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Foreword

Cancer incidence and death rates started to decline after 1990 in the USA, largely

because of improvements in the ability to detect cancer at early stages and in more

accurate disease staging, which in turn were facilitated by advances in imaging and

the advent of a multidisciplinary approach to caring for patients with cancer.

At this time, early-stage cancer or small metastatic lesions can be treated by

stereotactic ablative radiotherapy to the lung, liver, adrenal glands, or other organs.

Some brain metastases can be also eliminated by stereotactic radiosurgery.

However, eliminating small lesions with high-dose irradiation requires that

irradiation be exquisitely precise, such as that used in stereotactic radiosurgery.

An important component of that precision, in terms of both killing the tumor and

avoiding damage to surrounding normal tissues, is the use of imaging that combines

visualization of anatomic detail (such as computed tomography [CT] or magnetic

resonance imaging [MRI]) with visualization of tumor metabolism (such as posi-

tron emission tomography [PET]).

Once tumors became too large to be ablated by radiation or removed by surgery,

current practice involves combining chemotherapy with radiation therapy. Chemo-

therapy is well known to act as a radiation sensitizer, enhancing the ability of both

modalities to kill cancer cells. However, most traditional chemotherapy regimens

are quite toxic to normal tissues. Improving the therapeutic ratio under these

conditions will require improving the ability to kill cancer cells while reducing

the toxic effects of therapy on surrounding normal cells. Before the advent of

sophisticated imaging techniques for cancer diagnosis, such as CT, PET, or MRI,

very large radiation treatment fields were needed to encompass areas thought to be

harboring metastases or microscopic extensions of the tumor.

Now, even though we can delineate tumor extension and metastasis much more

precisely with imaging, we still need histologic confirmation of small nodal metas-

tases by means of biopsy by interventional radiologists or endoscopists.

The next step after diagnosis and staging is radiation treatment simulation,

which also requires sophisticated imaging techniques such as CT, PET, or MRI

depending on the site of the tumor. Sometimes, we use contrast solution for
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simulating treatment of gastrointestinal tumors. Another important aspect of treat-

ment simulations is to control or account for tumors that move, such as lesions of

the lung, gastrointestinal tract, or other anatomic sites. Respiration-induced motion

is often accounted for with 4-dimensional CT.

Another important application of imaging is in confirming that each radiation

fraction has been directed toward the appropriate target or targets. Daily imaging is

used for this purpose, to account for irregularities in patient positioning or other

uncertainties involved in the delivery of radiation. This is even more important for

hypofractionated treatments (involving smaller numbers of larger-dose fractions),

such as stereotactic radiosurgery or stereotactic ablative radiation therapy. More

prolonged courses of radiation should involve verification with cone-beam CT and

adjustments made or treatments replanned depending on the response of the tumor

to the treatment. This is especially important for small cell lung cancer or other very

radiosensitive (or chemosensitive) tumors that tend to respond to treatment quickly.

Finally, imaging is crucial for evaluating tumor response. Regardless of whether

the outcome is local tumor control or ablation of distant metastasis, further

improvements in treatment strategies require that we accurately—and quickly—

identify tumor recurrence. If tumors recur in the middle of the radiation treatment

field, then higher-dose radiation may be needed. If tumors recur at the margin, then

methods for controlling tumor motion such as fiducial markers and/or larger

margins would be required.

If tumors appear at distant sites before local recurrence, then more effective

systemic treatments are needed. Such therapies may be based on molecular targets,

tumor histopathologic characteristics, and the ability of the patient to tolerate the

proposed treatment, which ideally comes from close communication with medical

oncologists. Although the ability to imagemolecular targets is still in the development

stage, the ability to visualize hypoxia or other aspects of the tumor microenvironment

would be valuable as well. The use of PET, particularly uptake of the tracer by tumor

or normal tissues, is being explored for its potential to predict failure sites so that the

radiation dose or type of systemic treatment can be modified early in the course of the

treatment. Although this topic is currently the subject of intense study, information

that is gathered prospectively rather than after the fact will be crucial.

I highly recommend this book not only for radiation oncologists and radiologists but

also for radiology technologists, medical physicists, medical dosimetrists, and engi-

neers as well as for medical oncologists and surgeons, all of whom make important

contributions to the multidisciplinary approach to caring for patients with cancer.

Professor, Ritsuko Komaki, MD, FACR, FASTRO

Gloria Lupton Tennison

Distinguished Professorship

in Lung Cancer Research,

Department of Radiation Oncology

The University of Texas

MD Anderson Cancer Center

Houston, TX
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Preface

X-rays were discovered by Wilhelm Conrad R€ontgen in 1895, leading to the initial

investigations of the ionizing effect of radiation. The effects were considered

beneficial for curing malignant tumors. The applications of radiation to curing

cancer around this time are relevant to the birth of radiation therapy and medical

physics. In early times, medical physics appeared to be a field that combined only

medicine and physics. However, current medical physics is a multidisciplinary

field, which requires a wide range of knowledge, including medicine, biology,

physics, chemistry, mathematics, and engineering, as shown in Fig. 1. The field

of medical physics is therefore dependent on the other fields. We feel proud as

medical physics researchers that outcomes from the medical physics field such as

computed tomography, magnetic resonance imaging, and medical linear accelera-

tors are so useful in clinical practice. Medical physics researchers play a bridging

role between cancer patients and diagnosis or radiation therapy by discovering and

investigating novel medical physics technologies that have been helpful for the

detection, differentiation, and treatment of cancer. Since the editor believes that we

need a wide range of knowledge (imaging, computer science, and mathematics, as

well as physics and medicine) in order to perform medical physics researches, the

policy in the editor’s laboratory is “Diverse knowledge in various fields is better

than a lot of knowledge in a specific narrow field. Multifaceted knowledge is best.”

(with apologies to Blaise Pascal) In spite of the fact that we need a wide range of

knowledge to do medical physics researches, the academic field is still very small.

That is why the editor has been attracted by this niche field, which requires the

wisdom to apply diversified knowledge to problems in diagnosis and radiation

therapy.
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All the authors in this book believe that the readers will enjoy learning diverse

knowledge from a wide range of fields, which they might not be familiar with, but

could inspire them to do something new and unique.

Fukuoka, Japan Hidetaka Arimura

Fig. 1 Relationship

between medical physics

and other academic fields.

Actually, there are a number

of other fields, which are not

shown in this figure
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Chapter 1

Introduction

Hidetaka Arimura

Radiation therapy can ideally maintain organ functions and reduce the physical

burden of patients compared with surgery, particularly elderly patients. Conse-

quently, radiation therapy has attracted rising attention, and this modality is con-

siderably important for developed countries that have been rapidly moving toward

an aging society, such as Japan, China, Korea, European Union countries, and the

United States of America. In Japan, the percentage of elderly people of 65 years old

and over was estimated to be around 26.5 % in 2011 (MIC 2015). Radiation therapy

can be greatly beneficial for many patients, especially elderly patients, whose

quality of life could be improved.

The primary aim of radiation therapy is to deliver as a high dose as possible to a

cancerous tumor, while causing as little damage as possible to normal tissues and

organs at risk (OAR), in order to reduce adverse effects (Dawson and Sharpe 2006;

Evans 2008). The OAR are critical organs whose radiation sensitivity may signif-

icantly influence radiation treatment planning (RTP) and/or the prescribed dose

(ICRU 1999). In order to achieve the primary aim of radiation therapy, high-

precision radiation therapy approaches have been developed, such as stereotactic

body radiation therapy (SBRT), intensity-modulated radiation therapy (IMRT),

adaptive radiotherapy (ART), real-time tumor-tracking radiotherapy (RTRT), and

image-guided radiation therapy (IGRT). In recent years, these advanced approaches

have led to outstanding outcomes with respect to the precision of radiation delivery.

As a result, high-precision radiation therapy has been reported to provide clinical

results that were comparable to surgery for some cancers (Onishi et al. 2011). In

these radiation therapies, novel methods of multidimensional image analysis are

used, including multimodalities, image transformation, region segmentation, pat-

tern recognition, radiomics, and so on. These methods play considerable roles in
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improving the accuracy of radiation therapy and assisting radiation oncology pro-

fessionals such as radiation oncologists, radiation technologists, and medical phys-

icists in their decision-making. Figure. 1.1 illustrates the “harmonic” collaboration

of radiation therapy with multidimensional image analysis.

This book is dedicated to image-based computer-assisted radiation therapy,

which requires diverse knowledge from many different fields such as imaging

technology, image processing, radiation physics, radiation measurement, image

registration, pattern recognition, machine learning, and radiomics. The radiation

therapy procedure consists of five steps: diagnosis, treatment planning, patient

setup, radiation treatment, and follow-up. The five steps of radiation therapy are

shown with several approaches relevant to image-based computer-assisted radia-

tion therapy below:

1. Diagnosing a cancer patient (computer-aided diagnosis, CAD)

2. Design of treatment plans (computer-assisted radiation treatment planning,

CARTP)

3. Patient positioning (image-guided patient positioning, IGPP)

4. Performing the radiation treatment (intelligent radiation treatment systems)

5. Follow-up (computerized prediction of treatment outcomes)

The first step is to diagnose a cancer patient. Radiation oncologists should

determine the treatment policies, e.g., curative treatment or palliative treatment,

based on reports from radiologists. CAD systems such as automated detection and

differentiation of lung cancer (Chap. 2, Suzuki) or breast cancer (Chap. 3,

Fig. 1.1 “Harmonic” collaborations of radiation therapy with multidimensional image analysis
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Nakayama) may be helpful for the diagnosis and decision-making of treatment

policies. Pathological CAD will be a significant tool for diagnostic pathology such

as cancer detection, grade differentiation, and the decision of treatment approaches

(Chap. 4, Yamaguchi). Recently, “radiomics” has emerged as an innovative area,

which can be applied to personized medicine based on image features (phenotypes)

extracted from several types of medical images (Lambin et al. 2012, Aerts et al.

2014). The radiomics has been studied to be applied to customizing radiation

treatment approaches for individual patients (Chap. 14, El Naqa).

The second step is to construct the treatment plans. Radiation oncologists should

estimate the regions of gross tumor volume (GTV), clinical target volume (CTV),

and the OAR, and then treatment planners should design the optimum plan by

changing the planning parameters so that the dose distributions for the tumor and

OAR can be maximized and minimized, respectively. The GTV is defined by the

gross demonstrable extent and location of a malignant growth (ICRU 1999). In

current clinical practices, the GTV regions are manually delineated by radiation

oncologists using treatment planning computed tomography (CT). The subjective

manual contouring of tumor regions is tedious and time-consuming, and the

reproducibility is relatively low, which could cause intra- and inter-variability of

tumor regions (van de Steene et al. 2002; El Naqa et al. 2007; Nakamura et al.

2008). Therefore, automated frameworks for segmentation of GTVs have been

developed to overcome these problems (Chap. 5, Arimura). Furthermore, compu-

tational approaches for determination of the CTV-to-PTV margins have been

studied (Chap. 5, Arimura).

The determination of treatment parameters (e.g., beam arrangements in SBRT

and IMRT) is a very demanding task for both inexperienced and experienced

treatment planners. This may result in intra- and inter-planner variabilities of

treatment plans. Computer-assisted radiation treatment planning can reduce intra-

and interobserver variability of target delineations (observer noise) and the subse-

quent intra- and interobserver variability of the treatment plans. Actually,

computer-assisted planning systems for SBRT could help treatment planners by

utilizing past similar cases that are stored in treatment planning databases with

knowledge and skills of treatment planners (Chap. 6, Magome). The IMRT plan-

ning approaches assist planners to automatically optimize dose distributions around

the PTVs except setting of initial parameters, but it is still on trial-and-error basis

(Chap. 8, Haryanto). Treatment procedures for particle beam therapy are similar to

those for the photon beam therapy, but beam range (penetration depth) should be

taken into account carefully in the particle beam therapy due to different physical

characteristics (Chap. 7, Mori).

The third step is the patient positioning. In this step, the radiation technologist

should manually position the patient as accurately as possible on the treatment

couch. Correcting patient setup errors is then performed using image registration

techniques. The image registration involves registering a moving image with a

reference image with respect to a common object between the two images. Digitally

reconstructed radiograph (DRR) images and planning CT images are generally used

as the reference images to aid the patient positioning. Electronic portal imaging
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device (EPID) and cone-beam CT (CBCT) images are employed as the moving

images at the treatment time. Past studies have revealed that these techniques are

effective in reducing setup errors (Ploquin et al. 2008; Wang et al. 2009). Several

techniques with the X-ray-based patient positioning have been utilized based on

digitally reconstructed radiograph, cone-beam computed tomography reconstruc-

tion, and patient registration (Chap. 9, Haga). Recently, a number of optical

imaging-based approaches have been researched and developed for estimation of

the intra-fractional patient motion without ionizing radiation (Kang et al. 2012;

Schaerer et al. 2012) (Chap. 10, Soufi).

The fourth step is to perform the radiation treatment (treatment execution). An

X-ray or charged particle beam is delivered to the planning target volume (PTV) in

the patient according to the treatment plan. However, it is difficult to deliver the

radiation to moving tumors such as lung or liver cancers. Pattern recognition

techniques, e.g., the detection of tumors and fiducial markers (e.g., gold markers),

are needed to minimizing the internal margin in these cases. For example, the

RTRT system employs pattern recognition techniques in order to track surrogate

tumors (actually gold markers) and switch the X-ray beam on and off (Shirato et al.

2000). The real-time tumor tracking can reduce the internal margin for the PTV,

which could result in sparing the healthy tissues near the tumor (Chap. 11,

Ishikawa). Furthermore, the visualization approaches of dose distributions during

the treatment time have been investigated to ensure the treatment quality in SBRT

(Chap. 12, Nakamoto). In the proton treatment room, a beam ON-LINE PET system

was constructed for dose-volume delivery-guided proton therapy by visualization

of activity distribution in proton irradiation (Chap. 13, Nishio).

Finally, the fifth step is the follow-up. In this step, the radiation oncologist

evaluates the treatment outcomes using multimodality imaging devices. Pattern

recognition techniques have also been applied during the follow-up to predict the

radiation therapy outcomes and normal tissue complications (Su et al. 2005; Kakar

et al. 2009; El Naqa et al. 2009; Jayasurya et al. 2010; Atsumi et al. 2012)

(Chap. 14, El Naqa).

The main requirements in radiation therapy from a medical physics point of view

are (1) high conformity and homogeneity of the dose distributions to the tumor

regions and (2) accurate tumor localization and patient positioning. To achieve

these requirements, radiation therapy researchers have dedicated their efforts to the

development of novel technologies such as conformal radiotherapy (Takahashi

1965), IMRT (Brahme 1988), RTRT (Shirato et al. 2000), and IGRT (Dawson

and Sharpe 2006; Evans 2008).

The five steps of radiation therapy are covered in this book by the following

chapters, each including content from dedicated authors as shown below:

1. Diagnosis of cancer patients

• Computer-aided detection of lung cancer (Chap. 2, Kenji Suzuki)

• Computer-aided detection and differentiation of breast cancer on mammo-

grams (Chap. 3, Ryohei Nakayama)

• Computer-aided differentiation for pathology images (Chap. 4, Masahiro

Yamaguchi)
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2. Construction of treatment plans

• Computer-assisted target volume determination (Chap. 5, Hidetaka Arimura)

• Computer-assisted treatment planning approaches for SBRT (Chap. 6, Taiki

Magome)

• Computer-assisted treatment planning approaches for carbon-ion beam ther-

apy (Chap. 7, Shinichiro Mori)

• Computer-assisted treatment planning approaches for IMRT (Chap. 8,

Freddy Haryanto)

3. Patient positioning

• X-ray image-based positioning (Chap. 9, Akihiro Haga)

• Surface-imaging-based patient positioning in radiation therapy (Chap. 10,

Mazen Soufi)

4. Performing of radiation treatments

• Tumor tracking approaches (Chap. 11, Masayori Ishikawa)

• Visualization of dose distributions for photon beam radiation therapy during

treatment delivery (Chap. 12, Takahiro Nakamoto)

• Visualization of dose distributions for proton (Chap. 13, Teiji Nishio)

5. Follow-up: Prediction of treatment outcomes

• Computerized prediction of treatment outcomes and radiomics analysis

(Chap. 14, Issam El Naqa)

Epoch-making innovations caused by a new type of researchers encourage

paradigm shifts to higher levels. They always make leaps or quantum jumps in

science. I believe that all the authors are this type of researchers. They have

collaborated in this book to open a new field of medical physics.

References

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J,

Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR,

Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by

noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. doi:10.

1038/ncomms5006

Atsumi K, Shioyama Y, Arimura H et al (2012) Esophageal stenosis associated with tumor

regression in radiation therapy for esophageal cancer: frequency and prediction. Int J Radiat

Oncol Biol Phys 82(5):1973–1980

Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques.

Radiother Oncol 12(2):129–140

Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations.

Lancet Oncol 7(10):848–858

El Naqa I, Yang D, Apte A et al (2007) Concurrent multimodality image segmentation by active

contours for radiotherapy treatment planning. Med Phys 34(2):4738–4749

1 Introduction 5

http://dx.doi.org/10.1007/978-981-10-2945-5_5
http://dx.doi.org/10.1007/978-981-10-2945-5_6
http://dx.doi.org/10.1007/978-981-10-2945-5_7
http://dx.doi.org/10.1007/978-981-10-2945-5_8
http://dx.doi.org/10.1007/978-981-10-2945-5_9
http://dx.doi.org/10.1007/978-981-10-2945-5_10
http://dx.doi.org/10.1007/978-981-10-2945-5_11
http://dx.doi.org/10.1007/978-981-10-2945-5_12
http://dx.doi.org/10.1007/978-981-10-2945-5_13
http://dx.doi.org/10.1007/978-981-10-2945-5_14
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1038/ncomms5006


El Naqa I, Bradley JD, Lindsay PE et al (2009) Predicting radiotherapy outcomes using statistical

learning techniques. Phys Med Biol 54(18):S9–S30

Evans PM (2008) Anatomical imaging for radiotherapy. Phys Med Biol 53(12):R151–R191

International Commission on Radiation Units & Measurements (ICRU) (1999) Prescribing,

Recording and Reporting Photon Beam Therapy, (Supplement to ICRU Report 50) ICRU

Report, vol 62. Bethesda, ICRU

Jayasurya K, Fung G, Yu S et al (2010) Comparison of Bayesian network and support vector

machine models for two-year survival prediction in lung cancer patients treated with radio-

therapy. Med Phys 37(4):1401–1407

Kakar M, Seierstad T, Røe K et al (2009) Artificial neural networks for prediction of response to

chemoradiation in HT29 xenografts. Int J Radiat Oncol Biol Phys 75(2):506–511

Kang HJ, Grelewicz Z, Wiersma RD (2012) Development of an automated region of interest

selection method for 3D surface monitoring of head motion. Med Phys 39(6):3270–3282

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM,

Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information

from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446

Ministry of Internal Affairs and Communications (MIC) (2015) http://www.stat.go.jp/data/jinsui/

pdf/201512.pdf

Nakamura K, Shioyama Y, Tokumaru S et al (2008) Variation of clinical target volume definition

among Japanese radiation oncologist in external beam radiotherapy for prostate cancer. Jpn J

Clin Oncol 38(4):275–280

Onishi H, Shirato H, Nagata Y et al (2011) Stereotactic body radiotherapy (SBRT) for operable

stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol

Biol Phys 81:1352–1358

Ploquin N, Rangel A, Dunscombe P (2008) Phantom evaluation of a commercially available three

modality image guided radiation therapy system. Med Phys 35(12):5303–5311

Schaerer J, Fassi A, Riboldi M et al (2012) Multi-dimensional respiratory motion tracking from

markerless optical surface imaging based on deformable mesh registration. Phys Med Biol

57:357–373

Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoro-

scopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys

48:435–442

Su M, Miften M, Whiddon C et al (2005) An artificial neural network for predicting the incidence

of radiation pneumonitis. Med Phys 32(2):318–325

Takahashi S (1965) Conformation radiotherapy rotation techniques as applied to radiography and

radiotherapy of cancer. Acta Radiol Suppl 242:1–142

van de Steene J, Linthout N, de Mey J, Vinh-Hung V, Claassens C, Noppen M, Bel A, Storme G

(2002) Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother

Oncol 62:37–49

Wang Z, Nelson JW, Yoo S et al (2009) Refinement of treatment setup and target localization

accuracy using three-dimensional cone-beam computed tomography for stereotactic body

radiotherapy. Int J Radiat Oncol Biol Phys 73(2):571–577

6 H. Arimura

http://www.stat.go.jp/data/jinsui/pdf/201512.pdf
http://www.stat.go.jp/data/jinsui/pdf/201512.pdf


Part I

Computerized Diagnosis for Cancer



Chapter 2

Computer-Aided Detection of Lung Cancer

Kenji Suzuki

Abstract As medical imaging technologies advance, a large number of medical

images are produced which physicians/radiologists must interpret. Consequently,

computer aids are becoming indispensable in physicians’ decision-making based on

medical images. Computer-aided diagnosis (CAD) has been investigated and

becomes an active research area in medical imaging. CAD is defined as detection

and/or diagnosis made by a radiologist/physician who takes into account the

computer output as a “second opinion.” In CAD research, detection of lung cancer

in thoracic imaging constitutes a major research area, because lung cancer is the

leading cause of cancer death worldwide, including the United States, Japan, and

other countries. In this chapter, CAD for the detection of lung cancer in thoracic

computed tomography (CT) is overviewed with emphasis on machine learning that

plays an essential role in CAD systems. Massive training artificial neural network

(MTANN) technology is one of the most promising machine learning techniques in

image analysis. The MTANNs have substantially improved the sensitivity and

specificity of CAD systems in detection and diagnosis of lung cancer. MTANN

CAD systems offer high performance in detection and diagnosis of lung cancer in

CT. Thus, MTANN CAD systems would be useful for improving the diagnostic

performance of radiologists/physicians in early detection of lung cancer.
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2.1 Introduction

2.1.1 CAD Field

Medical imaging has been indispensable in modern medicine since the discovery of

x-rays by Wilhelm C. R€ontgen in 1895. Medical imaging provides helpful infor-

mation on medical conditions of patients and clues to causes of their diseases and

symptoms. Medical imaging has unique advantages in the localization of lesions,

diseases, and/or causes of symptoms over other examinations such as blood tests.

As imaging technologies have been advancing, a large number of medical images

are produced which physicians/radiologists have to read and interpret. Thus, com-

puter aids have been strongly demanded by physicians and radiologists, and they

are becoming indispensable in physicians’ decision-making based on medical

images. Consequently, computer-aided detection and diagnosis (CAD) (Giger and

Suzuki 2007; Doi 2005; Doi 2007; Giger et al. 2008) have been an active research

area in medical imaging. CAD is defined as detection and/or diagnosis made by a

radiologist/physician who takes into account the computer output as a “second

opinion” (Doi 2005). CAD is often categorized into two major groups: computer-

aided detection (CADe) and computer-aided diagnosis (CADx). CADe focuses on a

detection task, i.e., detection (or localization) of lesions in medical images. CADx

focuses on a diagnosis (characterization) task, e.g., classification among different

lesion types and distinction between malignant and benign lesions.

The history of CAD started in 1955. A radiologist, Lee Lusted, mentioned the

potential use of digital computers (people at that time called ordinary computers

today as digital computers, as there were analog computers.) for large-scale data

problems in medicine in (Lusted 1955) in 1955. Notably, it was only 9 years after

the first general-purpose computer, ENIAC, was introduced in 1946. Becker et al.

developed an automated measurement of the cardiothoracic ratio in chest radio-

graphs in 1964 (Becker et al. 1964; Meyers et al. 1964). In 1967, the first study on

CADe of abnormalities in mammograms was published by Winsberg et al. (1967).

In 1973, Toriwaki et al. (1973) reported the first study on CADe of a focal

abnormality in chest radiographs, and Roellinger et al. (1973) reported the first

study on CADe of a heart abnormality in chest radiographs. In the mid-1980s,

investigators in the Kurt Rossmann Laboratories in the Department of Radiology at

the University of Chicago began studies on the development and evaluation of

CAD. Chan et al. (1987), Fujita et al. (1987), Giger et al. (1988), and Katsuragawa

et al. (1988) published a series of papers on CADe of microcalcifications in

mammography, CAD for vessel size measurement in angiography, CADe of lung

nodules in chest radiography, and CADe of interstitial lung disease in chest

radiography, respectively. In 1988, a venture company, R2 Technology (acquired

by Hologic), which obtained licenses for CAD technologies from the University of

Chicago, received approval for the first commercial CAD system for mammogra-

phy from the US Food and Drug Administration (FDA).
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2.1.2 Overview of CADe for Lung Cancer Detection

Lung cancer continues to rank as the leading cause of cancer death in the United

States and in other countries such as Japan. Some evidence suggests that early

detection of lung cancer may allow more timely therapeutic intervention and thus a

more favorable prognosis for the patient. Because CT is more sensitive than chest

radiography in the detection of small nodules (i.e., potential lung cancer) and of

lung carcinoma at an early stage (Kaneko et al. 1996; Sone et al. 1998; Henschke

et al. 1999; Miettinen and Henschke 2001), lung cancer screening programs were

conducted in the United States (Swensen et al. 2003; Henschke et al. 2004), Japan

(Kaneko et al. 1996; Sone et al. 1998), and other countries with low-dose helical CT

as the screening modality. Helical CT, however, generates a large number of

images that must be read by radiologists. This may lead to “information overload”

for the radiologists. Furthermore, radiologists may miss some cancers during

interpretation of CT images. Therefore, a CAD scheme for the detection of lung

nodules in low-dose CT images has been investigated as a useful tool for lung

cancer screening.

Many investigators have developed a number of methods for the automated

detection of lung nodules on CT scans (Suzuki 2012b). In 1994, Giger et al. (1994)

developed a CADe scheme for the detection of lung nodules in CT based on the

comparison of geometric features. They applied their CADe scheme to a database

of thick-slice diagnostic CT scans of eight patients with 47 nodules. They achieved

a sensitivity of 94 % with 1.25 false positives (FPs) per case. In 1999, Armato et al.

(1999, 2001) extended the method to include 3D feature analysis, a rule-based

scheme, and linear discriminant analysis (LDA) for classification. They tested their

CADe scheme with a database of thick-slice diagnostic CT scans of 43 patients with

171 nodules. They achieved a sensitivity of 70 % with 42.2 FPs per case in a leave-

one-out cross-validation test. Gurcan et al. (2002) employed a similar approach,

i.e., a rule-based scheme based on 2D and 3D features, followed by LDA for

classification. They achieved a sensitivity of 84 % with 74.4 FPs per case for a

database of thick-slice (mostly 5 mm) diagnostic CT scans of 34 patients with

63 nodules in a leave-one-out test. Lee et al. (2001) employed a simpler approach

which is a rule-based scheme based on 13 features for classification. They achieved

a sensitivity of 72 % with 30.6 FPs per case for a database of thick-slice (10 mm)

diagnostic CT scans of 20 patients with 98 nodules.

Suzuki et al. (2003a) developed a pixel-based machine learning technique called

a massive training artificial neural network (MTANN) for reduction of a single

source of FPs and a multiple MTANN scheme for reduction of multiple sources of

FPs that had not been removed by feature-based LDA. They achieved a sensitivity

of 80.3 % with 4.8 FPs per case for a database of thick-slice (10 mm) screening

low-dose CT (LDCT) scans of 63 patients with 71 nodules with solid, part-solid,

and nonsolid patterns, including 66 cancers in a validation test. This MTANN

approach did not require a large number of training cases: the MTANN was able

to be trained with ten positive and ten negative cases (Suzuki and Doi 2005),
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whereas feature-based classifiers generally require 400–800 training cases (Chan

et al. 1999; Sahiner et al. 2008). Arimura et al. (2004) employed a rule-based

scheme followed by LDA or by an MTANN (Suzuki et al. 2003a) for classification.

They tested their scheme with a database of 106 thick-slice (10 mm) screening

LDCT scans of 73 patients with 109 cancers that had solid, part-solid, and nonsolid

patterns, and they achieved a sensitivity of 83 % with 5.8 FPs per case in a

validation test (or a leave-one-patient-out test for LDA). Farag et al. (2005)

developed a template modeling approach that uses level sets for classification.

They achieved a sensitivity of 93.3 % with an FP rate of 3.4 % for a database of

thin-slice (2.5 mm) screening LDCT scans of 16 patients with 119 nodules and

34 normal patients. Ge et al. (2005) incorporated 3D gradient field descriptors and

ellipsoid features in LDA for classification. They employed Wilks’ lambda step-

wise feature selection for selecting features before the LDA classification. They

achieved a sensitivity of 80 % with 14.7 FPs per case for a database of 82 thin-slice

(1.0–2.5 mm) CT scans of 56 patients with 116 solid nodules in a leave-one-patient-

out test. Matsumoto et al. (2006) employed LDA with eight features for classifica-

tion. They achieved a sensitivity of 90 % with 64.1 FPs per case for a database of

thick-slice (5 or 7 mm) diagnostic CT scans of five patients (four of which used

contrast media) with 50 nodules in a leave-one-out test.

