
Chapter 12
Modified PSO-Based Equalizers
for Channel Equalization

D.C. Diana and S.P. Joy Vasantha Rani

12.1 Introduction

Adaptive equalization [1] plays an important role in the high-speed digital trans-
mission to remove and recover the problem of inter-symbol interference (ISI). The
adaptive algorithms [2] such as steepest descent, least mean square (LMS), recur-
sive least square (RLS), affine projection algorithm (APA), and their variants [3]
reported in literature have the chance of getting trapped in local minima [4–6] while
optimizing the equalizer weights. The performance of these algorithms further
degraded in nonlinear channel conditions [6]. To overcome these problems, dif-
ferent derivative-free optimization algorithms are proposed, whereas PSO is one
among them. For solving optimization algorithms, PSO is proven as an efficient
method and was applied successfully in the area of adaptive equalization [6]. PSO
stays as one of the best algorithms for channel equalization in the recent years
[5–7]. And also it provides minimum mean square error (MSE) compared to genetic
algorithms used in the channel equalization [6].

From the first introduction of PSO [8], several variants [9–16] are proposed.
The inertia weight parameter ‘w’ is the first modification found in literature which
plays a major role in convergence and improves the simulation time. Initially, Shi
and Eberhart introduced inertia weight [10]. In their work, a range of constant
w values are used and found that PSO shows a weak exploration for large
w values, i.e., w > 1.2, and it tends to trap in local optima with w < 0.8. When
w is in the range [0.8, 1.2], PSO shows the global optimum in least average
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number of iterations. A random value is selected to track the optima in [11], as
given in Eq. (1.1).

w ¼ 0:5þ randðÞ
2

ð12:1Þ

where rand() is a random value between [0, 1].
Time-varying inertia weight is a common approach used in PSO, which deter-

mines the inertia weight based on the current and total iteration. Time-decreasing
inertia weight methods are used in literature to improve the convergence rate.
A linearly decreasing inertia weight has been used for adaptive equalization in [6],
based on the update law:

wn ¼ wi � wf
� �

m� nð Þ= m� 1ð Þ� �þwf ð12:2Þ

where wi is the initial weight, wf the is maximum weight, ‘m’ is the maximum
iteration value, and ‘n’ is the current iteration index. A nonlinear decreasing inertia
weight is proposed by Chatterjee and Siarry [12] based on the equation:

wn ¼ wi � wf
� �

m� nð Þnp= m� 1ð Þnp� �þwf ð12:3Þ

where np is the nonlinear modulation index. With different values of np, inertia
weight gives different variations from wi to wf.

Feng et al. [13, 14] proposed another modification as given in Eq. (1.4).

wn ¼ wi � wf
� �

m� nð Þ=m� �þwf � z ð12:4Þ

where z = 4z(1 − z). Initially, z is the random value between (0, 1).
Lei et al. [15] choose a fuzzy complement function as inertia weight defined by

Eq. (1.5).

w ¼ 1� b
1� sb

ð12:5Þ

where β is n/m and s is greater than −1.
The other nonlinear approach [16] is given as:

w ¼ 2
n

� �0:3

ð12:6Þ

Zheng et al. [17] proposed an increasing inertia weight. Similarly, Jiao et al. [18]
proposed another nonlinear increasing inertia weight as in Eq. (1.7),

w ¼ winitial � un ð12:7Þ

154 D.C. Diana and S.P. Joy Vasantha Rani



Here winitial is usually between [0, 1] and u is [1.0001, 1.005]. As per [18], u is
set as 1.0002.

This paper analyzes the above existing modifications and proposes novel
time-varying inertia weight methods for adaptive equalization with minimum mean
square error. The following section describes the methodology used in adaptive
equalization. Section 12.3 explains the structure and training of the equalizer filter
using PSO. Section 12.4 discusses the results.

12.2 Methodology

Figure 12.1 depicts a basic block diagram used in adaptive equalization [1].
The equalizer input is the convolution sum of the random input Bernoulli

sequence {x(n)} = ±1 (with zero mean and variance 1) and channel model. The
channel output is added with the random additive white Gaussian noise (AWGN).
The noise sequence has zero mean and variance 0.001.

