
Chapter 26
Modeling and Simulation of the Dynamic
Response of a Generic Mechanical
Linkage for Control Application Under
the Consideration of Nonlinearities
Imposed by Friction

Jitendra Yadav and Geeta Agnihotri

26.1 Introduction

In many industrial applications, involving a control mechanism using open kine-
matic chains along with spring or similar flexible elements, the positioning and
dynamics of the target are prone to errors due to the presence of friction. Some of
such applications are flight control mechanism, mechanical systems using
single-acting hydraulic and pneumatic actuators, hydraulic copy turning, and
robotics. In control applications, it is essential to model the dynamic response of the
mechanical system to a sufficient accuracy, in order to obtain desired precision
level. The mathematical model developed for obtaining the dynamic response
would include the friction behavior of components. Further, the force of friction
would depend upon the state variables such as velocity and displacement as has
been shown in earlier research work. The objectives of the present work are to
understand the system dynamics identifying the relevant parameters, to understand
the inter-relationship among them, to determine their relative significance, and to
estimate the extent of errors in system performance due to friction.

Researchers have attempted in past to model friction by including different
effects and experimental observations, such as Coulomb friction, viscous friction,
hysteresis, elastoplastic deformation at asperities, stiction, and Stribeck effect. The
classical models fail to model behavior such as hysteresis and break-away.
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A method for using the classical Coulomb model is described in detail [1, 2]; this is
due to the fact that the Coulomb model is discontinues at zero velocity. Due to this
disadvantage, it is not widely used for simulation purposes. de Canudas et al. [3]
proposed a dynamic model for friction that includes most of the friction phenom-
ena, i.e., stiction, Stribeck effect, hysteresis, and varying break-away force. Nguyen
et al. [4] simulated a dynamic system using LuGre model for friction. Researchers
proposed many friction models [5–8]. Tripathi et al. [9] performed simulation of
dynamic response of a mechanical system using the Coulomb and LuGre model for
friction. Gafvert [10] compared friction models on rate dependency, model order,
and damping.

26.2 Modeling of Friction

LuGre model
The complete LuGre model of dynamic friction is described as follows:

FfðtÞ ¼ r0Zþ r1 _Zþ r2V ð26:1Þ
Here,

_Z ¼ V � Vj j
gðVÞ Z ð26:2Þ

and

gðVÞ ¼ 1
r0

FC þðFS � FCÞe� V
Vsð Þ2h i

ð26:3Þ

Therefore,

Ff ¼ r0Zþ r1V � r0 Vj jZ
FC þðFS � FCÞe� V

Vsð Þ2h i þ r2V ð26:4Þ

where,

Z The lateral deflection of the bristle, expressed in microns
σ0 Average bristle stiffness
σ1 Micro-viscous friction coefficient
σ2 Constant for viscous friction
FC Static friction force, corresponding to Coulomb friction
FS Dynamic friction force
VS Stribeck velocity
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Dahl Model
It is based on the stress–strain curve of classical mechanics which is governed by
differential equation:

dZ
dt

¼ v� vj j r0Z
FC

ð26:5Þ

Ff ¼ r0Z ð26:6Þ

where Z is a state variable.
Dahl model is generalization of ordinary Coulomb model by introducing the

system dynamics, i.e., presliding displacement, but it neither captures Stribeck
effect nor stiction.

Coulomb Model
The classical Coulomb friction model is depicted in Fig. 26.1. The model shows
discontinuity at zero velocity, which possess problem in the analytical solution of
the dynamic system. For numerical computation using computer, this problem has
been dealt with by obtaining piecewise solution for different sections and then
integrating them. However, this is quite tedious and the method has to be devised
separately for every individual system. The governing equation for the model is
shown by Eq. 26.9.

Ff ¼ FCsgn ðvÞ ð26:7Þ

The problem of discontinuity in Coulomb model can be circumvented by the use
of sigmoid function, as shown in Fig. 26.2. The sigmoid function is a monotoni-
cally increasing function with, asymptotically bound upper and lower limits of 0
and 1, respectively. The shape of the curve is controlled by the index n.

Sigmoid function is defined by Eq. 26.8 as a function of velocity.

F ¼ 1
1þ e�n:velocity ð26:8Þ

Fig. 26.1 Coulomb friction
model
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The sigmoid function-based friction model can be expressed by Eq. 26.9.

