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Abstract. We introduce the SP-tree that is a variant of a multidimensional
index structure, with the object of offering efficient sequential disk access. The
SP-tree is based on the index clustering technique called the segment-page
clustering (SP-clustering). Most relevant index pages are widely scattered on a
disk due to dynamic page allocation, and thus many random disk accesses are
required during the query processing. The SP-clustering avoids the scattering by
storing the relevant nodes contiguously in a segment that contains a sequence of
contiguous disk pages and improves the query performance by offering
sequential disk access within a segment. Experimental results demonstrate that
the SP-clustering improves the query performance up to several times compared
with the traditional ones with respect to the total elapsed time.
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1 Introduction

More than dozens of years of database research have resulted in a great variety of
multidimensional indexing methods (MIMs). However, traditional MIMs tend to ran-
domly access many index pages because the index pages are widely scattered on a disk
due to dynamic page allocation. To avoid the performance degradation due to many
random disk accesses, the related index nodes need to be clustered. However, existing
MIMs do not take into account the clustering of indices. They take into consideration
only the clustering of data. Moreover, the dynamic index clustering requires the on-line
index reorganizations, and the overhead of the global index reorganization is excessive.

To overcome the drawbacks of the existing multidimensional indexing methods, we
propose the segment-page clustering (SP-clustering) technique. The SP-clustering is
based on the concept of segments. It considers the disk to be partitioned into a col-
lection of segments. Each segment consists of a set of L contiguous pages on disk.
A segment is the unit of clustering in the SP-clustering. All disk pages in a segment can
be read by a single disk sweep, and thus it saves much disk startup and seek time. In
the SP-clustering, all disk pages are addressed by a pair of (segment no, page no).
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This addressing scheme allows that pages as well as segments can be used as the disk
access units. When random accesses are required or query ranges are very small,
page-based disk accesses can be used instead of segment-based accesses.

2 Related Work

In the literature, some techniques for sequential disk access have been proposed.
However, most of the work focuses on how to cluster data on a disk or how to
physically maintain the data in sequence, and less attention has been paid to the
clustering or sequential accessing for indexes.

The concept of the segment is similar to the idea of the multi-page block used in the
SB-tree [5] and the bounded disorder (BD) access method [3, 4], which are variants of
the B-trees, in the sense that they accommodate a set of contiguous pages and support
multi-page disk accesses. However, this concept has not been applied to MIMs because
it might consume the disk bandwidth excessively with increasing dimensionality. As an
instance, let us suppose that a query range overlaps only a half on each dimension of
the data region occupied by a segment. Then the wasteness of the disk bandwidth
caused by reading a segment instead of reading individual pages is ½ (= 1 − ½) in
one-dimensional case, while it is 1 − (½)d in d-dimensional case. In fact, however, the
multi-page disk reads such as segment reads are more needed in high dimensions
because the probability that the query range overlaps with the regions covered by the
index nodes increases with the dimensionality due to the sparsity of the domain space,
and thus more disk pages are required to be read in higher dimensions. In addition,
unlike the multi-page blocks used in the B-trees in which all index nodes as well as all
data objects have total ordering among themselves, the index nodes within segments
for MIMs have no linear order among them. This makes the design and maintenance,
such as partitioning and merging, of the segments in MIMs more difficult than those of
the multi-page block in the B-trees.

3 The SP-clustering

In this section we introduce the SP-clustering. To demonstrate the effectiveness of the
SP-clustering, we apply it to the LSD-tree [1, 2] and call the resultant index tree the SP-
tree. We should note that our focus is the SP-clustering not the SP-tree although we
explain the SP-clustering through the SP-tree. The SP-clustering technique can be
applied to most MIMs including the R-trees.

