
Portable Hypervisor Design for Commercial
64-Bit Android Devices Supporting 32-Bit

Compatible Mode

Kangho Kim(&), Kwangwon Koh, Seunghyub Jeon, and Sungin Jung

ETRI, Daejeon, South Korea
{khk,kwangwon.koh,shjeon00,sijung}@etri.re.kr

Abstract. We present a hypervisor design that can be applied to any com-
mercial 64-bit Android devices without support of set makers. We achieved the
portability by using pure software virtualization while preserving high perfor-
mance. The contribution of the design is to put the guest OS and the hypervisor
together into a single address space which results in avoiding the address space
compression problem and reducing major virtualization costs, using 32-bit
compatible mode. The design using the single address space makes the hyper-
visor simple and run fast even with pure software technologies. Prototypical
implementation of the design is composed of one kernel module and one
user-level program managing virtual machines for Android OS. We have
evaluated our design on a commercial mobile phone, Nexus 6P. Since any
Android device allows inserting kernel modules and installing user programs on
it, we think that our hypervisor can be utilized on any 64-bit ARM-based mobile
phones.

Keywords: Hypervisor � Virtual machine � Mobile phone � ARM � KVM

1 Introduction

Carriers and third-party mobile service providers aspire to secure their own space inside
mobile phones to execute their core logics as well as to save data only for their own
services. They expect that the space must be as independent as possible from the phone
makers. They want to achieve their requirement without help of the phone makers. If
reserving the space needs to modify the bootloader of phones, they cannot help asking
the phone maker to add some functionalities into the bootloader.

The most common way to occupy their own independent space inside a real
machine is to create a virtual machine (VM). We are able to put one’s own data, service
programs, and an OS in the VM and keep them separate from the environment the
phone makers provide. We can create VMs with QEMU or KVM that are open source
hypervisors freely available. QEMU without help of KVM is a hypervisor fully
emulating processor instructions and peripheral devices, so that it may not meet per-
formance requirements. KVM using hardware virtualization extension shows higher
performance than QEMU. However, it depends on the bootloader because it expects
the bootloader to set the processor to hypervisor mode (EL2) prior to kernel booting.

© Springer Nature Singapore Pte Ltd. 2017
J.J. (Jong Hyuk) Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing,
Lecture Notes in Electrical Engineering 421, DOI 10.1007/978-981-10-3023-9_68

As far as we know, Samsung Galaxy S6 bootloader sets processor’s mode to kernel
mode (EL1) and transfers control to the Android kernel. The kernel disables
KVM/ARM module after detecting it is running in the kernel mode [1, 2].

We present a portable hypervisor that provides the VM with 32-bit address space
and expect its performance is as high as KVM, without cooperation of the bootloader.
We assume that core part of both data and service program is not so large that 32-bit
address space would be enough to accommodate those data and service in it. The 32-bit
restriction help us to achieve efficiency of the hypervisor and keep it small even without
using ARM virtualization extension.

2 Hypervisor Design

We also assume that ARM virtualization extension is not available, so that we have no
choice but to resort to pure software hypervisor technologies. We prefer to full vir-
tualization, which doesn’t require any source code change for the guest OS(OS running
inside a VM). The popular design for instruction virtualization is de-privileging; for
memory virtualization, is the shadow page table. To keep the hypervisor simple and
efficient, we adapted pre-virtualization, which achieves the same performance as
para-virtualization, at a little amount of engineering cost [4]. By introducing the single
address space design, we will argue that address space compression problem can be
avoided, VM exit/entry/switching cost can be minimized, and hypervisor protection is
achieved.

2.1 Address Space

Figure 1(a) shows KVM’s address space layout in which the VM has independent
space different from the hypervisor space. KVM hypervisor shares a single address

(a) KVM (b) Single address space hypervisor

Fig. 1. Address space layout for hypervisors (a) KVM (b) Single address space hypervisor

Portable Hypervisor Design for Commercial 64-Bit Android Devices 437

space with VM controller, where VM controller resides in the user space, and the
hypervisor in the kernel space. In this design, every VM-exit/-enter causes address
space switching between VM and the hypervisor.

The VM controller is an Android(or Linux) task creating a VM, loading guest OS
images inside the VM, patching the sensitive instructions of the guest OS, and
starting/stopping/pausing/migrating the guest OS. The hypervisor is a kernel module
trapping and emulating the sensitive instructions during VM execution.

