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Abstract. In this paper, we propose a new method to detect and seg-
ment foreground object in video automatically. Given a video sequence,
our method begins by generating proposal bounding boxes in each frame,
according to both static and motion cues. The boxes are used to detect
the primary object in the sequence. We measure each box with its likeli-
hood of containing a foreground object, connect boxes in adjacent frames
and calculate the similarity between them. A layered Directed Acyclic
Graph is constructed to select object box in each frame. With the help
of the object boxes, we model the motion and appearance of the object.
Motion cues and appearance cues are combined into an energy minimiza-
tion framework to obtain the coherent foreground object segmentation
in the whole video. Our method reports comparable results with state-
of-the-art works on challenging benchmark dataset.

Keywords: Video analysis - Video object segmentation - Object
proposals

1 Introduction

Video object segmentation is one of the fundamental problems in video analysis.
It aims at separating the foreground object from its background in a video
sequence. This technique is beneficial to a variety of applications, such as video
summarization, video retrieval and action recognition.

Humans have the talent to distinguish an object from its background in static
images or videos. However, it is difficult for a computer to accomplish such task.
Finding or segmenting objects in images is one of the core problems in the field
of computer vision. Many exciting approaches have been explored for this type
of task, such as figure-ground segmentation, object proposal techniques, saliency
detections and object discovery. When we process video data, the task of object
discovery and segmentation changes a lot since continuous frames provide motion
information. Therefore, both appearance and motion cues should be considered
to find out the primary object.

Our approach aims at video object segmentation, while we also give out
category independent object detection results in the form of bounding boxes.
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Similar to some methods [1-3], we utilize an object proposal method to obtain
the initial locations of the object. However, the former methods need to pre-
segment each frame and measure the likelihood of each segment to be an object.
This process costs a lot of time (more than 1 min per frame). Different from these
methods, we generate proposal bounding boxes instead of object-like segments,
and it is much more efficient (about 1s per frame). Both static and motion
cues are under consideration for the boxes generation. We attempt to measure
the proposal bounding boxes with two scores: objectness score and motion score.
Objectness score reports the likelihood of containing an object, and motion score
estimates the motion difference between the box and its surrounding area. Since
the object always moves differently from its background, the box which has the
object inside it oughts to own high objectness score and motion score. In most
situations, object moves smoothly across frames in a video, its location and
appearance vary slowly. Therefore, the proper object boxes in the consecutive
frames are also coherent in location and size. We connect two boxes in consecutive
frames and measure the similarity between them. A layered Directed Acyclic
Graph (DAG) is constructed to formulate the bounding boxes in the whole
sequence, and the problem of selecting boxes is transformed into finding out the
path with highest score in the layered DAG. When the boxes are determined,
the foreground object is detected. With the help of the selected boxes, we locate
the object in each frame, and model the motion and appearance of the object
according to the regions inside the boxes. The final segmentation is performed
in an energy minimization framework.

The rest of this paper is organized as follows. Section 2 of this paper reviews
the related researches on the task of video object segmentation. In Sect. 3, our
approach is introduced and discussed in detail. The experimental results and
analysis are reported in Sect.4. The paper is concluded in Sect. 5.

2 Related Work

Lots of methods have been explored to fulfill the task of video object segmenta-
tion. Divided by the need for manual annotation, the methods are summarized as
semi-automatic manner and fully automatic manner. Semi-automatic methods
require manual annotations of object position in some key frames for initializa-
tion, while the latter scenario doesn’t need any human intervention. Without any
priori knowledge of the foreground object, the fully automatic methods have to
firstly answer the questions of what and where the object is. Different strategies
have been developed for the questions. Trajectory analysis and object proposal
techniques are often used to discover the object in videos.