3.1 The Structure of the SP-tree

The SP-tree is a multidimensional index structure to index d-dimensional point data,
and its underlying structure is the LSD-tree. We chose the LSD-tree for implementation
of the SP-clustering because we were dealing with d-dimensional point data and the
LSD-tree has high fanout. The SP-tree considers the disk to be partitioned as a
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collection of segments. Segments are classified into nonleaf segments and leaf seg-
ments. The nonleaf segment accommodates nonleaf nodes of the index tree and the leaf
segment holds the leaf nodes. The reasons why we separate the segments into two
kinds are twofold: it simplifies the design of the index structure and it encourages the
upper part of the index structure to reside in the main memory when we cache the index
into the main memory. We call the nonleaf segment n-segment and the leaf segment l-
segment.

Each segment consists of a set of f (e.g., =32) contiguous pages on disk, that can be
read or written with a single sweep of the disk arm. From the first page encountered by
the disk head in reading and writing a segment to the last one in the segment, the pages
are numbered 1, 2, …, f. A segment has the following properties:

• A segment consists of a set of f nodes which reside on contiguous pages on disk.
The number f is called the fanout of a segment.

• k, 1 � k � f, nodes falling in a segment are filled contiguously from the beginning
of the segment.

• The SP-tree reads k nodes from a segment at a time rather than all f nodes, and thus
it saves the disk bandwidth.

• Every node of the SP-tree sits on a segment.
• Leaf nodes reside in an l-segment and nonleaf nodes are in an n-segment.

Consider Fig. 1. A node at level j-1 (level 0 is the root) contains pointers (ptr 1, ptr
2,…, ptr k) to child nodes (pages) and the separators ((dim 1, pos 1),…, (dim k, pos k)).
A separator contains a pair of a split dimension and a split position in the dimension.
The entry M denotes the number of entries in the node. The contiguous sequence of
page numbers, ptr 1 through ptr k, in the node at level j − 1 points to nodes at level j,
node 1 through node k, which sit on the first k pages of a single segment, i.e., M = k. A
specific node can be accessed directly by a pair of (segment number, page number), and
k nodes can be accessed sequentially by the segment number and the value of M.

3.2 Building the SP-Tree

The SP-tree has a hierarchical index structure. As usual for index structures which
support spatial accesses for point data, the SP-tree divides the data space into pairwise

page 1    page 2     page 3       ...      page k             ...          page f

node 3    node k    node 2       ...  node 1   empty     ...     emp-
ty

M    ptr1 dim1 pos1 ptr2 dim2 pos2 ptr3    ... ptr k     ...

nodes in  
a segment   
at level j

node at 
level j-1 

Fig. 1. Contiguous pages on a segment
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disjoint cells. With every cell a data page is associated, which stores all objects con-
tained in the cell. In this context, we call a cell a directory region.

Successive parts of Fig. 2 show how the SP-tree grows and how its nodes are
clustered in a segment. When the first entry is inserted, a single page of an l-segment is
allocated for the first node of the SP-tree. This node is a root node as well as a leaf
node. The figures in the left side of Fig. 2 show the procedure of partitioning the
2-dimensional data space. We assumed that the range of each dimension is 0 to 100,
and a pair of numbers on the directory regions indicates (l-segment number, page
number).
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Fig. 2. The growth of the SP-tree
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Successive entries are added to the node until an insert forces a split in the node.
This node is then split into two leaf nodes which occupy page 1 and page 2 of the l-
segment 1. An n-segment is allocated and the first page of the n-segment is assigned for
new root node. The root node now contains a single separator and two pointers.
A separator contains the information about the split dimension and the split position in
the dimension. In the example of Fig. 2, the split is performed at position 60 in
dimension 1. With subsequent insertions, overflows occur in the l-segment 1 and they
cause the node split. Whenever a node split occurs, the SP-tree looks for an empty page
on the segment containing the node receiving the insert. As shown in Fig. 1, this will
be the page number k + 1 in the containing segment, where k nodes already exist. The
SP-tree keeps the information in the node which tells us how many pages are occupied
in each segment, i.e., M in Fig. 1. If an empty page exists, we place the new node
created by the split on that page. If there is no empty page in the segment, then a
segment split is necessary. A new segment S is allocated, and the overfull segment
containing the splitting node is read into the memory. Then the f + 1 nodes of the
segment are distributed into two segments.