Figure 1(b) represents our address space layout that enables to design and imple-
ment efficient pure software hypervisor. The unique feature in our design is that the
VM address space is restricted to the first 4 GB range (0*4 GB), the first part of huge
64-bit address space. The VM controller is placed anywhere between above 4G and
below hypervisor space and the hypervisor resides in the upper part of the 64-bit
address space as KVM does. Since we restricted VM address space to 32-bit space,
guest OS must be built for 32-bit ARM architecture target. However, the hypervisor
and the VM controller should be 64-bit programs.

This address space layout illustrated in Fig. 1(b) looks similar to that of Xen, which
is para-virtualization technology, placing Xen hypervisor at the upper part of the VM
address space. The Xen guest OS should understand hypervisor resides somewhere
within its virtual address space and modify OS code to reserve the upper space to the
hypervisor. Our design is different from Xen’s in that it does not require such a
modification without scarifying performance.

2.2 Address Space Compression

We adopted pure software hypervisor design that has destined to suffer from address
space compression problem if we just follow the conventional design. In that design,
the hypervisor must use some amount of guest OS’s virtual address space which stores
VM context, hypervisor context, address space switching functions, and interrupt
vector table in order to control the guest OS [3]. That control space is mapped into both
the guest OS’s address space and the hypervisor’s, but it is not visible to the guest OS.
KVM/ARM calls the control space as the shared page [2]. The address space com-
pression problem is that the guest OS is not allowed to use the shared page space [3].

Under our design assumption, we have extra address space where guest OSs cannot
access as well as recognize intentionally or accidentally, but the processor can do. We can
avoid compressing the address space of the guest OS by using that extra address space,
which implies that we don’t need to penetrate into the guest OS’s virtual address space and
steal some amount of the address space. We place the control space outside of the guest
OS’s address space, and call it as gateway because the control goes to and comes from the
guest OS though the gateway. Even though the gateway is not inside the guest OS, it can
intercept exceptions occurring inside the guest OS and give a control to the guest OS.

2.3 Protection

The hypervisor including the VM controller must be protected from the guest OSs to
keep an entire system safe. Our design presented in Fig. 1(b) ensures that it does not

438 K. Kim et al.

require any software mechanism to protect the hypervisor from the guest OS. The
processor does not allow for the guest OS running in 32-bit compatibility mode to
access to the gateway living in higher address than 4 GB because the processor
overrides upper 32-bits of the address the guest OS generates. Thus, VM controller and
hypervisor living in above 4 GB address can be protected from the guest OS by
hardware.

Our design achieves VM isolation, protecting one VM from another VM, by
switching only the 32-bit address space. It is like switching the address space of OS
tasks to isolate one task from another. The hypervisor only needs to update VM address
space of the shadow page table whose hypervisor address space is shared with all the
VMs.

While the design confines the guest OS to the 32-bit address space, the processor
can access the entire 64-bit address space including interrupt vector table address.
When an exception occurs during VM execution, the processor changes its mode to
64-bit mode and moves control to the interrupt vector table entry residing outside of the
guest OS in order to handle that exception, by hardware. If the control transfers to the
hypervisor, it is allowed to access the VM address space without extra cost because the
VM rents lower 32-bit address space that the hypervisor creates and manages.

2.4 VM Exit/Entry/Switch

In our design, no address space change is required but the hypervisor should save and
restore VM context and its own context before and after handling the VM exit, and
during VM switch since the hypervisor and the guest OS share a single address space.
We can reduce the context switching cost due to the 32-bit restriction to the guest OS.
That cost includes TLB invalidation, cache invalidation, address space identifier
tracking as well as VM context save and restore. Due to 32-bit restriction and the single
address space layout, the cost can be minimized and removed respectively.

Our design restricts the execution of the guest OSs to the user-level 32-bit com-
patibility mode, those OSs and their applications running inside the VM are forced to
use user mode AArch32 registers which are subset of AArch64 registers [5]. Even
though AArch64 provides 31 general purpose registers(x0*x30), the VM is allowed to
use only 16 registers(x0*x15). This restriction makes VM context save/restore cost
low. The hypervisor needs to save and restore only w0*w15 general purpose registers
for the VM exit and entry respectively. In addition to that benefit, the hypervisor
context is not to be saved or restored when switching between the guest OS and the
hypervisor because the hypervisor requires that only x19*x29 registers be preserved
across the guest OS execution and the guest OS is not allowed to use those registers at
hardware level.

