Using a Fine-Grained Hybrid Feature
for Malware Similarity Analysis

Jing Liu®, Yongjun Wang, Peidai Xie, and Xingkong Ma

College of Computer, National University of Defense Technology,
Changsha, Hunan, China
liujing nudt@nudt. edu. cn

Abstract. Nowadays, the dramatically increased malware causes severe chal-
lenges to computer security. Most emerging instances are variants of previously
encountered malware through polymorphism and metamorphism techniques.
The traditional signature-based detecting methods are ineffective to recognize
the enormous variants. Malware similarity analysis has become the mainstream
technique of identifying variants. However, most existing methods are either
hard to handle polymorphic and metamorphic samples based on static structure
feature, or time consuming and resource intensive by using dynamic behavior
feature. In this paper, we propose a novel malware similarity analysis method
based on a fine-grained hybrid feature by exploiting the complementary nature
of static and dynamic analysis. We integrate dynamic runtime behavior with
static function-call graph. The hybrid feature overcomes the limitation of using
static and dynamic feature separately and with more accuracy. Furtherly, we use
graph edit distance, and inexact graph matching algorithm as metric to measure
the distance between malicious instances. We have evaluated our algorithm on
real-world dataset and compared with other approach. The experiments
demonstrate that our method achieves higher accuracy.

Keywords: Similarity analysis + Function-call graph - Hybrid feature - Graph
edit distance

1 Introduction

Malware poses a major threat to network security. According to the latest report of
Symantec, more than 430,000,000 new malware samples were discovered in 2015, up
36 percent from the year before. The sheer volume of malware brings severe challenges
to security vendors. However, research shows that the majority of new incoming
malware instances are merely variations of encountered malware through polymor-
phism and metamorphism techniques. They share the same functionality while have
different syntactic representations.

Malware similarity analysis has been put forward to efficiently cope with the
tremendous number of variants. Through precisely measuring the similarity based on
quantitative metric to determine whether a malware program is similar to a
previously-seen sample. A large amount of time and resources could be saved to avoid

© Springer Nature Singapore Pte Ltd. 2017
J.J. (Jong Hyuk) Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing,
Lecture Notes in Electrical Engineering 421, DOI 10.1007/978-981-10-3023-9_9

Using a Fine-Grained Hybrid Feature for Malware Similarity Analysis 55

the duplicated analysis of variants. It is the basis for automatic malware detection. It is
also the foundation of malware classification and phylogeny model generation.

In this paper, we propose a novel malware similarity analysis metric using a
fine-grained hybrid feature, which combines static function-call graph and dynamic
runtime traces in a way that taking advantage of both simultaneously. Firstly, we
extract the function-call graph of programs using static analysis, which is resilient to
low-level obfuscation, such as basic block-reordering, register reassignment. Each
vertex in function-call graph represents a function and each edge represents a
caller-callee relationship between functions. Then we extract the dynamic runtime trace
sets as function labels. At last, we use graph edit distance, an inexact graph matching
method as metric to calculate the similarity degree among malicious samples. We have
evaluated our algorithm on real-world dataset and compared with other approach. The
experiments demonstrate that our method achieves higher accuracy.

The rest of this paper is organized as follows. We review the related work in
Sect. 2. In Sect. 3, we describe the overview of framework. Then we introduce the
extraction of the hybrid feature in Sect. 4 and the calculation of similarity metric is
presented in Sect. 5. Section 6 evaluates the result of experiment. Finally, a summary
of the paper is given in Sect. 7.

2 Related Work

Malware similarity analysis has attracted considerable attention. Most existing methods
based on either static features or dynamic features.

Static features are extracted from malicious programs without executing it. Shafiq
et al. [1] proposed to extract distinguishing features from portable executable
(PE) format using the standard structural information that Microsoft Windows oper-
ating system defined. Kolter et al. [2] used n-grams of byte codes presented in the
malware binary as features. Xin et al. [3] employed function-call graph which is a
high-level structural feature for malware classification. However, as mentioned by
Moser et al. [4], static analysis is difficult to handle the advanced obfuscation or
self-mutating instances, and thus affects the accuracy of static features.

