
Online Adaptive Multiple Appearances Model
for Long-Term Tracking

Shuo Tang, Longfei Zhang(B), Xiangwei Tan, Jiali Yan, and Gangyi Ding

Digital Performance and Simulation Key Laboratory, School of Software,
Beijing Institute of Technology, Beijing 100081, China

{shuo tang,longfeizhang,dgy}@bit.edu.cn

Abstract. How to build a good appearance descriptor for tracking tar-
get is a basic challenge for long-term robust tracking. In recent research,
many tracking methods pay much attention to build one online appear-
ance model and updating by employing special visual features and learn-
ing methods. However, one appearance model is not enough to describe
the appearance of the target with historical information for long-term
tracking task. In this paper, we proposed an online adaptive multiple
appearances model to improve the performance. Building appearance
model sets, based on Dirichlet Process Mixture Model (DPMM), can
make different appearance representations of the tracking target grouped
dynamically and in an unsupervised way. Despite the DPMM’s appeal-
ing properties, it characterized by computationally intensive inference
procedures which often based on Gibbs samplers. However, Gibbs sam-
plers are not suitable in tracking because of high time cost. We proposed
an online Bayesian learning algorithm to reliably and efficiently learn a
DPMM from scratch through sequential approximation in a streaming
fashion to adapt new tracking targets. Experiments on multiple chal-
lenging benchmark public dataset demonstrate the proposed tracking
algorithm performs 22 % better against the state-of-the-art.

Keywords: Object tracking · Multiple appearance model · Online
Dirichlet process mixture model

1 Introduction

Object tracking plays an important role in numerous vision applications, such
as motion analysis, activity recognition, visual surveillance and intelligent user
interfaces. However, while much progress has been made in recent years, it is still
a challenging problem to track a moving object in a long term in the real-world
because of the variations of tracking environment such as view port exchanging,
illuminance varying, and etc. For visual tracking problem, an appearance model
is used to represent the target object and predicted the likely states of tracking
target in future frame [1]. However, using one appearance model is not suitable
to describe all the historical appearance information, especially for long term
tracking task. So we mainly focused on building multiple appearance models
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Fig. 1. The framework of online adaptive multiple appearances model based tracking.

dynamically in an unsupervised way in order to adapt the changing appearance
of tracking target (Fig. 1).

In this paper, we used Bayesian non-parametric clustering method to cluster
multiple different appearances dynamically. It can cover more aspects of the tar-
get appearance to make the proposed algorithm more robust to abrupt appear-
ance changes, and the number of clusters can be inferred from the observation.
Among the different probabilistic models, Bayesian non-parametric method has
several properties which suit the object tracking application well. In particular,
DPMM represents mixture distributions with an unbounded number of com-
ponents where the complexity of the model adapts to the observed data. This
property is important for building multiple appearance models dynamically. In
general, the number of appearances is uncertain and varying over time.

However, despite the appealing properties of DPMM, it characterized by com-
putationally intensive inference procedures, which often based on Gibbs samplers
[2]. While Gibbs sampling can be an appropriate inference mechanism when exe-
cution time is not an issue. It is not applicable in visual tracking, as it needs more
faster inference. In [3] a variational inference method which maximizes a lower
bound to the true underlying distribution and after each iteration, the obtained
parameters define a distribution which approximates the true one in a properly
defined way. However, variational inference method is extremely vulnerable to
local optima for non-convex unsupervised learning problems, and is frequently
yielding poor solutions.

In visual tracking literature, the appearance model based on BNP is not
applied as usual as the parametric methods [4]. The main strategy of the BNP
tracking methodology is based on three aspects shown as follows: we need
to solve (1) how to represent the observation of tracking target by Bayesian
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non-parametric models, (2) how to create multiple appearance models dynami-
cally without knowledge of cluster numbers and model parameters to adapt in
tracking environment variation, (3) how to update multiple appearance models
effectively and reliably in tracking process.