Portable Hypervisor Design for Commercial 64-Bit Android Devices 439

3 Prototype Implementation

3.1 Implementation on Nexus 6P

We make the best use of Android task’s address space to implement the single address
space. We divide 64-bit virtual address space into three parts: low-user(0*4 GB),
high-user(4 GB*512 GB), and kernel(upper 512 GB). We mapped the low-user, the
high-user, and the kernel part to the 32-bit guest OS, the VM controller, and the
hypervisor, respectively. The gateway will be installed in the kernel part where the
hypervisor is responsible for managing.

As mentioned earlier, the portable hypervisor consists of two modules: user-level
task (VM controller) and kernel module (Hypervisor). The controller creates a single
address space, evacuates the first 4 GB of the address space and fully assigns to a VM.
When a user wants to run a guest OS, the controller loads that guest OS’s image into
VM address space and patches the sensitive instructions. The hypervisor installs the
gateway to catch exceptions during VM execution before the original Android kernel
catches. To do that, the hypervisor module set VBAR(Vector Base Address Register)
to our own vector table in the gateway area before entering VM. When the hypervisor
catches an exception, it analyses the cause of the exception and handles the exception
accordingly. If the exception belongs to the original Android kernel, the hypervisor
delivers it to the Android kernel without any interpretation. Hardware timer interrupt
could be that case.

We implemented our design on a Nexus 6P mobile phone. We have done rooting
and installed our customized kernel that supports kernel module insertion. We just
changed one line of kernel configuration, CONFIG_MODULES = y, for the kernel to
support kernel modules. To the best of our knowledge, since most of the kernel
supports kernel modules by default, the custom kernel would not be needed to insert
our own kernel module.

3.2 Evaluation

We show the proposed hypervisor efficiency by comparing the message passing time
between Linux processes through Linux domain socket and the time between Linux
process and echo task over uCOS-II as 32-bit guest OS (Fig. 2). All experiments were
done on a Nexus 6P(snapdragon 810 v2.1) and the result is as Fig. 3.

As shown in Fig. 3, in spite of the overhead of proposed hypervisor and uCOS-II,
the message passing time is shorter in case that the message size is smaller than 1 K. It
takes only 500 processor cycles for 1-byte message, which implies that virtualization
cost will be minimized and our design has potential to achieve good performance
competitive to KVM.

440 K. Kim et al.

4 Conclusion

We introduced the hypervisor design that has portability to any 64-bit Android devices
while showing good performance. The main idea in the design is to confine the guest
OS to the 32-bit address space. With this idea, we can avoid the address space problem,
minimize major virtualization costs (VM exit/entry/switch cost), and achieve to protect
the hypervisor from the guest OS.

We believe that the independent 32-bit address space (VM space) is enough to
contain core data and service routines that need to be hidden from the main OS. We
recommend that most of the service data and routines be placed in the tasks of the main
OS and communicate with core routines inside the VM to execute service logics. The
single address space design can be used for Intel and AMD processors as well as ARM
processors.

Acknowledgments. This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0101-16-0644,
Research on High Performance and Scalable Manycore Operating System).

References

1. Dall, C., Nieh, J.: KVM/ARM: the design and implementation of the linux ARM hypervisor.
In: 19-th International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 333–347 (2014)

2. Dall, C., Nieh, J.: KVM for ARM. In: 12-th Annual Ottawa Linux Symposium, Ottawa,
pp. 45–56 (2010)

3. Uhlig, R., Neiger, G., Rodgers, D., Santoni, A.,Martins, F., Anderson, A., Bennett, S., Kägi, A.,
Leung, F., Smith, L.: Intel virtualization technology. IEEE Comput. Soc. 38(5), 48–56 (2005)

4. LeVasseur, J., Uhlig, V., Yang, Y., Chapman, M., Chubb, P., Leslie, B., Heiser, G.:
Per-virtualization: software layering for virtual machines. In: Computer Systems Architecture
Conference, pp. 1–9. IEEE (2008)

5. ARM: ARM Cortex-A Series Programmer’s Guide for ARMv8-A version 1.0 (2015)

Fig. 2. Experiment environment Fig. 3. Comparison of message passing time

Portable Hypervisor Design for Commercial 64-Bit Android Devices 441

	Portable Hypervisor Design for Commercial 64-Bit Android Devices Supporting 32-Bit Compatible Mode
	Abstract
	1 Introduction
	2 Hypervisor Design
	2.1 Address Space
	2.2 Address Space Compression
	2.3 Protection
	2.4 VM Exit/Entry/Switch

	3 Prototype Implementation
	3.1 Implementation on Nexus 6P
	3.2 Evaluation

	4 Conclusion
	Acknowledgments
	References

