to find the surface slope, thus it follow:

uf ¼
Z1

0

u(x, Z)dZ ¼� 1
2
gH2

0

Nz

Z1

0

½gxðZ2 � 1Þ � 1
qgH0

sWðZ� 1Þ�
8
<

:

9
=

;
dZ: ð10:77Þ

Fig. 10.10 Steady-state
salinity profile of a
well-mixed estuary forced by
the barotropic gradient
pressure force, calculated with
upper boundary condition
(S = 30‰) and no salt flux at
the bottom, and sw=0. The
vertical line indicates the
mean-depth vertical salinity
S = 30.3‰
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Solving this equation to the free surface slope its analytical expression is:

gx ¼ � 3Nz

gH2
0

uf þ 3
2

sW
qgH0

: ð10:78Þ

Thus, ηx is directly proportional to the river velocity and, in normal conditions, it
is usually higher than that generate by the wind stress (sW). Substituting this result
into Eq. (10.70) the analytical expression of the u-velocity profile is:

u(x, Z) ¼ 3
2
uf � 3

4
sWH0

qNz

� �
ð1� Z2Þþ sWH0

qNz
ð1þZ): ð10:79aÞ

This solution has two components or modes: the fresh water discharge and the
wind stress. Taking into account that the kinematic eddy viscosity may be
approximated by Nz = jUTH0 this solution may be rewritten as:

u(x, Z) ¼ 3
2

ðuf � 1
2

sW
qjUT

� �
ð1� Z2Þþ sW

qjUT
ð1þZ): ð10:79bÞ

As an example, this profile is shown in Fig. 10.11 calculated with the following
parameter values: Qf = 100 m3 s−1, A = 1000 m2, uf = 0.1 m s−1, q = 1020.0
kg m−3, UT = 0.5 m s−1, j = 5.0 � 10−3, H0 = 10 m, and the landward wind
stress of sW = 0.3 Pa.

When in the solution (10.79b) the wind stress is null (sW = 0) the vertical
velocity profile is simplified to:

u(x, Z) ¼ 3
2
ufð1� Z2Þ; ð10:80Þ

Fig. 10.11 Profile of the
u-velocity of a well-mixed
estuary calculated with the
maximum friction at the
bottom and forced by the
barotropic pressure gradient,
river discharge (thick line)
and landward wind stress
(thin line)
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and the u-velocity profile forced only by the fresh water discharge has a parabolic
configuration, and its value at the surface and bottom are uðx; 0Þ ¼ 3

2 uf and
u(x, 1) = 0, respectively.

The analytical solution of the salt conservation Eq. (10.64), with the boundary
conditions (10.74a), (10.74b), and the advective and diffusive influences of the
vertical velocity profile of Eq. (10.80), is expressed by:

S(x, Z) ¼ S(0)þ 3
2
H2

0Sxuf
Kz

� 1
12

Z4 þ 1
2
Z2 þ 2

3
Z

� �
: ð10:81Þ

10.6.4 Barotropic Pressure Gradient, River Discharge,
Wind and Moderate Bottom Friction

With these forcing conditions the integration constants C1 and C2 of the general
solution (10.65) are calculated imposing the following boundary conditions: wind
stress at the free surface (10.66a) and moderate bottom friction (10.66c), with the
last expressed by:

�Az
@u
@z

� �� �

z¼H0

¼ sB ¼ qCB½u(x, z)]z¼H0
; ð10:82aÞ

where CB, with dimension [CB] = [LT−1], is a numeric parameter related to the
bottom shear stress (sB). From this relationship it follow,

@u
@z

� �
jz¼H0

¼ CBu(x, H0Þ
Nz

: ð10:82bÞ

In this boundary condition it will be assumed that CB = (4/p)kUT, where k is a
non-dimensional coefficient and UT is the tidal velocity amplitude.

Applying the upper boundary condition to the first integration of solution
(10.65),

qNz
@u
@z

� �

z¼0
¼ sW ¼ qNz

g
Nz

gxz
� �

jz¼0 þ qNzC1; ð10:83Þ

and knowing the integration constant C1 ¼ sW
qNz

; its the partial solution is

u(x, z) ¼ 1
2
g
Nz

gxz
2 þ sW

qNz
zþC2: ð10:84Þ

Applying the bottom boundary condition (10.82b) the integration constant C2 is
expressed by,
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C2 ¼ sB
qCB

� 1
2
ggx

Nz
H2

0 þ
sw
qNz

H0; ð10:85aÞ

or

C2 ¼ ggx

CB
H0 þ sW

qCB
� ggxH

2
0

2Nz
þ sW

qNz
H0; ð10:85bÞ

with dimension [C2] = [LT−1]. Substituting this result in the Eq. (10.84) the
u-velocity component is given by

u(x, z) ¼ ggx

2Nz
ðz2 � H2

0Þþ
sW
qNz

ðzþH0Þþ 1
CB

sW
q

� ggxH0

� �
: ð10:86aÞ

or in function of the non-dimensional depth Z = z/|H0|,

u(x, Z) ¼ ggxH
2
0

2Nz
ðZ2 � 1Þþ sWH0

qNz
ðZþ 1Þþ 1

CB

sW
q

� ggxH0

� �
: ð10:86bÞ

We leave to the reader to verify that these solutions satisfy identically the surface
and the bottom boundary conditions (10.82a), (10.82b). For a null wind stress
(sW = 0) the Eq. (10.86b) is reduced to:

u(x, Z) ¼ ggxH
2
0

2Nz
ðZ2 � 1Þ � 1

CB
ggxH0: ð10:87aÞ

At the bottom (Z = 1), the velocity u(x, 1) = uB is calculated by

u(x, 1) ¼ uB ¼ � 1
CB

ggxH0; ð10:87bÞ

and it is directly and inversely proportional to the sea surface slope and the bottom
parameter CB, respectively; and for CB ! ∞ the bottom velocity is zero, u(x,
1) = 0 which corresponds to the maximum bottom friction.

The above solutions (10.87a), (10.87b) are in function of the surface slope ηx
which may be eliminated by introducing the river discharge (Qf) as an integral
boundary condition (Eq. 10.66d):

uf ¼ ggxH
2
0

2Nz

Z1

0

ðZ2 � 1ÞdZþ sWH0

qNz

Z1

0

ðZþ 1ÞdZþ 1
CB

Z1

0

ðsW
q

� ggxH0ÞdZ;

ð10:88Þ
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Solving the integrals the final result for the surface slope is,

gx ¼
�uf þ sW

qNz

H0
2 � Nz

CB

� �

gH2
0

Nz

1
3 � Nz

H0CB

� � : ð10:89aÞ

If the wind stress may be disregarded (sW = 0) this result is further simplified:

gx ¼ � uf
gH2

0

Nz

1
3 � Nz

H0CB

� � : ð10:89bÞ

As the river discharge flows seaward (uf > 0) and the denominator of this
equation is positive, it follow gx ¼ @g

@x\0, and η = η(x) decreases seaward forced
by the river discharge and simultaneously by the ebb tide. To calculate the mag-
nitude order of ηx, the following numeric data are used: uf = 0.23 m s−1,
Nz = 1.0 � 10−3 m2 s−1, CB = 1.0 � 10−3 m s−1 and gH2

0 = 103 m3 s−2, which
gives ηx = −1.0 � 10−6. In the case of maximum friction at the bottom u(x,
H0) = 0, CB ! ∞ and the solution is reduced to

gX ¼ � 3Nz

gH2
0

uf : ð10:89cÞ

With the same data values the free surface slope is ηx = −0.7 � 10−6, indicating
a decrease of 30%. An estimate of the gradient barotropic pressure forced due to
±2.0 m tidal oscillation with a wave length of 500 km = 5.0 � 105 m will give a
higher value which is estimated as ηx = ±4.0 � 10−6. It should be observed that
the surface slope expressed by this equation has the same analytical expression as
the Eq. (10.78), calculated with no wind forcing (sW = 0) and estuaries with weak
longitudinal density gradient.

Returning to Eq. (10.89a) with the following simplifications: fresh water dis-
charge equal zero (uf = 0), and using the relationships Nz = 2.5 � 10−3UTH0, and
CB = (4/p) � 2.5 � 10−3UT, the free surface slope forced by the wind stress (sW)
is the same as the one presented by Prandle (2009):

gW ¼
sW 1

2 � Nz

CBH0

� �

qgH0
1
3 � Nz

CBH0

� � ¼ 1:15
sW

qgH0
: ð10:90aÞ

For maximum bottom friction (CB ! ∞) this equation simplifies to the fol-
lowing expression:
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gW ¼ 1:5
sW

qgH0
: ð10:90bÞ

For further analysis of the theoretical results the Eq. (10.86b) is used to calculate
the u-velocity profile presented in Fig. 10.12, with the following physical variables:
Nz = 5.0 � 10−4 m2 s−1, CB = 3.5 � 10−3 m s−1, sW = 1.0 � 10−3 Pa,
H0 = 15.0 m, e q = 1020.0 kg m−3. This figure indicates a slippery bottom of
uB = 0.09 m s−1. As has been described by Prandle (2009) this bottom roughness
velocity is the initial process of the sediment dynamics (erosion, transport and
sedimentation), which is composed of sediments with different origins and sizes
influenced by actual and past dynamic processes and also by morphological, bio-
logical and chemical action. The general features of sedimentary dynamics in tidal
regimes are treated at length in (Postma 1967, quoted in Prandle (2009)).

Neglecting the wind stress (sW = 0) the solution (10.86b) may be combined with
the ηx expression (10.89b), and the vertical velocity profile in function of the river
discharge velocity is given by,

u(x, Z) ¼ ufH0

2 1
3 H0 � Nz

CB

� � 1� Z2 � 2Nz

CBH0

� �
; ð10:91aÞ

and the slippery velocity at the bottom (Z = 1) is

u(x, 1) ¼ uB ¼ � ufNz
1
3 CBH0 � Nz
	 
 : ð10:91bÞ

Taking into account that UT � u(z), the kinematic eddy viscosity coefficient
may be approximate by Nz = jUTH0, and Eq. (10.91a) may be rewritten as:

Fig. 10.12 Vertical velocity
profiles of a well-mixed
estuary forced by the
barotropic gradient pressure
force, wind stress, calculated
with maximum friction
(dashed line), and with
moderate bottom friction (thin
line). The calculated slippery
velocity due to the bottom
roughness is uB = 0.09 m s−1
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u(x, Z) ¼ uf

2 1
3 � jUT

CB

� � 1� Z2 � 2jUT

CB

� �
: ð10:92Þ

10.6.5 Barotropic and Baroclinic Pressure Gradient, River
Discharge, Wind Stress and Bottom Friction
Proportional to the Square of the Velocity

The equation system of (10.3) and (10.4) has been solved by Officer (1976, 1977)
for a bottom boundary condition expressed by the following quadratic relationship:

qNz
@u
@z

jz¼H0
¼ �qkju(z)ju(z), ð10:93Þ

with k denoting a non-dimensional bottom friction coefficient. In this case, instead
the solution (10.22) deduced for a maximum friction at the bottom, the theoretical
vertical velocity profile is (Officer 1977):

u(x, Z) ¼ u(x, 0)(1� 9Z2 þ 8Z3Þþ u(x, 1)(1� 3Z2 þ 4Z3Þ
þ ufð12Z2 � 12Z3Þ: ð10:94Þ

where Z is the non-dimensional depth. In this solution the surface and bottom
velocities are denoted by u(x, 0) and u(x, 1), respectively, and are calculated by:

u(x, 0) ¼ uf þ gH2
0

6Nz
gx �

1
4
qx
q
H0

� �
; ð10:95aÞ

u(x, 1) ¼ uf � gH2
0

3Nz
gx �

3
8
qx
q
H0

� �
; ð10:95bÞ

where qx and ηx are the longitudinal density gradient and the free surface slope,
respectively.

The steady-state vertical velocity profile of a well-mixed estuary calculated with
Eq. (10.94) with the parameters: depth 8.0 m, uf = 0.1 m s−1, Nz = 3.5 � 10−1 m2

s−1, ηx = 2.0 � 10−4, qx/q � 1, and the longitudinal density gradient
1.7 � 10−3 kg m−4, is presented in Fig. 10.13.

The comparison of this result with the simulation presented in Fig. 10.12, a
lower slippery bottom velocity (0.025 m s−1) was obtained.
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10.6.6 Vertical Salinity Profile

Another analytic solution for the steady-state vertical salinity profile, S = S(Z), of a
well-mixed estuary is presented. For the longitudinal salt balance, as indicated in
(Eq. 7.98 and Chap. 7) the essential steady-state balance may be approximate by
the advective circulation and the vertical salt-flux diffusion (under the assumption
that the depth-mean longitudinal salinity gradient and the kinematic vertical dif-
fusion coefficient are known). Thus, the differential equation to be solved is:

@2S
@Z2 ¼

@S
@x H

2
0

Kz
u(x, Z), ð10:96aÞ

and the general solution is formulated by,

S(x, Z) ¼ H2
0

Kz

@S
@x

Z
½
Z

u(x, Z)dZ]dZþC1ZþC2: ð10:96bÞ

C1 and C2 are non-dimensional integration constants which may be obtained
applying the following boundary conditions:

• The salt flux across the bottom is zero.

qKz

H0

@S
@Z

� �
jZ¼1 ¼ 0: ! @S

@Z

� �
jZ¼1 ¼ 0: ð10:97aÞ

Fig. 10.13 Steady-state
vertical velocity profile of a
well-mixed estuary forced by
the barotropic and baroclinic
gradient pressure force, river
discharge and wind stress,
calculated with bottom
roughness proportional to the
square of the bottom velocity
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• C2 is assumed to be equal to the mean-depth vertical salinity, S;

C2 ¼ S ¼
Z1

0

S(x, Z)dZ; ð10:97bÞ

which is to be specified.
Imposing the first boundary condition,

@S
@Z

� �
jZ¼1 ¼ �H2

0Sx
Kz

Z1

0

u(x, Z)dZþC1 ¼ 0; ð10:98aÞ

where, Sx ¼ @S
@x ; and

C1 ¼ H2
0Sx
Kz

½u(x, 0)� u(x, 1)�; ð10:98bÞ

where the velocities u(x, 0) and u(x, 1) are given in the expressions (10.95a),
(10.95b).

Introducing into the integrand of (10.96b) the analytical expression of u = u(x,
Z) presented in the solution (10.94), solving the double integration and combining
with the integration constants C1 and C2, the steady-state solution of vertical
salinity profile is:

S(x;Z)� S ¼ H2
0

Kz

@S
@x

fu(x, 0)[0:4xZ5 � 0:75� Z4 � 0:5� Z2 � 8:3� 10�2�
þ u(x,1)[0:2� Z5 � 0:25� Z4 þ 1:66� 10�3�
þ uf ½�0:6� Z5 þ 1:0� Z4 � 0:5� Z2 þ 6:66� 10�2�g:

ð10:99Þ

As an example of application of this result, the mean vertical salinity profile
(Fig. 10.14) was calculated for the following numerical values: Nz = 3.5 �
10−1 m2 s−1, Kz = 6.2 � 10−7 m2 s−1, uf = 0.1 m s−1, H0 = 8 m, ηx = 2.0 � 10−4,
qx/q �1.0; S ¼ 20:0‰ and longitudinal density gradient ∂q/∂x = 1.7 �
10−3 kg m−4.

This solution (Fig. 10.14) indicates the weak halocline with the mean salinity
profile 20‰ characterizing the well-mixed estuary, which is associated with the
vertical velocity profile presented in Fig. 10.13.
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Chapter 11
Circulation and Mixing in Steady-State
Models: Partially Mixed Estuary

The first steady-state analytical model for determining time mean longitudinal
velocities in a coastal plain estuary was developed by Pritchard and Kent (1956)
using the lateral and longitudinal components of the equation of motion, the tidal
velocity amplitude, and the relationship between the vertical and lateral eddy stress.
In this article the relationship between the vertical and transverse eddy diffusion
coefficients were demonstrated using the vertical velocity profile near the bottom.
The method was applied and validated with data from stations sampled in the James
river estuary (Virginia, USA) during several tidal cycles in the summer (June and
July, 1950) in a water column with mean depth of 8 m. The theoretical velocity
profiles agreed well with the observational data, showing typical velocity profiles of
partially mixed estuary, with seaward and landward motions in the upper and lower
layers, respectively, and no motion at mid depths. Pritchard and Kent’s paper was
also a pioneering article showing the importance of comparing theoretical results
with observational data.

Complementing the results of this pioneering study. This chapter presents ana-
lytical investigations of relatively narrows estuaries, assumed to be bi-dimensional
systems in the Oxz plane, with vertical salinity stratification, and thus classified as
partially mixed estuaries (types 2 or B). Stable salinity stratification reduces the
intensity and scale turbulence in open channel flow, thereby reducing the rate of
vertical mixing. Theoretically, partially mixed estuaries are adequately represented
by lateral averages of the equations of mass and salt conservation and motion, as
presented in Chaps. 7 and 8 which have as unknowns the density, salinity the
velocity components (u, w) and the slope of free surface as a function of the
independent variables (x, z, t). Laboratory investigations were conducted by Sumer
and Fischer (1977) to investigate whether the rate of transverse mixing is similarly
reduced in this type of estuary. However, to determine relatively simple analytical
solutions, steady-state conditions must be assumed and, for validation, the theo-
retical solutions must be compared with time mean velocity and salinity values
calculated from observational data for one or more tidal cycles.
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The influences of topography, transverse salinity (density) gradient and free
surface elevation, may cause lateral non-homogeneity and circulation in estuaries,
and a simple longitudinal and transverse section will be used (Fig. 11.1). The
estuary width, B = B(x), will be considered only as a function of the longitudinal
distance, and its depth dependence will not be taken into account.

Neglecting topographic effects makes the mathematics considerably more
tractable; however, the features of the depth dependent circulation are still basic,
even though there will be modifications due to transverse effects which are not
accounted for by the laterally averaged equations (Hamilton and Rattray 1978).
With these simplifications, the dynamic influence of the Earth’s rotation may be
disregarded, and the Coriolis acceleration (f0) does not need to be included in the
longitudinal component (Ox) of the equation of motion.

Pioneering investigations by Pritchard (1952a, 1954, 1956) demonstrate that for
coastal plain estuaries, the dynamic balance of the mean motion is predominantly

Fig. 11.1 Longitudinal (a, b) and transverse (c) sections of a bi-dimensional model with the
adopted referential system (Oxz). H0 is the depth in relation to a level surface, and Ho + η is the
local depth, and B = B(x) is the estuary width. The Oz axis is positively oriented in the direction of
the gravity acceleration
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based on the barotropic and baroclinic pressure gradients, the dissipative friction
forces and the tidal non-steady state circulation. The salt balance is mainly main-
tained by the advective and diffusive longitudinal and vertical fluxes. With these
simplifications, for practical purposes, the steady-state equation of motion has its
linearity granted, disregarding the advective acceleration. As indicated by Kjerfve
et al. (1991), the inertial terms may be disregarded in shallow estuarine channels, in
which the bottom friction becomes more important.

11.1 Physical-Mathematical Formulation

The simplified equations of mass conservation (Eq. 7.73a) and motion (Eq. 8.57a),
which are necessary for analytical and numerical treatment of problems related to
steady-state bi-dimensional estuaries, have been presented in Chaps. 7 and 8, and
are reproduced below,

@ðuBÞ
@x

þ @ðwBÞ
@z

¼ 0; ð11:1Þ

and

� 1
q
@p
@x

þ 1
B
½ @
@z

ðBNz
@u
@z

Þ� ¼ 0; ð11:2Þ

where B is the estuary width. The gradient pressure force decomposed in the
barotropic and baroclinic pressure gradients are expressed as Eq. (2.10a, b and
Chap. 2), but with the Oz axis oriented in the direction of gravity acceleration ~gð Þ;

� 1
q
@p
@x

¼ g
@g
@x

� g
q

Zz

g

@q
@x

dz: ð11:3Þ

For hydrodynamic closure, the inclusion of the steady-state salt conservation
(Eq. 7.77 and Chap. 7) is necessary

u
@S
@x

þw
@S
@z

¼ 1
B
½ @
@x

ðBKx
@S
@x

Þþ @

@z
ðBKz

@S
@z

Þ�; ð11:4Þ

as well as the linear equation of state of sea water (Eq. 4.11 and Chap. 4),

qðSÞ ¼ q0 1þ b Sð Þ: ð11:5Þ

The analytical solution of the equation system (11.1) to (11.5) is dependent on
the boundary and integral boundary conditions used for the determination of the
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unknowns u, w, η, S and q, under some simplifications. This system has been
solved by Hansen and Rattray (1965), Fisher et al. (1972), Hamilton and Rattray
(1978) among others. In these articles, the main results of which will be presented
in this chapter, the basic foundations for the theoretical determinations of the fol-
lowing were established: the steady-state vertical velocity and salinity profiles
generated by the river discharge, the longitudinal gradient pressure forces due to the
longitudinal density (salinity) gradients caused by the wind stress and mixing
processes (advection and diffusion).

The value of the kinematic eddy viscosity coefficient (Nz), and kinematic dif-
fusion coefficients (Kx and Kz) of the conservation equations are usually unknown,
however, if the solution for the above set of equations can be shown to agree with
or be validated by observational data by proper fitting of these coefficients, one
must assume that either all the neglected terms are zero, or more correctly, that the
neglected terms have been absorbed into these coefficients.

In the analytical simulation of the u-velocity component and salinity profiles, the
estuary mixing zone (MZ) will be approximated by a simple geometry (Fig. 11.1).
For this solution, it will also be necessary to formulate the following simplifying
assumptions:

• The longitudinal salinity (density) gradient is independent of the depth ∂/∂z(∂S/
∂x) = 0 or ∂/∂z(∂q/∂x) = 0.

• The longitudinal term of the turbulent salinity diffusion is disregarded [first term
on the right hand side of Eq. (11.4)].

• The eddy kinematic coefficients of viscosity (Nz) and diffusion (Kz) are inde-
pendent of the depth.

The first assumption may be justified, taking into account the results of Pritchard
(1954, 1956) whose observational data demonstrated that in partially mixed estu-
aries the longitudinal salinity (density) gradient does not vary appreciably with
depth, and the dynamical influence of this term is small in the central region of the
MZ. Therefore, without great alterations in the physical aspects of the results, the
longitudinal salinity (density) gradient, ∂S/∂x (∂q/∂x), will be substituted by the
longitudinal gradients of a depth average salinity (density) @�S=@x @�q=@xð Þ; which
will be calculated by the steady-state mean salinity (density) value in the water
column, which will be denoted by �Sð Þ or �qð Þ; and calculated by,

�S ¼ 1
H0 þgð Þ

ZH0

g

hSðx; zÞidz � 1
H0

ZH0

0

hSðx; zÞidz; ð11:6Þ

and a similar expression for the density, �q:
The second simplifying assumption may also be justified, taking into account the

observational results of Pritchard (1956) in the partially mixed James river estuary
(Virginia, USA). In this estuary, the non-advective longitudinal term of the salt
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conservation equation (Eq. 11.4) (first term on the right hand side) has a relatively
low contribution (about 1%) in comparison to the last term of this equation (vertical
salt diffusion), and may be disregarded. Finally, the third assumption cannot be
easily justified, and these coefficients (kinematic eddy viscosity and diffusion) will
be considered as constants and representative of their mean value in the water
column in order to simplify the mathematics and make the integration of equations
easier.

With these assumptions, combining Eq. (11.3) with the linear equation of state
of seawater (11.5) and substituting the result into the equation of motion (11.2), it
follows that:

g
@g
@x

� g
q
@�q
@x

ðz� gÞþNz
@2u
@z2

¼ 0; ð11:7aÞ

or in terms of the longitudinal salinity gradient,

g
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@x

� gb
@�S
@x

ðz� gÞþNz
@2u
@z2

¼ 0; ð11:7bÞ

where according to the Boussinesq approximation, q0/q � 1, and �q �Sð Þ are vertical
mean values of density (salinity) in the water column.

As the continuity Eq. (11.1) assures the non-divergence of the volume transport
per unit width of the cross-section, it is possible to introduce the stream function
w ¼ wðx; zÞ; with the definitions:

@w
@x

¼ wB; and
@w
@z

¼ �uB: ð11:8Þ

These equalities identically satisfy the continuity equation, and it should be
pointed out that the stream function, w = w(x, z), with dimension [L3T−1], obeys
the mathematical rules which state that its mixed derivatives should be equal. The
introduction of this function is very convenient because the velocity components, u
and w, may be calculated by a simple derivation.

Performing the derivative of Eq. (11.7b) in relation to z and taking into account
that the barotropic pressure gradient and the longitudinal salinity gradient are
independent of the depth, we have

Nz
@3u
@z3

� gb
@�S
@x

¼ 0; ð11:9Þ

and introducing the stream function, w = w(x, z), into this equation, it is reduced to

Nz

B
@4w
@z4

þ gb
@�S
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¼ 0: ð11:10Þ
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The salt conservation Eq. (11.4) may also be combined with the stream function
definition, and is then reduced to

�ð@w
@z

Þð@
�S

@x
Þþ ð@w

@x
Þð@S
@z

Þ ¼ BKzð@
2S

@z2
Þ: ð11:11Þ

In this equation, only the salinity in the first term of the left hand side was
substituted by a mean salinity value �Sð Þ; which will be considered a known
quantity, allowing an analytical solution to be found. Only with this artifice the
salinity will remain unknown, and will be determined with the salt balance between
the steady-state longitudinal and vertical advection, and the vertical diffusivity
terms (the first and second terms on the left hand side, and the term on the right
hand side of this equation, respectively).