Ff ¼ lmg 2
1

1þ e�n:velocity � 0:5
� �� �

ð26:9Þ

The friction force characteristic as a function of velocity by Eq. 26.11 for dif-
ferent values of index n is shown in Fig. 26.3.

The curves in Fig. 26.3 are confined to the velocity range −1.0 to +1 m/s. The
velocity range is arbitrarily selected and can be extended to any value, as required
by a particular dynamic system without any need for change in the computer
program. It can be observed that for the value of index n = 5000 the curve can be
compared quite well with the classical Coulomb model.

Fig. 26.2 Sigmoid function
versus velocity plot

Fig. 26.3 Friction force
versus velocity plot with the
help of sigmoid function
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Validation of Sigmoid Function-Based Friction Model
The proposed sigmoid function-based Coulomb model is validated by comparing the
results with the results of Dahl model as both the models are the static models. For
that a simple spring–mass system as shown in Fig. 26.4 is selected for the simulation.

For the system, the mass is driven with constant velocity on a rough surface in
contact. The mathematical modeling of the identified problem can be a single
degree of freedom, second-order spring–mass system dragged with a constant
velocity (u), and the governing mathematical equation for the system is given by
Eq. 26.10.

m€xþ kðy� xÞ � Ff ¼ 0 ð26:10Þ

In the equations, _y ¼ u is the driving velocity and _x is the velocity of mass.
where

m is the mass of the moving body,
x is the position of the body,
y is the independent position of the wall,
k is the spring constant, and
Ff is the friction force.

The response of the system under the influence of sigmoid function-based model
for the selected parameter as in Table 26.1, in terms of displacement, velocity, and
friction force verses time plot, is depicted in Fig. 26.5.

The response of the system for Dahl model for the same parameters is shown in
Fig. 26.6.

It is concluded from the comparison of responses shown in Figs. 26.5 and 26.6
that in case of both the models, there are friction-induced vibrations in the form of
sinusoidal wave of constant frequency and amplitude and that are identical to both
the models.

Though there is difference in friction force pattern as in the case of Coulomb
model friction force in continuous and constant with time, it is intermittent with
time in case of Dahl model that may be because of presliding displacement in case

Fig. 26.4 Spring–mass
system
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Table 26.1 Values used in
simulation for spring–mass
system

Parameter Value

Mass (m) 1 kg

Stiffness (K) 5 N/m

Micro-stiffness of bristle (σ0) 100,000 N/m

Coulomb friction coefficient (µ) 0.1

Coulomb kinetic friction (FC) l �mgN

Driving velocity (u) 0.1 m/s

Sigmoid index (n) 5000

Fig. 26.5 Results of
simulation using sigmoid
function-based friction model

Fig. 26.6 Displacement,
velocity, and friction force
versus time plot for Dahl
model
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of Dahl model. So the sigmoid function-based model is validated by the result of
simulation of the Dahl model.

26.3 Generalized Mechanical System
for the Generic Linkage

The mechanical system used for carrying out simulation consists of a lever with
moment of inertia as I, mass m, and a linear spring with stiffness k. The mass is
subjected to force of friction. The spring is attached at one end to the mass, and at
other with to a fixed support.

The lever is representative of a pedal, on which a time-varying force F(t) is
applied. The other end of the lever is connected to the cable. The schematic diagram
of the system is shown in Fig. 26.7. The simulation is performed considering that
the lever is initially pressed down completely. Under this situation, the spring is
under tension, and the cable mass is displaced toward the left. Upon release of the
pedal, the mass shall move toward right, under the spring force. The tension in the
cable is T(t). The governing equation is represented by a mathematical model
depicted in Eq. 26.11.

Iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

p þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

q" #
€x ¼ �FðtÞl1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

p
l2

� Ff ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

q
þ kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

q

� Ix _xð Þ2

l22 � x2
� �3

2

2
4

3
5 ð26:11Þ

Defining the Forcing Friction
The forcing function F(t) has been defined as a variable force, which is maximum in
the beginning, i.e., when the pedal is completely pressed down. Then this force is

Fig. 26.7 Schematic diagram
of generalized mechanical
system
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gradually released, as is the case when the operator starts to release the pedal.
Figure 26.8 shows the nature of forcing function, used in the simulation.

