
Chapter 16
Personal/Body Area Networks
and Healthcare Applications

16.1 Introduction

A personal area network (PAN) is the interconnection of devices for information
technology within the range of a single person, characteristically within a range of
10 m, and is typically coupled with wireless links and hence called wireless PAN
(WPAN). These devices could be Bluetooth-based or ZigBee, or even new
near-field communication components as pico-networks. The emphasis is to use
groundbreaking data delivery schemes that could connect various transducers to
form a comprehensive team and provide useful information for health care.
Ever-increasing cost of health care has become a national concern as Medicare had
35 million members in 2003 and 35.4 million in 2004 (Fig. 16.1). Healthcare
expenditures in the USA are projected to rise to 15.9% of the gross domestic
product ($2.6 trillion) by 2010. The total cost for cancer treatment in 2020 is
projected to be $173 billion, which represents a 39% increase from 2010. In 2013,
14.4 million Medicare beneficiaries are enrolled in Medicare Advantage Plans, an
increase of more than 1 million (9.7%) from 2012. A vast majority of beneficiaries
(98%) have access to Medicare Advantage Prescription Drug (MA-PD) Plans with
no premium. Slightly more than half (55%) of beneficiaries are enrolled in a
zero-premium plan in 2013. It is worth noticing that eligibility for
Medicare = 65 = senior citizen/geriatric and “old” can be said between 65 and
85 years, while 85 + people can be classified as “very old.” There are 700 million
seniors worldwide (1.3 billion in 2040), and life expectancy in USA is around 78.
So, people at 65 expected to live another 18.7 years. Women outnumber the man in
the elderly population and consider a 70-year-old widow living at home all by
herself. A lady may have mild cognitive impairment, but does most of the
household work on her own and wants to remain as much independent as possible
and even wants to help her friends with similar problems (Table 16.1). Multiple
chronic illnesses require multiple medications, and if the lady is not taking medi-
cations, her condition may become acute. So, there could be one or more side
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effects. There could be a visit from a trained nurse once a week. So, the goal is to
manage chronic conditions and delay a move to assisted living/nursing home for
10 years to save around $500,000 in nursing home expenses.

Table 16.2 [reproduced from 1] recapitulates features of different applications
based on sampling rate desired, memory size required, communication bandwidth
needed, migration of application components, network coverage, and preferred
reliability. First of the five types is based on sampling periods varying from one
second to few hours to cover a large area with no strict deadlines for the results.
These include environmental and agricultural applications. Energy in SNs is
expected to last from few days to months and possibly recharged with solar cells.
Type 2 applications are defined for smaller space and intensive computing
requirements with sampling period varying from 1 ms to 1 s, with possibility of
processing being done after storing samples. Type 3 applications, processing of
images are desired in Type 2 applications and SNs are synchronized and some
mobile units. In type 4 applications, the space is restricted as compared to type 3
and SN energy is expected to last for a week and healthcare application belong to
this type. Type 5 is primarily for industrial process control with restricted jitter, and
sampling periods vary from 50 ms to few seconds.

Hospital 

Independent 
House 

Assisted Living 
Facility 

Nursing Home 

Hospice/ Terminal 
Care Facility 

Fig. 16.1 Elderly people statistics

Table 16.1 Elderly people and daily activities

Age Sensorimotor and
cognitive abilities (average)

Deficit (average) Technology support
needed for daily activities

60–70 100–90 0–10 Minimal

70–80 70 30 Moderate

80–90 50 50 High

90+ 0–10 90–100 Very high
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16.2 Activities of Daily Living

Various activities of daily living (ADL) include food, hygiene, social needs, sleep,
medications, managing chronic conditions, safety, and financial needs. Elderly
people have increased susceptibility to falls, and if living alone, it could be hours or
days before someone finds out. This could lead to more health complications, and
any delay in treating such illness increases the severity. So, detection of falls is an
important requirement, and few options for automatic detection of falls include
estimation of posture and pressure on sensor-equipped floors. Visual fall detection
is feasible along with context information and is suitable for sensor–motor and
cognitive difficulties. One approach could be the use of wearable, portable, and
implanted device to recognize the fall. Another simple scheme could be based on
computers, Internet, Web sites, cell phones, and alarm system. An intermediate
solution could be RFID-based emergency alarm system for medication and task
reminder systems. An elaborate system could have a smart home with all clever
devices that are reliable, smart and context-aware, personalized, robust,
self-configuring, and causing no harm to the patients. The cognitive role could
include executive function, decision making, and dual-task performance and could
decline with age. An electronic patient record can be kept besides remote patient
monitoring. So, for integration of wireless communication, networking and infor-
mation technology is required and a large volume of medical information can be
collected to define most effective strategies for treating chronic illness and reducing
disability. Efforts should be made to improve health and reduce healthcare cost, and
chronic disease must be managed by the effective use of clinical resources that
necessitates a complete integration of IT.