Distinguishing from static features, dynamic features are extracted from execution
traces which make them more resilient to encryption or other obfuscation techniques.
Blokhin et al. [5] partitioned system call logs acquired from sandbox into system call
sequences as features. Bailey et al. [6] described malware behavior at a high level
abstraction in terms of system state change profiles that the malware causes on the
system, like modified registry keys, network access. Wiichner et al. [7] presented
quantitative data flow graphs (QDFGs) to model program behavior through using
system calls integrated with quantifiable data flow. However, many newly malware
instances are able to detect the instrumented environment and refuse preforming
malicious activity to evade dynamic analysis.

56 J. Liu et al.

3 System Overview

Malware similarity analysis is divided into two steps: feature extraction and similarity
calculation. Figure 1 shows the overview of our framework. A malware sample is
represented as a function-call graph. Each vertex in the graph corresponds to a function
and edges represent the caller-callee relationship between functions. There are two
kinds of functions: local functions and external functions. For each local function, we
record its execution traces with dynamic instrumentation tool Pin as its label. For
external functions, we take the string of function names as the label which indicates the
functionality of each function. We integrate dynamic feature into function represen-
tations as a fine-grained hybrid feature.

I External Function
@ Local Function Label : Function Name
n functions @ /,/’// Cost Matrix
e 0N 6 cn - onlh, @ - @
Malware A - b=
He o m) G G Ga| @y
I N | \ i i i |~ = - o« |Bipartite Graph
3 € € - €| ® - @ c,| Matching Similarity
- Value
Vi)
m functions @ v o @ X 0 o - 0
/ @ ¢, . e
Malware B ue o u V A : 0
T T e] 00
Label: Runtime Traces
Feature Extraction Similarity Calculation

Fig. 1. The system overview

Then we use graph matching algorithm to calculate the similarity degree between
pairwise samples. Graph matching methods fall into two categories: exact matching and
inexact matching. Exact matching problems are NP-complete. Therefore, we use graph
edit distance, one of the most widely used inexact matching algorithms. It is highly
flexible and is applicable to types of graph integrated with special domain knowledge by
means of cost functions. Graph edit distance is defined as the cost of the least expensive
sequence of edit operations that are needed to transform one graph to another.

4 Feature Extraction

This section we first introduce the definition of function-call graph. Then, we describe
the extraction of the dynamic runtime traces for each local function.

4.1 Function-Call Graph

G = (V,E) is a directed graph composed of vertex set V and edge set E. Each vertex in
the graph corresponds to a function included in the program. Each edge represents the
caller-callee relationship between functions. The vertex can be divided into two cate-
gories: local functions and external functions. Local functions are functions written by

Using a Fine-Grained Hybrid Feature for Malware Similarity Analysis 57

malware authors. Statically-linked and dynamic-imported functions are the external
functions.

Function identification is a tough challenge in binary analysis. In our paper, we use
IDA Pro to identify the boundary of functions which has achieved reasonable accuracy.
In IDA representation, local functions are named with “sub_xxxxx”, external functions
are named just the function names. IDA can provide the function-call graph of
applications directly. But as pointed in [8], the performance of IDA is still imprecise,
the missed function and misidentified function rate is alarming. In future, we will take
this issue into account.

Each function in the graph has a label. The labels of external functions are function
names. Whereas the label for local functions are the execution traces acquired from
dynamic tools. We run the malicious program with instrumentation tool Pin and record
each function’s runtime traces to form a label vector F;, which is composed of feature
sets F; = {fif>,---.fu}. Each f; denotes an aspect of dynamic behavior of functions,
like system calls the function invoked, the values the function written to memory, etc.
We choose four feature sets: the values read from the stack fi, the values written to
stack f>, the values read from memory f; and the values written to memory fi. The
feature vector is easily being extended.