Yuan et al. (2006) tested a commercially available CADe system (ImageChecker

CT, LN-1000, by R2 Technology, Sunnyvale, CA; acquired by Hologic). They

achieved a sensitivity of 73 % with 3.2 FPs per case for a database of thin-slice

(1.25 mm) CT scans of 150 patients with 628 nodules in an independent test. Pu

et al. (2008) developed a scoring method based on the similarity distance of medial

axis-like shapes for classification. They achieved a sensitivity of 81.5 % with 6.5

FPs per case for a database of thin-slice (2.5 mm) screening CT scans of 52 patients

with 184 nodules, including 16 nonsolid nodules. Retico et al. (2008) used a voxel-

based neural approach (i.e., a class of the MTANN approach) with pixel values in a

subvolume as input for classification. They obtained sensitivities of 80–85 % with

10–13 FPs per case for a database of thin-slice (1 mm) screening CT scans of

39 patients with 102 nodules. Ye et al. (2009) used a rule-based scheme followed by

a weighted SVM for classification. They achieved a sensitivity of 90.2 % with 8.2

FPs per case for a database of thin-slice (1 mm) screening CT scans of 54 patients

with 118 nodules including 17 nonsolid nodules in an independent test. Golosio

et al. (2009) used a fixed-topology ANN for classification, and they evaluated their

CADe scheme with a publicly available database from the Lung Image Database

Consortium (LIDC) (Armato et al. 2004). They achieved a sensitivity of 79 % with

4 FPs per case for a database of thin-slice (1.5–3.0 mm) CT scans of 83 patients

with 148 nodules that one radiologist detected from an LIDC database in an

independent test.

Murphy et al. (2009) used a k-nearest neighbor classifier with features selected

from 135 features for classification. They achieved a sensitivity of 80 with 4.2 FPs

per case for a large database of thin-slice screening CT scans of 813 patients with

1525 nodules in an independent test. Tan et al. (2011) developed a feature-selective

classifier based on a genetic algorithm and ANNs for classification. They achieved

12 K. Suzuki



a sensitivity of 87.5 % with 4 FPs per case for a database of thin-slice CT scans of

125 patients with 80 nodules that four radiologists agreed from the LIDC database

in an independent test. Messay et al. (2010) developed a sequential forward

selection process for selecting the optimum features for LDA and quadratic dis-

criminant analysis (QDA). They obtained a sensitivity of 83 % with 3 FPs per case

for a database of thin-slice CT scans of 84 patients with 143 nodules from the LIDC

database in a sevenfold cross-validation test. Riccardi et al. (2011) used a heuristic

approach based on geometric features, followed by an SVM for classification. They

achieved a sensitivity of 71 % with 6.5 FPs per case for a database of thin-slice CT

scans of 154 patients with 117 nodules that four radiologists agreed on from the

LIDC database in a twofold cross-validation test.

Thus, various approaches have been proposed for CADe schemes for lung

nodules in CT. Sensitivities for detection of lung nodules in CT range from 70 to

95 %, with FPs from a few to 70 per case. Major sources of FPs are various-sized

lung vessels. Major sources of false negatives are ground-glass nodules, nodules

attached to vessels, and nodules attached to the lung wall (i.e., juxtapleural nod-

ules). Ground-glass nodules are difficult to detect, because they are subtle, of

low-contrast, and have ill-defined boundaries. The MTANN approach was able to

enhance and thus detect ground-glass nodules (Suzuki et al. 2003a). The cause of

false negatives due to vessel-attached nodules and juxtapleural nodules is

mis-segmentation and thus inaccurate feature calculation. Because the MTANN

approach does not require segmentation or feature calculation, it was able to detect

such nodules (Suzuki et al. 2003a).

2.1.3 Overview of CADx for Lung Cancer Diagnosis

Although CT has been shown to be sensitive to the detection of lung nodules, it may

be difficult for radiologists to distinguish between benign and malignant nodules on

LDCT images. In a screening program with LDCT in New York, 88 % (206/233) of

suspicious lesions were found to be benign on follow-up examinations (Henschke

et al. 1999). In a screening program in Japan, only 83 (10 %) among 819 scans with

suspicious lesions were diagnosed to be cancer cases (Li et al. 2002). According to

findings at the Mayo Clinic, 2792 (98.6 %) of 2832 nodules detected by a

multidetector CT were benign, and 40 (1.4 %) nodules were malignant (Swensen

et al. 2003). Thus, a large number of benign nodules were found with CT; follow-up

examinations such as high-resolution CT (HRCT) and/or biopsy were performed on

these patients. Therefore, CADx schemes for distinction between benign and

malignant nodules in LDCT would be useful for reducing the number of “unnec-

essary” follow-up examinations.

A number of researchers developed CADx schemes for distinguishing malignant

nodules from benign nodules automatically and/or determining the likelihood of

malignancy for the detected nodules. The performance of the schemes was gener-

ally evaluated by using receiver operating characteristic (ROC) analysis (Metz
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1986), because this task is a two-class classification. The area under the ROC curve

(AUC) (Hanley and Mcneil 1983) was often used as a performance index.

In 1999, McNitt-Gray et al. (1999) developed a classification scheme based on

LDA for distinction between malignant and benign nodules in HRCT. They

achieved a correct classification rate of 90.3 % for a database of 17 malignant

and 14 benign nodules. Matsuki et al. (2002) used an ANN with subjective features

determined by radiologists for classification between 99 malignant and 56 benign

nodules in HRCT and achieved an AUC value of 0.951. Aoyama et al. (2002) used

LDA for distinction between malignant and benign nodules in thick-slice (10 mm)

screening LDCT. They achieved an AUC value of 0.846 for a database of

73 patients with 76 primary cancers and 342 patients with 413 benign nodules.

Mori et al. (2005) developed a classification scheme for distinction between

malignant and benign nodules in contrast-enhanced (CE) CT by using LDA with

three features (i.e., attenuation, shape index, and curvedness value). They used a

database of thin-slice (2 mm) CE-CT scans of 35 malignant and 27 benign nodules

for testing their CADx scheme. They achieved AUC values of 0.91 and 1.0 with

non-CE-CT and CE-CT, respectively, in a leave-one-out test.

Shah et al. (2005) employed different classifiers such as logistic regression and

QDA with features selected from a group of 31 by using stepwise feature selection

based on the Akaike information criterion. Their scheme with logistic regression

achieved an AUC value of 0.92 in the distinction between 19 malignant and

16 benign nodules in thin-slice CE-CT. Suzuki et al. (2005a) developed a pixel-

based machine-learning technique called a multiple MTANN scheme for the

classification task. They achieved an AUC value of 0.88 for thick-slice screening

LDCT scans of 73 patients with 76 primary cancers and 342 patients with

413 benign nodules. Iwano et al. (2008) achieved a sensitivity of 76.9 % and a

specificity of 80 % with their scheme based on LDA with two features in their

evaluation of HRCT images of 52 malignant and 55 benign nodules. Way et al.

(2009) incorporated nodule surface features into their classification based on LDA

or an SVM, and they achieved an AUC value of 0.857 in the classification of

124 malignant and 132 benign nodules in 152 patients. Chen et al. (Chen et al.

2010) employed an ANN ensemble to classify 19 malignant and 13 benign nodules,

and they achieved an AUC value of 0.915. Lee et al. (2010) developed a two-step

supervised learning scheme combining a genetic algorithm with a random subspace

method, and they achieved an AUC value of 0.889 in the classification between

62 malignant and 63 benign nodules.

Thus, various approaches to CADx schemes have been proposed. The database

size varied in different studies; CT scans in the databases included screening

LDCT, standard diagnostic CT, and HRCT. This chapter does not review CADx

due to the limitation of the space, but focuses on CADe.
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2.2 Generic Architectures of CADe Schemes

2.2.1 Generic Architecture

A flowchart for a generic CADe scheme of lesions in medical images is shown in

Fig. 2.1. A CADe scheme generally consists of seven major steps: (1) segmentation

of the organ(s) of interest, (2) enhancement of lesions, (3) detection of lesion

candidates from the segmented organ, (4) segmentation of the detected lesion

candidates, (5) feature analysis of the segmented lesion candidates, (6) classification

of the lesion candidates by using a classifier with features, and (7) reduction of

false-positive (FP) detections. Segmentation of the organ(s) of interest is the first

necessary step that aims to make the rest of the steps focus on the organ(s). The

development of the detection of lesion candidates generally aims to obtain a high

sensitivity level, because we cannot recover a sensitivity loss in this step in the later

steps. In the next step, the detected lesion candidates are segmented, and connected-

component labeling (He et al. 2009; Suzuki et al. 2003b) is performed for the

identification of each segmented candidate as an individual isolated object. Pattern

features such as gray-level-based features, texture features, and morphologic fea-

tures are extracted from the segmented candidates. Feature selection (Xu and

Suzuki 2014) is generally performed to select a subset of “effective” features

from an entire set of features to remove redundant or unnecessary features. Finally,

Original Images

Segmentation of Organ(s)

Detection of Lesion Candidates

Feature Analysis of Segmented Candidates

Detection of Lesions

Reduction of False Positives

Enhancement of Lesions

Classification of Candidates with Features

Segmentation of Detected Candidates

Fig. 2.1 Flowchart for a

generic CADe scheme for

detection of lesions in

medical images
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the detected lesion candidates are classified into lesions or non-lesions by using a

classifier with the extracted features. The development of the classification step

aims to remove as many non-lesions (i.e., FPs) as possible, while minimizing the

removal of lesions (i.e., true-positive detections).

2.2.2 Enhancement of Lesions in CADe

Among the steps in CADe schemes, thresholding-based methods such as multiple

thresholding (Xu et al. 1997; Aoyama et al. 2002; Bae et al. 2002; Giger et al. 1988)

are often used for detection of lesion candidates in CT. With such methods, the

specificity can generally be low, because normal structures of gray levels similar to

those of lesions could be detected erroneously as lesions. To obtain a high speci-

ficity as well as sensitivity, some researchers employ a filter for enhancement of

lesions before the lesion candidate detection step. Such a filter aims at enhancement

of lesions and sometimes the suppression of noise. The filter enhances objects

similar to a model employed in the filter. For example, a blob enhancement filter

based on the Hessian matrix enhances sphere-like objects (Frangi et al. 1999). A

difference image technique employs a filter designed for the enhancement of

nodules and the suppression of noise in chest radiographs (Xu et al. 1997).

Actual lesions, however, are not simple enough to be modeled accurately by a

simple equation in many cases. For example, a lung nodule is generally modeled as

a solid sphere, but there are nodules of various shapes and with internal inhomo-

geneities such as spiculated opacity and ground-glass opacity. Thus, conventional

filters often fail to enhance actual lesions. Moreover, such filters enhance any

objects similar to a model employed in the filter. For example, a blob enhancement

filter enhances not only spherical solid nodules but also any spherical parts of

objects in the lungs such as vessel crossing, vessel branching, and a part of a vessel,

which leads to a low specificity. Therefore, methods which can enhance actual

lesions accurately (as opposed to enhancing a simple model) are demanded for

improvement of the sensitivity and specificity of the lesion candidate detection and

thus of the entire CAD scheme. To improve the performance of CADe schemes,

investigators sometimes employ the step of enhancement of lesions after the step of

the segmentation of the organ(s) of interest. This step aims to improve the sensi-

tivity for detection of lesion candidates in the subsequent step. It often helps

improve the specificity as well.

2.2.3 False-Positive Reduction

A machine learning technique (Suzuki 2013) is generally used in the step of

classification of lesion candidates. The machine learning technique is trained with

sets of input features and correct class labels. This class of machine learning is
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referred to as feature-based machine learning or simply as a classifier. The task of

the machine learning here is to determine “optimal” boundaries for separating

classes in the multidimensional feature space which is formed by the input features

(Duda et al. 2001). Feature-based machine-learning algorithms include linear

discriminant analysis (LDA) (Fukunaga 1990), quadratic discriminant analysis

(QDA) (Fukunaga 1990), multilayer perceptron (one of the most popular artificial

neural network (ANN) models) (Rumelhart et al. 1986), support vector machines

(SVMs) (Vapnik 1995), and random forests. The structure of an ANN may be

designed by using an automated design method such as sensitivity analysis (Suzuki

et al. 2001; Suzuki 2004).

Investigators often employ an additional step of the reduction of FPs at the end in

a CADe scheme. The FP reduction step aims to improve the specificity of the CADe

scheme. Reduction of FPs is very important, because a large number of FPs could

adversely affect the clinical application of CADe. A large number of FPs are likely

to confound the radiologist’s task of image interpretation and thus lower his/her

efficiency. In addition, radiologists may lose their confidence in CADe as a

useful tool.

Recently, as available computational power has increased dramatically, pixel-/

patch-based machine learning (Suzuki 2012a) emerged in medical image

processing/analysis which uses pixel values in images directly, instead of features

calculated from segmented regions, as input information; thus, feature calculation

or segmentation is not required. Pixel-/patch-based machine learning has been used

in the classification of the detected lesion candidates in CADe and CADx schemes

(Suzuki et al. 2003a, 2005a, b, 2006b, 2008b, 2010a; Arimura et al. 2004).

2.3 Supervised “Lesion Enhancement” MTANN Filter

We believe that enhancing actual lesions requires some form of “learning from

examples”; thus, machine learning plays an essential role in this task. To enhance

actual lesions accurately, we developed a supervised filter based on a machine-

learning technique called a massive training artificial neural network (MTANN)

(Suzuki et al. 2003a) filter in a CADe scheme for the detection of lung nodules in

CT. By extension of “neural filters” (Suzuki et al. 2002a, b) and “neural edge

enhancers” (Suzuki et al. 2003c, 2004b), which are ANN-based (Rumelhart et al.

1986) supervised nonlinear image-processing techniques, MTANNs (Suzuki et al.

2003a) have been developed for accommodating the task of distinguishing a

specific opacity from other opacities in medical images. MTANNs have been

applied for the reduction of false positives (FPs) in CADe of lung nodules in

low-dose CT (Arimura et al. 2004; Suzuki et al. 2003a) and chest radiography

(Suzuki et al. 2005b), for distinction between benign and malignant lung nodules in

CT (Suzuki et al. 2005a), for enhancement of lung nodules in CT (Suzuki 2009), for

suppression of ribs in chest radiographs (Suzuki et al. 2004a, 2006a; Chen et al.
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2016; Chen and Suzuki 2013, 2014), and for reduction of FPs in computerized

detection of nodules in CT colonography (Suzuki et al. 2006b, 2008b, 2010a, b).

2.3.1 Architecture of an MTANN Filter

The architecture of an MTANN supervised filter is shown in Fig. 2.2. An MTANN

filter consists of a supervised regression model such as a linear-output ANN

regression model (Suzuki et al. 2003c) which is a regression-type ANN capable

of operating on pixel data directly. The MTANN filter is trained with input CT

images and the corresponding “teaching” images that contain a map for the

“likelihood of being lesions.” The pixel values of the input images are linearly

scaled such that –1000 Hounsfield units (HUs) correspond to 0 and 1000 HUs

correspond to 1. The input to the MTANN filter consists of pixel values in a

subregion/volume (image patch), VS, extracted from an input image. The output

of the MTANN filter is a continuous scalar value, which is associated with the

center pixel in the subregion/volume (image patch) and is represented by

O x; y; zð Þ ¼ NN ~Ix,y, z
� �

, ð2:1Þ

where

~Ix,y, z ¼ I x� i; y� j; z� kð Þji; j; k2VSf g ð2:2Þ

is the input vector to the MTANN; x, y, and z are the coordinate indices; NN (�) is
the output of a supervised regression model (e.g., linear-output ANN regression

Regression model (e.g., Linear-
output ANN regression, Support 
vector regression) 

Sub-
region/volume
(image patch)

Output pixel

Input vector

or

Fig. 2.2 Architecture of an MTANN consisting of a linear-output ANN regression model with

multiple layers, with subregion/volume input and single-pixel output
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model); i, j, and k are the coordinate indices in Vs; and I(x,y,z) is the normalized

voxel value of the input isotropic volume. The linear-output ANN

regression employs a linear function,fL(u)¼ a � u+ 0.5, instead of a sigmoid func-

tion, fS(u)¼ 1/{1 + exp (�u)}, as the activation function of the output layer unit

because the characteristics and performance of an ANN are improved significantly

with a linear function when applied to the continuous mapping of values in image

processing (Suzuki et al. 2003c). Note that the activation function in the hidden

layers is still a sigmoid function. For processing of the entire image, the scanning of

an input CT image with the MTANN is performed pixel by pixel, as illustrated in

Fig. 2.3b.

2.3.2 Training of an MTANN Filter

For the enhancement of lesions and suppression of non-lesions in CT images, the

teaching image T(x,y,z) contains a map of the “likelihood of being lesions,” as

illustrated in Fig. 2.3a. To create the teaching image, we first segment lesions

manually for obtaining a binary image with 1 being lesion pixels and 0 being

non-lesion pixels. Then, Gaussian smoothing is applied to the binary image for

smoothing down the edges of the segmented lesions, because the likelihood of

being lesions should gradually be smaller as the distance from the boundary of the

lesion decreases.

The MTANN filter involves training with a large number of pairs of subregions/

volumes (image patches) and pixels/voxels. For enrichment of the training samples,

a training image, VT, extracted from the input CT image is divided pixel by pixel

into a large number of subregions/volumes (image patches). Note that close sub-

regions/volumes overlap each other. Single pixels are extracted from the

corresponding teaching image as teaching values. The MTANN filter is massively

trained by use of each of a large number of input subregions/volumes (image

patches) together with each of the corresponding teaching single pixels/voxels,

hence the term “massive training ANN.” The error to be minimized by training of

the MTANN filter is given by

E ¼ 1

P

X
c

X
x,y, z2VT

Tc x; y; zð Þ � Oc

�
x; y; z

�� �2
, ð2:3Þ

where c is a training case number and P is the number of total training voxels in VT.

The MTANN filter is trained by a linear-output backpropagation algorithm (Suzuki

et al. 1995, 2003c) where the generalized delta rule (Rumelhart et al. 1986) is

applied to the linear-output ANN architecture (Suzuki et al. 2003c), which was

derived for the linear-output ANN model by using the same method used for

deriving the original BP algorithm (Rumelhart et al. 1986) (see Refs. (Suzuki

et al. 1995, 2003c, ) for the details and the property of the linear-output BP
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algorithm). After training, the MTANN filter is expected to output the highest value

when a lesion is located at the center of the subregion of the MTANN filter, a lower

value as the distance from the subregion center increases, and zero when the input

subregion contains a non-lesion.

MTANN

CT image

“Teaching” image 
containing “likelihood 

of being a lesion”

Input CT image

a

b

Trained MTANN

New CT image

Input CT image Output image

Fig. 2.3 Training and application of an MTANN filter for enhancement of lesions. (a) Training of

an MTANN filter. (b) Application of the trained MTANN filter to a new CT image
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In the computer vision field, a technology called deep learning (Lecun et al.

2015; Mnih et al. 2015) or deep convolutional neural networks (Krizhevsky et al.

2012) obtained enthusiastic attentions from the research communities and indus-

tries. The deep convolutional neural networks (Krizhevsky et al. 2012) were able to

classify objects in images 20 % more correctly than did other existing classifiers

that had been studied in the field in the past three decades. The MTANN approach is

similar to deep convolutional neural networks, as both use image patches as input,

but there are differences: (1) the output of the MTANN is images, whereas that of

deep learning is class labels (e.g., cancer or non-cancer); (2) the MTANN can do

image processing and pattern enhancement, but deep learning cannot; (3) the

MTANN requires a very small number of training samples, but deep learning

requires a million of samples; and (4) the MTANN has simpler architecture and

training and thus easy to train.

2.3.3 Experiments

2.3.3.1 Database of Lung Nodules in CT

To test the performance of the MTANN filter, we applied it to our CT database

consisting of 69 lung cancers in 69 patients (Li et al. 2002). The scans used for this

study were acquired with a low-dose protocol of 120 kVp, 25 mA or 50 mA, 10 mm

collimation, and 10 mm reconstruction interval at a helical pitch of two. The

reconstructed CT images were 512 x 512 pixels in size with a section thickness

of 10 mm. The 69 CT scans consisted of 2052 sections (slices). All cancers were

confirmed either by biopsy or surgically. The locations of the cancers were deter-

mined by an expert chest radiologist.

2.3.3.2 Enhancement of Nodules in the Lungs in CT

To limit processing area to the lungs, we segmented the lung regions in a CT image

by the use of thresholding based on Otsu’s threshold value determination (Otsu

1979). Then, we applied a “rolling-ball” technique (Hanson 1992), which is a

mathematical morphology operator, along the outlines of the extracted lung regions

to include a nodule attached to the pleura in the segmented lung regions (Armato

et al., 2001).

To enhance lung nodules in CT images, we trained an MTANN filter with

13 lung nodules in a training database which was different from the testing database

and the corresponding “teaching” images that contained maps for the “likelihood of

being nodules,” as illustrated in Fig. 2.3a. To obtain the training regions, VT, we

applied a mathematical morphology opening operator to the lung nodules that were

segmented manually (i.e., binary regions) such that the training regions sufficiently

covered nodules and surrounding normal structures. The number of hidden units
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was selected to be 20 by use of a method for designing the structure of an ANN

(Suzuki et al. 2001; Suzuki 2004). The method is a sensitivity-based pruning

method, i.e., the sensitivity to the training error was calculated when a certain

unit was removed experimentally, and the unit with the smallest training error was

removed. Removing the redundant hidden units and retraining for recovering the

potential loss due to the removal were performed alternately, resulting in a reduced

structure where redundant units were removed. The size of the input subregion, RS,

was 9 by 9 pixels, which was determined experimentally in our previous studies,

i.e., the highest performance was obtained with this size (Arimura et al. 2004;

Suzuki and Doi 2005; Suzuki et al. 2003a); thus, the number of input units in the

MTANN filter is 81. The slope of the linear function, a, was 0.01. With the

parameters above, training of the MTANN filter was performed by 1,000,000

iterations. To test the performance, we applied the trained MTANN filter to the

entire lungs. We applied thresholding to the output images of the trained MTANN

filter to detect nodule candidates. We compared the results of nodule candidate

detection with and without the MTANN filter.

2.3.3.3 A CAD Scheme Incorporating the MTANN Lesion

Enhancement

A previously reported CAD scheme (Arimura et al. 2004) for detection of lung

nodules in thoracic CT is shown in Fig. 2.4a. The CAD scheme employs a standard

approach which consists of lung segmentation, difference image technique for

enhancing nodules (Xu et al. 1997), multiple thresholding for detection of nodule

candidates, segmentation of the detected nodule candidates, feature analysis of the

segmented nodule candidates, rule-based scheme for reduction of FPs, and classi-

fication based on linear discriminant analysis (LDA) for the final FP reduction. The

difference image technique uses two different filters: a matched filter is used for

enhancing nodule-like objects in CT images, and a ring-average filter is used for

suppressing nodule-like objects. We incorporated the MTANN lesion enhancement

filter in our CAD scheme to improve the overall performance. A schematic diagram

of our MTAN-based CAD scheme is shown in Fig. 2.4b. In the MTANN-based

CAD scheme, nodule candidates are detected (localized) by the MTANN lesion

enhancement filter followed by thresholding. The detected nodule candidates gen-

erally include true positives and mostly FPs.

2.3.4 Results

2.3.4.1 Enhancement of Nodules in the Lungs on CT Images

We applied the trained MTANN filter to original CT images. The results of

enhancement of nodules in CT images by the trained MTANN filter (Suzuki et al.
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2008a) are shown in Fig. 2.5. The MTANN filter enhances nodules and suppresses

most of the normal structures in CT images. Although some medium-sized vessels

remain in the output image, the nodule with spiculation is enhanced well. We

applied thresholding with a single threshold value (65 % of the maximum gray

scale) to the output images of the trained MTANN filter. We compared the

MTANN nodule enhancement filter with a sphere enhancement filter (Li et al.

2003) based on Hessian matrix (Frangi et al. 1999), as shown in Fig. 2.6. There are a

smaller number of candidates in the MTANN-based images, whereas there are

many nodule candidates in binary images obtained by using the sphere enhance-

ment filter. The MTANN filter followed by thresholding identified 97 % (67/69) of

cancers with 6.7 FPs per section, which is a substantial improvement over the

performance (96 % sensitivity with 19.3 FPs/section) of our previously reported

CAD scheme without MTANNs.

2.4 False-Positive Reduction with MTANNs

Reduction of FPs is very important, because a large number of FPs could adversely

affect the clinical application of CADe. A large number of FPs are likely to

confound the radiologist’s task of image interpretation and thus lower his/her

MTANN for classification 

MTANN “lesion 
enhancement” filter

Thresholding

Lung segmentation

CT image
a b

Detection of lesions

Lung segmentation

Segmentation of candidates

Feature analysis of candidates

Rule-based scheme

Classifier

Detection of lesions

CT image

Detection of nodule candidates

Fig. 2.4 Comparison of a standard CAD scheme with an MTANN-based CAD scheme. (a)

Schematic diagram of a standard CAD scheme. (b) Schematic diagram of an MTANN-based

CAD scheme
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Fig. 2.5 Lesion enhancement by using a supervised MTANN lesion enhancement filter. (a)

Original axial CT slice with a lung nodule (indicated by an arrow). (b) Output image of the

trained MTANN nodule enhancement filter

Fig. 2.6 Comparison of nodule enhancement by the conventional sphere enhancement filter based

on the Hessian matrix and our supervised MTANN “nodule” enhancement filter
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efficiency. In addition, radiologists may lose their confidence in CADe as a useful

tool. Suzuki et al. developed an FP reduction technique based on MTANNs (Suzuki

et al. 2003a) for reduction of FPs in a CADe scheme for lung nodules in CT. The

MTANNs were trained to enhance lung nodules and suppress various types of FPs

(i.e., non-nodules) such as lung vessels.

2.4.1 A. Database of Low-Dose CT Images

The database used in this study consisted of 101 noninfused, low-dose thoracic

helical CT (LDCT) scans acquired from 71 different patients who participated

voluntarily in a lung cancer screening program between 1996 and 1999 in Nagano,

Japan.3,18,7 The CT examinations were performed on a mobile CT scanner

(CT-W950SR; Hitachi Medical, Tokyo, Japan). The scans used for this study

were acquired with a low-dose protocol of 120 kVp, 25 mA (54 scans) or 50 mA

(47 scans), 10 mm collimation, and 10 mm reconstruction interval at a helical pitch

of two.18 The pixel size was 0.586 mm for 83 scans and 0.684 mm for 18 scans.

Each reconstructed CT section (slice) had an image matrix size of 512� 512 pixels.

We used 38 of 101 LDCT scans which were acquired from 31 patients as a training

set for our CAD scheme. The 38 scans consisted of 1057 sections and contained

50 nodules, including 38 “missed” nodules that represented biopsy-confirmed lung

cancers and were not reported or misreported during the initial clinical interpreta-

tion.7 The remaining 12 nodules in the scans were classified as “confirmed benign”

(n ¼ 8), “suspected benign” (n ¼ 3), or “suspected malignant” (n ¼ 1). The

confirmed benign nodules were determined by biopsy or by follow-up over a period

of 2 years. The suspected benign nodules were determined by follow-up less than

2 years. The suspected malignant nodule was determined on the basis of results of

follow-up diagnostic CT studies; no biopsy results were available. We used 63 of

101 LDCT scans which were acquired from 63 patients as a test set. The 63 scans

consisted of 1765 sections and contained 71 nodules, including 66 primary cancers

that were determined by biopsy and five confirmed benign nodules that were

determined by biopsy or by follow-up over a period of 2 years. The scans included

23 scans from the same 23 patients as those in the training set, which were acquired

at a different time (the interval was about 1 year or 2 years). Thus, the training set

consisted of 38 LDCT scans including 50 nodules, and the test set consisted of

63 LDCT scans including 71 confirmed nodules.

The nodule size was determined by an experienced chest radiologist and ranged

from 4 to 27 mm. The mean diameter of the 50 nodules in the training set was

12.7 � 6.1 mm, and that of the 71 nodules in the test set was 13.5 � 4.7 mm. In the

training set, 38 % of nodules were attached to the pleura, 22 % of nodules were

attached to vessels, and 10 % of nodules were in the hilum. As to the test set, 30 %

of nodules were attached to the pleura, 34 % of nodules were attached to vessels,

2 Computer-Aided Detection of Lung Cancer 25



and 7 % of nodules were in the hilum. Three radiologists determined the nodules in

the training set as three categories such as pure ground-glass opacity (pure GGO;

40 % of nodules), mixed GGO (28 %), and solid nodule (32 %); the nodules in the

test set were determined as pure GGO (24 %), mixed GGO (30 %), and solid nodule

(46 %).