Therefore, wireless communication, sensor platform, networking, and database
need to be incorporated in a clinical practice with unequivocal security and privacy
rules to protect end-to-end communication and limit access to sensitive medical
information. A cellular 3G/4G technology can be used for such application as it
provides real-time delivery with wide coverage adequate bandwidth and ability to
work with other wireless technologies as they are widely used and are secure with
possible location management. The only problems are the presence of dead spots,
providing reliability is a real challenge, there is lack of broadcast/multicast, and
pricing structure could impact of the commercial traffic. This forces us to consider
WLAN for monitoring applications as it provides adequate bit rate, supports
transmission from patients to access point (AP), and could prove to be handy for
mobile patients as location management is feasible. The limitations are the coverage
area, delays in monitoring, associated security, presence of colocated networks, no
provision for multicasting, and reliability is questionable. Wireless LANs experi-
ence unpredictable coverage , and the data speed is variable as bandwidth needs to
be shared and interference may be present with unlicensed ISM band. It may be
possible that the device could not access the network as reaching to cellular phone
sometimes is difficult and video quality may not be good due to variable delays.
A generic telemedicine (Fig. 16.2a) ought to support utilization of different assets
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independent of their geographical location, and there is a need for multidisciplinary
collaboration. It is desirable to facilitate dissemination of medical knowledge to
practicing doctors and medical students and enable doctors in remote and rural
areas to refer with specialists in urban areas.

Specialist 

Doctor 
Patient 

Researcher 

Nurse 

Satellite 

(a)

(b)

Laptop base station
in home

Secure Internet
connection

SHIMMER wearable
sensor node

Wireless communication
IEEE 802.15.4

Fig. 16.2 a A generic telemedicine b Monitoring Mobility
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If the objective is to monitor mobility only, then sensor boards could be attached
to legs and hands as shown in Fig. 16.2b. A more chaotic scene appears when an
accident occurs (Fig. 16.3a), and every attempt is made to save human life. So,
there is a need to monitor many different body parameters as shown in Fig. 16.3b.
A personal health monitoring system can be envisioned as illustrated in Fig. 16.4a.
Details of used different types of physiological parameters are shown in Fig. 16.4b,
while a comprehensive health monitoring system is depicted in Fig. 16.5a, showing
utilization of assets independent of their geographical location to constitute a
multidisciplinary collaboration.

Functions to be performed and dissemination of knowledge at different facilities
to practicing doctors and medical students are shown in Fig. 16.5b. Such an
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infrastructure allows doctors in remote and rural areas to consult with specialists in
urban areas and take appropriate medical and clinical decisions. So, there is a clear
need for intercommunication among medical devices and clinical information
systems. This has been accomplished with a number of medical products such as
infusion pumps and ventilators that commonly have RS-232 ports, and these
devices can communicate with many physiological monitoring instruments. There
are several medical equipments that could be easily linked for personal commu-
nication. However, virtually, all of these are specialized applications, and unique
custom interfaces are needed. To address the medical device plug-and-play inter-
operability problem, a single communication standard is needed to provide

Wireless Health 
Broker & 
Service Provider

Public 
Operator

Hospital

UMTS

DoctorBAN
(a)

Wireless Networks 

Monitoring 
device Healthcare 

Professional 

Patient  
Information 

Monitoring of  
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Alert Transmission 

Monitoring of  
Alert Processing 

Monitoring of  
Decisions/updates 

Monitoring System

(b)

Fig. 16.5 a Scheme for personal health monitoring system b Functional details for personal
health monitoring system
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unobtrusive and persistent monitoring. So, different physiological parameters ought
to be monitored, and associated characteristics are summarized in Table 16.3 [2].
Different factors need to be sensed and sent by SNs at dissimilar frequencies,
depending on criticality of data.

16.3 Available Biomedical Transducers

In biomedical application, the most important issues to tackle are the quality of
service (hand-over, interruption/delays in transmission, data loss bandwidth prob-
lems, etc.), social acceptance (health risks (cell phone usage), economic issues,
ethical issues), and legal issues (accreditation of the devices and applications,
protection of health-related data, privacy, security, and encryption of data, and
medical responsibilities/liability). There are many commercial products, and they
are helping human race. These include (Fig. 16.6) Nokia N810 Internet Tablet,
Motion sensor (802.16.4), weight scale (Bluetooth) blood pressure monitor
(Bluetooth) device.