Equations (11.10) and (11.11) are formulations equivalent to the initial
Eqs. (11.2) and (11.4), respectively. As the mean-depth salinity, �S; and the longi-
tudinal gradient, @�S=@x; are given, this system of equations has two equations of
fourth and second orders, respectively, with two unknowns, w = w(x, z) and S = S
(z), which now govern the dynamics and the mixing processes in the MZ.

The boundary conditions necessary for finding a unique solution for the equation
system (11.10) and (11.11) are the same as previously used in Chap. 10 (Eqs. 10.10
to 10.12), but now they will be expressed in terms of the stream function:

• Upper boundary condition

At the free surface (z = η � 0), the wind shear stress (sWx) acts seaward or
landward (positive or negative) and also may be disregarded, which are expressed
by:

Az

B
ð@

2w
@z2

Þ z¼0j ¼ �sWx; and
Az

B
ð@

2w
@z2

Þ z¼0j ¼ 0; ð11:12Þ

where Az = qNz, [Az] = [ML−1T−1], is the eddy viscosity coefficient.

• Lower boundary condition

At the bottom, three conditions may be formulated:

(a) Maximum friction (or no slip):

ð@w
@z

Þz¼H0
¼ 0; ð11:13Þ

(b) Moderate friction (or slippery):

qNz

B
ð@

2w
@z2

Þjz¼H0
¼ �sBx: ð11:14Þ
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(c) Minimum friction (sBx = 0):

@2w
@2z

jz¼H0
¼ 0: ð11:15Þ

The upper and lower boundary conditions to be applied for the salt conservation
Eq. (11.1) must specify zero salt flux at the surface and at the bottom, which are
expressed as:

qKzð@S
@z

Þjz¼g ¼ 0; ð11:16aÞ

and

qKzð@S
@z

Þjz¼H0
¼ 0: ð11:16bÞ

To close the hydrodynamic system (Eqs. 11.10 and 11.11), it is necessary to
impose integral boundary conditions. The first is formulated by Eq. (11.6), which
defines the mean salinity in the water column, and the second condition is a con-
sequence of the continuity Eq. (11.1). As the solution is under steady-state con-
ditions the mass (fresh water) conservation can be accomplished by

B
ZH0

g

uðx; zÞdz ¼ Qf ; ð11:17Þ

which, combined with the stream function definition (11.8), is reduced to

�
ZH0

g

@w
@z

dz ¼� w x;H0ð Þþw x;gð Þ ¼ Qf : ð11:18Þ

As the stream function has the dimension of volume transport [L3T−1], which
must be zero at the surface and bottom, the integral boundary condition may be
expressed by: wðx; zÞ z¼g

�� ¼ wðx; zÞ z¼0j ¼ 0:
As with most fluid dynamics problems the analytical solution of the system of

Eqs. (11.10 and 11.11) will be developed in a dimensionless form in order to permit
generalized discussions of the results (Fisher et al. 1972). For this purpose, the
following variables are defined:

Z ¼ z=H0; X ¼ x=L; W ¼ w=Qf ; $ ¼ S=S0; ð11:19aÞ
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�$ ¼ �S=S0; TW ¼ sWx=sW0; TB ¼ sBx=sB0: ð11:19bÞ

In these definitions, S0 is the salinity at the coastal region, L is the mixing zone
(MZ) length, and sW0 and sB0 are characteristics values of the wind shear and
bottom stress, respectively. It should be observed that, as the axis Oz is oriented in
the direction of the gravity acceleration, Z = 0 and Z = 1 are the dimensionless
ordinates of the surface and bottom, respectively. With the introduction of the
dimensionless variables, the equations of motion and salt conservation are
expressed as:

gS0b
L

@�$

@X
þ NzQf

BH4
0

@4W

@Z4 ¼ 0; ð11:20Þ

and

�QfS0
LH0

ð@WÞ
@Z

Þð@$
@X

Þþ QfS0
LH0

ð@W
@X

Þð@$
@Z

Þ ¼ BKzS0
H2

0

ð@
2$

@Z2Þ; ð11:21Þ

where W, $, $, X and Z are all dimensionless variables. These equations may be
further simplified as,

@4W

@Z4 þC1ðX) @$
@X

¼ 0; ð11:22Þ

and

�ð@W
@Z

Þð@$
@X

Þþ ð@W
@X

Þð@$
@Z

Þ ¼ C2ðX) @
2$

@Z2 ; ð11:23Þ

with the coefficients, C1(X) and C2(X), expressed by:

C1ðX) ¼ gBH4
0bS0

LNzQf
¼ bgH3

0S0
LNzuf

; ð11:24Þ

and

C2ðX) ¼ BLKz

H0Qf
¼ LKz

H3
0uf

: ð11:25Þ

The differential equations of this system (Eqs. 11.22 and 11.23) are dimen-
sionless and at fourth and second degree, respectively, and its unknowns are:
W = W(X, Z) and $ = $(X, Z). The quantities C1(X) and C2(X) are dimensionless,
and their dependency on X is not well known and will not be taken into account.
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Before being applied to the new equation system (11.22) and 11.23), the
boundary conditions (11.12) to (11.18) must be altered to the following
expressions:

qNzQf

BH2
0sW0

ð@
2WÞ
@Z2 ÞjZ¼0 ¼ TW; ð11:26Þ

ð@W
@Z

ÞjZ¼1 ¼ 0; ð11:27Þ

qNzQf

BH2
0sB0

ð@
2W

@Z2 ÞjZ¼1 ¼ �TB; ð11:28Þ

ð@$
@Z

ÞjZ¼0 ¼ ð@$
@Z

ÞjZ¼1 ¼ 0; ð11:29Þ

Z1

0

$ðX, Z)dZ ¼ $; ð11:30Þ

and the integral boundary conditions are,

WðX, 0) ¼ 1;WðX, 1) ¼ 0: ð11:31Þ

Taking into account the relations (11.8) and the equalities ∂z = H0∂Z, ∂x = L∂X
and ∂w = Qf∂ W, it follows that,

u(X, Z) ¼ � Qf

BH0

@W
@Z

¼ �uf
@W
@Z

; ð11:32Þ

and

w(X, Z) ¼ Qf

BL
@W
@X

¼ H0uf
L

@W
@X

: ð11:33Þ

11.2 Hydrodynamic Solution: Maximum Bottom Friction

Consider the solution of Eq. (11.22). As the first member of this differential
equation is a function of X and the mean longitudinal salinity gradient should be
known, this equation may be solved for the stream function, W = W(X, Z). By
integrating with Z four times, the general solution is:
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WðX, Z) ¼ �C1ðX)
24

ð@$
@X

ÞZ4 þ a1ðX)
6

Z3 þ a2ðX)
2

Z2 þ a3ðX)Zþ a4ðX): ð11:34Þ

The dimensionless quantities, a1(X), a2(X), a3(X) and a4(X), are all function of X
and are calculated from the application of the boundary conditions (11.26) and
(11.27) and the integral boundary condition (11.31). Applying the last condition
W(X, 0) = 1, it follows immediately that:

a2ðX) ¼ BH2
0

AzQf
sW0TW ¼ BH2

0

AzQf
sWx; ð11:35Þ

where Az = qNz and

a4ðXÞ ¼ 1: ð11:36Þ

In the following step, with the boundary conditions (11.27) and W(X, 1) = 0
from the integral boundary conditions (11.31), the result is an algebraic equation
system with two unknowns, a1(X) and a3(X),

�C1ðX)
6

ð@$
@X

Þþ a1ðX)
2

þ BH2
0

AzQf
sWx þ a3ðX) ¼ 0; ð11:37Þ

�C1ðX)
24

ð@$
@X

Þþ a1ðX)
6

þ BH2
0

2AzQf
sWx þ a3ðX)þ 1 ¼ 0: ð11:38Þ

Subtracting these equations in order to eliminate a3(X) and solving the result for
a1(X), we have

a1ðX) ¼ 3þ 3
8
C1ðX) @$

@X
� 3
2
BH2

0

AzQf
sWx: ð11:39Þ

Finally, substituting Eqs. (11.39) into (11.37) or (11.38), it follows that the value
for a3(X) is,

a3ðX) ¼ � 3
2
� C1ðX)

48
@$

@X
� BH2

0

4AzQf
sWx; ð11:40Þ

Substituting the expressions a1(X), a2(X), a3(X) and a4(X) into the general
solution (11.34) yields

WðX, Z) ¼ C1ðX)
48

ð@$
@X

Þð�2Z4 þ 3Z3 � Z)

þ 1
2
ðZ3 � 3Zþ 2Þþ BH2

0

4AzQf
sWxð�Z3 þ 2Z2 � Z):

ð11:41Þ
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Combining this result with the expression of C1(X) (Eq. 11.24), it follows that,

WðX, Z) ¼ bgBH4
0S0

48NzQfL
ð@$
@X

Þð�2Z4 þ 3Z3 � Z)

þ 1
2
ðZ3 � 3Zþ 2Þþ BH2

0

4AzQf
sWxð�Z3 þ 2Z2 � Z):

ð11:42Þ

Rewriting this solution as a function of the dimensional distance (x) and the
salinity (S) yields,

Wðx, Z) ¼ bgBH4
0

48NzQf
ð@S
@x

Þð�2Z4 þ 3Z3 � Z)

þ 1
2
ðZ3 � 3Zþ 2Þþ BH2

0

4AzQf
sWxð�Z3 þ 2Z2 � Z),

ð11:43Þ

or, recalculating the numeric coefficients and expressing the result as a function of
the mean value of the longitudinal density gradient and the river velocity uf = Qf/
A = Qf/BH0,

Wðx, Z) ¼ gH3
0

Azuf
ð@q
@x

Þð�4:17� 10�2Z4 þ 6:25� 10�2Z3 � 2:08� 10�2Z)

þð0:5Z3 � 1:5Zþ 1Þþ H0

Azuf
sWxð�0:25Z3 þ 0:5Z2 � 0:25Z):

ð11:44Þ

From this analytical expression the dimensionless stream function, the u- and
w-velocity components may be calculated by derivation, according to the relations
(11.32 and 11.33), and the results are:

u(x, Z) ¼ gH3
0

Az
ð@q
@x

Þð1:67� 10�1Z3 � 1:88� 10�1Z2 þ 2:08� 10�2Þ

þ 1:5ufð�Z2 þ 1:0Þþ sWxH0

Az
ð0:75Z2 � Zþ 2:5� 10�1Þ;

ð11:45Þ
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and

wðx, Z) ¼ g
BAz

½@ðBH
4
0Þ

@x
ð@q
@x

Þþ ðBH4
0Þð

@2q
@x2

Þ�
� ð4:17� 10�2Z4 � 6:25� 10�2Z3 þ 2:08� 10�2Z)

þ sWx

BAz
½@ðBH

2
0Þ

@x
�ð�2:5� 10�1Z3 þ 5:0� 10�1Z2 � 2:5� 10�1Z):

ð11:46Þ

When the wind stress is zero (sWx = 0), these solutions are similar to the
solutions deduced in the article of Fisher et al. (1972), and the u-velocity compo-
nent (Eq. 11.45) is also similar to the Officer (1976) solution, but it has been
improved with the introduction of bottom nonlinear tidal frictional influences.

Solutions (11.45) and (11.46) determine the motion in any longitudinal position
of the mixing zone (MZ) of a partially mixed estuary. This result indicates that the
steady-state velocity field is dependent on the longitudinal density (salinity) gra-
dient, the river discharge, and the wind stress. And the first (11.45) and the solution
(10.22 and Chap. 10) are formally identical, even though solution (10.22) was
developed for a well-mixed estuary using a different deduction. This is justifiable
because the initial basic hydrodynamic equations were similar, and in relatively
homogeneous deep estuaries, the integrated influence of the baroclinic pressure
gradient may increase, generating the typical gravitational circulation of
partially-mixed estuaries, characterized by bidirectional circulation.

Calculating the velocity at the surface (Z = 0) from Eqs. (11.45) and (11.46),
gives the following expressions:

u(x, 0) ¼ 2:08� 10�2ðgH
3
0

Az
Þð@q
@x

Þþ 1:5uf þ 2:5� 10�1ðsWxH0

Az
Þ; ð11:47Þ

and u(x, 1) = w(x, 0) = w(x, 1) = 0, confirming the superior and inferior boundary
conditions. A convenient expression, equivalent to the analytical profile (11.45),
may be obtained combining with the surface expression, u(x, 0). For this purpose,
we must solve the expression (11.47) for the first term of the right hand side, which
is associated with the baroclinic pressure gradient,

gH3
0

Az
ð@q
@x

Þ ¼ 102

20:08
½u(x, 0)� 1:5uf � 2:5� 10�1ðsWxH0

Az
Þ�: ð11:48Þ

Combining this expression with solution (11.45), it can be further simplified and
yields:

u(x, Z) ¼ u(x, 0)(8Z3 � 9Z2 þ 1Þþ 12ufð�Z3 þZ2Þ
þ sWxH0

Az
ð�2Z3 þ 3Z2 � Z):

ð11:49Þ
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The power series of the dimensionless variable (Z), on the right hand side of this
equation, determinates the depth variation of the surface velocity, the velocity
generated by the river discharge and, in the last term, the velocity component
generated by the wind shear. Under the assumption that the river discharge and the
wind shear stress may be disregarded, this solution simplifies and yields the the-
oretical profiles obtained by Officer (1976, 1977),

u(x, Z) ¼ u(x, 0)(8Z3 � 9Z2 þ 1Þ: ð11:50Þ

As the u-velocity component has been calculated (Eq. 11.45), we are able to
calculate the free surface slope (∂η/∂x). In order to achieve this, the equation of
motion (11.7b) must be applied to the free surface (z = η) and solved for, ∂η/∂x,
and in terms of the non-dimensional depth (Z = z/H0) the result is,

ð@g
@x

Þjz¼g ¼ gx ¼ � Nz

gH2
0

ð@
2u

@Z2ÞjZ¼0: ð11:51Þ

The final step is to introduce the second derivative of u = u(x, Z) at the surface,
(∂2u/∂Z2)|Z=0, into this equation and further simplified to the following expression:

gx ¼ 0:375
H0

q0

@q
@x

þ 3
Nz

gH2
0

uf � 1:5
sWx

qgH0
: ð11:52aÞ

This equation is equal Eq. (10.19 and Chap. 10), which has been obtained for a
well-mixed estuary; however, for a partially-mixed estuary, the baroclinic pressure
gradient predominates. For example, let us assume the following numeric values:
H0 = 10.0 m, g = 10 m s−2, q = q0 = 103 kg m−3, ∂q/∂x � Dq/Dx = 3.
0 � 10−3 kg m−4, uf = 0.1 m s−1, Nz = 10−2 m2 s−1 and sWx = 0.2 kg m−1 s−2.
Then, it follows that ∂η/∂x > 0 and the first term of Eq. (11.52a) is 10 times greater
than the other terms (10−5 compared to 10−6). Only stronger landward winds may
invert the free surface slope (∂η/∂x < 0). To calculate the analytical expression of
the free surface, η = η(x), the Eq. (11.52a) must be integrated, with the result being
a linear variation from η(x)|x=0 = 0 to η = η(x),

gðx) ¼ ð0:375H0

q0

@q
@x

þ 3
Nz

gH2
0

uf � 1:5
sWx

qgH0
Þx: ð11:52bÞ

11.3 Hydrodynamic Solution: Moderate Bottom Friction

Following the same development as in Topic 10.3 (Chap. 10), let us now adopt the
bottom boundary condition (11.28) expressed by the semi-empirical relation
TB = sBx/sB0, and expressed by the semi-empirical boundary condition
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sBx ¼ sB0TB ¼ qð4=pÞkUTujz¼H0
¼ qð4=pÞkUTuZ¼1, indicating a moderate bottom

friction (slippery condition). As previously indicated, this condition is applied when
the tidal velocity amplitude is UT � u (Bowden 1953). Let us also assume,
according to Prandle (1985), that the kinematic eddy viscosity coefficient may be
empirically simulated by Nz = kUTH0, where the numeric coefficient k = 2.
5 � 10−3 is dimensionless. Applying the upper boundary condition (11.26) and the
integral boundary condition (11.31), expressed by W(x, 0) = 1, to the general
solution (11.34) yields:

a2ðX) ¼ BH2
0

AzQf
sW0TW ¼ BH2

0

AzQf
sWx; ð11:53Þ

and

a4ðX) ¼ 1: ð11:54Þ

Therefore, with the bottom boundary condition (11.28) applied and if a2(X) is
known, we have the following expression for a1(X):

a1ðX) ¼ C1ðXÞ
2

ð@$
@X

Þ � BH2
0

AzQf
ðsWx þ sBxÞ; ð11:55Þ

and, applying the second integral boundary condition (11.31), that is, W(X, 1) = 0,
yields the integration function a3(X),

a3ðX) ¼ �C1ðXÞ
24

ð@$
@X

Þþ 1
6
BH2

0

AzQf
ð�2sWx þ sBxÞ � 1: ð11:56Þ

Substituting the integration functions a1(X), a2(X), a3(X) and a4(X), into the
general solution (11.34) and further simplifying to the simplest expression yields
the following expression for the stream function:

WðX;ZÞ ¼ C1ðXÞ
28

ð@$
@X

Þð�Z4 þ 2Z3 � ZÞþ ð�Zþ 1Þ

þ BH2
0

6AzQf
½sWxð�Z3 þ 3Z2 � 2Z)þ sBxð�Z3 þZ):

ð11:57Þ

Substituting the expression of C1(X) (11.24) into (11.57), expressing them in
terms of the dimensional longitudinal distance (x) and the mean salinity ðSÞ; it
follows that:

398 11 Circulation and Mixing in Steady-State …



Wðx, Z) ¼ bgH3
0

24Nzuf
ð@S
@x

Þð�Z4 þ 2Z3 � Z)þð�Zþ 1Þ

þ H0

6Azuf
½sWxð�Z3 þ 3Z2 � 2Z)þ sBxð�Z3 þZ),

ð11:58Þ

which is directly proportional to the depth and the longitudinal salinity gradient and
inversely proportional to the dynamic (kinematic) eddy viscosity coefficient. In
function of the longitudinal density gradient and taking into account that
Nz = kUTH0, another expression for the current function is:

Wðx, Z) ¼ gH2
0

kUTuf
ð 1
q0

@q
@x

Þð�4:17� 10�2Z4 þ 8:3� 10�2Z3 � 4:17� 10�2Z)

þð�Zþ 1Þþ 1
qkUTuf

½sWxð�1:67� 10�1Z3 þ 5� 10�1Z2 � 3:33� 10�1Z)

þ sBxð�1:67� 10�1Z3 þ 1:67� 10�1Z)]:

ð11:59Þ

According to the equalities (11.32) and (11.33), which define the u- and
w-velocity components as derivatives of the stream function, the analytical
expression (11.59) is used to calculate these velocity components as:

u(x, Z) ¼ uf þ gH2
0

kUT

1
q0

@q
@x

ð1:67� 10�1Z3 � 2:5� 10�1Z2 þ 4:17� 10�2Þ

þ 1
qkUT

½sWxð5:0� 10�1Z2 � 1:0Zþ 3:33� 10�1Þþ sBxð5:0� 10�1Z2 � 1:67� 10�1Þ�:

ð11:60Þ

and

wðx, Z) ¼ ½gH0

kUT

@ðH2
0Þ

@x
1
q0

ð@q
@x

Þþ gH3
0

kUT

1
q0

ð@
2q

@x2
Þ�

:ð�4:17� 10�2Z4 þ 8:3� 10�2Z3 � 4:17� 10�2Z):

ð11:61Þ

These solutions indicate that under normal conditions the u-velocity component
is forced directly by the baroclinic pressure gradient, the river discharge and the
wind stress, but the w-velocity component is dependent only on the density gradient
and its second derivative.

Let us now calculate the u-velocity component (Eq. 11.60) at the bottom
(Z = 1), in order to calculate the bottom stress. In doing so, and after simplifica-
tions, sBx is determined by,
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sBx ¼ �9:2� 10�2qgH2
0
1
q0

@q
@x

þ 2:212ufkUTq� 3:69� 10�1swx: ð11:62Þ

Calculating the magnitude of these terms, it is possible to see that the second
term is of higher magnitude than the others terms, and positive values of the bottom
friction (sBx > 0) are generally found in natural estuarine environment. Combining
this result with Eq. (11.60) and simplifying the resulting expression to a more
convenient solution for practical applications gives,

u(x, Z) ¼ gH2
0

kUT

1
q0

@�q
@x

ð1:67� 10�1Z3 � 2:96� 10�1Z2 � 5:8� 10�2Þ

þ ufð1:106Z2 þ 6:3� 10�1Þþ sWx

qkUT
ð3:16� 10�1Z2 � Zþ 3:95� 10�1Þ:

ð11:63Þ

This solution for the u-velocity component for a partially mixed estuary has the
same formalism as (Eq. 10.48 and Chap. 10) for a well-mixed estuary (type 1 or C).
Calculating this component at the surface (Z = 0) yields the following expression:

u(x, 0) ¼ 5:8� 10�2 gH
2
0

kUT

1
q0

@�q
@x

þ 6:3� 10�1uf þ 3:95� 10�1 sWx

qkUT
; ð11:64Þ

and, with a similar development to that used in the deduction of Eq. (11.49), under
maximum friction at the bottom (non-slippery bottom), the equation to calculating
the u-velocity component (11.63) may be rewritten as,

u(x, Z) ¼ u(x, 0)(2:879Z3 � 5:103Z2 þ 1Þ
þ ufð�1:814Z3 þ 4:321Z2Þþ sWx

qkUT
ð�1:137Z3 þ 2:016Z2 � Z):

ð11:65Þ

This solution is similar to Eq. (10.48), which was calculated with maximum
bottom friction. Comparing these equations, we may observe an increase in the
importance of the baroclinic pressure gradient and the wind stress in driving
the motion, and a decrease in the river discharge forcing. It is also possible to apply
the equality (11.51) to this solution to calculate the steady-state free surface slope
(∂η/∂x),

ð@g
@x

Þjz¼g ¼ 5:92� 10�1 H0

q0

@q
@x

� 2:212
kUT

gH0
uf � 6:31� 10�1 sWx

qgH0
: ð11:66Þ

In comparing this result with Eq. (11.52a) we may observe an accentuated
variation in the river discharge coefficient (second term in the right hand side); its
numeric coefficient changes from 3.0 to −2.21. Taking into account the same orders
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of magnitude in these equations, the free surface slope is positive (∂η/∂x > 0) in
both equations, being slightly higher under the first boundary condition.

The development of solutions using zero friction at the bottom as a boundary
condition are easy to be demonstrated, and derived in other books, such as Officer
(1976).

11.4 Theoretical Vertical Salinity Profile

We will now proceed with the solution of the second order partial differential
Eq. (11.23), complemented with its coefficients C1(X) (11.24) and C2(X) (11.25),
to calculate the salinity field; in the first moment the dimensionless $ = $(X, Z) will
be calculated, and further, its transformation to the solution S = S(x, Z) will be
obtained. This solution is dependent on the stream function, W = W(x, Z), which
has already been calculated for distinct boundary conditions (11.43) or (11.44) and
(11.58) or (11.59). Of course, these solutions will be dependent on the upper and
lower boundary conditions (11.29) and (11.30), respectively, and the integral
boundary condition (11.31).

Let us introduce, according to Fisher et al. (1972), an auxiliary (dummy) con-
tinuous function f = f(X, Z), defined as f(X, Z) = ∂$/∂Z, to the solutions of these
differential equations. As its second derivative is ∂f(X, Z)/∂2$/∂Z2, substituting
these quantities into the Eq. (11.23) yields the following first order
non-homogeneous partial differential equation with variable coefficients:

@f
@Z

� B
C2ðX, Z) f(X, Z) ¼

A(X, Z)
C2ðX, Z) : ð11:67Þ

where C2 = C2(X) has previously been defined in (11.25), and the quantities A(X,
Z) and B(X, Z) are expressed by,

A(X, Z) ¼ � @WðX, Z)
@Z

@$

@X
; ð11:68Þ

and

B(X, Z) ¼ @WðX, Z)
@X

: ð11:69Þ
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These quantities are in function of the stream function, W = W(X, Z)

(Eq. 11.57), and the longitudinal salinity gradient ð @$
@XÞ in the A(X, Z) expression is

assumed to be known.
With the definition of f = f(X, Z) yielding the differential Eq. (11.67), the

boundary conditions (11.29) must be applied separately and are given by,

f(X, Z)jz¼0 ¼ ð@$
@Z

ÞjZ¼0 ¼
1
S0

ð@S
@Z

ÞjZ¼0 ¼ 0: ð11:70Þ

and

f(X, Z)jz¼1 ¼ ð@$
@Z

ÞjZ¼1 ¼
1
S0

ð@S
@Z

ÞjZ¼1 ¼ 0: ð11:71Þ

Therefore, in order for the salt flux (or salt transport) through the free surface and
bottom to be zero, the f = f(X, Z) function must satisfy the conditions f(X, 0) =
f(X, 1) = 0, respectively.