2.4.2 Scheme for Lung Nodule Detection in Low-Dose CT

Technical details of our current scheme have been published previously (Armato

et al., 1999, Armato et al., 2001). With our current CAD scheme, the multiple gray-

level thresholding technique initially identified 20 743 nodule candidates in 1057

sections of LDCT images in the training set. Forty-five of 50 nodules were correctly

detected. Then a rule-based classifier followed by a series of two linear discriminant

classifiers was applied for removal of some false positives, thus yielding a detection

of 40 (80.0 %) of 50 nodules (from 22 patients) together with 1078 (1.02 per

section) false positives. The sizes of the 10 false-negative nodules ranged from

5 mm to 25 mm, and the mean diameter was 13.2�6.1 mm. In this study, we used

all 50 nodules, the locations of which were identified by the radiologist, and all

1078 false positives generated by our CAD scheme in the training set, for investi-

gating the characteristics of the MTANN and training the MTANN. The use of

radiologist-extracted true nodules with computer-generated false positives was

intended to anticipate future improvements in the nodule detection sensitivity of

our CAD scheme. When a nodule was present in more than one section, the section

that included the largest nodule was used. When we applied our current CAD

scheme to the test set, a sensitivity of 81.7 % (58 of 71 nodules) with 0.98 false

positives per section (1726/1765) was achieved. We used the 58 true positives

(nodules from 54 patients) and 1726 false positives (non-nodules) for testing the

MTANN in a validation test.

2.4.3 MTANN for FP Reduction

2.4.3.1 Architecture

The architecture and training method of the MTANN for FP reduction are shown in

Fig. 2.7. When the task is the distinction between nodules and non-nodules, the

output would be interpreted as the “likelihood of being a nodule.” In order to

distinguish between nodules and various types of non-nodules, we extended the

capability of the single MTANN and developed a multiple MTANN (multi-

MTANN). The architecture of a mixture of expert MTANNs (multi-MTANN) is

shown in Fig. 2.8. The multi-MTANN consists of plural MTANNs that are arranged

in parallel. Each MTANN is trained by using a different type of non-nodule, but
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with the same nodules. Each MTANN acts as an expert for the distinction between

nodules and a specific type of non-nodule, e.g., MTANN No. 1 is trained to

distinguish nodules from false positives caused by medium-sized vessels;

MTANN No. 2 is trained to distinguish nodules from soft-tissue-opacity false

Fig. 2.7 Architecture and training of an MTANN for classification of candidates into a nodule or a

non-nodule. A teaching image for a nodule contains a Gaussian distribution at the center of the
image, whereas that for a non-nodule contains zero (i.e., it is completely dark)

Nodule
(ROI) 

Distinction
between

nodules and
non-nodules 

MTANN 

Scoring
with s1

Scoring
with s2

Scoring
with sN

Integration ANN 

No. 1 

No. 2 

 

Region for
evaluation RE 

No.N

Fig. 2.8 Architecture of a mixture of expert MTANNs consisting of multiple MTANNs combined

by the integration ANN
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positives caused by the diaphragm; and so on. A scoring method is applied to the

output of each MTANN, and then thresholding of the score from each MTANN is

performed for distinction between nodules and the specific type of non-nodule. The

output of each MTANN is then integrated by the integration ANN or the logical

AND operation. If each MTANN can eliminate the specific type of non-nodule with

which the MTANN is trained, then the multi-MTANN will be able to reduce a

larger number of false positives than does a single MTANN.

2.4.3.2 Training of MTANN

For the enhancement of nodules and suppression of non-nodules in CT images, the

teaching volume contains a 3D distribution of values that represent the “likelihood

of being a nodule.” We used a 3D Gaussian distribution with standard deviation σT,
the peak of which is located at the center of the nodule, as a teaching volume for a

nodule and a volume that contains all zeros for a non-nodule, represented by

T x; y; zð Þ ¼
1ffiffiffiffiffi
2π

p
σT

exp � x2 þ y2 þ z2ð Þ
2σT2

� �
if an actual nodule

0 otherwise

8<
: : ð2:4Þ

The MTANN involves training with a large number of subvolume-voxel pairs; we

call it a massive-subvolumes training scheme. A training volume VT extracted from

the input CT volume is divided voxel by voxel into a large number of overlapping

subvolumes (image patch). Single voxels are extracted from the corresponding

teaching volume as teaching values. The 3D MTANN is massively trained by use

of each of a large number of the input subvolumes together with each of the

corresponding teaching single voxels. A training set of pairs of a subvolume and

a teaching voxel is represented by

~I x;y; zð Þ;T�x;y; z�jx;y; z2VT

� �¼ ~I1 ;T1

� �
;
�
~I2 ;T2

�
; . . . ;

�
~Ip ;Tp

�
; . . . ;

�
~INT

;TNT

�� �
,

ð2:5Þ

where VT is a training volume, p is a voxel number in VT, Tp is a teaching value in

the teaching volume that corresponds to the center voxel in~Ip, and NT is the number

of voxels in VT. In order to learn the relationship between the input image and the

teacher image, the MTANN is trained with a set of input images and the teacher

images by adjusting the weights between layers. The error to be minimized by

training is defined in Eq. (2.3). After training, the MTANN is expected to output the

highest value when a nodule is located at the center of the subvolume of the

MTANN, a lower value as the distance from the subvolume center increases, and

zero when the input subvolume contains a non-nodule.
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2.4.3.3 Scoring of the MTANN Output for Testing

When an original image for the sth nodule candidate is entered into the nth trained

MTANN for testing, the output image for the sth nodule candidate is obtained by

scanning of the original image with the trained MTANN. The distinction between a

nodule and a non-nodule is determined by use of a score defined from the output

image of the nth trained MTANN, described as follows:

S ¼
X

x, y, z2VE

f G σ; x; y; zð Þ � O x; y; zð Þ, ð2:6Þ

where

f G σ; x; y; zð Þ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � x2 þ y2 þ z2ð Þ

2σ2

� �
ð2:7Þ

is a 3D Gaussian weighting function with standard deviation σ with its center

corresponding to the center of the volume for evaluation, VE; VE is the volume

for evaluation that is sufficient to cover a nodule or a non-nodule; andO(x,y,z) is the
output of the trained MTANN. The use of the 3D Gaussian weighting function

allows us to combine the individual voxel-based responses (outputs) of a trained

MTANN as a single score. The score obtained by the above equations represents the

weighted sum of the estimates for the likelihood that the volume (nodule candidate)

contains an actual nodule near the center, i.e., a higher score would indicate a

nodule and a lower score would indicate a non-nodule. We use the same 3D

Gaussian weighting function as is used in the nodule teaching volumes.

Thresholding is performed on the scores to distinguish between nodules and

non-nodules.

2.4.4 Results

2.4.4.1 MTANN Performance

An imaging expert selected ten representative non-nodules from each of the nine

groups as the training samples for each MTANN; thus, the multi-MTANN

employed nine MTANNs. The same ten nodules were used as training samples

for all nine MTANNs. Therefore, ten nodules and 90 non-nodules were used for

training the multi-MTANN. The single MTANN trained with medium-sized vessels

(with relatively high contrast) was used as MTANN No.1. Non-nodules for the

training of MTANN No. 1 to No. 5 ranged from medium-sized vessels to small

(peripheral) vessels. Non-nodules for the training of MTANN No. 6 to No. 9 were

large vessels in the hilum, relatively large vessels with some opacities, soft-tissue

opacities caused by the partial volume effect between peripheral vessels and the
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diaphragm, and some abnormal opacities (focal interstitial opacities), respectively.

Each MTANN was trained in the same way as a single MTANN.

The trained MTANN was applied to 1068 false-positive nodule candidates not

used for training. The results for non-training cases are shown in Fig. 2.9. In the

output image of the MTANN for nodules, the nodules are represented by light

distributions near the center as expected, whereas the output images for false

positives (non-nodules) are relatively dark, as shown in Fig. 2.10.

The scoring method was applied to the output images of the individually

trained MTANNs. The free-response receiver operating characteristic (FROC)

curve expresses a classification rate as a function of the number of false

positives per section at a specific operating point. With the single MTANN

(MTANN No.1), we can achieve a classification rate of 100 % (40/40) with 0.36

false positives per section, as shown in Fig. 2.11. With the single MTANN

(MTANN No.1), the false-positive rate of our current scheme could be

improved from 1.02 to 0.36 false positives per section, while maintaining the

current sensitivity. Note that 38 out of 50 nodules used in this study were

missed by radiologists. When the multi-MTANN employed nine MTANNs,

91 % (902/988) of false positives (non-nodules) were removed without elimi-

nating any true positives, i.e., we can achieve a classification rate of 100 %

(40/40) with 0.08 false positives per section.

Fig. 2.9 Actual nodules (a) and the output images of the trained MTANN (b). Nodules are

enhanced and represented by light distributions in the output images
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2.4.4.2 Performance of a CAD Scheme with MTANN Lesion Enhancer

The MTANN lesion enhancement filter followed by thresholding identified 97 %

(67/69) of cancers with 6.7 FPs per section. The six classification-MTANNs were

applied to the nodule candidates (true positives and FPs) for the classification of the

candidates into nodules or non-nodules. The mixture of expert MTANNs was able

to remove 60 % (8172/13,688) or 93 % (12,667/13,688) of non-nodules (FPs) with a
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loss of 1 true positive or 10 true positives, respectively. Thus, our MTANN-based

CAD scheme achieved a 96 % (66/69) or 84 % (57/69) sensitivity with 2.7 (5516/

2052) or 0.5 (1021/2052) FPs per section, respectively, as shown in Table 2.1. The

remaining true-positive nodules included a ground-glass opacity, cancer

overlapping vessels, and a cancer touching the pleura. In contrast, the difference

image technique followed by multiple thresholding in the previously reported CAD

scheme detected 96 % (66/69) of cancers with 19.3 FPs per section. Thus, the

MTANN lesion enhancement filter was effective for improving the sensitivity and

specificity of a CAD scheme. The feature analysis and the rule-based scheme

removed FPs further and achieved 9.3 FPs per section. Finally, with LDA, the

previously reported CAD scheme yielded a sensitivity of 84 % (57/69) with 1.4

(2873/2052) FPs per section (the difference between the specificity of the previ-

ously reported CAD scheme and that of our new MTANN-based CAD scheme at

the 84 % sensitivity level was statistically significant (P < 0.05) (Edwards et al.

2002)). Table 2.1 summarizes the comparison of the performance of the previously

reported CAD scheme with that of the MTANN-based CAD scheme at different

stages. Therefore, MTANNs were effective for improving the sensitivity and

specificity of a CAD scheme.

2.4.5 Results for CAD for Thin-Slice CT

Recent technology of multidetector-row CT (MDCT) can provide thinner CT

slices; and thus, quasi-isotropic or isotropic volume data are available. Conse-

quently, nodules are more continuous in MDCT volumes. To process 3D MDCT

volumes effectively, the development of a 3D technique for the reduction of FPs

is necessary. Therefore, we developed a CAD scheme for nodule detection for

thin-slice CT, which consisted of the detection of initial nodule candidates

based on a selective enhancement filter (Li et al. 2003) and classification of

the nodule candidates into nodules and non-nodules based on a rule-based

Table 2.1 Comparison of the performance of the previously reported CAD scheme with that of

our MTANN-based CAD scheme at different stages

Previously reported CAD scheme MTANN-based CAD scheme

Nodule candidate detection

by multiple thresholding

96 % sensitivity

with 19.3

FPs/section

Nodule candidate

detection by

MTANN

97 % sensitivity

with 6.7

FPs/section

Future analysis and rule-

based scheme

96 % sensitivity

with 9.3

FPs/section

Classification by

MTANN

96 % sensitivity

with 2.7

FPs/section

Classification by LDA 84 % sensitivity

with 1.4

FPs/section

84 % sensitivity

with 0.5

FPs/section
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scheme with image features. For handling MDCT slices with different slice

thickness, we converted original CT data to isotropic volumes. We applied the

selective enhancement filter to the isotropic volumes for enhancing nodules and

suppressing vessels. Thresholding followed by the rule-based scheme was

applied to the filtered volumes to classify candidates into nodules and

non-nodules.

Our database contained 62 nodules in 32 scans acquired from 32 patients with an

MDCT system with a four-detector scanner. The MDCT scan consisted of an

average of 186 thin-slice CT images (slice thickness ranged from 1.0 to 2.5 mm).

Each CT slice had an image matrix size of 512 � 512 pixels. Nodule sizes ranged

from 5 to 30 mm. All nodules were confirmed by consensus between two chest

radiologists.

With our initial CAD scheme, a sensitivity of 97 % (60/62 nodules) together

with an average of 15 (476/32) false positives per patient was achieved. The

trained multi-3D MTANN was applied for reduction of the FPs. Each 3D

MTANN in the multi-3D MTANN was able to enhance nodules and suppress

non-nodules representing the particular non-nodule type with which the 3D

MTANN was trained, namely, various nodules in the output volumes of the 3D

MTANN were represented by light distributions, whereas the eight different types

of non-nodules were almost dark. Although the distribution of scores for nodules

and non-nodules obtained by use of the scoring method overlapped, each 3D

MTANN was able to distinguish nodules from each type of non-nodule; therefore,

the multi-3D MTANN was able to remove many non-nodules. The performance

of the multi-3D MTANN was evaluated by FROC analysis. Results indicated that

66 % (315/476) of FPs were removed with a loss of only two true positives by the

multi-3D MTANN, as shown in Fig. 2.12. Thus, the FP rate of our CAD scheme

was improved to 5.0 (161/32) FPs per patient at an overall sensitivity of 94 %

(58/62 nodules).

2.5 Conclusion

In this chapter, CADe of lung cancer in thoracic CT is overviewed. In CADe

schemes, machine learning plays an essential role, because accurate detection of

lung cancer thus classification between lung cancer and other normal structures

requires learning from image data/examples. Among various machine learning

techniques, image-based machine learning such as the MTANNs is one of the

most promising techniques in CADe schemes. There are two types of MTANNs

used in CADe schemes: a supervised lesion enhancer and an FP reducer. The

MTANN lesion enhancer improves the sensitivity of a CADe scheme substantially,

whereas the MTANN FP reducer improves the specificity substantially. With the

MTANN technology, both sensitivity and specificity of a CADe scheme were

improved substantially, and the MTANN CADe scheme for lung nodule detection

in thin-slice CT achieved 94 % sensitivity with 5.0 FPs per patient.
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Recently, convolutional neural networks and deep learning gained attentions

from the computer vision community as well as medical image analysis commu-

nity, because they outperformed feature-based machine learning (or simply classi-

fiers) that had been dominant in the past three decades, in various computer vision

competitions. The same observation was seen in the MTANN applications to

CADe, namely, MTANNs were able to remove “difficult” FPs that had not been

removed by feature-based machine learning, and the performance of CADe

schemes was substantially improved by using the MTANNs. Thus, CADe schemes

with the MTANN technology offer high performance in the detection and diagnosis

of lesions in medical images, such as lung nodules in CT. I expect MTANN CAD

schemes will be useful for improving the diagnostic performance of radiologists/

physicians in early detection of lung cancer and, thus, potentially reducing the

mortality of lung cancer.
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Chapter 3

Computer-Aided Detection

and Differentiation of Breast Cancer

on Mammograms

Ryohei Nakayama

Abstract Mammography is the most sensitive method available for early detection

of breast cancer. However, approximately 10–30 % of breast cancer incidents are

not detected using mammograms because of the size and location of a lesion,

density of the breast tissue, and interpretation ability of radiologists. It is also

difficult for radiologists to determine whether a detected lesion is malignant or

benign. The positive predictive value of mammography is typically between 15 and

30 %, which is rather low. To overcome these problems, many investigators have

developed computer-aided diagnosis (CAD) schemes for identifying regions of

potential lesions in mammograms and for evaluating the malignancy of a detected

lesion. CAD is defined as a diagnosis performed by a radiologist who considers the

computer output as a second opinion. The purpose of CAD is to improve the

diagnostic accuracy and consistency of image interpretation by radiologists. In

this chapter, we provide a brief summary of some works, development examples,

and potential usefulness of CAD in clinical practice.

Keywords Computer-aided diagnosis • Mammogram • Breast cancer • Detection

aid • Differentiation aid

3.1 Introduction

Breast cancer has the highest incidence rate in females (World Health Organization

2006). As with cancer of other organs, early detection and early treatment can help

to reduce the rates of breast cancer mortality. Mammography is the most sensitive

method available for early detection of breast cancer. Therefore, it is widely used

for breast cancer screening in many developed countries (Dowling et al. 2010;

Smith et al. 2014). When interpreting mammograms, it is important to detect
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radiographic indications of breast cancer such as clustered microcalcifications,

masses, architectural distortions, and bilateral asymmetries (Kopans 2006). How-

ever, approximately 10–30 % of breast cancer incidents are not detected using

mammograms because of the size and location of a lesion, density of the breast

tissue, and interpretation ability of radiologists (Bird et al. 1992; Burhenne et al.

1994; Kolb et al. 2002). It is also difficult for radiologists to determine whether a

detected lesion is malignant or benign. The positive predictive value of mammog-

raphy, i.e., the ratio of the number of found breast cancers to the number of biopsies,

is typically between 15 and 30 % (Adler and Helvie 1992; Kopans 1992), which is

rather low. Unnecessary biopsies are physical and psychological burden for

patients.

To overcome these problems, many investigators have developed computer-

aided diagnosis (CAD) schemes for identifying regions of potential lesions in

mammograms and for evaluating the malignancy of a detected lesion over the

past two decades. The former is frequently called the computer-aided detection

(CADe) scheme as a detection aid, whereas the latter is called the computer-aided

differentiation (CADx) scheme as a differentiation aid. CAD is defined as a

diagnosis performed by a radiologist who considers the computer output as a

second opinion (Doi 2005, 2007). The purpose of CAD is to improve the diagnostic

accuracy and consistency of image interpretation by radiologists. In this chapter, we

provide a brief summary of some works, development examples, and potential

usefulness of CADe and CADx in clinical practice.

3.2 CADe Schemes

Many investigators studied CADe schemes for clustered microcalcifications,

masses, architectural distortions, and bilateral asymmetries. Most of them have

been focused on clustered microcalcifications and masses, which are more common

radiographic indications. These CADe schemes consist of two main steps: lesion

image enhancement and false-positive (FP) reduction.

3.2.1 CADe Schemes for Clustered Microcalcifications

Conventional methods used in CADe schemes for clustered microcalcifications are

based on image enhancement and the segmentation of regions of interest (ROIs).

Chan et al. (1988) developed a difference-image approach using a combination of a

matched filter and a box-rim filter. They removed the structured background of a

mammogram by subtracting a signal-suppressed image from a signal-enhanced

image. Romualdo et al. (2013) proposed restoration methodology to enhance

mammographic images by improving contrast features and suppressing noise

simultaneously. Using the Anscombe transformation, a signal-dependent quantum
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noise was converted into an approximately signal-independent Gaussian additive

noise. In the Anscombe domain, noise was filtered using an adaptive Wiener filter.

A filter based on the modulation transfer function of the imaging system was

employed for image enhancement. Gulsrud and Husøy (2001) proposed a texture

feature extraction method based on a single filter optimized with respect to the

Fisher criterion. The texture features were employed to differentiate an ROI with

clustered microcalcifications from that with normal tissue. Bocchi et al. (2004) used

a fractal model to describe the background of a mammogram. They showed that the

fractal model coupled with matched filtering could enhance microcalcification

images with respect to the background. Yoshida et al. (1996) multiplied every

scale by a weight factor and then reconstructed the enhanced images of microcal-

cifications by applying the inverse transform for a discrete wavelet transform. The

weights were determined through supervised learning, using a set of training cases.

As other approaches, many CADe schemes based on machine learning for

detecting and classifying microcalcifications were reported by investigators.

Cheng et al. (2004) proposed an approach based on fuzzy logic and scale-space

techniques. A mammogram was fuzzified using fuzzy entropy principle and the

fuzzy set theory, and then scale-space and Laplacian-of-Gaussian filter techniques

were applied to detect the locations of microcalcifications. They showed that fuzzy

logic systems can detect microcalcifications accurately even in mammograms of

very dense breasts. Lee and Chen (1996) showed that in the wavelet analysis, the

multiresolution information related to the contextual information, which was

extracted from the Gaussian Markov random field, provided a useful technique

for detecting microcalcifications. Zhang and Gao (2012) proposed a novel frame-

work using twin support vector machine (SVM). Microcalcification images were

enhanced using an artifact removal filter and a high-pass filter. Subspace learning

algorithms were embedded into this framework for subspace selection of each

image block to be handled. A twin SVM classifier was employed to distinguish

the blocks with microcalcifications from other blocks. Hernandez-Cisneros and

Terashima-Marin (2006) proposed a procedure for classifying clustered microcal-

cifications in mammograms using the sequential difference of Gaussian filters and

three evolutionary artificial neural networks (ANNs).

Some studies reported that CADe-assisted reading in screening mammography

increases sensitivity, but decreases specificity. A decrease in specificity causes an

increase of the recall rate. Therefore, CADe schemes which detect only clustered

microcalcifications with high likelihood of malignancy have been developed in

recent years.

3.2.2 CADe Schemes for Masses

The mass detection and the identification of the margin of mass using mammo-

grams are difficult processes for radiologists. Two types of CADe schemes for
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masses have been proposed: schemes for detecting masses and schemes for

detecting and segmenting them.

As one of the studies aimed at only detection, Herredsvela et al. (2005) proposed

the detection process using morphological hierarchical watersheds. A mammogram

image was simplified using a reconstructive open/close alternating sequential filter

while the object shapes and edges were maintained. Then the regional maxima of

the simplified image were extracted as internal markers for the hierarchical water-

shed transform. Rojas-Domı́nguez and Nandi (2008) developed an enhancement

algorithm that improved the image contrast based on local statistical measures of

mammograms. Mass candidate regions were segmented through thresholding at

multiple levels, and objective features were determined. A region-ranking system

identified the candidate with the highest likelihood of abnormality based on the

objective features. Sakellaropoulos et al. (2006) showed the usefulness of the

wavelet-based feature analysis for identifying spiculated and circumscribed masses

in dense breast regions. Dense parenchyma was first labeled using Gaussian mix-

ture modeling. Orientation features were extracted from large-scale and small-scale

subimages obtained using the wavelet decomposition. The logistic regression

analysis was employed to differentiate spiculated and circumscribed masses from

normal dense parenchyma. Oliver et al. (2006) reported that mass candidate regions

were detected using a deformable template matching approach, in which a template

was constructed using the eigenimages of masses. An algorithm adapted from the

eigenface approach was then used to reduce detected FP regions. Li et al. (2015)

developed a bilateral image analysis scheme for reducing FP regions during the

detection of masses in dense mammograms. A matching cost was defined to

quantify the credibility of the corresponding region in a pair of bilateral mammo-

grams. The similarity measurement was employed to distinguish masses from

normal tissues in a pair of bilateral regions based on global and local image

appearances.

As one of the studies aimed at both detection and segmentation, Wei et al. (2005)

combined the gradient field analysis with the gray-level information to identify

mass candidates. The morphological and spatial gray-level-dependent texture fea-

tures were extracted for each candidate. Linear discriminant analysis classifiers

were employed to differentiate masses from normal tissues. Eltonsy et al. (2007)

proposed a technique based on the concentric layers surrounding a focal area with

suspicious morphological characteristics and low relative incidence in the breast

region. The mammographic regions with a high concentration of the concentric

layers with a progressively lower average intensity were assumed mass candidates.

Petrick et al. (1996) detected masses automatically by applying a Gaussian–

Laplacian edge detector to an image, whose regions of potential masses were

enhanced using an adoptive density-weighted contrast enhancement filter. Fauci

et al. (2004) proposed a detection method of ROIs with masses using a supervised

neural network. Some objective features related to the geometrical information and

the shape parameters were determined in each ROI. A supervised neural network

using objective features differentiated ROIs with masses from those with normal

tissue. Yin et al. (2003) presented a method for robustly located mass areas even in
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noisy mammograms using the so-called intelligent mesh. Varela et al. (2007)

applied an iris filter at different scales to enhance mass regions. Mass candidate

regions were segmented using an adaptive threshold. Mass regions were character-

ized using a neural network classifier based on the iris filter output, gray level,

texture, and contour-related and morphological features. Abdel-Dayem and

El-Sakka (2005) proposed a detection/segmentation method based on the optimal

threshold determined by minimizing the fuzzy entropy. Moreover, they employed a

block-based performance criterion; thus, radiologists could compare segmented

mass regions using a computer.

As with clustered microcalcifications, CADe schemes focused on masses with

high likelihood of malignancy only have been developed in recent years.

3.2.3 CADe Schemes for Architectural Distortions

Most CADe schemes are focused on clustered microcalcifications and masses,

which are detected easily than architectural distortions (Burrell et al. 2001; Bird

et al. 1992). Using even commercial CADe systems, the sensitivities of architec-

tural distortions were from 21 to 38 % (Baker et al. 2003). Therefore, a high-

performance CADe scheme for architectural distortions has been desired.

Matsubara et al. (2015) developed an automated method for the direction

analysis of linear structures. The direction of the linear structures in each ROI

was defined by a direction filter and a background filter, which determined one of

eight directions. The concentration and the isotropic indexes were evaluated using

the determined direction of the linear structures to detect architectural distortion

candidates. Karssemeijer and Te-Brake (1996) proposed a method based on the

statistical analysis of the map of pixel orientations using a multiscale approach.

Line-based orientations were evaluated from the output values of three-directional,

second-order, and Gaussian derivative operators at each scale. A classifier with the

output of these operators was employed to detect stellate patterns such as architec-

tural distortions. Guo et al. (2005) investigated a detection method based on SVM

with the Hausdorff dimension, which characterized the texture feature. When

compared to radial basis function neural networks, they showed more accurate

classification results produced using the SVM in distinguishing architectural dis-

tortion abnormality from normal breast parenchyma. Rangayyan et al. (2010)

presented a detection method using Gabor filters, phase portrait analysis, fractal

analysis, and texture analysis. Using this method, initial architectural distortion

candidates were detected in prior mammograms of interval cancer and in normal

control cases. Tourassi et al. (2006) investigated the application of the fractal

analysis to detection of architectural distortions. The fractal dimension of mammo-

graphic ROIs was calculated using the circular average power spectrum technique.

They showed that the average fractal dimension of normal ROIs was statistically

significantly higher than that of ROIs with architectural distortions. Yoshikawa

et al. (2014) detected the mammary gland structures using an adaptive Gabor filter.
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The adaptive Gabor filter consisted of three Gabor filters, which were manufactured

by changing the combination of parameters. A concentrated region, such as an

architectural distortion, was enhanced based on the detected mammary gland.

In the described studies, the sensitivities of architectural distortions were

approximately 70–90 %, which were lower than those of clustered microcalci-

fications and masses. The improvement of the detection accuracy has been desired

to apply a CADe scheme for architectural distortions to clinical practice.

3.2.4 CADe Schemes for Bilateral Asymmetries

Although bilateral asymmetry is not a common radiographic indication like clus-

tered microcalcifications and masses, its detection is important in mammography.

This is because bilateral asymmetry may be the only clue to breast cancer when

clustered microcalcifications, masses, and architectural distortions are not visible

(Sickles 2011). Bilateral asymmetry can be caused by physiological processes or

projection artifacts. Therefore, radiologists have to diagnose the cause of bilateral

asymmetry. However, it can be overlooked or misinterpreted even by experienced

radiologists (Majid et al. 2003; Burrell et al. 2001; Venkatesan et al. 2009).

Although a CADe scheme for bilateral asymmetry is desired, a limited number

of studies were conducted. Ferrari et al. (2001) proposed a procedure based on the

detection of linear directional components using a multiresolution representation

through Gabor wavelets. The filter responses for different scales and orientations

were analyzed using the Karhunen–Loeve transform to select the principal compo-

nents. Rose diagrams computed from the phase images and statistical measures

computed thereof were used for quantitative and qualitative analyses of the oriented

patterns. Rangayyan et al. (2007) analyzed bilateral asymmetry in mammograms by

combining the directional information, morphological measures, and geometric

moments related to the density distributions. The difference of the rose diagrams

was obtained using the directional data of the aligned left and right breasts. The

directional features in the difference of the rose diagrams were employed to identify

the changes caused by breast cancer. Tzikopoulos et al. (2011) presented a fully

automated segmentation scheme based on breast density estimation. SVMs with

some features, such as a fractal dimension-related feature for breast density cate-

gorization, classified bilateral asymmetry areas. Wang et al. (2010, 2011) devel-

oped a method for detecting asymmetry of the mammographic tissue density

represented by the related feature differences from bilateral images. A genetic

algorithm was applied to select a set of optimal features from 20 features and

build an ANN for distinguishing between the positive and negative cases.