Noninvasive technology is also being used to measure the heart rate (HR) and
blood oxygen saturation (SpO2) (Fig. 16.7a, b) as it projects infrared and
near-infrared light through blood vessels near the skin and by determining the
amount of light absorbed by hemoglobin in the blood at two different wavelengths,
and the oxygen level can be determined. The heart rate can also be found as the
blood vessels contract and enlarge with the patient’s pulse. The Pluto activity center
is useful for patients undergoing physical rehabilitation using long-lasting
rechargeable battery.

Many other biomedical devices which use SN as an integral part are shown in
Fig. 16.8. Areas that affect human health the most are the ECG (monitoring heart
activity), EMG (electromyography), and for sensing motion (activity) and are
discussed in some detail here (Fig. 16.9). Electrocardiogram (ECG) SNs require a
large bandwidth as parallel transmission of many waveforms is needed. There could
be environmental interferences, and patient’s movement must be restricted during
the test. The drug delivery mechanism is used to respond to any anomalies in the

Table 16.3 Vital physiological parameters and associated characteristics [2]

Vital sign and
parameters

Sampling rate Quantization
(bits/sample)

Total bit rate

Breathing rate One sample/sec 4 4 bps

ECG 240 samples/sec 12–36 2.9–8.7 Kbps

Blood pressure One
sample/minute

64 1 bps

Oxygen saturation One sample/sec 16 16 bps

Core body temperature One
sample/minute

16 0.3 bps
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heart. The detection is based on SQRS Algorithm [3] on ECG waveforms, and
misclassification due to noise can be avoided by having an appropriate threshold.
The most common type of ECG involves the connection of several leads to a
patient’s chest, arms, and leg via adhesive foam pads (Fig. 16.10a). The device
records a short sample, e.g., 30 s, of the heart’s electric activity between different
pairs of electrodes. When there is a need to detect irregular cardiac condition, an
uninterrupted EKG measurement is adopted. This involves checking for extended
period patient’s cardiac activity utilizing 2 or 3 electrodes. The ECG signal is small
(*1 mV peak-to-peak) and is amplified (gain >1000) using low-noise amplifiers
and filtered to remove noise before being digitized. In Fig. 16.10b, P wave deter-
mines contractions of the atria and QRS is a series of waves linked with ventricular
contractions. The T and U waves follow the ventricular contractions, and various
sampling rates and quantization levels are used with sampling frequencies selected
between 128 and 256 Hz. For rigorous details, higher sampling rates and bit rates,
e.g., 16 bits, are adopted. IMEC (Fig. 16.10c) [4] has recently developed a wireless,
flexible, stretchable EKG patch for continuous cardiac monitoring which can be
placed on the arm or on the leg, and the same system can be used to monitor muscle
activity (EMG). The patch of size 60 × 20 mm2 includes a microprocessor, a
2.4 GHz radio link, and a miniaturized rechargeable lithium-ion battery. Data are
sampled nonstop between 250 and 1000 Hz, and the battery has a capacity of
175 mAh adequate for several days.

Sensors for physiological conditions is designed for personal health and general
environmental monitoring to measure temperature, pressure, humidity, and
vibration/position and available as a wrist strap to make it wearable system

(a) (b) (c) (d)

Fig. 16.6 a Nokia N810 tablet b Motion sensor c Weight scale d Blood pressure monitor

(a) (b) (c) (d)

Fig. 16.7 a b Heart rate (HR) and blood oxygen saturation (SpO2) c d: Pluto Activity Sensors
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(Fig. 16.11a). Many different versions have been adopted in military, navy, and
marine applications. Smart skin sensors (Fig. 16.11b) monitor health parameters
such as heartbeat/pulse rate, body temperature, and acoustic waves and can be worn
underneath soldiers’ uniform. The RF-based wireless transmitters convey health
parameters to health camp via a close-by vehicle. SHIMMER wearable mote has
been developed by the Digital Health Group at Intel with TI MSP430 processor,
CC2420 IEEE 802.16.4 radio, Triaxial accelerometer, rechargeable Li-polymer
battery, and MicroSD slot supporting up to 2 GBytes of flash memory.

