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Abstract. The present paper proposes a method of capturing real-time motions
without any inconvenient suit by using several inexpensive sensors vulnerable to
joint occlusion and body rotation. Depth data and ICP algorithm are used for
calibration. Then, the left and right sides of joints are determined, and the
optimal joints are chosen based on the variation in rotation to restore postures.
The similarity between the motions captured by the proposed multiple sensors
and those captured by a commercial motion capture system is over 85 %.
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1 Introduction

3D motion capture has long been explored and characterized by high applicability in
diverse fields for retrieving body motions. Optical systems are often used for capturing
motions. Still, magnetic systems are also used to secure free movements. Yet, due to
the need to wear inconvenient suits, motion capture systems are difficult to apply to
ordinary users. By contrast, the marker-free motion capture can get the motions without
the special suits, and thus are highly applicable to motion-based contents, e.g. dance
and sports. The Kinect v2 released by Microsoft has been applied to many games as it
is inexpensive and capable of extracting motions in real time. Yet, it has many limi-
tations in extracting motions with a single sensor, resulting from the joint occlusion and
other challenges.

To address the challenges resulting from the occlusion of body parts, more sensors
are used to minimize the occluded parts. Lately, methods of using multiple Kinects
have been suggested. Zhang and colleagues tracked postures with particle filtering and
partition sampling [1]. Their method drew upon not skeleton data but template
matching to estimate postures through optimization. Kitsikidis et al. used three Kinects
to retrieve dance motions, and notably used HCRF to recognize motion patterns [2].
Kaenchan et al. analyzed walking motions based on the mean positions of joints
tracked [3]. Moon et al. used the Kalman filtering to alter and mix accurate Kinect data
[4]. Yet, they failed to capture 360-degree motion events because Kinects were placed
in front and the motions were too simple. Jo et al. proposed a system using multi
Kinects to track multiple users [5], but they focused on tracking the positions of
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multiple users instead of retrieving their motions. Ahmed used 4 Kinects to capture
boxing and walking motions in 360° [6], tracked users’ faces to determine a central
Kinect with the joint inputs from the other Kinects being used to retrieve the joints that
the central Kinect failed to track. Similarly, Baek et al. selected a central Kinect based
on the movements of root joints and retrieved the postures by mixing the joints based
on the weights of 5 segments tracked [7].

The present paper used 8 Kinects v2 to build a multiple Kinect system, and pro-
posed a method of retrieving body motions from a series of noise joint data inputs from
each sensor. The user motions were dynamic, e.g. Taekwondo, and could be captured
in 360° in real time (30 fps). The proposed method captures dynamic motions with
ease and fast without requiring any motion capture data or pre-trained probability
model. The proposed multiple Kinect system was compared with a commercial motion
capture system, Xsens to measure the accuracy of data recognized by the former.

2 Multi Kinects System and Data Transmission

As a single Kinect v2 can be connected to a single PC, N Kinects need be connected to
N PCs. As in Fig. 1b, 2 Kinects were installed on all sides (front, rear, left and right),
adding up to 8 Kinect systems. To incorporate the data inputs from each Kinect, the
server-client model as in Fig. 1a was used, where N PCs were connected to the server
PC. Upon being connected with the clients, the server sends the background removal
command to the clients, where the backgrounds and noises are removed from the depth
data to transmit the data specific to the body (i.e. the depth and joint data whose color
values are mapped).

The depth image that constitutes the background is saved when the initial Kinect
depth data are acquired. Once the Kinect sensor senses the user, it compares the depth
value of the Pi j pixel with that of Bi j pixel in the background saved. When the former is
below the threshold, it is considered as the background, and excluded. As the depth
data tend to show noises at the edges, the depth values of 8 pixels adjacent to the Pi j

pixel are compared to determine the similarity of depth values. When the depth sim-
ilarity is below k, it is considered a noise and thus excluded. Finally, as the floor around
the user still includes the noise owing to the depth data, the depth data below a certain

Fig. 1. System overview, (a) server-client model, (b) system configuration
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value of user’s ankle joint data are considered noises and thus excluded. Here, as the
Kinect sensor could be tilted, the normal value of the floor is determined based on the
vector associated with the root and spine-mid joints while the user stands upright in the
initial setting. The gradient is corrected by calculating the rotation matrix, where the
normal vector for the floor is matched to the up vector (0, 1, 0).

3 Calibration

As the coordinate systems of the data inputs from each Kinect differ from one another,
they need be unified into a single coordinate system. Here, the front Kinect is selected
as the reference coordinate system. For calibration, a long thin stick (about 50 cm) with
a light cubic object (for recognition) at its tip is used as a tool. Based on the resolution
of the Kinect, the depth data of the stick are ignored, while the depth data of the cubic
object at the tip are taken. As the user moves the tool in the capture space, the mean
value of the depth data of the object at the tip is saved as the central point. The user can
set the timing and number of data to be captured. Here, 300 data are collected at an
interval of 50 ms (Fig. 2). Excluding the data occluded by the body, the rotation matrix
(R) and the translation vector (t) are calculated by applying the ICP (iterative closest
point) technique to the points from the Kinects corresponding to the input points from
the reference Kinect. As data are collected at a certain interval of time, the input point
matching the central point is easy to find, which is conducive to fast and accurate
calculation. Figure 2 shows the data inputs from the multiple Kinects prior to the
calibration and the rotation and translation of the points after the calibration.