In described studies, sensitivity and specificity of bilateral asymmetry are

insufficient. We hope that the detection accuracy will be improved in further

studies.
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3.3 Example of CADe Scheme

3.3.1 Summary

The detection performances of clustered microcalcifications in the CADe schemes

based on the wavelet transform are relatively higher than those in other methods

without implementing the wavelet transform (Yoshida et al. 1994, 1996; Clarke

et al. 1994; Qian et al. 1994, 1995; Laine et al. 1994, 1995). The results indicate that

the multiresolution analysis on the wavelet transform is useful for detecting

microcalcifications with various sizes. However, using most of the CADe schemes

based on the wavelet transform, the shape of microcalcifications is not analyzed in

detail. In this section, we provide a novel filter bank based on the concept of the

Hessian matrix for classifying nodular and linear structures. Then we attempt to

detect ROIs with clustered microcalcifications using the nodular features

(N features) and the nodular and linear features (NL features) obtained through

this filter bank.

3.3.2 Materials

Our database consists of 1200 standard-view mammograms obtained from

300 patients in the DDSM (Digital Database for Screening Mammography, Uni-

versity of South Florida) (Heath et al. 1998). In these mammograms, the total

number of clustered microcalcifications is 610 (239 malignant lesions and

371 benign lesions). All mammograms were digitized to a pixel size of

0.0435 mm � 0.0435 mm in a 12-bit gray scale.

3.3.3 Methods

3.3.3.1 Overall Scheme for Detecting Clustered Microcalcifications

Figure 3.1 shows the schematics of the method for detecting ROIs with clustered

microcalcifications in mammograms. First, the mammogram images were

decomposed into several subimages at different scales from 1 to 4 using a novel

filter bank. These subimages were horizontal, vertical, and diagonal subimages for

the second difference. The subimages for nodular component (NC) and the

subimages for nodular and linear component (NLC) were obtained using the

analysis of the Hessian matrix consisted of the subimages for the second difference.

ROIs with a size of 5 mm � 5 mm were then selected automatically from the

mammogram images in increments of 1 mm, so that one ROI would overlap with

the adjacent ROIs. In each ROI, eight features were determined from the subimages
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for NC at scales from 1 to 4 and the subimages for NLC at scales from 1 to 4. The

Bayes discriminant function with these eight features was employed for

distinguishing abnormal ROIs with clustered microcalcifications from two different

types of normal ROIs without clustered microcalcifications. The region connecting

the ROIs classified as abnormal was considered to be the region with potential

clustered microcalcifications.

3.3.3.2 Filter Bank for Detecting NC and NLC

1. Hessian matrix classifying nodular and linear structures

For the distinction of clustered microcalcifications from normal tissues in mam-

mograms, both NCs, such as microcalcifications, and LCs, such as blood vessels

and mammary ducts, are important to be detected. To detect these components, we

can employ the second derivative (Shimizu et al. 1994, 1995). The values of the

second derivatives for nodular structure in all directions are negative. However, the

value of the second derivative for the linear structure is zero along the direction of

the axis of the linear structure, whereas it is negative along the direction perpen-

dicular to the axis of the linear structure. Therefore, filters based on the second

derivatives can be used for the detection or enhancement of nodular and linear

structures. On the other hand, the minimal and maximal values of the second

derivatives in all directions can be calculated using small eigenvalue λ1 and large

eigenvalue λ2 of the Hessian matrix, because the second derivative of function f(x,
y) in arbitrary direction θ is given by

Fig. 3.1 Schematics of the

method for detecting ROIs

with clustered

microcalcifications in

mammograms
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Therefore, the following formulas indicate the conditions that must be satisfied

by two eigenvalues λ1 and λ2 for nodular and linear structures, respectively:

For a nodular structure: λ1ffi λ2< 0.

For a linear structure: λ1< 0 , λ2ffi 0.

2. Filter bank for detecting NC and NLC

Figure 3.2 shows the filter bank based on the concept of the Hessian matrix for

classifying nodular and linear structures. To obtain each element of the Hessian

matrix using this filter bank, high-pass filter HH(z), high-pass filter FH(z), high-pass
filter HH(z)FH(z), and smoothing filter HL(z)FL(z) at scale j are given by

HH zð Þ ¼ 1=2 �zj þ z�j
� �

,

FH zð Þ ¼ 1=2 zj � z�j
� �

,

HH zð ÞFH zð Þ ¼ 1=4 �z2j þ 2� z�2j
� �

,

HL zð ÞFL zð Þ ¼ 1=4 z2j þ 2þ z�2j
� �

:

By applying the smoothing filter HL(z)FL(z) to original image S0f, smoothed

subimage S1f at the next scale, i.e., a scale of 1, is obtained. Horizontal subimage

WH
f is obtained by applying high-pass filter HH(z)FH(z) at vertical direction,

whereas vertical subimage WV
f is obtained by applying high-pass filter HH(z)

FH(z) at horizontal direction. Diagonal subimage WD
f is obtained by applying

high-pass filter HH(z) at vertical direction followed by high-pass filter HH(z) at

horizontal direction.

In the filter bank shown in Fig. 3.2, NCj(x, y) (the subimage for NC at scale j)
was defined by the absolute value of large eigenvalue λ2 of the Hessian matrix at

scale j. Here, if λ2> 0, the pixels were zero because the eigenvalues for the nodular

structure tend to become negative. NLCj(x, y) (the subimage for NLC at the scale j)
was defined by the absolute value of small eigenvalue λ1 of the Hessian matrix at

the scale j. Here, if λ1> 0, the pixels were zero.
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3.3.3.3 Extraction of the Features for Detecting Clustered

Microcalcifications

We determined the eight features for distinguishing abnormal ROIs with clustered

microcalcifications from two different types of normal ROIs without clustered

microcalcifications (normal ROIs with blood vessels and normal ROIs without

blood vessels). These eight features were extracted from the subimages for NC at

scales from 1 to 4 and the subimages for NLC at scales from 1 to 4. Figure 3.3

shows the subimages for NC and for NLC, which were obtained from an abnormal

ROI with clustered microcalcifications, normal ROI with blood vessels, and normal

ROI without blood vessels. As shown in the subimages for NC, some pixel values

for abnormal ROI were higher than those for two normal ROIs. As shown in the

subimages for NLC, some pixel values for normal ROI without blood vessels were

lower than those for abnormal ROI and normal ROI with blood vessels. The N

features at each scale from 1 to 4 were determined using the average value of the

pixel values higher than 97 % of the cumulative histograms of the subimage for NC

at each scale from 1 to 4. The NL features at each scale from 1 to 4 were also

determined using the average value of the pixel values higher than 97 % of the

cumulative histograms of the subimage for NLC at each scale from 1 to 4.

3.3.3.4 Detection of ROIs with Clustered Microcalcifications

To detect clustered microcalcifications, we employed the Bayes discriminant func-

tion (Duda et al. 2000) for distinguishing three classes ωi (i¼ 1, 2, 3). Classes ω1,

ω2, and ω3 corresponded to abnormal ROI with clustered microcalcifications,

normal ROI with blood vessels, and normal ROI without blood vessels, respec-

tively. We divided our database into a training set and a test set. Each set included

Fig. 3.2 Filter bank based on the concept of the Hessian matrix for classifying nodular and linear

structures
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600 mammograms obtained from 150 patients. We then trained the Bayes discrim-

inant function using three different types of ROIs selected from the training set. The

studied ROIs were 300 abnormal ROIs with clustered microcalcifications, 300 nor-

mal ROIs with blood vessels, and 300 normal ROIs without blood vessels. The

normal ROIs were randomly selected from normal mammograms without clustered

microcalcifications. In each of these three classes, the N and NL feature vector x at

scales from 1 to 4 which were determined from each ROI were used for calculating

mean vectormi and covariance matrix Vi. Mean vectormi and covariance matrix Vi

are defined as

mi ¼ 1

ni

X
x2Χi

x,

Vi ¼ 1

ni

X
x2Χi

x�mið Þ x�mið Þt:

Here, ni and Χi are the number of patterns and the pattern set in class ωi,

respectively. The Bayes discriminant function for distinguishing three classes

ωi (i¼ 1, 2, 3) is given by

Fig. 3.3 Subimages for NC and for NLC, which were obtained from an abnormal ROI with

clustered microcalcifications, normal ROI with blood vessel, and normal ROI without blood vessel
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gi xð Þ ¼ �1

2
x�mið ÞtV�1

i x�mið Þ � 1

2
log Vij j,

where |∙| is the determinant. Then we then selected the ROIs at intervals of

approximately 1 mm in the test set. To distinguish the three types of ROIs, the

eight features determined from the selected ROIs were inputted to the Bayes

discriminant function as feature vector x. Bayes discriminant function gi(x) out-
putted three values indicating the likelihood of each class. The class yielding the

largest output value was considered as the result of the distinction of the three types

of ROIs. Regions connecting the ROIs, which were classified as abnormal, were

considered as regions with potential clustered microcalcifications.

3.3.3.5 Evaluation of the Detection Performance

A free-response receiver operating characteristic (FROC) curve (Metz 1989) is

usually used to summarize the detection performance of a CADe scheme quantita-

tively. An FROC curve is a plot of the true-positive (TP) fraction achieved by a

computerized scheme with respect to the average number of FPs per image varied

over the continuum of a given threshold. In our case, the FROC curve is not easy to

be calculated because the Bayes discriminant function output three values indicat-

ing the likelihood of each class. Therefore, first, we multiplied output value g1(x),
indicating the likelihood of an ROI with clustered microcalcifications, by a coeffi-

cient before comparing g1(x), g2(x), and g3(x). Next, the ROI was considered

abnormal when g1(x) was the highest value among the three output values. When

the center of the region connecting the ROIs, which were classified as abnormal,

was within a true cluster identified by an experienced radiologist, this region was

considered “truly” detected. In this study, the coefficient was varied from 0.5 to 1.5.

3.3.4 Detection Performance

Figure 3.4 shows the relationship between the TP and the FPs obtained by applying

the Bayes discriminant function with the eight features. For detecting clustered

microcalcifications, many investigators have developed CADe schemes using the

features related to the nodular structure only. Therefore, to investigate the useful-

ness of the NL features, the relationship between the TP and the FPs for the Bayes

discriminant function with the four features, i.e., all features except for the NL

feature, is also shown in Fig. 3.4. The detection performance of the Bayes discrim-

inant function with the eight features is much higher than that of the Bayes

discriminant function with the four features. The points, at which the blood vessels

intersect, tended to become nodular in structure. Therefore, they were detected as

FP candidates in many other algorithms for the detection of clustered
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microcalcifications. This result indicates that the number of these FP candidates is

reduced by identifying the ROIs with blood vessels.

A CADe scheme based on the Bayes discriminant function with the eight

features for distinguishing the three types of ROIs identifies 310 of the 310 clustered

microcalcifications in the test set, yielding a sensitivity of 100.0 % and a false-

positive rate of 0.98 per mammogram. Please refer to the paper (Nakayama et al.

2006a) for the details.

3.4 Usefulness of CADe

Freer and Ulissey (2001) prospectively assessed the effect of CADe on the inter-

pretation of screening mammograms. In this study, 12,860 screening mammograms

over a 12-month period were interpreted using a CADe system. The use of the

CADe system resulted in the following: an increase in the recall rate from 6.5 to

7.7 %, no change in the positive predictive value for biopsy (38 %), an increase in

the number of detected cancer incidents of 19.5 %, and an increase in the rate of

detected early-stage cancer incidents from 73 to 78 %. Birdwell et al. (2005) studied

prospectively 8682 women during a 19-month period. Approximately 10 % of 8682

patients were recalled using a CADe scheme. CAD-prompted recalls contributed to

8 % of total recalled findings and 7 % of detected cancer incidents. Ko et al. (2006)

prospectively interpreted 5016 screening mammograms over a 26-month period

without and with the use of a CADe system. With the CADe system, the recall rate

increased from 12 to 14 %. The use of the CADe system had no significant effect on

Fig. 3.4 Comparison of relationships between the TP and the FPs obtained by applying the Bayes

discriminant functions with the eight features and with the four features
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the positive predictive value for biopsy and could increase the cancer detection rate

by at least 4.7 % and the sensitivity by at least 4 %. Gur et al. (2004) interpreted

115,571 screening mammograms with (n¼ 59,139) or without (n¼ 56,432) the use

of a CADe system in an academic setting. They presented that the recall and breast

cancer detection rates did not change significantly if the CADe system was used.

Fenton et al. (2007) analyzed 429,345 mammograms for 222,135 women without

and with the use of a CADe system. The use of the CADe system decreased the

specificity from 90.2 to 87.2 %, increased the rate of biopsies by 19.7 %, and

decreased the rate of the detection of invasive cancer by 12 %. They concluded that

the CADe system reduces the accuracy of interpretation of screening mammo-

grams. However, in this study, the use of the CADe system increased the sensitivity

from 80.4 to 84 % (P ¼ 0.32) and increased the rate of the detection of ductal

carcinomas in situ by 34 %.

Even the same CADe schemes will demonstrate different sensitivities and

specificities depending on the practice setting, number of the interpreted cases,

experience of radiologists in mammogram interpretation, and experience of radi-

ologists in the usage of the CADe scheme. These results are associated with an

increase in sensitivity and with a decrease in specificity in screening mammography

if a CADe scheme is used.

3.5 CADx Schemes

Most of the studies of CADx schemes focus on clustered microcalcifications and

masses. There are few studies of CADx schemes for architectural distortions or

bilateral asymmetries. Therefore, we only provide the information on CADx

schemes for clustered microcalcifications and masses in this section. A CADx

scheme consists of four main steps: image segmentation, feature extraction, feature

selection, and classification.

Jiang et al. (1996) developed a method for differentiating malignant clustered

microcalcifications from those benign. An ANN with eight computer-extracted

features of clustered microcalcifications was employed to identify breast cancer.

Computer analysis allowed to identify malignant clustered microcalcifications in

100 % cases and those benign in 82 % cases. The accuracy of computer analysis

was statistically significantly better than that of five radiologists. Jiang et al. (1999)

also extended this method of the classification of lesions as malignant or benign to

multiple-view mammograms. Markopoulos et al. (2001) analyzed the malignancy

of clustered microcalcifications using an ANN with eight features of the calcifica-

tions (density, number, area, brightness, diameter average, distance average, prox-

imity average, and perimeter compacity average). They showed a statistically

significant difference in the area under the ROC curve (AUC) values between the

ANN (0.937) and the performance of physicians (0.810). Kallergi (2004) selected

13 classification features from descriptors of the morphology of the individual

calcifications and the cluster distribution. The 13 features were combined with
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the age of patients and were given as inputs to an ANN. The classification

performance reached a sensitivity of 100 % for a specificity of 85 %. Chan et al.

(1998) developed computerized feature extraction of morphological features (size,

contrast, and shape) and the texture features derived from the spatial gray-level

dependence matrices. Linear discriminant classifiers with the features selected from

the morphological features and the texture features were employed to evaluate the

malignancy of clustered microcalcifications. They reported that the classifier could

identify 50 % of the benign clusters at a sensitivity of 100 % for malignancy.

Huo et al. (1998, 2000) developed a computerized method for the classification

of benign and malignant masses. The inputs to an ANN included four characteris-

tics of masses (margin, sharpness, density, and texture) that were automatically

extracted using an image-processing algorithm. The categorization of lesions as

malignant or benign using the ANN achieved an AUC value of 0.90. Bilska-Wolak

et al. (2003) compared the performance of a likelihood ratio-based algorithm (LRb)

with respect to a case-based reasoning (CBR) classifier, which provided a solution

to a new problem using past similar cases. The difference in the estimation of the

probability density functions results in a very small difference in the performance.

They reported that using both classifiers in approximately half of cases of benign

mammographic masses, biopsy could be avoided at a sensitivity of 98 %. Brake

et al. (2000) defined a number of features related to the image characteristics that

radiologists use to distinguish real lesions from normal tissue. An ANN was used to

map the computed features to a measure of suspiciousness of each region that was

found suspicious using a mass detection method. Approximately 75 % of all cancer

incidents were detected at a specificity level of 0.1 false positive per image. Floyd

et al. (2000) proposed a case-based reasoning approach for the classification based

on the ratio of the number of matched malignant cases to the number of total

matches in the database. When 98 % of the malignancies would be biopsied, the

number of benign biopsies would be decreased by 41 %.

3.6 Examples of CADx Schemes

3.6.1 Summary

Many investigators reported that the performance of radiologists was improved

significantly when they used the computer output indicating the likelihood of

malignancy for clustered microcalcifications, as shown in Sect. 3.7. However, the

performance level of the computerized schemes was considerably greater than that

of radiologists using the computer output. This result implies that radiologists

cannot rely on the computer output completely even if the computerized scheme

has a high-performance level.

To make clinical decisions to perform biopsy or follow-up on clustered

microcalcifications by considering possible histological classifications of
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magnification mammograms may reduce the number of unnecessary biopsies.

Invasive carcinoma and noninvasive carcinoma of the comedo type usually grow

rapidly (Kopans 2006; Morimoto and Sasa 1996; Sakamoto and Haga 2001).

Noninvasive carcinoma of the noncomedo type, which presents a lower risk than

noninvasive carcinoma of the comedo type, grows relatively slowly (Kopans 2006;

Morimoto and Sasa 1996; Sakamoto and Haga 2001). Mastopathy and

fibroadenoma expand very slowly (Kopans 2006; Morimoto and Sasa 1996;

Sakamoto and Haga 2001). Therefore, the computerized analysis of microcalci-

fications on determining the likelihood of histological classifications and the like-

lihood of malignancy may help radiologists to make a decision on patient treatment.

In this section, we provide a CADx scheme for identifying histological classifica-

tions of clustered microcalcifications on magnification mammograms.

3.6.2 Materials

Our database consists of 58 magnification mammograms that were obtained from

35 patients. It includes 35 malignant clustered microcalcifications (9 invasive

carcinomas, 12 noninvasive carcinomas of the comedo type, and 14 noninvasive

carcinomas of the noncomedo type) and 23 benign clustered microcalcifications

(17 mastopathies and 6 fibroadenomas). The histological classifications of all

clustered microcalcifications were proved using stereotaxic core needle biopsy.

These magnification mammograms were obtained using Kodak MinR-2000/

MinR-2000 screen/film system. The magnification factor of the magnification

mammograms was 1.8. The mammographic X-ray system included an X-ray tube

with a focal spot of 0.1 mm and a molybdenum anode, 0.03-mm-thick molybdenum

filter, and 5:1 reciprocating grid. These mammograms were digitized to a matrix

size of 512 � 512 with a pixel size of 0.0275 mm in a 12-bit gray scale using

EPSON ES-8000 digitizer (the optical resolution is 800 � 1600 dpi; the optical

density range is 0.0–3.3D).

3.6.3 Methods

3.6.3.1 Segmentation of Microcalcifications and the Determination

of the Cluster Margin

Figure 3.5 shows an example of the segmentation of microcalcifications and the

determination of the cluster margin. For the segmentation of individual microcal-

cifications within a cluster on mammograms, first, we enhanced the microcalci-

fications using the filter bank described in Sect. 3.3.3. Then a gray-level

thresholding technique (Gonzales and Woods 2007) was applied to the enhanced
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image. To segment all microcalcifications in our database, we empirically used a

600-pixel value as a threshold value.

For obtaining information about the distribution of microcalcifications within a

cluster, the cluster margin was determined automatically. First, we drew circles at

the center of gravity of each microcalcification. The diameters of these circles were

increased from 20 to 60 pixels until all circles within a cluster were connected. Then

the region of the connected circles was considered as a candidate for the cluster

margin. The shape of the cluster margin could not be estimated accurately when the

candidate for the cluster margin had a large indentation, as shown in

Fig. 3.5d. Therefore, we employed a binary morphologic closing operator (Sera

1988) to smooth the shape of the candidate for the cluster margin. The structure

element for this binary morphologic closing operator was given by the circle with

half the diameter of the circle, which was used for determining the candidate for the

cluster margin. Finally, the edge of the smoothed candidate was determined as the

cluster margin.

3.6.3.2 Extraction of Five Objective Features

We selected five objective features to identify histological classification by consid-

ering the differences in image features among five histological classifications.

These objective features were (i) variation in the size of microcalcifications within

a cluster, (ii) variation in the pixel values of microcalcifications within a cluster,

(iii) shape irregularity of microcalcifications within a cluster, (iv) extent of the

linear and branching distributions of microcalcifications, and (v) distribution of

microcalcifications toward the nipple.

(i) The variation in the size: The variation in the size of microcalcifications was

determined using the relative standard deviation in the areas of microcalci-

fications within a cluster. The area of each microcalcification was defined as

the number of pixels within the segmented microcalcification.

Fig. 3.5 Example of the segmentation of microcalcifications and the definition of cluster margin.

(a) The original ROI containing clustered microcalcifications; (b) the microcalcifications

enhanced by a novel filter bank; (c) the microcalcifications segmented by a gray-level thresholding
technique; (d) the candidate for the cluster margin yielded by drawing the circles at the center of

gravity of each microcalcifications; (e) the cluster margin determined by smoothing the shape of

the candidate for the cluster margin
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(ii) The variation in the pixel values: The variation in the pixel values of the

microcalcifications was determined using the standard deviation in the pixel

values of microcalcifications within a cluster. The pixel value of each

microcalcification was defined as the mean value of the five largest pixel

values in the segmented microcalcification of the original image.

(iii) Shape irregularity: To determine the shape irregularity of microcalcifications,

first, we defined the irregularity index for each microcalcification as the

standard deviation of 16 shape factors. The 16 shape factors consisted of

eight minimal distances and eight maximal distances between the center of a

microcalcification and its edges. The minimal and maximal distances were

obtained in the eight regions located at intervals of 45�. Then the shape

irregularity of microcalcifications was determined using the mean value of

the five largest irregularity indices of individual microcalcifications within a

cluster.

(iv) The extent of the linear and branching distributions: The extent of the linear

and branching distributions was determined using the standard deviation of the

16 shape factors. These 16 shape factors were not applied to individual

microcalcifications but to the cluster margins defined in the previous section.

(v) The distribution toward the nipple: To determine the distribution of microcal-

cifications toward the nipple, first, we drew a straight line from the center of

the nipple to the center of a cluster. Then we drew a straight line perpendicular

to this line through the cluster center. The first line is called the main straight

line, and the second line is called the substraight line. Next, the distances of all

microcalcifications from these two lines were determined, and the two mean

values were calculated. The distribution of microcalcifications toward the

nipple was determined using the ratio of the mean distance of the substraight

line to the mean distance of the main straight line.

3.6.3.3 Identification of the Histological Classifications

A classifier based on the Bayes decision function (Duda et al. 2000) was employed

for distinguishing between the five different types of histological classifications.

The probability density function for each histological classification was assumed to

be approximated using the normal distribution. The mean vector and the covariance

matrix of the normal distributions were obtained from all data in our database. The

prior probabilities were assumed equal. A leave-one-out testing method was used

for training and testing the Bayes decision function. In this method, training was

carried out for all cases except for one case in the database. The case not used for

training was used for testing through the trained Bayes decision function. This

procedure was repeated until every case in our database was used once. The five

output values obtained using the trained Bayes decision function indicated the

likelihood of each histological classification. The output value yielding the largest

value was considered as the result of the classification.
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3.6.4 Classification Performance

Figure 3.6 shows the mean values and the standard deviations of each objective

feature of the five different types of histological classifications. These objective

features were normalized using all cases in the database. The values on the vertical

axis may correspond to the likelihood of malignancy because the five objective

features have large values in case of malignant microcalcifications. The five

objective features of invasive carcinoma and noninvasive carcinoma of the comedo

type have large values. However, invasive carcinoma can be distinguished from

noninvasive carcinoma of the comedo type using the two features related to the

extent of the linear and branching distributions and the distribution toward the

nipple. The five objective features of mastopathy and fibroadenoma have low

values. Fibroadenoma can be distinguished from mastopathy because the five

objective features of fibroadenoma have lower values than those of mastopathy.

Fig. 3.6 Mean values and the standard deviations of each objective feature of the five different

types of histological classifications
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The five objective features of noninvasive carcinoma of the noncomedo type are

nearly zero. It is difficult to distinguish noninvasive carcinoma of the noncomedo

type from mastopathy. Therefore, these cases should undergo follow-up at a short

interval in clinical practice. Table 3.1 shows the results of tests for univariate

equality of group means. The Wilk’s lambda (Johnson and Wichern 2007) for the

shape irregularity was smaller than any other features, and the F value (Johnson and

Wichern 2007) for the shape irregularity was larger than any other features.

Therefore, the shape irregularity made a larger contribution to identifying five

histological classifications of clustered microcalcifications. The distribution toward

the nipple made some contributions to the classification. However, the p value for

the distribution toward the nipple satisfied the significance level ( p < 0.001).

Therefore, the five objective features were statistically significant for identifying

histological classifications of clustered microcalcifications.

Table 3.2 shows the results of the distinction of the five histological classifica-

tions by use of the classifier based on a Bayes decision function. The classification

accuracies of this CADx scheme for distinguishing between the three malignant

Table 3.1 Results of tests for univariate equality of group means

Wilk’s lambda F value p value

Variation in the size 0.52 12.19 < 0.001

Variation in the pixel values 0.65 07.04 < 0.001

Shape irregularity 0.50 13.00 < 0.001

Extent of linear and branching distributions 0.68 06.32 < 0.001

Distribution toward the nipple 0.69 06.05 < 0.001

Table 3.2 Results of the distinction of the five histological classifications by use of the classifier

based on a Bayes decision function

Pathological

diagnosis

Computer output

Invasive

carcinoma

Noninvasive

carcinoma of

comedo type

Noninvasive

carcinoma of

noncomedo

type Mastopathy Fibroadenoma

Invasive carci-

noma (9)

7(77.8 %) 1(11.1 %) 0(0.0 %) 1(11.1 %) 0(0.0 %)

Noninvasive

carcinoma of

comedo type

(12)

2(16.7 %) 9(75.0 %) 1(8.3 %) 0(0.0 %) 0(0.0 %)

Noninvasive

carcinoma of

noncomedo type

(14)

0(0.0 %) 2(14.2 %) 12(85.8 %) 0(0.0 %) 0(0.0 %)

Mastopathy (17) 0(0.0 %) 1(5.9 %) 1(5.9 %) 14(82.3 %) 1(5.9 %)

Fibroadenoma

(6)

0(0.0 %) 0(0.0 %) 0(0.0 %) 1(16.7 %) 5(83.3 %)
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histological classifications were 77.8 % (7/9) for invasive carcinoma, 75.0 % (9/12)

for noninvasive carcinoma of the comedo type, and 85.8 % (12/14) for noninvasive

carcinoma of the noncomedo type. The classification accuracies for distinguishing

between the two benign histological classifications were 82.3 % (14/17) for

mastopathy and 83.3 % (5/6) for fibroadenoma. The sensitivity and the specificity

were 97.1 % (34/35) and 91.3 % (21/23), respectively. The positive predictive value

was 94.4 % (34/36), whereas the negative predictive value was 95.4 % (21/22).

Please refer to papers (Nakayama et al. 2004, 2006a, b, 2007) for the details.

3.7 Usefulness of CADx

An observer study of most of the studies for evaluating the usefulness of CADx was

carried out retrospectively. Jiang et al. (1999) tested whether CADx can improve

the performance of radiologists in the diagnosis of clustered microcalcifications in

mammograms. The average AUC increased from 0.61 without the use of CADx to

0.75 with the use of CADx (P < .0001). On average, using the computer aid, each

observer recommended 6.4 additional biopsies for malignant lesions and 6.0 fewer

biopsies for benign lesions. Jiang et al. (2001) also evaluated whether CADx can

reduce the interobserver variation in the accuracy of radiologists. As measured

using the SD of the AUC, it was reduced by 46 % if the computer aid was used.

Huo et al. (2002) evaluated the effectiveness of CADx as an aid to radiologists

reviewing clinical mammograms. When CADx was used, the average performance

of radiologists improved, as indicated by an increase in the AUC from 0.93 to 0.96

and by an increase in the sensitivity from 94 to 98 %. Chan et al. (1999) evaluated

the effects of using CADx on the classification of malignant and benign masses seen

on mammograms by radiologists. The AUC values of radiologists varied from 0.79

to 0.92 without implementing CADx and improved to 0.87–0.96 if CADx was used.

An improved positive predictive value as a function of the false-negative fraction

was predicted using the improved ROC curves.