Sensor for optical motion capture (Fig. 16.12a) primarily employs reflective
markers and multiple cameras that digitize different views of performance.
Fiber-optic sensors (Fig. 16.12b) use rotation based on transmitted light. An
embryonic method for transferring data from human body employs electronics
textiles (e-Textiles) (Fig. 16.12c) as a communication medium. The medium con-
sists of two electrically separate grids of conductive thread that could physically

(a) (b) (c)

(g)

(h) (i)

(d) (e) (f)

Fig. 16.8 a Deep brain Neuro-stimulator b Gastric stimulator c Foot drop implants d Cochlear
implants e Cardiac defibrillator/pacemaker f Artificial hand g Implantable glucose sensor h Insulin
Pump i Artificial Retina
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connect SNs to the shared medium using metallic button-snaps and communicate
via an e-Textiles transceiver chip. The use of a pair of physical low-impedance
connections has the distinct advantage as it enables to connect signal differentially,
permitting energy-efficient amplitude-modulation schemes that tolerate coupled
interference and power SNs remotely from a local BS. Objects for posture deter-
mination shown in Fig. 16.13 can be for the whole human body, portions of the
body, facial animation, and for animals or puppets.

16.4 Parkinson’s Disease and Fatigue Level Detection

Parkinson’s disease affects about 3% of the population over the age of 65 years, and
NIH reports suggest that more than 0.5 million people affected in the USA and 4–6
millions in the world. There is no cure for Parkinson’s disease. Even though
Parkinson’s disease is hereditary, early detection can improve the mortality rate.
Early symptoms include mild tremors, problems with balanced walking, and no
expression on face. Changes to patient’s mobility can be detected with sensors and
can be used to determine the onset of the disease. In a recent project [5], pressure
sensors embedded in the patient’s shoe soles can be used to measure the amount of
pressure on the patient’s feet (Fig. 16.14). The data obtained can be compared to
that of a healthy person to determine the degree of unbalance during walking and
freezing of gates (FoG) in Parkinson’s patients can be determined with changes in
pressure and data over time can be used to determine the progress of the disease.
The sensor data can be recorded in real time, and the doctor can use the data for a
better diagnosis. Pressure sensors embedded in the patient’s shoe soles can be used
to measure the freezing of gates as electronic circuit is hidden in the shoe sole
(Fig. 16.15).

(a) (b)

(c)

Fig. 16.9 a ECG b EMG c Motion sensing
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Monitoring Athlete’s during their practice and game sessions is important for the
captain and owners. It is critical to monitor how tired a player is and when to make
a player rest by replacing by a new one and vice versa. Therefore, general health
monitoring while in action is critical. A recent work [6] employs 9 pressure sensors
embedded in the shoe soles that can be used to measure the amount of pressure on
the player’s feet and conveyed to the coach sitting on sidelines. Data obtained from
two feet are compared to determine the degree of fatigue during playing, and
changes in the pressure data over time can be used to determine time to change with
a resting player. The sensor data can be obtained in real time by the coach and take
a player out/in. The scheme can be useful for areas where uninterrupted long hours
are needed such as nurses, doctors, army and defense personnel, and truck drivers.

In a similar way, helmet is being used by football players for avoiding con-
cussion due to the impact on head by injuries (Fig. 16.16a) and integrated assembly
equipped with thermal sensors, video cameras, and chemical and biological sensors
is commercially available. So, efforts are being made in monitoring potential health

(a) (b)

(c)

Fig. 16.10 a ECG set up b ECG waveform c IMEC patch
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problems due to different factors. But, once diagnosed, same amount of medicine is
prescribed for duration of more than a week, commonly for a month, and no change
in medication is done for extended period of time. Therefore, there is a need to
monitor patient’s condition 24/7 and accordingly adjust the medication doses as
needed. Such a future system is illustrated in Fig. 16.16b.

16.5 Communication Through Skin

To monitor physiological parameters, SNs can be mounted on or implanted inside
human body and transfer data to healthcare provider or doctor for analysis in
multi-hop fashion. One such deployment is shown in Fig. 16.17, and irrespective of

Fig. 16.11 a Wrist Strap for physiological conditions [15] b Smart skin sensors [16]
c SHIMMER wearable mote [17]
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employed routing protocols (Table 16.4), SN in operation will cause heat rise in
the surrounding vicinity as transmission, reception, and relaying of packets cause
an increase in temperature. This is independent of underlying MAC protocol
(Table 16.5). If heat rise is > thermoregulation, then tissues could be damaged. In
order to obtain a mathematical mode for the heat rise, Pennes bio-heat equation [7]
is given as follows:

CP
@T
@t

¼ rðKrTÞþA0 þB0 T � Tbð Þþ qðSARÞþPD; ð16:1Þ

where T is the temperature in °C, K is the thermal conductivity(J/(ms oC)), C is the
specific heat(J/(kg °C)), A0 is metabolic rate, B0 is the blood perfusion constant(J/
(m3 s oC)), TB is the temperature of the blood in °C, and PD is the power dissipated