The general solution of Eq. (11.67) may be found in Wylie (1960) and Fisher
et al. (1972) and is given by:

f(X, Z) ¼ expf½
Z

ð B
C2

ÞdZ]
Z

ðA
C2

Þ½exp½�
Z

ð B
C2

ÞdZgdZ

þ b1ðXÞ exp½
Z

ð B
C2

ÞdZ]:
ð11:72Þ

The function b1(X) in the last term of the right hand side of this equation may be
calculated using one of the boundary conditions, (11.70) or (11.71); however, it is
convenient to adopt the latter condition because it equals zero, and then the solution
is reduced to

f(X, Z) ¼ expf½
Z

ð B
C2

ÞdZ]
Z

ðA
C2

Þ½exp½�
Z

ð B
C2

ÞdZgdZ: ð11:73Þ

As the quantities C2(X), A(X, Z) and B(X, Z) are given by (11.25), (11.68) and
(11.69), respectively, and taking into account Eqs. (11.32) and (11.33), the inte-
grand ratios, A/C2 and B/C2, are transformed in,

A(X, Z)
C2ðX) ¼ � H0Qf

BKzL
ð@$Þ
@X

Þð@W
@Z

Þ ¼ uH2
0

KzL
ð@$
@X

Þ ¼ uH2
0

Kz
ð@$
@x

Þ; ð11:74Þ

and
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B(X, Z)
C2ðX) ¼ H0Qf

BKzL
ð@W
@X

Þ ¼ wH0

Kz
; ð11:75Þ

where W, u and w are known functions of x and Z, and its analytical expressions are
dependent on the boundary conditions. Then, although the function f = f(X, Z) has
a complicated expression (11.73), it may be numerically calculated without as many
difficulties in terms of the stream function and the velocity components. Using the
velocity components yields the following expression:

f(x, Z) ¼ H2
0

Kz
ð@$
@x

Þexp[ H0

Kz

Z
w(x, Z)dZ�

:

Z
u(x, Z)exp[� H0

Kz

Z
w(x, Z)dZ]dZ:

ð11:76Þ

With the analytical expression of the function f(x, Z) known, the steady-state
vertical salinity profile may be calculated by:

S(x, Z) ¼ S0

Z
ðf(x, Z)dZþ b2ðx); ð11:77Þ

where b2(x) is the integration function, which is calculated by the integral boundary
condition, and S0 is the constant salinity value at the coastal region, as previously
defined. This condition may be expressed by Eq. (11.30) or its equivalent mean
salinity value at the water column,

S ¼
Z1

0

S(x, Z)dZ; ð11:78Þ

yielding,

S ¼ S0

Z1

0

½
Z

f(x, Z)dZ]dZþ
Z1

0

b2ðx)dZ; ð11:79Þ

and the integration function, b2(x), is calculated by

b2ðx) ¼ S�
Z1

0

½S0
Z

f(x, Z)dZ]dZ: ð11:80Þ

Substituting (11.80) into the partial solution (11.77) yields an analytical
expression for calculating the steady-state vertical salinity profile:
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S(x, Z) ¼ Sþ S0

Z
f(x, Z)dZ�

Z1

0

½S0
Z

f(x, Z)dZ]dZ: ð11:81Þ

Although this solution is apparently complicated, when rewritten in terms of the
stream function or the velocity components, it may be calculated by numerical
integration. Combining Eq. (11.76) with the solution (11.81), the result is the
following expression for calculating S = S(x, Z) as function of the velocity com-
ponents (Fisher et al. 1972):

Sðx, Z) ¼ SþðH
2
0

Kz

@S
@x

Þ
Z

exp[(
H0

Kz
Þ
Z

w(x, Z)dZ]dZ

:

Z
u(x, Z)exp[(� H0

Kz
Þ
Z

w(x, Z)dZ]dZ

� ðH
2
0

Kz

@S
@x

Þ
Z1

0

Z
ðexp[( H0

Kz
Þ
Z

w(x, Z)dZ]dZ

:

Z
u(x, Z)[exp(� H0

Kz
Þ
Z

w(x, Z)dZ]dZ:

ð11:82Þ

The second term on the right hand side of this equation is an indefinite integral,
and its result is an expression with Z as an independent variable; the third term is a
definite integral calculated in the closed interval [0 − 1], and its final result is a
numeric value.

It should be noted that the theoretical steady-state velocity and salinity profiles
deduced by Fisher et al. (1972) were evaluated with laboratory experimental data
from the Vicksburg and the Delft Hydraulic Laboratory (Delft, Holland) salinity
flume and observation data from the James River estuary (Virginia, USA). The
combined dataset covered a wide range of flow conditions and degrees of salinity
stratification, some of which may be partially invalidate the model assumptions, but
these studies helped to define the limits of the analytical model application.

As the intensity of the u-velocity component is several orders of magnitude
higher than the vertical component (w), several authors, for example, Officer (1976)
and Hamilton and Wilson (1980), had neglected the vertical salt advection. With
this assumption, the theoretical vertical salinity profile is established by the balance
of the longitudinal advection and the vertical eddy diffusion, according to the
simplified expression of Eq. (11.11):

�ð@w
@z

Þð@S
@x

Þþ u
@S
@x

¼ Kz
@2S
@z2

; ð11:83Þ

and the simplest solution of which may be obtained from Eq. (11.82) with the
simplification w(x, Z) = 0 is:
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S(x, Z) ¼ SþðH
2
0

Kz

@S
@x

Þ½
ZZ

u(x, Z)dZ]dZ�
Z1

0

½
ZZ

u(x, Z)dZdZ]dZ: ð11:84Þ

This solution may also be obtained directly by integrating the differential
Eq. (11.83). In doing so, rewriting this equation in terms of the dimensionless depth
(Z) and separating the variables yields (Officer (1976, 1978):

@S
@Z

¼ ðH
2
0

Kz

@S
@x

Þ
Z

u(x, Z)dZþ b3ðx): ð11:85Þ

where the quantity, b3(x), is a dimensionless variable of integration. Taking into
account the assumption that at the upper boundary condition there is no salt flux,
qKz

H0

@S
@Z jz¼0 ¼ 0; it follows that b3(x) = 0. Then, with a new integration,

S(x, Z) ¼ ðH
2
0

Kz

@S
@x

Þ
Z

u(x, Z)dZþ b4ðx): ð11:86Þ

To calculate this second dimensionless variable of integration, b4(x), the integral
boundary condition (11.78) must be applied, and its value is given by

b4ðx) ¼ S� ðH
2
0

Kz

@S
@x

Þf
Z1

0

½
ZZ

uðx, ZÞdZdZ�dZg: ð11:87Þ

Then, substituting b4(x) into solution (11.86), the result is the vertical analytical
salinity profile, S = S(x, Z), which is the same as expression (11.84).

The dependence of the u-velocity and salinity vertical profiles on the Nz (or its
dynamic value, Az), and on the kinematic eddy diffusion coefficient (Kz), which
makes the comparison between experimental and theoretical results more difficult.
However, as we will be seen later in this chapter, the best numerical values for these
coefficients may be estimated, when the validation methodology is applied to
improve the comparison of experimental data and theoretical results.

11.5 Theoretical and Experimental Velocity and Salinity
Profiles

To exemplify the analytical solution of steady-state vertical profiles of the u- and
w-velocity components and the salinity, let us consider an estuary with a transverse
section with width B = 103 m and a depth of 12 m, forced by a river discharge of
Qf = 20 m3 s−1, where the wind stress is disregarded (sWx = 0).
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11.5.1 Longitudinal and Vertical Velocity Profiles

The analytical expressions that will be used to calculate the u-velocity component,
u = u(x, Z) are Eqs. (11.49) and (11.65), respectively, for maximum and moderate
bottom friction, respectively. To calculate the vertical velocity profile, w = w(x, Z),
the corresponding simplified Eqs. (11.46) and (11.61) will be used with the same
bottom friction characteristics.

As the transverse area at a longitudinal position, x, is BH0 = 12 � 103 m2 the
velocity generate by the river discharge is uf � 0.017 m s−1. Let us adopt for the
kinematic eddy viscosity coefficient Nz = kUTH0 = 1.2 � 10−2 m2 s−1, and
k = 2.5 � 10−3, considering the tidal amplitude velocity UT = 0.4 m s−1. Under
the assumption that the mixing zone (MZ) has a length of 104 m (10 km) and the
salinity at the mouth is 30‰, the mean longitudinal salinity gradient has an order of
magnitude of 3.0 � 10−6 m−1 and its second derivative, ∂2S/∂x2, is estimated in
2.5 � 10−8 m−2. These values may be converted in the corresponding values of the
mass field using the linear equation of state of seawater (Eq. 11.5) with the saline
contraction coefficient, b = 7.0 � 10−4 and qo = 1.0 � 103 kg m−3, and the fol-
lowing estimates are obtained: q(30) = 1021.0 kg m−3, @q=@x ¼ 2:1� 10�3 kg
m−4, and @2q=@x2 ¼ 4:0� 10�8 kg m−5.

In the u-velocity profile, u = u(x, Z), shown in Fig. 11.2 upper (a), we may
observe gravitational circulation that is typical of partially mixed estuaries (types 2
or B), which is symmetric to the velocity generated by the river discharge
(�0.017 m s−1). In the moderate bottom friction condition (Fig. 11.2 upper b), the
motion has higher velocity in comparison to the first condition, u(x, 1) = 0, to
compensate due to the moderate bottom friction.

Values of the vertical velocity component, w = w(x, Z), can be various orders of
magnitude lower than the u-velocity component, and its intensity is higher for a
moderate bottom friction condition (Fig. 11.2 lower a, b). The negative value
indicates the occurrence of upward motions (note that the Oz axis is oriented in the
direction of the gravity acceleration), closing the continuity of the longitudinal
motion, and the maximum value occurs at the middle of the water column.

11.5.2 Vertical Salinity Profile

To calculate the vertical salinity profile, S = S(x, Z), it is necessary that the mean
salinity value in the water column is known, and let us adopt the value S ¼ 20‰.
As the salinity is dependent on mixing processes (advection and diffusion), the
advective process will be simulated by the u-velocity profile given by the solution
(11.49) under the assumption that swx = 0, and, for the diffusive process, the
kinematic eddy diffusion coefficient will be taken as: Kz = 1.0 � 10−6 m2 s−1.

Combining the simplified solution of the vertical salinity profile (Eq. 11.84) with
the analytical equation u = u(x, Z) indicated above, which satisfies the bottom
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boundary condition, u(x, 1) = 0, the steady-state vertical salinity profile is calcu-
lated by:

S(x, Z) ¼ SþðH
2
o

Kz

@S
@x

u(x, 0)(8Z3 � 9Z2 þ 1Þ
þ ufð�12Z3 þ 12Z2Þ

ð11:88Þ

where the u-velocity component at the surface, u = u(x, 0), must be calculated by
Eq. (11.64), and its solution is presented in Fig. 11.3a. Using the u-velocity
component with the moderately bottom boundary condition (Eq. 11.65), we have
the following expression for the vertical salinity profile:

Fig. 11.2 Vertical velocity profiles, u = u(x, Z) and w = w(x, Z), calculated with Eqs. (11.49)
and (11.65), and (11.46) and (11.61), respectively, with the following surface and bottom
boundary conditions: zero wind stress (sWx = 0), maximum friction at the bottom, u(x, 1) = 0,
(bold line), and a moderate bottom friction u(x, 1) 6¼ 0 (dashed line)

11.5 Theoretical and Experimental Velocity and Salinity Profiles 407



S(x, Z) ¼ SþðH
2
0

Kz

@S
@x

Þu(x, 0)[1:44� 10�1Z5 � 4:25� 10�1Z4 þ 5:0� 10�1Z2 � 1:05� 10�1�
þ ufð�9:1� 10�2Z5þ 3:6� 10�1Z4 � 5:7� 10�2�;

ð11:89Þ

where the current velocity at the surface (Z = 0) must be calculated by Eq. (11.64).
The steady-state vertical salinity profiles under these boundary conditions are
presented in Fig. 11.3.

In the Fig. 11.3a we may observe that under maximum friction bottom boundary
condition, u(x, 1) = 0, the stratification parameter (dS=S) is equal to 0.23. However,
with a moderate bottom friction (Fig. 11.3b), there is an increase in the stratification
parameter which is equal to 0.78. This increase is due to a higher influence of the
advection in the vertical salinity distribution as the u-velocity component is higher
under this bottom boundary condition (Fig. 11.2b-upper). Due to these changes in
the vertical stratification, the circulation parameter increases from us/uf = 4.4 to us/
uf = 9.6, and the images of these parameters on the Stratification-Circulation

Fig. 11.3 Steady-state vertical salinity profiles calculated with Eqs. (11.88) and (11.89), under the
assumption of the following surface and bottom boundary conditions: sWx = 0 and u(x, 1) = 0
(bold line), and (b) sWx = 0 and u(x, 1) 6¼0 (dashed line), respectively
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Diagram (Fig. 3.11, Chap. 3) are located in the semi-plane of partially mixed
estuaries and highly stratified (type 2b), because dS=S[ 0:1:

11.5.3 Validation of Experimental Velocity and Salinity
Vertical Profiles

Practical examples on the validation of nearly steady-state observational u-velocity
components and salinity vertical profiles with the solutions using Eqs. 11.45 and
11.84 are shown in Figs. 11.4 (upper and lower), according to the investigations of
Bernardes (2001) and Bernardes and Miranda (2001). The hydrographic and current
velocity were sampled in a mooring station located in the southern region of
Cananéia Estuarine System (Fig. 1.5 and Chap. 1), and good agreement between
theoretical and experimental data may be observed.

11.6 Hansen and Rattray’s Similarity Solution

Hansen and Rattray (1965) theory is a classical theoretical development using the
similarity method to obtain the solution of a coupled set of partial differential
Eqs. (11.1) to (11.4) and associated boundary conditions, in order to describe the
circulation and the salt-flux steady-state processes for coastal plain and laterally
homogeneous estuaries, where turbulent mixing is primarily forced by tidal
currents.

The longitudinal salinity distribution in many coastal plain estuaries takes the
general form of the hyperbolic tangent function, with the maximum gradient in the
estuarine region named central regime and tailing off asymptotically to terminal
values towards the mouth and the estuary head. In the central regime, the vertical
salinity stratification is nearly independent of the longitudinal position, while in the
outer and inner regimes, it is proportional to the departure of the sectional mean
salinities from their asymptotic values.

The salinity stratification characteristic in the central regime makes it possible
for a theoretical treatment to describe the bi-dimensional velocity and salinity fields
generated by external (river discharge and wind), and internal (gradient pressure
and friction) forces. As noted by (Hansen and Rattray, op. cit.), analysis of the
estuarine regime, therefore, constitutes a problem of both forced and free convec-
tion, with the latter influenced by density gradients on the velocity distribution.
Thus, the basic non-tidal circulation associated with, and active in, maintaining the
salinity distribution in estuaries consists of a seaward flow of river water and a
system of currents induced by the density difference between freshwater and
seawater.
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Fig. 11.4 Comparison of the steady-state experimental u-velocity (upper) and salinity (lower)
vertical profiles (thin lines) and the corresponding theoretical results (dashed and bold lines),
calculated with Eqs. (11.45) and (11.84) [adapted from Bernardes (2001) and Bernardes and
Miranda (2001)]
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In the central regime, the following assumptions are made: the estuary has a
laterally homogeneous geometry (width and depth), and the river discharge is
constant and there is a known salinity (S0) at the estuary mouth. The basic partial
differential equations, which formulate the physical-mathematical problem in
relation to the Oxz referential system (Fig. 11.1), in terms of the stream function,
w = w(x, z), and the linear equation of state of seawater, the equation of motion and
the salt conservation equations are:

gb
@S
@x

þ 1
B

@

@z
ðBNz

@3w
@z3

Þ ¼ 0; ð11:90Þ

and

�ð@w
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Þð@S
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Þþ ð@w
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Þð@S
@z
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@

@x
ðKx

@S
@x

ÞþB
@

@z
ðKz

@S
@z

Þ: ð11:91Þ

The salt conservation equation presents the following differences in relation to
the former formulation (Eq. 11.11): all terms of this equation have the salinity as an
unknown, and the term that formulates the longitudinal salt diffusion (first on the
right hand side) is included.

The boundary conditions that guarantee a unique solution to Eq. (11.90) are: the
wind stress acting on the free surface and maximum bottom friction (non slip
bottom), which are formulated by (11.12) and (11.13), respectively. The net volume
transport is equal to the river discharge (11.18), due to the steady-state hypothesis.
As in the salt conservation Eq. (11.91), the salt fluxes due to advection and tur-
bulent diffusion are included, and the salt balance at the estuary mouth must be null.
With the exception of the surface and bottom boundary conditions which annul the
salt fluxes through these surfaces, it is necessary to impose the following integral
boundary condition:

q
ZH0ðxÞ

0

ð�BSuþBKx
@S
@x

Þdz ¼ 0; ð11:92aÞ

or

ZH0ðxÞ

0

ðS @W
@z

þBKx
@S
@x

Þdz ¼ 0: ð11:92bÞ

In the second integral, it was taken into account that by the current function
definition (11.8), u = −(1/B)∂w/∂z. Then, according the steady-state condition, the
resulting salt transport TS, [TS] = [MT−1], due to the advection and diffusion, must
be null. The sought solutions will portrait the transition from river (S = 0) to the
oceanic conditions, i.e., for ∂S/∂x > 0, and in the classical article of Hansen and

11.6 Hansen and Rattray’s Similarity Solution 411



Rattray (1965), three types of similarity solutions with this property were devel-
oped. The particular conditions required for these solutions indicate relationships
among the external parameters which may be expected to result in particular
velocity and salinity distributions. However, for mathematical simplicity, only the
central regime of an idealized estuary, which has a rectangular cross-section and the
exchange coefficients independent of the depth, will be presented. Further results on
the outer and inner regimes may be found in the Hansen and Rattray’s article.

In the similarity method, solutions for the stream function and salinity fields are
investigated, with the following separation of variables:

wðx, z) ¼ wðZ) ¼ QfWðZÞ; ð11:93Þ

and

Sðn;ZÞ ¼ S0½nmþ S(Z)�; ð11:94Þ

where m is a dimensionless (mixing parameter), Z = z/H0 is the non-dimensional
depth, n = n(x) = Qfx/BH0Kx0 = ufx/Kx0 is the non-dimensional longitudinal dis-
tance, Kx0 is the longitudinal kinematic eddy diffusion coefficient at the estuary
mouth and S0 its mean salinity. As the estuary is laterally homogeneous, S0 is the
mean value in the water column, located at the estuary mouth. Taking into account
these definitions, the stream function and the salinity are now functions of the
dimensional coordinates (z) and (x, z), respectively, because W[Z(z)] = W(z) and S
[n(x), Z(z)] = S(x, z).

As the river discharge, Qf, is taken as constant, the stream function (11.93) is
independent of the longitudinal distance (x). Then, the w-velocity component,
according to its definition in terms of the stream function (Eq. 11.8), is not resolved
by this analytical model, and its influence on the salt conservation Eq. (11.91) is
null.

The linear longitudinal salinity variation in the central regime is assured by the
linear dependence of n = n(x),

@S(x, z)
@x

¼ @S
@n

dn
dx

¼ mS0Qf

BH0Kx0
¼ m

S0uf
Kx0

: ð11:95aÞ

or

ðKx0
@S(x, z)

@x
Þ ¼ mS0uf ; ð11:95bÞ

and the diffusive upstream salt flux (per density unit) at estuary mouth (x = 0) is the
fraction of the mixing parameter (m) of the advective the salt flux advected seaward by
the river flow and is the product of the mean cross-section salinity, S0, and the river
velocity. Solving this equation for the dimensionless mixing parameter (m), we have:
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m ¼ Kx0
@S
@x

ufS0
¼ qKx0

@S
@x

qufS0
¼ Udif

Uadv
: ð11:96aÞ

This result indicates that the mixing parameter, m, is determined by the following
salt flux ratio: the landward salt transport by eddy diffusion to the advective sea-
ward salt transport by the river discharge. To close the salt balance in the central
regime, an advective term related to the up-estuary salt flux due to the gravitational
circulation (Uadv) must be included, and the mixing parameter is defined as:

m ¼ Udif

Udif þUadv
: ð11:96bÞ

From this expression of the mixing parameter, it follows that 0 < m� 1, and
when m = 1, there is no gravitational circulation (Uadv ! 0) and the salt flux ratio
(11.96b) is in balance; otherwise, if m ! 0 the salt transport by diffusion is less
important (Udif 	 Uadv), and the salt flux is mainly due to advection (river dis-
charge and gravitational circulation), and the tidal mixing is very low and may be
disregarded (Hansen and Rattray 1966; Hamilton and Rattray 1978). As we have
seen in the Stratification-circulation Diagram (Chap. 3), for m = 1 and m ! 0
corresponds to estuaries classified as well-mixed and partially mixed, respectively.

The similarity condition in the central regime also needs to satisfy the following
hypothesis: the kinematic eddy viscosity (Nz) and diffusion (Kz) coefficients are
constant, as is the case of the Fisher et al. (1972) analytical model; however, the
kinematic eddy diffusivity, Kx, increases seaward at a rate equivalent to the river
discharge (Hansen and Rattray 1966),

d(KxÞ
dx

¼ Qf

BH0
¼ uf : ð11:97Þ

Introducing the new formulations of the stream function (11.93) and salinity
(11.94) into the Eqs. (11.90) and (11.91), respectively, and taking into account the
last equality (11.97), yields the following dimensionless differential equations:

d4WðZ)
dZ4 þ mRa ¼ 0; ð11:98aÞ

and

d2S(Z)

dZ2 þ m
M

ðdW
dZ

þ 1Þ ¼ 0: ð11:98bÞ
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In these equations, Ra and M, are the dimensionless Rayleigh estuarine number1

and the mixing tidal parameter,2 respectively, which are defined by:

Ra ¼ bgS0H
3
0

NzKx0
; andM ¼ KzKx0B2

Q2
f

¼ KzKx0

H2
0u

2
f

: ð11:99Þ

The Ra number is a measure of how efficiently the salinity (density) generates
gravitational circulation, and M represents the ratio of the tidal mixing to the river
discharge.

The system of differential Eqs. (11.98a) and (11.98b) must be solved in order to
satisfy the following boundary conditions, which may be obtained from the cor-
responding expressions (11.12), (11.13), (11.15), (11.16a, b) and (11.18):

WðZÞjz¼1 ¼ Wð1Þ ¼ 0; and
dW
dZ

jZ¼1 ¼ 0; ð11:100aÞ

WðZÞjz¼0 ¼ Wð0Þ ¼ 1; and
d2W

dZ2 jZ¼0 ¼ TW; ð11:100bÞ

and

d(S(Z))
dZ

jZ¼0 ¼
d(S(Z))
dZ

jZ¼1 ¼ 0: ð11:100cÞ

In the boundary condition (11.100b), the wind stress, Tw is the third dimen-
sionless parameter and is given by: Tw ¼ BH2

0sWx=KzqQf ¼ H0sWx=Azuf .
To complete the boundary conditions of the salt conservation Eq. (11.98b), it is

necessary to use the integral boundary condition (11.92b) in the dimensionless
formulation, taking into account the similarity relations (11.93) and (11.94), and the
expression of the longitudinal salinity gradient, ∂S/∂x = (mS0Qf)/(BH0Kx0),

1This number is an analog of the Rayleigh number, which is used to forecast the convection of
compressible fluids in between plates with different temperatures. This number is proportional to
the cubic power of the distances between the plates and a dimensionless combination of physical
properties such as: density, gravity acceleration, thermal expansion coefficient, viscosity, specific
heat and thermal diffusion.
2M is a non-dimensional number analogue to the ratio G/J defined by Ippen and Harleman (1961),
which introduced the first number used in the estuary classification (see Chap. 3).
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ZH0

0

ðS @W
@z

þBKx
@S
@x

Þdz

¼ H0

Z1

0

fS0½nmþ SðZÞ�Qf

H0

dW
dZ

þ BKxmS0Qf

BH0Kx0
gdZ

¼ SQf

Z1

0

½nm dW
dZ

þ SðZÞ dW
dZ

þ mKx

Kx0
�dZ ¼ 0:

ð11:101Þ

To satisfy the salt conservation, the net salt transport at the estuary mouth
(x = n = 0) must be null, and the equality Kx = Kx0, holds for this position. Then,
the integral boundary condition (11.92b) in terms of the non-dimensional depth is
simplified to:

mþ
Z1

0

½S(Z) dW
dZ

�dZ ¼ 0: ð11:102Þ

The equation of motion (11.98a) may be solved with the same procedure as used
in the non-dimensional Eq. (11.22). Then, by successive integrations, we find the
solution which is equivalent to (11.43). By applying the boundary conditions
(11.100a) and (11.100b), the integration functions a3(X) and a4(X) will be obtained,
yielding the following expression for the stream function (Hansen and Rattray 1965):

WðZÞ ¼ � mRa
48

ð2Z4 � 3Z2 þZ)

þ 1
2
ðZ3 � 3Zþ 2Þ � TW

4
ðZ3 � 2Z2 þZ):

ð11:103Þ

With this analytical expression, which is equivalent to solution (11.43), we can
easily calculate the u-velocity component in the central regime using the rela-
tionship u(Z) = −uf(dW/dZ),

u(Z) ¼ ufmRað0:167Z3 � 0:188Z2 þ 0:0208Þ
þ 1:5ufð�1:0Z2 þ 1Þþ ufTWð0:75Z2 � Zþ 0:25Þ; ð11:104Þ

where TW is the non-dimensional wind stress ðTW ¼ sWx=sW0Þ: This result is
similar to solution (11.45). Comparing these solutions, we may observe that the
dimensionless coefficients mRa and ðgH3

0=Nzufq0Þð@q=@x); are equivalent, per-
forming the same dynamical function (baroclinic pressure gradient) in the gravi-
tational circulation.