5 Similarity Calculation

The central component of malware similarity analysis is to measure the distance among
malware instances. The samples are represented as function-call graph, thus casts the
problem into graph matching. Therefore, we use graph edit distance as a metric to
weigh the similarity between variants.

Graph edit distance was first proposed in [9]. It is defined as the minimum cost
amount of operation that is needed to transform one graph into another. Bipartite graph
matching as an approximate computation method of graph edit distance has been
proposed in [10]. It is a suboptimal method based on the procedure that mapping nodes
and their local structures of one graph to nodes and structures of another graph.

Let G; = (V1,E1, 1) and G, = (V,, E», 1) be the source and target graph as two

parts of bipartite graph, where V| = (vi,---,v,), Vo = (uy, - - -, u,). The cost matrix is
as below:
c11 €l vt Cpp | e %0 X
C1 Cp2 t Cm o0 Cre
0
C Cnl Cpn2 *°° Cam 00 . 00 Cpe
Col OO 59 0 0 0
00 Cen 0 O
00 0
L OC o Cem 0 0 0 J

58 J. Liu et al.

In our cost matrix, ¢; =1 / &j, where ¢; denotes the similarity degree of two
functons. For external function nodes, &;; is measured by the longest common substring
(LCS) of function names. For local function nodes, &;; is measured by Jaccard similarity
coefficient between two trace vectors Fj.

6 Evaluation

To conduct the accuracy of the algorithm we proposed, we use the data set from VX
Heavens, which has already been classified into malware families. The data set has 17
malware families and 1,326 samples, including Worms, Trojans, and Virus. We
compared the results with [11], which used static function-call graph to compute
similarity of binaries. The results demonstrate that hybrid feature outperforms solely
static function-call graph.

Virus.Win32.Sality is considered as one of the most complex and formidable
family of malware according to Wiki. And Table 1 shows the similarity matrix between
variants in family Sality. The values of leading diagonal of the matrix are equal to 1
which demonstrates comparing with themselves. The upper triangular half of the matrix
are the data of our experiment and below are [11]. The results indicate that, our method
outperforms [11] when the similarity value is low within family variants. This is
because variants’ dynamic behaviors may keep in step with each other, although their
static structures are different due to obfuscations.

Table 1. The similarity matrix of Virus.Win32.Sality

Sality.a | Sality.c | Sality.d | Sality.e | Sality.f | Sality.g
Sality.a | 1 0991]0.941 |0.618 |0.612 |.0867
Sality.c | 0.996 |1 0933 |0.618 |0.612 |0.862
Sality.d | 0.96 0957 |1 0.651 |0.639 |0.889
Sality.e | 0.627 [0.625 |0.645 |1 0.961 |0.856
Sality.f | 0.408 |0.408 [0.419 |0.581 |1 0.848
Sality.g | 0.870 |0.867 |0.884 |0.682 |0.438 |1

Table 2. The similarity matrix of Email-Worm.Win32.Klez

Klez.a | Klez.b | Klez.c | Klez.d | Klez.e | Klez.g | Klez.h | Klez.i | Klez.]
Klez.a |1 0.964 | 0.976 (0911 |0.791 [0.789 |0.783 |0.783 | 0.783
Klez.b | 0.959 |1 0.939 [0.939 |0.801 |0.8 0.793 1 0.793 | 0.801
Klez.c | 1 0959 |1 0.916 [0.792 |0.791 |0.784 |0.784 |0.792
Klez.d | 0.869 |0.91 |0.869 |1 0.811 [0.811 |0.806 |0.806 |0.812
Klez.e | 0.614 | 0.639 | 0.614 |0.672 |1 0.996 | 0.967 |0.968 | 0.994
Klez.g | 0.614 [0.639 |0.614 {0.672 |1 1 0.965 |0.967 | 0.993
Klez.h | 0.615 | 0.637 |0.615 |0.656 |0.948 |0.948 |1 0.999 | 0.949
Klez.i [0.615 |0.637 |0.615 [0.656 | 0.948 [0.948 |1 1 0.949
Klezj | 0.614 | 0.639 |0.614 |0.672 |1 1 0.948 10.948 | 1