Initially, the channel model is assumed as a linear channel [2] with three paths as
given in Eq. (12.8).

hn ¼ 1
2 1þ cos 2p

W n� 2ð Þ� �� �
; n ¼ 1; 2; 3

hn ¼ 0 otherwise
ð12:8Þ

The factorW controls the amount of distortion. The effect of amplitude distortion is
analyzed and given in Table 12.3. The effect of nonlinearities generated in the
transmitter is modeled as three different nonlinear equations in (12.9), (12.10), and
(12.11). The nonlinearity is introduced by relating output y(n) and input x(n) as in [19],

Channel 1: yðnÞ ¼ tanhðxðnÞÞ ð12:9Þ

∑

DELAY

RANDOM 
NUMBER

GENERATOR
A

CHANNEL
ADAPTIVE 

EQUALIZER ∑

RANDOM 
NOISE 

GENERATOR 
B

Fig. 12.1 Block diagram of digital communication system
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Channel 2: yðnÞ ¼ xðnÞþ 0:2x2ðnÞ � 0:1x3ðnÞ ð12:10Þ

Channel 3: yðnÞ ¼ xðnÞþ 0:2x2ðnÞ � 0:1x3ðnÞþ 0:5 cosðpxðnÞÞ ð12:11Þ

The nonlinear effect is introduced in the input x(n) and it is denoted as y(n). The
channel output is represented as

rðnÞ ¼ ddistortedðnÞþ vn

Here ddistorted(n) is the distorted version of the desired signal. The distortion is
introduced by applying the input signal through any one of the nonlinear equations
(Eqs. (12.9), (12.10), and (12.11)) and then convolved with the linear channel in
Eq. (12.8).

ddistortedðnÞ ¼ yðnÞ � hn
The signal can be distorted by bandwidth limitation, multipath effect, and the

nonlinearities introduced in the transmitter. vn is the noise component modeled as
white Gaussian noise with variance r2n.

The error e(n) is calculated as

e nð Þ ¼ d nð Þ � r nð Þ

The adaptive algorithm updates the equalizer weights iteratively to minimize
e2(n). Since e2(n) is positive and gives the instantaneous power, selected as cost
(fitness) function.

12.3 System model

The system model [1] used for equalization is the simple linear transversal equalizer
as in Fig. 12.2 and decision feedback equalizer shown in Fig. 12.3.

12.3.1 Linear Transversal Equalizer (LTE)

In this type of structure, the present and old received samples r(t−kT) are appropriately
weighted by the coefficients cq and added to generate the output. The weights are
trained to optimum value using adaptive algorithms. The output Zk becomes

Zk ¼
XN�1

q¼0

cqrðt � qTÞ ð12:12Þ
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Fig. 12.2 Linear transversal equalizer structure
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Fig. 12.3 Decision feedback equalizer structure
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12.3.2 Decision Feedback Equalizer (DFE)

This type of nonlinear equalizer uses a forward and feedback filter. The forward and
feedback filter outputs are summed to find the output of the equalizer. The forward
filter output is sent back via the feedback filter. The ISI is canceled by deducting
past symbol values from the equalizer output. The output of DFE is calculated as in
Eq. (12.13)

Zk ¼
XN�1

q¼0

cqrðt � qTÞþ
Xm
i¼1

biXk�m ð12:13Þ

12.3.3 Basic PSO

PSO [8] starts by initializing particles in the random search space and then con-
siders the social and cognitive behavior of the particles. The candidate solutions
called ‘particle’ move around the n-dimensional search space with a velocity, which
is adjusted based on its own experience and its neighbors’ experiences. The own
experience of a particle is denoted as Pbest; all the particles’ experience is denoted as
Gbest. A new Gbest is generated in each update process, making other particles to fly
toward Gbest. The new velocity and position are calculated as:

Vi tþ 1ð Þ ¼ w � Vi tð Þþ ac1 � rand1 � Pbest � Xið Þþ ac2 � rand2 � Gbest � Xið Þ
ð12:14Þ

ci tþ 1ð Þ ¼ ci tð ÞþVi tþ 1ð Þ ð12:15Þ

where ac1 and ac2 are positive constants, called as cognitive and social acceleration
coefficients, respectively. The two random functions rand1 and rand2 are in the
interval [0, 1]. Vi(t) and ci(t) are velocity and position of particle i, respectively, in
tth iteration. Location of the best solution (best tap weights) for particle i is Pbest and
Gbest represents the best solution among all particles. In Eq. (12.14), w is the inertia
weight, which controls the local search and global search.

12.3.4 Training by PSO

The PSO-based equalizer [6] is optimized the tap weights based on the following
steps:
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For LTE:

• T number of tap weights is assigned for equalizer.
• ‘ws’ samples of data are passed from channel output (distorted signal) to

equalizer which generates ws numbers of estimated samples.
• Error is estimated by comparing delayed version of each input sample with

equalizer output
• The mean square error function of each particle P is

MSEðPÞ ¼
PK

i¼1 e
2
i

ws

• Fitness value MSE (P) is minimized using PSO-based optimization.
• If the MSE of a particle is less than its previous value, then term it as current

local best value and its corresponding weight values as Pbest

• The minimum of MSE of all particles in every iteration is taken as global best
value.

