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Abstract. In this paper, we present a flexible camera calibration for
pose normalization to accomplish a pose-invariant face recognition. The
accuracy of calibration can be easily influenced by errors of landmark
detection or various shapes of different faces and expressions. By jointly
using RANSAC and facial unique characters, we explore a flexible cali-
bration method to achieve a more accurate camera calibration and pose
normalization for face images. Our proposed method is able to elimi-
nate noisy facial landmarks and retain the ones which best match the
undeformable 3D face model. The experimental results show that our
method improves the accuracy of pose-invariant face recognition, espe-
cially for the faces with unsatisfied landmark detection, variant shapes,
and exaggerated expressions.
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1 Introduction

Face recognition plays an important role in pattern recognition and computer
vision applications. In recent years, face recognition has made great progress
with deep learning technique developing. Methods using deep learning and large
training dataset [1–4] have almost achieved super-human accuracy on the LFW
benchmark [5,6]. However, it remains a difficult problem for faces in the wild
due to the variations in pose, illumination and expression. More specifically,
different poses of the same face have dramatically different appearances, causing
fatal problems to most of current face recognition systems.

In order to solve the aforementioned problems, many approaches have been
explored, they can be categorized into feature-based methods and normalization-
based methods.

The pose insensitive feature-based methods are widely used, they try to
extract specific features which are invariant or insensitive to different poses.
Wiskott et al. [7] collapse face variance of pose and expression by extracting
concise face descriptions in the form of image graphs. Gross et al. [8] develop the
theory of appearance-based face recognition from light-field, which leads directly
to a pose-invariant face recognition algorithm that uses as many images of the
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face as are available. Lai et al. [9] use wavelet transform and multiple view images
to determine the reference image representation. Restricted to capacity of these
representations and limited dataset, above mentioned methods are not able to
get satisfied features which is insensitive to pose of faces in the wild. DCNN
based face recognition have been widely reported in recent studies, because fea-
tures trained by DCNN with huge size of dataset have a strong representation
for variant of object, they achieve state-of-the-art performances on recognition
of different poses of faces. Taigman et al. [1] derive a face representation form a
nine-layer deep neural network. Sun et al. [2] propose to learn a set of high-level
feature representations which called DeepID feature through deep learning for
face verification. In 2014, they proposed two very deep neural network architec-
tures to achieve a higher face identification accuracy [3]. Liu et al. [4] combine a
multi-patch deep CNN and deep metric learning to extract low dimensional but
very discriminative feature for face recognition.

Normalize-based method tries to normalize different faces to a unified frontal
face to improve the accuracy of recognition. Chai et al. [10] use locally linear
regression (LLR) to generate the virtual frontal view from a given non-frontal
face image, this method is not able to always preserve the identity information.
Berg [11] takes advantage of a reference set of faces to perform an identity-
preserving alignment, warping the faces in a way that reduces differences due to
pose and expression. Hu et al. [11] reconstruct a 3D face model from a single
frontal face image, and synthesize faces with different PIE to characterize face
subspace. Wang [12] proposes a fully automatic, effective and efficient framework
for 3D face reconstruction based on a single face image in an arbitrary view.
Asthana et al. [13] build a 3D Face Pose Normalization system which improves
the recognition accuracy of face variation up to ±45◦ in yaw and ±30◦ in pitch
angles. Zhu et al. [14] present a pose and expression normalization method to
recover the neutral frontal faces without little artifact and information loss.
Hasser et al. [15] use an unmodified 3D reference to approximate shape of all
query faces and synthesize frontal faces. These 3D-based methods estimate the
normalization transformations from correspondence between 2D and 3D facial
landmarks, they are often efficient but suffers from errors and variety of land-
marks which are caused by landmark detection, various shapes and exaggerated
expressions.

Inspired by the above approaches, we present a flexible camera calibration for
3D alignment in order to improve pose-invariant face recognition. Different with
work [14], we present a flexible camera calibration based on RANSAC [16] and
facial unique characters to estimate poses of faces for pose normalization of faces.
Our flexible camera calibration is insensitive to outliers of landmarks caused by
landmark detection or variant of shape and expressions. The experimental results
show that our method improves the accuracy of pose-invariant face recognition,
especially for the faces with unsatisfied landmark detection, variant shapes, and
exaggerated expressions.

Our pose-invariant face recognition includes three steps: First, we esti-
mate the pose of a face using our proposed flexible camera calibration from
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Fig. 1. Framework of the pose-invariant face recognition system

correspondence between 2D landmarks and an undeformable 3D face model. Sec-
ond, we calculate the transformations of 3D alignment based on the estimated
pose. Finally, we get the pose-normalized face and use them to train DCNN
model for face recognition. The framework of our pose-invariant face recognition
system is shown in Fig. 1.

The remainder of this paper is organized as follows: Sect. 2 introduces the
details of flexible camera calibration and framework of our pose-invariant face
recognition. Section 3 provides the experimental results of proposed method com-
pared with other methods on face recognition. The conclusion and future work
is provided in Sect. 4.