Our proposed algorithm is mostly inspired by [5,6] which are online Bayesian
learning algorithm to estimate DP mixture models. This method does not require
random initialization like Gibbs samplers. Instead, it can reliably and efficiently
learn a DPMM from scratch through sequential approximation in a single pass.
The algorithm takes data in a streaming fashion, and thus can be easily adapted
to new tracking target.

The rest of the paper is organized as follows: Sect. 2 reviews some of the
related work. Section 3 reviews Bayesian non-parametric model on which our pro-
posed model based. Section 4 introduces multiple appearances modeling and rep-
resentation, and proposes related probabilistic distributions which can describe
the generation process of tracking features. Section 5 introduces an online sequen-
tial Bayesian method to build multiple appearance models. Section 6 presents the
framework of the proposed tracking algorithm. Section 7 reports the experimen-
tal results. Section 8 makes the conclusion of the paper.

Fig. 2. The appearances when operating the online adaptive multiple appearances
model tracking. (Color figure online)

2 Related Work

There is a rich literature in object tracking approatches [7]. As a main compo-
nent in tracking algorithms, tracking target appearance modeling plays a key
role in tracking performance. A good appearance representation should have
strong description or discrimination power to distinguish the target from the
background. In order to adapt to the appearance variations of the target during
tracking, there are many adaptive appearance models have been proposed for
object tracking including both generative and discriminative methods.

For generative appearance modeling methods, Jepson et al. [8] learn a
Gaussian mixture model via an online expectation maximization algorithm to
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account for target appearance variations during tracking. Incremental subspace
methods have also been used for online object representation [9]. This method
uses target observations obtained online to learn a linear subspace for object rep-
resentation. Since the appearance of a target in a long-time interval may be quite
different, these generative models may not describe the appearance variations of
the target well.

For discriminative appearance modeling methods, Avidan et al. [10] use
online boosting method for tracking. They proposed an ensemble tracking frame-
work to construct a strong classifier to distinguish the target from the back-
ground. Babenko et al. [11] use Multiple Instance Learning (MIL) instead of
traditional supervised learning to avoid the inaccuracy accumulation problem
caused by self-learning. In these methods, tracking is usually treated as a binary
classification problem. In order to train and update the classifiers, samples usu-
ally needs to be correctly labeled, which may not be available in many real
tracking applications.

The most related methods to our model is [12], which proposed the original
Adaptive Multiple Appearance Model (AMAM) framework to maintain not only
one appearance model as many other tracking methods but appearance model
set to describe all historical appearances of the tracking target during a long
term tracking task. This method employed DPMM to build multiple appearance
models unsupervised to tackle drifting problem, and experiment in several public
datasets shows that this tracker has high tracking performance compared with
several other state-of-the-art. In order to infer the number of different appear-
ances underlying tracking observations, this tracker resorts to Gibbs sampler [2]
for approximate inference and also requires random initialization of components.
However, as this sampler needs to maintain the entire configuration, the com-
putational complexity of this tracker is quite high, which limits its applications
in real-time scenarios.

Compared with the tracking methods as described above, our proposed
method shows three mainly characteristics in dealing with appearance varia-
tions of the target. Firstly, our method can cluster multiple different appearances
dynamically, and the number of clusters can be inferred from the tracking obser-
vation. Secondly, in our method, different kinds of tracking target appearances
can be modeled by new model or constructed appearance models. It covered
various target appearances, which made the proposed method more robust to
abrupt appearance changes. Finally, our method begins with an empty model
and progressively refines the models as tracking observation come in, adding new
appearance models on the fly when needed.