Semi-automatic Methods. Some semi-automatic methods [4-7] require anno-
tation of precious object segments in key frames. The segments are propagated
to other frames under the constrains of motion and appearance. Other semi-
automatic methods [8] require object location in the first frame as initialization.
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These methods track the object regions in the rest frames. Semi-automatic meth-
ods usually get better result than fully automatic methods as they obtain prior
knowledge about object annotated by interaction. However, since labor cost is
expensive, these methods are unsuitable for large-scale video data processing.

Trajectory Based Methods. The main characteristic of trajectory based
methods [9-11] is that they analyze long term motion over several frames rather
than forward /backward optical flow. These methods assume that trajectories of
moving object are similar with each other and different from background. Brox
et al. [9] defined a distance between trajectories as the maximum difference
of their motion over time. Given the distance between trajectories, an affinity
matrix was built for the whole sequence and the trajectories were clustered based
on the matrix. Lezama et al. [11] combined local appearance and motion mea-
surements with long range motion cues in the form of grouped point trajectories.
Fragkiadaki et al. [10] proposed an embedding discontinuity detector for local-
izing object boundaries in trajectory spectral embeddings. Trajectory clustering
was replaced by discontinuities detection. These methods suffered from some
problems such as model selection of clustering and no-rigid/articulated motion.

Proposal Based Methods. Object proposals are regarded as regions or win-
dows likely to be an object in an image. Object proposal techniques [1-3] try
to find out an object in the image based on bottom-up segmentation. These
techniques are beneficial for video object segmentation task as they segment
frames in advance. One of the most important steps in these methods is to dis-
tinguish which proposals are the regions of the object. Proposal based methods
generate hundreds of proposals and measure the probabilities to be a foreground
object using appearance and motion cues. After that video object segmentation
transforms into a proposal selection problem. Lee et al. [12] preformed spectral
clustering on proposals to discover the reliable proposals in the key frames. The
proposal cluster with highest average score was corresponding to the primary
foreground object. These proposals were used to generate object segments in
rest frames. Although this method outperformed some semi-automatic methods,
the main drawback was that clustering abandoned temporal connections of the
proposals and the object-regions were only obtained in some key frames. Zhang
et al. [13] designed a layered Directed Acyclic Graph to solve proposal selec-
tion problem. The layered DAG considers temporal relationship of proposals in
consecutive frames and the problem of proposals selection transformed to get
the longest weighted path in the DAG. When the path was determined, the
most suitable proposal was selected in each frame. Our method is inspired by
their brilliant idea. Perazzi et al. [14] formulated proposals in a fully connected
manner and trained a classifier to measure the proposal regions. Proposal based
methods report state-of-art result in this task. They also handle no-rigid and
articulated motion well since a prior segmentation is performed in each frame
without the influence of motion. However they face the problem of high compu-
tational complexity for generating proposal regions. It costs several minutes to
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get hundreds of proposal segments in a standard scaled image. The unacceptable
time cost limits practical value of these methods.

Apart from the aforementioned paradigms, several other formulations have
been explored for this task. Papazoglou et al. [15] proposed a novel solution,
which combined motion boundaries and point-in-polygon problem for efficient
initial foreground estimation. The method reported comparable results to pro-
posal based methods while being orders of magnitude faster. Wang et al. [16]
proposed a saliency-based method for video object segmentation. This method
firstly generated framewise spatiotemporal saliency maps using geodesic dis-
tance. The object owned high saliency value in the maps and was easy to be
segmented.

3 Owur Approach

Our proposed approach is explained detailedly in this section. There are three
main stages in the approach: (1) Proposal bounding boxes generation in each
frame; (2) Layered DAG construction and bounding box selection; (3) Model-
ing motion and appearance for the foreground object and obtaining the final
segmentation in an energy minimization framework. The forward optical flow
between the ¢-th and (¢ + 1)-th frame is computed using [17] previously.