• If the global best value is better than the previous one, select the corresponding
tap weights to Gbest.

• Calculated the change in position (Tap weights) of each particle using
Eq. (12.14)

• Moved each particle (Tap weights) ck in Eq. (12.12) to new position by
Eq. (12.14).

• Repeated the above steps for the number of iterations specified or stopped when
the algorithm converges to an optimum value with least MSE value.

For DFE:

• The coefficients are initialized randomly for forward and feedback filter.
• In the first iteration, only forward filter is active and after calculating the error,

the output of the forward filter is fed back through feedback filter.
• The mean square error is calculated by subtracting the output of forward and

feedback filters.
• The forward and feedback filter coefficients ck and bi in Eq. (12.13) are updated

based on Eqs. (12.14) and (12.15).

12.3.5 Proposed Strategies

In PSO, higher values of inertia weight enhance global search while smaller values
improve local search. Generally, the inertia weight decreases linearly from 1 to 0
over the entire iterations. The inertia value is high at first, which allows all particles
to move freely in the search space during the initial steps, while it decreases over
time in the later steps. The later search requires a low inertia value to gradually shift
the search from global search to local search. The speed of convergence and
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minimum MSE is improved when the inertia weight is suddenly changed from high
to low after a particular iteration. Hence, the inertia weight is updated in three
different ways as given in Eqs. (12.16), (12.17), and (12.18).

iw1 ¼ g ð12:16Þ

iw2 ¼ g if n�N
g=2 if n[

�
ð12:17Þ

iw3 ¼
ffiffiffi
g

p
if n�Nffiffiffiffiffiffiffiffi

g=2
p

if n[N

�
ð12:18Þ

Figure 12.4 shows that, the inertia weight iw1 decreases linearly from 1 to 0,
whereas in the case of iw2 and iw3 the inertia weight decreases linearly until
N iteration after that there is a sudden reduction in inertia weight. The common
factor used in all time-varying inertia weight algorithms is η = (m−n)/m, where
m denotes maximum iteration and n denotes current iteration. This factor η changes
linearly from 1 to 0. If Eq. (12.14) is modified with a decreasing control function, it
gives an effective time-varying inertia weight strategy as shown in Eqs. (12.17) and
(12.18). The term N in Eqs. (12.17) and (12.18) is the intermediate iteration value
used to reduce the inertia weight suddenly after Nth iteration. This reduction pro-
duces optimum performance compared to existing inertia weight-modified methods
in terms of convergence speed and MSE.
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Fig. 12.4 Proposed inertia weight strategies
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12.4 Simulation Results

The simulations are performed in MATLAB 7.7 version. The parameters are set as
amplitude distortion W = 2.9 which gives an eigenvalue spread 6, particle size
P = 40, input window size ws = 20, the acceleration coefficients ac1 = 1 and
ac2 = 1, tap weights T = 7, and the initial and final inertia weights wi = 0.9 and
wf = 0.3, respectively. The term np used in Eq. (12.3) is taken as 0.7 and winitial in
Eq. (12.7) is selected as 0.5. The parameters considered above are minimum values
to minimize the computational complexity in the algorithm. If the parameter values
such as P, ws, ac1 and ac2 are increased, it can improve the performance and the
same is analyzed in Sect. 4.1.

The PSO variants considered are PSO-LDIW [9], PSO-Chatterjee [17],
PSO-Feng [18, 19], PSO-Lei, PSO-Zheng and PSO-Jiao. The proposed techniques,
PSO with time-varying inertia weights, PSO-TVW, PSO-TVW1, PSO-TVW2, and
PSO-TVW3 based on Eqs. (12.14), (12.15), and (12.16), are compared with the
above variants in Fig. 12.5. Among all it is seen that the PSO variant PSO-LDIW
and PSO-Chatterjee gives the best MSE value with convergence in 80th iteration.
PSO variant PSO-LDIW is compared with proposed techniques in Table 12.1.
Figure 12.6 depicts the convergence and MSE analysis of the proposed algorithms
for LTE structure. The proposed PSO-TVW3-based algorithm converges fast with
minimum MSE value.

Table 12.1 gives the comparison and effect of different channels using least
mean square (LMS) algorithm, PSO-LDIW [9], PSO-TVW2, and PSO-TVW3 for
LTE and DFE structures. From Table 12.1 and Figs. 12.5 to 12.6, it is shown that
the proposed modifications outperform the other existing modifications based on
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convergence and MSE. The PSO-TVW3 algorithm shows the best performance in
all channel conditions. The LTE and DFE structures give approximately same MSE
value, but differ in convergence rate which is shown in Table 12.1.