2 Facial Pose Normalization

Previous work of face recognition have witnessed the efficiency of the pose-
normalized face and 3D face. In this section, we normalize poses of faces by
proposed flexible camera calibration from correspondence between 2D landmarks
and an undeformable 3D face model.

The problem of camera calibration can be described as follows: Given a mean
3D model of face S ∈ �3×n with total n vertices, landmarks on the 2D face
s ∈ �2×n, the goal is to estimate the intrinsic camera parameters A ∈ �3×3,
rotation matrix R ∈ �3×3 and translation vector t ∈ �3×1. [R, t] is also known
as extrinsic camera parameters. To find the parameters that best project the 3D
face model to the 2D landmarks, we solve the nonlinear least squares optimiza-
tion problem:

{A∗,R∗, t∗} = min
A,R,t

‖f(A,R, t,S) − s)‖2F , (1)

f = f1 ◦ f2, (2)

f1(A,R,T,S) = A(RS + T), (3)

f2(S) =
[
S�
1 � S�

3

S�
2 � S�

3

]
(4)
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where T = [t, t, ...] ∈ �3×n consists of n copies of t, f2 projects 3D vertices into
2D image, � denotes element-wise division, Si is the row vector of i.

In order to get the correspondence of 3D face model and 2D landmarks, we
get a mean 3D face model obtained from USF Human ID 3D face [18] and 2D
landmarks by recent methods of facial landmark detection. We select 49 vertices
from 70000 vertices to reconstruct a simple 3D face model. Automatic facial
landmark detection on face images has been well studied [17–22], We select the
method [19] for its satisfied accuracy on faces with large poses and its efficiency.
Similarly with work [15], we retain 49 facial landmarks and exclude the contour
landmarks, because different poses would change the matching relationship of
contour landmarks and vertices of the 3D model.

2.1 Intrinsic Parameter Unit by 2D Alignment

Estimating the intrinsic parameters A and extrinsic parameters [R, t] at the same
time for a single image is an ill-pose problem. Work [22] estimates A by using
many frames as its initialization. Work [15] uses a fixed A for aligned LFW images.
The sizes and locations of faces on LFW images are almost the same, they can be
seen sharing the same intrinsic matrix. But for an arbitrary image, its unsuitable
to use the supposed intrinsic parameters. An approximate Â can be fixed when
a face image I is aligned into coordinate of standard LFW dataset by similarity
transformation. The source is the 2D facial landmarks, and target shape is the
reference landmarks s̄, which can be calculated from the mean shape of all shapes
in LFW images. The aligned landmarks ŝ and image Î is shown in Fig. 2.

Fig. 2. An example of 2D alignment.

2.2 Flexible Extrinsic Camera Calibration

After the face is 2D aligned by similarity transformation, [R, t] is to be estimated
from the 2D facial landmarks and the 3D face model:

{R∗, t∗} = min
R,t

∥∥∥f(Â,R, t,S) − ŝ
∥∥∥2

F
(5)
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The above problem is known as 3D pose estimation, which is usually solved
by iterative method based on Levenberg-Marquardt Algorithm (LMA) [23]. This
optimization is efficient and accurate when the vertices of 3D face are able to
match the 2D landmarks very well. However, as noises often exist in landmark
detection and different person with expressions have various shapes of landmarks,
it is impossible to match the various 2D landmarks with the undeformable 3D
model accurately. These matching errors decrease the accuracy of pose estima-
tion, so we need to eliminate these large errors of landmarks before the iteration.

RANSAC is an iterative method to estimate parameters of a mathematical
model from a set of data which contains outliers [24]. However, when the number
of iteration computed is limited, the solution may not be optimal. Considering effi-
ciency and accuracy of pose normalization, we cannot afford no limited iterations.

When we use RANSAC to eliminate the outliers of facial landmarks on a
large dataset, we observe that outliers often appear as landmarks of particular
parts, such as eyebrow, top and bottom of mouth. It seems that the accuracy of
these landmarks location is less than other landmarks, or these landmarks are
not able to match the undeformable 3D model very well caused by variant of
person and expressions. The probability distribution of each landmark which is
labeled as an outlier in dataset by general RANSAC is shown in Fig. 3.

In order to speed up outlier elimination of landmarks, we separate all N
landmarks in two pools according with their probability distribution labels as
an inlier in training dataset: inliers pool Φ = {φ1, φ2, ..., φp}, outliers pool
Ψ = {ψ1, ψ2, ..., ψq}, where φi denotes the ith landmark which is labeled an
inlier with large probability, ψj denotes the jth landmark which is labeled as
an outlier with large probability. In the process of eliminating outliers, land-
marks belonged to Φ are selected to calculate the pose using LMA optimization
with less probability, landmarks belonged to Ψ are selected as inliers with more
chance. The process of flexible extrinsic camera calibration is summarized in
Algortihm 1. First, we use all of landmarks to estimate the initial [R, t]. Sec-
ond, we project the 3D model into the 2D image and calculate the distance

Fig. 3. Probability distribution of each landmark which are labeled as outliers in
dataset. All landmarks are drawn by red circles with different sizes. The larger size
of circle represents that the current landmark is labeled as an outlier with larger prob-
ability. (Color figure online)
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between each projected landmark and the corresponding real landmark. Third,
landmark noises are eliminated by comparing the threshold and the normalized
distance. We control the opportunity of elimination by setting the threshold θ1
for landmarks belong to Φ larger than threshold θ2 for landmarks belong to Ψ.