Fig. 2. Calibration process using the tool (Up), Calibration (a) before and (b) after (Down)
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4 Joint Selection

The upgraded Kinect v2 enhances the accuracy of joint data over the existing version
when the user faces forward. As in Fig. 3a, when the arms are lifted forward, the existing
version tracks the elbow and wrist joints even in ‘Not Tracked’ setting, calculates wrong
positions, and is prone to errors. As in Fig. 3b, when the user turns right, it is impossible
to track the positions because the right hip is blocked. Thus, the SDK 2.0 version
continues to track wrong joint positions. Therefore, significant noises could occur due to
the wrong joint positions when joint values are simply added up to determine mean
positions or weighted. This challenge should be addressed to retrieve postures. In
particular, the selection of root and hip joints when the user turns is most challenging.

The present paper builds a model based on the user’s initial posture and proposes a
method of choosing the optimal joints for each part. The initial posture model is gen-
erated with the user standing with both arms spread wide while facing the front Kinect.
At the same time, the length of each joint is measured. The initial model becomes the
reference model, which is used to determine the left and right sides of the joints in the
postures following. The lengths of joints may vary with the noises arising in the process
of retrieving the posture. Thus, the reference model is used to correct the variation of
joint lengths. As the Kinect does not tell left from right, the left joint seen from the front
may be tracked as the right joint by another Kinect. Therefore, the calculation varies
with whether it is necessary to distinguish left from right in retrieving a posture.

To retrieve the joints, the top nodes (root and hip joints) are first located. As afore-
mentioned, it is not easy to find the accurate position of the hip joint because of lots of
noises arising when the user rotates. In generating the initial model, not only the distance
between the root and hips but also that between the hips should be measured. The closest
values to the triangle (LHip-Root-RHip) measured in the initial model are found for the
root and hip joint inputs from each Kinect. Based on the ratios of joint lengths, the joints
whose values are below the given values are chosen. It is most likely that the data from the
Kinect sensors facing the user and those placed in the rear are selected. Usually, up to two
candidates are chosen, weighted based on similarities and mixed.

As the torso joints have no left and right sides clearly separated, mean values are
used to calculate the joint positions, which are in turn adjusted based on the normal
vectors associated with parent joints and the initial joint lengths.

Fig. 3. Example of tracking error: (a) Arms are lifted forward, (b) User turns right
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As for the arms and legs, the K-means algorithm is used and the joint data are
divided into two parts (SA and SB), each of which is to become the left or right side.
The arms start from the top nodes, or the shoulder joints. The minimal-difference
pattern in the square values of the distance between the previous posture’s shoulder
joint positions(Ljfr-1, Rjfr-1) and the two-part data’s mean joint positions PA; PBð Þ is
used to determine the left and right arms. Likewise, the elbows/knees and the
wrists/ankles are calculated based on the differences in distances. Still, the parent joints
serve as the references for comparing the joints.

As aforementioned, given the mixed values found by weights are significantly
affected by noises, the selection is made based on the variation of joint angles. As for
the reference for joint selection, the joints Jsð Þ, which correspond to the minimal sum of
the vector rotation direction Dsð Þ and rotation angle Asð Þ calculated from the joint
positions (Pjfr-2, Pjfr-1) and current joint position (Pjfr), are selected.

Kinect finds the body parts based on learning data but sometimes fail to yield the
joint values especially when feet go higher than the lower back as in kick motions.
When no joint data are gained, the joint vector generated in previous postures (the
vector between parent and children joints) is used to retrieve the posture.

5 Results

The present paper proposes a multiple Kinect system that captures motions in real time
by minimizing the joint occlusion. As in Fig. 4, the user’s posture can be retrieved
although the hand is blocked or when the user rotates in 360°. Also, the proposed
system can capture dynamic motions, e.g. Taekwondo.

Here, the proposed system is compared with the commercial motion capture sys-
tem, Xsens to determine its accuracy. Xsens’ data are saved as 120 and 240 frames. To
match the initial setting, a T-pose is taken first. Motions are converted by matching the
joint scales between Xsens’ data and the multiple Kinect’s data. To synchronize with

Fig. 4. Motion capture result: arm joint occluded by body (left), 360-degree left turn (right)

Fig. 5. Comparison of the motion: Xsens data (left-white), multi Kinects data (right-green)
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the 30-fps Kinect data, the multiple Kinect system saves the data together with the
timing of captures (milliseconds). The Xsens’ data saved at a time closest to the
recorded time are compared. The angular variation of joints from N data is calculated to
compare the accuracy based on the difference in variation.

Figure 5 compares the data of two motions synchronized. 6 dynamic motions are
measured in terms of the similarities of postures. The similarities are found as in
Table 1. The lower extremity is less accurate than the upper one, because noises arise
in the sensors attached to the feet in Xsens, and because errors occur in the lower
extremity as the sensors are placed a bit high to increase the recognition of kicks in the
multiple Kinect system. In particular, some motions such as the jump kick are not
recognized by the multiple Kinect system, resulting in significant noises and errors
(Fig. 6). Future research will draw upon the depth data to develop the technology for
correcting the joint positions and for removing noises associated with legs and thus to
increase the overall accuracy.
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