
Chapter 12
Clustering and Energy Consumption
Minimization

12.1 Introduction

A large number of SNs are deployed in a WSN and SNs need to route data to BS.
This creates a volume of data at BS and efforts need to be made to reduce the size of
data. One effective approach is to explore the use of clustering WSN such that
cluster members can send data to selected CH where data are aggregated and a
single packet is forwarded by each CH. This leads to drastic reduction in data size.

12.2 Clustering

Topology management protocols for WSNs suffer from at least one of the following
problems. It depends on location awareness (e.g., GAF: Geographic Adaptive
Fidelity), or converges slowly (i.e., dependent on the network diameter). As energy
efficiency is not the main goal of many protocols, e.g., Max–Min clustering max-
imizes the number of CHs and minimizes distance from each SN to CH and there is
no focus on the quality of clustering, such as having CHs well-distributed in the
network (e.g., LEACH [1]). For electing CHs, the primary parameter is the residual
energy (Er) with a SN and a secondary parameter being the communication cost that
is used to break ties, such that it maximizes energy consumption and minimizes
cost. Selecting CH reduces structural complexity in a WSN, and complex/energy
consuming activities are delegated to a subset of SNs in the network. It not only
reduces routing complexity but reduces wireless interference and preserves net-
work capacity, while maintaining connectivity in a WSN. It also lessens routing
complexity, reduces wireless interference, and preserves network capacity.

Besides reducing complexity, topology control approaches used in a WSN
involve how to reduce radio power consumption. Most work concentrate on
minimizing radio interference and reducing routing complexity while not worrying
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too much about its capacity. The net effect is routing selectivity is lost and incurs
increased topology maintenance overhead. The literature is full of numerous
theory/simulation results, and very few experimental results have been explored as
algorithms are complicated and underlying assumptions in the algorithm are diffi-
cult to realize in practice. Moreover, wireless links usually vary in quality over time
as wireless links do not follow binary value (good/bad) in nature and wireless links
may be asymmetric. SNs are designed using low-speed CPUs, and it may not be
possible to run complex algorithms. So, the overall objective should be to define a
clustering approach that is completely distributed, has low message/processing
overhead, terminates in O(l) iterations with l links, creates generates high-energy
and well-distributed cluster heads (CHs), and can provide other characteristics such
as balanced or dense clusters.

Hybrid, energy-efficient, distributed [2] clustering approach (HEED)
(Fig. 12.1a) is proposed that it allows every SN to use information from its 1-hop
neighbors only (within cluster range). HEED is distributed and energy-efficient as it
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Fig. 12.1 a CH election algorithm in HEED, b example WSN in electing CH with HEED
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elects those SNs as CHs that are rich in residual energy Er, and reclustering is used
to result in distributing energy consumption, with Emax being the maximum energy
of each SN. The algorithm is implemented in three steps of initialization, main
processing, and finalization. In initialization step, neighbors are discovered within
the cluster range and initial cluster head probability CHprob = f(Er/Emax) is com-
puted as the ratio of residual energy of a SN with maximum energy (Fig. 12.1b). In
main processing, if a SN v receives message from few SNs to be a CH, then select
one SN as CH that costs minimum energy consumption. If SN v does not have a
CH, then elect to become a CH with CHprob and adjust its probability by
CHprob = min(CHprob * 2, 1) and repeat until CHprob reaches 1 and a CH is found.
In finalization step, join the CH if found; otherwise, elect SN to be a CH.

Thus, HEED consists of discovering neighbors, computing (CHprob, cost), elect
to become CH and resolve ties, and finally select CH. The HEED has the properties
like completely distributed, and clustering terminates with iterations as follows:

Niter � log2
1
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� �
þ 1; ð12:1Þ

where Pmin is the minimum node degree of SNs. The processing overhead is O
(n) per SN where n is # SNs and the message overhead is O(1) per node = #
iterations required. The CHs are well-distributed. Pr and there exists at least one CH
in any area of size
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HEED produces a connected multi-hop CH graph asymptotically, and its per-
formance comparison for a field of size 100 × 100 with 1000 SNs is shown in
Fig. 12.2 [2], with initial energy Er of 2 J, and each round consists of 5 TDMA
frames. So, the next question is how the network density and initial bootstrap
parameters change the rate of energy consumption and lifetime of WSN. Clustering
scheme has been implemented [3] on a simple simulator without modeling con-
tention or message losses due to collisions. A WSN in an 500 × 500 m area is
modeled as a Poisson point process with intensity λ varied from 0.0002 to 0.002
with communication range rc of 90 m, and initial probability of being a CH in
round 0 be denoted as p0. In the ith round, a SN becomes a CH with probability
kip0. This leads to each SN having an average of 5–50 neighboring SNs. The
number of CHs as a function of SN density is shown in Fig. 12.3a while b
illustrates the impact of p0.

