
Code Modification and Obfuscation Detection
Test Using Malicious Script Distributing

Website Inspection Technology

Seong-Min Park(&), Han-Chul Bae, Young-Tae Cha,
and Hwan-Kuk Kim

Security Industry Technology Division, Korea Internet & Security Agency,
Seoul, Republic of Korea

{smpark,hcbae,ytcha,rinyfeel}@kisa.or.kr

Abstract. The use of non-standard plug-ins has been unavoidable in existing
HTML. Accordingly, the rising dependence of web content on plug-ins increased
and need for additional development suited to platform incurred considerable
developmental expenses and time. HTML5 was a suggested solution to this
problem, but could cause new security threats through newly added technologies,
meaning that web-related elements such as websites, web content, devices and
others are exposed to a new type of threat. In this thesis, we suggest a technology
to detect website security threats in advance that includes HTML5.

Keywords: HTML5 � Script-based cyber attack � Web content security � Web
scanner � Web content analysis

1 Introduction

According to Microsoft, attempted attacks using HTML and JavaScript vulnerability
are rapidly increasing. In particular, methods such as web page built-in JavaScript
functions, code obfuscation, external JavaScript calling and others have made recent
web attacks possible without need for malicious code distribution and infection. Thus
detection can be a difficult task with packet-based detection through security devices
such as existing web firewalls, IPS and others. Besides, vulnerability to attacks goes up
through newly added API and tag after HTML5 standard finalization, and tracking can
be difficult since no traces like malicious code are left. And technology to inspect
HTML5 security vulnerability is not yet available worldwide [1].

In this situation, we studied a technology to inspect websites that distribute mali-
cious script using HTML5 and analyzed a result tested using such fact. In this thesis,
only the core part of the details is summarized, and its composition is as follows.
Section 2 examines preceding research on website inspection technology, and Sect. 3
introduces the website inspection technology we studied. Sections 4 and 5 contain our
conclusions based on the verification results of the technology we studied.

© Springer Nature Singapore Pte Ltd. 2017
J.J. (Jong Hyuk) Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing,
Lecture Notes in Electrical Engineering 421, DOI 10.1007/978-981-10-3023-9_12



2 Related Work

2.1 Security Threat of HTML5

In HTML5, web attacks using new API, tag, and others became possible. Black
Hat USA 2012 released HTML5 security vulnerability TOP 10, and researches on
HTML5 vulnerability have been released continuously since then [2].

2.2 Web Contents Analyzing Technology

In terms of web contents analysis technology, SpyProxy and WebShield collect traffics
in the network level and execute malicious scripts directly, through virtual environment
or sandbox based modified virtual browser, and suggest a technology that transmits
only malicious scripts eliminated safe contents to client [3].

However, as SpyProxy that collects website information using open source Squid
cannot be implemented to virtual environment browser as actual user environment, it
makes perfect verification difficult. In addition, for user to use web service, there is a
problem of waiting time period until safe contents verification is complete. To resolve
such problem, we improved performance using contents split verification technology,
but it is quite inconvenient to install additional Agent on host [4].

To resolve problem of behavior monitoring based SpyProxy, WebShield suggests
middle box framework creating DOM data structure instead of client browser. Client
side Agent is not required. Instead, as webpage data is retained in memory, real time
processing becomes possible. However, as result of test, when proxy sandbox occupies
100Mbytes memory, only 82 people per second at the maximum were allowed to have
access. In other words, it means there is actual burden that minimum 10 machines are
required in enterprise environment. Furthermore, it contains problem of performance
deterioration due to User Script handling and frequent DOM (Document Object Model)
structure updates, and with the limit to detecting HTML5 based malicious scripts [5].

3 Inspection Technology for Malicious Scripts Distributed
Website

As discussed in Sect. 2, because of the performance problem of real time web contents
analyzing technology, and limits of prior website inspection tools, new type of frame is
necessary to cope with web based attacks. Accordingly, we intend to implement a
technology that inspects vulnerabilities by visiting websites before clients use actual
services, in the form of a framework.

This structure is divided into website data crawling collection technology, and
analyzing technology that inspects collected data. In addition, analyzing technology
consists of scripts manipulation inspection, which inspects code modification and
obfuscation inspection that extracts original scripts from code obfuscation scripts.

Code Modification and Obfuscation Detection Test 75



3.1 Website Contents Collection Technology

First step to analyze and prevent website vulnerability in advance, is to collect website
contents, an analysis object. Collection technology consists of crawler that performs
web contents crawling, and Agent that delivers collection targets, monitors and man-
ages crawler status, and crawler manager that assigns tasks to crawlers, saves collection
result into DB.

3.2 Website Vulnerability Analyzing Technology

Inspection is performed for collected website data to figure out if there are vulnera-
bilities through website vulnerability analysis technology. Largely, 2 types of inspec-
tions are carried out which include scripts obfuscation inspection and modification
inspection.