Equation (11.104) expresses the steady-state circulation (u-velocity component)
as the sum of three modes: (i) the gravitational-convection mode, associated with
the Rayleigh (Ra) estuarine number; (ii) the river discharge mode; and, (iii) the
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wind-stress mode. If, for example, Ra and TW are null, the u-velocity profile
assumes a parabolic form, which is characteristic of uniform motion and has a
constant eddy viscosity. As mRa increases, the baroclinic pressure gradient asso-
ciated with the density (salinity) field increases and the motion becomes bidirec-
tional for Ra > 30, as illustrated in Fig. 11.5.

The parabolic profile obtained from Eq. (11.104) when mRa = 0 and TW = 0,
shown in Fig. 11.5, has almost the same analytic expression of that obtained from
Eq. (8.86, Chap. 8).

As the stream function, W = W(Z), as a power series of the dimensionless depth,
has already been determined (Eq. 11.103), the salt Eq. (11.98b) only has the
salinity, S = S(Z), as an unknown. Integrating this equation and applying the
boundary condition, (dS/dZ)|Z=0=0, yields the following expression for the vertical
salinity gradient:

dS
dZ

¼ � m
M

ZZ

0

ðdW
dZ

ÞdZ� m
M

ZZ

0

dZþ b5; ð11:105Þ

where b5 is an integration constant. The integration of the first term of the right
hand side of this equation may be completed, and the variable of integration
changes from Z to W and the inferior integration limit becomes 1. Progressing
further with this integration and applying the boundary condition (11.100a), which
states that for Z = 1 ! W(1) = 0, gives:

dS
dZ

¼ � m
M

WðZ)� m
M

Zþ b5: ð11:106Þ

Fig. 11.5 Relative horizontal velocity profiles (u/uf) with sWx = 0, parameterized by the Rayleigh
number multiplied by the mixing parameter (mRa). Observed values (solid dots) are for the River
James estuary (St. 17) (from Hansen and Rattray 1965)
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Applying the boundary conditions (11.100a, b, c), it follows that W(1) = 0,
W(0) = 1 and dS/dZ|Z=1=0, and we find b5 = m/M. Substituting this constant into
expression (11.106) and integrating the result, we find the following solution for the
vertical salinity profile, S = S(Z):

S(Z) ¼ S(0)� m
M

ZZ

0

WðZÞdZþ m
M

ðZ� 1
2
Z2Þþ b6; ð11:107Þ

where S(0) = Ss is the salinity at the surface, and b6 is a new dimensionless inte-
gration constant, which will be calculated with the boundary condition (11.102),
resulting in:

mþ
Z1

0

½S(Z) dW
dZ

�dZ ¼ mþ
Z1

0

Sð0ÞdWþ m
M

Z1

0

½
ZZ

0

WðZÞdZ�dZ

� m
M

Z1

0

ðZ� 1
2
Z2ÞdZþ b6

Z1

0

dW ¼ 0:

ð11:108Þ

Completing the integrations and solving to the constant, b6, yields,

b6 ¼ m� S(0)þ m
M

Z1

0

½
ZZ

0

WðZÞdZ�dZþ 1
2
m
M

ð�1þ 1
3
Þ: ð11:109Þ

Substituting this expression of the integration constant, b6, into the partial
solution (11.108), we find the solution for the steady-state vertical salinity profile,

S(Z) ¼ mþ m
M

ðZ� 1
2
Þ � 1

2
ðZ2 � 1

3
Þ

�
ZZ

0

WðZÞdZþ
Z1

0

½
ZZ

0

WðZÞdZ�dZ;
ð11:110Þ

or, according to the expression (11.94), for S(x, Z) = S[n(x), Z], the final analytical
expression to calculate the steady-state vertical salinity profile, obtained by Hansen
and Rattray (1965), is:

S(x, Z) ¼ S0f1þ mnþ m
M

½ðZ� 1
2
Þ � 1

2
ðZ2 � 1

3
Þ

�
ZZ

0

WðZÞdZþ
Z1

0

ð
ZZ

0

WðZÞdZÞdZ�g;
ð11:111Þ
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where the integral in the last term on the right hand side of this solution is a constant
value. Analysis of this solution indicates that the vertical salinity profile depends
explicitly on the tidal mixing parameter (M). However, as the stream function
W = W(Z), is dependent on the Rayleigh estuarine number (Ra), this profile
depends simultaneously on these two dimensionless parameters.

The relative salinity profiles, in relation to the salinity at the estuary mouth (S0)
multiplied by the dimensionless ratio M/m, at n = 0 with no wind stress, and
parameterized in the dimensionless product, mRa, are illustrated in Fig. 11.6. The
relative stratification, like the gravitational convection, increases with mRa, but is
also proportional to M/m. Observational steady-state salinity profiles in the James
river estuary (Virginia, USA) indicate good correspondence with the theoretical
profiles for mRa = 750.

The wind forcing influences on the u-velocity component and salinity profiles
were also investigated in the classical articles of Rattray and Hansen (1962) and
Hansen and Rattray (1965). This theoretical study was expanded by Officer (1976,
1977), Prandle (1985), among others, imposing moderate bottom friction, and the
tidal currents are predominantly responsible for the eddy diffusion, but without
other influence in the steady-state circulation.

11.7 Estuary Classification: Stratification-Circulation
Diagram

Applying the integral boundary condition (Eq. 11.102), the mixing parameter (m)
which measures the relative importance of diffusion and advection to the salt fluxes
(Eq. 11.96b), may be correlated with the dimensionless parameters M, Ra and the

Fig. 11.6 Vertical relative salinity profiles (M/m)[(S − S0)/S0] at n = 0 and sWx = 0, parameter-
ized by the Rayleigh number multiplied by the mixing parameter (mRa). Observed values (solid
dots) for the James river estuary (St. 17), with mRa = 750 (from Hansen and Rattray 1965)
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wind stress TW. This correlation may be achieved by finding the positive square
root of the following second degree algebraic equation (Hansen and Rattray 1965):

1680M(1� mÞ ¼ ð32þ 10TW þT2
WÞm

þð76þ 14TWÞRa48 m
2 þ 152

3
ðRa
48

Þ2m3:
ð11:112Þ

In the subsequent article, Hansen and Rattray (1966) used this equation as the
starting point to analytically determine a quantitative method for use in estuary
classification. This method was named the Stratification-circulation Diagram, and
its practical application was presented in Chap. 3. For this purpose, Eq. (11.112) is
simplified, disregarding the wind stress (Tw = 0). As an artifact, the first member of
the equation is multiplied and divided by m, and rearranging its terms yields the
following incomplete second grade equation for the mixing parameter, m:

1680ðM
m
Þm2 þ ½32� 1680ðM

m
Þþ 76ðmRa

48
Þþ 152

3
ðmRa
48

Þ2�m ¼ 0: ð11:113Þ

For practical purposes, considering the parameter m as unknown, this equation
may be expressed as a function of the following dimensionless parameters: the ratio
of the u-velocity at the surface (us) to the fresh water velocity (us/uf), and the ratio of
the salinity at the bottom (Sb) minus the salinity at the surface (Ss), divided by the
mean salinity value in the water column (S), yielding ðSb � SsÞ=S. As previously
presented in Chap. 3, these parameters are the definitions of the circulation and
stratification parameters, respectively. Then, calculating the solution of the u-velocity
component (Eq. 11.104) at the surface (Z = 0), we have the following results:

u(0)
uf

¼ us
uf

¼ 1:5þ 2:08� 10�2mRa ¼ 1:5þ mRa
48

; ð11:114Þ

and

mRa
48

¼ ðus
uf

� 3
2
Þ: ð11:115Þ

In the following step, the vertical salinity profile presented in the Eq. (11.111)
will be solved at the surface (Z = 0) and bottom (Z = 1), and the last two terms on
the right hand side will be integrated in the closed interval [0 – 1], and the results are:

Z0

0

WðZÞdZ ¼ 0; ð11:116aÞ

Z1

0

WðZÞdZ ¼ 3
8
� mRa

320
; ð11:116bÞ
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and

Z1

0

½
ZZ

0

WðZÞdZ�dZ ¼ 11
40

� mRa
576

: ð11:116cÞ

Substituting these results into the Eq. (11.111), yields the following values of
the salinity at the surface (Z = 0) and bottom (Z = 1):

S(x, 0)

S
¼ Ss

S
¼ 1þ mn� m

M
ð 7
120

þ mRa
576

Þ; ð11:117Þ

and

S(x, 1)

S
¼ Sb

S
¼ 1þ mn� m

M
ð 1
15

þ mRa
720

Þ: ð11:118Þ

By subtraction of Eqs. (11.117) and (11.118), it follows that the stratification
parameter may be calculated by,

Sb � Ss
S

¼ dS

S
¼ m

M
ð1
8
þ 3:125� 10�3mRa), ð11:119Þ

or

M
m
¼ ðdS

S
Þ�1ð0:125þ 3:125� 10�3mRa): ð11:120Þ

Finally, substituting expressions (11.116a), (11.116b), (11.116c) and (11.120)
into Eq. (11.113) the unknown (m) of this equation may be calculated as a function
of the stratification, dS=S , and circulation, us/uf, parameters. As previously seen,
these parameters may be determined in the estuary region where the central regime
predominates. Although this equation has already been presented and used in the
estuaries classification (Chap. 3), it is presented bellow as a complementary
equation for this topic,

ðdS
S
Þ�1½210þ 252ðus

uf
� 3
2
Þ�m2

þ ½32� ðdS
S
Þ�1ð210þ 252ðus

uf
� 3
2
ÞÞ

þ 76ðus
uf

� 3
2
Þþ 152

3
ðus
uf

� 3
2
Þ2�m ¼ 0:

ð11:121aÞ

This equation indicates the functional relation for the unknown, m,
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m ¼ mðdS
S
;
us
uf
Þ; ð11:121bÞ

which has m = 0 as a trivial solution. However, its solution in the real numeric field
is only possible if the constant, 32, in the third term on the left hand side of the
Eq. (11.121a) is disregarded. With this simplification, for m = 1, when the turbulent
eddy diffusion is predominant to the landward salt transport, the solution is us/
uf = 1.5, and for m ! 0 the advective process is predominant to the seaward salt
flux. Using this solution, Hansen and Rattray (1966) were able to classify estuaries
with correlation of the parameters, (dS=S) and (us/uf), in the
Stratification-circulation Diagram with m (0 < m � 1) as parameter. The graphical
solution of this equation, forming the base of an analytical method of estuary
classification, has already been presented in figures of the Chap. 3, the defined
parametric values enabling four estuary types to be identified, which were closely
checked with observational data of natural estuaries.

11.8 Hansen and Rattray’s Velocity and Salinity Vertical
Profiles: Results and Validation

For practical applications of the vertical u-velocity and salinity profile solutions of
Hansen and Ratttray (1965) (Eqs. 11.104 and 11.111), describing the dynamical
steady-state of the central regime of the mixing zone of estuaries due to the river
discharge, the baroclinic pressure gradient and wind stress are obtained from
derivations of the stream current function, W = W(Z) Eq. (11.103). However, it
should be observed that the theoretical solution, u = u(Z), is only function of the
vertical coordinate (z, or Z); however, the salinity solution, S = S(x, Z) or S = S(x,
z), is also a function of the longitudinal coordinate, x, due to its dependence on the
dimensionless longitudinal coordinate, n = n(x). In these applications, because the
local depth is dependent on the longitudinal position, h = h(x), and the river dis-
charge velocity (uf) must usually be substituted by the vertical mean velocity in
water column (ua) at the transverse section in the longitudinal position x, the
theoretical velocity becomes indirectly dependent on the longitudinal position.
Thus, u = u(x, Z) or u = u(x, z).

In relation to the salinity, the theoretical mean value (S) used in the calculation
the stratification parameter, must be substituted by the corresponding value (Sa),
i.e., the time-mean value at the transverse section. Furthermore, as the velocity is
also dependent on the advective influence of the river velocity, it must be changed
to the corresponding mean value at the section (ua). Then, due to these simplifi-
cations, in practical applications, the analytical expressions of the theoretical
velocity and salinity profiles will be denoted by uc = uc(x, Z) and Sc = Sc(x, Z),
respectively, and their analytical expressions are:
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In these analytical formulae, the vertical Oz axis is oriented in the opposite
direction of the acceleration of gravity, and the dimensionless depth varies from
Z = 0 and Z = −1 at the surface and bottom, respectively. To obtain a detailed
depth discretization, intervals of |DZ| = 0.1 are adequate.

These solutions indicate that others geometric and physical quantities which
must be known are: longitudinal distance, x, the estuary depth, h, the longitudinal
density gradient, ∂q/∂x �Dq/Dx, salinities at the the estuary head, Shead, and
mouth, Smouth, the wind stress, sWx, and the mixing parameter, m, previously
determined by the Stratification-circulation diagram. Taking into account the
hypothesis of Hansen and Rattry’s theory the eddy coefficients Nz, Kz and Kx0, used
in the definitions of the dimensionless quantities n = n(x) and M, and the wind
stress (sWx) are considered free parameters, i.e., they must be conveniently adjusted
to validate theoretical profiles in comparison to those from observational data. It is
known that validation of analytical and numerical models for observational con-
ditions requires a data set of sufficient length to cover variations in tidal cycles, river
discharge and wind conditions.

There are several methods that can be used to establish the relative agreement
between theoretical and experimental results. One of these is the validation method
of the Relative Mean Absolute Error-RMAE (Walstra et al. 2001) and the Skill
proposed by Wilmott (1981) which was further improved by Warner et al. (2005).

The method of the Relative Mean Absolute Error-RMAE is formulated by:

RMAE ¼
V
!

m � V
!

c

���
���

D E

V
!

m

���
���

D E ; ð11:124Þ

where V
!

m and V
!

c are the field measured and the computed velocity vectors,
respectively, and the symbol 〈 〉 indicate time-mean values. This definition has
been particularly applied for comparison of current velocities, but it may also be
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used to scalar properties. A limited and preliminary qualification of the RMAE
ranges of this method indicate a variation between excellent (RMAE < 0.2) and bad
(RMAE > 1.0) validation results.

The Skill method is defined by the following relationship of observed data
(XObs), its time (or space) averaged value ðXObsÞ; and the corresponding theoretical
results (XModel):

Skill ¼ 1�
P jXModel � XObsj2

P ðjXModel � XObsj þ jXObs � XObsjÞ2
: ð11:125Þ

According to the definition, the Skill parameter varies between one (1) and zero
(0), indicating a perfect adjustment between calculated and observed values, or a
complete disagreement, respectively. The validation of theroretical results with this
parameter was applied by Andutta et al. (2006), using observational data series over
two tidal cycles to validate the u-velocity component and salinity profiles calculated
with a tridimensional numerical model applied to the Curimatú river estuary (Rio
Grande do Norte, Brazil).

To illustrate a practical exercise to validate the analytical simulation of the
u-velocity component and salinity profiles (Eqs. 11.122 and 11.123), the following
physical quantities, which were calculated from hourly observational data measured
in the Piaçaguera estuarine channel during three semi-diurnal tidal cycles (northern
region of the Santos-São Vicente Estuary, São Paulo, Brazil, Fig. 1.5), whose
time-mean values represent nearly-steady values are listed bellow:

(i) Mean values of velocity (ua � uf). salinity (Sa), and depth (h).
(ii) The mixing parameter, m, obtained from the Stratification-circulation

Diagram.
(iii) Mean salinities at the mouth and head (Smouth, Shead).
(iv) Longitudinal density gradient ∂q/∂x � Dq/Dx, adjusted to the best validated

theoretical result.

Table 11.1 Free parameters
Nz, Kz and KH0 and that
obtained from observational
data (*) used in the theoretical
simulation the steady-state
vertical salinity, Sc = Sc(x, Z),
and the u-velocity component,
uc = uc(x, Z), in the
Piaçaguera channel
(Santos-São Vicente Estuary,
São Paulo)

Free and experimental parameters Numerical values
*uf = ua 0.009 m s−1

*h 11.0 m
*m 0.85
* S ¼ Sa 26.5‰
*Smouth 33.0‰
*Shead 1.0‰
*Lx 20 � 103 m
*x 17 � 103 m

Nz 4.0 � 10−3 m2 s−1

Kz 1.5 � 10−4 m2 s−1

KH0 1.0 � 103 m2 s−1

sWx 2.0 � 10−2 Pa

(According to Miranda et al. 2012)
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Others physical quantities used were the mean depth, estuary length, distance of
the data sampling position to the estuary mouth, wind stress and the free parameters
Nz, Kz and KH0. The numerical values of these quantities are shown in Table 11.1.

Using the time-mean vertical profiles of salinity andthe u-velocity obtained with
the experimental data during three tidal cycles (tick profiles of Fig. 11.7), the
calculate stratification and circulation parameters were SP = 0.07 and CP = 11.4,

Fig. 11.7 Theoretical (dashed line) and observational (tick line) profiles of salinity (upper), and
u-velocity vertical (lower) validated with observational data with the Skill parameter.
Measurements made during three semi-diurnal neap tidal cycles in the Piaçaguera Channel
(Santos-São Vicente Estuary, São Paulo) (according to Miranda et al. 2012)
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respectively, and the estuary was classified as partially mixed and low stratified
(type 2a). The mixing parameter, m = 0.85, associated with these parameters indi-
cate that the diffusion and advection processes were responsible for 85 and 15 % to
the mixing, respectively.

The theoretical vertical profiles of the salinity and the u-velocity component in
comparison to the observational data are presented in the Fig. 11.7. In both profiles
the mean Skill value is 0.96 and 1.0, respectively.

The nearly steady-state salinity stratification and the vertical velocity
shear-stress, observed in these results were forced by the oscillatory motion gen-
erated by the tidal currents during the neap tidal cycle and a small contribution of
the river discharge (�0.01 m s−1); according to Miranda et al. (2012), these cur-
rents were almost the same intensity as those observed during the spring tidal
period. The depth of no-motion at Z = −0.45 (�−5 m) corresponds to a mean value
observed during three semi-diurnal neap-tidal cycles.

11.9 Salinity Intrusion

A steady-state theory on the salinity intrusion length (XC) in salt wedge estuaries
was presented in Chap. 9 (Eq. 9.72), based in classical theories and confirmed by
experimental results. It was shown that this length is directly proportional to the
reduced gravity times the square of the depth at the estuary mouth, and inversely
proportional to the square of the velocity generated by the river discharge.

Due to the great importance on salt intrusion investigations into estuaries,
experiments on these phenomena have been performed since the 1960 decade, in
laboratory experiments at Waterways Experiment Station (WES), Vicksburg, Miss.
(USA), and in the Delft Hydraulics Laboratory (DHL), Delft (Holland). The lab-
oratory results of the maximum and minimum salt intrusions forced by fresh water
discharge, tidal amplitude, mean water depth, roughness, and densities were further
compared with in situ measurements and published in the articles of Ippen and
Harleman (1961) and Rigter (1973).

In the Rigter’s article, experiments in a tidal salinity flume channel (101.5 m
long) are described, taking into account the tidal amplitude induced by sinusoidal
tides, mean-water depth, water input discharge and bottom roughness; the flume has
a vertical scale (1:64) to approximate physical characteristics of Rotterdam
Waterway (Holland). The intrusion length (Li) investigations in these experiments
were supposed to be dependent on eleven physical quantities. Several experiments
were investigated during which some properties were taken as constant, and others
were submitted to controlled variations. A detailed analysis of these experiments,
using the dimensional analysis approach may be found in the Rigter’s original
article.

Further investigations indicated that the following functional equation to cal-
culate the minimum saline intrusion length (Li) in a partially mixed estuary may be
used (Prandle 1985, 2004):
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Li ¼ d
H
k
f
½ðDqq ÞgH]1=2

û
gf

½ðDqq ÞgH]1=2
u

g; ð11:126Þ

where d and k are dimensionless coefficients, H is the channel depth, û is the tidal
velocity and u its mean-depth value. The validity of this equation has been com-
pared with observational data enabling its simplification and the following
expression was suggested:

Li ¼ d1
Dq
q

gH2

kû u
þ d2k: ð11:127Þ

In this equation d1 and d2 are non-dimensional numeric values, k ¼ ðgH)1=2TP

(tidal wave velocity times the tidal period TP), and the second term in the right hand
side (d2k) was introduced to allow for variations in the degree of mixing at the
estuary mouth. A least square fitting procedure was used to determine the constants
d1 and d2 values; in the Rotterdam Water Way the corresponding values were 0.187
and −0.006, respectively. Similar calculations in the WES tank produced values of
d1 = 0.134 and d2 = 0.026. Comparisons of observed and computed values for
intrusions lengths indicated excellent agreement between the in situ results and the
laboratory experiments.

Investigation on the saline intrusion length in an estuary located in the Southern
Brazilian coast (Santa Catarina, Brazil) was published by Döbereiner (1985, quoted
in Schettini (2002)). In this article, the hydraulic and sediment behavior of the
Itajaí-açu river estuary was investigated during low and high river discharges.
A synthesis on the Döbereiner’s results is summarized as follow: for low river
discharge (300 m3 s−1) the saline intrusion length (Li) was located at approximately
18 km landward from the estuary mouth, however, for river’s discharges higher
than 1000 m3 s−1 the salt water was completely removed to the nearshore turbidity
zone (NTZ).

Further studies by Schettini and Truccolo (1999) and Schettini (2002), based on
seasonal observational data of saline intrusion lengths (Li), and the associated river
discharges (Qf), were correlated by the following exponential relationship:

Li ¼ �10:72þ 32:69e�2:17�10�3Qf ;

with the root mean square error estimated in 0.7.

11.10 Secondary Circulation

The hypothesis of a longitudinal circulation laterally uniform should not be gen-
eralized to most natural estuaries, because as a tridimensional system its water
masses are also driven by the flow that is normal to the main along channel flow,
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usually known as secondary circulation. Thus, the composition of the longitudinal
and secondary flow generates along the estuarine channel a complex
tri-dimensional motion similar to a helical lateral flow.

In the decomposition of velocity measurements, it is usually possible to observe
the presence of v-velocity components, although with low intensity. For example,
in the velocity decomposition presented in Table 5.1 (Chap. 5), it is possible to
observe the presence of the secondary flows (v-velocity components).

The occurrence of secondary circulation and the associated transverse mixing
due to turbulent diffusion and advection in estuaries may be generated by the
interaction of the following influences (Pritchard 1956; Dyer 1977; Sumer and
Fischer 1977; Chant 2010):

• Topographic deflection due to natural curvatures along the channel and irreg-
ularities at the bottom and margins;

• Non-uniform lateral and vertical salinity (density) stratification generated by
mixing processes;

• Barotropic and baroclinic pressure gradients;
• Coriolis and centrifuge accelerations.

Formation of fronts may also be observed in estuarine channels, having been
generated by longitudinal and transverse motions. An analysis of these fronts has
been made in terms of density forced motions in laboratory and in situ experiments
by Nunes and Simpson (1985). The occurrence of this phenomenon may be visually
observed because convergence lines frontal zones acts as a filter, gathering organic
and inorganic detritus and debris.

The dynamical balance of the secondary circulation and the relative importance
of its terms in the equation of motion, have been investigated by Pritchard (1956),
Dyer (1973, 1977), Sumer and Fischer, 1977) and Ong et al. (1994) with in situ and
laboratory experiments. Sumer and Fischer (op. cit.), Nunes and Simpson (op. cit.),
Chant (2010) have provided evidence on the secondary circulation in laterally
stratified partially stratified and well-mixed estuaries. Following the theoretical
formulation of Nunes and Simpson (op. cit.) for an analytical solution of the sec-
ondary circulation, it is necessary to formulate some simplifying hypotheses:

• Steady-state bi-dimensional motion in the Oyz plane.
• Cross channel baroclinic pressure gradient force, ∂S/∂y = f(y) and ∂q/∂y = g

(y).
• Transverse density gradient is independent of the depth, ∂/∂z(∂q/∂y) = 0; and
• Uniform longitudinal and transverse sections (centrifugal accelerations are

disregarded).