3 Bayesian Non-parametric Model

The Dirichlet process (DP ) introduced in [14], is a popular nonparametric sto-
chastic process that defines a distribution over probability distributions. The
DP is parameterized by a base distribution H which has corresponding density
h(μ), and a positive scaling parameter α > 0. We denote a DP as follows:
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G|{α,H} ∼ DP (α,H), G �
∞∑

k=1

ωkδφk
,

vk ∼ Beta(1, α), ωk = vk

k−1∏

l=1

(1 − vl)

The DP is most commonly used as a prior distribution on the parameters
of a mixture model when the number of mixture components is uncertain. Such
a model is called a Dirichlet process mixture model (DPMM) which can be
specified as:

G ∼ DP (α,H), θi|G ∼ G, xi|θi ∼ F (θi), i ∈ {1, · · · , N}

Let zi indicate the subset, or cluster, associated with the ith observation,
the DP mixture model can also be modeled by using the Chinese Restaurant
Process (CRP) representation [17] of the DP , leading to the followings:

p(zi = k|z−i) ∝
∑

j �=i

1zj=k, p(zi = knew|z−i) ∝ α0

So, a model equivalent to the DPMM using the CRP can be specified as:

z ∼ CRP (α), θk|G ∼ G, xi|zi ∼ F (θzi
)

4 Multiple Appearance Modeling and Representation

In this section, our goal is to develop a probabilistic method to cluster mul-
tiple different appearances unsupervised, which can cover aspects of the tar-
get appearance. In order to do so, we represent motion features (e.g. HOG,
color feature etc.) using histograms, and then, quantize motion feature values
of tracking observations to 20 or more levels, which is a common practice for
similar histogram-based descriptors, such as [13]. Thus, considering N tracking
observations X = {Xi}N

i=1, which can be clustered into K clusters or differ-
ent appearances, and each Xi = {xi}D

i=1 represents a quantized D dimensional
motion feature, and xi is the corresponding histogram quantized bin counts,
which is a quantized integer. With the new tracking observation arrival, the
number of clusters became to be varies. Given the cluster assignment for ith

each observation Xi, its likelihood for that cluster is F (Xi|θk), while the θ1:K
are drawn from the base distribution of DPMM.

4.1 Exponential Family and Sufficient Statistics

In order to describe motion feature X which is the collection of small integers
of histograms and the histogram bin counts, we adopt component distributions
of which are members of the exponential family distributions. The base measure
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Algorithm 1. The method of building multiple appearance models
Input: Given the concentration parameter α of DPMM , base measure
parameter μ = (μ1, · · · μD) of H(μ) and HOG features {Xi}N

i=1 of tracking
observations, until frame N .
Output: multiple appearance model parameters ζk, (k = 1 : K)
Let K = 1,ρ1(1) = 1, ω1 = ρ1, ζ1 = μ
for i = 2 to N do

Compute the marginal likelihood fk(Xi) = p(Xi|ζk), for k = 1 : K
Compute fk(Xi) = p(Xi|λ)using Eq. (3), for k = K + 1
Compute ρi(k) = ωkfk(Xi)/

∑
l ωlfl(Xi) for k = 1 : K + 1 , with ωK+1 = α

see, Eq. (9)
if ρi(K + 1) > ε then

for k = 1 : K do
ωk = ωk + ρi(k),
Update parameters according to posterior and
ρi(k) : θk = θk + Xiρi(k) using Eq. (10)

ωK+1 = ρi(K + 1) , ζK+1 = Xiζi(K + 1)
K = K + 1

else

Re-normalize ρi such that
∑K

k=1 ρi(k) = 1
ωk = ωk + ρi(k), ζk = ζk + Xiρi(k) for k = 1 : K

of the DPMM will be the conjugate prior, because it has many well-known
properties, which can admit efficient inference algorithms. Thus, in this paper,
we will consider to describe the distributions as follows:

p(Xn|θi) = l(Xn)exp(θT
i Xn − a(θi)),

where a is the log-partition function. We take H to be in the corresponding
conjugate family:

h(θ|λ) = l(θ)exp(λT
1 θ − λ2a(θ) − a(λ)),

where the sufficient statistics are given by the vector (θT ,−α(θ)), and λ =
(λT

1 , λ2).