12.4.1 Sensitivity Analysis

The simulation-based sensitivity analysis is carried out to select optimum param-
eters in the algorithm. The parameter’s values and choices have high impact on the
efficiency of the method, and few others have less or no effect. The analysis is done
with respect to six key parameters, namely the intermediate iteration value N, data
window size ws, acceleration constants ac1 and ac2, the population size P, number
of tap weights T, and distortion factor W. The effect of the basic PSO parameters
swarm size or number of particles, window size, number of tap weights and
acceleration coefficients are analyzed in [6]. The same is analyzed for PSO-TVW3
and is given in Table 12.2.
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Fig. 12.6 Proposed PSO enhancements in linear channel for LTE

Table 12.2 Effect of PSO parameters on PSO-TVW3

Population P Tap weights T Window size WS Acceleration coefficients
c1 and c2

P MSE in dB T MSE in dB WS MSE in dB c1 c2 MSE in dB

10 −52 5 −53 20 −65 1 1 −65

20 −64 7 −65 200 −68 1 2 −58

40 −70 9 −70 500 −69 2 1 −56

60 −72 13 −74 100 −70 2 2 −63
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On average, an increase in the number of particles will always provide faster
convergence. In contrast, the computational complexity can increase linearly with
increase in population size. In Table 12.2, population size of 40 gives better con-
vergence. So a problem-dependent minimum population size is good for better
performance.

Setting the acceleration coefficients to a minimum value slows down the con-
vergence speed. The local search and global search are best when the summation of
acceleration coefficients becomes ac1 + ac2 < 4 in adaptive equalization. The
acceleration coefficients greater than 1 also seem to give the best performance. For
equal value of acceleration constants, the algorithm reaches its minimum in least
number of iterations. The MSE calculated on each iteration is the average of the
MSE over the window; a large window size increases the complexity per iteration
and time consumption. In Table 12.2, window size does not make any greater
changes in the MSE value. If the window size is small, the complexity can be
reduced.

The tap weights are problem dependent. As given in Table 12.2, the increase in
tap weights above a certain limit does not make much difference in MSE value, but
it may increase the complexity. Figure 12.7 shows the analysis for different inter-
mediate iteration N for PSO-TVW2. Table 12.3 compares the convergence rate and
MSE for PSO-TVW2 and PSO-TVW3 with reference to N. An increase in the value
of N increases the number of iterations required for convergence. Decreasing
N value degrades the MSE performance. N value between 30 and 40 exhibits
minimum MSE with faster convergence.

Table 12.4 explains the effect of amplitude distortion parameter W in linear
channel. The MSE is computed with different amplitude distortion that leads to
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different eigenvalue spread. Increase in amplitude distortion degrades the MSE
performance. The performance degradation is not severe in proposed PSO-based
algorithms compared to existing algorithms.

12.5 Conclusion

In this work, two new strategies are proposed to update in PSO algorithm for
adaptive equalization. The results are discussed in linear and nonlinear channels for
LTE and DFE structures. The proposed time-varying PSO algorithms, PSO-TVW2
and PSO-TVW3, show better performance than the existing algorithms in linear and
nonlinear channels. Also it shows performance better for LTE and DFE structures.
The PSO-TVW3 algorithm outperforms other modifications based on convergence
and MSE. The sensitivity analysis is done to find the optimum parameter values.
The performance is degraded for severe amplitude distortions in linear channel.
The DFE structure delays the convergence but it performs well in severe amplitude
distortion conditions.

Table 12.3 Comparison of convergence rate with different intermediate iteration value N

Intermediate
iteration N

Convergence rate
(iterations)

MSE in dB for
PSO-TVW2

MSE in dB for
PSO-TVW3

10 30 −24 −28

20 40 −45 −63

30 45 −52 −65

40 50 −58 −67

50 60 −52 −65

60 70 −56 −64

Table 12.4 Effect of amplitude distortion W on PSO-TVW2 for LTE and DFE

SNR
in dB

LTE DFE

For
W = 3.7
MSE in dB

For
W = 3.1
MSE in dB

For
W = 2.9
MSE in dB

For
W = 3.7
MSE in dB

For
W = 3.1
MSE in dB

For
W = 2.9
MSE in dB

5 −17 −18 −20 −17 −18 −19

10 −24 −26 −27 −29 −27 −25

15 −25 −27 −33 −32 −30 −32

20 −27 −35 −40 −35 −37 −37

25 −33 −44 −53 −38 −45 −53

30 −37 −61 −67 −46 −62 −67
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