Fig. 16.12 a Reflective Markers b Fiber optic sensors c e-Textile SNs
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over a volume. Temperature of different parts of the body does increase and is
summarized in Table 16.6. Most existing work assumes each SN to have a fixed
awake time ðtAÞ. A sleep-awake cycle scheme has been proposed [8] which
combines both thermal awareness and generating of efficient duty cycle by
proposing a heat-based MAC protocol. Given a WBAN, set a fixed awake time for
each of the SNs, termed as sampling window for each SN. Once a SN has its
sampling window period, it goes to sleep. The duration of its sleeping period ðtsÞ is
given by the following equation:

ts ¼ PDFðDTÞ; ð16:2Þ

where PDF is the probability distribution function. There are many possible sleep
models that indicate the amount of time SNs sleep such as Poisson, Binomial,

Fig. 16.13 a, b Human whole body c Portions of body d Facial animation e, f, g, h, i Sensors for
seated postures j Original chair and chair with Sensors
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lognormal, and Laplace. PDFs are able put the SNs to sleep for a longer period
based on the temperature rise. These PDFs have been tried to check which provides
a better throughput as a function of network size (Fig. 16.18a). Figure 16.18b
shows the average temperature rise of the network when the sampling window time
is increased. The network size is set to 3 × 3 2-D mesh and simulated for 1000 s by
varying the value of sampling rate from 1 s to 5 s. Figure 16.18c shows the tem-
perature rise of each node along the y-axis with a sampling rate of 5 s which clearly
shows that Node 5 has a peak temperature increase as this is the busiest node in
terms of this network. Figure 16.18d shows variation in sleep time over SNs. It is
observed that Node 5 indeed sleeps for around 30% of the time in Poisson,
Binomial, and Laplace distributions and 40% of time in case of the lognormal
distribution. It may be noted that the grids are portions of human tissue that are able
to transmit heat through convection and radiation constantly that makes SNs to be
constantly heated up, even after packet loss (Fig. 16.19).

Fig. 16.14 a Shoe to
determine FoG b Electronic
circuitry inside shoe sole
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16.6 Interference in WBANs

When multiple WBANs are present close by, then there will be interference as other
SNs could concurrently transmit within the transmission range of a sender SN. Two
types of interference are possible: intra-WBAN interference and inter-WBAN in-
terference (Fig. 16.20). Both intra-WBAN and inter-WBAN interferences are due
to cochannel interference that could lead to critical data loss, which can prove to be
life-threatening to patients using these devices for health monitoring. This is also a
severe threat to reliability of the network functioning and is a security threat for the
patient’s personal data. Attempts have been made to increase throughput in the
WBAN. These include opportunistic packet scheduling, variable TDMA schedul-
ing, and random and incomplete coloring algorithm. The energy consumption of
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SNs is too high in opportunistic scheduling, and most schemes do not address the
issues of transmission losses due to unpredictable human mobility. None of the
existing models use IEEE 802.16.6 standard which is designed especially for
WBAN ensuring QoS. So, two schemes [9] have been suggested to mitigate
interference in WBANs. Intra-WBAN interference mitigation is achieved by Fuzzy
inference reasoning and decision making for allocating transmission slots
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Fig. 16.17 a Transferring Physiological data using SNs b Coordinator Model on human body
with 25 SNs

Table 16.4 Thermal aware routing in WBAN [18]

Protocol Routing decision Network temperature Nodal temperature Packet drops

TARA Per-hop High Moderate Yes

LTR Per-hop Moderate Low, Highw Yes

ALTR Per-hop Moderate Low, Highw No

LTRT End-to-end Moderate Moderate No

HPR Per-hop Moderate Low No

TSHR Per-hop Moderate Low No

SHR Per-hop High High No
wWorst case
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(Fig. 16.20b, c), while inter-WBAN interference mitigation is achieved by a
decentralized cooperative scheduling approach for mobile WBANS, among the
interfering coordinators to ensure non-overlapping transmission slots.

Three input variables of sensor signal-to-noise ratio in dB, bit error rate ratio,
and energy per bit to noise power spectral density ratio corresponding to all n SNs
in the WBAN are used to have a unique output decision that maps to either of the
three possibilities, namely “defer,” “schedule,” or “forward,” data and defuzzifier is
not required in this approach. The inputs are BER � {too high, acceptable, good};
SNR � {dangerous, just-okay, better}; and Eb/N0 � {critical, boundary, superior},
while the output decision is � {defer, schedule, forward}. The Fuzzy interference
table is given in Table 16.7. Decision considers two parameters BER and Eb/N0.