Algorithm 1. Flexible Extrinsic Camera Calibration
Input: 2D aligned facial landmarks ŝ, 3D face model S, instrinsic camera parameter

Â, index pool of inliers and outliers Φ, Ψ.
Output: rotation matrix R∗, translation vector t∗.
1: while not converged do
2: Calculate R and t by using LMA with ŝ and S.
3: Project S to 2D landmarks sproj by using Â, R and t.
4: Cacluate distance D = {d1, d2, ..., dN} between each landmark of ŝ and sproj .
5: Obtain Dsort = {dsort,1, dsort,2, ..., dsort,L} by sorting elements of D in a

descending order.
6: Find the index E = {e1, e2, ..., eN} of the first L elements of Dsort in ŝ.
7: for i = 0 → L − 1 do
8: if (ei ∈ Φ and dsort,i > θ1) or (ei ∈ Ψ and dsort,i > θ2) then.
9: Eliminate the landmark of index ei.

10: end if
11: end for
12: end while
13: Generate the final parameters [R∗, t∗].

In our experiments, we set θ1 = 0.08, θ2 = 0.05, L = 10 when N = 49, outlier
elimination quickly converges in only 1 or 2 stages.

2.3 3D Alignment and Face Recognition

After the extrinsic parameters are calculated, we caculate the normalization
transformation based on the estimated poses [Â,R∗, t∗]. Then, we get the 3D
aligned faces (more details can be found in [15,25]) and use them to train models
for face recognition. An example of our 3D alignment result can be seen in Fig. 4.

Fig. 4. An example of our 3D alignment result.
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3 Experiments

In this section, we present experimental results of our proposed method on face
recognition.

3.1 Database

LFW: LFW dataset consists of more than 13000 faces of 5749 celebrities. Each
face has been labeled with the name of the person pictured. The number of faces
varies from 1 to 530 for one person. 1680 of the people pictured have two or
more distinct photos in the dataset. It is the most commonly used database for
unconstrained face recognition.
CASIA-WebFace [26]: It contains 10575 subjects and 49414 images, which
are collected from Internet by a semi-automatical way. CASIA-WebFace is pre-
pared for training, LFW is used to evaluate our alignment compared with other
alignment methods.

3.2 2D Alignment and 3D Alignment

After detecting faces [27] and landmarks [19] in an image, we use facial land-
marks to normalize faces. 2D affine transformation is often used to align faces for
improving face recognition. It is used to approximately scale, rotate and trans-
late the image into a new warped image. It is also called 2D-alignment, pose
normalization is often called 3D-alignment, which can be applied to compensate
out-of-plane rotation. In this paper, we compare the three methods of align-
ment in face recognition: 2D alignment, 3D alignment of [15], and our proposed
method.

3.3 Performance Analysis

We get aligned faces by applying the three alignment methods for training and
test datasets, then we train three DCNN models on the training dataset. To
evaluate the discriminative capability of the face representation, we compare
the cosine distance of a pair of a normalized features which are transformed by
PCA. The comparison of face recognition results on LFW by applying standard
protocols and BLUFR protocols [26] are listed in Tables 1 and 2. The results
show that our method is better than the other two normalization methods. We
train models with the BN-inception v1 network [28] on Caffe platform [29] from
scratch for DCNN models training.

Because the limitation of GPU resources and the scale of training set, and
our goal is only to show that face recognition can benefit from our 3D alignment
method, we do not get the best result compared with the recent results on LFW.
We believe that we can get state-of-the-art face recognition performance using
our proposed method if we continued to adjust parameters, enlarge dataset and
train deeper models.
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Table 1. The performance of our proposed method compared with other methods on
LFW under standard protocol.

Method Accuracy ± SE

2D alignment 0.9623 ± 0.0107

3D alignment of [15] 0.9660 ± 0.01

Proposed method 0.9673 ± 0.0081

Table 2. The performance of our proposed method compared with other methods on
LFW under standard protocol.

Method VR@FAR = 0.1 % DIR@FAR = 1 %, Rank= 1

2D alignment 68.64 % 34.74 %

3D alignment of [15] 73.27 % 37.47 %

Proposed method 74.72% 38.57%

4 Conclusion and Future Work

In this paper, we present a flexible camera calibration for 3D alignment to
improve pose-invariant face recognition. Compared with previous normalization
work, our method based on RANSAC and facial unique characters is insensitive
to outliers of landmarks caused by landmark detection or variant of person and
expressions. Experiments show that it the best performance on recognition of
faces under complicated environment.

In the future, we will continue to improve our 3D alignment method to over-
come the difficulty brought by various poses and expressions of faces. We will
also get a further study to solve this problem by applying the deep learning
method.
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