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Abstract. Diffusion magnetic resonance imaging (dMRI) can provide
quantitative information with which to visualize and study connectivity
and continuity of neural pathways in nervous systems. However, the very
subtle regions and multiple intra-voxel orientations of water diffusion in
brain cannnot accurately be represented in low spatial resolution imaging
with tensor model. Yet, the ability to trace and describe such regions is
critical for some applications such as neurosurgery and pathologic diag-
nosis. In this paper, we proposed a new single image acquisition super-
resolution method to increase both the spatial and angular resolution
of dMRI. The proposed approach called single dMRI super-resolution
reconstruction with compressed sensing (SSR-CS), uses a low number
of single diffusion MRI in different gradients. This acquisition scheme
is effectively in reducing acquisition time while improving the signal-to-
noise ratio (SNR). The proposed method combines the two strategies
of nonlocal similarity reconstruction and compressed sensing reconstruc-
tion in a sparse basis of spherical ridgelets to reconstruct high resolution
image in k-space with complex orientations. The split Bregman app-
roach is introduced for solving the SSR-CS problem. The performance of
the proposed method is quantitatively evaluated on simulated diffusion
MRI, using both spatial and angular reconstruction evaluating indexes.
We also compared our method with some other dMRI super resolution
methods.

Keywords: Diffusion magnetic resonance imaging (dMRI) · Tensor
model · Single dMRI super-resolution · Compressed sensing (CS) · Sparse
representation

1 Introduction

Diffusion tensor imaging enables the reconstruction of information revealing the
shape, the coherence and the integrity of brain tissue microstructure which can
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be indirectly analyzed through the assessment of motion of water molecules [1].
This technique has been applied widely in vivo analysis of white matter archi-
tecture and has recently been applied to the study of gray matter. Moreover,
diffusion tensor imaging has been used to study a large range of neurological
disease, or to quantify other causes of tissue degradations such as epilepsy and
malformations of cortical development [2]. It has been shown that at a voxel res-
olution of around 2–3 mm, a simple tensor model used to track the major white
matter pathways in the human brain [3]. Despite its interesting properties, dif-
fusion tensor imaging is an inherently low signal-to-noise ratio (SNR) technique
and yields to relatively poor spatial resolution [4]. Besides, the tensor model fails
to accurately track through regions with more complex fiber arrangements such
as crossing, fanning and branching.

It has been shown that the limited spatial and angular resolution introduces a
bias in diffusion parameter estimation [4]. Therefore, to improve the sensitivity
and robustness of studies based on diffusion tensor imaging, high spatial and
angular resolution (HSAR) diffusion MRI with high SNR has to be considered.
Such HSAR diffusion MRI with high SNR could provide a better sensitivity for
the brain microstructure. However the acquisition of such HSAR diffusion MRI
remains a challenging problem in clinical conditions since the improvement in
HSAR is obtained at the cost of either lower SNR, longer acquisition time or
both [5]. For example, to resolve the crossing fiber direction one can apply more
sophisticated local models like the DSI or HARDI, a low spatial resolution of
about 3 mm is used to achieve sufficient SNR to enable the acquisition of a high
number of diffusion directions and multiple b-values, thereby resolving crossing
fiber directions [6]. However, this improvement of high angular resolution with
high SNR is obtained at the cost of the longer acquisition time and the spatial
resolution.