Attacker launches attack using scripts obfuscation for malicious website scripts not
to be detected [6]. Therefore, obfuscation script should be identified and de-obfuscation
needs to be carried out. First, to inspect obfuscation status of script code, measure
Entropy element, N-Gram Entropy element, Max Word Size element, and then cal-
culate obfuscation score [7].

Entropy element is to measure distribution status of bytes within web documents,
and expression is as follows (b = count of each byte, T = total count of bytes, N =
count of strings)

EðBÞ ¼
XN

i¼1

ðbi
T
Þ logðbi

T
Þ

B ¼ b; i ¼ 0; 1; . . .;N

T ¼ PN

i¼1
bi

8
<

: ð1Þ

N-Gram Entropy element measures distribution status of special characters within
web documents, and then the ratio to entire Entropy.

RðSÞ ¼ EðSÞ
EðBÞ � 100 ð2Þ

Max Word Size element measures length of the longest character string within web
documents, and if each measured value exceeds given tolerance, final obfuscation score
is calculated by adding up score of each element.

Obfuscation code was decoded by executing obfuscation scripts classified in such
way, with V8 JavaScript engine. And we determined malicious behavior by extracting
web page scripts calling data through API hooking.

Second, script modification inspection verifies if scripts are manipulated to cause
malicious behaviors. If collected web contents are HTML based documents, DOMdata is
generated and scripts extracted. Hash value from extracted DOM data or JS file is
extracted and saved. Non-cryptographic hash algorithm such as MurmurHash, CRC32,
SuperFastHash, and others is used for hash value extraction. In general, while web page
contents change frequently, scripts do not change unless corresponding website is

76 S.-M. Park et al.



restructured. Therefore, once hash values are saved in URL unit, based on the value as a
reference, it can be comparedwith the hash value extracted when next user visits the same
URL. As result of comparison, if hash value is the same,modification did not occur, and if
different, it is regarded as modification, and static analysis is conducted (Fig. 1).

4 Code Modification and Obfuscation Detection Test

We tested the inspection technology for malicious scripts distributing website, which is
implemented using 17 types of attack samples. Samples are made up to implement
attack behaviors such as Scanning, Hijacking, DDoS triggering, data intercepting, and
others, by injecting malicious scripts in websites. After injecting each malicious script
into websites implemented for the test, we executed one test at a time. When accessing
test websites from tester, it should go through inspection system that developed
technology is applied, in order to verify detection process. In addition, in terms of each
malicious script type, we tested total 4 types of various attack mechanisms by applying
2 types of code modification methods and 2 types of obfuscation methods (Table 1).

As result of test, 100 % detection rate was shown for original code of each attack
script, but for codes that applied variable name or function name during code modi-
fication, 58.8 % of low detection rate was shown. However, with 100 % detection rate
for code modified by applying Code Split method and obfuscation code applied with
Packed encode method, we could confirm that it is detected being dependent upon
signature ID.

Secondly, we conducted test on the performance of implemented inspection tech-
nology with commercial website as subject. Designated as safe websites by Google
Safe Browsing and Norton Safe Web among Alexa Top 100 websites, 50 websites
were selected. In addition, test was conducted using 50 safe websites such as Amazon,
E-bay, Alibaba, and others, and 10 websites converted to HTML5 operating in Korea
as subject [8].

Number of URLs that can be collected as test measurement items, and number of
misdetections were used as subject. Depth5 level crawling was performed by inspection

Fig. 1. Script obfuscation inspection algorithm and Scripts modification inspecting algorithm

Code Modification and Obfuscation Detection Test 77



subject website, and we were able to measure number of URLs collected per second.
Number of entire URL collection was 33,698, with 15,579 s required. Number of
URLs collected per second based on such fact was 2.16 EA, and URL collection
capacity of 1 crawler per day was measured as total 186,887 EA (Table 2).

Table 1. 17 types of malicious script samples used in test.

Sample
No.

Attack Description

1 Network Scan Without user knowing, confirm user’s internal network or
port open status by using XHR(XML Http Request),
WebSocket, WebRTC

2 Port Scan

3 Cross Site
WebSocket
Hijacking

Without user knowing, execute WebSocket
communications and establish connection with
WebSocket server

4 ClickJacking
(Drag&Drop)

Induce user’s click or user’s file (using Drag-Drop API,
File API) to other places by overlapping transparent frame
set as opacity (transparency) property 0, with other frame5 ClickJacking (Click

info)
6 WebSocket data

intercepting
Intercept WebSocket communication details by redefining
onmessage event handler of WebSocket

7 SVG Keylogger Send request to attacks to attacker based on user’s key
input through accessKey event of SVG(Scalable Vector
Graphics), a XML type image

8 MouseLogger Obtain touch event coordinates of user mouse using
Pointer API

9 Cross Site Printing Induce to print GET message by sending it to basic port
9100 of printer using XHR, WebSocket

10 Cookie Sniffing Without user knowing, transmit the cookies within
browser to attacker

11 Geolocation Figure out device location using Geolocation API and
send to attacker

12 Server-Sent Event
Bot

Insert to scripts and modify web pages using Server-Sent
Event, the API that provides Polling function