3.3 Segment Split Strategy

An important part of the insertion algorithm of the SP-tree is the segment split strategy
which determines the split dimension and the split position. First, the SP-tree finds the
internal node u which (directly or indirectly) plays a role of root for the overfull
segment R. The separator of the internal node u has the dimension and the position to
split the segment R. In Fig. 2(b), for example, if a new entry is inserted into the page (1,
1) and it causes the l-segment 1 to overflow, the SP-tree finds the internal node which
plays a role of root of the l-segment 1, it is the internal node a in the case of Fig. 2(b).
Since the SP-tree maintains an array to save the traversal path from the root to the target
page where a new entry to be inserted, it is not difficult to find the internal node that
plays a role of root for the overfull segment. Starting from the root of the SP-tree, we
check if the overfull segment can be split into two when we apply the separator of the
current internal node to split the segment. If the segment can be split using the sepa-
rator, the corresponding internal node is selected as the root node of the overfull
segment, and the segment is split. The data pages belonging to the right children of
u are reallocated to the front positions of a new segment S, and the remaining pages are
moved forward so that they fall on the front pages of the segment R. As a result of this
segment split strategy, the data pages under the same internal node are collected in the
same segment.

Consider Fig. 3. It shows the effect of a nonleaf page split. In Fig. 3(a) we are to
insert a new index entry into the nonleaf page P due to a page split in lower level
segment S′. If the page P overflows, the SP-tree allocates a new page P′ and partitions
the entries in P all but the local root entry u including a new index entry into two pages
P and P′. After the partition, the local root entry u that was in P is promoted to the
parent page, and the two pages P and P′ include the entries belonged to the left and the
right subtrees of u, respectively (see Fig. 3(b)).
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The SP-tree is a binary tree, and the entries in the left subtree and the right subtree of
the local root entry in a certain nonleaf page point to the pages in different segments
unless all the pages referenced lie in the same single segment. For example, the entries in
the subtrees a and b in Fig. 3(a) point to the pages in different segments S and S′,
respectively. When the page P is split, as shown in Fig. 3(b), the index entries that point
to the pages in a certain segment are inserted into the same page. Thus, in the SP-tree, the
references of pages that belong to a segment are stored in a single nonleaf page.

We should note that the SP-tree does not cause a split of lower level segment that is
not full due to a split of upper nonleaf page. In the SP-tree, the fanout of a nonleaf page
(it is often several hundreds) is far larger than that of a segment (it is usually several
tens). In other words, there are generally many segments under a nonleaf index page.
Therefore the segments referenced by the left and the right parts of the control node
(i.e., local root) of the upper nonleaf page that is full are already different as shown in
Fig. 3(a). Thus, after the upper level page split, it is not the case to split lower level
segments to preserve the property that the references of pages that belong to a segment
are stored in the same nonleaf page.

4 Performance Evaluation

To demonstrate the practical effectiveness of the SP-clustering, we implemented the
SP-tree by using 64-KB segments. We performed an extensive experimental evaluation
of the SP-tree and compared it to the pure LSDh-tree. The experimental results
demonstrate that in most cases the SP-clustering is superior to traditional MIMs. For
random queries such as exact-match queries and nearest neighbor queries, there is little
performance difference between the SP-tree and the LSDh-tree.
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a                            b 

Fig. 3. Effect of a nonleaf page split
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5 Conclusions

We have introduced the SP-tree for range queries. The performance advantage of the
SP-clustering comes from saving much disk startup time. Moreover, storing a sequence
of index pages contiguously within a segment provides a compromise between optimal
index node clustering and the excessive full index reorganization overhead. Thus, the
SP-clustering methods may be used as an alternative index clustering scheme. The
SP-clustering is so generic that it may be applied to most MIMs.
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