
Interfacing Sound: Visual Representation
of Sound in Musical Software Instruments

Thor Magnusson

Abstract This chapter explores the role of visual representation of sound in music
software. Software design often remediates older technologies, such as common
music notation, the analogue tape, outboard studio equipment, as well as applying
metaphors from acoustic and electric instruments. In that context, the aim here will
be study particular modes in which abstract shapes, symbols and innovative
notations can be applied in systems for composition and live performance.
Considering the practically infinite possibilities of representation of sound in digital
systems—both in terms of visual display and mapping of gestural controllers to
sound—the concepts of graphic design, notation and performance will be discussed
in relation to four systems created by the author: ixi software, ixiQuarks, ixi lang,
and the Threnoscope live coding environment. These will be presented as examples
of limited systems that frame the musician’s compositional thoughts providing a
constrained palette of musical possibilities. What this software has in common is
the integral use of visual elements in musical composition, equally as prescriptive
and representative notation for musical processes. The chapter will present the
development of musical software as a form of composition: it is an experimental
activity that goes hand in hand with sound and music research, where the
musician-programmer has to gain a formal understanding of diverse domains that
before might have been tacit knowledge. The digital system’s requirements for
abstractions of the source domain, specifications of material, and completeness of
definitions are all features that inevitably require a very strong understanding of the
source domain.

T. Magnusson (&)
Department of Music, School of Media, Film and Music,
University of Sussex, Brighton, UK
e-mail: t.magnusson@sussex.ac.uk

© Springer Nature Singapore Pte Ltd. 2017
T. Bovermann et al. (eds.), Musical Instruments in the 21st Century,
DOI 10.1007/978-981-10-2951-6_11

153



1 Introduction

Musical instruments are amongst the earliest human technologies. Possibly pre-
ceding fire and weaponry, we could speculate how early humans used rocks or
sticks to hit other materials in order to define territories, communicate, or syn-
chronise movements. For a social animal like the human, music is clearly a
sophisticated and multipurpose cohesion technique. Some of the oldest known
musical instruments are flutes found in Germany (the Hohle Fels flute) and
Slovenia (the Divje Babe flute), estimated to be between 35,000 and 42,000 years
old. Preceding these flutes would be generations of forgotten instruments in the
form of rocks and sticks that might not even “look like” musical instruments at all.

Today we talk about “music technology,” a two-word coinage that conjures up
the image of plastic- or metal-surfaced equipment offering interaction through
rotating knobs, sliders, or buttons, which are mapped to functionality represented
on a screen of some sort. However, a quick etymology of the word “technology”
clearly demonstrates that we are not discussing plastic gadgets here, but rather an
embodied knowledge, skill or craft. The root of the Greek word technē is “wood,”
but at the time of the early philosophers, it had begun to denote the craft of
producing something out of something else. For Aristotle, technē (sέvmη) is an
activity where the “origin is in the maker and not in the thing made” (Ackrill 1987,
p. 419). In Rhetorics, Aristotle uses the word “technology” to signify the “craft of
the word” (techne and logos) as used in grammar or rhetoric, which is an inverse
meaning to the later use signifying the knowledge (logy) of craft (techne). The word
is not used much until the 17th century, which is when it enters the English
language (Mitcham 1994, p. 130). At no point did the word signify objects, but
rather the skill of doing things, as evidenced in Marx’s Das Kapital: “Technology
discloses man’s mode of dealing with Nature, the process of production by which
he sustains his life, and thereby also lays bare the mode of formation of his social
relations, and of the mental conceptions that flow from them” (Marx 2007, p. 402).
Earlier in the same paragraph we read: “Darwin has interested us in the history of
Nature’s Technology,” and it is clear that he means the ways nature goes about its
business. Bernard Stiegler defines technology as “the discourse describing and
explaining the evolution of specialised procedures and techniques, arts and trades”
(Stiegler 1998, p. 94) and encourages us to use the word in the manner we apply the
words “psychology” or “sociology”.

We do music technology: we don’t buy it, own it, or use it. Thinking, designing,
discussing, performing and composing are all acts of music technological nature.
Musical instruments are the tools of music technology and represent the
musico-theoretical framework of the specific culture. However, let’s not forget the
Greek origins, where the technology was about shaping something out of some-
thing else: in contemporary music technological practice, we are applying hard-
ware, code libraries, communication protocols, and standards that become the
material substance of our design explorations. We are working with designed
materials, not wood or skin, but entities that already are of an epistemic nature

154 T. Magnusson



(Magnusson 2009). The new materials are semiotic in that they are part of a
complex organisation of protocols and standards, which are needed for the diverse
code libraries and hardware to be applied in the complex ecosystem of wired and
wireless inter-software and inter-hardware communication.