These results are associated with an increase in both sensitivity and specificity in

retrospective observer studies using the CADx schemes for clustered microcalci-

fications and masses. We look forward to the introduction of an integrated CAD

scheme with the combination of a CADe scheme and a CADx scheme to clinical

practice with no further delay.
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Chapter 4

Computer-Aided Differentiation

for Pathology Images

Masahiro Yamaguchi

Abstract The evolution of whole slide imaging (WSI) technology promotes the

pathology environment based on digital imaging, called “digital pathology,” and

enables monitor-based diagnosis instead of conventional diagnosis based on micro-

scopic observation, as well as the application of computer image analysis to

pathology practice. This chapter introduces the background, basic techniques, and

examples of image analysis technology for digital pathology. Computer-aided

diagnosis with quantifying morphological and molecular features will be a signif-

icant tool for diagnostic pathology such as cancer detection, grade differentiation,

and the decision of therapeutic plan. Some systems for automated processing of

WSI data are also presented including the systems that have been employed in

practice. The color correction, which is one of the most important issues in the

pathological image analysis, is also addressed.

Keywords Digital pathology • Whole slide imaging • Quantitative pathology •

Nuclear atypia • Structural atypia • Morphological feature • Color correction •

Spectral imaging

4.1 Introduction

In diagnostic pathology, pathologists examine the tissue taken from the lesion

through macroscopic and microscopic observations, to determine the type of

disease or to make a decision if the tumor is malignant or benign. The result directly

contributes to the decision of therapeutic plan. Thus pathology plays an essential

role in cancer diagnosis and treatment, and it is often called “definitive diagnosis”

or “final diagnosis.” Molecular and genetic analyses are extensively used presently,

such as for subtype classification. Even so, the observation of tissue and cell

morphology is still a fundamental and important part in diagnostic pathology.

Since diagnosis is done by direct observation under a microscope, digital imaging
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technology has not been introduced in routine practice, in contrast to radiology

field. However, recently emerging technology called “digital slide” or whole slide

imaging (WSI) (Pantanowitz et al. 2011; Gilbertson et al. 2006) allows the full

introduction of digital imaging in diagnostic pathology. In WSI, the specimen on a

glass slide is scanned in very high resolution, and huge-size image data thus

obtained can be observed on a monitor with changing the field and magnification

interactively.

Once the tissue specimens are digitized, they can be exploited not only for

making a diagnosis by observing images on a monitor but also for diagnostic

support system based on image analysis technology (Meijer et al. 1997; Gurcan

et al. 2009; Saito et al. 2013; Kothari et al. 2013; Kayser et al. 2009; He et al. 2012).

In this chapter, the application of digital image analysis and pattern recognition

technology to the advancement of diagnostic pathology is described, along with

some challenges in this field.

When applying the digital imaging technology to pathology domain, the practice

in the radiology imaging is useful; computer-aided diagnosis (CAD) is one of them.

Although the methodology in radiology CAD can be applied, some differences

should be noted. In radiology CAD, screening or the detection of tumor was one of

the main targets, while differential or qualitative diagnosis is a major part in

pathology since the tissue under examination is acquired from a lesion. Not only

the detection of abnormality but the decision of malignancy or the classification of

grades or subtype is needed as well in pathology CAD. Moreover, the performance

of pathology CAD should be evaluated based on the therapeutic effectiveness,

which is an actual outcome of diagnostic pathology.

In the microscopic observation in histopathology and cytology, the color of

tissue plays significant role. In histopathology, the tissue acquired from the

human body is fixed with formalin, embedded in paraffin block, cut to thin sections,

and then colorized with staining for visualizing the tissue structure. There are

roughly three types of staining techniques: hematoxylin and eosin (HE) stain that

is often called general stain, special stains that visualize specific tissue element

depending on the purpose of observation, and immunohistochemistry (IHC) stain

useful for visualizing the protein expressions. Figure 4.1 shows the example of

images of HE-stained, special-stained, and IHC-stained tissues. Accordingly, the

color information is very important in the pathology image analysis (Yagi and

Gilbertson 2005; Rabinovich et al. 2004; Abe et al. 2005; Murakami et al. 2012). In

Sect. 4.4, some issues related to color in pathology imaging are also discussed.
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4.2 Digital Imaging Technology in Diagnostic Pathology

4.2.1 Evolution of WSI Technology

The introduction of digital imaging technology started with telepathology

(Weinstein et al. 2009). A remote pathologists support clinicians through network

by observing the digital image in telepathology. A pathologist can also be supported

by another pathologist at remote site with different specialty, and double-check can

be performed in efficient manner by employing telepathology system. There have

been different types of telepathology systems used—store-forward, video, robotic,

and WSI. The development of telepathology system has greatly contributed to the

advancement of pathology imaging technology.

The research and development of WSI have been made since late 1990s, but

practical deployment was difficult because it needs to deal with huge amount of

data. The pixel pitch should be smaller than 1 μm or even 0.3 μm, and the size of a

specimen is typically 20~30 mm, that is, the image size becomes 20,000�20,000 ~

100,000�100,000 pixels. Then the corresponding data amount is 1.2 GB~30 GB

per image in uncompressed case. The scanning time, data transfer, and interactive

display as well as image quality were difficult problems for practical use. Never-

theless, now the technologies for WSI scanner and viewer have been greatly

evolved, such as the systems of optics, mechanical controlling, digital image

interface, and fast computing. Advanced scanner system now enables the scan of

a single slide in 1 minute and comfortable interactive display. Figure 4.2 shows the

schematic drawing of WSI technology. In this example shown in Fig. 4.2b, the area

in 25.2 mm � 22.7 mm was scanned with 0.23 μm pixel pitch, and an image in

110,592�99,840 pixels was obtained.

Still it is expected to address some issues related to image quality and focusing.

Since a tissue sample on a glass slide is not completely flat, it is necessary to adjust

the focus of the objective lens depending on the location on the specimen, but the

autofocusing occasionally fails. In addition, when the tissue section is relatively

Fig. 4.1 Examples of images of histological stained tissues. (a) HE, (b) Masson’s trichrome

(special stain), and (c) IHC
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thick, or in the case of cytology samples, the focus position needs to be changed

during observation. The images of different focus positions can be acquired by

state-of-the-art scanners, called “z-stack.” However, much larger amount of data

and longer acquisition time are required, and z-stack is currently used in limited

cases. As an effort related to the image quality control, some techniques (Hashi-

moto et al. 2012) are developed for automatic detection of the area suffered by

image blur due to focusing error as well as strong noise generated during the

scanning process. The detected areas are re-scanned so that good quality WSI can

be obtained.

So far, WSI has been used in practice mainly in telepathology, education,

conference, and research applications. Moreover, it is being also adopted to primary

diagnosis and clinical use (Pantanowitz et al. 2011; Gilbertson et al. 2006). WSI

technology will significantly contribute to the introduction of information technol-

ogy in pathology division, the connection and integration with PACS or EMR, and

the deployment of pathology CAD based on digital image analysis.

Fig. 4.2 (a) The concept of WSI system. Tissue specimen on a glass slide is digitized by a WSI

scanner, and the image is reproduced on a monitor. (b) An example of observation. The whole

specimen is shown in the window at bottom right, and the image scanned with using a 40x

objective lens is displayed on the entire screen
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The lineup of WSI apparatus includes a small-scale research-purpose device and

a large-scale system suitable for hospital clinical use that automatically process a

large number of slides. This practical WSI technology promotes the revolution of

pathology field, referred to as “digital pathology.” The Food and Drug Adminis-

tration (FDA) of the USA established a WSI working group, and the issues toward

clinical use are discussed in the working group (Center for Devices and Radiolog-

ical Health 2016).

In pathology department, traditionally the diagnostic workflow is based on the

exchange of tissue block or biopsy samples taken from lesion, or specimens on

glass slides. If all pathological specimens are digitized and managed as digital data,

the need of handling “things” like tissue samples is minimum, and overall workflow

of pathology department can be integrated into a computerized management sys-

tem. It will promote more efficient diagnosis process; thereby the diagnosis results

will be informed sooner to the patient, and the patient treatment will start earlier.

Besides, the management of “things” will also be improved, e.g., reducing the risk

of mixing-up samples and shortening turnaround time. The discipline on this

subject is recognized as pathology informatics, and digital pathology is a key

technology in this field.

4.2.2 Application of Image Analysis Technology

Since the diagnosis in pathology is carried out by visual observation of the tissue

morphology, cell arrangement, and color, it is sometimes pointed out that there is a

problem in the observer variability and reproducibility. In some cases, the morpho-

logical feature is represented by several levels of numbers, but it is based on visual

determination and said to be qualitative or semiquantitative diagnosis rather than

quantitative. Although counting the number of IHC stained cells is done as well, the

manual counting is inaccurate and troublesome.

The progress of digital image analysis, pattern recognition, and machine learn-

ing is remarkable, such as face recognition. By measuring the image features by

applying such a digital image analysis technology, it becomes possible to quantify

the morphological features of tissue specimen. Then it will enable more detailed

lesion classification, accuracy improvement in the determination of the degree of

malignancy, and better diagnostic report which is more useful for clinicians. Under

this background, active research is being carried out on the application of image

analysis technology to the pathology diagnosis.

Tissue architecture and cell morphology have been studied long regarding the

relation between the morphological features and the type of disease or the degree of

malignancy. It is known as pathological morphology or morphometry, and com-

puterized analysis has been also applied (Meijer et al. 1997). For example, the shape

features of cell nuclei are measured, such as the diameter, area, and circularity, or

the nuclear-cytoplasmic ratio (N/C ratio). Those morphological features are com-

pared with other pathological indices, clinical course, or prognostic indications.
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However, even though using a computer, the measurement is based on manual

process using general-purpose image processing software, and the results are rather

affected by the operator judgment. Then it is still considered as “semiquantitative.”

Moreover, as it requires labor and time, full application to routine practice is

difficult, and the use has been limited mainly for research purpose.

Recently, the development of molecular-targeted therapy is remarkable in can-

cer treatment. The effectiveness of such therapy is completely different depending

on the target molecule expression, and the determination of applicability is

extremely important. The image analysis technology of IHC-stained tissue is

getting attention as a tool for the objective assessment of applicability and the

improved accuracy and efficiency (Gurcan et al. 2009; Irshad et al. 2014). The

molecular expression is also important in subtype classification and evaluation of

tumor grade. It is evaluated by IHC-stained samples and more recently fluorescent

staining. Some examples of image analysis for molecular expression are introduced

in the Sect. 4.3.2.

On the other hand, HE staining which is a routine staining technique has long

history, and pathologists acquire considerable information from the observation of

HE-stained samples. Thus it is promising to apply computerized image analysis to

HE-stained samples. Although there have been many reports on the image analysis

of HE-stained tissue specimen, most of them need manual process as mentioned

above (Meijer et al. 1997). The region of interest is determined manually; the tissue

elements such as nuclei are extracted with adjusting threshold, or the contour is

traced by hand; then morphological features are measured; and statistical analysis is

applied. As it needs laborious process, it is difficult to be employed in routine

diagnosis. But the emergence of WSI is changing the situation. A completely

automated system is developed for the analysis of HE-stained specimens, in

which the WSI data is processed without human interaction, and the malignant

regions are automatically detected (Gurcan et al. 2009; Wienert et al. 2012; Kiyuna

et al. 2008). The system has been put into practice in laboratory test company for

quality control and quality assurance by double-check. It is a CAD in pathology

field and is expected to be applied to the system that will provide more useful

information for pathologists and clinical practice.

4.3 Examples of Computer-Aided Analysis

4.3.1 Analysis of HE-Stained Image

Cancer cells have features such as nuclear enlargement, chromatin increase, cell

atypia, and cell disarrangement. Since cell nuclei are stained with hematoxylin and

observed clearly in HE-stained tissue, most of the techniques first extract cell

nuclei, and the morphological features are calculated using extracted nuclei

(Gurcan et al. 2009; Atupelage et al. 2014; Cataldo et al. 2012). Figure 4.3a
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shows an example color image of HE-stained tissue of the liver, where the nuclei

and cytoplasm are stained in blue and pink, respectively. The spectral absorption

coefficients of hematoxylin and eosin are shown in Fig. 4.4. The hematoxylin

absorbs light in 550~650 nm wavelength range, and the eosin has strong absorption

peak around 530 nm. Therefore, in a color image consisting of red, green, and blue

(R, G, and B) components, the R channel image holds the information of hematox-

ylin absorption, and the contrast of nuclei is high. Thus an approach to extract

nuclei is thresholding R channel image as shown in Fig. 4.3b, but binarization is not

enough for nucleus identification, since there is density variation inside a nucleus

because of the chromatin distribution and nucleolus. For identifying each nucleus,

image processing technique based on mathematical morphology is often applied,

such as opening and closing, or distance transformation, and local maximum can be

considered as the candidate of the nucleus location. When the nuclear density is

high and adjacent cells are attached, they are separated by some image processing

technique such as mathematical morphology. Besides, since the nuclei are often

circular, it is advantageous to combine pattern matching technique such as normal-

ized cross correlation using disk-shaped template.

Fig. 4.3 Nuclei detection from a color image of HE-stained liver tissue. (a) Original color image;

(b) after thresholding R channel component; (c) detected nuclei are marked with circles
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In HE staining, lymphocytes are also stained in blue in addition to the nuclei of

parenchymal and stromal cells and need to be removed from the extracted nuclei.

Using the features of lymphocytes, e.g., darker than other nuclei, smaller, and

circular, lymphocytes are identified and removed from the nucleus list detected in

the previous step. Figure 4.3c is an example of nuclear detection. After the extraction

of nuclei, the contour of nucleus is derived, and morphological features of cell nuclei

are calculated using the contour shape and other parameters of the nucleus.

As the feature that represents nuclear shape, following indices are often used:

area, perimeter, circularity, and long/short axis (after ellipse fitting). The N/C ratio

mentioned before is also used commonly in morphometry. Moreover, as the

chromatin texture is related to cell proliferation, the texture features inside a

nucleus are often evaluated, e.g., mean and standard deviation of pixel values inside

nucleus region, textural features derived from gray-level co-occurrence function,

Gabor features, wavelet, and fractal/multifractal and contour complexity

(Atupelage et al. 2014; Doyle et al. 2012; Yamashita et al. 2014). These indices

are calculated for each nucleus, and the feature index for each tissue is obtained as

statistics such as mean, standard deviation, median, or percentiles. Then various

studies using those morphological indices have been reported. For example, the

discriminability of benign and malignant tissue from a certain set of features is

evaluated, or the feature set that has correlation with prognostic outcome indicators

is investigated.

Using the locations of extracted nuclei and connecting neighboring nuclei,

graph-based analysis is also applied (Sharma et al. 2015). Region partitioning is

also utilized, and the tissue structure is characterized using the areas or perimeters

of the partitioned regions. In intestinal organs, breast, or prostate, the gland

structure is important, and nuclear arrangement is also useful to analyze the gland

structure.

For the automatic detection or grading of cancer, multivariate analysis or

machine learning techniques are employed. Discriminant analysis, neural network,

support vector machine (SVM), random forest, and deep learning techniques are

common examples that can be exploited to detection or classification (Gurcan et al.

2009; Saito et al. 2013; Kothari et al. 2013; Kayser et al. 2009).

In histopathology diagnosis of breast cancer, nuclear grade is usually used for

characterizing the tumor. The nuclear grade is determined based on nuclear atypia

and mitotic activity. For the assessment of nuclear atypia, nuclei are firstly detected,

and the features related to the size and shape of each nucleus are measured (Petushi

et al. 2006; Veta et al. 2014; Dong et al. 2014). Then mean or median of those

features represents the regularity of nuclei in the tissue, and their standard deviation

shows the uniformity of the same features. In addition, the detection of mitotic

nuclei is important. From the texture inside the nuclei, the mitotic cells are

discriminated. The count of mitosis cells in a certain view field is an important

index that signifies the aggressiveness of the cancer. It is also reported that the

computer image analysis enables the differentiation of malignant tumor such as

noninvasive ductal carcinoma in situ (DCIS) from a benign, low-risk lesion, such as

usual ductal hyperplasia. DCIS is considered to be preinvasive malignant type and
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should be treated rapidly. The differentiation is difficult even in visual observation,

and computer analysis can provide valuable information for differentiation.

Researches are also conducted for prostate cancer application (Wienert et al.

2012; Wetzel et al. 1999; Tabesh et al. 2007; Mosquera-Lopez et al. 2015). In

prostate biopsy examination, firstly cancer regions that have characteristic gland

formation must be detected from the tissue, and Gleason score, which is widely

used to assess the aggressiveness of the cancer, is determined. The score strongly

connected to the selection of treatment. The treatment options include surgery,

external or internal radiation, hormone therapy, and follow-up. Accurate classifi-

cation allows patients better treatment selection for superior quality of life. In

conventional visual diagnosis, two most predominant cancer regions are selected,

and the gland pattern is classified into five-level grades. The classification is

performed with structure or texture analysis. The Gleason score is the sum of the

grades for two regions. Automated grading techniques for prostate cancer have

been studied long, but most of them were using single microscopic field and

determined the grade for the given image. Most recently, using WSI data, full

automation is being explored by implementing two steps, cancer detection and

grading (Wienert et al. 2012). The computer analysis will facilitate more accurate

and quantitative grading system rather than old scoring system which is limited by

visual observation.

CAD tool for lymphoma has been also developed (Sertel et al. 2010; Belkacem-

Boussaid et al. 2011; Kornaropoulos et al. 2014). Follicular lymphoma is one type

of slowly glowing non-Hodgkin lymphoma, and its treatment is selected from some

options, i.e., radiation therapy, chemotherapy or immunotherapy that includes

molecular-targeted medicine, and follow-up. It is important to distinguish indolent

case, and histopathological observation plays a crucial part of the differentiation. In

the diagnosis, the number of centroblast cells must be counted in high-

magnification image. It is pointed out that the number obtained through visual

observation is affected by some factors related to human operation, such as the

limited selection of test fields, fatigue, and observer variation. The CAD system

first identifies the follicles from the tissue in WSI. To count centroblasts, the

technique similar to nuclear detection is used, and the discrimination of centroblast

and non-centroblast follows.

4.3.2 Image Analysis of IHC-Stained Tissue

IHC staining technique visualizes the expression of specific antigen in the tissue. In

breast cancer, the subtype classification is done based on the presence of estrogen

receptor ER), progesterone receptor (PR), human epidermal growth factor

2 (HER2), and Ki-67 protein, and they are assessed by IHC-stained specimen.

Most of IHC test is done by using 3,30-diaminobenzodine (DAB) staining, in which

positively stained region appeared in brown, and hematoxylin is used as counter-

stain, and the negative nuclei becomes blue.
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In conventional pathological examination, the expression of protein is evaluated

visually by microscopic observation. In the case of quantifying a receptor present in

nuclei, such as ER, PR, and Ki-67, the numbers of positive and negative nuclei are

counted in the cancer tissue, and the percentage of positive nuclei is used as the

index. HER2 is localized in the membrane, and the staining strength in cell

membrane is classified into 0, 1þ, 2þ, and 3þ. The issue of observer variability

is pointed out, namely, the score is sometimes affected by inter- and intra-observer

variation.

The development of molecular-targeted therapy is actively studied, and prom-

ising developments have been done. One of the significant examples is

Trastuzumab (known as its brand name Herceptin). It is proved to be effective for

breast and gastric cancers in which HER2 receptor is overexpressed. Such type of

cancer is poor prognosis, but the targeted medicine is applicable. When determining

the applicability of HER2, firstly IHC staining of HER2 is used in histopathological

examination. If the result of IHC test is equivocal, additional fluorescent in situ

hybridization (FISH) test is performed for final decision. Computerized image

analysis (Gurcan et al. 2009; Irshad et al. 2014) is applied to the first-step IHC

test, for the purpose of automated, reproducible, and quantitative examination.

Detection of positive region is not difficult by automated image analysis, though

the determination of threshold is necessary, but in contrast, the selection of region

for examination is difficult to be automated. The region of interest (ROI) must be

cancer tissue, while stromal region should be excluded, which is difficult to be

automated. Therefore in the current systems, the ROI is manually specified, and the

system automatically extract cell membrane, and the staining strength is quantified

by an image analysis software.

Ki-67 protein, which represents the proliferation characteristics of cells, is

evaluated by the ratio of positive nuclei against all nuclei. The ratio is called

“labeling index.” Thus the image analysis is basically the detection of nuclei and

the classification of positive/negative nuclei. Again the ROI selection is a difficult

issue, and mostly the automatic counting system is semiautomatic. Ki-67 is used in

cancer diagnosis of many different types, because it is considerably related to the

malignancy of the cancer.

For the selection of ROI, the cancer detection technique is needed. Sometimes

the selection is not easy from IHC DAB-stained image, and HE-stained tissue of

serial section is used. The removal of non-tissue regions is also needed for the IHC

quantification.

4.3.3 Automated WSI Analysis System for Quantitative
Pathology

It is necessary to automatically process whole slide image data for deployment of

image analysis technology in routine diagnosis. Most of the technologies described
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above are applied after some manual adjustment or ROI selection. Additional

procedures are required for automation.

Figure 4.5 shows an example of the system overview of automatic WSI analysis

system (Saito et al. 2013; Kothari et al. 2013; Kayser et al. 2009; Doyle et al. 2012;

Yamashita et al. 2014; Samsi et al. 2012; Yeh et al. 2014). Initially, tissue is

detected from the whole slide image, because the tissue occupies limited area on

a glass slide. After tissue area is determined, many ROIs are extracted from the

tissue area in the very large-size WSI. The ROI size is fixed and the following

processing is applied to the extracted ROIs. The color correction is applied to the

ROI data, since the image is affected by color variability as explained in the Sect.

4.4. Sometimes it is needed to detect the area of tissue fold, bubbles, or artifact

where tissue is partly crushed and to exclude those regions from the analysis

(Bautista and Yagi 2010).

The analysis of each ROI is done in the same way as the approach explained in

Sect. 4.3.1. Nuclei and other tissue elements are identified and segmented, and the

shape and texture features are measured in each segmented tissue elements. The

statistics in each ROI is calculated if needed, and a feature vector which encom-

passes those statistics and other morphological indices is used in multivariate

analysis or machine learning technique.

WSI

ROI extraction

Nuclei detection

Visualization
(Heat map, etc.)

Classification
(Multivariate analysis, machine learning)

Preprocessing

Tissue structure 
segmentation

Nuclei feature 
measurement

Tissue structure 
measurement

Determination of
the score for slide

Fig. 4.5 The flowchart of

typical automated system of

WSI analysis

4 Computer-Aided Differentiation for Pathology Images 77



To use the image analysis results in diagnosis, the results for all ROIs should be

summarized. For example, in the quantification of IHC-stained slide, the score is

calculated for a slide. The score that represents a slide is obtained as mean, median,

or maximum depending on clinical requirements.

As an example, an automated image analysis system has been developed

recently for quantifying fibrosis from WSI of Elastica van Gieson (EVG) stained

biopsy tissue (Abe et al. 2013). The quantification of liver fibrosis is important in

the diagnosis of chronic liver disease. In EVG staining, the collagen and elastic

fibers are stained in red and black, respectively. Then the area ratios of collagen and

elastic fiber against whole tissue are used as the scores. In this system, ROIs are

extracted from tissue region, the collagen and elastin scores are calculated in each

ROI, and the total score for the slide is determined as the representative values of

the scores in all ROIs. Quantification of fiber is valuable in the assessment of

hepatitis and other disorders in various organs, the prediction of cancer risk, and

the evaluation of new treatment methodologies.

Another example of fully automated system is WSI-CAD system, which has

been applied to gastric, colorectal, and breast cancers (Saito et al. 2013). In the

system, after the preprocessing including artifact removal and color balancing, the

tissue structure is analyzed using low-magnification image so as to detect abnormal

gland formation and other structural abnormality. The detected regions are ROIs for

further analysis, in which the nuclear features are analyzed using high-

magnification images. Then benign and malignant lesions are automatically dis-

criminated. The system is used in practice at clinical test laboratory for the purpose

of QC/QA. The automatic cancer detection is also worthy for quantification of

IHC-stained tissue, since the score must be calculated in the cancer tissue.

The automated WSI analysis system is applied to hepatocellular carcinoma as

well (Yamashita et al. 2014; Ishikawa et al. 2016; Aziz et al. 2015). After

preprocessing such as color correction, the nuclear detection and nuclear feature

measurement are employed. Also, stromal areas, sinusoids, and fat droplets are

segmented for the structural feature measurements. The system shows the quanti-

fication results as a heat map. Moreover, the cancer discrimination is performed by

SVM using the feature vector composed of nuclear and structural features. The

result of feature measurement and SVM classification are also visualized as a heat

map as shown in Fig. 4.6. The accuracy of classification was tested by fivefold cross

validation using about 1000 ROIs. As a result, both the sensitivity and specificity

were almost 90 % (Aziz et al. 2015). The heat map of the possibility of malignancy

will support pathologists to pick up the regions that should be observed carefully,

and the heat map of each feature provides pathologists supportive information for

subtype classification, grading, treatment selection, and reasoning of the diagnosis.
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4.4 Color and Spectral Information Processing

4.4.1 Color Correction

The color of histological tissue specimen is determined by the staining and some-

times affected by the staining process, such as the selection of recipe, reagent

condition, temperature, PH, and staining time. In addition, the color sometimes

faded after some time passed. Additionally, the color of WSI is affected by the

characteristics of imaging device, such as illuminant spectrum; spectral sensitivities

of R, G, B components; and tone reproduction curve (gamma characteristics). Plus,

image handling software and display monitor influence the color visualized on a

monitor screen (Yagi and Gilbertson 2005). Such color variation affects the diag-

nosis using a color display and, moreover, causes a serious issue in image analysis.

In HE-stained specimen, the color is mostly determined by H and E dyes, and

approximately the absorbance can be modeled by Beer-Lambert law based on a

simple model as shown in Fig. 4.7. Although it is not exactly linear in the case of

RGB color image, a linear model is often applied after tone reproduction curve

correction (Rabinovich et al. 2004; Abe et al. 2005; Murakami et al. 2012).

An advantage of the model based on Beer-Lambert law is to enable color

unmixing for separating H and E components from an RGB color image. Then

the segmentation of nuclei and other tissue elements can be implemented using the

dye component images. This model can also be applied to the color correction. In

the color correction technique in the liver biopsy image analysis system (Yamashita

et al. 2014), RGB values are log-transformed, and the color distribution is adjusted

Fig. 4.6 Heat map visualization of the probability of cancer. Four biopsy samples are shown, and

red regions show high possibility of cancer. Other features automatically calculated by the system

can be selected to be visualized as a similar heat map
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to a reference image. The automatic color correction is one of the key technologies

for fully automatic WSI analysis system explained in Sect. 4.3. Similar algorithm

was developed for other staining techniques, such as DAB and EVG as well.

The technology for the correction of the difference in color reproduction char-

acteristics depending on devices is called color management. The RGB values

captured by an imaging device usually depend on the device characteristics, and

color management technology enables the exchange of color information between

different devices consistently. One method for color management is to use a

standard color space, such as sRGB, where it is easy to be implemented, but the

color gamut and the quantization levels are limited, resulting in the loss of color

information during data exchange. Another method is a color management using

ICC (International Color Consortium) profile. ICC profile describes the character-

istics of a device and enables the exchange of color without loss of color informa-

tion. ICC recently started a working group for the discussion on the application of

color management technology in medical imaging including digital pathology (ICC

2016). The method for color quality evaluation is under discussion, and a color

chart for the evaluation of WSI scanner is proposed. The standardized way for color

management in digital pathology will be established in the near future, and it will be

beneficial not only for the diagnosis using display monitor but also the application

of digital image analysis.

4.4.2 Spectral Imaging Application

Pathology image obtained by color camera or WSI scanner is normally constituted

of RGB three-primary color channels, but the application of spectral imaging

technology is also investigated. If the spectrum of light is divided into multiple

components (usually more than three), it is called multispectral imaging (Levenson

et al. 2004; Fuji et al. 2002). It allows the visualization of the information that is

invisible by direct observation, using higher wavelength resolution or invisible

E dyeH dye

Beer-Lambert law

Fig. 4.7 The model of color in the microscopic observation of stained tissue specimen (example

of HE-stained case). In the equation of Beer-Lambert law, Ii(λ), spectral distribution of incident

light; Io(λ), spectral distribution of transmitted light; EE(λ) and EH(λ), spectral absorption coeffi-

cients of E and H dyes; μE(x, y) and μH(x, y), dye amount distribution of E and H dyes; and σ(λ),
spectral absorbance of tissue
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wavelength range. Multispectral imaging was shown to be effective in the classi-

fication of melanoma or eosinophilic cells.