To enable acquisition of high spatial diffusion MRI without long acquisition
times, super-resolution (SR) acquisition techniques have been investigated in the
past. Some possible strategies consist in fusing several anisotropic acquisitions
with a high in-plane resolution only along one axis [7–10]. In contrast to SR
acquisition techniques that require specific acquisitions protocols of multiple LR
images, there exists also a category of single image SR methods [4]. Since single
image SR techniques are pure post-processing methods and thus are totally
independent from the acquisition protocol. The main idea is to use the image
content to reconstruct information at higher-resolution. Besides, another SR
method for diffusion MRI has been proposed. The main idea is to use an HR
image to drive the reconstruction of another modality (e.g. using B0 image) [4].
However, this type of method is built on assumption that the two modalities
have the similar image structures. Another problem in these methods is that
few of them have considered the angular resolution. Only increasing the spatial
resolution cannot break through the limitations of the tensor model. Besides,
the ignorance of angular resolution also means the ignorance of the relationship
between the diffusion images of different directions.
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In this paper, we investigate the possibility to increase both the spatial and
the angular resolution of diffusion imaging using single image SR method and
compressed sensing. We proposed a unified approach to reconstruct HSAR image
using the single dMRI set which are undersampled in k-space and q-space. Then
we acquire the corresponding probabilistic orientation function (ODF) through
the HSAR dMRI. To quantitatively assess the performance of the proposed
method, we use the simulated dMRI. Some other super spatial dMRI methods
are also evaluated for these data for comparing the high spatial reconstruction
performance. We should note that, to the best of our knowledge, this is a first
instance of using the single diffusion dMRI set to reconstruct HSAR dMRI.

The contributions of this work are twofold.

(1) The proposition of a new SSR-CS method to reconstruct the HSAR dMRI.
(2) The introduction of an efficient optimization algorithm for solving the SSR-

CS model.

The remainder of the paper is organized as follows. Section 2 briefly reviews
the background of the approach. Section 3 presents the proposed SSR-CS model.
The experimental results are demonstrated in Sect. 4 in comparing with the
state-of-the-art SR methods. Section 5 concludes the paper.

2 Background

In this section, we provide a brief background on diffusion tensor imaging and
spherical ridgelets which will be used subsequently in our proposed SSR-CS
algorithm.

2.1 3D Diffusion MRI

In diffusion MRI, measurements are commonly made using the pulsed gradient
spin echo (PGSE) method, which samples the Fourier transform of the ensemble
average diffusion propagator (EAP) P (r), two magnetic field gradient pulses of
duration δ and separation Δ are introduced to the simple spin-echo sequence [11,
12]. Assuming rectangular pulse profiles, the associated diffusion direction is q =
γδg, where g is the component of the gradient in the direction of the fixed field
B0 and γ is the gyromagnetic ratio. The diffusion MRI measurement S(q; r)is
defined at each location r of a finite regular image grid in three-dimensional
space and depends on the gradient direction q. For each vector qk, the diffusion
MRI measurement S(qk) is a 3D DWI. The normalized S∗(qk) is given by

S∗(qk) = (S(0))−1S(qk) (1)

S(0)denotes the diffusion signal obtained in the absence of diffusion encoding
(i.e.,the so-called “B0-image”). when the Δ−1δ is negligible,

S∗(qk) =
∫
r∈R3

P (r)exp(i2πqk · r)dr (2)



A Unified Approach for Super-Resolution of Diffusion Tensor MRI 315

2.2 Spherical Ridgelets

Spherical ridgelets are constructed by following the fundamental principles of
wavelet theory [13,14]. Specially let x ∈ R+ and ρ ∈ (0, 1) be a positive scaling
parameter. Further, let κ(x) = exp{−ρx(x + 1)} be a Gaussian function, which
we subject to a range of dyadic scaling which result in

κ(x) = κ(2−jx) = exp{−ρ
x

2j
(

x

2j
+ 1)} (3)

with j ∈ N := {0, 1, 2, ...}.
The semi-discrete frame U of spherical ridgelets can be defined as

U := {ψj,v|v ∈ S
2, j = −1, 0, 1, 2, ...} (4)

where the spherical ridgelet functions ψj,v at resolution j ∈ N and orientation
v ∈ S

2 is

ψj,v =
1
2π

∞∑
n=0

2n + 1
4π

λn(κj+1(n) − κj(n))Pn(u · v),∀u ∈ S
2 (5)

where Pn denotes the Legendre polynomial of order n and κ−1(n)=0, ∀n

λn =
{

2π(−1)
n
2 · 1·3···(n−1)

2·4···n if n is even
0 if n is odd

(6)

when the n = 0, λn = 2π.