BER and SNR are given in Fig. 13.21.
Inter-WBANs interference is present when two or more WBANs are within the

interference range of one another Fig. (16.21). Each SN sends data to its coordi-
nator in their own scheduled slot time. If two WBANs using the same frequency
channel are overlapped, the received SINR of some SNs at the coordinator will be
below threshold which is unacceptable. Thus, a cooperative scheduling among
WBANs is required to mitigate interference (Fig. 16.22a). Shox network simulator
used [9] to set up multiple WBAN scenarios with 25 SNs is strategically placed in
10 m × 10 m area. There are local coordinators (LCs), and other nodes are used for
sensing, variable data rates up to 250 kbps. The properties of physical and MAC
layers are set according to IEEE 802.15.4 standards. The SNs movement is decided
by setting Random Waypoint Model (RWPM). A variable disc model is used in
which the receiver receives packet with a signal strength of s(rx) = s(tx)/dÂ2,
where d is the Euclidean distance between sender and receiver SNs pair. A number
of messages are exchanged in the decision process as time elapses, which is given
in Fig. 16.22b, c.

Table 16.5 MAC protocols
and metrics [19]

Metric CSMA/CA TDMA

Power consumption High Low

Traffic level Low High

Bandwidth utilization Low Maximum

Scalability Good Poor

Synchronization N/A Required

Table 16.6 Temperature
increase in human body with
implanted coil dissipating
984 µW [20]

Tissue Maximum temperature rise °C

Retina 0.025

Skin 0.089

Fat 0.152

Bone 0.018
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16.7 Data Reduction Schemes

Table 16.8 shows encoding of two physiological signals: pulmonary artery pressure
(PAP) and ECG. These could be sent through SMS messages. As there is a limit of
160 textual characters in SMS, 3600 samples for 10 secs would need 24 messages.
One possibility is to utilize short-duration PAP and ECG signals. Another alter-
native is to skip some of the frames without affecting the final outcome, and a
sample reduction by a factor of 5 would lead to only 5 SMS messages. To enable
skipping of frames, architecture has been proposed [10] as shown in Fig. 16.23.

A WBAN with a coprocessor is used as an additional microcontroller for data
logging, processing and temporary storage of data samples. Smartphone is used as
the Coordinating Sink Station (CSS). Wireless extension/add-on for SN commu-
nicates with the CSS over GSM. SNs sense and process the physiological data,
encode, pack as a text message or as a voice-coded data message, and pass on to
GSM extension. The extension transmits the data to the smartphone CSS. CSS can
make decisions regarding a need-based use of voice/data network instead of WBAN
links. Another important functionality is the use of speech signal encoding of the
physiological sensor data using PSK and transmission as a voice call. The copro-
cessor sends encoding request to the signal processor which acknowledges the
request and generates a digitally modulated output of the compressed sensor data
using BPSK. This encoding uses human speech frequencies (100 Hz–3.3 kHz) in
digital modulation. The generated output is a human voice signal, and Arduino
microcontroller board with a GSM shield extension provides necessary interface.
Four different subsets are derived from original PAP and ECG signals, with the first
subset retains alternate samples, the second contains every third sample, the third
set has every fourth sample, and the fourth has every fifth sample (Fig. 16.24). The
reduced samples by skipping frames is compressed, encoded, and transmitted as
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text messages over GSM network. At the receiving end, the encoded and com-
pressed BAN data is processed to rebuild the original samples. Missing samples are
recreated using five numerical interpolation techniques. The nearest-neighbor in-
terpolation algorithm has higher errors, while linear spline interpolation performed
better on data sets (Fig. 16.24).

Another approach for minimizing physiological data is to do aggregation in time
domain [11] using regression polynomial discussed in Chap. 10. A fourth-order
polynomial can be written as:

Table 16.7 Fuzzy inference
table

BER SNR Eb/N0

Dangerous Just-okay Better

Too high Defer Defer Defer Critical

Too high Defer Defer Defer Boundary

Too high Defer Defer Schedule Superior

Acceptable Defer Schedule Schedule Critical

Acceptable Defer Schedule Schedule Boundary

Acceptable Forward Schedule Forward Superior

Good Forward Forward Forward Critical

Good Forward Forward Forward Boundary

Good Forward Forward Forward Superior

(c)

Fuzzifier 

Inference 

Defuzzifier 

Rules
Crisp 
Outputs 

Crisp 
Inputs

Fuzzy
Input sets 

Fuzzy 
Output sets 

Fig. 16.20 (continued)
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f ðtÞ ¼ b0 þ b1tþ b2t
2 þ b3t