Another clustering scheme [3] performs the sequence of time synchronization,
neighbor discovery, cluster selection, gateway selection, and routing as a part of
setup phase as shown in Fig. 12.4 and needs to be repeated at regular intervals. The
clustering algorithm has been tested on 42 Mica2 SNs test bed [3], with the
maximum one-hop neighbors of 15. B-MAC is adopted with DSDV-like
table-driven proactive query–response approach. Link-level measurements are
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used to select routing parents (Fig. 12.5). As CHs consume a lot more energy, it is
desirable to recluster occasionally. Using δ as controlling power saving degree,
Fig. 12.5c shows the effect of network density and δ on the reclustering period with
p0 = 0.032, k = 2, and duty cycle X = 50%. To balance energy, frequent reclus-
tering is required as fewer CHs are used here. CHs are tried for varying duty cycles
(X = 2–45%). Radio is selected as 19.2 Kbps with a packet payload of 36 bytes.
Every SN transmits packets with probability α%, and α is varied for two types of
scenarios: low data rate experiment, with SN remains idle most of the time with a
very brief periods of activity (e.g., earthquake detection) and α = 0.1 to 1; high data
rate experiment with larger active periodicity (e.g., temperature monitoring) and
α = 10–100. Experimental default parameters are shown in Table 12.1 and clus-
tering overhead is given in Table 12.2. 11 out of 42 SNs are selected as CHs and
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achieve roughly 3 times of energy efficiency of B-MAC. About half the overhead is
due to routing and clustering consumes about remaining half. With time syn-
chronization of 17 h leads to synchronization error of up to 10 s. During the
neighbor discovery phase, SNs periodically broadcast beacon signals to discover
neighbors and receiving SNs use this to determine link quality. In cluster selection
phase, few SNs adjacent to current CHs are selected as new CHs with probability
kip0 in the ith round where p0 is probability of being CH in round 0. When a SN
becomes a CH candidate, it broadcasts a CH Advertisement (CA) message till the
timer expires. In cluster selection phase, SNs select their CHs and two adjacent CHs
choose their gateway SN. A proactive routing algorithm is used to determine path to
BS via CHs and gateway nodes. Throughput is illustrated in Fig. 12.6; energy
efficiency in topology control and routing is illustrated in Fig. 12.7, and the results
depend on the values of p0 and constant k. A parameter δ is used as a controller that
reflects power saving desired by the designer, and δ = 1 means all SNs follow the
same duty cycle while δ = 0 means all SNs are turned off and only CH maintain a
duty cycle.

12.3 Sensor Properties and Resource Constraints

WSNs have lower transmission distances (<10 m), lower bit rates (typi-
cally < kbps) and limited battery capacity [4]. Many different SNs have been
developed including MIT μAMPS with 59–206-MHz processor, 2 radios, capable
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of transmitting at 1 Mbps, and 4 KB RAM; Berkeley MICA motes with 8-bit,
4-MHz processor; 40-kbit CSMA radio; 4-KB RAM, and TinyOS -based operating
system. However, circuit gains are nearing flat as circuit tricks and voltage scaling
provided a large part of the gains (Fig. 12.8).

While energy needs functionality, speed, they continue to climb at the rate of
10× increases in gate count every 7 years) and in frequency every 9 years. Speed
power efficiency has indeed gone up 10 times every 2.5 years for μPs and DSPs in
1990s and varies from 100 mW/MIP to 1 mW/MIP since 1990. IC processes have
provided 10 times improvements every 8 years since 1965. Power consumption is
being lowered for a given function and performance, such as DSP is reduced by 1.6
times every year since the early 1980s and most optimistic projections are 60 pJ/op
(about 20 times) for a given function and performance (Table 12.3).
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Table 12.1 Setting for
MICA2 experiments

TinyOS experiment parameters Default

Initial cluster probability (p0) 0.032

Constant multiplier (k) 2

Cluster head and gateway duty cycle (X) Varied

Member node duty cycle (δ = 0) 0

Transmission power (full power) 10 dBm

Communication bandwidth (CC1000 radio) 19.2 Kbps

Preamble size Varied

Payload size 36 bytes

Radio transmission power consumption 60 mW

Radio receiving power consumption 45 mW

Channel sampling power consumption 5.75 mW

Table 12.2 Clustering set up
overhead cost

Phase Average time (s) Average energy (J)

Time
synchronization

10 0.235

Neighbor discovery 20 0.469

Cluster selection 60 1.288

Gateway selection 20 0.429

Routing 120 2.583

Total 230 5.004
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Table 12.3 Properties of sensor nodes

Radio mode Power consumption (mw)

Transmit 14.88

Receive 12.50

Idle 12.36

Sleep 0.016
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Power efficiency (or energy efficiency) ηP is defined as the ratio of signal energy
per bit Eb to noise power spectral density N0 required at the receiver for a certain
BER (bit error rate) and is given by

gP ¼ Eb=N0: ð12:3Þ

High power efficiency requires low (Eb/N0) for a given BER and the bandwidth
efficiency

gB ¼ bit rate=bandwidth ¼ Rb=W bps=hz: ð12:4Þ

The ratio of throughput data rate to bandwidth occupied by the modulated signal
typically ranges from 0.33 to 5, and there is a trade-off between the two as for a
given BER. Adding FEC reduces ηB, but reduces required ηP. Modulation schemes
with larger number of bits per symbol have higher ηB, but also require higher ηP.
Projected computation cost in 2004 is 60 pJ/op, and minimum thermal energy for
communications is 20 nJ/bit transmitting for 100 m at a bandwidth of 1.5 GHz is
equivalent of 300 ops and 2 nJ/bit at 1.5 GHz for 10 m is equivalent of 0.03 ops
(Fig. 12.9a). There exists a clear trade-off between significant processing energy
versus communication cost. A reduction in supply voltage decreases speed
(Fig. 12.9b) and the supply voltage ought to be reduced when slower speed can be
tolerated.