3 Proposed Model

3.1 3D Non-local Similarity Regularization

To improve the spatial resolution of the diffusion MR imaging, we adopt a 3D
NLMs filter in [4,15] to capture the nonlocal similarity in each diffusion MRI.
Different from the method in [4], We capture the 3D nonlocal similarity of the
normalized diffusion MRI which directly determine the diffusion of water rather
than the diffusion MRI. Based upon the philosophy of the NLMs, each target
voxel S(qk; ri) in the reconstructed high spatial resolution diffusion MRI of the
kth direction can be represented as the weighted average of the voxels within its
similarity neighborhoods, i.e.,

Ŝ∗(qk; ri) =
∑
j∈Vi

wk
ijS

∗(qk; rj) (7)

where Ŝ∗(qk; ri) is the current estimation of S∗(qk; ri), wk
ij is the NLMs weights.

For the kth 3D diffusion MRI, we could rewrite the Eq. (7) in a brief

Ŝ∗
i =

∑
j∈Vi

wijS
∗
j (8)
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wij is defined as

wij =
1
Zi

exp{−‖N3D(S∗
i ) − N3D(S∗

j )‖22
h2

} (9)

where the constant Zi ensures the sum of the weights is equal to 1. The N3D(S∗
i )

and N3D(S∗
j ) represents the 3D image patches around S∗

i and S∗
j , in practical

we use 3×3×3 voxels 3D windows. The similarity between patches is estimated
within a restricted nonlocal volume Vi. With the nonlocal similarity in diffusion
MRI, we require the estimation error if the weighted average and the upsampled
image X as small as possible. Thus for each 3D diffusion MRI, the corresponding
regularization term can be written as:

Enlms(S∗) =
∑
i∈Ω

‖ S∗
i − WiS

∗ ‖22 (10)

where Ω is the image grid of S∗, Wi is a row vector formed by the NLMs weights,
which is defined as

Wi(j) =
{

wij , j ∈ Vj

0, otherwise (11)

We further rewrite (10) into the following concise form:

Enlms(S∗) =‖ (I − W )S∗ ‖22 (12)

where I is an identity matrix and W is the NLMs similar weight matrix defined
by Wi in (11).

3.2 Sparse Representation Regularization

For the fixed r0, in q-space the S∗(q; r0) is the normalized diffusion signal at
a b-shell along the direction q ∈ S

2. In practical settings, the q are discretized
and restricted to a discrete set of orientations {qk}K

k=1 which prescribes the
acquisition of diffusion data in the form of K diffusion-encoded images {S∗

k}K
k=1,

which each S∗
k : R3 → R

+ corresponding to a given qk. In this case, for a fixed
r0, the vector [S∗

1 (r0), S∗
2 (r0), ..., S∗

K(r0)]T ∈ R
K represents a discretization of

S∗(q|r0). For this purpose, we let s(r0) ∈ RK denotes the vector of diffusion
signal whose kth entry is equal to S∗

k(r0) and let the values of ψm for m = 1, ...,M
at the K acquisition locations be stored in a K × M matrix A defined as

A =

⎡
⎢⎢⎢⎣

ψ1(u1) ψ2(u1) · · · ψM (u1)
ψ1(u2) ψ2(u2) · · · ψM (u2)

...
... · · · ...

ψ1(uK) ψ2(uK) · · · ψM (uK)

⎤
⎥⎥⎥⎦ (13)

Each column of A is normalized through its L2-norm, to make all the spherical
ridgelets have a unit norm. Thus the measurement s can be represented as

s(r0) = Ac(r0) + e(r0) (14)
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where c(r0) denotes the vector of representation coefficients and e(r0) denotes
the measurement noise. Since our main intension is to recover the coefficients c
using as few diffusion-encoding gradients as possible (implying K � M), there is
an infinite number of solutions which would fit the constraint ‖A{c} − s‖2 � ε.
For each r ∈ Ωd, the vector of representation coefficients c(r) is sparse, we may
write a compressed sensing criterion for the estimation of c(r) as follows

min
c(r)

‖c(r)‖1 (15)

s.t.‖A{c(r)} − s(r)‖2 ≤ ε. (16)

independently at each r ∈ Ω. This setup has been successfully used in [14] to
reconstruct the high angular resolution dMRI signals.