Using a Fine-Grained Hybrid Feature for Malware Similarity Analysis 59

Table 2 shows the similarity matrix of family Email-worm.Win32.Klez. Compared
to [11], our result achieves better accuracy. Although the accuracy of a few pairs of our
results are little bit lower than theirs, such as pair Klez.j and Klez.g, the similarity value
of their method is 1 and ours is 0.993. But for the rest of pairwise samples, our results
are much higher than [11].

7 Conclusion

The large volume of malware variations poses major challenge to Anti-Virus compa-
nies. Malware similarity analysis is a critical step for malware detection and classifi-
cation. In this paper, we propose a novel fine-grained hybrid feature to calculate the
similarity degree between malware instances. We merge dynamic runtime traces into
static function-call graph representation as a hybrid one. In evaluation, we have con-
ducted extensive experiments with 1,326 samples in 17 families. The result shows that
our algorithm is more accurate. The main contributions of our work include: (1) a
hybrid graph feature for computing the similarity between malware variants to improve
the accuracy of the result; (2) integrate dynamic runtime traces into function node
representation in order to take advantage of both simultaneously; (3) a fully study of
the performance to validate its efficiency and accuracy with a 1,326 samples database.

Acknowledgement. This work is supported by the National Science Foundation of China
(No0.61472439, No.61271252).

References

1. Shafig, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner: mining structural information
to detect malicious executables in realtime. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 121-141. Springer, Heidelberg (2009). doi:10.1007/978-3-642-
04342-0_7

2. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild.
J. Mach. Learn. Res. 6(4), 2721-2744 (2006)

3. Hu, X., Chiueh, T.-C., Shin, K.G.: Large-scale malware indexing using function-call graphs.
In: Proceedings of the 16th ACM Conference on Computer and Communications Security.
ACM (2009)

4. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection 68(6), 421—
430 (2008)

5. Blokhin, K., Saxe, J., Mentis, D.: Malware similarity identification using call graph based
system call subsequence features. In: IEEE International Conference on Distributed
Computing Systems Workshops (2013)

6. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.,Morley, Jahanian, F., Nazario, J.:
Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R.,
Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178-197. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74320-0_10

http://dx.doi.org/10.1007/978-3-642-04342-0_7
http://dx.doi.org/10.1007/978-3-642-04342-0_7
http://dx.doi.org/10.1007/978-3-540-74320-0_10

60

10.

11.

J. Liu et al.

. Wiichner, T., Ochoa, M., Pretschner, A.: Robust and effective malware detection through

quantitative data flow graph metrics. In: Almgren, M., Gulisano, V., Maggi, F. (eds.)
DIMVA 2015. LNCS, vol. 9148, pp. 98-118. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-20550-2_6

. Bao, T., et al.: Byteweight: learning to recognize functions in binary code. In: USENIX

Security Symposium (2014)

. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern

recognition. IEEE Trans. Syst. Man Cybern. SMC-13(3), 353-362 (1983)

Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput. 27(7), 950-959 (2009)

Shang, S., et al.: Detecting malware variants via function-call graph similarity. In:
International Conference on Malicious and Unwanted Software (2010)

http://dx.doi.org/10.1007/978-3-319-20550-2_6
http://dx.doi.org/10.1007/978-3-319-20550-2_6

	Using a Fine-Grained Hybrid Feature for Malware Similarity Analysis
	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Feature Extraction
	4.1 Function-Call Graph

	5 Similarity Calculation
	6 Evaluation
	7 Conclusion
	Acknowledgement
	References