3.1 Proposal Bounding Boxes Generation

We utilize the efficient object proposal technique Edge Boxes [18] to generate
proposal bounding boxes in each frame. Edge Boxes [18], as its name implies,
measures edges in an image, returns hundreds to thousands bounding boxes
along with their objectness scores. In order to obtain reliable bounding boxes
of the foreground object, we extract two types of edges, one is image edges
extracted by structured random forests [19], the other one is motion bound-
ary extracted by [20] which improves the structured random forests [19] and
makes it work for motion boundary detection. Both frame image and its forward
optical flow are used to extract the motion boundary. Utilizing the edges, Edge
Boxes [18] generates image bounding boxes and motion bounding boxes and their
objectness scores. Notice that the object may be motionless and the optical flow
may be inaccurate in some frames, which leads to false motion boundary and
bounding boxes. However, we can always get high-quality image bounding boxes
only if there are enough image boundaries. Figure 1 demonstrates the process of
bounding boxes generation. As the illustration shows, in this case, the motion
bounding boxes in (f) are more concentrated around the girl than the image
bounding boxes in (c), due to the clear motion boundary in (e). But when the
optical flow is inaccurate, motion bounding boxes turn to be unreliable. Figure 2
demonstrates a failing case of optical flow. The motion boundary fails following
the inaccurate optical flow, and then the motion bounding boxes are outside of
the target. However, the image bounding boxes are not influenced. We choose
100 bounding boxes with the highest scores from each type, and merge them to
be the candidate regions of the object.
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(a) Image

(d) Forward Optical Flow (e) Motion Boundary (f) Motion Bounding Boxes

Fig.1. (a) One of the input frames. (b) Image boundary extracted by structured
random forests [19]. (¢) Some top ranked bounding boxes using image boundary. (d)
Forward optical flow of the image. (e) Motion boundary of the image extracted by [20].
The origin image and the forward optical flow are used to extract the motion boundary.
(f) Some top ranked motion bounding boxes.

(a) Unsuccessful (b) Motion Boundary (c) Motion (d) Image
Optical Flow Bounding Boxes Bounding Boxes

Fig. 2. (a) A failing case of optical flow. (b) Motion boundary. The motion boundary
fails following the opical flow. (¢) Some top ranked motion bounding boxes. The motion
bouding boxes are outside of the target. (d) Some top ranked image bounding boxes.

3.2 Layered DAG for Bounding Box Selection

We have obtained hundreds of bounding boxes for each frame. It is difficult to
determine which bounding box is best for the object in a single frame since the
bounding boxes provide candidate regions of the object. Therefore, we consider
the consistency of the boxes in the sequence. As the object moves smoothly across
the frames, the box associated with it also moves. We want to obtain the boxes
which have high probabilities to contain an object tightly and move coherently
across the frames. A layered DAG is constructed to formulate the motion of
the boxes. The problem of selecting the best box for each frame transforms into
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t+1 layer

t-1 layer t layer

Fig. 3. Structure of layered DAG. Circles represent vertices of the graph. The ver-
tices in consecutive frames are connected by straight lines in pairs. The straight lines
represent edges of the graph. The path with maximum weight is selected by dynamic
programming method. Red circles and lines are parts of the selected path. (Color figure
online)

finding the longest path in the layered DAG. Figure 3 demonstrates the structure
of the layered DAG. Each frame is represented by a layer in the graph, and each
bounding box in the frame turns to be a vertex of the corresponding layer. Boxes
in adjacent frames are directly connected in pairs by the edges of the DAG. All
the vertices and the edges are weighted, which will be reviewing later on.

Vertices. We measure every bounding box with its potential of containing the
foreground object. The scores of all bounding boxes are used as the vertices.
S, (bt) represents score of the n-th bounding box in the ¢-th frame. As both
appearance and motion cues are useful for determining moving object in video,
S, (b)) is made of two parts as:

Sv(bfz) = Av(b;) + Mv(bfz% (1)

where A,(b},) is the objectness score of bf, obtained by Edge Boxes [18], and
M, (%) is the motion score. M, (b!) measures the moving difference between
bl and its surrounding area. M, (b%) is defined according to the optical flow
histogram:

M’U(b;) =1- exp(_X?low(b'tm@)% (2)

where X?”lgv (bt,bL) is the x2-distance between L;-normalized optical flow his-

n»vn

tograms, bf, is a set of pixels within a larger box and around bY,.