As in the analytical solutions for calculating steady-state longitudinal circulation,
let us consider an estuary which, by hypothesis, has a constant depth (H0), as
indicated schematically in Fig. 11.8, and a known salinity (density) field. This
figure indicates the reference (Oyz) with the Oz axis origin at the free surface and
oriented in the acceleration gravity ð g!Þ direction, and schematically indicates the
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laterally non-homogeneous density field. Hence, according to the simplifying
hypotheses, the cross-channel baroclinic pressure gradient force is formulated by:

� 1
q
@p
@y

¼ g
@g
@y

� g
q
@q
@y

z: ð11:128Þ

As the transverse density gradient is independent of depth the baroclinic term on
the right hand side of Eq. (11.128) increases linearly with depth.

As the longitudinal motion will not be taken into account in this simple model,
the system of equations to be solved, associated with the linear equation of state of
seawater, q = q0(1 + bS), are expressed by:

g
@g
@y

� g
q
@q
@y

zþNz
@2v
@z2

¼ 0; ð11:129aÞ

@v
@y

þ @w
@z

¼ 0: ð11:129bÞ

The dynamical balance expressed by Eq. (11.129a) does not take into account
the dynamical balance between friction and the Coriolis acceleration, which has
been investigated by Chant (2010). However, according to the latitudinal estuary
position and intensity of the longitudinal and transverse motions, this effect may or
may not be disregarded. Examples of estuaries in which these conditions may be
found are presented in the articles of Dyer (1977) and Ong et al. (1994).

As the geometry of the cross-section, the salinity field and the turbulent kine-
matic eddy viscosity are known, this is a closed hydrodynamic system and the

Fig. 11.8 Transversal section and reference system for an analytical study of the steady-state
secondary circulation in a laterally non-homogeneous estuary
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boundary and integral boundary conditions warrant a unique solution. In the con-
tinuity equation v- and w-velocity components may be expressed in terms of the
current function, W = W(y, z), [W] = [L2T−1], and the velocity components may be
expressed by: v(y, z) ¼ � @w

@z and w(y, z) ¼ @w
@y : Manipulating and rewriting

Eq. (11.129a) in terms of the barotropic and baroclinic pressure gradients, and
using the linear equation of state of seawater, the general solution for the transverse
velocity is:

v(y, z) ¼ � @w
@z

¼ cSy
6

z3 þ agy

2
z2 þC1zþC2; ð11:130Þ

where the notations Sy ¼ @S/@y; gy ¼ @g=@y; and the c and a coefficients are
expressed by c ¼ bg/Nz , and a ¼ �g/Nz , and the integration constants C1 and C2,
with dimensions [C1] = [T−1] and [C2] = [LT−1], must be determined with the
following surface and bottom boundary conditions: wind stress (sWy) and the
maximum friction at the bottom:

qNz
@v
@z

jz¼0 ¼ sWy; ð11:131aÞ

and

vðy; zÞjz¼H0
¼ 0: ð11:131bÞ

Others solutions may be obtained simulating different bottom conditions as, for
example, a moderate (slippery) bottom friction:

qNz
@v
@z

jz¼H0
¼ sBy: ð11:132Þ

Applying the surface and boundary conditions (11.131a), (11.131b) the fol-
lowing values of the integration constants are obtained:

C1 ¼ sWx

qNz
; ð11:133aÞ

and

C2 ¼ � 1
6
cSyH3

0 þ
1
2
agyH

2
0: ð11:133bÞ

Combining these constants with the general solution (11.130) and simplifying
the resulting expression, the solution for the v-velocity component is:
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v(y, z) ¼ 1
6
cSyðz3 � H3

0Þþ
1
2
agyðz2 � H2

0Þþ
sWy

qNz
z, ð11:134aÞ

or in function of the non-dimensional depth Z,

v(y, Z) ¼ H3
0

6
cSyðZ3 � 1Þþ H2

0

2
agyðZ2 � 1Þþ sWyH0

qNz
Z: ð11:134bÞ

This solution isn’t in the most convenient formulation for practical applications,
because it contains the free surface slope (ηy) as an unknown, which may be
calculated with the imposition of an integral boundary condition, that turns the
transversal volume transport to zero:

ZZ

A
v(y, z)dydz ¼ 0; ð11:135aÞ

or

Zb

0

½
ZH0

0

v(y; z)dz]dy ¼ B
ZH0

0

v(y, z)dz ¼ 0; ð11:135bÞ

As the integrand v = v(y, z) is already known (Eq. 11.134a) the integration may
be concluded,

� 1
8
cSyH3

0 �
1
3
agyH

3
0 þ

sWy

2Nzq
H0 ¼ 0: ð11:136Þ

Solving this result for the unknown, ηy, and using the expressions a ¼ �g/Nz ,
and c ¼ bg/Nz, we have:

gy ¼
@g
@y

¼ � 3
8
bSyH0 � 3sWy

qgH0
; ð11:137aÞ

or, neglecting the wind stress (sWy = 0),

gy ¼
@g
@y

¼ � 3
8
H0

q0

@q
@y

¼ �0:375
H0

q0

@q
@y

: ð11:137bÞ

This result is similar to the longitudinal component of the free surface slope of
Eq. 10.19 (Chap. 10) with uf = 0 and sWx = 0, and the transverse slope of the free
surface is directly proportional to the corresponding density gradient, but with the
opposite signal (<0), because Ho > 0 and ∂q/∂y > 0. Thus, if ηy is known it may be
substitute into Eq. (11.134a). Simplifying the result and writing the solution in
terms of the non-dimensional depth and the transverse density gradient, it follows
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that the equation to calculate the v-velocity component according to (Nunes and
Simpson 1985) is:

v(y, Z) ¼ gH3
0

Az

@q
@y

ð0:167Z3 � 0:188Z2 þ 0:021Þ: ð11:138Þ

where qoNz = Az. This result indicates that the direction and intensity v-velocity
component is directly dependent on the local depth (H0) and the transverse density
gradient (∂q/∂y), and is inversely proportional to the vertical dynamical eddy
viscosity coefficient. Therefore, transverse intensity variations or orientation
changes in the density gradient may generate convergence or divergence of the
velocity field. When ∂q/∂y > 0, the steady-state free surface slope (Eq. 11.137b) is
negative (∂η/∂y < 0), and velocity of the secondary circulation in the surface is
positive and oriented in the direction of increasing density. If there is a change in
the density gradient (∂q/∂y < 0) at a given depth along the transverse section, the
secondary circulation has its direction inverted.

At the free surface (Z = 0), the solution (11.138) for the v-velocity component is
reduced to:

v(y, 0) ¼ 2:1� 10�2 gH
3
0

Az

@q
@y

: ð11:139Þ

Changes in the transverse density gradient, from ∂q/∂y > 0 to ∂q/∂y < 0 in the
well-mixed Conway estuary (North Wales, Scotch) were successfully used by
Nunes and Simpson (1985) to theoretically explain the visible accumulation of
organic and inorganic matter and debris along axial convergence lines.

The vertical velocity profile of the v-velocity component, calculated with
Eq. (11.138) is presented in Fig. 11.9a to exemplify the bilateral divergence of the
velocity field, and was used to calculate the ascending vertical velocity component
(w < 0). These profiles were calculated for different values of the transverse density
gradient, ∂q/∂y = 2.5 � 10−2 kg m−4 and ∂q/∂y = 1.5 � 10−2 kg m−4, in water
columns separated by a distance of 200 m. For the others quantities, the following
values were used: H0 = 10.0 m, Nz = 1.0 � 10−2 m2 s−1, q0 = 1005.0 kg m−3, and
Az � 10 kg m−1s−1.

Once the transverse vertical velocity profile has been calculated, the profile of
the vertical velocity component w = w(y, Z), generated by the convergence
(divergence) of the v-velocity field, may be calculated using the continuity equation
solved by finite increments,

w(y, Z) ¼ @w
@y

¼ �H0

Z1

0

Dv
Dy

dZ, ð11:140Þ

with the following boundary conditions: w(y, 0) = w(y, 1) = 0. The vertical
velocity profile, w = w(y, Z), calculated by finite increments is presented in
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Figure 11.9b, indicating a flow towards the bottom (w > 0). Comparing the mag-
nitudes of the v- and w-velocity components, we may observe that |w| 	 |v| and
that the highest value of w (5.5 � 10−4 m s−1) is at Z � 0.4.

Let us now apply the general solution (11.130) imposing the moderate bottom
boundary condition (Eq. 11.132) and the no-wind stress (sWx = 0) will remain for
the upper boundary condition. Let us assume, according to Prandle (1985), that the
vertical kinematic eddy viscosity coefficient is given by the relation Nz = kUTHo,
with the non-dimensional coefficient k equal to 2.5 � 10−3. With these boundary
conditions, C1 = 0 and

C2 ¼ 1
3
cSyH3

0 þ
1
2
agyH

2
0: ð11:141Þ

Substituting these values of the integration constants into the general solution
(11.130) and reducing it to the simplest analytical expression, we have the fol-
lowing solution, which is similar to (11.134a):

Fig. 11.9 Steady-state vertical v-velocity profiles (a) and w-velocity profiles (b) calculated with
Eqs. (11.138) and (11.140), respectively, to demonstrate the velocity field divergence (indicated
by the arrows) generating descending motion (w > 0)
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v(y, z) ¼ 1
6
cSyðz3 � 2H3

0Þþ
1
2
agyðz2 � H2

0Þ; ð11:142aÞ

or in function of the non-dimensional depth Z,

v(y, Z) ¼ H3
0

6
cSyðZ3 � 2Þþ H2

0

2
agyðZ2 � 1Þ: ð11:142bÞ

As noted previously, this solution isn’t in the most convenient formulation for
practical applications, because it contains the free surface slope (ηy) as an unknown,
which may be calculated with the imposition of the integral boundary condition
(11.135a), and the result is

@g
@y

¼ gy ¼
9
16

H0

q0

@q
@y

¼ 0:562
H0

q0

@q
@y

; ð11:143Þ

which is similar to the solution (11.137b), but with a different numeric coefficient.
Substituting this result into Eq. (11.142b), simplifying the result and introducing
the non-dimensional depth (Z = z/H0), an alternative expression to calculate the
transverse vertical velocity profile as a function of the density gradient is

v(y, Z) ¼ gH3
0

Az

@q
@y

ð0:167Z3 � 0:281Z2 þ 0:052Þ; ð11:144aÞ

or using the relation Nz = Az/q0 = kUTH0 (k = 2.5 � 10−3)

v(y, Z) ¼ gH2
0

kUT

1
q0

@q
@y

ð0:167Z3 � 0:281Z2 þ 0:052Þ: ð11:144bÞ

To close the circulation field the w-velocity component generated by the con-
vergence or divergence of the v = v(y, Z) component may be calculated.

Experimental and theoretical investigations of the convergence and divergence
of secondary circulation in well-mixed and laterally homogeneous estuaries may be
found article of Nunes and Simpson (1985).

The simple steady-state analytic model just described, don’t take into account
transverse bottom variations (∂H0/∂y 6¼ 0 or ∂h/∂y 6¼ 0), and has the lateral density
gradients as the main forcing mechanism to drive the secondary circulation and the
related axial convergences. Studies of the non-steady-state analytic model of lateral
flow convergences, arising from the interaction of tidal flow with the estuary
bathymetry are described by Li and Valle-Levinson (1999) and Valle-Levinson
et al. (2000). The models are based on the solution of the depth-averaged, first order
equations for momentum balance, forced by a single-frequency semidiurnal tide at
the estuary mouth. In this model, the energy dissipation is simulated by a linear
friction coefficient, j, with dimension of velocity [j] = [LT−1].
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Considering a channel with straight parallel boundaries, with the Ox axis
extended along the right estuary margin looking into the estuary, and the Oy axis
along the open boundary, and with a laterally variable depth distribution, the
depth-averaged first-order equation for momentum balance is:

@u
@t

¼ �g
@g
@x

� j
h
u: ð11:145aÞ

The second term on the right hand side was introduced to simulate the energy
dissipation by assuming a linear frictional dependence, which is directly and
inversely proportional to the velocity u and depth, h, respectively. To the hydro-
dynamic system closure, the continuity Eq. (7.66a, Chap. 7) is

h
@u
@x

þ @ðvh)
@y

þ @g
@t

¼ 0: ð11:145bÞ

The Equations (11.145a), (11.145b) are formally derived from the Navier-Stokes
equations by integrating these equations over a rectangular cross section, and are
similar to the one-dimensional formulation used by Blumberg (1975) in studies of
the wave propagation in a uniform channel.

For a single-frequency co-oscillating tide the solution for this equation system
can be expressed in terms of the complex exponential number, expressed by (Li and
Valle-Levinson 1999, and Valle-Levinson et al. 2000) as:

u ¼ Ueirt; v ¼ Veirt and g ¼ Aeirt: ð11:146Þ

In these formulations U and V are the complex amplitudes of the longitudinal
and the secondary circulation velocity (m s−1), and A is the amplitude (m) of the
complex tidal elevation, r is the tidal angular frequency (s−1), and i is the imaginary
number unit (

ffiffiffiffiffiffi�i
p

). Substituting (11.146) into (11.145a), (11.145b) yields:

irU ¼ �g
@A
@x

� j
h
U, ð11:147aÞ

and

irAþ h
@U
@x

þ @ðuV)
@y

¼ 0: ð11:147bÞ

Under the assumption that the co-oscillating tidal amplitude is known, and
imposing the following boundary conditions: (i) at the estuary head (x = L) the
velocity is U; and (ii) at the lateral side boundaries (y = 0, D), the velocity
(V) vanishes. Thus, applying these conditions to Eq. (11.147a) yields the solution
for the U-velocity component.
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U ¼ � g
irþ j

h

ð@A
@x

Þ: ð11:148Þ

In this equation, the tidal elevation amplitude (A) may be treated as independent
of the transverse direction (y), as demonstrated by Li (1996); Li and O’Donnell
(1997) and Li et al. (1998). This assumption led to a dramatic simplification of the
problem, and the solution of A may be expressed by (Li and Valle-Levinson 1999):

A ¼ g0
cos½xðx� LÞ�

cosðxLÞ ; ð11:149Þ

where η0 is the tidal amplitude. The longitudinal (U) and transverse (V) velocities
components, and the angular frequency (x) are calculated by,

U ¼ g
irþ j=h

g0x
cosð½xðx� L)]

sin[xðx� L)], ð11:150aÞ

V ¼ �A
h
firyþ

Zy

0

½ ghx2

ðirþ b=h)
�dyg; ð11:150bÞ

and

x2 ¼ irB

� RB

0
ð gh
irþb=hÞdy

: ð11:150cÞ

As pointed out by Li and Valle-Levinson (1999), the transverse velocity (V) is
insensitive to the transverse momentum balance, and may be obtained from the
continuity Eq. (11.145b).

This non-steady-state analytic solution was applied by Li and Valle-Levinson
(1999) and Valle-Levinson et al. (op. cit.) in two transects of the James river estuary
(Virginia, USA), and were compared with observational ADCP measurements. The
analytical model reproduced well the timing and location of the convergences in
agreement with the experimental results. The mechanisms which generates con-
vergences due to the laterally bottom variation, during flood and ebb conditions are
schematically presented in Fig. 11.10.

In addition to the cross-channel the baroclinic pressure gradient force and the
interaction of tidal flow with the estuary bathymetry, a detailed analysis of the
following mechanisms that can drive secondary flows have been presented by
Chant (2010): (i) Ekman forcing characterized by the balance between friction and
the Coriolis acceleration; (ii) flow curvature, which has long been recognized to
drive a helical flow normal to the stream-wise flow; and (iii) diffusive boundary
layers.

11.10 Secondary Circulation 435



References

Andutta, F. P.; Miranda, L. B., Castro, B. M. & Fontes, R. F. C. 2006. Numerical Simulation of the
Hydrodynamic in the Curimataú Estuary, RN Brazil. Oceanography and Global Changes,
SP-Brazil, pp. 545–558.

Bernardes, M.E.C. 2001. Circulação Estacionária e Estratificação de Sal em Canais Estuarinos
parcialmente Misturados. Dissertação de Mestrado. São Paulo, Instituto Oceanográfico,
Universidade de São Paulo. 202 p.

Bernardes, M.E.C. & Miranda, L.B. 2001. Circulação Estacionária e Estratificação de Sal em
Canais Estuarinos: Simulação com Modelos Analíticos. Rev. bras. oceanogr., 49(1/2):115–132.
(DOC 39).

Fig. 11.10 Mechanisms generating bottom induced convergences for flood and ebb conditions
are schematically represented. The upper and lower diagrams are looking into the estuary and
towards its mouth, respectively. The ellipticity of the tidal motion is greatly exaggerated to
illustrate the transverse flows. According to Valle-Levinson et al. (2000)

436 11 Circulation and Mixing in Steady-State …



Blumberg, A. F. 1975. A Numerical Investigation into the Dynamics of Estuarine Circulation.
Tech. Rept. Chesapeake Bay Institute, The Jonhs Hopkins University. n. 91.
110 p. + Apêndices.

Bowden, K. F. 1953. Note on Wind Drift in a Channel in the Presence of Tidal Currents. Proc.
R. Soc. Lond., A219, pp. 426–446.

Chant, R.J. 2010. Estuary secondary circulation. In: ed. Valle-Levinson A. Contemporary Issues in
Estuarine Physics. Cambridge University Press, pp. 100–124.

Döbereiner, C.E. 1985. Comportamento hidráulico e sedimentológico do estuário do rio Itajaí, SC.
Rio de Janeiro, Instituto Nacional de Pesquisas Hidroviárias (INPH), Relatório 700/03, 34
p. (quoted in Schettini (2002), p. 132).

Dyer, K. R. 1973. Estuaries: A Physical Introduction. London, Wiley. 140 p.
Dyer, K. R. 1977. Lateral Circulation Effects in Estuaries. Estuaries, Geophysics and the

Environment. Washington, D. C., National Academy of Sciences, pp. 22–29.
Fisher, J. S.; Ditmars, J. D. & Ippen, A. T. 1972. Mathematical Simulation of Tidal Time Averages

of Salinity and Velocity Profiles in Estuaries. Massachusetts Institute of Technology, Mass.,
Rept. MITSG 72–11, 157 p.

Hamilton, P. & Rattray Jr., M. 1978. Theoretical Aspects of Estuarine Circulation. In: Kjerfve B.
(ed.). Estuarine Transport Processes. Columbia, Univesity of South Carolina, pp. 37–73. (Belle
W. Baruch Library in Marine Science, 7).

Hamilton, A. D. & Wilson, R. E. 1980. Nontidal Circulation and Mixing Processes in the Lower
Potomac Estuary. Estuaries, 3(1):11–19.

Hansen, D. V. & Rattray Jr., M. 1965. Gravitational Circulation in Sraits and Estuaries. J. Mar.
Res., 23(1):102–122.

Hansen, D. V. & Rattray Jr., M. 1966. New Dimensions in Estuary Classification. Limnol.
Oceanogr., 11(3):319–325.

Ippen, A. T. & Harleman, D. R. F. 1961. One-Dimensional Analysis of Salinity Intrusion in
Estuaries. Committee on Tidal Hydraulics. Tech. Bull. Corps of Engineers U. S. Army, n. 5.
120 p.

Kjerfve, B.; Miranda, L. B. & Wolanski, E. 1991. Modelling Water Circulation in an Estuary and
Intertidal Salt Marsh System. Neth. J. Sea Res., 28(3):141–147.

Li, C.; O’Donnell, J.; Valle-Levinson, A.; Li, H.; Wong, K-C & Lwiza, K.M.M., 1998. In: Tide
induced mass-flux in shallow estuaries. in Ocean Waves Measurement and Analysis, (eds.) B.
L. Edge and J.M. Hemsley,. Am. Soc. Civ. Eng., Reston, VA. of, v. 2, pp. 1510–1524.

Li, C. 1996. Tidally induced residual circulation with cross shelf bathymetry. Ph D. Dissertation,
242 pp. Univ. of Conn Storrs.

Li, C. & Valle-Levinson A. 1999. A two-dimensional analytical model for a narrow estuary of
arbitrary lateral depth variation. The intra-tidal motion. J. Geophys. Res. 104, pp. 23,525–
23,543.

Li, C. & O’Donnell, J. 1997. Tidally driven residual circulation in shallow estuaries with lateral
depth variations. J. Geophys. Res. V. 102, pp. 27,915–27,1929.

Miranda, L. B.; Dalle Olle, E.; Bérgamo, A.L.; Silva, L.S. & Andutta, F.P. 2012. Circulation and
salt intrusion in the Piaçaguera Channel, Santos (SP). Braz. J. Oceanography, 60(1):11–23.

Nunes, R. A. & Simpson, J. H. 1985. Axial Convergence in a Well-Mixed Estuary. Estuar. Coast.
Shelf Sci., 20:637–649.

Ong, J. -E.; Gong, W. -K. & Uncles, R. J. 1994. Transverse Structure of Semi-diurnal Currents
Over a Cross-section of the Merbok Estuary, Malaysia. Estuar. Coast. Shelf Sci., 38:283–290.

Officer, C. B. 1976. Physical Oceanography of Estuaries (and Associated Coastal Waters). New
York, Wiley. 465 p.

Officer, C. B. 1977. Longitudinal Circulation and Mixing Relations in Estuaries. Estuaries,
Geophysics, and the Environment. Washington, D. C., National Academy of Sciences, pp. 13–
21.

Officer, C. B. 1978. Some Simplified Tidal Mixing and Circulation Flux Effects in Estuaries. In:
Kjerfve, B. (ed.). Estuarine Transport Processes. Columbia, University of South Carolina Press,
pp. 75–93. (The Belle W. Baruch Library in Marine Science, 7).

References 437



Prandle, D. 1985. On Salinity Regimes and the Vertical Structure of Residual Flows in Narrow
Tidal Estuaries. Estuar. Coast. Shelf Sci., 20:615–635.

Prandle, D. 2004. Saline Intrusion in Partially Mixed Estuaries. Est. Coast. Shelf Sci. (59):385–
397.

Pritchard, D. W. 1952a. Salinity Distribution and Circulation in the Chesapeake Bay Estuarine
System. J. Mar. Res., 11(1):106–123.

Pritchard, D. W. 1954. A Study of Salt Balance in a Coastal Plain Estuary. J. Mar. Res., 13
(1):133 144.

Pritchard, D. W. 1956. The Dynamic Structure of a Coastal Plain Estuary. J. Mar. Res., 15(1):33–
42.

Rattray Jr., M. & Hansen, D. V. 1962. A Similarity Solution for Circulation in an Estuary. J. Mar.
Res., 20(2):121–133.

Rigter, B.P. 1973. Minimum Length of Salt Intrusion in Estuaries. Proceedings of the America
Society of Civil Engineers. Journal of Hydraulics Division, 99 (HY9):1475–1496.

Schettini, C. A. F. & Truccolo. E. C. 1999. Dinâmica da Intrusão Salina no Estuário do Rio Itajaí-
açu. In: Congresso Latino Americano de Ciências do Mar, 8, Trujillo, Peru, Resumenes
ampliados, Tomo II, UNT/ALICMAR, p. 639–640.

Schettini, C. A. F. 2002. Caracterização Física do Estuário do Rio Itajaí-açu, SC. Revista Brasileira
Recursos Hídricos, 7(1):123–142.

Sumer, S.M & Fischer, H.B. 1977. Transverse Mixing in Partially Stratified Flow. Proceedings of
the American Society of Civil Engineers. Vol 103, No. HY6, pp. 587–600.

Valle-Levinson, A.; Li, C.; Wong, K-C & Lwiza, K.M.M. 2000. Convergence of lateral flow along
a coastal plain estuary. J. Geophys. Res., v. 105, NO C7: pp. 17045–17061.

Walstra, D., Sutherland, J., Hall, L., Blogg, H., and van Ormondt, M. (2001) Verification and
Comparison of Two Hydrodynamic Area Models for an Inlet System. Coastal Dynamics’ 01:
pp. 433–442. doi:10.1061/40566(260)44.

Wilmott, C. J. 1981. On the Validation Models. Physical Geography, 2 (2), pp. 184–194.
Warner, J.C.; Geyer,W.R.; Lerczak, J.A. 2005. Numerical modeling of an estuary: A comprehensive

skill assessment. J. Geophys. Res. V.110(CO5001), p. 1–13.
Wylie, C. R. 1960. Advanced Engineering Mathematics. New York, McGraw-Hill. 696 p.

438 11 Circulation and Mixing in Steady-State …

http://dx.doi.org/10.1061/40566(260)44


Chapter 12
Numerical Hydrodynamic Modelling

As estuaries are three dimensional and time dependent, numerical models have been
developed to overcome the simplifications inherent to the already studied analytical
models (simple geometry, steady-state) and calculate estuarine circulation and
salinity distributions. These models can be numerically integrated at selected grid
points spatially distributed in the system domain; the governing partial differential
equations use methods of finite-difference or finite-elements in curvilinear hori-
zontal coordinates or sigma vertical coordinates, respectively.

Numerical models have been developed and published since the end of the
1960s. This method involves replacing the differential partial equations with
equivalent finite difference algebraic equations, which are solved numerically.
Applications of the solutions of time-dependent numerical equations, allowing the
probable distribution of pollutants in coastal regions and estuaries to be determined,
have become increasingly more important with the increase in speed and memory
capacity of computers.