3.3 Our Proposed SSR-CS Approach

To gain the high spatial and angular resolution diffusion MRI, we should not
only consider the similarity regularization of single 3D diffusion MRI but also the
sparse representation regularization of the different direction 3D diffusion MRI.
For reconstructing a collection of different directions image volumes S = {S∗

k}K
k=1

with high spatial resolution, a unified SSR-CS approach is proposed. The super
spatial and angular resolution problem can be deemed as

Ŝ = arg min
V >0,S

‖DHS − L‖22 + λ1

K∑
i=1

‖(I − W )S‖22 + λ2‖V ‖1

s.t. S = AV

(17)

where L is a collection of low spatial resolution different directions images
L = {L∗

k}K
k=1; H and D stand for the blurring and down-sampling operations;

A is the basis matrix introduced in compressed sensing section and each column
vector of V is the representation coefficients at the corresponding voxel; the
positive λ1 and λ2 determine the relative importance of data fitting terms versus
the non-local similarity and sparse representation regularization terms. Note that
it is not easy to directly solve the above problem because of the compound nature
of the regularization it involves. we could rewrite the (18) into the following
constrained optimization problem as

Ŝ = arg min
V >0,S

‖DHS − L‖22 + λ1

K∑

i=1

‖(I − W )S‖22 + λ2‖V ‖1 + λ3‖S − AV − qt‖22 (18)

qt+1 = qt + AV t+1 − rt+1 (19)

The split Bregman approach [16] allows one to reduce (18) to a simpler form,
the minimization can now be performed by sequentially minimizing with respect
to S and V separately. The resulting iteration steps are

Step 1: St+1 = arg min
S

‖DHS − L‖22 + λ1‖S − S̄‖22 + λ3‖S − AV t − qt‖22 (20)
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(S̄i)t+1 =
∑
j∈Vi

w(S̄i
t
, S̄j

t)S̄j
t (21)

Step 2: V t+1 = arg min
V >0

λ3‖AV − (St − qt)‖22 + λ2‖V ‖1 (22)

After we acquired the sparse coefficients, we can further compute the corre-
sponding ODF image [13].

4 Experimental Results and Analysis

4.1 Construction of the Gold Standard

To validate the effectiveness of the proposed method, we conduct experiments on
the simulated data sets proposed in [17]. In real clinical cases, diffusion MRI are
often contaminated by rician noise. To validate the effectiveness of our model in
high level noise condition and low level noise condition respectively, the simulated
diffusion-encoded images were contaminated by two different levels of rician
noise, giving rise to SNR of 40 db and 24 db. We use the following model in
[14] to generate corresponding diffusion-encode images {Sk}K

k=1 for a range of
different values of K

S(q; r) = S(0; r)
M(r)∑
i=1

αi(r)exp{−b(qT Di(r)q)} (23)

where αi(r) > 0 are the positive weights obeying
M(r)∑
i=1

αi(r) = 1, b is defined as a

function of shape and amplitude of diffusion-encoding gradients,and Di(r)
M(r)
i=1

are 3 × 3 diffusion tensors associated with M(r) neural fiber tracts passing
through the r coordinates.

The simulated set had a spatial dimension of 31×31×31 voxels with 90 gradi-
ents directions in a quasi-uniform manner which is straightforward to adapt for
sampling of the “northern” hemisphere. The set are consisted of some “fibres”
crossing. b = 2000 s/mm2 were used for data generation. The diffusion tensors
Di(r) in (24) respectively were: D1 = diag([y, x, z]),D2 = diag([x, z, y]),D3 =
diag([0, 0, 1]),D4 = diag([1/

√
3, 1/

√
3, 1/

√
3]). The orientations of diffusion

flows (ODF) are shown in Fig. 1. The ODF are computed by the method in
[18,19]. Note that the number of the diffusion components M(r)varied between
1 and 3. One of the diffusion encoding images was shown in Fig. 2.