3 þ b4t
4: ð16:3Þ

and eighth-order polynomial as:

f ðtÞ ¼ b0 þ b1tþ b2t
2 þ b3t

3 þ b4t
4 þ b5t

5 þ b6t
6 þ b7t

7 þ b8t
8; ð16:4Þ

where β′ s are constant coefficients and f(t) is the value at time t.
A fourth-order polynomial can be easily created by the following matrix:
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Then,

b~b ¼ TTT
� ��1

TT~y; ð16:6Þ

where b~b is an estimate of the original coefficients. This has been used for 4 types of
biological data, blood pressure, EEG scalp readings, motor movement signals, and
motor movement signals in patients with neurodegenerative disorders. The accu-
racy is measured for both fourth-order and eighth-order polynomials (Fig. 16.25).
Eighty blood pressure samples are taken at 0.01 s intervals and 80 samples in μV
are taken for motor movement at 0.0039062 s intervals, while the sample size of
Degenerative Gait EEG Readings is 300, and measures signals in mV are obtained
from the left leg at 0.0033333 s intervals.

Table 16.8 Encoding for the two physiological signals

Physiological
parameter

Range
(mV)

Span
(mV)

Step size (8bit
encoding) (MuV)

Max encoding error
(MuV)

PAP 20–45 25 97.6 48.8

ECG-II −0.75–0.0 1.75 6.83 3.41
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16.8 Physiological Parameters for Identification Secured
Communication

The traditional biometric approaches make use of distinct physiological charac-
teristics of a person and use the same to determine their identity. This entire process
is termed as biometric authentication [12]. The most conventional parameters
involve physiological characteristics ranging from noninvasive features such as
facial and hand geometry to invasive techniques such as impression from a finger,
the distinction of an iris, or the structure of the DNA. Some behavioral patterns also
find application in identity association such as voice modulation and acoustics, the
mechanics of locomotion, keystroke dynamics, and one’s penmanship. In general,
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biometric parameters are qualified by: invariance, measurability, singularity, ac-
ceptance, reducibility, reliability, and privacy. Given such considerations, the
numbers of such parameters which find applicability are few. A point to be taken
into consideration is that biometric systems are not perfect nor are they designed to
be so; additionally, there are two error metrics commonly associated with bio-
metrics: FAR (false accept rate) and FRR (False Reject Rate) [13]. FAR refers to
the probability of generating a false positive, which is wrongly identifying and
accepting an impostor for a genuine user. FRR refers to the probability of mis-
takenly rejecting a valid user. These two parameters jointly serve as tools which can
gauge the overall performance of a biometric feature in action. A third parameter at
which the false rejection rate and the false acceptance rate are equal also acts as a
metric for determining the accuracy of a biometric system known as equal error
rate.

Over the years, several researchers have concluded that the study of a person’s
gait is adequate to determine their gender and identity. Most of the research in the
analysis of gait has been limited to the usage of photography and video capturing
devices, limiting the study to spatiotemporal components. Gait recognition tech-
niques can be broadly classified into three categories: (a) machine vision
(MV) based, (b) floor sensor (FS) based, and (c) wearable sensor (WS) based.
MV-based gait analysis techniques usually incorporate studying the silhouette of a
person as capture on reel. Usually, the parameters of interest are stride, cadence,
height, proportions of bodily features and, the overall silhouette of the person. The
cameras used for studies could be video or infrared or a combination of both,
depending upon use. The main idea behind such monitoring model is to breakdown
movement into a collection of joints and their functioning, thus computing the
angular motion of each component during motion. These involve the placement of
floor-mounted load transducers, commonly referred to as force sensors. Such a
platform is responsible for measuring the ground reaction forces along with the
direction, magnitude, and location of the applied pressure. While this technique

Shoe mounted with 
Pressure sensor 

Central 
controller

Base Station 

Fig. 16.26 Architecture for Gait Monitoring

384 16 Personal/Body Area Networks and Healthcare Applications



does satisfy the properties that make a good biometric, the infrastructure costs
involved render this technique economically unfeasible, thus preventing it from
finding application in real life. WSN-based techniques usually involve the usage of
inertial sensors such as accelerometers and gyroscopes to study the human form
while in motion. The purpose of this technique is to apply the motion sequence
generated by the lights to identify the wearer, thus providing a large scope for
biometric applications.

Person’s stride interval is used as a biometric and can be achieved by placing
pressure sensors in the sole of the person’s shoe (Fig. 16.26). By virtue of its
placement, every footstep taken is recorded; as such, the time lapse between steps
can be monitored and processed. A standard pressure sensitive floor is not the
preferred tool of choice given its high susceptibility to external noise and subjec-
tivity to exterior motion. As such, on-body sensors allow the sensed data to be
localized to only the user concerned, allowing for improved identification and
authorization. A critical feature of this model is to insure that the sensor cannot be
felt by the user, which may lead to consciousness and discomfort. Given its
inconspicuous positioning, this system can be easily deployed on humans, ready to
adapt to everyday living.