When we create digital instruments we operate like a Latourian ant: busily
operating as a part of a larger whole, applying actor-networks consisting of other
actor-networks, or, in short, inventions that have become blackboxed in other
technological processes, to the degree that we lose the possibility of grasping any
origins. Where would a technological object originate from anyway? For this reason
the instrument often appears before we know its expressive scope or indeed
rationale (how, why, where, etc.).1 The history of the saxophone provides a good
example of how undefined the role of a new instrument can be, slowly gaining
diverse functions amongst different musical cultures. In this context it is interesting
to behold Attali’s statement that in “music, the instrument often predates the
expression it authorizes, which explains why a new invention has the nature of
noise; a ‘realized theory’ (Lyotard), it contributes, through the possibilities it offers,
to the birth of a new music, a renewed syntax” (Attali 1985, p. 35).

2 Digital Music Technologies—Designing with Metaphors

Music is many things to many people. If we were to attempt at a general definition,
one approach might divide music into two key categories: in the first, music is
performed, where an instrumentalist, or a group of them, engage in an act of
generating sound, either from a score, from memory, or by improvisation. The
context of co-players, the audience, and the location plays an important role here,
where the liveness yields a sense of risk, excitement and a general experience of the
moment’s uniqueness and unrepeatability. The second category is music as stored:
in people’s memory, as written notation, on disks, tapes, or digital formats. The
music could even be stored as an undefined structure in the form of algorithmic
code for computer language interpreters. Now, in the 21st century, things are a little
more complicated. New developments in digital music technologies transcend the
above categories, deriving their symbolic design equally from the world of acoustic
instruments, performance, notation, and electronic technologies. These new tech-
nologies further complicate the relationships between instrument makers, com-
posers, performers, and the audience. Who is what? And the work itself … is it an
instrument? A compositional system? A piece?

1The 160 character text message is a good example: the SMS (Short Message Service), although
invented as part of the GSM cooperation in 1984, was initially implemented in Nokia phones for
their engineers to test mobile networks. The technology was quickly adopted by users who began
enjoying this mode of communication. This became a protocol of sorts, and as of 2016, Twitter is
still respecting this 140 char limit.

Interfacing Sound: Visual Representation of Sound … 155



There is a real sense that the technologies of music making are undergoing a
drastic change by the transduction into the digital domain. This can be explored by
studying the divergent natures of acoustic vs. digital instruments. The sound of a
traditional musical instrument is necessarily dependent on acoustics, or the physical
properties of the materials it is built of. Instrument makers are masters of materi-
ality, with sophisticated knowledge of material properties and how sonic waves
traverse in and through diverse types of matter, such as wood, metal, strings, or skin
membranes. The instrumental functions of an acoustic instrument are necessarily
determined by millennia old practices of material design. This is clearly not the case
with digital instruments, where any interface element can be mapped to any sound.
The mappings are arbitrary, and can be intelligent, non-linear, non-determined,
inverse, open, and more. The design of digital interfaces ranges from being directly
skeumorphic2 and functional to more abstract and representational. In either case,
every interface element signifies a function resulting in a sound rather than directly
causing a sound. With the mapping function inserted between a gesture and the
sound, the interface becomes semiotic: with this arbitrary relation, the digital
instrument begins to surpass the acoustic as an epistemic entity, and at times
manifests as a vehicle of a music theory or even a score.

The idea of making music with computers has existed since they were invented,
and we can boldly claim that computers are the ideal media for composing, per-
forming, storing and disseminating musical work. A quick tracing of this symbiotic
relationship takes us back to early computers, with Ada Lovelace speculating about
the musical potential of Baggage’s Analytical Engine in 1842 (Roads 1996, p. 822).
In the early days of electronic computers, we find Lejaren Hiller and Leonard
Isaacson applying Markov chains in 1957 for one of the first algorithmically
composed pieces, the Illiac suite, and Max Matthews inventing notation languages
for computer generated synthetic sound. However, if we look at the history of mass
produced digital musical instruments and software, we see that the computers have
been used primarily as bespoke microchips integrated in instruments, for example
in a synthesizer or an electronic drum kit, where the hardware design has been
primarily mimetic, aiming at imitating acoustic instruments.3 In the case of music
software, we are faced with multiple imitations of scores, piano rolls, magnetic tape,
where the key focus has been on developing tools for the composition and pro-
duction of linear music at the cost of live performance. From both business and
engineering perspectives it is evident that hardware manufacturers benefited from a
model where new synthesis algorithms were embedded in redesigned computer
chips, and sold as new hardware.4 Software developers in turn addressed another