26.4 Results and Discussion

The dynamic model of the mechanical system shown in Fig. 26.7, the model of
friction force, i.e., LuGre model and sigmoid function-based Coulomb friction
model, and the model of forcing function described in the previous sections were

Fig. 26.8 Trajectory of
applied force F(t)

Table 26.2 Values used in
simulation

Parameter Value

Mass (m) 1 kg

Moment of inertia of lever 0.01234 kg m2

Length l1 0.25 m

Length l2 0.06 m

Stiffness (K) 6600 N/m

σ0 100,000 N/m

σ1 2f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 � mÞp

N s=m

σ2 0.04 N s/m

FC Mass � l g N

Fs 1:5 � FC N

Vs 0.01 m/s

ζ 0.2–0.7

ωn 5 rad/s

ωd 4.33 rad/s

Coulomb friction coefficient 0.1

Sigmoid index (n) 5000
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used for simulation of dynamic response of the mechanical system. The values for
various parameters used for this simulation are given in Table 26.2.

Comparison of the Models
The simulation was carried out using two models of friction, the LuGre model and
sigmoid function-based Coulomb friction model. Figure 26.9 shows the compar-
ison between LuGre and Coulomb models on the basis of total settling time taken
by the target mass to settle after the force is removed. It can be clearly seen from
the figure that the Coulomb model takes longer settling time than the LuGre model.
The time taken for lower values of release time is high for both the models as the

Fig. 26.9 Comparison on the
basis of total settling time

Fig. 26.10 Comparison on
the basis of settling time after
zero crossing
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velocity of the system is high. The same phenomenon can be observed more clearly
in the post-zero-crossing part of the dynamic response, as shown in Fig. 26.10. The
time taken by the LuGre model to settle after zero crossing is less than Coulomb
model for increasing values of release time. In the pre-zero-crossing part, the
dynamics of the system is controlled mainly by the release force trajectory.
Therefore, both the models show almost the same behavior, as evident from
Fig. 26.11. The value for settling time before zero is increasing by a same value for
both the models used.

In the present study, the computation time is the time required to obtain the
dynamic response of the system numerically, for certain time duration. The time
duration for all the results was taken as 8 s in this study. The computation time is

Fig. 26.11 Comparison on
the basis of settling time
before zero crossing

Fig. 26.12 Comparison on
the basis of computation time
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smaller in the case of Coulomb model for all the values of release time. For LuGre
model, the value is very high for release times of 0.1 and 0.2 s. The values after
0.2 s are comparable to those of Coulomb model as shown in Fig. 26.12. This is
due to the fact that the dynamics of bristles is much faster than that of the
mechanical system. At higher velocities, the frequency of contact between the
bristles increases, which causes the bristles to move faster. Numerical stiffness is
caused due to difference between the speeds of friction dynamics and the dynamics
of mass–spring system [10]. Due to this difference, smaller computational time
steps are required, which results into longer computation times.

The time period for oscillations is higher for LuGre model for all values of
release time as shown in Fig. 26.13 and the behavior is just opposite for frequency.

The value of maximum amplitude is almost same, as shown in Fig. 26.14.

Fig. 26.13 Comparison on
the basis of time period

Fig. 26.14 Comparison on
the basis of maximum
amplitude

26 Modeling and Simulation of the Dynamic Response of a Generic … 329



26.5 Conclusion

A typical mechanical actuation system for control applications was analyzed, with
an objective to understand its dynamic behavior, in light of friction present in the
system. The performance parameters were determined for different force trajecto-
ries, under which the system which moved from a starting condition. The friction
force was modeled using LuGre model of dynamic friction. The dynamic response
was compared with that obtained using the classical Coulomb model. Both the
models predict dynamic response typical to an oscillating system. In a practical
situation, where the motion of target mass is being controlled, it would be desirable
that the target mass follows a smoother trajectory. The system parameters may be
modified accordingly, and the model presented in this paper may be used for the
design of such a system. The method of analysis and results presented in this paper
may be useful in designing similar mechanical control systems in mechatronic
systems such as hydraulic copy-turning machines, flight control mechanisms,
single-acting hydraulic and pneumatic actuators, and robotics. This work can be
extended for higher order mechanical systems.
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