To again the low resolution diffusion image, we firstly blur and downsample
the diffusion encoding image. A downsampling factor of 2 along each axis was
used. Then we choose K = 24 of the original set of 90 diffusion gradients. Within
the subset of the 24 diffusion gradients, their corresponding points in q-space
were also in a quasi-uniform coverage of the northern hemisphere. Finally the
chosen 24 simulated diffusion-encoded images were contaminated by two level
of Rician noise, giving rise to SNR of 24 dB and 40 dB diffusion encoding LR
images as shown in Figs. 3 and 4 to reconstruct the high spatial and angular
resolution images.
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Fig. 1. The orientations of the original high angular diffusion flows

Fig. 2. Simulated 3D diffusion MRI and SNR = ∞ dB

Fig. 3. Simulated downsampling 3D diffusion MRI and SNR = 24 dB
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Fig. 4. Simulated downsampling 3D diffusion MRI and SNR = 40 dB

4.2 Experiment Results

To evaluate the quality of image reconstruction, we compare the proposed app-
roach with cubic interpolation, B-spline interpolation. At the same time, the
approach will also be compared to previously proposed patch-based superres-
olution methods (PBSR), the original PBSR method described in [15] used to
reconstruct the normalized diffusion MRI instead of MRI was included in the
comparison.

To evaluate the quality of reconstruction two different metrics were used,
the usual Peak Signal-to-Noise Ratio (PSNR) and the percentage of generalized
fractional anisotropy (GFA) were computed. The quality measures were esti-
mated between the reconstructed HR images and the gold standard. The PSNR
index was used to measure the spatial resolution quality and the GFA difference
was used to measure the angular resolution quality. The experiment results were
shown as follows.

Firstly we show the PSNR index in Tables 1 and 2 of our proposed method
and the other methods compared when the LR data were in 24 dB and 40 dB.
Then we should consider the angular index, i.e., GFA difference, see Tables 3
and 4.

From the results, we could see the proposed method has obvious advantage
over the other methods when the LR data was in low SNR. When the LR data

Table 1. PSNR estimated between the gold standard and the reconstructed images
from 24 dB data

Cubic Spline PBSR Proposed

PSNR (dB) 19.57 19.67 23.78 26.00

Table 2. PSNR estimated between the gold standard and the reconstructed images
from 40 dB data

Cubic Spline PBSR Proposed

PSNR (dB) 19.79 20.00 31.79 31.92
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Table 3. GFA difference estimated between the gold standard and the reconstructed
images from 24 dB data

PBSR Proposed

GFA difference 2.46 × 10−2 2.33 × 10−2

Table 4. GFA difference estimated between the gold standard and the reconstructed
images from 40 dB data

PBSR Proposed

GFA difference 3.21 × 10−2 3.09 × 10−2

(a) Original high resolution 3D DWI

(b) PBSR reconstruction from 3D DWI 40db data

(c) Proposed method reconstruction from 3D DWI 40db data

Fig. 5. 3D DWI reconstruction using compared methods

was in high SNR, the proposed method is still best. Besides, the GFA difference
index shows the proposed method is better than PBSR when the LR data was
in 24 dB data and 40 dB data.
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(a) The original ODF

(b) The ODF of PBSR

(c) The ODF of our method

Fig. 6. ODF using compared methods
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The reconstructed 3D diffusion MRI from the 40 dB data using PBSR and
our proposed method are shown in Fig. 5.

The reconstructed ODF from the 40 dB data using PBSR and our proposed
method are shown in Fig. 6.

5 Conclusion

In this work, we investigated the possibility to increase diffusion MRI spatial
resolution and angular resolution using a new method named SSR-CS. We com-
bined the single image spatial superresolution and CS to propose a practical
diffusion acquisition and reconstruction scheme that allows for obtaining HSAR
diffusion MRI. The proposed technique is independent of scanner type and can
be implemented on any clinically feasible scan time. We found that the proposed
method could effectively reconstruct the high spatial and angular resolution dif-
fusion MRI from the compared results.

We also note some limitations of the proposed method. When the LR diffusion
MRI was in 40 dB, the proposed algorithm just improve 0.13 dB compared to
the PBSR in PSNR. The advantage of the proposed method is not obvious. In
the future we will focus on this aspect of the algorithm. At the same time, we
should consider the speed of the algorithm because the clinical diffusion MRI
were actually 4D data. The high dimension of the data will limit the speed of
the super-resolution algorithm.
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