2Skeumorphic design is where necessary features in an original objects are used as ornamentation
in the derivative object. Examples in graphical user interface design could be screws in
screen-based instruments, leather in calendar software, the use of shadows, and so on.
3The contrasting design ideologies between Moog and Buchla are a good example of the problems
at play here. It is evident that Moog’s relative commercial success over Buchla’s was largely due
to the referencing well known historical instruments (see Pinch and Trocco 2002).
4There are exceptions of that model of course, such as the discontinued Nord Modular Synth.

156 T. Magnusson



market, applying the “studio in your bedroom” sales mantra, which sparked the
imagination of a generation in the late 80s, who used Cubase on Atari computers,
starting a genealogical lineage that can be traced to the current Logic or Live digital
audio workstations.

Specialists in innovation studies, marketing, science and technology studies, and
musicology, could explain in much more detail how technologies gain reception in
culture, the social and economical conditions that shape their evolution, and the
musical trends that support the development of particular technologies. From the
perspective of an inventor, it is less obvious why the history of musical tech-
nologies has developed this way, although inventions ultimately have to depend on
market forces in order to enter public consciousness. Here, the history of failures is
as, if not more, interesting as the history of successes. (“failure” is here defined in
the terms of the market, economy and sales). One such “failed” project could be
Andy Hunt’s MidiGrid, a wonderful live improvising software for MIDI instru-
ments written in the late 80s (Hunt 2003). An innovative system, ahead of its time,
the focus was on performance, liveness and real-time manipulation of musical data.
Written for the Atari, Hunt received some interest from Steinberg (a major software
house), which, at the time, was working on the Cubase sequencing software. Only
an alternative history of parallel worlds could speculate how music technologies
had evolved if one of the main music software producers would be shipping two
key software products: one for performance and the other for composition.5 At the
time of writing certain digital interfaces are being produced that are not necessarily
imitating the acoustic, although inspired by them. It is yet to be seen whether
instruments such as the Eigenharp and the Karlax6 will gain the longevity required
to establish a musical culture around the technology of composing and performing
with them.

Since the early 2000s, developments in open source software and hardware have
altered this picture. The user has become developer, and through software such as
Pure Data, SuperCollider, CSound, Max, ChucK, JavaScript, and hardware such as
Arduino and Raspberry Pi, a world has opened up for the creation of new music
technologies. The ease of access and low cost of these technologies, together with
strong online communities that are helpful and encouraging, make such DIY
approaches fun, creative and rewarding. When music software has become
sophisticated to the degree that it can almost compose the music without the input

5Hunt’s software is of course no failure. It is a highly successful research project that has served its
author and many others as musical tool, for example in education, and it has inspired various other
research projects, mine included. But the context of this discussion is innovation and how a
specific music technology instance might fare in the world of mass markets and sales.
6The manufacturers of both interfaces call them “instruments”. Some might argue that they only
become instruments when coupled with a sound engine, as familiar instrumental models indicate
(e.g., Wanderley 2000 or Leman 2008), but I do believe it makes sense, in terms of innovation,
longevity and spread of use, to call these instruments. Will there be a day when something like the
Karlax will be taught in music conservatories? How would that even work? What would the
training consist in?

Interfacing Sound: Visual Representation of Sound … 157



of the user (who becomes a “curator” of samples or a “wiggler” of knobs and
buttons), many find that real creative approaches happen when music technology
itself is questioned and redefined. Gordon Mumma’s ideas of “composing instru-
ments” (see also Schnell and Battier 2002) are relevant here.

This chapter describes such questioning of music technology. Here the inves-
tigation regards interface and interaction design, i.e., how the visual elements in
music software can affect musical ideas, composition and performance. Considering
the practically infinite possibilities of representation of sound in digital systems—
both in terms of visual display and mapping of gestural controllers to sound—the
process of designing constraints will be discussed in relation to four systems
developed by the author that engage with visual representation of sound in music
software.