Edges. Bounding boxes in consecutive frames are connected in pairs to form
the edges of the layered DAG. Edges measures the similarity between two con-
nected boxes. As object moves smoothly across frames, object bounding box
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also changes coherently in location and size. Therefore, we measure the simi-
larity score of the boxes in two consecutive frames by their locations, sizes and
overlap ratio. The similarity score of the boxes is used as edges in the layered
DAG and is defined as:

Se(btvbt—i-l) = /\*Sg(bubt-i-l) *So(btvbt—i-l)v (3)

where b; and b1 are two boxes from ¢-th frame and (¢t+1)-th frame, Sy (b, by11)
is location and size similarity, and S, (b, bs+1) is overlap similarity. A is a balance
factor between Se and S,. Sg(by, bi+1) and S, (b, by11) are defined as:

||9t *gt+1H2
b, b = A 4 4
Sg(be, bey1) = exp( R ), (4)

|brr1 Nwarp(by)|

So(be, brt1) = |be+1 Uwarp(be)|

(5)

In Eq.4, g: = [z,y,w, h] is location and size of box b;, where [z,y] is centroid
coordinate of box and [w, k] is width and hight respectively. In Eq. 5, warp(b;)
is the warped region from b; to frame ¢ + 1 by the optical flow.

Box Selection. A proper object bounding box in a certain frame is considered
to own high objectness score and motion score, while proper boxes in the consec-
utive frames are close to each other, or high similarity score S, in other words.
Once the layered DAG is constructed, the path with maximum total score in
the graph represents the most suitable boxes in the frames. This problem can be
solved by dynamic programming in linear complexity. The vertices in the max-
imum weighted path represent object boxes in each frame. After box selection,
we obtain a set of object boxes and only one box is left in each frame.

3.3 Object Segmentation

We oversegment frames into superpixels by the algorithm SLIC [21] for less com-
putational complexity. After all these, video object segmentation is formulated
as a superpixel labeling problem with two labels (foreground/background). Each
superpixel in the video sequence takes a label [! from L = {0,1} where 0 rep-
resents background and 1 represents foreground. Similar to the related works
[12,13,15,16], we define an energy function for the labeling problem:

ZA +ale + s Z V(L) + s Z W (L, 1+,

(1,4,t)EN, (1,4,t)EN¢
(6)

where A(l!) is an appearance unary term and M (I}) is a motion unary term asso-
ciated with a superpixel. V(I},1%) and W (I}, ltH) are pairwise terms associated
with spatial and temporal consistency respectlvely. Ny is a set of spatial neigh-
borhoods of a superpixel and N; is a set of temporal neighborhoods. A super-

pixel is warped to the next frame by forward optical flow, and the superpixels
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in the next frame which is overlapped with the warped region are considered as
its temporal neighborhoods. 4, j are indexes of superpixels. Unary terms try to
determine labels of superpixels by appearance and motion cures, while pairwise
terms insure spatial and temporal coherence of the segmentation. aq, as and
ag are balance coefficients. Equation 6 is optimized via graph-cuts model [22]
efficiently.

Motion Term. Saliency detection is always used as a technique to discover
salient object in images. But saliency detection in video sequence always fails
to get a satisfying result, as the primary object in video may not be salient
in visualization. However, since object moves differently from its background,
it will be salient in optical flow fields. We turn optical flow to RGB image by
visualizing it, and use saliency detection method [23] to get motion saliency map.
[23] provides a robust and efficient method for visual saliency detection. Figure 4
compares image saliency map with its motion saliency map. The image saliency
map Fig.4(c) fails to get the object (parachute), while it is outstanding in the
motion saliency map (d). The motion term in Eq. 6 is defined as:

o [ ~log(L— S'(ah)) 1t =0;
M(m—{log(st(xz)) =1 ™

where S*(z!) is the motion saliency value of superpixel z.