While the limitations of gait are known, we propose using gait as a passive
biometric, paired with another feature rather than being used in isolation. However,
before we investigate the merits of the latter, in this research we will be discussing
the benefits of using gait alone.

The data set is analyzed by employing statistical measures for the purposes of
establishing consistency and uniqueness and to derive its characteristics precisely.
Based on the available data, distribution of the stride interval values for (a) a user
and (b) across multiple users has to be determined. In the former case, the stride
interval generated by each of 10 users follows a normal distribution (Fig. 16.27).
This implies that a particular user tends to follow a rhythmic motion, and each step
is almost equally spaced apart, following a normal distribution. Theoretically, the
probability density function is given by:

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp�
ðx�lÞ2
2r2 ð16:7Þ

The parameter μ ψ is the expectation value against the sensed data; σ ψ refers to
the standard deviation about the mean. It can be concluded that humans in motion
tend to adopt a two-dimensional Gaussian distribution. As shown in Fig. 16.27, a
Gaussian density function is made available at each data point, and over the range
of the data, the sum of density functions is computed. Considering the randomness
of the sensed data, data from different users exhibits a bell-curve distribution, with
the trend for each user being localized around a mean. With every user in con-
sideration, the distribution plot is plotted and a normal distribution can be obtained.
Although the distribution function for each group is not uniform, the three means
for each user are largely centric about a similar mean. The stride interval exhibits
long-range power-law correlations which indicate a fractal process model
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assumptions that we make when we apply gait as a biometric is that each recorded
value can be modelled as a normal random variable that each occurrence of a
statistic is statistically independent and, finally, that each result obtained traces back
to a population having the same variance. To perform the summary analysis, a
one-way ANOVA (analysis of variance) was carried out with alpha >ψ 0.05,
exhibiting statistical significance. The results from the ANOVA runs are very
promising and confirm the fractal nature of human strides.
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Given that authentication is the main goal behind applying Gaussian Mixture
Models (GMMs) [14], the gait model should be such that it can produce a low FRR
and FAR. Additionally, confusion matrix and classification performance rate are
generated which are used to compute the acceptance/rejection parameters. The
results for FRRs and FARs for 220 samples (obtained from Monte Carlo methods)
are shown in Fig. 16.28. A key feature to be noted is that the algorithm should fare
well for computing FRR and FAR over time. The results depicted show the vari-
ance of FRR and FAR over a varied sample space (from 100 samples to 2500
samples) (Fig. 16.29). These values span across a range from 0.1 to 8.0% using the
aforementioned features. Our conclusion is that smaller sample spaces exhibit better
modelling prediction(s). The classification algorithm averaged 87% positive clas-
sification rate, which is reasonably high (Fig. 15.29). The trend that we observe is
that FRR and FAR showed a consistent variance, thus illustrating the advantage of
the adaptive modeling.

16.9 Conclusions

Numerous biomedical applications of transducers and SNs are feasible, and the
demand and need for new areas are continuously growing. This is relatively new
application area even though this has a long-lasting impact on human health. The
key is to develop transducers that could function with 100% reliability and would
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not provide any false alarms. There is also a need for 24 × 7 unattended monitoring
that poses a lot more constraints and needs to be addressed carefully. The number of
SNs on human body could be limited to around 25 and could be placed not totally
randomly, but not in a 2-D mesh structure either. This calls for further investigation
of WPASNs and is an open area of research.

16.10 Questions

Q:16:1. How can you ascertain reliability in the monitoring of patient vital signals
from sensors?

Q:16:2. What is the impact of stability on the results of biomedical monitoring?
Q:16:3. What impact do you expect on the WBAN performance if a patient is also

moving around?
Q:16:4. What specific measures are needed to ensure security of patients’ physi-

ological data?
Q:16:5. What are the parameters that you utilize in WBAN for a biomedical

application?
Q:16:6. In a WBAN, transducers are connected using wireless links to the local

coordinator. Can they be hardwired to the coordinator?
Q:16:7. What are the limitations and advantages of approach suggested in Q. 16.5?
Q:16:8. What will be the impact on accuracy, reliability, delay, and interference if

the number of SNs is doubled in a WBAN?
Q:16:9. In order to minimize interference, distance covered by individual SN in a

WBAN ought to be reduced. On the other hand, new Bluetooth scheme is
increasing the communication distance. What may be an appropriate
approach for future biomedical applications?

Q:16:10. What will be the impact on performance and reliability if some trans-
ducers are embedded inside body skin while others are outside on the
body?

Q:16:11. What other physiological parameters that could be used for identification
of a person and associated security issues?
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