To combat slow operation, another alternative is to use architectural techniques
such as concurrency and pipelining via compiler techniques. Parameter of
Rockwell WINS SN of Fig. 1.10a is shown in Fig. 12.10b. The processor con-
sumes 360 mW power doing repeated transmit/receive, and transducer takes
23 mW. Shutdown is attractive for many wireless applications due to low duty
cycle of many subsystems, and issues to be addressed are the cost of restarting as
latency versus power trade-off remains that increases in latency (response time) and
power consumption due to start-up. So, the question is, when to shut down for
optimal gain and how to select idle time threshold or use some predictive approach
and when to wake up for optimal performance or depend on on-demand service or
utilize predictive approach? (Fig. 12.11). Two main approaches are reactive versus
predictive. In a reactive approach, the SN goes to reduced power mode after the SN
has been idle for a few seconds/minutes and restarts on demand. In predictive mode,
computation history is used to predict whether Tblock[i] is large enough satisfying
Tblock[i] ≥ Tcost. It has been observed that it is better to lower voltage than to
complete shutdown in case of digital logic. For example, a task with 100 ms
deadline requires 50 ms CPU time at full speed. A normal system gives 50 ms
computation, 50 ms idle/stopped time. At half speed/voltage system gives 100 ms
computation, 0 ms idle and thus requires the same number of CPU cycles but 1/4 in
energy consumption. So, the voltage gets dictated by the tightest (critical) timing
constraint both on throughput and latency. So, it is better to change voltage
dynamically and use voltage to control the operating point on the power versus
speed curve. As the power and clock frequency are functions of voltage, the main
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challenge is algorithmic and need to schedule the voltage variation as well either
through compiler or OS or the hardware (Fig. 12.12).

Advanced Configuration and Power Management Interface (ACPI) allows
OS/drivers of SN to be in sync regarding power states, and a standard way is used
for the system to describe its device configuration and power control hardware
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interface to the OS. Common functions are registered through interface and the
system controls the events, processor power and clock control, and thermal man-
agement. Information on devices, resources, and control mechanisms is described
using tables (actually linked to a table of tables) and power management capabilities
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and requirements for each device are described. There are specific methods for
setting and getting the power state, and hardware resource settings are managed by
appropriate methods. Thus, ways are provided for application, operating system,
and hardware to efficiently exchange energy/power and performance related
information. This facilitates a continuous dialogue/adaptation between OS and
applications, and power-aware OS services are implemented by providing a soft-
ware interface to low-power devices. A power-aware API to the end user enables
one to implement energy-efficient RTOS services and applications. The applica-
tions’ interface enables the application to pass on RT (round trip) information to OS
(period, deadlines), WCET (worst-case execution time), hardness by creating new
threads. It also predicts when OS time is expected to finish a given task depending
on the conditions of the environment (application dependent and not yet imple-
mented). OS is also able to predict and tell applications the time estimated to finish
the task depending on the scheduling scheme used, and a task with hard deadline
must be killed if its deadline is missed.

Blocked 
“Off”

Active 
“On”

Tblock Tactive 

Ideal improvement= 1+Tblock /Tactive 

Fig. 12.11 Blocked and active state of Rockwell WINS node
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12.4 Conclusions

There are many issues critical to WSNs, and clustering is very useful, especially for
randomly deployed WSNs. The question has been addressed as to how to do it
effectively with minimal information about neighboring SNs. What is the impact of
multi-hop communication and how to keep the process distributed in nature.
Reducing supply voltage could be another effective solution in order to minimize
energy consumption.

12.5 Questions

Q:12:1. What is an optimal cluster sizes for wireless sensor networks?
Q:12:2. In the following examples of WSNs, how many clusters will be formed

using (i) LEACH, (ii) HEED, and (iii) topology control schemes?
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Q:12:3. In Q. 12.2, can you identify CH? How much is the average distance in
hops for three cases?

Q:12:4. How many control messages are used in each case, neglecting any
collisions?

Q:12:5. How frequently you need to do reclustering if SNs synchronized every
2 min? Assume appropriate parameters for initial energy and power con-
sumption rate.

Q:12:6. What is the difference between two different clustering schemes done for
the WSN? Explain clearly.
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Q:12:7. In the following WSN, how can you group SNs to form clusters? Explain
your answer carefully.
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