Appearance Term. Two Gaussian Mixture Models (GMM) in RGB color
space are estimated to model the appearance of foreground and background
respectively. We select a part of superpixels and separate them into two sets of
fg/bg. We set two conditions for a superpixel to be a member of foreground: (1)
inside the selected object box; (2) its motion saliency value is larger than mean
value of the frame. Superpixels outside the box with lower motion saliency values
are regarded as background superpixels. After that we obtain two sets of super-
pixels from the whole sequence. Mean RGB colors of the superpixels are used
to estimate GMMs for both foreground and background. The appearance term
A(I?) is the negative log-probability of x¥ to take label I! under the associated
GMM.

(a) Image (b) Optical Flow (c) Image Saliency Map (d) Motion Saliency Map

Fig. 4. (a) One frame in sequence parachute. (b) Forward optical flow of (a). (c) Image
saliency map of (a). (d) Motion saliency map of (a) and (b).
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Pairwise Terms. V(I},l%) and W(lf,l§-+1) are standard contrast-modulated
Potts potentials, and follow the definition in [24]:

V(I l;) = dist(mﬁ,x?)_l[lf + l;] eXp(—ﬂlcol(xﬁ,xé)Q), (8)
W(lzt-, l§'+1) = (p($§7$;+1)[lf # l§‘+1] eXp(—ﬂQCOl(x§7fE§+1)2)7 9)

where dist(z}, #5) and col(z}, 2%) are the Euclidean distances between the aver-
age positions and average RGB colors of the two superpixels respectively, [e] is

an indicator function, p(z¢ xt*l) is the overlap ratio of the warped region of z!

2had]
and :v;H. The pairwise terms encourage superpixels with close RGB colors to

get the same label if they are spatially or temporally connected.

4 Experimental Results

We evaluate our approach on SegTrack dataset [7] and FBMS dataset [9)].
SegTrack dataset contains 6 videos and pixel-level ground-truth of foreground
object in every frame. Following some related works [12,13,16], we abandon the
sequence penguin since there are many penguins moving in the sequence and it
is hard to determine which of them is the foreground object. The sequences in
this dataset are quite challenging for tracking and video segmentation. birdfall
has similar colors in fg and bg. There are large camera motion and large shape
deformation in cheetha and monkeydog. girl suffers from articulated motion. Seg-
Track is a benchmark for video object segmentation task. The dataset doesn’t
supply the object bounding boxes, therefore we manually annotate the box in
each frame as ground-truth. We designate the object bounding box as the min-
imum rectangle that contains the whole object.

There are some parameters in our methods. In Eq. 6, the balance factor A is
fixed as 0.5. For the energy function Eq.6, we set a; = 0.4 and as = a3 = 20.
In the pairwise terms Eqs. 8 and 9, we set 31 = 82 = 1/100. The parameters are
kept fixed in all experiments.

Firstly, the effectiveness of S,(b%) is evaluated. As mentioned previously,
S, (b)) is designed to measure the probability of a box to be the object bound-
ing box. We rank proposal bounding boxes by descending order of S, (b!)), take
out the top 100 boxes in each frame and calculate mean IoU of every 10 boxes.
Figure 5 reports the ranked proposals-mean IoU results. As the graph shows, in
most sequences high rank proposal bounding boxes get high mean IoU. Among
the sequences, girl reports low and uniform mean IoU value among all the ranks.
This is due to the object is large in this sequence, and it is possible to get many
boxes that have high overlap ratio with ground-truth. On the other hand, the
articulated parts such as legs and hands obtain large motion scores, and corre-
sponding proposal boxes get high rank. Since these boxes lack of consistency,
they are not selected as the object boxes. Table 1 reports the mean IoU of the
selected boxes in each sequence. cheetah gets the lowest mean IoU score because
in the beginning frames the box covers two moving objects (cheetah and ante-
lope), since they are close to each other. Although girl reports bad results in
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Fig. 5. The ranked proposal bounding boxes in different sequences and their mean IoU
compared with ground-truth bounding boxes.