“Digital staining” using multispectral image is the technology that imitates

physical staining process by digital image processing (Bautista et al. 2005; Bautista

and Yagi 2012). For example, it is applied to digital Masson’s trichrome

(MT) staining from multispectral image of HE-stained tissue. MT staining is

usually used to visualize fiber region, in which the color is similar to cytoplasm

region in HE-stained case. Using the spectral characteristics of fiber tissue, it is

possible to visualize fiber area from the multispectral image of HE-stained tissue.

Similarly using digital staining technique, eosin component can be digitally added

to the image of DAB with hematoxylin counterstain. It helps the quantification of

IHC-stained tissue, because eosin visualizes cytoplasm, and the tissue structure

becomes clearer so that the observer can easily understand the cell is included in the

target cancer tissue or not. Physical stain requires lengthy time, and digital staining

technique will facilitate rapid and efficient examination.

Multispectral imaging is also effective for accurate color unmixing, or called

spectral unmixing (Levenson et al. 2004; Fuji et al. 2002). In addition to the fact

that the accuracy of unmixing of HE staining is improved, multiple chromogen can

be used in the imaging. In visualization step, spectral unmixing and synthesis will

provide richer information from a single tissue specimen.

Unmixing technique is advantageous in fluorescence imaging as well (Kraus

et al. 2007). Fluorescence observation is done more frequently in recent times, for

examining protein expressions in high accuracy. However, autofluorescence and

cross talk are sometimes mingled, and they are troublesome in quantification. The

unmixing technique is promising for removing such autofluorescence and

cross talk.

4.5 Summary

The status of introduction of digital technology and the possibility of computer-

aided differentiation in diagnostic pathology are presented. The pattern recognition

technology is ultimately advancing recently, such as big data analysis or deep

learning. Once it becomes possible to provide quantitative feature of tissues and

cells by computer-based analysis, such feature can be exploited as a new biomarker,

which is considered to be morphological marker, or phenotype marker. Such

biomarker will be employed along with gene or protein markers for determining

the treatment method that is most suitable for the specific patient. For this purpose,

it is necessary to realize the image analysis technology that provides reliable and

versatile morphological features even from the capture by different scanners and

the analysis of the relationship between those morphological markers and prognosis

or effectiveness of therapy selection.
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Chapter 5

Computer-Assisted Target Volume

Determination

Hidetaka Arimura, Yusuke Shibayama, Mohammad Haekal, Ze Jin,

and Koujiro Ikushima

Abstract The gross tumor volume (GTV) regions are the fundamental regions

used to determine the clinical target volumes (CTVs) and planning target volume

(PTV). The accuracy of the GTVs may affect tumor control and adverse events

related to organs at risk or normal tissue. The PTV is the volume that includes the

CTV plus CTV-to-PTV margin including the internal margin (IM) and the setup

margin (SM). This chapter introduces the computational segmentation approaches

for GTV and computational determination of the CTV-to-PTV margin.

Keywords Gross tumor volume (GTV) • Clinical target volume (CTV) •

Segmentation • Planning target volume (PTV) • CTV-to-PTV margin

5.1 Introduction

In general, radiation treatment planning (RTP) starts from the delineation of gross

tumor volumes (GTVs), which are the fundamental regions used for determination

of the clinical target volumes (CTVs) and planning target volumes (PTVs). The

accuracy of GTVs may affect the tumor control and adverse events related to organs

at risk or normal tissue. The GTV is the gross palpable or visible/demonstrable

extent and location of malignant growth based on the multifaceted information

obtained from a combination of imaging modalities (computed tomography (CT),

magnetic resonance imaging (MRI), positron emission tomography (PET), ultra-

sound, etc.), diagnostic modalities (pathology and histological reports, etc.), and

clinical examination (ICRU 1993). Figure 5.1 illustrates the definitions of the target

volumes including the GTV, CTV, and PTV (ICRU 1999). The CTV is the tissue
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volume that contains a demonstrable GTV and/or subclinical microscopic involve-

ment. This volume has to therefore be treated adequately in order to achieve the aim

of therapy: cure or palliation. The PTV is originally a geometrical concept taking

into consideration the net effect of all possible geometrical variations, in order to

ensure that the prescribed dose is actually absorbed in the CTV. The PTV is the

practical volume that includes the CTV plus the CTV-to-PTV margin including the

internal margin (IM) and setup margin (SM). The IM is designed to take into

account variations in the size and position of the CTVs relative to the patient’s
reference frames (usually defined by the bone anatomy), i.e., variations due to organ

motions such as breathing, bladder or rectal contents, etc. The SM allows for setup

uncertainties such as machine tolerances and intra-treatment variations. The margin

must be added to account specifically for uncertainties (inaccuracies and lack of

reproducibility) in patient positioning and alignment of the therapeutic beams

during treatment planning and through all treatment sessions. The CTV-to-PTV

margins are calculated using the van Herk’s margin model (van Herk et al. 2000;

van Herk 2004), which has been widely used in clinical practice.

This chapter introduces the automated segmentation approaches for the GTV,

the basics of CTV-to-PTV margins, and computational determination of the CTV-

to-PTV margin based on statistical shape models.

5.2 Automated Segmentation of GTV

The uncertainties of GTV regions have a high impact on the precision of the entire

radiation treatment course including treatment planning and patient positioning

(Weiss and Hess 2003). The CTV and PTV in the RTP are determined based on

the GTV regions. In particular, the GTV is critical in stereotactic body radiation

Fig. 5.1 Definitions of target volumes
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therapy (SBRT), as highly precise positioning is required to deliver a higher dose

per fraction to tumors. Once the GTV regions have been estimated, the CTVs are

automatically determined based on the GTV itself or extending the GTV with

microscopic invasion. The major reasons for the necessity of computer-assisted

delineation of the GTV and CTV are given below:

1. Low reproducibility: There are large intra- and interobserver variabilities of

GTV contours determined by radiation oncologists (Leunens et al. 1993; van de

Steene et al. 2002; Bradley et al. 2004; Chao et al. 2007). Leunens et al. (1993)

reported that the results of their study on brain tumors demonstrated that

subjective interpretation (manual delineation) of the tumor extent might be

one of the largest factors contributing to the overall uncertainty in radiation

treatment planning.

2. Tedious and time-consuming manual contouring: According to Chao’s study

(Chao et al. 2007), the average percentage of time saved by contouring using a

computer-assisted method is 26–29 % for experienced physicians and 38–47 %

for less experienced physicians.

The GTVs are the fundamental regions used to determine the PTV regions, which

are the actual target regions in radiation treatment planning and patient setup.

Therefore, a number of automated segmentation approaches of the GTVs have

been studied to mitigate the intra- and inter-planner variability, to reduce planning

time, and to increase the segmentation accuracy of the GTV (Rousson et al. 2005;

Biehl et al. 2006; Aristophanous et al. 2007; El Naqa et al. 2007; Geets et al. 2007;

Day et al. 2009; Belhassen and Zaidi 2010; Kerhet et al. 2010; Zhang et al. 2010;

Hatt et al. 2011; Niyazi et al. 2013; Jin et al. 2014).

The automated segmentation approaches can be categorized into two major

types: positron emission tomography (PET)-based and PET/CT-based. PET-based

approaches are based on model-based methods (Rousson et al. 2005), thresholding

of the standardized uptake value (SUV) (Biehl et al. 2006; Zhang et al. 2010),

region-growing methods using the SUV (Day et al. 2009), pixel-clustering-based

segmentation (Aristophanous et al. 2007), gradient-based segmentation methods

(Geets et al. 2007), the fuzzy locally adaptive Bayesian approach (Hatt et al. 2011),

the fuzzy c-means algorithm (Belhassen and Zaidi 2010), the total lesion glycolysis

(TLG) algorithm of PET Response Criteria in Solid Tumors (PERCIST) (Niyazi

et al. 2013), and a machine-learning framework to assist in the threshold-based

segmentation (Kerhet et al. 2010).

PET/CT-based approaches are based on a multivalued level set method that

provides a feasible and accurate framework to combine imaging data obtained from

different modalities (PET/CT) (El Naqa et al. 2007) and an optimum contour

selection (OCS) method for segmentation of lung GTV regions using a level set

method (Jin et al. 2014).

In this section, since the textbook focused on dealing with theoretically general

approaches, the authors introduced pixel-clustering-based segmentation

(Aristophanous et al. 2007), the OCS method (Jin et al. 2014), and the multivalued

level set method (El Naqa et al. 2007).
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5.2.1 Pixel-Clustering-Based Segmentation

Aristophanous et al. (2007) developed a pixel-clustering-based segmentation tech-

nique on selected PET tumor regions from non-small cell lung cancer patients. The

general algorithm of the pixel-clustering-based segmentation approach with a

Gaussian mixture model (GMM) to classify voxels into tumor and normal tissue

voxels is described in this section. The clustering is referred to as “unsupervised

learning” and does not require teacher signals (i.e., answers) as does “supervised

learning” such as an artificial neural network. The basic idea of the pixel-clustering-

based segmentation is to classify voxels into two classes, i.e., tumor and normal

tissue voxels, by clustering the voxels according to the maximum a posteriori

probability obtained by Bayes’ theorem (Aristophanous et al. 2007).

Let a region of interest (ROI) in an objective image be a vector x¼ (x1, x2, . . . ,
xN), where xi is the intensity at voxel i, and N is the number of voxels in the ROI.

The voxel intensity is regarded as the random variable, which is assumed to be

independent and identically distributed with a probability density function f(xi).
Suppose that we have a set of K density functions, fk(xi| θk), parameterized by θk,
where k is the class number (k¼ 1 , 2 , . . . ,K; K, the number of classes), called

component densities (or classes). Let the probability density function of the voxel

intensity xi given by θk be a Gaussian function, which can be expressed by

f k xijθkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp � xi � μkð Þ2
2σ2k

 !
, θk ¼ μk; σkð Þ, ð5:1Þ

where μk and σk are the mean value and standard deviation in the kth class,

respectively. Then, the probability density function of the voxel intensity xi given
by a parameter vector Ψ ¼ (π1, π2, . . . , πK, θ1, θ2, . . . , θK)(πk, mixing proportions)

is defined by

f xijΨð Þ ¼
XK
k¼1

πkf k xijθkð Þ: ð5:2Þ

The mixing proportion πk, which is regarded as the probability of belonging to a

class k, satisfies the following conditions:

0 � πk � 1and
XK
k¼1

πk ¼ 1: ð5:3Þ

Let Z ið Þ ¼ Z
ið Þ
1 ; Z

ið Þ
2 ; . . . ; Z

ið Þ
K

� �
be a class random vector, where Z

ið Þ
k is defined as
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Z
ið Þ
k ¼ 1 if a voxel i belongs to a class k

0 otherwise:

�
ð5:4Þ

The class random vector Z(i) follows a multinomial distribution. In accordance with

Bayes’ theorem, the posterior probability that Z(i)¼ k when a voxel intensity xi and
a parameter vector Ψ are given is calculated by

P Z ið Þ ¼ kjxi,Ψ
� �

¼ πkf k xijθkð ÞPK
m¼1

πmf m xijθmð Þ
ð5:5Þ

This equation denotes the probability that the ith voxel belongs to the kth class. The
final class of each voxel can be determined by the class, which has the maximum a

posteriori probability among classes 1 to K. By using an expectation-maximization

(EM) algorithm, from which the maximum likelihood parameters can be obtained,

the parameter vector Ψ can be estimated by maximizing the following likelihood

function:

L Ψð Þ ¼
YN
i¼1

f xijΨð Þ ¼
YN
i¼1

XK
k¼1

πkffiffiffiffiffiffiffiffiffiffi
2πσ2k

p exp � xi � μkð Þ2
2σ2k

 !
: ð5:6Þ

At the Eth step, at first, the posterior probability P(Z(i)¼ k| xi,Ψ ) (Eq. 5.5) is

calculated with the probability density function fk(xi| θk) based on the initially

clustered regions. Second, the expectation of a natural logarithm of the likelihood

is obtained by using Eq. (5.6). At the Mth step, the parameter vector Ψ is updated

based on new clustered regions. This iteration of E- and M-steps is stopped when

the change in the logarithm of the likelihood is smaller than a threshold value.

5.2.2 Optimum Contour Selection Method

The OCS method retrospectively determines a global optimum objective contour

from multiple active delineations around a tumor. In addition, PET images are

employed to determine the initial GTV regions to be used in the OCS method. First,

the PET image is registered with the planning CT image through a diagnostic CT

image of the PET/CT dataset by using an affine transformation (Jin et al. 2014).

Initial GTV regions are obtained by thresholding the PET image at 80 % of the

maximum standard uptake value (SUVmax) within a rectangular volume of interest

(VOI), which has the same geometric position as the VOI in the planning CT image.

Each initial GTV location is corrected in the VOI. Finally, the GTV region is

segmented using the OCS method.

The SUV is employed for identification of the initial GTV regions, and is

calculated as a ratio of the radioactivity concentration of tissue at a single time
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point to the injected dose of radioactivity concentration at that time point, divided

by the body weight (Boellaard 2009):

SUV ¼ CðkBq=mlÞ
DðMBqÞ=WðkgÞ , ð5:7Þ

where C represents the radioactivity concentration in kBq/ml obtained from the

pixel value in the PET image multiplied by a cross calibration factor, D is the

injected dose of 18-fluorodeoxyglucose (FDG) administered in MBq (decay

corrected), and W is the body weight of the patient in kg.

The final GTVs are segmented by applying the OCS method to the initial

regions, which are determined from the PET images. The basic concept of the

OCS method is to retrospectively select a global optimum object contour from

among multiple active delineations with a level set method around the tumors. In

the OCS method, the level set method (LSM) (Sethian 1999) is employed for

searching for the optimum object contour in the relationship between the average

speed function value on an evolving curve and the evolution time.

An original level set equation of a partial differential equation (Sethian 1999)

can be defined as

∂ϕðrðtÞ, tÞ
∂t

þ F k ∇ϕðrðtÞ, tÞ k¼ 0, ð5:8Þ

where ϕ(r(t), t) is the level set function, r(t) is the position vector at time t, and F is

the speed function, which depends on circumstances on the evolution curve. The

level set function is actually a distance image where the pixel values inside the

initial curve are negative Euclidean distance values from each pixel to the closest

pixel on the curve, but those outside the curve are positive distance values. The

level set equation can be transformed into a Hamilton-Jacobi equation, which is

equivalent to the Euler-Lagrange equation, as follows:

∂ϕ r tð Þ; tð Þ
∂t

þ H F;ϕ r tð Þ; tð Þ; tð Þ ¼ 0, ð5:9Þ

where H(F,ϕ(r(t), t), t)¼ F||∇ϕ(r(t), t)||, which is considered as a Hamiltonian.

Solving (integration of a differential equation) a Hamilton-Jacobi equation of a

contour involves the prediction of the contour with a minimum energy (possibly, a

stable contour) from the analytical mechanics standpoint.

In the first step of the OCS method, the GTV contour and the speed function

value obtained by the LSM are recorded at each evolution time from the initial GTV

region until the evolution time reaches 10,000 or the evolving curve reaches the

edge of the ROI in the planning CT image. The level set function φ(x, y, t) is

updated from the initial GTV contour by using the following discrete partial

differential equation:
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ϕnþ1ðx, y, tÞ ¼ ϕnðx, y, tÞ � ΔtFðx, y, tÞ k ∇ϕnðx, y, tÞ k , ð5:10Þ

where n is the evolution number, t is the evolution time, Δt is the evolution time

interval, and F(x, y, t) is the speed function. The evolution time is the time of the

contour deformation in updating the discrete partial differential equation. The zero

level set of ϕ(x, y, t), which corresponds to the contour of the segmented region,

moves according to the speed function F(x, y, t) in the three-dimensional level set

function. The zero level set function, i.e., the evolving curve, moves according to

the following speed function F(x, y, t):

F x; y; tð Þ ¼ b x; yð Þ 1� vκ x; y; tð Þf g, ð5:11Þ

bðx, yÞ ¼ 1

1þ k ∇fGðx, yÞ∗Iðx, yÞg k , ð5:12Þ

where b(x, y) is the function of the edge indicator, G(x, y) is the Gaussian function, I
(x, y) is the planning CT image to be processed, * denotes convolution, v is a

constant, and κ(x, y, t) is the curvature. The edge indicator function b(x, y) and speed
F (x, y, t) would be small around the edge, whereas the functions b(x, y) and F (x, y,
t) would be large in relatively homogeneous regions.

In the second step, the GTV contour is determined from the optimum contour

derived using the LSM by searching for the minimum point in the relationship

between the evolution time and the average speed function value on an evolving

curve, based on the steepest descent method (SDM). To avoid local minimum traps,

the average speed function is smoothed by a median filter, and the smoothed

function is resampled by a larger interval than the original one, before applying

the SDM.

Figure 5.2a shows the relationship in the LSM between the evolution time and

the average speed function value on an evolving curve. Figure 5.2b illustrates GTV

contours, which were multiply delineated by the proposed method on the planning

CT image of a lung cancer case. The average speed function �F x; y; tð Þ as a function
of the evolution time t converges to a global minimum of 4803. Therefore, the

optimum contour can be determined by detecting the minimum point in the

relationship between the average speed function and the evolution time.

5.2.3 Machine-Learning-Based Delineation

The key idea of the machine-learning-based delineation (MLD) was to feed image

features around GTV contours determined based on the knowledge or experiences

of radiation oncologists into a machine learning classifier during the training step,

after which the classifier produced the “degree of GTV” for each voxel in the testing

step (Ikushima et al. 2016). The overall procedure of the MLD framework consists

of the following four steps:
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1. The PET and diagnostic CT images were aligned with planning CT images

based on the centroid of lung regions in two CT images.

2. The morphological and biological image features were derived from planning

CT, PET, and diagnostic CT images. The image features are pixels and gradient

values of three types of images.

3. The initial GTV regions were obtained using one of machine learning tech-

niques, i.e., a support vector machine (SVM), which learned the image features

inside and outside each GTV region determined by radiation oncologists or

radiologists.

4. Final GTV regions were determined by thresholding the SVM outputs and/or the

OCS method.

The SVM (Vapnik 1999) is one of machine learning techniques that can classify

data into several (generally two) categories based on the output of a discriminant

function. The SVM constructs a discriminant function in a linearly separable space

by applying a nonlinear kernel function to a given training dataset. We consider a

training dataset of training data and teacher signals, [xi,yi] (xi2Rn , i , data number ;

n , dimension ; i¼ 1 , . . . , l , l , number of data, yi2 �1; 1f g), which we would like to
classify. The discriminant function f xð Þ constructed by the SVM is expressed by

(Vapnik 1999)

Fig. 5.2 Illustrations of (a) the relationship in the level set method between the evolution time and

the average speed function on a moving front line and (b) contours on a planning CT image at

evolution times
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f xð Þ ¼
XN
i¼1

yiαiK x; xið Þ þ b, ð5:13Þ

where xi (i¼ 1 , . . . ,N ,N, number of support vectors) is the support vector, b and

αi are parameters that determine the discriminant function, and K(x, xi) is the

nonlinear kernel function, which can map a linearly non-separable dataset to a

linearly separable dataset. The output was referred to as “degree of GTV” in this

study.

The training procedure of construction of the SVM is shown as follows:

Step 1: A training dataset of image features and teacher signals [xi,yi] is prepared,
where xi¼ (x1i, x2i, . . . , xFi) (F, number of image features). In this study, F is

6 or 4, which depends on lung tumor type.

Step 2: All parameters of the discriminant function are optimized by repeatedly

calculating the parameters using image features of the training dataset based on a

quadratic programming approach (Vapnik 1999).

The efficacy of the proposed framework was evaluated in 14 lung cancer cases

(solid, 6; ground glass opacity (GGO), 4; mixed GGO, 4) using the three-

dimensional Dice similarity coefficient (DSC), which denotes the degree of region

similarity between the GTVs contoured by radiation oncologists and those deter-

mined using the proposed framework. Figure 5.3 shows the planning CT, PET, and

SVM-output images for three types of lung tumors. A tumor of the solid type has a

high intensity with SUVmax of 7.75, but the GGO and mixed GGO types of tumors

show low intensities with SUVmax of 1.09 and 1.62, respectively. On the other hand,

the SVM enhanced not only the solid type of tumor but also the GGO and mixed

GGO types of tumors in spite of low SUVmax. The proposed framework including

the SVM and OCS method achieved an average DSC of 0.777 for 14 cases, whereas

the OCS-based framework produced 0.507. The average DSCs for GGO and mixed

GGO were 0.763 and 0.701, respectively, obtained by the proposed framework.

5.2.4 Multivalued Level Set Method

El Naqa et al. (2007) demonstrated the multimodality segmentation approach for

delineating target regions by combining complementary information from different

imaging modalities such as PET, CT, and MR systems and thus identifying GTV

regions by simultaneously using anatomical and functional information. Their

method was based on an active contour model without edges for vector-valued

images (such as RGB or multispectral images) (Chan et al. 2000). The advantage of

this model is to segment objects with different missing parts in different channels in

a mutually complementary manner. El Naqa et al. took advantage of mutually

complementary functions of the active contour model for vector-valued images

such as medical multimodality images in a same coordinate system.
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El Naqa et al. (2007) developed variational methods based on multivalued level

set (MVLS) deformable models for simultaneous 2D or 3D segmentation of

multimodality images consisting of combinations of coregistered PET, CT, or

MR datasets. In their approach, a GTV region in an image Ii(x, y) for the ith imaging

modality is segmented by minimizing the following energy function E with infor-

mation of N images Ii(x, y) (i¼ 1 to N ;N, number of imaging modalities):

E C; cþ; c�ð Þ ¼ μ ∙ length Cð Þ
þ 1

N

XN
i¼1

λþi
R
Ω Ii x; yð Þ � cþi
�� ��2H ϕð Þdxdyþ

λ�i
R
Ω Ii x; yð Þ � c�i
�� ��2 1� H ϕð Þð Þdxdyþ γi c

þ
i � c�i

� �2
( )

,

ð5:14Þ

where C is the parameterized evolving curve, c+ and c� are the average values of

the image Ii(x, y) inside and outside the curve C, respectively, and Ω is the bounded

open subset of R2. H(ϕ) is the Heaviside function, which is defined as

Fig. 5.3 shows the planning CT, PET, and SVM-output images for three types (solid, GGO,

mixed GGO) of lung tumors
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H xð Þ ¼ 1 x � 0

0 otherwise:

�
ð5:15Þ

The Heaviside function may be approximated by a smooth inverse tangent function

in the implementation. μ, λþi , λ
�
i , γi are parameters that should be determined by the

users.

5.2.5 Evaluation of Segmentation Accuracy of Developed
Methods

It is essential to evaluate the accuracy of the developed segmentation methods. The

segmentation accuracy should be evaluated using indicators such as the Jaccard

index (Crum et al. 2006), which denotes the degree of coincidence between the

candidate region obtained by a developed method and the reference region obtained

by a manual method, as follows:

JI ¼ n T \ Cð Þ
n T [ Cð Þ , ð5:16Þ

where T is the reference region manually determined by radiation oncologists, C is

the region automatically determined by using a developed method, n(T[C) is the
number of logical OR pixels between T and C, and n(T\C) is the number of logical

AND pixels between T and C. The following Dice similarity coefficient (Crum et al.

2006) is also used for evaluation of segmentation accuracy:

DSC ¼ 2 ∙ n T \ Cð Þ
n Tð Þ þ n Cð Þ , ð5:17Þ

where n(T ) is the number of pixels in the reference region and n(C) is the number of

pixels in the automatically segmented region.

5.3 Basics of CTV-to-PTV Margin

In the clinical practice of radiation therapy, there are many uncertainties with

respect to targeting tumors as follows:

• Intra- and interobserver variability of target delineations (observer errors or

noise)

• Intra- and inter-fractional patient setup (positioning) errors (external errors)

• Intra- and inter-fractional variation of target position and shape (organ motion or

internal errors)
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• Additional undefined errors

A number of efforts to minimize these uncertainties have been performed to

increase the accuracy of radiation therapy. Sophisticated immobilization devices,

image-guided patient positioning systems, and real-time tumor tracking systems

have been utilized in recent years. Nevertheless, safety margins, i.e., CTV-to-PTV

margins, are required when delivering sufficient doses to target tumors. The margin

is considered the inevitable choice for treating cancer even though the surrounding

normal tissue is exposed to the leaked dose.
van Herk (2004) summarized a number of margin recipes published in past

studies for target, respiration (target), and OAR. Gardner et al. (2015) evaluated the

variability among human observers in delineating (delineation errors) the prostate,

bladder, and rectum on planning CT and CBCT images. The contouring variation

was evaluated using quantitative metrics, such as Dice coefficient, Hausdorff

distance, contour distance, and center-of-mass deviation.

van Herk et al. (2000) proposed a CTV-to-PTV margin model, which has been

widely used, as follows:

mPTV ¼ ασs þ β σ � σp
� �

, ð5:18Þ
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2p

q
, ð5:19Þ

where σs is the 3D vector with the square root of a quadratic sum of the SD vectors

of all systematic errors, α is the coefficient of σs depending on confidence levels, β
is the distance between the 95 and 50 % isodose surface of a blurred dose

distribution, σr is the 3D vector with the square root of a quadratic sum of SD

vectors of all random errors, and σp is the SD describing the width of the penumbra

of a planned dose distribution, which may depend on the radiotherapy machines.

A one-dimensional CTV-to-PTV margin model in the x direction is given by

m xð ÞPTV ¼ ασs xð Þ þ β σ xð Þ � σp xð Þ	 

: ð5:20Þ

The systematic errors are involved with the delineation errors, setup errors, organ

motion errors (translation and rotation), and shape variations of the CTVs, whereas

the random errors are involved with organ motion errors and shape variations of the

CTVs. The systematic and random errors are described in the next section.

Figure 5.4 shows an illustration of the systematic and random errors of targets

for a population of N patients. Let a target position vector of a patient i (i ¼ 1 to N )

at a kth fraction (k ¼ 1 toM ) be pi , k. The basic concept of this figure was extracted
from a paper of Stroom and Heijmen (2002). The target mean position vector �pi of a
patient i for all fractions is calculated by
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�pi ¼
1

M

XM
k¼1

pi,k: ð5:21Þ

Furthermore, a mean vector �p of the target mean position vector �pi for all patients
is obtained by

�p ¼ 1

N

XN
i¼1

�pi, ð5:22Þ

which could be close to a zero vector. Therefore, the systematic error vector si of a
patient i is defined as

si ¼ �pi � �p, ð5:23Þ

where the mean vector of the systematic error si for all patients is a zero vector. The
systematic error σs(x) in the x direction is calculated by

σsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

f�piðxÞ � �pðxÞg2:
vuut ð5:24Þ

The random error vector ri , k for the kth fraction of the ith patient is defined as

Fig. 5.4 An illustration of systematic and random errors of targets for a population for N patients
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ri,k ¼ pi,k � �pi, ð5:25Þ

and the random error σr , i(x) of a patient i in the x direction is calculated by

σr, iðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
k¼1

fpi,kðxÞ � �piðxÞg2:
vuut ð5:26Þ

Therefore, the random error σr(x) for all patients in the x direction is obtained by

σrðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

σ2r, iðxÞ:
vuut ð5:27Þ

The systematic and random errors in the y and z directions are calculated in the

same way. If readers wish to consider several systematic errors σs , a(x) (a ¼ 1 to A;
A, number of different systematic errors, e.g., delineation errors, setup errors, organ

motion errors), which could be independent of each other, the total systematic error

can be obtained by

σsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A

XA
a¼1

σ2s,aðxÞ:
vuut ð5:28Þ

The total random error is also calculated in the same way.

The coefficient α of the 3D SD vector σs of the systematic error determines the

margin to tolerate the systematic error with a confidence level of C. Let a 3D

density probability function of a CTV location be p(x, y, z; σs), which is given by

p x; y; z; σsð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2s

p� �3 exp � x2 þ y2 þ z2

2σ2s

� �
: ð5:29Þ

It is assumed that the SDs are equal in the x , y , and z directions. The probability is

considered the confidence level. Therefore, the probability that an error with the

density probability function occurs between –w and w can be computed by an

integration of the density probability function from –w to w with respect to x , y , z.
2w corresponds to the margin for the systematic error.

By integrating the density probability function p(x, y, z; σs) in a polar coordinate

system, the probability (confidence level of C) of the error occurrence is reduced to
(van Herk et al. 2000):

C ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
α ∙ e�α2

2 þ erf
αffiffiffi
2

p
� �

α ¼ w

σs

� �
,

s
ð5:30Þ

where erf(∙) represents an error function. Readers can calculate the coefficients α for
the confidence levels required by using a root-finding algorithm such as a bisection
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method or Newton method. For instance, a coefficient α of 2.5 is obtained for a

confidence level of 0.9 (Table 2 in van Herk et al. 2000).