3 Interfacing Sound with Screen Interfaces

Interfacing sound in screen-based music software is no simple task: traditionally the
software tends to either follow linear scoring metaphors (piano rolls, traditional
notation, tape tracks) that are useful for composition, or imitate hardware (sliders,
knobs, buttons, cables, screens), allowing for a real-time manipulation of sound
which is eventually “bounced down” to a fixed file. There have been myriads of
other, more experimental approaches, that investigate how we can perform with
screen-based musical interfaces. However, designing two- or three-dimensional
representation of sound, where the physical interfaces might consist of a mouse,
keyboard or touch screens, comes with some complications. Some of the design
patterns that we find in the material world cannot easily be abstracted and repre-
sented in the digital domain. Such translations often become a process of trans-
duction, where sounds or actions are transformed in the digital. Even when we
attempt mimesis and aim to be true to the original object, we lose some of the
unique (non-universal) characters of the individual instrument, the entropic qualities
that often manifest in its behaviour, as well as the history and use of the particular
object itself. A copy of software does not have a history in the same way as an
individual object.

On the other hand, elements not found in acoustic instruments present them-
selves as natural properties within the digital, for example the possibility of time-
lines, looping techniques, learning mechanisms, or diverse mechanics of mapping
gesture to sound. Here, screen-based instrument designers apply techniques from
computer games, interface design, HCI, apps, installations, and computer networks.
The metaphors abound, but they can be found in diverse areas of development,
where techniques and user skills are reused in the new design. Commensurate with
how the maker of hardware musical instruments seeks to enact the skills developed
and incorporated into the motor memory of instrumentalists over the years, the
designer of screen-based interfaces will apply techniques from diverse fields, such
as drag and drop, shift-click for multiple selection, swipe for new screens, right

158 T. Magnusson



click for menus, etc. Blackboxed design patterns are applied in the design of new
instruments, consciously or not, and the user intuitively performs the system,
learning its conceptual nature through interaction design that is already familiar.

3.1 ixi Software

The dozen or so applications that Enrike Hurtado and myself developed around
2000, and uploaded onto our ixi audio website (ixi 2000), were all experiments in
sonic interaction design (Magnusson 2006). We wanted to create non-
representational graphics that would control sound, through both real-time inter-
action (using the mouse and keyboard) and automation. The user would create
visual objects that had associated sound which could be manipulated by moving
them around, changing the shape, connecting them with other objects, and so on.
We explored diverse design patterns, each represented by a small “app” (as we
called the software—this was before the days of mobile media). Examples of the
mapping of visuals to sound include: size for amplitude, vertical location for pitch,
horizontal location for panning, shape or colour for timbre, blinking or rotating for
automatic triggering of sounds, movement as a type of panning (perhaps a moving
microphone that randomly navigates a space of sound), and so on (Fig. 1).

This software is now “abandonware,” as we have no time to translate it to new
operating systems, indeed it is a good example of how transient digital systems for
musical production can be. However, what is of lasting value are the ideas
developed, the use of metaphors, the interaction design, the idea of automation,
computational creativity, and real-time playfulness. These ideas become a design
language, a set of interface and interaction patterns that are learned, embodied, and
easily implemented in new software. Clearly not unique to ixi software, they are
design discoveries, often of personal—as opposed to historical—nature,7 that have
been reapplied in later software by us, and, indeed, inspired other software.

3.2 ixiQuarks

The ixiQuarks (Magnusson 2007) continued the research of ixi software, but here
with a more coherent research agenda. They were developed in SuperCollider
between 2004 and 2006 as an investigation into alternative screen-based interfaces,
where non-linearity, performativity and real-time control of sound were the key
design considerations. Discarding common concepts like timelines or linear

7See Boden (1990) on creativity - although her P-creativity and H-creativity stand for psycho-
logical and historical creativity (where the former is always included in the latter), in this case we
use the term personal creativity.

Interfacing Sound: Visual Representation of Sound … 159



notation, most of the instruments developed as part of the ixiQuarks package were
aimed at direct control of sound, where the mouse, they keyboard, pressure tablets
and other cheap and common interface devices are used for control.