Fig. 5, it successes to get proper boxes and obtains a high mean IoU in Table 1,
due to the consistency of the selected boxes.

Table 1. Mean IoU of sequences in SegTrack dataset.

Sequence | Birdfall | Cheetah | Girl | Monkeydog | Parachute
meanloU|0.688 | 0.527 0.72310.627 0.907

Figure 6 demonstrates some results of foreground object detection and the
final segmentation on SegTrack dataset [7]. The green rectangles in Fig. 6 are the
ground-truth bounding boxes annotated by us, while the red rectangles are the
selected bounding boxes. As the illustration shows, most selected boxes catch
object tightly and very close to the ground-truth bounding boxes, especially in
sequence parachute and birdfall. In sequence cheetah, the antelope is regraded as
the primary object in the dataset, while the cheetah also appears and moves in
the beginning frames. Our method selects a big bounding box that contains both
the antelope and the cheetah at first. When the cheetah disappears, the selected
bounding box turns to only contain the antelope. In sequence monkeydog, when
the monkey is close to boundary of the image, the selected box hasn’t followed
it. However, when the monkey returns to the middle of the image, the selected
box catches it again. The regions in green boundaries in Fig. 6 are the segmented
foreground objects. We notice that in girl, the foots are usually missed due to
the heavy motion blur. In cheetha, the cheetah is segmented as the object at
the beginning frames since both cheetah and antelope are inside the selected
boxes. Table2 reports quantitative results and comparison with some related
works on SegTrack dataset. The results in Table2 are the average number of
mislabelled pixels pre frame compared to the ground-truth. The definition in
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birdfall

cheetah

girl

monkeydog P

parachute

Fig. 6. Results of object detection and segmentation on SegTrack Dataset. The red
rectangles are the selected bounding boxes, and the green rectangels are the manually
annotated bounding boxes. The regions within green boundaries are the segmented
foreground objects. (Color figure online)

[7] is error :w, where S is the segmentation result, GT is the ground-

truth labeling and F' is the frame number of the sequence. As Table 2 reports,
our method gets comparably result with state-of-the-art works.

Table 2. Quantitative results and comparison with state-of-the-art works on SegTrack
dataset.

Methods | Ours | [13] |[16] |[12] |[15] |[9] [7] [25]

Birdfall 183 | 155 | 209 | 288 | 217 | 458 | 252 | 189
Cheetah 849 | 633 | 796 | 905 | 890 | 1968 | 1142 | 806
Girl 1943 | 1488 | 1040 | 1785 | 3859 | 7595 | 1304 | 1698

Monkeydog | 501 | 365 | 562 | 521 | 284 | 1434 | 563 | 472
Parachute 337 | 220 | 207 | 201 | 855 | 1113 | 235 | 221
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horses01

rabbits01

Fig. 7. Some segmentation results on FBMS dataset. The regions within green bound-
aries are the segmented foreground objects. (Color figure online)

We also test our approach on FMBS dataset qualitatively. Figure 7 demon-
strates some results in this dataset. We notice when the object moves in an
articulated manner, our approach may select part instead of the whole object.
In marplel and marple3, pedestrian’s head is detected as the foreground object.

5 Conclusion

In this paper, we propose a new approach for the task of video object segmen-
tation. Compared with the former works in this task, our approach works based
on proposal bounding boxes and avoids heavy computation for generating seg-
ments of proposal regions. The boxes are integrated into a layered DAG, and the
problem of box selection can be easily and efficiently solved. With the selected
boxes, the foreground object is detected in each frame. The final segmentation
is performed based on both motion cues and appearance cues. The experimental
results on SegTrack dataset and FBMS dataset testifies the effectiveness of our
approach.
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