A technical review and critical appraisal of various aspects of numerical mod-
eling techniques of estuaries were made by a selection of eminent scientists and
engineers in the field, and these essays were supplemented by discussions at
technical conferences held during the course of the report’s preparation, edited by
George H. Ward Jr. and William H. Espey Jr., published in early 1971 (Ward and
Espey 1971). Topics discussed included one-, two-, and three-dimensional math-
ematical models for estuarine hydrodynamics, water quality models of chemical
constituents (nitrogen forms) and biological (phytoplankton and zooplankton), and
estuarine temperature field related to modeling thermal discharges, and principles
and applicability of physical models in estuarine analysis. This report also included
a review of solution techniques, with a detailed discussion of finite-difference
methods. Scientists who took part in these discussions were D.W. Pritchard, D.R.F.
Harleman, M. Rattray Jr, D.J. O’Connor, R.V. Thomann, J.E. Edinger, A.T. Ippen,
G.J., Paulik, J.J. Lendertsee, J.A. Harder.

© Springer Nature Singapore Pte Ltd. 2017
L. Bruner de Miranda et al., Fundamentals of Estuarine Physical Oceanography,
Ocean Engineering & Oceanography 8, DOI 10.1007/978-981-10-3041-3_12
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In the finite-difference method, the fluid domain is subdivided into arbitrary
elements, for instance, a triangular grid format, enabling better adjustment to the
geometric space of the fluid domain, even in complex boundary configurations.
Also, as noted by Lendertsee and Critton (1971) (Lendertsee et al. (1973)), many
different approximations can generally be made for each term of the partial equa-
tions to be solved, resulting in a wide selection of approximations. One approxi-
mation may be considered better than another, depending on the scope of the
investigation and the processes described by the equation for a particular situation.
Useful considerations in the design of numerical computation schemes may also be
found in Lendertsee’s article.

As with other numerical investigations of natural phenomena, using a numerical
model to simulate an estuarine system only works when the modeler fully under-
stands the model’s limitations and the physical processes involved, and conducts
adequate calibration and validation. The complexity of estuaries often requires a
grid that will result in a scientific credible, yet computationally feasible model. The
grid should provide a compromise between depicting the physical realities of the
estuarine system and the computational feasibility. As estuarine channels have
irregular shore-lines, islands and shipping channels, numerical models require very
small grid sizes to resolve these boundaries in detail; in these environments,
curvilinear grids provide a better representation (Ji 2008). Also, as previously seen,
estuarine circulation is driven by tides, river discharge, baroclinic pressure gradient
force and wind, forming a very complex tri-dimensional system. As such, speci-
fication of the open boundary conditions that link the estuarine water mass to the
river, coastal sea, bottom and atmosphere, is also required.

12.1 Briefy Outline on Numerical Models

The Princeton Ocean Model (POM) was originally developed at Princeton
University by G. Mellor and A.F. Blumberg in collaboration with Dybalysis of
Princeton (H.J. Herring and R.C. Patchen). The model incorporates the
Mellor-Yamada turbulence scheme developed in early 1970 by George Mellor and
Ted Yamada, widely used by oceanic and atmospheric models. At the time, early
computer ocean models such as the Bryan–Cox model, which was developed in the
late 1960s at the Geophysical Fluid Dynamics Laboratory and later became the
Modular Ocean Model (MOM), were mostly aimed at coarse-resolution simulations
of the large-scale ocean circulation. Thus, there was a need for a numerical model
that could handle high-resolution coastal ocean processes.

The Blumberg–Mellor model (which later became POM) included new features
such as free surface to handle tides, sigma vertical coordinates (i.e.,
terrain-following) to handle complex topographies and shallow regions, a curvi-
linear grid to better handle coastlines, and a turbulence scheme to handle vertical
mixing. In the early 1980s, the model was primarily used to simulate estuaries such
as the Hudson–Raritan Estuary (by Leo Oey) and the Delaware Bay (Boris
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Galperin). At this time, attempts had also been made to use a sigma coordinate
model for basin-scale problems, with the coarse resolution model of the Gulf of
Mexico (Blumberg and Mellor) and models of the Arctic Ocean (with the inclusion
of ice-ocean coupling by Lakshmi Kantha and Sirpa Hakkinen).

In the late 1990s and the 2000s, many other terrain-following community ocean
models were developed; some of their features can be traced back to those included
in the original POM, while other features are additional numerical and parame-
terization improvements. Several ocean models are direct descendents of POM, for
example, the commercial version of POM known as the Estuarine and Coastal
Ocean Model (ECOM), the Navy Coastal Ocean Model (NCOM) and the
Finite-Volume Coastal Ocean Model (FVCOM).

The Delft Hydraulics MOR module of Delft 3-D Flow fully integrates the effects
of waves, currents and sediment transport for morphological development (e.g. see
Nicholson et al. 1997). The module simulates the processes on the same curvilinear
grid system as used in the flow module, which allows a very efficient and accurate
representation of complex areas. This module is a multi-dimensional (2D or 3D)
hydrodynamic and transport simulation program which calculates the non-steady
state circulation and transport phenomena resulting from tides, river discharge and
meteorological forces due to wind-stress.

The Danish Hydraulic Institute (DHI) developed the version MIKE21 modeling
package. This advanced software employs state-of-the-art computer simulation
techniques to model hurricanes and associated storm surge and waves, and
hydrodynamic processes in coastal and estuarine waters, water quality, sediment
transport processes and morphological changes.

The Environmental Fluid Dynamics Code (EFDC) (Hamrick 1992) is a
public-domain modeling package for simulating three-dimensional (3D) flow,
transport and biogeochemical processes in rivers, lakes, estuaries, reservoirs, wet-
lands and coastal regions. This code was originally developed at the Virginia
Institute of Marine Sciences and is currently supported by the U.S. Environmental
Protection Agency (EPA). The EFDC model has been extensively tested and
documented in more than 100 modeling studies, and is presently being used by
universities, research organizations, governmental agencies, and consulting firms.
This advanced 3D time-variable model provides the capability of internally linking
hydrodynamics, water quality and eutrophication, sediment transport and toxic
chemical transport and fate sub-models in a single source code framework. It
includes four major modules: (i) hydrodynamics; (ii) water quality; (iii) sediment
transport; and, (iv) and toxics substances. The full integration of the four modules is
unique and eliminates the need for complex interfacing of multiple modes to
address different processes. Representative applications of the EFDC model may be
found in Ji (2008).

In this chapter, only simple problems related to the discretization of solutions of
the two-dimensional equation of motion will be treated, and some case studies are
presented to demonstrate how hydrodynamic modeling and validation can be
applied to practical problems of estuarine circulation, tide oscillations and salinity
distributions using the Delft 3-D Flow numeric model.

12.1 Briefy Outline on Numerical Models 441



12.2 The Finite Difference Method

The basic formulation for establishing an expression of a differential partial equa-
tion using the method of finite differences may be obtained from the Taylor series
expansion, as exemplified in Fig. 12.1, with a simple bi-dimensional (2D) rectan-
gular grid in the Oxy plane. In this example, the indexes i and j denote positions
along the Ox and Oy axes, respectively, and Dxi and Dyj, denote finite increments
along axes directions. To solve a third dimension, such as depth, the Oz axis normal
to the Oxy plane must also be specified, and the index k may be used to denote the
position (zk) and finite intervals (Dzk) along this axis. For a non-steady-state
problem, the discrete time intervals may be referred by the index n, for instance,
preferentially as a superscript of the symbol denoting the function or variable (fn).
Some basic principles will be presented to establish a formulation for finite dif-
ference equations for the dynamics of an estuary, following classical books and
articles of Lendertsee and Criton (1971), Lendertse et al. (1973), Blumberg (1975)
and Roache (1982).

As indicated in Fig. 12.1, the grid spacing in the directions i and j are indicated
by Dx = xi+1−xi,j and Dy = yi,j+1−yi,j and, for the Oz direction, Dz = zi,k+1−zi,k; for
convenience, the intervals Dx, Dy and Dz, which define the elemental volumes
(Dx . Dy . Dz), are considered constant, unless indicated otherwise. Discrete time
intervals will be indicated by Dt = tn+1 − tn.

The symbol f = f(x, y, z, t) (or in two dimensions f = f(x, y, t)) will be used to
denote a continuous function in space and time, with the corresponding discrete
functions, f = f(i, j, k, t) or f = f(i, j, t), in the tri- and bi-dimensional space; the
governing differential equations are replaced with finite difference equations that
operate only on the grid positions. If L, B and H are the estuary’s length, width and
depth, which are subdivided into the positions n, m and k, respectively, the fol-
lowing relations exist according to the discrete format: L/n = Dxi ! L ¼ Pi¼n

i¼1 Dxi

Fig. 12.1 Geometric scheme of an array of points in a Oxy rectangular grid
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B/m = Dyi ! B ¼ Pi¼m
i¼1 Dyi, and H/k = Dki ! H ¼ Pi¼k

i¼1 Dki, respectively. In the
same way, the discrete intervals of the time domain (T) are T/k = Dtj and
T ¼ Pk�1

j¼0 Dtj.
Consider a bi-dimensional space and a continuous function, f = f(x, y, t), with

continuous higher orders derivatives. The first order derivative, ∂f/∂x, may be
deduced by the Taylor series expansion. Then, considering a known continuous
function in the space point (i, j), we may write:

fiþ 1;j ¼ fi;j þ @f
@x

ji;jðxiþ 1;j � xi;jÞþ 1
2
@2f
@x2

ji;jðxiþ 1;j � xi;jÞ2 þ � � � þ SOT, ð12:1aÞ

or

fiþ 1;j ¼ fi;j þ @f
@x

ji;jDxþ
1
2
@2f
@x2

ðDx)2 þ � � � þ SOT, ð12:1bÞ

where SOT indicates “superior order terms”. Solving Eq. (12.1b) for the partial
derivative, ∂f/∂x, gives:

@f
@x

ji;j ¼
1
Dx

ðfiþ 1;j � fi;jÞ � 1
2
@2f
@x2

ji;jðDx)2 þ � � � þ SOT; ð12:2Þ

and the last expression may be written as:

@f
@x

ji;j ¼
1
Dx

ðfi;þ 1;j � fi;jÞþO(Dx), ð12:3Þ

where O(Dx) indicates an approximation error. This approximated expression of
this derivative (∂f/∂x) will be denoted by df/dx, or simplified to dxf; it is a forward
approximation, with the i index increasing in the Ox direction:

@f
@x

ji;j ¼ dxfji;j ¼
1
Dx

ðfiþ 1;j � fi;jÞþO(Dx): ð12:4Þ

The finite difference equations are generally classified according to the lower
power of truncation. In Eq. (12.4) there is a first order error, and the equation is
named a first order equation. Of course, second and third order approximations are
better than first order approximations.

With an analogous procedure, but expanding the function fi,j backwards in order
to obtain the expression for fi−1,j, we have another finite difference approximation
equivalent to (12.4). In this case, the first order approximation is given by:

@f
@x

ji;j ¼ dxfji;j ¼
1
Dx

ðfi;j � fi�1;jÞþO(Dx): ð12:5Þ
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The known central finite difference is obtained by subtracting the backward from
the forward expansion; considering for these expressions the third order approxi-
mation which is expressed by:

fiþ 1;j ¼ fi;j þ @f
@x

ji;jDxþ
1
2
@2f
@x2

ji;jðDx)2 þ
1
6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT, ð12:6Þ

and

fi�1;j ¼ fi;j � @f
@x

ji;jDx�
1
2
@2f
@x2

ji;jðDx)2 �
1
6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT: ð12:7Þ

Subtracting (12.7) from (12.6) yields:

fiþ 1;j � fi�1;j ¼ 2
@f
@x

ji;jDxþ
1
3
@3f
@x3

ji;jðDx)3 þ � � � þ SOT: ð12:8Þ

and solving the last expression for ∂f/∂x,

@f
@x

ji:j ¼
1
2
ðfiþ 1;j � fi�1;jÞDx� 1

6
@3f
@x3

ji;jðDx)3 þ � � � þ SOT, ð12:9aÞ

and using the notation dxf,

dxfji;j ¼
1
2
ðfiþ 1;j � fi�1;jÞDxþO(Dx2Þ: ð12:9bÞ

From this last expression, it follows that the second order approximation of the
partial derivative ∂f/∂x (dxf), using the central difference approach, is calculated by:

df
dx

ji;j ¼ dxfji;j ¼
1

2Dx
ðfiþ 1;j � fi�1;jÞ: ð12:10Þ

Analogous expressions follow immediately for derivations in relation to the
independent variables y and t. Thus, second order central finite differences for the
derivations df/dy and df/dt, for example, are calculated by,

df
dy

ji;j ¼ dyfji;j ¼
1

2Dy
ðfi;jþ 1 � fi;j�1Þ; ð12:11Þ

and

df
dt
jni;j ¼ dtfjni;j ¼

1
2Dt

ðfnþ 1
i;j � fn�1

i;j Þ; ð12:12Þ

where Dt ¼ dt ¼ ðtnþ 1 � tn�1Þ is a constant time interval.
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Let us now determine the second order derivative, d2f/dx2 = d2xf, by central finite
differences. For this purpose, the summation of expressions (12.6) and (12.7) is

fiþ 1;j þ fi�1;j ¼ 2fi;j þ @2f
@x2

ji;jðDxÞ2 þ
1
12

@4f
@x4

ji;jðDxÞ3 þ � � � þ SOT; ð12:13Þ

Solving this equation for d2xf (∂
2f/∂x2)

d2xfji;j ¼
ðfiþ 1;j þ fi�1;j � 2fi;jÞ

ðDx)2 þO[(Dx)2�; ð12:14Þ

or

d2xfji;j ¼
ðfiþ 1;j þ fi�1;j � 2fi;jÞ

ðDx)2 : ð12:15Þ

As an example of the property application of the operator df/dx (dxf), let us make
the deduction of the expression (12.15), starting with an approximation of the first
derivative of Eq. (12.10), and rewriting it in terms of the half interval Dx (Dx/2),

df
dx

ji;j ¼
ðfiþ 1

2;j
� f

i�1
2;j
Þ

Dx
: ð12:16Þ

Taking into account that d2f/d2x = (d/dx(df/dx)) we have,

d2f

dx2
ji;j ¼

½fiþ 1;j � fi;j � ðfi;j � fi�1;jÞ�
ðDxÞ2 ; ð2:17aÞ

then

d2xfji;j ¼
ðfiþ 1;j þ fi�1:j � 2fi;jÞ

ðDxÞ2 ; ð12:17bÞ

which is equivalent to Eq. (12.15).
As another example, let us calculate the approximation by second order finite

differences of the second order derivative of f = f(x, y, t) with two spatial variables,
i.e., d2f/dxdy. The expression of this derivative may be easily deduced if we
observe that,

d2f
dxdy

¼ d
dx

ðdf
dy

Þ: ð12:18Þ
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Applying a similar procedure to this expression, as used for Eq. (12.10),

d2f
dydx

ji;j ¼
d
dy

½ðfiþ 1;j � fi�1;jÞ
2Dx

�; ð12:19Þ

and

d2f
dydx

ji;j ¼
½fiþ 1;jþ 1 � fi�1;jþ 1 � ðfiþ 1;j�1 � fi�1;j�1Þ�

2DxDy
; ð12:20aÞ

or

d2f
dydx

ji;j ¼
½fiþ 1;jþ 1 � fiþ 1;j�1 � fi�1;jþ 1 þ fi�1;j�1Þ�

2DxDy
: ð12:20bÞ

The second order derivative (12.20b) in the x and y coordinates has a truncation
error indicated generically by O[(Dx)2 + (Dy)2]. Also, it should be noted that the
operator, d2f/dxdy, obeys the same rules as the derivation of a continuous function
and, in relation to the mixed derivatives used above, holds the identity,
d2f/dxdy = d2f/dydx.

Finite differences of partial derivatives, such as those presented above, may be
combined in order to obtain an expression of physical-mathematical laws, for
example, the second-order partial differential of the Laplace equation which, in the
two-dimension scalar form, w = w(x, y), is given by,

@2w
@x2

þ @2w
@y2

¼ 0: ð12:21Þ

Combining the developed expression (12.20b) with second order derivatives, we
may write:

d2w

dx2
þ d2w

dy2
¼ 1

ðDxÞ2 ðwiþ 1;j þwi�1;j � 2wi;jÞþ
1

ðDyÞ2 ðwi;jþ 1 þwi;j�1 � 2wi;jÞ ¼ 0;

ð12:22aÞ

or

wiþ 1;j þwi�1;j þ b2ðwi;jþ 1 þwi;j�1Þ � 2ð1þ b2Þwi;j ¼ 0; ð12:22bÞ

where b = Dx/Dy is the characteristic ratio of the grid spacing in the Ox and Oy
directions, respectively. This equation is usually referred to as the five point
approximation of the Laplace equation. In the condition when Dx = Dy, it follows
that the expression for wi,j is:
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wi;j ¼
1
4
ðwiþ 1;j þwi�1;j þwi;jþ 1 þwi;j�1Þ; ð12:23Þ

which shows that in the five point approximation for the Laplace equation the
unknown, wi.j is calculated by its mean value at four neighboring points.

In the following example, let us consider a differential equation (11.24) repre-
senting a linear model which governs the space-time variation of a property defined
in a one-dimensional space f = f(x, t);

@f
@t

þ u
@f
@x

� N
@2f
@x2

¼ 0: ð12:24Þ

If f = f(x, t) is the u-velocity and N the kinematic eddy viscosity coefficient
[N] = [L2T−1], this equation represents the one-dimensional equation of motion (or
momentum equilibrium). The second order approximation of the finite difference in
space (x) and time (t) is written as:

1
2Dt

ðfnþ 1
i � fn�1

i Þþ 1
2Dx

ðufniþ 1 � u fni�1Þ �
N

ðDx)2 ðf
n
iþ 1 þ fni�1 � 2fni Þ ¼ 0:

ð12:25Þ

It should be noted that this equation may be explicitly solved to the unknown
ðfnþ 1

i Þ, taking into account the previous known values in space and time. However,
for N > 0 and Dt > 0, the solution may be numerically unstable, and random
solutions may be generated without any relation to the differential solution. This
clearly indicates the difference between an algebraic finite difference expression,
which is mathematically correct, and the desirable solution to the differential
equation (Roache 1982).

If, for instance, instead of using central differences for all independent variables,
the finite difference of the partial differential (12.24) is calculated by the forward
finite difference scheme, first and second order numerical approximations will be
obtained for time and space, respectively,

ðf
nþ 1
i � fni Þ

Dt
þ ðufniþ 1 � u fni�1Þ

2Dx
� N ðfniþ 1 þ fni�1 � 2fni Þ

ðDx)2 ¼ 0: ð12:26Þ

According to Roche (op. cit.), at least for some conditions of the independent
variables (t, x and intervals Dt, Dx), and for the dependent variables, u and N, this
solution becomes stable.

In applying the finite-difference scheme to the equation of motion in the Eulerian
formulation, which isn’t a non-linear equation, care must be taken in the formu-
lation. For example, if the term of the advective acceleration is formulated by the
central finite differences scheme, that is,
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u
@u
@x

¼ udxu ¼ 1
2Dx

unþ 1
i ðuniþ 1 � uni�1Þ; ð12:27Þ

this approximation is not satisfactory, because the von Neumann condition will not
be satisfied for any fixed value of the ratio Dt/Dx, unless for the trivial solution
u = 0. This problem may be solved with the forward and backward finite difference
scheme when u < 0 or u � 0, respectively, using the expression of Richtmeyer
and Morton (1967),

ðunþ 1
i Þ½ 1

Dx
ðuniþ 1 � uni Þ�; ð12:28Þ

where unþ 1
i \0 or unþ 1

i � 0, respectively. Similar expressions may be written for
the remaining non-linear terms of the advective acceleration, or other terms of any
non-linear equation.

Other relations may be obtained from the Taylor’s expansion series, for instance,
adding Eqs. (12.6) and (12.7), we have the following second order approximation:

2fi;j ¼ fiþ 1;j þ fi�1;j þO(Dx)2; ð12:29aÞ

or

fi;j ¼ ðfiþ 1;j þ fi�1;jÞ
2

þO(Dx)2: ð12:29bÞ

If expansions are made in relation to the time variable to investigate the
non-steady-state characteristics of the function f = f(x, y, t), it follows that the
algebraic finite difference approximation is:

fn
i
¼ ðfnþ 1

i þ fn�1
i Þ

2
þO(Dt)2: ð12:30Þ

First order approximations in the time domain may also be taken from the
previous series expansions (12.6 and 12.7), and written as:

fni�1 ¼ fni þO(Dt), ð12:31aÞ

and

fnþ 1
i ¼ fni þO(Dt): ð12:31bÞ

Linearization of the terms of the motion equation (12.24) may also be achieved
from diagonal mean values, yielding:
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fni ¼
1
2
ðfn�1

iþ 1 þ fnþ 1
i�1 ÞþO(Dt), ð12:32aÞ

and

fni�2 ¼
1
2
ðfnþ 1

i�1 þ fn�1
i�3 ÞþO(Dt), ð12:32bÞ

where i = 2, 3, 4, … and n = 1, 2, 3, ….

12.3 Explicit and Implicit Schemes

The numerical schemes for the analytical solution to an equation of finite differ-
ences for a partial differential equation are classified as explicit and implicit. The
difference between these methods will be shown using the particular second order
differential equation (12.24), which represents a one-dimensional space, simulating
the spatial and temporal variations of the property f = f(x, t). This equation has
already been solved by forward and central finite differences and, without loss of
generality, let us assume that to simplify the mathematical treatment, the middle
term may be disregarded (u∂f/∂x = 0). Then, the equation is approximated by finite
differences as,

1
Dt

ðfnþ 1
i � fni Þ ¼

N
ðDx)2 ðf

n
iþ 1 þ fni�1 � 2fni Þ; ð12:33Þ

where i = 1, 2, … I − 1 and n = 0, 1, 2, … I. The boundary and initial conditions
for this equation may be established as,

fn0 ¼ fnI ¼ 0; for n ¼ 0; 1; 2; . . . I� 1; ð12:34aÞ

and

f0i ¼ uðiDxÞ; for i ¼ 0; 1; 2; . . . I: ð12:34bÞ

Then, solving Eq. (12.33) explicitly for fnþ 1
i ; we have:

fnþ 1
i ¼ fni þ ½N(Dt)ðDx)2 �ðf

n
iþ 1 þ fni�1 � 2fni Þ; ð12:35Þ

which may be solved recursively for the determination of all values of fni for
0 � i � I and n � 0. This is named an explicit scheme and one step solution,
meaning that all values of the second member are known and only one calculation
is required to reach the next time step; thus, the solution progresses, and the values
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fnþ 1
iþ 1 do not appear in the second equation member. It is also named two-time-steps
because only two instants of time are necessary to calculate the property value, i.e.,
to calculate the property at the time instant n + 1, it is only necessary to know its
value at t = n. As previously stated, the approximation of this equation is at first and
second order for time and space, respectively {O[Dt,(Dx)2]}; further details related
to the stability of this solution may be found in Richtmyer and Morton (1967) and
Roache (1982).

At this stage, we should mention that although the solution (12.25) centered in
space and time has an approximation order of {O[(Dt)2, (Dx)2]}, it is not acceptable
because it is unstable for any value of the coefficient N and for t > 0. However, if
N = 0 the solution will have stable characteristics and this method is frequently
known as leapfrog; the numerical solution of fnþ 1

i under this simplification is:

fnþ 1
i ¼ fn�1

i � u
Dt
Dx

ðfniþ 1 � fni�1Þ: ð12:36Þ

This solution has second order approximations for space and time and is explicit
with one step. Its solution requires three time instants to be known because values at
times n and n − 1 are necessary to calculate the value of the next time step (n + 1).
Under the same initial and boundary conditions as indicated in (12.34a, b), it
follows from the above solution that the new value of fnþ 1

i is calculated from the
known value fn�1

i minus the last term on the right hand side of Eq. (12.36),
skipping over the value in the time instant n ðfni Þ; this procedure justifies the name,
leapfrog, given to this calculation scheme. At this point, we should be reminded that
the numeric solution (12.36) is the solution to a partial differential equation and an
advective equation when f(x, t) = u(x, t) is a velocity component. An initial con-
dition of this equation may be expressed by f = f(x,0) or f0i and its solution using
the finite difference scheme was demonstrated by Roache (op. cit.).

The presented method is explicit because, as we have seen, it is only necessary to
know the values of f = f(x.t) at time instants t = n, n − 1, n – 2 …, to advance the
computation for the new time n + 1. However, we should note the stability criteria
of Richtmyer and Morton (op. cit.), which indicates that

2N[
Dt

ðDx)2� � 1; ð12:37Þ

i.e., if the value chosen for Dx in the solution is too small, the time step Dt, will also
be small, increasing the computational cycles required to satisfactorily finish the
problem, due to the above relationship between (Dt) and the square (Dx)2.