4.2 Model Representation

Specifically, we choose Multinomial distribution F (Xi|θ), which we denote
Mult(θk;n)θk = (p1, · · · , pD), is a discrete distribution over D dimensional non-
negative integer vectors Xi = (x1, x2, · · · xD) where

∑D
i=1 xi = n. The probabil-

ity mass function is given as follows:

f(Xi; p1, · · · , pD, n) =
Γ(n + 1)

∏D
i=1 Γ(xi + 1)

D∏

i=1

pxi
i (1)
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The cluster prior H(θ|λ) is represented by a Dirichlet distribution which is
conjugate to F (Xi|θ). We denote cluster prior H(θ|λ) as follows, which is a
Dirichlet distribution and is conjugate to F (Xi|θ).

h(p1, · · · pD;λ1, · · · λD, n) =
1

B(λ1, · · · λD)

D∏

i=1

pλi−1
i , (2)

where the normalizing constant is the multinomial Beta function. Because H(λ)
is conjugate to F (θ), then the marginal joint distribution can be obtained by
integrating out (p1, · · · , pD) as follows:

p(Xi|λ1, · · · λD) =
N !

∏D
i=1(ni!)

Γ(A)
Γ(N + A)

D∏

i=1

Γ(ni + λi)
Γ(λi)

(3)

where A = Σiλi and N = Σini, and where ni = number of xi’s with value i.

4.3 Multiple Appearance Modeling

When the number of clusters K is estimated, the multiple appearance model
can be built. Considering all of the model parameters, which is comprised of the
model parameters θ1:K and the cluster indicator z1:N , the joint distribution of
this Bayesian Non-parametric mixture model can be written as in Eq. (4).

p(θ1:K , z1:N |X1:N ) ∝

p(z1:N )(
N∏

i=1

p(Xi|θzi
))

K∏

k=1

p(θk)
(4)

Here, zi ∈ {1 · · · K} with i ∈ {1 · · · N} indicates the cluster label of the
observation Xi and θk are the parameters for the k-th appearance model.
The target of our proposed method is to infer the joint posterior distribution
p(θ1:K , z1:N |X1:N ) unsupervised and dynamical, then we can get the parameters
θ1:K of multiple appearance models.

5 Online Sequential Approximation

In order to infer the joint posterior distribution p(θ1:K , z1:N |X1:N ), we can initial-
ize the components randomly, and then resort to Gibbs sampler for approximate
inference [12]. However, this method needs to maintain the entire configuration,
so the computational complexity of this tracker is rather high, which limits its
applications in real-time scenarios.

We improved it by using an online sequential variational approximation
method to learn a DPMM from scratch through sequential approximation in
a streaming, which is easily adapted to new observation.
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By marginalizing out the cluster assignment z1:N , we obtain the posterior
distribution p(θ|X1:N ):

p(θ|X1:N ) =
∑

z1:n|X
p(z1:N |X1:N )p(θ|X1:N , z1:N ) (5)

In order to compute the distribution above, it requires enumerating all pos-
sible partitions z1:N , which grows exponentially as n increases. To tackle this
difficulty, we resort to variational approximation [6] to choose a tractable distri-
bution to approximate p(θ|X) as follows:

q(θ|ρ, υ) =
∑

z1:n

n∏

i=1

ρi(zi)q(z)υ (θ|z1:n) (6)

We begin our tracker with one appearance model (i.e. K = 1) and pro-
gressively refine the model as samples come in, adding new appearance models
on the fly when needed. Specifically, when we have ρ = (ρ1, ρ2, · · · , ρi) and
v(i) = (v(i)

1 , v
(i)
2 , · · · , v

(i)
K ) after processing i frames. To determine Xi+1, we can

use either of the K existing appearance models or generate a new model θK+1.
Then the posterior distribution of zi+1, θ1, · · · , θK+1 given x1, · · · , xi+1 is

p(zi+1, θ1:K+1|X1:i+1) ∝
p(zi+1, θ1:K+1|X1:i)p(Xi+1, zi+1|θ1:K+1)