At the time of development, there were no multi-touch screens or trackpads,
which resulted in more limited design decisions. However, it is not clear that
multi-touch would be of a drastic benefit here since the lack of tangible interface
elements makes the instrument less embodied and the user focus becomes more
conscious on particular visual elements (think selecting a bespoke element on the
screen with the mouse arrow). Furthermore, touching a visual element with your
finger on a screen hides it (under the finger), prevents overlapping elements (as
fingers can’t be in the same space at the same time), and the anatomy of the hand
also provides some expressive limitations. These would be interesting constraints to
design around, but they simply didn’t exist at the time (Fig. 2).

The ixiQuarks interfaces are non-representational, or, at least, they do not pri-
marily derive their metaphors from physical instruments or music technological
hardware. The interface and interaction metaphors were rather influenced by tra-
ditional HCI, computer games and web design. Creative audiovisual coding was a
much more inspirational context than acoustic or digital music technologies.
A central question to be explored was how visual interfaces and alternative inter-
action design would result in different music. We were equally interested in how the
design itself inspired musicians, and also how the limitations of expressive actions
would provide affordances and delineate constraints that would be navigated by
users through a process of exploration (Magnusson 2010). For this reason, there
were no manuals written, no demo videos created, no sound banks provided.

An element of ixiQuarks was that the user would be able to redefine the sound,
create new sounds and change the function of the interfaces during performance.

Fig. 1 A screenshot of six individual ixi software applications. Each of them served as an
investigation into a different mode of interactive design

160 T. Magnusson



This was an early version of live coding, where the interface could be altered in
real-time. As a performer in improv ensembles I became more interested in the live
coded aspects of musical performance, sometimes only using the graphical inter-
faces to trigger patterns, whilst changing the SuperCollider synth definitions. For
this reason I decided, in 2009, to attempt at creating a live coding system that would
continue some of the explorations of the early ixi work, but here through the use of
language or code as opposed to graphical design.

3.3 ixi Lang

SuperCollider is an ideal platform for live coding. It is a real-time system where
synths can be created and stopped without affecting other running synths, their
parameters changed, and musical patterns can be written to control the synths. This
is ideal for live exploration of sound synthesis and electronic music. Indeed, rumour
has it that the term “live coding” was first used on the SuperCollider mailing list by
Fabrice Mogini when describing his compositional process, sometime in the late
20th century. However, when performing live, speed and simplicity of syntax
becomes important, as the performer ideally wants to be focusing on the music and
not the code. With ixi lang some of the main design goals were: to create a simple,
fast, and forgiving live coding system with a syntax that makes mistakes unlikely
(no commas, brackets, or semicolons); a language that was easy to learn, and

Fig. 2 A screenshot of ixiQuarks. Each of the instruments and widgets are independent from the
other but work well together. The sounds from one can be used as input into another. Some of the
instruments can be live coded and changed in real-time

Interfacing Sound: Visual Representation of Sound … 161



understandable by the audience, and where the use of visual elements was part of
the language syntax (Fig. 3).

In many ways, ixi lang continues ideas from the graphical explorations but here
using what I call a CUI (Code User Interface). Even though ixi lang is a textual
interface, it perhaps more shamelessly applies design patterns that ixiQuarks tried to
ignore: there is a temporal score where characters represent sounds and spaces
silence. There is an underlying temporal grid, which syncs the musical events to a
default tempo clock. There is a clear timeline-based design in ixi lang, but the
flexibility of the language and specific features make both polyrhythmic and
polymetric explorations easy. In terms of graphic design, we find diverse instances
of visual elements in the language, for example where effects are applied with
symbols such as “�” and “�”, a visual reference to how guitar pedals are con-
nected with jack cables (Fig. 4).

ixi lang has been described in detail elsewhere (Magnusson 2011), but in ret-
rospect one could characterise it as a system of language elements that try to move
away from typical programming language commands embracing playfulness and
simplicity. For this reason the system has strong limitations and it does not extend
very well. However, it is used for teaching children from the age of seven live
coding and music, and anyone can learn it in about 30 min. The language has
various hidden features that can be discovered by eager users, it is quirky, and it
contains an autocoder, where the language writes its own code, often resulting in
fine music.

Fig. 3 A screenshot of ixi lang, with the Matrix grid-based event system

162 T. Magnusson



3.4 The Threnoscope

More recently I have been developing an instrument I call Threnoscope
(Magnusson 2014). As the other software, it is a live coding system, split into three
views: a notational view, a code view, and a console for system output. The
notational view and the code view serve as a dual visual representation of the
music: the former is a visual description of the sound, whilst the code is a form of
prescriptive notation. Both aid the audience in understand the sonic events but they
also serve as interfaces for further control by the performer.