The coefficient β of the 3D SD vector σr of the random error controls the margin

to allow the random error with a dose level of D. The blurred dose distribution of a

step function affected by the random error is expressed by

D x; y; zð Þ ¼ Dnominal ∙ p x; y; z; σrð Þ*S x; y; z;wð Þ, ð5:31Þ

where Dnominal is the nominal total dose (prescribed dose), S(x, y, z,w) is the 3D step

function (a solid sphere), and w is the radius of the dose distribution at the 50 %

dose level. According to van Herk et al. (2000), the coefficient β is given by

β ¼
ffiffiffi
2

p
∙ erf�1 2D� 1ð Þ, ð5:32Þ

where erf�1(∙) is the inverse error function and D is the dose level which is desired.

For example, a coefficient β of 1.64 is obtained for a dose level of 0.95 (second

column of Table 3 in van Herk et al. 2000). The term including the SDs of the

random error and penumbra is approximated by using a linear function within small

random errors as follows:

βfσðxÞ � σpðxÞg ¼ βf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2rðxÞ þ σ2pðxÞ

q
� σpðxÞg ð5:33Þ

β σ xð Þ � σp xð Þ	 
 � γσr xð Þ, ð5:34Þ

where γ is the coefficient of the SD of the random error. For instance, if σp(x) ¼
3.2 mm at a dose level of 0.95, γ is around 0.7 within the range of the random error

of 0–5 mm (third column of Table 3 in van Herk et al. 2000). Readers can verify this

approximation using a curve-fitting algorithm. When having more than 5 mm

random errors, we may need to use an exact equation as shown above for determi-

nation of the additional PTV margins. In general, such random errors do not happen

in clinical practice.

5.4 Computational Approaches for Determination of CTV-

to-PTV Margins

Computational anatomies are useful for developing mathematical models to predict

uncertainties related to anatomy in radiation therapy such as organ motions and/or

organ deformations by patient and/or fraction (Okada et al. 2008; van der Wielen

et al. 2008; S€ohn et al. 2005, 2007, 2012; Th€ornqvist et al. 2013; Xu et al. 2014,

2015). Computational anatomy includes mathematical models of anatomical struc-

tures using statistical shape models, which is a novel field between medical

anatomy and statistical computational image analysis. The authors believe that
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computational anatomy may be feasible for radiation therapy, because many

parameters (e.g., CTV-to-PTV margin) should be determined based on statistical

data by taking into account uncertainties (e.g., setup errors, intra-fractional organ

motion) in the radiation therapy steps (diagnosis, treatment planning, patient

positioning, and treatment execution).

5.4.1 Analysis of Target Deformation Using Point
Distribution Models

Computational anatomical approaches based on point distribution models (PDMs)

(Okada et al. 2008) are promising tools for the determination of CTV-to-PTV

margins, because we can analyze the motion of each point (displacement) on an

objective surface, such as CTV surfaces, for a population of patients at a number of

treatment fractions.

Let pi , j(k)¼ ( pi , j , x(k), pi , j , y(k), pi , j , z(k))
T be a 3D position vector of the kth

vertex (k¼ 1 toM ) on the objective (CTV) surface Si , j for the ith patient (i¼ 1 to N)
at the jth fraction ( j¼ 1 to F ; j¼ 1 : reference fraction), where x, y, and z correspond
to right-left (LR), anterior-posterior (AP), and superior-inferior (SI) directions,

respectively. Figure 5.5 illustrates a point distribution model of an object. The

surface (shape) of an object is defined as a matrix (a set of vertex vectors) as

follows:

Si, j ¼ pi, j 1ð Þ pi, j 2ð Þ . . . pi, j kð Þ . . . pi, j Mð Þ
� �

: ð5:35Þ

The systematic and random displacements at the vertices of surfaces can be

calculated using the PDMs (van der Wielen et al. 2008). Let a displacement matrix

of the transformed surfaceD
1ð Þ
i, j ¼ di, j 1ð Þ di, j 2ð Þ . . . di, j kð Þ . . . di, j Mð Þ� �

be for the jth

fraction of the ith patient from the surface Si , 1 for the first fraction (reference

fraction) of the ith patient. The displacement matrix is derived from

D
1ð Þ
i, j ¼ T

1ð Þ
i, j Si, j � Si, 1, ð5:36Þ

where T
1ð Þ
i, j is the nonrigid transformation matrix (e.g., a thin plate spline robust

point matching (TPS-RPM) algorithm (Chui and Rangarajan 2003)) to register each

surface Si , j with a reference surface Si , 1.Therefore, the average surface Si for all

fractions of the ith patient is obtained from

�Si ¼ Si, 1 þDi , ð5:37Þ

where
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Di ¼ 1

F

XF
j¼1

Di, j ð5:38Þ

and

�Di ¼ �di 1ð Þ �di 2ð Þ . . . �di kð Þ . . . �di Mð Þ� �
: ð5:39Þ

The displacement matrix D
að Þ
i of the transformed average surface T

að Þ
i

�Si of the ith

patient from the average surface for all fractions of the first patient �S1 is given by

D
að Þ
i ¼ T

að Þ
i

�Si � �S1, ð5:40Þ

Therefore, the average surface �S for all fractions of all patients is obtained from

�S ¼ �S1 þD að Þ ð5:41Þ

where

D að Þ ¼ 1

N

XN
i¼1

D
að Þ
i : ð5:42Þ

Finally, the systematic displacement εi(k) along the surface normal vector ni(k) at

the kth vertex, which is distributed on the average surface Si of the ith patient, can

be defined as (van der Wielen et al. 2008):

Fig. 5.5 A point

distribution model of an

object
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εi kð Þ ¼ 1

F� 1

XF
j¼1

d
1ð Þ
i, j kð Þ; ni kð Þ

� �
, ð5:43Þ

where (∙, ∙) denotes the inner product. Then, the corresponding SDs of the random

displacement along the surface normal vector are calculated by

δi kð Þ ¼ 1

F� 1

XF
j¼1

d
1ð Þ
i, j kð Þ � �di kð Þ; ni kð Þ

� �2
: ð5:44Þ

5.4.2 Statistical Shape Models of Targets

Statistical shape models of targets with statistical shape analysis are utilized for

prediction of CTV day-by-day deformations or variations for a population of

patients, which is useful in radiation treatment planning (van der Wielen et al.

2008; S€ohn et al. 2005, 2007, 2012; Th€ornqvist et al. 2013; Xu et al. 2014, 2015).

van der Wielen et al. (2008) analyzed the deformation of the prostate and, in

particular, the seminal vesicles relative to intraprostatic fiducial markers. S€ohn
et al. (2005, 2007, 2012) applied principal component analysis (PCA) to rectal

DVHs of prostate cancer patients and investigated the correlation of the PCA

parameters with late bleeding, because the variability of dose-volume histogram

(DVH) shapes in a patient population can be quantified using PCA. Th€ornqvist et al.
(2013) introduced a statistical deformable motion model for multiple targets based

on PCA. They applied the model to treatment simulations for dosimetric evaluation

of margins for the multiple targets in radiation therapy of locally advanced prostate

cancer. Xu et al. (2014, 2015) compared a standard fixed margin-based planning

technique with two coverage-based planning techniques with a consideration of the

dosimetric impact of interfraction deformable organ motion exclusively for high-

risk prostate treatments. The coverage-based plans were made by using the PCA for

reconstruction of the model of patient-specific inter-fractional deformable organ

changes. The PCA was used to predict patient geometries for virtual treatment

course simulation. Figure 5.6 describes a big picture of a computational anatomy in

a coordinate system reconstructed by eigenvectors (e1 , e2 , . . . , er) obtained from

principal component analysis.

In general, the statistical shape analysis is based on PCA. PCA is a statistical

technique, which uses a principal axis transform (one of orthogonal transforms) to

find a new coordinate system based on eigenvectors called “principal components.”

Figure 5.7 illustrates an original coordinate system and a new coordinate system

obtained by a principal axis transform. A Fourier series expansion is one of

orthogonal transforms, in which sine and cosine waves are employed as orthogonal

functions, which are mathematically orthogonal to each other like a set of
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orthogonal vectors. Arbitrary waves can be expressed as a linear combination of a

direct current, sine, and/or cosine waves as shown in Fig. 5.8, which means

decomposition of arbitrary waves by sine and/or cosine waves. Similarly, PCA

can produce a linear combination of a mean vector and eigenvectors, which are

orthogonal to each other, for arbitrary data. Figure 5.9 shows a linear combination

of a mean vector �qið Þ and eigenvectors (ei , 1 , ei , 2 , ei , 3 . . . ) for an arbitrary

PDM-based shape, which were computed by PCA. The advantage of PCA is that

the readers can visualize the eigenvectors, which is generally quite a boring linear

algebra subject.

The problem of the application of PCA to PDMs is how to determine the

coefficients and eigenvectors. The procedure of PCA is described below:

1. Calculation of a covariance matrix

2. Applying a singular value decomposition (SVD) for covariance matrix

3. Analysis of eigenvectors and eigenvalues for your purposes

We now consider the case where we want to reconstruct a computational

anatomy for the jth fraction ( j¼ 1 to F) of the ith patient (i¼ 1 to N). Let a surface
or shape vector including all vertex position vectors (k¼ 1 to M ) be qi , j¼ ( pi , j ,
x,(1), . . . , pi , j , x(M ), pi , j , y(1), . . . , pi , j , y(M ), pi , j , z(1), . . . , pi , j , z(M )) for the jth
fraction of ith patient. Furthermore, the patient matrix can be defined as

Pi ¼ bqi, 1 � �qi bqi, 2 � �qi . . . bqi,F � �qi
� �

, ð5:45Þ

where

�qi ¼
1

F

XF
j¼1

bqi, j, ð5:46Þ

Fig. 5.6 A big picture of a

computational anatomy in a

coordinate system

reconstructed by

eigenvectors (e1 , e2 , . . . ,
er) obtained from principal

component analysis. The

vector aprostate represents a
computational anatomy

(e.g., a computational

prostate)

5 Computer-Assisted Target Volume Determination 105



Fig. 5.7 An illustration of an original coordinate system and a new coordinate system obtained by

a principal axis transform

Fig. 5.8 A linear combination of a direct current, sine, and/or cosine waves for an arbitrary wave,

whose coefficients were calculated by the Fourier series expansion

Fig. 5.9 A linear combination of a mean vector �qið Þ and eigenvectors (ei , 1 , ei , 2 , ei , 3 . . . ) for an
arbitrary PDM-based shape, which were computed by PCA
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bqi, j is the transformed shape vector qi , j to a reference shape vector, and �qi was a

mean vector of bqi, j. The covariance matrix for all fractions of ith patient is given by

Vi ¼ 1

F
Pi

TPi: ð5:47Þ

This matrix size is N � N, which is much smaller than a PiPi
T matrix size of 3M �

3M. Singular values and eigenvectors (ei , 1 , ei , 2 , . . . , ei , r ; r�N ) are obtained by

applying SVD for the covariance matrix. Eigenvectors and nonnegative eigen-

values for the matrices 1
FPiPi

T and 1
FPi

TPi are identical to each other (Trefethen

LN and Bau III D 1997). The eigenvectors correspond to nonnegative eigenvalues,

which are ranked in descending order. Finally, the shape vector for the jth fraction

of ith patient is approximated by

qi, j � �qi þ ci, j, 1ei, 1 þ ci, j, 2ei, 2 þ � � � þ ci, j, rei, r r � Nð Þ, ð5:48Þ

where

ci, j ¼ Ui
T qi, j � �qi
� �

ci, j ¼ ci, j, 1 ci, j, 2 . . . ci, j, r
� �Tn o

, ð5:49Þ
Ui ¼ ei, 1 ei, 2 . . . ei, rð Þ: ð5:50Þ

The coefficient vector is an optimum solution to approximate the original data using

a linear combination of eigenvectors. The coefficient vector can be obtained by

minimizing the following cost function:

J ¼ 1

2
qi, j � �qi þ ci, j, 1ei, 1 þ ci, j, 2ei, 2 þ � � � þ ci, j, rei, r

� � 2 ! min: ð5:51Þ

Readers can solve this minimization problem by using a least squares method.

Figure 5.10 shows a projection of original data qi , j to a low-dimensional space VN .

The error represents the difference between the original data and an approximated

data in a cost function J.

Fig. 5.10 A projection of

original data qi , j to a

low-dimensional space VN
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Chapter 6

Computer-Assisted Treatment Planning

Approaches for SBRT

Taiki Magome

Abstract This chapter describes computer-assisted treatment planning approaches

for stereotactic body radiation therapy (SBRT), focusing especially on beam angle

optimization and similar-case-based treatment planning. The determination of

appropriate treatment plans for SBRT is a substantial and demanding task for

inexperienced treatment planners. A computer-aided treatment planning system

for SBRT could help treatment planners by capitalizing on the knowledge and

skills that are stored in radiotherapy treatment planning databases. First, the chapter

describes a computer-aided method of determining beam arrangements based on

similar cases in a radiotherapy treatment planning database. Second, the chapter

discusses a similar-case-based optimization method for beam arrangements that

was designed to assist treatment planners. The methods introduced herein could be

employed as computer-aided tools that assist treatment planners. The quality of

radiotherapy could thus be normalized across treatment planners with different

levels of experience in SBRT.

Keywords Treatment planning • Similar case • Knowledge based • Computer

aided • Stereotactic body radiation therapy

6.1 Introduction

Stereotactic body radiation therapy (SBRT) can be used to deliver highly conformal

doses to tumors while minimizing doses to surrounding organs at risk (OARs) and

normal tissues with steep dose gradients (Nagata et al. 2005, Takayama et al. 2005;

Timmerman et al. 2006a, 2007; Glide-Hurst and Chetty 2014). In general, hypo-

fractionated regimens (10–20 Gy in five or fewer fractions) have been used.

Numerous phase I/II studies of early-stage lung and liver cancers have shown

high local control rates and good tolerability (Nagata et al. 2005, 2011; Timmerman

et al. 2006b, 2010; Onishi et al. 2011; Taremi et al. 2012; Shioyama et al. 2013).
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Recently, this technique has made substantial progress with intensity-modulated

radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and flatten-

ing filter-free (FFF) beams (Videtic et al. 2010; Holt et al. 2011; Zhang et al. 2011;

Takahashi et al. 2013; Hrbacek et al. 2014; Nakagawa et al. 2014; Yamashita et al.

2014a).

Radiotherapy treatment planning (RTP), which is one of the most important

procedures for SBRT, is determined by treatment planners in a time-consuming

iterative manner. In particular, it is essential to determine an appropriate beam

arrangement, which generally consists of a large number of coplanar and

noncoplanar static beams or rotational beams (Takayama et al. 2005; Liu et al.

2006; Lim et al. 2010).

In general, the choice of an appropriate beam arrangement for lung SBRT has

varied across institutions, depending on their individual circumstances. Regarding

the number of beams, Takayama et al. (2005) reported routine use of five to ten

beams with coplanar and noncoplanar directions in order to deliver homogeneous

target dose distributions during lung SBRT, while avoiding high doses to normal

tissues. Liu et al. (2006) found that the optimal number of beams for lung SBRT

was 13–15 with coplanar and noncoplanar directions. A large number of beams

increase the required treatment time, which should be as short as possible to reduce

intra-fractional patient motion. Moreover, the available beam direction space is

restricted by the size of the gantry and the immobilizer. The beam arrangement

plans are not limited to the beam directions; planning also includes nominal beam

energies, collimator angles, beam weights, and other parameters.

One of the most difficult problems in RTP is the patient-specific trade-off

between the benefit of irradiating the tumor and the risk to surrounding normal

tissues. Therefore, treatment planners should select a plan that is most suitable for

the individual patient who is in their care. In the rest of this chapter, several methods

of overcoming the abovementioned problems are discussed.

6.2 Target and Organ Determination in SBRT

The majority of treatment planning procedures for SBRT are the same as those used

for conventional treatment planning: (1) contouring of a target and OARs, (2) deter-

mination of the beam arrangements, and (3) optimization of the dose distribution

(via a trial-and-error approach or inverse planning, such as in IMRT and VMAT).

The four-dimensional motions of the target and OARs should be considered in

SBRT. Report 62 of the International Commission on Radiation Units & Measure-

ments (ICRU 1999) introduced the concept of the internal target volume (ITV), in

which the internal margin due to physiological motion (e.g., respiration) is added to

clinical target volume (CTV). The ITV can be created individually according to the

internal respiratory motion of the patient, which can be measured with an X-ray

simulator or four-dimensional computed tomography (4DCT) (Underberg et al.

2004; Rietzel et al. 2005; Yamashita et al. 2014b). When 4DCT is used for this
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purpose, the motions of the target and organ are visualized in different phases of the

respiratory cycle. CTVs can be delineated on all 4DCT phases, and a union can be

defined as the ITV.

6.3 Beam Angle Optimization

Many researchers have investigated automated methods for beam angle optimiza-

tion (BAO) (Rowbottom et al. 1999; Pugachev and Xing 2002; Djajaputra et al.

2003; Gaede et al. 2004; Wang et al. 2004; Meyer et al. 2005; de Pooter et al. 2006,

2008; Liu et al. 2006; Aleman et al. 2008; Potrebko et al. 2008; Li and Lei 2010;

Vaitheeswaran et al. 2010; Breedveld et al. 2012; Bertsimas et al. 2013).

Rowbottom et al. (1999) suggested a method in which the coplanar beam orienta-

tion was determined using an artificial neural network. Li et al. (Li and Lei 2010)

developed a DNA-based genetic algorithm to solve the BAO problem in coplanar

directions for IMRT planning. De Pooter et al. (2006, 2008) investigated an

optimization method for noncoplanar beams based on the cycle algorithm for

SBRT of liver tumors. Meyer et al. (2005) developed an automated method for

the selection of noncoplanar beams by using a cost function based on radiation

absorption in normal tissue and OARs for three-dimensional conformal radiother-

apy. The majority of the abovementioned methods maximize or minimize a cost

function, which is often defined without information on the dose distribution in

order to reduce computational costs. Treatment planning time could be reduced by

using these BAO algorithms, as compared with trial-and-error approaches.

6.4 Similar-Case-Based Treatment Planning

In the field of diagnostic radiology, the presentation of similar cases as a diagnostic

aid has been suggested when making diagnoses based on chest images (Aisen et al.

2003), lung computed tomography images (Kumazawa et al. 2008), and mammog-

raphy images (Kumazawa et al. 2008, Muramatsu et al. 2005, 2009, 2010). These

studies have indicated that it is feasible to use similar cases as a diagnostic aid. To

date, the usefulness of similar cases in the field of radiation oncology has been

shown in several studies. Commowick and Malandain (2007) used a similar image

in a database for the segmentation of critical structures. Chanyavanich et al. (2011)

developed new prostate IMRT plans based on similar cases. Mishra et al. (2011)

investigated the case-based reasoning approach to determine the most appropriate

dose plans for prostate cancer patients. Schlaefer and Dieterich (2011) showed the

feasibility of case-based beam generation for robotic radiosurgery. Therefore, the

clinically usable beam arrangements for SBRT might also be determinable based on

past similar cases.
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RTP is a time-consuming task, especially for less experienced treatment plan-

ners. Treatment planning skills are developed by repeated planning experiences in

clinical practice, often under the guidance of experienced planners or appropriate

textbooks. As they gain experience, treatment planners should memorize many

planning patterns and construct an evolving “database” in their memory, which can

then be searched for past cases that are similar to the case under consideration.

Therefore, a similar-case-based treatment planning tool (Fig. 6.1) may reduce both

the workload for treatment planners and the inter-planner variability of treatment

plans. Moreover, the similar-case-based approach to RTP could be adjusted to the

specific circumstances and contexts of different institutions by replacing the RTP

database.

6.5 Similar-Case-Based Beam Angle Optimization

The accuracy and efficiency of beam arrangement determinations could potentially

be improved by combining similar-case-based treatment planning and BAO algo-

rithms (Magome et al. 2013a, b). Figure 6.2 shows the overall scheme of the

similar-case-based beam angle optimization method, which consisted of three

main steps. First, cases that were similar to an objective case were automatically

selected from the RTP database based on geometrical features related to structures,

such as the location, size, and shape of the target and OARs. Second, the initial

beam arrangements of the objective case were determined by registering similar

cases to the objective case, using a linear registration technique (Burger and Burge

New case

Similar 
case

Similar 
case 

based 
plan

Optimized 
plan

Retrieval 
case

Fig. 6.1 Conceptual

scheme of similar-case-

based radiotherapy

treatment planning
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2007). Finally, the beam directions of the objective case were locally optimized

based on the cost function, which took the radiation absorption in normal tissues

and OARs into account.

6.5.1 Feature Extraction for Searching Similar Cases

It is very important to consider the exact meaning of “similarity” in the radiation

oncology field. “Similarity” could be defined in many different ways, for example,

based on the similarity of the tumor type (histological type or staging), the patient

(gender, age, height, weight, etc.), or other characteristics. However, similar cases

should be defined from the viewpoint of treatment planning because they are

intended to be useful for the treatment planner. It should be assumed that the

geometrical similarity with respect to tumor and OAR among clinical cases may

be a key in the similar-case-based treatment planning. Therefore, four types of

features (comprising 10 features in total) were defined for lung SBRT: the planning

target volume (PTV) shape, the PTV size, the lung dimensions, and the geometrical

relationship between the PTV and the spinal cord (Fig. 6.3), as assessed using the

DICOM-RT structure set (Magome et al. 2013a).

The ten defined geometrical features were described as follows: PTV centroid in

left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions; effec-
tive diameter of the PTV; sphericity of the PTV; lung dimension in LR, AP, and SI

directions; distance between the PTV and the spinal cord in the isocenter plane; and

angle from the spinal cord to the PTV in the isocenter plane. The PTV centroid was

determined by registering the lung structure image of each case in the RTP database

with that of a reference case, using a linear registration technique (Burger and

Burge 2007). The effective diameter was defined as the diameter of a sphere with

the same volume as the PTV. The sphericity was defined as the roundness of the

PTV without directional dependence, and given by the ratio of the number of

logical AND voxels between the PTV and its equivalent sphere with the same

centroid and volume as the PTV to the number of PTV voxels. The lung dimensions

were defined as the three side lengths of the circumscribed parallelepiped of the

Objective case Extraction of 
geometrical features

Selection of 
similar cases

Determination 
of initial beam 
arrangements

Local optimization of 
beam arrangements

Similar-case-based 
beam arrangements

Fig. 6.2 Overall scheme of similar-case-based beam angle optimization
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lung regions in the LR, AP, and SI directions. The distance between the PTV and

spinal cord was measured between the centroid of the PTV and that of the spinal

cord in the isocenter plane. The angle from the spinal cord to the PTV was defined

in the two-dimensional coordinate system with the origin at the centroid of the

spinal cord in the isocenter plane, and ranged from �π (clockwise) to π (counter-

clockwise) for a baseline of the posterior-anterior direction. Although only the PTV

centroid was determined in a fixed reference coordinate system by registering the

lung regions of each case in the RTP database with those of a reference case, the

other features were calculated with respect to each of their original coordinate

systems. The calculations were performed in this way in order to consider both the

relative similarity of the tumor in the lung regions and absolute similarities, such as

of the lung dimensions and spinal cord position.

6.5.2 Selection of Similar Planning Cases Using Geometrical
Features

The RTP database was searched for the cases that resembled the objective case by

considering the weighted Euclidean distances between the geometrical feature

vector of the objective case and the geometrical feature vectors of all other cases

in the RTP database (Fig. 6.4). The weighted Euclidean distance was thus regarded

PTV location Lung dimension

PTV shape Geometrical relationship 
between PTV and spinal cord

Distance 
between 
PTV and 

spinal cord 

Angle from 
spinal cord 

to PTV

+π 0 -π

Lung size

PTV centroid
(x, y, z)

Effective diameter of PTV

A diameter of the sphere 

with the same volume as the PTV  

Sphericity of PTV

A: logical AND voxels 
between equivalent
sphere and PTV

S: PTV voxels

A
S A

S

Equivalent 
sphere

PTV
A

S

Fig. 6.3 Geometrical features, which were used to search for similar cases in a lung SBRT

database (Magome et al. 2013a)
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as a similarity measure. The weighted Euclidean distance dimage was calculated

using the following equation:

dimage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXG
i¼1

wi Ai � Bið Þ2
vuut , ð6:1Þ

where G is the number of geometrical features, wi is the weight of the i-th
geometrical feature, Ai is the i-th geometrical feature for the objective case, and

Bi is the i-th geometrical feature for another case in the RTP database. Note that

each geometrical feature was normalized by subtraction of a mean of the feature

and dividing it by the standard deviation of its value for all cases in the RTP

database.

Weights were needed for the geometrical features in order to incorporate their

relative importance from the viewpoint of treatment planning. Therefore, when

applying the proposed method to their own databases, each institute should deter-

mine the appropriate weights for the geometrical features based on their own

philosophy or policy of treatment planning. In our investigation, the weights for

geometrical features were empirically set as follows: PTV centroid (three-

dimension) ¼ 0.3, effective diameter of PTV ¼ 0.1, sphericity of PTV ¼ 0.1,

lung dimension (three-dimension) ¼ 0.3, distance between PTV and spinal cord ¼
1.0, and angle from spinal cord to PTV ¼ 1.0.

Feature n-1

Feature 1

Feature n

Objective case
1st similar case 2nd similar case

3rd similar case

Feature 2

Fig. 6.4 Conceptual illustration of an objective case and similar cases in a n-dimensional feature

space. Most similar case was defined as the case that was closest to the objective case in the feature

space, as measured with a weighted Euclidean distance
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6.5.3 Determination of Initial Beam Arrangements Based
on the Linear Registration Technique

In the second step, beam arrangements for the objective case were automatically

determined (Magome et al. 2013a) based on the registration of similar cases with

the objective case in terms of lung regions, using a linear registration technique

(i.e., affine transformation) (Burger and Burge 2007). The beam arrangement of the

similar case was modified to fit the objective case with respect to the lung regions.

First, a beam angle (i.e., a beam direction with a gantry angle θ and couch angle

φ) was described as a point in a Cartesian coordinate system. As shown in Fig. 6.5,

the beam direction with gantry angle θ and couch angle φ can be considered as a

line in a spherical polar coordinate system, with the origin as the isocenter. An

arbitrary point (xθ,φ, yθ,φ, zθ,φ) on the line is described in a Cartesian coordinate

system as follows:

xθ,ϕ
yθ,ϕ
zθ,ϕ

0
@

1
A ¼

xiso þ r sin θ cosϕ
yiso � r cos θ

ziso þ r sin θ sinϕ

0
@

1
A: ð6:2Þ

where r is distance from the isocenter (xiso, yiso, ziso). In this study, r has no meaning

(r¼ 1 for simplicity) because the purpose of the analysis is registration of the beam

angle.

Second, each beam point of the similar case in the Cartesian coordinate system

was modified based on a linear registration technique (i.e., an affine transformation)

(Burger and Burge 2007). Please note that the linear registration maps straight lines

to straight lines, and thus the beam directions—which can be considered as

points—are uniquely and automatically determined by the registration. The beam

point (xθ,φ, yθ,φ, zθ,φ) was modified to the point (x0θ,φ, y0θ,φ, z0θ,φ) by using the affine
transformation matrix to register the lung regions of each similar case with those of

the objective case, as follows:

x
0
θ,ϕ

y
0
θ,ϕ

z
0
θ,ϕ
1

0
BBB@

1
CCCA ¼

u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
0 0 0 1

0
BB@

1
CCA

xθ,ϕ
yθ,ϕ
zθ,ϕ
1

0
BB@

1
CCA, ð6:3Þ

where u11. . .u34 are the transformation parameters. The isocenter point (xiso, yiso,
ziso) was also modified to the point (x0iso, y0iso, z0iso) in the same manner. The affine

transformation can apply a linear combination of translation, scaling, rotation,

and/or shear mapping. Further details can be found in the literature (Burger and

Burge 2007). The vertices of a circumscribed parallelepiped of a lung (including the

left and right lung regions) were automatically obtained as feature points to

calculate the parameters of the affine transformation matrix. In this study, the
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circumscribed parallelepiped was chosen to reduce the calculation time that was

necessary to find the feature points of the lung.