The implicit method uses values of the spatial derivatives in advanced time
steps, which means that the solution needs a system with (n + 1) equations to
advance the data processing to the next time step. To exemplify this method, let us
start with Eq. (12.24), writing its first two terms on the left hand side with forward
time steps (Dt),
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ðfnþ 1
i � fni Þ

Dt
¼ u

df
dx

: ð12:38Þ

Calculating the derivative of the right hand side by central differences, and
rearranging its terms, this equation is written as:

fnþ 1
i ¼ fni �

uDt
2Dx

ðfiþ 1 � fi�1Þ; ð12:39Þ

and, with an analogous procedure for the non-linear term of Eq. 12.24, and solving
for fnþ 1

i , the result is:

fnþ 1
i ¼ fni þ

NDt

ðDx)2 ðfiþ 1 þ fi�1 � 2fiÞ: ð12:40Þ

If the spatial derivations in Eqs. (12.39) and (12.40) were calculated in the time
instant, n, this method would be explicit. However, if these derivatives were cal-
culated in the time step n + 1, the calculation scheme would be completely implicit.
And, as consequence, expressions (12.39) and (12.40) are calculated by:

ðfnþ 1
i � fni Þ

Dt
¼ u

2Dx
ðfnþ 1

iþ 1 � fnþ 1
i�1 Þ; ð12:41Þ

and

ðfnþ 1
i � fni Þ

Dt
¼ N

ðDx)2 ðf
nþ 1
iþ 1 þ fnþ 1

i�1 �2fnþ 1
i Þ; ð12:42Þ

respectively. These solutions have an estimated error of the order O[Dt,(Dx)2],
however, as indicated in several investigations, this method has advantage in
relation to its stability. The determination of the property, f, in a generic time step,
fnþ 1
i , requires the simultaneous solution of a number of linear algebraic equations,
with M indicating the net knots not specified by known boundary conditions.

For a generalization of the implicit and explicit schemes introduced above, let us
introduce the following notation for a single variable function, generically defined
by f = f(x), to the central finite difference dfi or (df)i, then:

dfi ¼ ðdf)i ¼ f[(iþ 1=2ÞDx� f(i� 1=2ÞDx�; ð12:43Þ

where the index (i) is an integer value. With this notation, the symbols d2fi or (d
2f)i

indicate the following expressions:

d2fi ¼ ðd2f)i ¼ f[(iþ 1ÞDx� f(iDx]� ½f(iDx)� f(i� 1ÞDx)], ð12:44aÞ
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or

d2fi ¼ ðd2f)i ¼ f[(iþ 1ÞDxþ f(i� 1ÞDxÞ� � 2f(iDx)]: ð12:44bÞ

Once the above notation is introduced, lets us consider the following system:

ðfnþ 1
i � fni Þ

Dt
¼ N

Dt(Dx)2
½hðd2fÞnþ 1

i þð1� hÞðd2fÞni �; ð12:45Þ

where h is a real number varying in the interval 0 � h � 1. If h = 0 this algebraic
system becomes explicit, as previously indicated (Eq. 12.33). Each equation of this
system furnishes an unknown ðfnþ 1

i Þ in terms of the quantities ðfni Þ. If h 6¼ 0 it is
necessary to simultaneously solve a set of linear equations to calculate the unknown
in the next time step ðfnþ 1

i Þ and, as previously seen, the system is implicit.
The simultaneous solution of the linear equations of an implicit system is not as

easily solved as an explicit system of equations, because its solution is obtained
iteratively. To illustrate the solution of an implicit system, let us present an example
of the implicit system solution from the Roache (1982), starting with Eq. (12.46)
under the assumption that the initial and boundary conditions are known, i.e., the
n + 1 values of f1 and fI. Then the equation for a generic knot may be written as:

fnþ 1
i�1 þ a fnþ 1

i þ cfnþ 1
iþ 1 ¼ b, ð12:46Þ

where a ¼ 2Dx
uDt, c = −1 and b ¼ �a fni . According to the boundary conditions, the

value of fn1 is known; thus, this equation may be solved to i = 2 and it is possible to
calculate the value of fnþ 1

3 as a function of f1 and f2,

fnþ 1
3 ¼ fðf1; f2Þ; ð12:47Þ

continuing to i = 3, it follows that:

fnþ 1
4 ¼ fðf2; f3Þ; ð12:48Þ

which combined with the functional relation (12.47) yields,

fnþ 1
4 ¼ fðf1; f2Þ: ð12:49Þ

Progressing further with this procedure, for i = I − 2, we have

fnþ 1
I�1 ¼ fðfI�3; fI�2Þ ¼ fðf1; f2Þ; ð12:50Þ
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and finally for i = I − 1 the result is:

fnþ 1
I ¼ fðfI�2; fI�1Þ ¼ fðf1; f2Þ: ð12:51Þ

Thus, as the boundary conditions (f1; fIÞ are known, the last Eq. (12.51) may be
solved for fnþ 1

2 : Subsequently, with a second calculation of Eq. (12.46), the final
results may be obtained. This procedure has only been described to illustrate the
sequence for obtaining the solution; however, it is subject to the influence of
truncation errors, which may be overcome with the utilization of the triangular
algorithmic to simultaneously solve a system of linear equations; this algorithmic is
named as such because the matrix used to solve the system of equations,

A½ � f½ � ¼ B½ �; ð12:52Þ

which must be inverted, is a diagonal matrix, i.e., its elements are only different
from zero in the principal diagonal and at the two adjacent diagonals, and the others
elements are null. A diagonal matrix has an easy solution, and a FORTRAN
computational subroutine is presented in Roache’s book.

12.4 The Volume Method of Finite Difference

As an example of formulating a solution to a hydrodynamic system of equations
using finite difference for this method, let us initially consider the one-dimensional
mass conservation equation (Eq. 7.92a, Chap. 7):

@ðuA)
@x

þ @A
@t

¼ 0; or
@ðuA)
@x

þB
@h
@t

¼ 0; ð12:53Þ

where A is the cross section area, u is the mean u-velocity component in the
transverse section A, B is the width of the estuarine channel, which is assumed to be
uniform (B = cte), and h is a reference level (horizontal datum). Thus, the product
uA = Q is the volume transport [uA] = [Q] = [L3T−1] through the cross section
area A. From this equation, it follows that the quantities Q = Q(x, t) and u = u(x, t)
may be considered as unknowns if the geometric characteristics of the system are
known.

Figure 12.2 schematically presents the spatial-temporal variations of the free
surface height (a), the transverse section A and width B (b), and the bi-dimensional
space-time (c) subdivided into Dx and Dt intervals. Let us also consider a
well-mixed estuary (type 1 or C), and a volume transport (uA) crossing a control
transverse section (i) generated by the tidal oscillation, and thus, forced by the
barotropic pressure gradient force.

Indicating by L the estuary mixing zone (MZ) length, which is subdivided in
I − 1 regular space intervals, the number of knots in the longitudinal direction is
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equal to I (i = 1,2,3,…, I), the Dx length interval is equal to the ratio L/(I − 1), and
the sub-volume of each cell is the cross-section area (A) times (Dx).

According to what we have already seen, the partial differential equation (12.53)
may be approximated by finite differences with different orders. In this application,
the first order approximation, O(Dx, Dt), will be chosen for simplicity. Then,

ðQn
iþ 1 � Qn

i Þ
Dx

þ Bn
i ðhnþ 1

i � hni Þ
Dt

¼ 0; ð12:54aÞ

or

ðQn
iþ 1 � Qn

i Þ
Dx

¼ �Bn
i ðhnþ 1

i � hni Þ
Dt

; ð12:54bÞ

with i = 1, 2, 3, …, I − 1 and n = 0, 1, 2, …. As the right hand side of
Eq. (12.54b) contains the temporal variable, which is a function of known data, the
initial condition of the problem will be imposed naturally. Let us assume that the
longitudinal coordinate, Ox, is oriented seaward, and its origin (x = 0) is located at
the estuary head, which is the transitional zone of the tidal river zone (TRZ) and
mixing zone (MZ). Then, we have the following boundary condition:

Fig. 12.2 a The schematic representation of the tide oscillation h = h(i). b The transverse section
characteristics (A), and c The space-time showing the grid Dx versus Dt of the finite difference
approximation of the continuity equation (after McDowell and O’Connor 1977)
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Qn
i
¼ Qf ; ð12:55Þ

where Qf is the river discharge, which is known and constant.
Under the assumption that the stability conditions are satisfied and solving

Eq. (12.54a) explicitly for the quantity Qn
iþ 1, which is associated with the river

discharge, it follows that the expression to calculate the volume transport across any
transverse section is:

Qn
iþ 1

¼ Qn
i �

Dx
Dt

Bn
i ðhnþ 1

i � hni Þ: ð12:56Þ

This result, with dimension [L3T−1], indicates that the volume transport may be
calculated at any instant of time (n) if the free-surface elevation and the estuary
width are known. In the next along channel time step i = 1,

Qn
2 ¼ Qf �

Dx
Dt

Bn
1ðhnþ 1

1 � hn1Þ: ð12:57Þ

If, in this equation, hnþ 1
1 � hn1, i.e., for i = 1 the time variation of h may be

disregarded, it follows that Qn
2 ¼ Qf, and the tidal influence may be disregarded in

the sub-volume 2. Otherwise, the difference hnþ 1
1 � hn1 may be positive (>0) or

negative (<0), indicating an ebb or a flood tide condition.
Continuing to the next volume (i = 2),

Qn
3 ¼ Qf �

Dx
Dt

Bn
2ðhnþ 1

2 � hn2Þ; ð12:58Þ

and the volume transport in the next sub-volume (3) may be calculated at any time.
The second term on the right hand side may be positive or negative according to
hnþ 1
2 [ hn2 or hnþ 1

2 \hn2, respectively, indicating the ebb or flood tide and will be
subtracted or added to the fresh water discharge Qf.

As this iterative process must proceed to the last sub-volume (i = I − 1), it
follows that,

Qn
I ¼ Qf �

Dx
Dt

Bn
1�1ðhnþ 1

I�1 � hnI�1Þ: ð12:59Þ

Now, taking into account that Qn
iþ 1 ¼ ðAu)nnþ 1, it follows immediately from the

calculated volume transport that the mean value of the u-velocity component is
calculated by:

uniþ 1 ¼
Qn

iþ 1

An
iþ 1

: ð12:60Þ
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The finished iterative process for i = 1, 2, 3, … I − 1 corresponds to the com-
putation along the longitudinal axis, and in turn, a similar procedure must be
applied in the time domain of interest, i.e., for n = 0, 1, 2,…, over one or more tidal
cycles.

This method is named the volume method, which is justified because the second
term on the right hand side of Eq. (12.56) generates volumes per time unit. In
practice, the variable h must be known at regular distances intervals (Dx).
According to McDowell and O’Connors (1977), this quantity must be known with
an accuracy greater than 10−2 m, and the numerical solution must be validated with
experimental results.

12.5 A Simple Unidimensional Numeric Model

12.5.1 Explicit Solution

Under the assumption of a well-mixed estuary, let us formulate the main hydro-
dynamic processes that characterize a one-dimensional estuary using the explicit
method of finite differences. The starting hydrodynamic equations are simplified
expressions of the equations of motion and continuity, which were used in the
development of a mathematical model for prediction of unsteady salinity intrusion
in estuaries by Thatcher and Harleman (1972):

@u
@t

þ @ðuu)
@x

þ g
@h
@x

þ gujuj
C2
yRH

¼ 0; ð12:61aÞ

and

@ðuA)
@x

þB
@h
@t

¼ 0; ð12:61bÞ

where Cy and RH � Ho are the Chézy coefficient and the hydraulic radius,
respectively, as defined in Chap. 8. These equations indicate that the local and
advective accelerations, plus the barotropic gradient, are in balance with the fric-
tional force. These equations will be numerically integrated to calculate the field of
motion, u = u(x, t) or uni , and the elevations of the free surface, h = h(x, t) or hni ,
forced by the tidal oscillation.

As in the preceding application, the plane x-t is subdivided into integration cells
Dx and Dt. The longitudinal number of knots is equal to the ratio L/(I − 1), with I
denoting the numbers of points in the longitudinal direction. As before, the
sub-volumes are equal to A. Dx, and the schemes in Fig. 12.3 indicate the
spatial-temporal grid (a), where the volume transport and velocity will be calcu-
lated, and (b) the longitudinal positions where the velocity and volume transports
will be alternatively calculated.
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In Fig. 12.3a the cell structure and the free surface heights hni and hniþ 1, are
defined at the knots localized in the cell center, and in Fig. 12.3b the u-velocity
components and the volume transport (uA) are calculated at the left and right cell’s
limits indicated by the longitudinal positions o and x, respectively, for example:
uniþ 1=2 and uni�1=2, or, Q

n
iþ 1=2 (uAn

iþ 1=2), and Qn
i�1=2 or (uAn

i�1=2) are calculate for

i = 0, 1, 2, … I − 1.
The formulations using the finite difference scheme of Eqs. (12.61a, b) are

written as:

du
dt

þ dðuu)
dx

þ g
dh
dx

þ gujuj
C2
yHo

¼ 0; ð12:62aÞ

and

dðuA)
dx

þB
dh
dt

¼ 0: ð12:62bÞ

Using the Forward Time Central Scheme (FTCS) in an unique cell spacing
yields the following finite difference expressions for local and advective
accelerations:

du
dt

¼ ð
unþ 1
iþ 1=2 � uniþ 1=2

Dt
Þ; ð12:63aÞ

Fig. 12.3 a Integration cells
in the x-t plane.
b Longitudinal plane section
with positions where the
quantities u (in positions o)
and h (in positions x) and the
transport volume (uA = Q)
will be calculated. Adapted
from Thatcher and Harleman
(1972)
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and

dðuuÞ
dx

¼ ½ðuuÞ
n
iþ 1 � ðuuÞni
Dx

�; ð12:63bÞ

respectively. However, the advective acceleration is non-linear and requires a
redefinition of the u-values at the knots (i ± 1) in terms of its mean values,

uniþ 1 ¼
1
2
ðuniþ 3=2 þ uniþ 1=2Þ; ð12:64aÞ

and

uni ¼
1
2
ðuniþ 1=2 þ uni�1=2Þ: ð12:64bÞ

The barotropic pressure gradient force and the friction due to viscosity are
calculated as:

g
dh
dx

¼ g
Dx

ðhniþ 1 � hni Þ; ð12:65aÞ

and

g(uniþ 1=2juniþ 1=2jÞ
ðCyjniþ 1=2Þ2hniþ 1=2

; ð12:65bÞ

respectively. The last finite difference requires the definition of hniþ 1=2 in terms of a
mean value, and

hniþ 1=2 ¼
1
2
ðhniþ 1 þ hni Þ: ð12:66Þ

In order to eliminate possible instabilities during the computation of the friction
term (last term in Eq. 12.61a), this term must be delayed for one time step, i.e., it
must be calculated by,

g(un�1
iþ 1=2jun�1

iþ 1=2jÞ
ðCyjn�1

iþ 1=2Þ2hn�1
iþ 1=2

: ð12:67Þ

For the continuity Eq. (12.61b), it follows that the finite difference expression is:

½ðAu)niþ 1=2 � ðAu)ni�1=2�
Dx

þ Bn
i ðhnþ 1

i � hni Þ
Dt

¼ 0: ð12:68Þ
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The non-linear term of the advective acceleration (last term in Eq. 12.63b) will
be transformed into a linear term, according to the following approximation:

½ðuu)niþ 1 � ðuu)ni �
Dx

¼ uni ðuniþ 1 � uni�1Þ
Dx

: ð12:69Þ

The term uni�1, on the right hand side of this equation, may be calculated by a
mean equivalent of Eq. (12.64a), which is a linear expression of the advective
acceleration. Another linear expression, suggested by McDowell and O’Connors
(1977), may also be obtained by an artifact of the second member of Eq. (12.68)
and from some approximations which have already been presented. In effect, from
expression (12.30) we have:

uni ¼
ðunþ 1

i þ un�1
i Þ

2
þO(Dt2Þ; ð12:70aÞ

with i = 1, 2,… and n = 0, 1, 2,… I − 1, and, from the approximations (12.32a, b)
we may write,

uniþ 1 ¼
1
2
ðun�1

iþ 2 þ unþ 1
i ÞþO(Dt,Dx), ð12:70bÞ

and

uni�1 ¼
1
2
ðunþ 1

i þ un�1
i�2 ÞþO(Dt,Dx): ð12:70cÞ

Substituting approximations (12.70a, b, c) into expression (12.69) yields,

½ðuu)niþ 1 � ðuu)ni �
Dx

¼ ½ðunþ 1
i þ un�1

i Þðun�1
iþ 2 � un�1

i�2 Þ�
4Dx

; ð12:71aÞ

or alternatively

½ðuu)niþ 1 � ðuu)ni �
Dx

� ½ðunþ 1
i Þðun�1

iþ 2 � un�1
i�2 Þ�

2Dx
; ð12:71bÞ

and

½ðuu)niþ 1 � ðuu)ni �
Dx

� ½ðun�1
i Þðun�1

iþ 2 � un�1
i�2 Þ�

2Dx
: ð12:71cÞ

Expressions (12.71a, b, c) are equivalent to those presented by McDowell and
O’Connors (op. cit.).
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Combining Eqs. (12.63a, b; 12.64a, b; 12.65a, b, 12.67, 12.71a or b, c) yields
the final finite difference expressions of the equations of motion and continuity
equivalent to the corresponding partial differential equations (12.61a, b):

unþ 1
iþ 1=2 ¼ uniþ 1=2 þ

Dt
Dx

½�ðuu)niþ 1 � ðuu)ni � �
g
Dx

ðhniþ 1 � hni Þ

� g

½ðCyÞniþ 1=2�2hniþ 1=2

ðuniþ 1=2juniþ 1=2jÞ;
ð12:72aÞ

and

hnþ 1
i ¼ hni þ

Dt
Bn
i Dx

½ðuA)uiþ 1=2 � ðuA)ni�1=2�: ð12:72bÞ

Assuming that the stability of this analytical system is satisfied, that the initial
and boundary conditions are known, and the geometric characteristics of the estuary
are also known, Eq. (12.72b) may be used at the initial time instant (n = 0) to
calculate the free surface height for i = 1, thus obtaining the first value h11. In the
following step, the second member of Eq. (12.72a) may also be solved. Following
this, in the initial time-space step (n = 0 and i = 1), the second member of
Eq. (12.72a) may be solved, and hn1=2 may be calculated as a mean value and
applied to equation similar to (12.66),

h0i=2 ¼
1
2
ðh01 þ h0�1Þ; ð12:73Þ

where the value of h0�1 is extrapolated from the initial condition. Then, with
Eq. (12.72a), the unknown h1iþ 1=2 may be calculated. In the following step, for
i = 2, 3, 4, …, and from the value at the initial time (n = 0), it is possible to
determine the unknowns, hni and uniþ 1=2 for i = 1, 2, 3, …, I − 1, using iteratively

Eqs. (12.72a, b). This process must be repeated for the other times (n > 0), enabling
knowledge of the unknowns hni and hniþ 1=2, which will satisfy the imposed initial
and boundary conditions.

This method may also be expanded to include in the mass conservation equation,
the lateral fresh water input from tributaries and the free surface processes of
precipitation-evaporation. In the equation of motion, changes in the influences on
the system dynamics, due to variations in the estuary geometry, may also be
included.

When the estuarine channel presents a bifurcation due to the presence of a
tributary, this may also be included in the computational scheme. This may be
accomplished by including a knot located in the neighboring area just before the
junction, which must be the same knot used in the determination of the free-surface
height, as indicated in Fig. (12.4).
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Then, for instance, for the i-knot (x in Fig. 12.4), the free surface elevation must
be calculated by the following expression:

hnþ 1
i ¼ hni þ

Dt
B�n
i Dx

½ðuA)nm � ðuA)ni�1=2�; ð12:74aÞ

and

ðuA)nm ¼ 1
2
½ðuA)niþ 1=2 � ðuA)�n

iþ 1=2�: ð12:74bÞ

Then, in Eq. (12.74a), the term on the right hand side indicates the volume
transport at the bifurcation, and B�n

i ; is the channel width calculated as the mean
value at positions (i − 1/2) and (1 + 1/2). Subsequently, the computation will
follow independently along each one of the channels.

12.5.2 Implicit Solution

The same problem formulated by the differential partial equations of motion and
continuity (12.61a, b) may be solved by the implicit method, and the scheme for the
integration cells is similar to that presented in Fig. 12.3. In this solution, the finite
differences for the equation of motion is calculated in a given time step; however,
the continuity equation must be displaced forward by a space interval, Dx. Then, the
equation system to be numerically integrated is composed of the following alge-
braic equations:

Fig. 12.4 Schematic diagram
indicating a bifurcation in an
estuarine channel. The
symbols • and x indicate the
positions of the u-velocity
component and the surface
height calculations,
respectively
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ðunþ 1
iþ 1=2 � uniþ 1=2Þ

Dt
þ ðuu)nþ 1

iþ 1 � ðuu)nþ 1
i

Dx
þ g

Dx
ðhnþ 1

iþ 1 � hnþ 1
i Þ

þ g

½ðCyÞnþ 1
iþ 1=2�2hnþ 1

iþ 1=2

½unþ 1
iþ 1=2junþ 1

iþ 1=2j� ¼ 0; ð12:75aÞ

and

½ðuA)nþ 1
iþ 3=2 � ðuA)nþ 1

iþ 1=2�
Dx

þ ½Bnþ 1
iþ 1 ðhnþ 1

iþ 1 � hniþ 1Þ�
Dt

¼ 0: ð12:75bÞ

The non-linear terms in Eq. (12.75a) must be written in linear format, and the
advective acceleration will be given by:

½ðuu)nþ 1
iþ 1 � ðuu)nþ 1

i �
Dx

� unþ 1
i ðuniþ 1 � uni Þ

Dx
; if unþ 1

i \0; ð12:76aÞ

and

½ðuu)nþ 1
iþ 1 � ðuu)nþ 1

i �
Dx

� unþ 1
i ðuni � uni�1Þ

Dx
; if unþ 1

i � 0: ð12:76bÞ

The simultaneous application of Eqs. (12.75a, b) with the initial and the asso-
ciated boundary conditions will generate a system of I − 1 equations with same
quantity of unknowns, which must be solved for each time step for n � 0. This
whole process is successively and iteratively repeated for each time interval of
interest (one or more tidal cycles).

Thus, if the initial and boundary conditions and the estuary geometry are known,
it is possible to calculate, with repeated solutions of this linear equation system, the
free surface elevation, h = h(x, t) or the surface elevation (tidal height), and the
longitudinal velocity field, u = u(x, t), during successive time intervals.

12.6 The Blumberg’s Bi-dimensional Model

This classical non-steady-state bi-dimensional (Oxz) numerical model was devel-
oped by Blumberg (1975), applying the explicit method of finite differences to a
system of equations similar to Eqs. (8.55–8.59, Chap. 8), which corresponds
physically to a partially mixed, laterally homogenous estuary (type 2, or B). In this
model, the Ox axis is landward orientated with x = 0 and x = L indicating the
mouth and head positions, and the Oz axis is oriented in the direction contrary to
the acceleration of gravity, with z = −h(x) indicating the estuary depth. Thus, the
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basic equations system which will be numerically integrated, considering for the
turbulence a semi-empirical approach, are:

@ðuB)
@x

þ @ðwB)
@z

¼ 0; ð12:77aÞ

@ðuB)
@t

þ @ðuuB)
@x

þ @ðuwB)
@z

¼ @

@x
ðBNx

@u
@x

Þþ @

@z
ðBNz

@u
@z

Þ

� kujuj @B
@z

� gB
@g
@x

� gB
q

@

@x
ð
Z0

z

qdz), ð12:77bÞ

@ðBS)
@t

þ @ðuBS)
@x

þ @ðwBS)
@z

¼ @

@x
ðBKx

@S
@x

Þþ @

@z
ðBKz

@S
@x

Þ; ð12:77cÞ

In these equations B is the estuary width, qðSÞ ¼ q0ðaþ bSÞ is the density
calculated by the linear equation of state of seawater, with the following numeric
values: q0 = 0.99891 g cm−3, a = 1.0 and for saline contraction coefficient,
b = 7.6 	 10−4 (‰)−1.