The visual system contains circles that represent the harmonics of a fundamental
frequency, often tuned to a 55 or 54 Hz A note. In the former case, the second
harmonic is then 110 Hz, the third 165 Hz, fourth 220 Hz, and so on. Notes (or
drones) can be created on these harmonic circles or anywhere in between through a
structure of tonic (the harmonic, ratio, degree, or frequency). The interface has
crossing lines that represent the loudspeakers. Any combination from two to eight
speakers can be used. The speakers serve as static timelines where notes travel
across the circular space. This creates an unusual looping structure, heavily
influencing the music created with the system (Fig. 5).

The Threnoscope was initially planned as a musical piece, to be performed by
the author and anyone who wanted to play the piece.8 After two decades of interest

ubu -> guitar[1 5 2 3 4 ] 

ubu >> distort >> reverb

ubu << distort

shake ubu

ubu + 7 

Fig. 4 This is a typical ixi lang score. First we create an agent called “ubu” and give him a guitar
instrument. The guitar is the name of a SuperCollider synth definition, and the user can use any of
their definitions. Ubu’s score ([1 5 2 3 4]) are the notes in the selected scale, and the spaces
between the notes are silences. This is effectively Rousseau’s system of notation from the 18th
century. Ubu is then given two effects (distortion and reverb), but in the next line the performer
removes the distortion from the effect chain. Then ubu is shaken, which scrambles the numbers in
the score, leaving it the same length, but with the notes in different places. Finally ubu’s score is
transposed up by a fifth. One of the system’s innovations is to update the code in the text document
when a function has been applied to it (such as “shake” or +7)

8However, further development and user experience shows that the system is more of a compo-
sitional tool, an instrument, and not a musical piece. Admittedly, the boundaries are not very clear
here and the author has had interesting discussions with users who are of different opinions of what
might constitute a musical piece.

Interfacing Sound: Visual Representation of Sound … 163



in microtonal music and alternative tunings and scales, I felt the need to study these
areas more formally and the best way to do that is to develop a digital instrument
implementing these concepts. My aim was also to move away from notes as events
that happen in time, but rather conceive of them as spatial phenomena that move
around without a set duration. Although the system can be used to play staccato
notes that disappear immediately, the system is designed as an encouragement for
long duration musical events, where Morton Feldman might be considered a rest-
less character, but La Monte Young and Phill Niblock on a similar wavelength.

The Threnoscope is created for live improvisation, as a live coding instrument.
The textual interface is considered the most expressive and free interface for this
compositional system. A key problem with graphical user interfaces is that their
elements take up screen estate, where the biggest elements call for the attention of
the user. Designing a graphical user interface for musical software therefore
resembles the writing of a musical score. With text, on the other hand, it is only the
imagination and vocabulary of the performer that sets the limitations of what could
be possible within the language framework. As an example, at the spur of the
moment, some performer might want to create 100 sine waves randomly on the first
six harmonics at different degrees in a chromatic scale. This could easily be written
as following:

Fig. 5 A screenshot of the Threnoscope microtonal live coding system. The circles represent the
harmonics of a fundamental tone. The crosshair lines represent the speakers, here an eight-channel
surround system. Notes are the coloured wedges that can move around the space, or stay static. In
the middle we see a machine that can affect the drones in different ways, supplementing the
performer’s actions

164 T. Magnusson



100:doðf� drones:createDroneðnsine; rrandð2; 7Þ; degree: rrand 1; 9ÞÞgð Þ:

Obviously, it would not make sense to create an interface for such musical
acrobatics. Here the coding language is a much more appropriate and simple
interface than buttons, drop down menus or sliders would ever be.

There is a score format for the Threnoscope, which enables composers to write
linear or non-linear pieces. This format is a timed array with code instructions in it.
The code score can be visually represented and manipulated during its playback.
This can be useful when composing, but often the scores are short scores that are
played during an improvisation, almost like a “lick” or an incorporated musical
phrase in jazz or other improvised music.