(7)

Using the tractable distribution q(θ|ρ, υ) to approximate the posterior
p(zi+1, θ1:K+1|X1:i), we get the following:

p(zi+1, θ1:K+1|X1:i+1) ∝ q(zi+1|ρ1:i, v(i))p(Xi+1|zi+1θ1:K+1) (8)

Then, for our model, the optimal setting of qi+1 and v(i+1) minimizes
the Kullback-Leibler divergence between q(zi+1, θ1:K+1|ρ1:i+1, v

(i+1)) and the
approximate posterior in Eq. (8) are given as follows:

ρi+1 ∝
⎧
⎨

⎩

ω
(i)
k

∫
F (Xi+1|θ)υ(i)

k (dθ) (k ≤ K)

α
∫
F (Xi+1|θ)h(dθ) (k = K + 1),

(9)

with ω
(i)
k =

∑i
j=1 ρj(k), and

υ
(i+1)
k (θ) ∝

⎧
⎨

⎩

h(θ)
∏i+1

j=1 F (Xj |θ)ρj(k) (k ≤ K)

h(θ)F (Xi+1|θ)ρi+1(k) (k = K + 1)
(10)

Algorithm 1 illustrates the basic flow of our algorithm. More details can be
found in [5]. The implementation of this algorithm is under the circumstance
where H and F are exponential family distributions that form a conjugate pair.
In such cases, base measure h and posterior measures vk can be represented by
natural parameter denoted by λ and ζk.
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Algorithm 2. A Summary of the proposed tracking method
(1)Lt(X) ∈ R2 denotes the location of sample X at the t-th frame. We have the
object location Lt(X) where we assume the corresponding sample is Xt

representing the quantized HOG feature.
(2)We apply the affine transformation to Lt(X) with six affine parameters to
product candidate samples st.
(3)For each candidate samples st, we extract quantized HOG featureXt, then
use NOR model of Eq. 13 and each of the multiple appearance models zetak to
compute the likelihood of Xt.
(4)We select the state st which has maximum probability of Xt.
(5)Let Xt represents the quantized HOG feature of the target at frame t, and
then use Algorithm 1 to update parameters of multiple appearance models
online in a streaming fashion.

6 Proposed Tracking Algorithm

Given the observation set of the target X1:t = [X1, . . . , Xt] up to time t, where
each Xt represents a quantized HOG target feature at time t, the target state
st(motion parameter set) can be determined by the maximum a posteriori(MAP)
estimation as follows:

ŝt = argmax p(st|X1:t) (11)

where p(st|X1:t) can be inferred by the Bayesian theorem in a recursive manner
(with Markov assumption)

p(st|X1:t) ∝ p(Xt|st)p(st|X1:t−1) (12)

where p(st|X1:t−1) =
∫

p(st|st−1)p(st−1|X1:t−1)dst−1. The tracking process is
governed by a dynamic model, i.e. p(st|st−1), and an observation model, i.e.
p(Xt|st).

A particle filter method [15] is adopted here to estimate the target state.
In the particle filter, p(st|X1:t) is approximated by a finite set of samples
with important weights. Let st = [lx, ly, θ, s, α, φ], where lx, ly, θ, s, α, φ denote
x, y translations, rotation angle, scale, aspect ratio, and skew respectively. We
approximate the motion of a target between two consecutive frames with affine
transformation. The state transition is formulated as p(st|st−1) = N(st; st−1,

∑
)

where
∑

is the covariance matrix of six affine parameters. The observation model
p(Xt|st) denotes the likelihood of the observation Xt at state st. The Noisy-OR
(NOR) [17] model is adopted for doing this:

p(Xt|st) = 1 −
∏

k

(1 − p(Xt|st, ζ
k)) (13)

where ζk, k ∈ (1, 2, . . . ,K) represents the multiple appearance model parameters
learned from Algorithm1. The equation above has the desired property that if
one of the appearance models has a high probability, the resulting probability will
be high as well. Algorithm 2 illustrates the basic flow of our tracking algorithm.
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Figure 2 shows how the online adaptive multiple appearances model working.
These small face images show the appearance instance belong to each appearance
model and the historical instances while tracking. The red rectangle in main
frame is the tracking result based on our proposed model, and the green one
is the ground truth. With the new tracking observation arrival, the number of
clusters became varies.