The solution of this system of equations is dependent on the following boundary
conditions:

• Salinities at the estuary head, S(L, z, t)|x=L, and mouth, S(0, z, t)|x=0.
• River discharge Qf.
• Elevation in relation to the level surface η = η(z, t)|z=0.
• Wind (sW) and bottom (TB) shear stresses, formulated by:

BNzð@u
@z

Þjz¼g ¼ Bg
sW
q

; and; BNzð@u
@z

Þjz¼�h¼
TB

q
: ð12:78aÞ

In practical applications these stresses are simulated by semi-empirical expres-
sions, such as (Eqs. 8.25 and 8.31, Chap. 8):

sW ¼ qairCDUVjUVj and sB ¼ qkðxÞjuju; ð12:78bÞ

where k = k(x) is a non-dimensional coefficient calculated in function of the
Manning number (n) defined by:

k(x) ¼ gn2

ð8:23Þ2 ½h(x)]
1=3: ð12:79Þ

In this equation, the Manning number is in c.g.s. units, and a typical value for the
Potomac river estuary (Washington, USA) is n = 3.9 	 10−2 (cm)1/6 (Blumberg
1975).
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The precipitation-evaporation balance will be disregarded at the free surface
(z = 0), and at the bottom (z = −h) the salt flux is zero. These boundary conditions
are expressed by:

qKzð@S
@z

Þz¼g ¼ qKzð@S
@z

Þz¼�h ¼ 0: ð12:80Þ

An additional equation used in the Blumberg’s model is obtained from the
vertical integration of the continuity equation (12.77a) from the depth z = −h, up to
the free surface, z = η, resulting in the following expression:

ðwB)jz¼g � ðwB)jz¼�h þ
Zg

�h

½@ðuB)
@x

�dz ¼ 0: ð12:81aÞ

Applying the Leibnitz rule to the last term of this equation yields:

ðwB)jz¼g � ðwB)jz¼�h þðuB)jz¼g
@g
@x

� ðuB)jz¼�h
@ð�h)
@x

þ @

@x
½
Zg

�h

ðuB)dz] ¼ 0:

ð12:81bÞ

For the kinematic boundary conditions, the vertical velocity component at the
bottom (z = −h) is null, w(x, z)|z=−h = 0, and at the surface (z = 0) it is equal to the
time variation of the free surface, w(x, z)|z=η=η(x, t). Thus it follows that:

�ðwB)jz¼�h þðuB)jz¼�h
@ð�h)
@x

¼ 0; ð12:81cÞ

and

ðwB)jz¼g ¼ ðuB)jz¼g
@g
@x

þ @ðBggÞ
@t

: ð12:82Þ

Applying these results to Eq. (12.81b) yields:

@ðBggÞ
@t

þ @

@x
½
Zg

�h

ðuB)dz] ¼ 0: ð12:83Þ

The initial conditions imposed on the hydrodynamics equations may be arbitrary
because they are parabolic in time, and thus any initial value may be chosen for the
forward time solution (t > 0), because they may quickly remove all initial influ-
ences (Blumberg 1975).
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Solutions to the equation system (Eqs. 12.77a, b, c), can not be obtained ana-
lytically. In the Blumberg’s technical article, the explicit finite difference method
was applied, enabling an algebraic solution which conserves mass (volume), salt
and motion in the presence of dissipative effects. To apply this method, the estuary
volume was subdivided into a grid defining the knots of interest, containing
(I − 1) . (K − 1) partial sub-volumes, where I and K indicate the total number of
grid points in the Ox and Oz directions, respectively. Thus, if B is the estuary width
at a given longitudinal position, this sub-volume is calculated by B . Dx . Dz.

The corresponding algebraic equations, which satisfy the conservation laws and
will enable the determination of u, w, η and S as functions of (x, z, t), are defined at
the grid locations shown in Fig. 12.5. This figure indicates that salinity (S) and
pressure (p) are defined at the center of each sub-volume, while the vertical velocity
component (w) is defined at the top and bottom of it. The grid containing the
u-velocity components is staggered with respect to the basic grid as these velocities
are defined at the center of the vertical sides of the sub-volume. This staggered
arrangement permits easy application of the boundary conditions and evaluation of
the dominant pressure gradient forces without interpolation or averaging; the arti-
cles of Bryan (1969) and Lendertse et al. (1973) have used similar grids (quoted in
Blumberg 1975).

Since most partially mixed estuaries (mainly those that are highly stratified) have
higher vertical velocity and salinity gradients than horizontal gradients, the vertical
grid spacing must be made much smaller than the horizontal spacing to ensure an
adequate resolution of the vertical dimension. The vertical thickness of each

Fig. 12.5 Finite difference grid scheme (after Blumberg 1975)
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sub-volume is constant, except in the upper layer where, due to free surface tidal
oscillations, its thickness varies in time and space.

To derive the finite difference equations, the following sum and difference
operators defined by Schuman (1962) (quoted in Blumberg 1975) were used:

f(x, z, t)
x 
 ½f(xþ 1

2Dx, z, t)þ f(x� 1
2Dx, z, t]

2
; ð12:84aÞ

dx½ðf(x, z, t)] ¼
f(xþ Dx

2 ; z, t)� f(x� Dx
2 ; z, t)

Dx
; ð12:84bÞ

and

dxfðx; z; tÞx 
 ½fðxþDx; z; tÞþ fðx� Dx; z; t�
2Dx

: ð12:84cÞ

The f(x)
n
notation is used to mean the function evaluation at a time step, n. The

bar and delta operators form a commutative and distributive algebraic operation.
Similar operators are defined for x ± Dx and also for the independent variables z
and t. Following the method proposed by Lendertse et al. (1973) (quoted in
Blumberg (1975)) for vertical integration, and applying the sum and difference
operators, the partial differential Eqs. (12.77a, b, c) become:

dxðuB)n þ dzðwB)n ¼ 0; ð12:85aÞ

dtðSBÞt þ dxðSxuB)n þ dz½ðwB)Sz�n � dx½BKxdxðS)]n�1

� dz½BKzdzðS)]n�1 ¼ 0;
ð12:85bÞ

@tðuBÞt þ dxðuuxBÞn þ dz½ðwxBÞuz�n � dx½BNxdxðuÞ�n�1

� dz½BNzdzðuÞ�n�1 þ kujujdzðBÞn�1
1=2

þBgdxgn þBgbdxð
Xk

j¼1

SjDzjÞn ¼ 0;

ð12:85cÞ

dt½S1B1ðDzþgÞ�t þ dx½u1B1S1ðDzþgÞx�n � ½ðwBÞ3=2S�z
3=2�n

þ dx½BKxðDzþgÞdxðSÞ�n�1 þ ½BKzdzðSÞn�1
3=2 ¼ 0;

ð12:85dÞ

and, in the top layer, the equations are obtained by vertical integration of
Eqs. (12.77b, c) from z = −Dz to z = η,
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dt½u1B1ðDzþg�xÞ�t þ dx½u1u1xB1ðDzþgÞ�n � ½wxB)3=2u
z
3=2�n

þ dx½ðDzþgÞBNxdxðuÞ�n�1 þ ½BNzdzðuÞ�n�1
3=2

þ ½ku1ju1jðB1=2 � B3=2Þ�n�1 � ½sWB1=2�n�1 þ gBðDzþgxÞndxðgÞn
� gbBDzðDzþg�xÞndxðS1Þn ¼ 0:

ð12:85eÞ

Equation (12.83) was obtained by vertical integration of the continuity equation
over the entire water column depth, and its finite difference expression is written as:

B(gÞ @g
@t

þ @

@x

Z0

�h

ðuB)dzþ @

@x

Zg

0

ðuB)dz ¼ 0; ð12:86Þ

and its middle term may be approximated by

@

@x

Z0

�h

ðuB)dz �
Z0

�h

@ðuB)
@x

dz, ð12:87Þ

because (uB)z=−h � 0, taking into account that by the continuity equation, the

integrated function of this equation may be approximated by � @ðwB)
@x , and it fol-

lows that:

@

@x
ð
Z0

�h

ðuB)dz ¼ �
Z0

�h

@ðwB)
@x

dz � �ðwB)k¼1=2: ð12:88Þ

Under the assumption that the u-velocity component at the free surface is equal
to that of the first sub-volume (k = 1) of this layer (ui+1/2,1), it is possible to obtain
the following approximation for the last term of Eq. (12.86):

@

@x

Zg

0

ðuB)dz � dxðuK¼1Bk¼1=2gÞx: ð12:89Þ

Combining the approximations (12.88) and (12.89) with Eq. (12.86), we have:

dtðBgÞt � ðwB)n1=2 þ dxðu1B1g
xÞn ¼ 0: ð12:90Þ

The algebraic Eqs. (12.85a, b, c, d, e) and (12.90) constitute a finite difference
system. All terms are written in central finite differences in space and time, with the
exception of diffusion and friction; the diffusion terms are delayed by one time step
to simplify the scheme without losing the equation’s conservative property, and the
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friction terms are delayed one time step to maintain the stability. The full program
documentation, a linear stability analysis and its application to the Potomac River
estuary (Washington, DC, USA) are presented in Blumberg’s technical report.

The finite difference formulation for a non-linear equation may give rise to a
special type of instability. As first pointed out by Phillips (1969) (quoted Blumberg
1975), non-linear instability cannot be suppressed by using smaller values of the
time step. Although no rigorous theory exists to explain the phenomena the
instability, which arises when short-wave disturbances are not damped out, must be
removed. In the numeric finite differences program of Blumberg, instability did not
become dominant, primarily because of the lack of substantial horizontal gradients,
and due to the introduction of an artificial viscosity term written as,

Kx ¼ Nx ¼ ðcDx)ffiffiffi
2

p Þ2j @u
@x

j; ð12:91aÞ

where c is an adjustable constant, and Dx is the horizontal grid spacing. Starting
with this coefficient, it was demonstrated that the computational procedure becomes
stable if the following condition is achieved between the diffusion coefficient Kx,
the time step interval (Dt) and the longitudinal grid spacing (Dx):

KxDt

ðDx)2 � 1
4
: ð12:91bÞ

The computational boundary condition for the velocities are that the water
passing through the ocean boundary is constrained to be horizontal (w = 0), and
that there is no momentum flux imparted to the estuary by the ocean. The presence
of salinity requires additional boundary conditions: (i) when inflow occurs, the
salinity is prescribed, and; (ii) in the outflow, hydrodynamic equations governing
the interior region determine the salinity. Since the horizontal gradients of salinity
near the boundary are small and the flow is horizontal, simple advection can be
taken as the governing process for salinity distribution:

@S
@t

þ @ðuS)
@x

¼ 0; ð12:92Þ

and the boundary value is extrapolated along the characteristic solution of the
centered difference analogous to this equation.

In the application of Eqs. (12.85a, b, c, d, e), semi-empirical relationships of the
vertical kinematic eddy viscosity (Nz) and diffusion (Kz) coefficients were used. The
closure of this system of equations is made with a semi-empirical approach using
the following equations (Blumberg 1975):

Kz ¼ k21z
2ð1� z

h
Þ2j @u

@z
jð1� Ri

Ric
Þ1=2; ð12:93Þ
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and

Nz ¼ Kzð1þRi), for Ri\Ric; ð12:94aÞ

Nz ¼ ccKz; for Ri3 �Ric; ð12:94bÞ

where cc is a critical condition of the non-dimensional quantity c defined by the
ratio Kz/Nz.

As should be expected, the staggered grid arrangement and the finite difference
increments influence the schematization and the resolution of the velocity and
salinity fields. Thus, the grid spacing should be small enough to describe the estuary
bathymetry and resolve the salt intrusion limit. In the Blumberg’s-2D numerical
model, the vertical grid spacing faced the following constraints: (i) stability arising
from the finite difference method for the diffusive and viscous terms, and; (ii) the
thickness of the upper layer should be larger than the gravity wave amplitude. For
optimal numerical results, the restriction was Dz > 4ηmax, and the equation system
required the use of a semi-implicit method.

The usefulness of the numerical model was assessed with several tests, which
investigated whether the governing equations were correctly formulated and
properly programmed. The first test run checked for the conservation of volume and
simulated a non-tidal river flow demonstrated for the following conditions:
(i) volume transport through any cross-section using an equation similar to Eq. (7.
103c, Chap. 7); (ii) tidal wave propagation for a long channel with uniform
transverse sections; (iii) channel with varying cross-sectional areas; (iv) non--
steady-state comparison between flume measurements and computed solutions for
times of high and low water, and; (v) comparison of time-averaged numeric model
solutions simulated during a tidal cycle with an analytic steady-state solution.

All these tests performed in the numerical model are well documented in
Blumberg’s technical report. For the last condition (v), an analytical steady-state
model was used, with the non-linear terms (advective acceleration) neglected, the
gradient pressure force reduced to the baroclinic component and the kinematic eddy
viscosity coefficient constant. With these simplifications, the longitudinal equation
of motion (Eq. 11.2, combined with 11.3 and 11.5, Chap. 11) is used to calculate
the u-velocity component, according to Hunter (1975, quoted in Blumberg (1975))
is given by:

�gb
@

@x

Z0

z

SdzþNz
@2u
@z2

¼ 0: ð12:95Þ

Disregarding the variation of salinity with depth, @S=@z � 0, (weakly stratified
or well-mixed estuaries) yields:
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gb
@S
@x

þNz
@3u
@z3

¼ 0; ð12:96Þ

which will be solved with the following boundary and integral boundary
conditions:

• Wind stress at the free surface:

qNz
@u
@z

jz¼0 ¼ sW: ð12:97aÞ

• Null velocity at the bottom:

u zð Þjz¼�h ¼ u �hð Þ ¼ 0: ð12:97bÞ

• Fresh water (volume) conservation:

Z0

�h

u(z)dz ¼ Qf

B
; or;

Z0

�1

u(Z)dZ ¼ Qf

Bh
¼ uf ; ð12:97cÞ

where B and h are the estuary width and depth, respectively. In Hunter’s original
article, instead u(−h) = 0 the bottom boundary condition it was assumed that the
bottom shear stress (sBx) is linearly related to the velocity. The integral
boundary condition (12.97c) indicates that the volume (mass) continuity is
preserved.

With three successive integrations of Eq. (12.96) the vertical velocity profile is
calculated by:

u(z) ¼ � gb
Nz

ZZZ
@S
@x

dzdzdz, ð12:98Þ

and the general solution is:

u(z) ¼ � gSxb
6Nz

z3 þ C1

2
z2 þC2zþC3; ð12:99Þ

where @S
@x ¼ Sx, C1, C2 and C3 are integrations constants with the following

dimensions [C1] = [L−1T−1], [C2] = [T−1] and [C3] = [LT−1], respectively.
Applying the first boundary condition (12.97a), it follows immediately that C2 ¼
sW
qNz

and, the boundary conditions (12.97b, c) yield two equations with the

unknowns C1 and C3:
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gSxbh
3

6Nz
þ 1

2
h2C1 þC3 � sWh

qNz
¼ 0; ð12:100aÞ

and

1
24

gSxbh
3

Nz
þ 1

6
C1h2 � 1

2
sWh
qNz

þC3 ¼ Qf

Bh
: ð12:100bÞ

Solving this system of equations for the unknowns, C1 and C3, its analytical
expressions are:

C1 ¼ � 3
8
gSxbh
Nz

� 3Qf

2Bh3
þ 3

2
sW
qNzh

; ð12:101aÞ

and

C3 ¼ 1
48

gSxbh
3

Nz
þ 3

2
Qf

Bh
þ 1

4
sWh
qNz

: ð12:101bÞ

Substituting the calculated values of C1, C2 and C3 into the general solution,
(12.99), yields the steady-state vertical velocity profile,

u(z) ¼ � 1
6
gSxbz

3

Nz
þð� 3

16
gSxbh
Nz

þ 3
2
Qf

Bh3
þ 3

4
sW
qNzh

Þz2

þ sW
qNz

zþ 1
48

gSxbh
3

Nz
þ 1

4
sWh
qNz

þ 3
2
Qf

Bh
:

ð12:102aÞ

Factoring to reduce the solution to its simplest expression of the u-velocity
component in terms of the non-dimensional depth (Z = z/h), gives:

u(Z) ¼ � 1
48

gSxbh
3

Nz
ð�8Z3 � 9Z2 þ 1Þþ 3

2
ufðZ2 � 1Þ

þ 1
4
sWh
qNz

ð3Z2 þ 4Zþ 1Þ:
ð12:102bÞ

As would be expected, the vertical velocity profile is driven by the baroclinic
pressure gradient force, river discharge and wind stress, and it is easy to demon-
strate that this solution identically satisfies the surface and bottom boundary con-
ditions and the volume (mass) continuity.

With this analytical solution, the steady-state profile of the u-velocity component
is calculated using the following values: Nz = 1.6 	 10−2 m2 s−1, b = 7.0 	 10−4,
h = 10.5 m, uf = 0.02 m s−1, sW ¼ 0.5 kg m−1 s−2 and @S=@x = 2.3 	 10−2 m−1.
The results are presented comparatively in Fig. 12.6, indicating a good agreement
of the ebb and flood motion with the analytical and numerical profiles obtained by
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Hunter (1975) and Blumberg (1975), respectively. It should be remembered that
Hunter’s analytical profile, shown in this figure, was calculated with moderate
bottom boundary condition.

12.7 Results on Numerical Modelling: Caravelas-Peruípe
Rivers Estuarine System

The coastal plain estuary where the Caravelas and Peruípe rivers empty into the
coastal sea in the southern Bahia State (Bahia, Brazil), is a complex transitional
environment bordering on a mangrove forest and vestigial areas of South Atlantic
Forest. The Caravelas-Peruipe Rivers Estuarine System (CPRES) empties its water
mass almost 60 km west of the Abrolhos National Marine Park (Fig. 12.7).

This system was sampled during an interdisciplinary, inter-university thematic
project “Productivity, Sustainability and Uses of the Abrolhos Banks Ecosystem”,
sponsored by the National Brazilian Council for Research and Technology
Development (CNPq) and the Ministery of Science and Technology (MST). To
accomplish the objective of the project, fortnightly estuarine field work was performed
in spring and neap tidal cycles in the austral winter and summer of 2007 and 2008,
respectively, providing an observational data basis for numerical modeling validation
for the estuarine region (Fig. 12.7). Further investigations of this project may be found
in the special edition of Continental Shelf Research (2013, v. 70, 176 p.).

Fig. 12.6 Validation of the vertical u-velocity component profile calculated by a numeric solution
(dashed line) by comparison with steady-state analytic solutions from the Hunter (1975) model
under the conditions of moderate (thin line) and maximum bottom friction (thick line),
respectively. Negative and positive values indicate ebb and flood tidal conditions, respectively
(adapted from Blumberg 1975)
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An outline of some the numerical model (Delft 3-D Flow) results of the estuarine
system’s spatial and temporal tidal oscillation variability, thermohaline properties,
and circulation will be presented in this topic.

The numerical curvilinear grid used in the simulations is presented in Fig. 12.8. To
allow better resolution, the grid spacingwas locally refined in the estuarine channels to
15 	 15 m2, increasing in the coastal region and reaching up to 300 	 300 m2. The
model results were quantitatively validated using the Skill parameter, with field
measurements of tidal oscillation, currents and salinity during neap and spring tides at
mooring stations. In the numerical data processing, homogeneous conditions were
initially used for the fields of salinity, density and the kinematic vertical coefficients of
viscosity and diffusivity; after four weeks of running simulations, these fields were
saved under spatially varied conditions. These new initial conditions allowed transient
time to be avoided, thus optimizing the simulations.

The model evaluation was performed using field measurements undertaken
during the summer and winter austral seasons, and longitudinal measurements in
the main channel of the Caravelas estuary, presented in the articles of Schettini and
Miranda (2010) and Pereira et al. (2010). River discharge values were taken from
the Brazilian National Water Agency (ANA), and were estimated as �20.0 m3 s−1

with extrapolation of �4.0 m3 s−1, for the unified Cúpido and Jaburuna rivers,
which are tributaries of the Caravelas estuary.

Tidal oscillations at neap and spring tides were well simulated at the four control
sites (A, B, C and D) shown in Fig. 12.7, right, which were also used to validate the
spatial distribution of tidal heights, circulation and salinity. The best results, with

Fig. 12.7 The Caravelas-Peruípe Rivers Estuarine System, the Aracruz—TA harbor, the Sueste
and Abrolhos channels, the Abrolhos National Marine Park (left). Location of the oceanographic
stations in Caravelas (A, B) and Nova Viçosa (C, E) in the North and South, respectively (right)
(according to Andutta 2011)
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mean values of over 0.9 for the Skill parameter, were obtained for tidal amplitudes
between 1.3 and 2.5 m at neap and spring tides (Fig. 12.9), respectively.

Longitudinal velocity component and salinity simulations for January, 2008, at
mooring station, A, during neap and spring tides are shown in Figs. 12.10 and
12.11, respectively. The numerical results of the velocities were simulated better in
spring tides, with the mean skill values in the range of 0.77 and 0.93, while at neap
tides this parameter was lower, with values between 0.38 and 0.65. Good results
were achieved for the salinity structure at spring tide, with mean skill values over
0.83, hence comprising all the control station for validation. At neap tides, the

Fig. 12.8 The curvilinear numeric grid and size distributions in the investigated region (according
to Andutta 2011)

Fig. 12.9 Experimental and theoretical tidal oscillations in the Caravelas estuarine channel at
neap (left) and spring (right) tide in January, 2008 (according to Andutta 2011)
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Fig. 12.10 Comparison of time variability of observational u-velocity profiles (m s−1), the
corresponding theoretical profiles, and the Skill parameter at station, A, during neap (upper) and
spring (lower) tides. Flood and ebb motions are indicated by u > 0 and u < 0, respectively
(according to Andutta 2011)
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Fig. 12.11 Comparison of time variability of observational salinity (‰) profiles, the correspond-
ing theoretical, and the Skill parameter at station A during neap (upper) and spring (lower) tidal
cycles (according to Andutta 2011)
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corresponding mean skill values were relatively high, varying in the range of 0.73–
0.85. In addition, there were difficulties adequately simulating the highly vertical
and longitudinal salinity stratification in the Nova Viçosa estuary (not shown),
which was due to the stronger river inflow on the Peruípe river causing difficulties
in the measurements of hydrographic properties and currents in the field.

Time variations of the u-velocity profile, u = u(Z, t), during a semi-diurnal tidal
cycle calculated by the model are presented comparatively with the experimental
profiles, together with the corresponding Skill parameter. At neap tide (Fig. 12.10,
upper), relatively high Skill values (0.6 to 0.8) were obtained, validating theoretical
results during the higher current intensities between the time period of �12 h to
�16 h, but an accentuated phase difference can be observed between theoretical
and observational data. However, outside of this high intensity period the Skill
parameter indicated very low values (<0.2), reducing its tidal mean value to only
0.38. For the spring tidal period, there was an increase in the mean Skill value,
which was double (0.77) that observed in the neap tidal period, indicating a good
correspondence between observed and simulated salinity variation at the mooring
station (Fig. 12.10, lower).

Variations in the simulated and observational vertical salinity profiles, S = S
(z, t), during the neap and spring tidal cycles are shown in Fig. 12.11, upper. In the
neap tide cycle, the observational and the theoretical salinity profiles varied in the
intervals 32.0–35.8‰ and 34.0–35.8‰, respectively, and the calculated mean skill
value was relatively high (0.85). However, in the time interval between 13 and
16 h, the theoretical simulation indicated only a small vertical salinity stratification
compared with the observed values, and near bottom, low Skill values were
observed (<0.2), and the salt water intrusion near the bottom was well simulated

Fig. 12.12 Longitudinal
section in the Caravelas
estuary used in the numerical
simulation of the longitudinal
salinity intrusions during neap
and spring tidal conditions.
The longitudinal section is
indicated by the red line
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(*35.5‰). In the spring tide cycle (Fig. 12.11, lower), as observed in the velocity
simulation, the experimental and simulated salinity values presented close varia-
tions intervals and the mean skill values were high (0.85 and 0.97).

The Delft3D-Flow numeric model has also been applied to a comparative
analysis on the coastal water mass intrusions in the Caravelas estuarine channel,
shown in Fig. 12.12. For these simulations, experimental results of Schettini and
Miranda (2010) measured in April, 2001 were used in the validation, covering a
longitudinal section distance of 16 and 26 km, for low and high tide salinity
intrusions, respectively.

Although the simulations have been compared and validated with no simulta-
neous observational data and probably under different forcing conditions, the model
parameters were adjusted to a higher validation Skill parameter.

Fig. 12.13 Nearly steady-state longitudinal salinity (‰) distributions in the Caravelas estuary
during the spring low tide. Simulated (upper) and observational data (lower) from Schettini and
Miranda (2010) (according to Andutta 2011)
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During the spring low tide, the nearly steady-state salinity fields indicates a low
vertical salinity stratification, with the theoretical and observational salinity varying
in the intervals �34.5–35.0‰ and �34.0–34.5‰, respectively (Fig. 12.13). About
6 km from the mouth, the theoretical and observational values are very close
varying from �32.0 to �32.5‰, and up to �12 km landward from the estuary
mouth, the salinity decreases to � 30.0 and �28.0–28.5‰ for the observational and
theoretical distributions, respectively.

The longitudinal nearly-state salinity distribution in the Caravelas estuary at spring
high tide is shown in Fig. 12.14. The model results (upper) indicate a vertically
well-mixed estuary, which is in agreement with the observational data (lower). It
should be noted that the highly saline water (>36.0‰) shows the TropicalWater mass
(TW) intrusion advancing up to 6 km into the estuary. A good agreement between the
numerical simulation and the experimental data is also observed up to 12 km from the

Fig. 12.14 Nearly steady-state longitudinal salinity (‰) distribution in the Caravelas estuary
during the spring high tide. Simulated (upper), according to Andutta (2011), and the observational
data (lower) according to Schettini and Miranda (2010)
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estuary mouth, with salinities in the interval 36.0 psu—36.4 psu and�33 psu for the
observational and theoretical longitudinal profiles, respectively. Thus, according to
Andutta (2011), these results conclusively indicate that the Tropical Water
(TW) mass intrusion into the Caravelas estuary was adequately simulated, including
the low salinity estuarine water mass intrusion towards its head.
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