4 Conclusion

The development of musical software has been described above as an experimental
activity that goes hand in hand with sound and music research. A redefined
boundary between the instrument maker and the musician is forged, a practice
which requires a strong knowledge of both music and materiality. Musical com-
position at this level requires music technological research. We find that, in order to
develop the music or instrument that one works towards, one has to understand key
concepts of the source domain—such as human gestural patterns, or the resonant
properties of physical materials. Just as a composer for acoustic instruments needs
to understand the acoustics of the instruments, music theory, harmony, and rhythm,
the composer of digital systems will need to comprehend the physics of sound,
digital signal processing, software engineering, human-computer interaction, as
well as music theory. For composers and software developers the question is how to
represent these new features of sonic control. A new notational language is needed,
and it is in that context that the work above is presented.

For some musicians, it might feel convenient to buy off-the-shelf products that
perform many of the things we might want to do, but at some stage the software
will limit compositional ideas and performance options. This inspires musicians to
conduct their own compositional work through research and development of their
own music technologies, designing affordances and setting constraints relevant to
the particular musical work (Magnusson 2010). The best practitioners in this field
are the ones who can manage their time on instrument building, software devel-
opment and other engineering tasks, whilst still keeping a focus on their compo-
sitional intention. People who work this way report that time spent on learning,
researching and experimenting will result in novel musical output that is unique,
personal and of a strong musical and technical identity.

Interfacing Sound: Visual Representation of Sound … 165



References

Ackrill, J. L. (1987). Nicomachean ethics, book 6, chapter 4. In A. New (Ed.), Aristotle reader.
Oxford: Clarendon Press.

Attali, J. (1985). Noise: The political economy of music. Minneapolis: University of Minnesota
Press.

Boden, M. A. (1990). The creative mind: Myths and mechanisms. London: Weidenfeld and
Nicolson.

Hunt, A. (2003). MidiGrid: Past, present and future. In Proceedings of new interfaces for musical
expression 2003. Montreal, Canada.

ixi. (2000). http://www.ixi-audio.net. Accessed September 8, 2016.
Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge,

Massachusetts: MIT Press.
Magnusson, T. (2006). Screen-based musical instruments as semiotic machines. In Proceedings of

new interfaces for musical expression. Paris: IRCAM.
Magnusson, T. (2007). The ixiQuarks: merging code and gui in one creative space. In Immersed

music: The ICMC 2007 conference proceedings. Copenhagen: Re:New.
Magnusson, T. (2009). Of epistemic tools: Musical instruments as cognitive extensions. Organised

Sound, 14(2), 168–176.
Magnusson, T. (2010). Designing constraints: Composing and performing with digital musical

systems. Computer Music Journal, 34(4), 62–73.
Magnusson, T. (2011). ixi lang: A SuperCollider parasite for live coding. In International

computer music conference. Huddersfield: University of Huddersfield.
Magnusson, T. (2014). Improvising with the threnoscope: Integrating code, hardware, GUI,

network, and graphic scores. In Proceedings of new interfaces for musical expression 2014.
London: Goldsmiths College.

Marx, K. (2007). Capital: A critique of political economy—The process of capitalist production.
New York: Cosimo.

Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy.
Chicago: University of Chicago Press.

Pinch, T. J., & Trocco, F. (2002). Analog days: The invention and impact of the moog synthesizer.
Cambridge, MA: Harvard University Press.

Roads, C. (1996). The computer music tutorial. Cambridge, MA: The MIT Press.
Schnell, N., & Battier, M. (2002). Introducing composed instruments, technical and musicological

implications. In Proceedings of new interfaces for musical expression 2002. Limerick:
University of Limerick.

Stiegler, B. (1998). Technics and time, 1: The fault of epimetheus. Stanford: Meridian. Stanford
University Press.

Wanderley, M. M. (2000). Gestural control of music. Paris: Ircam. http://recherche.ircam.fr/
equipes/analyse-synthese/wanderle/Gestes/Externe/kassel.pdf. Accessed February 2016.

166 T. Magnusson

http://www.ixi-audio.net
http://recherche.ircam.fr/equipes/analyse-synthese/wanderle/Gestes/Externe/kassel.pdf
http://recherche.ircam.fr/equipes/analyse-synthese/wanderle/Gestes/Externe/kassel.pdf

	11 Interfacing Sound: Visual Representation of Sound in Musical Software Instruments
	Abstract
	1 Introduction
	2 Digital Music Technologies—Designing with Metaphors
	3 Interfacing Sound with Screen Interfaces
	3.1 ixi Software
	3.2 ixiQuarks
	3.3 ixi Lang
	3.4 The Threnoscope

	4 Conclusion
	References