13 Worker DDoS Without user knowing, trigger DDoS using Web Worker
that provides separate JavaScript threads function in web
page

14 WebStorage Leak Inquire Web Storage information and transmit externally
15 IndexedDB Leak Intercept WebSQL details which is managed by each

domain within browser (However, WebSQL was
eliminated from standard, and instead, Indexed DB is
selected as standard)

16 Vibration Attack Trigger user inconveniences by causing continuous
vibrations in web pages

17 Script DoS
(for statement)

Send request externally whenever web page connection
occurs by putting scripts that send request externally into
web pages

78 S.-M. Park et al.



In addition, we conducted analysis on misdetection results along with detection
results on subject sites. Number of total URLs, attempted in the analysis was 10,464
EA, 87 cases of them were confirmed as misdetection. Most of detection items con-
firmed as misdetection were Clickjacking attack by signature Rule ID No. 11. Click-
jacking is a type of attack that sets opacity property in scripts to 0, and induces user
click to malicious scripts by overlapping transparent frame with other frame. As result
of applying sample HTML document about Clickjacking to YARA tool, we were able
to confirm that most of detections were due to script jquery.js. Opacity property is set
when suing jquery.js, and thus misdetection was occurred.

5 Conclusion and Future Work

This thesis suggests a technology to collect and analyze contents such as HTML,
SCRIPT, CSS, and others, in order to conduct inspection of websites distributing
malicious scripts including HTML5. Inspection test including attack samples detection,
and commercial websites was conducted. In terms of performance, this technology is
differentiated from existing real time malicious scripts detection technology such as
SpyProxy and WebShield. In enterprise environment, when intending to collect and
analyze one million web contents per day, WebShield requires 10 machines at the
minimum, but with this technology, far less number of machines are needed to achieve
the same goal. As number of URLs collected by 1 crawler is 186,887 EA, only 6 (5.35)
machines is required to collect 1 million URLs per day.

However, some improvement needs to be made for part of test process. In com-
mercial network website test, dynamically generated web pages were not collected
during collection process using web crawling tools, instead of direct visit. Furthermore,
collection was not possible due to IP blocking by web service providing company. To
resolve such problem, by granting 1 s interval for each collection depth, number of
URLs collected per second was reduced more than expected.

Acknowledgments. This study was conducted as part of information communications and
broadcasting R&D project by Ministry of Science, ICT and Future Planning, and Institute for
Information & Communications Technology Promotion [B0101-15-0230, Prevention of script
based cyber attack and development of counter technology].

Table 2. Performance index.

Item Result

Number of total URL collected 33,698
Total time spent (sec) 15,579
Number of URL collected per (URL/s) 2.16
Number of URLs collected per day (1 crawler) 186,887

Code Modification and Obfuscation Detection Test 79



References

1. Microsoft Security Intelligence Report (SIR) Volume 17, pp. 43–54. Microsoft (2014)
2. Shah, S.: Founder & Director, Blueinfy Solutions, “HTML5 Top 10 Threats Stealth Attacks

and Silent Exploits”, pp. 1–20. Black Hat, USA (2012)
3. Agten, P., Van Acker, S., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.: Jsand:

complete client-side sandboxing of third-party javascript without browser modifications. In:
Proceedings of the 28th Annual Computer Security Applications Conference, pp. 11–21.
ACM (2012)

4. Moshchuk, A., et al.: SpyProxy: Execution- based Detection of Malicious Web Content.
USENIX Security (2007)

5. Li, Z., et al.: WebShield: enabling various web defense techniques without client side
modifications. In: NDSS (2011)

6. Xu, W., Zhang, F., Zhu, S.: The power of obfuscation techniques in malicious JavaScript
code: A measurement study. In: 7th International Conference on Malicious and Unwanted
Software (MALWARE). IEEE (2012)

7. Choi, Y., Kim, T., Choi, S., Lee, C.: Automatic detection for javascript obfuscation attacks in
web pages through string pattern analysis. In: Lee, Y.-h., Kim, T.-h., Fang, W.-c., Ślęzak, D.
(eds.) FGIT 2009. LNCS, vol. 5899, pp. 160–172. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10509-8_19

8. Alexa Top 100. http://www.alexa.com/topsites

80 S.-M. Park et al.

http://dx.doi.org/10.1007/978-3-642-10509-8_19
http://dx.doi.org/10.1007/978-3-642-10509-8_19
http://www.alexa.com/topsites

	Code Modification and Obfuscation Detection Test Using Malicious Script Distributing Website Inspection Technology
	Abstract
	1 Introduction
	2 Related Work
	2.1 Security Threat of HTML5
	2.2 Web Contents Analyzing Technology

	3 Inspection Technology for Malicious Scripts Distributed Website
	3.1 Website Contents Collection Technology
	3.2 Website Vulnerability Analyzing Technology

	4 Code Modification and Obfuscation Detection Test
	5 Conclusion and Future Work
	Acknowledgments
	References