7 Experiments

To evaluate our tracker, we compared the proposed tracker with 10 latest algo-
rithms using 10 challenging public tracking datasets introduced by [20]. When
evaluating the trackers, there are several problems should be discussed. We fol-
lowed the evaluation methods from [20]. As object tracking is a traditional prob-
lem in computer vision, these trackers have quite different frameworks, so that
all of them have advantage and disadvantage when meeting different challenges
like occlusion and etc. Table 1 shows all the trackers (including our proposed
algorithm) and their features and models. Note that in our proposed algorithm
the HOG feature can be replaced by other features.

Table 1. Compare trackers and their representations in our experiment [20]

Trackers Features Models

LOT [22] C L

IVT [9] PCA H

ASLA [23] SR L, GM

L1ANG [25] SR H, GM

MTT [28] SR H, GM

VTD [24] SPCA H, GM

OAB [26] Haar H, DM

MIL [21] Haar H, DM

TLD [28] BP L, DM

Struck [27] Haar H, DM

AMAM [12] Optional DPMM

OAMAM Optional H, DPMM

One thing to emphasis is that all the trackers are running with adjusted
parameters or simply use the parameters given by their publication for fair eval-
uation.

As mentioned before, a tracker might face tons of problems listed below in a
real usage. According to the [20,29], we divided these variation into six groups
and analyzed some datasets by using this division. In the Table 2, we also add a
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short form of each challenge on each datasets. Here, the OCC stands for Occlu-
sion, IV stands for Illumination Variation, R stands for Rotation which contains
in-place rotation and out-of-place rotation, SV stands for Scale Variation while
BC stands for Background Clutters.

One general problem for tracking is that the object may be occluded by other
objects for several seconds. While in the dataset Bolt, the main object Bolt just
kept the sportsman near him out in some of the frames and this will lead trackers
to track on the sportsman near Bolt.

Table 2. Datasets and their problems

Dataset Problems

CarDark IV, BC

David2 R

Car4 IV, SV

Trellis IV, SV, R, BC

Singer1 IV, SV, OCC, R, BC

Singer2 IV, R, BC

Bolt OCC, R

Crossing SV, R, BC

MountainBike R, BC

Dog1 SV, R

This method we proposed didn’t limited any certain kind of features for
tracking task. Better features can get better tracking results. We simply applied
HOG feature to implement.

It’s common to use Center Location Error (CE [20]) and Overlap Score (OS
[29]), to estimate the performance of the tracker. OS is calculated by the formula
score = area(ROIT ∩ROIG)

area(ROIT ∪ROIG) . In the experiment, the area(ROTT ) is the area of
bounding box of tracking, and the area(ROTG) is the area of the ground truth.
The CE is the Euclidean distance between the centers of tracking bounding box
and the ground truth.

7.1 Online AMAM vs. Original AMAM [12]

In the previous sections, we compared our new proposed tracking method with
AMAM tracking method [12]. As online method benefits the predicting speed on
a long-term object, we compared these two methods in the time consumption.
Figure 4(a) illustrates the DPMM time consumption of each frame in Trellis for
both OAMAM method and AMAM method. It’s obvious that AMAM method
has a quite unaffordable time cost tracking for a long time while our online
method performs relatively stable.
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Fig. 3. All the images above are tracking results by trackers in Table 1 and dataset in
Table 2, in which the bounding boxes in red are our results. (Color figure online)
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Fig. 4. (a) Is the DPMM time cost of each frame in Trellis, where OAMAM using
ms and the other is s. (b) Is the quantity of appearance models of each frame when
processing in Trellis.

Besides the time cost, they have a slightly difference in forming appearance
models during the tracking task. Figure 4(b) shows the amount of appearance
models for both methods in every frame in dataset Trellis.

7.2 Qualitative Comparison

Our tracker has a robust performance while solving different challenges in differ-
ent video sequences. Typical background problem can be seen in MountainBike,
Crossing. In the Fig. 3 in Crossing, when a car was passing by the pedestrian,
they shared similar dark colors in the frame 31 and result in the ASLA, Struck,
and TLD’s failure in tracking. In the frame 73 to frame 85 the target pedes-
trian blurred himself with the dark shade and only Struck, MIL and our tracker
catched the target successfully(even Struck failed to track the pedestrian in the
frame 31). In MountainBike, our tracker still performed well while the target
was on the grass or dark shade in frame 62(VTD lost the target entirely from this
frame), frame 150, frame 199, and frame 225. During the whole period of these
two video sequences, our tracker tracked the target perfectly and constantly
performed better than other trackers.

At the same time, there are view port varying problem in Bolt and rotation
challenge in David2. In Bolt, the view port of the camera varied three times.
It firstly lied in frame 97, as shown in the Fig. 3 Bolt was running towards the
camera. The Second variation lied in frame 137 while Bolt was running parallel
to the camera. The third variation lied in frame 252 while Bolt running away
from the camera. Most of the trackers lost the target at the first stage, except
four were still catching the Bolt. Only three trackers tracked Bolt successfully at
the second stage. At the last stage, only our tracker was still working. In David2,
there were abundant in-plane rotations and out-of-plane rotations. During the
out-of-plane rotation(from the frame 79 to 115), half of the trackers had high
CE rate even they did not lost the target.
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In Trellis and Car4, there are significant illumination variations. In Trellis,
The illumination of target varied from all dark to half dark during frame 139
to frame 213, and changed to bright in the frame 230. All the bounding box of
these frames is shown in Fig. 3. In the frame 282 we could clearly find that only
two trackers (ours and MIL) succeed in tracking the target while others drifted
away because of the dark background. In Car4, the video sequences undergo
serious illumination changes when the vehicle ran through a tunnel or under
trees. At the frame 182, most of trackers performed well except two trackers fail
to track the vehicle. But in the frame 207, 6 trackers enlarged its bounding box
and drift away in frame 233 while the vehicle ran outside the tunnel. After the
frame 490 and passed several trees and billboards, only 4 trakers including our
tracker, MIL, ASLA and VTD were succeed in tracking target, and only our
tracker didn’t falsely enlarge its bounding box comparing to the ground truth.

We employed the protocol above to finish a comparison and analyzed all the
data after evaluating. By adopting the OPE evaluation matrics, we compared
the performance of trackers in all testing datasets with the same testing result
shown in Fig. 5. From Fig. 5, we found that our tracking method outperforms
state-of-art in the OPE evaluation on these 10 datasets. In the plot we can also
infer that our tracking method is approximately 22 % better than the second
best tracking method.

Fig. 5. Success rate and precision of eleven trackers versus different thresholds under
different attributions on ten video sequences.

8 Conclusion

In this paper, we proposed a new online adaptive multiple appearances model
for long-term tracking. This approach remained more historical information on
appearances of tracking target to avoid the target drifting or lost during the
tracking caused by varying illumination or pose changing. We employed HOG to
build the basic appearance representation of the tracking target in our algorithm
framework. Multiple appearances representations were grouped unsupervised
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and dynamically by an online sequential approximation BNP learning method.
Tracking result can be selected from candidate targets, which were predicted by
trackers based on those appearance models, by using Noisy-OR method. Exper-
iments on public datasets show that, our tracker has low variation (less than
0.002), low time cost for real-time tracking, and high tracking performance (22 %
better than other 10 trackers in average) when compared to the state-of-the-art.
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