Finally, the resulting direction vector (x0θ,φ– x0iso, y0θ,φ– y0iso, z0θ,φ– z0iso) in the

Cartesian coordinate system was converted into the spherical polar coordinate

system as gantry angle θ0 and couch angle φ0, as follows:

θ
0 ¼ tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
0
θ,ϕ � x

0
iso

� �2

þ z
0
θ,ϕ � z

0
iso

� �2
r

� y
0
θ,ϕ � y

0
iso

� �
0
BB@

1
CCA, ð6:4Þ

ϕ
0 ¼ tan �1

z
0
θ,ϕ � z

0
iso

� �
x
0
θ,ϕ � x

0
iso

� �
0
@

1
A: ð6:5Þ

6.5.4 Local Optimization of Beam Arrangements

The beam directions of the objective case were locally optimized based on the cost

function, which took into account the radiation absorption in normal tissues and

OARs (Magome et al. 2013b). Although Meyer et al. (2005) developed the cost

function for a global optimization of beam arrangements, the cost function was used

for the local optimization of each beam direction in this study. The cost function

Cθ,φ of a beam with gantry angle θ and couch angle φ was defined as follows:

r

Y

Z

X

Y

Z

X

Polar coordinate system Cartesian coordinate system 

xq,f

zq,f

yq,fq

Beam 
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0 0f

Fig. 6.5 Illustration of a beam direction with gantry angle θ and couch angle φ in a spherical polar

coordinate system and a Cartesian coordinate system. Here, the origin indicates an isocenter and

couch angle φ is defined with respect to the patient-fixed coordinate system
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Cθ,φ ¼ Cθ,φ PTVð Þ þ
X
k

wkCθ,φ OARkð Þ, ð6:6Þ

where Cθ,φ(PTV) represents the dose absorption in normal tissue until the X-ray

beams reach the PTV surface, Cθ,φ(OARk) is a term for the irradiation of k-th OAR,
and wk is a weight for the k-th OAR. The first term Cθ,φ(PTV) was determined by

the following equation:

Cθ,φ PTVð Þ ¼ 1� exp �μdθ,φ PTVð Þ� �
, ð6:7Þ

where μ is a linear attenuation coefficient in water, and dθ,φ(PTV) is the mean

distance in centimeters from the body surface to the PTV surface. The second term

for the k-th OAR Cθ,φ(OARk) was defined as follows:

Cθ,ϕ OARkð Þ ¼ λvθ,ϕ OARkð Þ þ 1� λð Þexp �μdθ,ϕ OARkð Þ� �
, ð6:8Þ

where vθ,φ(OARk) is an irradiated fractional volume of the k-th OAR, dθ,φ(OARk) is

the mean depth from the body surface to the k-th OAR surface, and λ is a parameter

for controlling the relative significance of the first and second terms. The term exp

(�μdθ,φ(OARk)) represents the number of incident photons in the k-th OAR.

Figure 6.6 presents a conceptual illustration of the cost function.

Each beam direction was locally optimized in the range of � p degrees at an

interval of q degrees. The lung and spinal cord were incorporated as OARs in the

cost function, and both weights (for the lung and the spinal cord) were set to 5.0.

The parameters for the local optimization of the beam arrangement λ, p, and q, were
set to 0.6, 4�, and 2�, respectively. Although the parameters for the local optimiza-

tion of beam arrangements were set empirically based on the preferences of our

institution, each institute could determine the appropriate parameters based on their

own philosophy or policy of treatment planning, in resemblance with the geomet-

rical feature weights. Each optimal beam direction was defined as the direction of

the beam which had the lowest cost value among the beam directions of the local

range.

6.5.5 Evaluation of Beam Arrangements Using Planning
Evaluation Indices

The similar-case-based beam arrangements were evaluated by manually preparing

plans based on both the beam arrangements and other planning parameters (such as

nominal beam energies, collimator angles, and beam weight) derived from the

treatment plans of similar cases in a radiation treatment planning system. The

following 11 planning evaluation indices were used for validation.
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The planning evaluation indices for the PTVs calculated in this study were the

D95, homogeneity index (HI), conformity index (CI), and tumor control probability

(TCP). The D95 was defined as the minimum dose in the PTV that encompassed at

least 95 % of the PTV. The HI was calculated as the ratio of the maximum dose to

the minimum dose in the PTV. The CI was the ratio of the treated volume to the

PTV. The treated volume was defined as the tissue volume that was receiving the

minimum PTV dose. The TCP was estimated based on a linear-quadratic

(LQ) model according to a Poisson distribution by considering the radiosensitivity

variation and nonuniform dose distribution (Sanchez-Nieto and Nahum 1999,

2000). The TCP was averaged over a population with variability in radiosensitivity,

which was simulated as a Gaussian distribution of αk values with mean α and

standard deviation σα in K groups of patients (Webb and Nahum 1993; Kanai et al.

2006). Specifically, TCP was given by

PTV

OAR

v(OAR)

Fig. 6.6 Conceptual

diagram of the cost function

for local optimization of

beam angles
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TCP ¼
XK
k¼1

1ffiffiffiffiffi
2π

p
σα

� �
exp � αk � αð Þ2

2σ2α

( )

�
YL
l¼1

exp �ρcvl � exp �αkDl 1þ dl
αk=βk

� �	 
� �
, ð6:9Þ

where ρc is the number of initial clonogenic cells per volume cm3, L is the number

of dose bins of the differential dose-volume histogram (DVH) in the PTV, vl is the
volume (cm3) irradiated by a dose dl (Gy) per fraction in the PTV, and Dl is the total

dose (Gy) at vl. The αk ranged αk� γσα, and increased in certain intervals divided by
K. The parameters for the TCP calculation were obtained from Kanai et al.’s (2006)
study of patients with lung cancers.

The planning evaluation indices for normal tissues (i.e., the lung and spinal cord)

were calculated as described below. For the lung volume, which was defined as the

total lung volume minus the PTV, a V5, V10, V20, and mean dose were calculated.

Each Vk was defined as the percentage of the total lung minus PTV receiving � k
Gy. The maximum dose for the spinal cord was also calculated. Moreover, the

normal tissue complication probability (NTCP) values for the lung and spinal cord

were calculated using the Lyman-Kutcher-Burman model (Lyman 1985; Kutcher

and Burman 1989; Burman et al. 1991). For the calculation of the NTCP, the dose

scale of a DVH was rescaled as a linear-quadratic equivalent dose (LQED) for 2 Gy

fractions, as follows:

LQEDs ¼ Ds
α=β þ ds
α=β þ 2

, ð6:10Þ

where Ds is the total dose (Gy), α/β is a parameter for a linear-quadratic model

(Wheldon et al. 1998; Thames et al. 1990), and ds is the dose per fraction (Gy) at Ds

in the differential DVH. Then, the NTCP was calculated as

NTCP ¼ 1ffiffiffiffiffi
2π

p
Z t

�1
exp � x2

2

� �
dx ¼ 1

2
1þerf

tffiffiffi
2

p
� �	 


, ð6:11Þ

t ¼ LQEDmax � TD50 vð Þ
mTD50 vð Þ , ð6:12Þ

v ¼ veff
vref

, ð6:13Þ

veff ¼
XS
s¼1

LQEDs

LQEDmax

� �1=n

vs, ð6:14Þ

TD50 vð Þ ¼ TD50 vrefð Þ � v�n, ð6:15Þ
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where erf(�) is an error function, TD50(v) and TD50(vref) are the tolerance doses inGy
that cause 50 % complication rates within 5 years after treatment for uniform

irradiation of the partial volume v according to Eqs. (6.13) and (6.15), and reference
volume vref, respectively. The parameters n and m control the volume effect and the

slope of the dose-response curve, respectively. By using an effective volume

method (Kutcher and Burman 1989), a nonuniform dose distribution, which has a

volume bin vswith a dose of LQEDs in the differential DVH, was transformed into a

uniform dose distribution with an effective volume veff at the maximum dose of

LQEDmax in Eq. (6.14). The fitting parameter values for the NTCP calculation were

obtained from Burman et al. (1991).

6.5.6 Assessment of Usable Beam Arrangements

In practice, treatment planners could manually select the best plan for each patient

from among the treatment plans that are based on similar cases, according to the

planner’s own policies and the patient’s performance. However, some indices that

are representative of the treatment plan’s usefulness could be helpful during

decision making. The usefulness of each treatment plan can be estimated by the

following Euclidean distance, dplan, of the plan evaluation vector between an ideal

treatment plan and each treatment plan that has been determined based on a similar

case. This quantity is designated as the RTP evaluation measure:

dplan ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

E idealð Þj � E planð Þj
� �2

vuut , ð6:16Þ

where J is the number of plan evaluation indices, E(ideal)j is the j-th plan evaluation
index for the ideal treatment plan, and E(plan)j is the j-th plan evaluation index for

the treatment plan based on a similar case. The ideal treatment plan was created

under the assumption that it produces perfect, uniform irradiation with a prescrip-

tion dose in the PTV and no irradiation in the surrounding OARs or normal tissues.

Although equal weights for were set for all of the indices in this study, the weights

for each index could be determined based on each patient’s condition or the

treatment planners’ policies.

6.5.7 Experimental Results

The proposed method was assessed using an RTP database that included 81 cases of

lung cancer (right lung: 46 cases, left lung: 35 cases), as well as 10 test cases (right

lung: 3 cases, left lung: 7 cases) that were chosen at random from all 91 available
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cases. The 10 test cases were not included in the RTP database of 81 cases

(Magome et al. 2013a, b). The five most similar cases were selected from among

the cases of lung cancers that were ipsilateral to the test case. The effectiveness of

the combination method of determining the initial beam arrangement based on

similar cases and the local optimization of the beam arrangement was evaluated by

comparing the planning evaluation indices of 50 plans (5 plans� 10 test cases) with

and without the local optimization of the beam arrangement. The same beam

weights and wedges from the similar case were used for the plan, with the beam

arrangement determined by our method.

Figure 6.7 shows an objective case, the first to fifth most similar cases to this

objective case, and the similar-case-based treatment plans. In practice, a treatment

planner could select one of the suitable plans for the patient from among several

similar-case-based plans.

Figure 6.8 illustrates dose distributions of the original plan and one of the

similar-case-based plan (specifically, the most usable plan). Although the lateral

beam passed the spinal cord in the beam arrangement, the optimized beam arrange-

ment avoided the spinal cord. Figure 6.9 provides DVHs for the case shown in

Fig. 6.8. Regarding the PTV, the similar-case-based plan had a DVH curve that was

almost the same as that of the original plan. However, the similar-case-based plan

1st

Objective case

2nd 3rd 4th 5th
5 most similar cases

Similar-case-based plans

Fig. 6.7 An objective case, the first to fifth most similar cases to the objective case, and similar-

case-based treatment plans
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Fig. 6.8 Dose distributions of the original plan and one of the similar-case-based plans
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Fig. 6.9 Dose-volume histograms of the original plan and the similar-case-based plan for the case

shown in Fig. 6.8
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also resulted in better sparing of spinal cord and lung regions, as compared with the

original plan. Magome et al. (2013b) have reported detailed results indicating that

the local BAO algorithm improved the quality of treatment plans with significant

differences (P< 0.05) in the homogeneity index and conformity index for the PTV,

V10, V20, mean dose, and NTCP for the lung. Moreover, the proposed method may

provide usable beam arrangements that are not significantly different from the

original beam arrangements (P > 0.05) in terms of the ten planning evaluation

indices. The mean value of D95 was significantly improved based on the proposed

method, as compared with the D95 of the original beam arrangements (P ¼ 0.029).

6.6 Estimation of Available Beam Direction Space

Because collision of the gantry and the patient must be avoided, the available beam

direction space is limited by the gantry head, immobilizer, and patient’s size.

Magome et al. (2013b) constrained the available beam space, and these constraints

were used in past cases included in the RTP database. Takayama et al. (2005)

determined the applicable areas of beam arrangement at different isocenter heights.

Ideally, however, the space should be determined separately for individual patients.

Recently, several researchers have developed a collision prediction methodology

for the patient and gantry by reconstructing the patient’s surface on a treatment

couch (Padilla et al. 2015; Yu et al. 2015). These studies allow more extensive use

of noncoplanar beam directions, which can provide a better dose distribution.

6.7 Summary and Future Direction

In this chapter, computer-assisted treatment planning approaches for SBRT have

been discussed, especially focusing on beam angle optimization and similar-case-

based treatment planning. In general, the RTP database at each hospital has been

generated by experienced planners after many trials and incorporates substantial

amount of their knowledge and skills. The aim of the discussed studies was to use

these records of knowledge and skill. The similar-case-based RTP was able to

provide several usable beam arrangements based on similar cases in the RTP

database. These methods could be useful for treatment planners, thereby improving

the quality and efficiency of radiotherapy. Although the plan evaluation indices were

calculated to evaluate the treatment plans, they may not cover all aspects of the dose

distribution. Regarding the future direction of research, it will be important to

incorporate clinical outcomes in order to improve the quality of the RTP database.
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Chapter 7

Computer-Assisted Treatment Planning

Approaches for Carbon-Ion Beam Therapy

Shinichiro Mori

Abstract In this chapter, we introduced the basic concept of the charged particle

beam therapy from a physics point of view. Although treatment procedures for

particle beam therapy are closely similar to those for the photon beam therapy,

beam range (penetration depth) should be taken into account carefully in the

particle beam therapy due to different characteristics of them. Moreover, heavy

charged particle beam leads to complex biological effect compared to proton beam.

For readers not familiar with charged particle beam therapy, therefore, we provide

the sufficient information of the particle therapy physics and its clinical application.

Keywords Image guidance • Motion management • Particle beam • Treatment

planning

7.1 Introduction

State-of-the-art radiotherapy techniques improve dose conformation to the target

and dose sparing to normal tissues compared to conventional methods. These

precise delivery techniques, which include intensity-modulated radiotherapy

(IMRT) and volumetric modulated arc therapy (VMAT) in the photon world and

intensity-modulated particle therapy (IMPT) in the particle world, allow much

steeper dose gradients between the target region and surrounding healthy tissue.

The physics of interactions differ between charged particle and photon beams, one

result of which is that particle beam therapy reduces excessive dose to healthy

tissues and maintains a high target dose, leading to good tumor control rates with

less toxicity and improved patient quality of life (Fig. 7.1). Those unfamiliar with

particle beam treatment might feel that charged particle beam treatment planning is

both difficult and markedly different from photon beam treatment planning. But as
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noted by Dr. Goitein at the Particle Therapy Co-Operative Group (PTCOG) meet-

ing in 2006 (Goitein 2006), they share most of the same treatment planning pro-

cedures and primarily differ only in particle beam’s finite penetration and

sensitivity to tissue density variation along a given ray. Moreover, treatment

planning for heavy charged particle beams (commonly used to characterize ions

heavier than protons) should take account of the nonlinear additivity of the biolog-

ically weighted dose. The more precise beam delivery and treatment planning

techniques developed recently require image guidance, which provides visualiza-

tion and quantification of patient geometrical information from medical images and

improves treatment workflow.

In this chapter, we introduce basic concepts of carbon-ion beam treatment

planning with image guidance/image processing (in a sense, image-guided particle

therapy, IGPT) and emphasize the differences between particle beam therapy and

photon beam therapy. Several recent articles on particle beam therapy provide

important additional skill-building information (Jakel et al. 2008; Tsujii and

Kamada 2012; Chen et al. 2009, 2006).

Fig. 7.1 Dose distribution with passive scattering carbon-ion radiotherapy (CIRT) (upper panel)
and IMRT (lower panel). Yellow arrows show beam fields (With permission from Tsujii et al.

2014)
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7.2 Why Choose Carbon Ions?

It is well known that the high energy of a therapeutic photon beam decreases in a

steep exponential curve with penetration depth and that the dose close to the

entrance surface shows “buildup” caused by forward-scattered Compton electrons.

In contrast, charged particle beams provide superior dose conformation to photon

beams and minimize excessive dose to normal tissues. These strengths owe to the

characteristic increase in energy deposition of particle beams with penetration

depth (proton and carbon-ion beams) up to a sharp maximum at the end of the

beam range (Bragg peak) (Fig. 7.2) (Bragg and Kleeman 1904). Explained simply,

accelerated particle beam interactions lose kinetic energy along the ray line due to

the interaction of Coulomb forces with the target electrons (stopping power). This is

expressed by the Bethe-Bloch formula. Stopping power is approximately propor-

tional to (Z/v)2:

dE

dx
� KnZ2

v2
ln

2mev
2

I

� �� �
/ Z

v

� �2

, ð7:1Þ

where K, n, andme are the constant, electron density of the target material, and mass

of electrons, respectively. Z is the charge of the projectile particle, v is the projectile
velocity, and I is the mean ionization energy of the target atoms.

Accordingly, projectile velocity slows down as material penetration deepens,

and stopping power is increased. Projectile velocity at the end of range is close to

zero, and a high dose is deposited there.

In 1975–1992, neon ions and helium ions were used to treat 433 cancer patients

and 2054 patients, respectively, at the Lawrence Berkeley National Laboratory

(Alonso 2000), while in 1994, the heavy ion medical accelerator (HIMAC) at the

National Institute of Radiological Sciences (NIRS) began providing carbon-ion

radiotherapy (CIRT). From clinical experience gained at Berkeley, most heavy

charged particle beam centers have selected carbon ions, mainly for the following

reasons:

1. Ions heavier than carbon have an increased nuclear fragmentation tail dose.
Protons did not deposit dose beyond the Bragg peak (Fig. 7.2a). In contrast, ions

heavier than protons still had low projectile energy nuclear interactions (elastic

collisions with target nuclei), providing a small dose (fragment particles with

lower atomic number) beyond the Bragg peak (Fig. 7.2b).

2. Ions heavier than carbon increase LET and relative biological effectiveness
(RBE).
Conceptually, RBE represents the particle beam dose which provides the same

biological effect as would be provided by the reference dose (typically X-rays or

γ-rays). The RBE of light ions (proton, helium, etc.) does not significantly

change between the entrance region and distal spread-out Bragg peak (SOBP)

(Fig. 7.3). In contrast, the RBE of carbon ions is similar to that of light ions at the
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Fig. 7.2 Depth absorbed dose distributions of (a) a primary proton beam and its secondary

particles and (b) a carbon-ion beam and its secondary particles (Reproduced from Kempe et al.

2007)
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proximal SOBP but increased at the distal SOBP. The light-ion relative biolog-

ical dose at the plateau region is therefore higher than the carbon-ion relative

biological dose (Fig. 7.4). In contrast, the RBE of heavier ions (neon, argon, etc.)

at the proximal and distal SOBPs is higher than that of carbon ions (although the

RBE of neon at the entrance region is smaller than that of carbon ions at the

distal SOBP). Although the relative biological dose of heavier ions at the SOBP

is the same as that of carbon ions, the relative biological dose at the entrance

region and proximal and distal SOBPs is higher than that of carbon ions. As a

result, the peak to plateau ratio for carbon ions is higher and therefore improved,

over that of other particle beams, including protons.

3. Heavier ions minimize the magnitude of range straggling and lateral scattering.
These factors blur out the sharp ionization peak. Range straggling causes

smearing out of the depth of penetration of the stopping particle beam due to

statistical fluctuations in the ionization process. The variance of the range

straggling is expressed from Bohr’s theory as follows:

φ xð Þ ¼ 1

σx
ffiffiffiffiffi
2π

p exp
� x� R Eð Þð Þ2

2σ2x

 !
, ð7:2Þ

R Eð Þ ¼
Z E

0

dE0

dx

� ��1

dE0, ð7:3Þ

where x is the penetration depth, σx is almost proportional to range R and inverse

to the square root of the particle mass, and range straggling for helium and neon

are about 50 and 20 % of that for protons, respectively. Lateral scattering is

mainly caused by elastic Coulomb interactions with the target nuclei and can be

approximated by Gaussian functions as follows (Highland 1975):

Protons

entrance region
proximal SOPB
mid-SOBP
distal SOBP
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Fig. 7.3 Relative

biological effectiveness

(RBE) of different ions in

fractionated irradiation of

jejunal crypt cells of mice

(With permission from

Jakel 2009)
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σθ ¼ 14:1MeV
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where L and d are the radiation length and penetration length, respectively, β is

particle beam velocity, and p and c are the momentum of the incident particle

and the speed of light, respectively. The magnitude of the lateral scattering of

photons and protons is larger than that for carbon ions at the same depth

(Fig. 7.5).

4. Heavier ions require a large accelerator.
Due to differences in their mass-to-charge ratio, it is two times more difficult to

bend a carbon-ion beam with an accelerator than protons under same magnetic

field, and the range of carbon ions is three time shorter than that of protons under

the same velocity. Carbon-ion beams therefore require higher energy than pro-

tons to obtain the same range by enlarging accelerator size. Current particle

beam center construction costs are dominated by size of the accelerator, which

requires a large housing size. Progress in accelerator technology over the last

20 years has contributed to cost reductions by reducing accelerator size. For

example, the cost of the synchrotron ring at Gunma University, which was

constructed in 2009, was 63 m, approximately half that of the NIRS, constructed

in 1993.

Given the above, it appears that carbon ions represent a well-balanced particle in

both physical and biological aspects (Table 7.1). In 2015, more than ten treatment

centers were operating CIRT, as shown on the website of the PTCOG. The NIRS

Fig. 7.4 Relative biological dose of the SOBP of ion beams. Doses are normalized at the SOBP

region (With permission by the IAEA 2007)
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has treated over 8000 patients using carbon ions, and their clinical experience is

reported here (Tsujii and Kamada 2012).

7.3 Particle Beam Treatment Planning

7.3.1 Planning CT

CT imaging provides both patient 3D anatomical information and effective density

information, making it an essential part of treatment planning. This 3D information

is markedly helpful in deciding treatment parameters, especially beam angle and

dose distribution. An immobilization device is typically used in the planning CT

acquisition and treatment stages to improve patient positional reproducibility
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Fig. 7.5 Lateral scattering of photon, proton, and carbon-ion beams as a function of penetration

depth (With permission from Kraft 2000)

Table 7.1 Summary of the characteristics of particle beams

Biological dose

distribution

Range straggling and lateral

scattering

Construction

cost

Proton Good Poor Excellent

Carbon

ion

Excellent Good Good

Neon Good Excellent Poor
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throughout the treatment course. Several treatment centers have installed a large

bore CT (over 80 cm diameter) to avoid the conflict between positioning of the

raised arm and immobilization which occurs with a standard bore CT (about 72 cm

diameter).

Recent commercial CT scanners are equipped with a 4D mode to capture

respiratory-induced organ motion. 4DCT is a breakthrough technique which allows

the quantification of intrafractional uncertainties. This technique is applied in

cardiac CT imaging and has already become practical for identifying patients

with significant coronary artery stenosis by ECG-correlated preprocessing. Given

the heartbeat (~ 1 s) is faster than respiratory motion (~ 4 s) and coronary arteries (~

a few mm) are smaller than lung tumors (~ a few cm), it should therefore be feasible

to visualize intrafractional motion. Although the respiratory pattern shows varia-

tions (e.g., phase shift/drift), 4DCT scans provide information of a single exemplary

respiratory cycle only. Thus, serial CT/4DCT image acquisition is performed over a

certain time axis (daily, weekly, etc.) to obtain potential anatomical changes. This

information can be helpful in considering replanning during the treatment course.

In photon beam therapy, megavoltage X-ray interaction in material is dominated

by Compton scattering, and effective density is calibrated using relative electron

density. Typically, HU (Hounsfield unit) values within the patient are measured by

the planning CT image and converted to linear attenuation coefficients (μ):

μ ¼ HU � HUairð Þ HUwater � HUairð Þ�1
, ð7:5Þ

The linear attenuation coefficient is derived from the formula or photon attenuation

(Rutherford et al. 1976):

μ ¼ ρe KphZ3:62 þ KcohZ1:86 þ KKN
� �

, ð7:6Þ

where Kph, Kcoh, and KKN are constants for the contribution of the photoelectric

effect, coherent scattering, and Compton scattering, respectively.

Particle beam ranges in materials are scaled by the stopping-power ratio relative

to water based on measurement in water during beam commissioning. Accordingly,

effective density in charged particle beams should be defined as the stopping power

relative to water (ρs):

ρs ¼ ρe ln
2mec

2

Imaterial

β2

1� β2

� �
� β2

� �
ln

2mec
2

Iwater

β2

1� β2

� �
� β2

� ��1

, ð7:7Þ

where ρe and me are relative electron density and the electron mass, respectively,

and Imaterial and Iwater are the mean ionization energies in material and water,

respectively. Several carbon-ion beam treatment centers in Japan use CT calibra-

tion using the polybinary tissue model (muscle (water), air, fat (ethanol), and bone

(40 % K2HPO4 water)) due to the good balance it provides between quality and cost

(Kanematsu et al. 2003). By doing this, dose distribution can be calculated by
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converting all CT image sets to the effective density in the treatment planning

system (TPS).

7.3.2 Contouring

7.3.2.1 Volume of Interest (VOI)

Since the planning CT image contains patient anatomical information that the TPS

does not recognize, the volume of interest (VOI) on the CT image should be input

into the TPS to conform the prescribed dose to the tumor and to minimize dose to

normal tissues. The International Commission on Radiation Units and Measure-

ment (ICRU) first defined the VOI in ICRU report 50 (1993) and refined it further in

ICRU reports 62 (1999), 71 (2005), and 78 (2007). These VOI terms are illustrated

in Fig. 7.6, in which the target-related terms are gross tumor volume (GTV), clinical

target volume (CTV), internal target volume (ITV), and planning target volume

(PTV). The term “target volume” is often used for both target and healthy tissues

but is more specific to the tumor. We therefore use VOI here to describe both tumor

and normal tissues. Although the VOI is fully defined in these ICRU reports, I

introduce it briefly here as follows.

The GTV consists of a primary/metastatic tumor and demonstrable visible tumor

region on planning images. It is generally delineated by the oncologist and may not

be present following irradiation treatment. The CTV contains the GTV and sub-

clinical malignant disease region (microscopic tumor spread region), which in some

cases is difficult to observe in the planning CT image. To compensate for expected

internal uncertainties such as physiologic movement and temporal size/shape/

positional variations, the ITV is defined by adding an internal margin to the CTV.

This internal margin technique is often used in thoracoabdominal treatment. The

PTV is designed by adding a setup margin to the ITV. This setup margin accounts

for the inaccuracy and low reproducibility of patient positioning to the treatment

beam. The PTV in photon beam therapy generally uses the geometrical-based

margins of the beam field to compensate for organ motion and setup errors. Since

particle beam therapy considers uncertainties in beam penetration, the PTV should

include the range-based proximal and distal margins of the beam field as well as the

lateral margins. The PTV is therefore designed for each beam direction. The margin

for respiratory-induced range uncertainties is described in Sect. 7.4.

In addition, critical normal structures (organs at risk, OARs) are also delineated

on the TPS. Because OARs are likely affected by intra-/interfractional movement,

patient setup error, etc., planning organ at risk volume (PRV) is delineated in

addition to the ITV and PTV concepts by adding an internal margin and setup

margin to OARs (Fig. 7.6). In some cases, the PTV overlaps another PTV, OAR, or

PRV; however, ICRU reports 78 and 83 recommend that delineating the VOIs

should not be compromised because recent TPS can optimize sufficient dose
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sparing of the OAR. As described here, GTV, CTV, and OAR are oncological or

anatomical concepts, while ITV, PTV, and PRV are physical constructions.

7.3.2.2 Image Registration/Segmentation

The image registration/segmentation technique is mandatory in current radiother-

apy procedures, particularly in treatment planning. Generally, image registration is

used for contouring and 4D dose calculation. The latter is described in Sect. 7.4.

Image segmentation supports the inputting of target and normal organ contours

automatically (auto-contouring) without a huge burden on the oncologist. In con-

trast, image registration is used to transform contours between different CT data

sets for the same patient and in replanning (from original CT to new CT) and 4DCT

(from a reference phase to other phases). Deformable image registration (DIR) is

used in place of rigid image registration to reflect realistic human geometrical

changes. In treatment planning, multiple sets of image data (CT, MRI, PET, and

their combinations) are generally registered. The DIR process finds a deformation

vector field (DVF) between two image data sets.

DVF is obtained by applying a transforming function (generally B-spline with

control points) to the reference image and calculating similarity measure between

the two images. This process is repeated until the similarity measure reaches the

criterion value. When the same imaging modality data set is used, image voxel

Fig. 7.6 Schematic drawing of the volumes of interest relating to the definition of target and

organs at risk
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values for each image data set are similar; therefore, to avoid the time-consuming in

user input of further information, the intensity-based DIR method is more suitable

than the landmark-based or segmentation-based methods, because it operates on

image voxel values directly. Voxel similarity measure generally uses sum of

squared differences and cross correlation etc.; these contours are transferred to

the next image data set by applying DVF to the contours on the reference image

(warping). As an example of auto-contouring in 4DCT, an oncologist manually

contours one reference CT phase (generally peak exhalation), and then DIR calcu-

lates the DVF based on the 4DCT data. These are then applied to the manual

contours to transform them from the reference phase to the other respiratory phases.

All contours at other respiratory phases are then automatically calculated.

DIR-related auto-contouring and 4D dose calculation (described later) can have

a significant impact on treatment accuracy. It is therefore important to assess

registration accuracy, which is strongly dependent on patient shape. Accordingly,

it is not sufficient to evaluate the registration accuracy using a phantom only.

A simple evaluation method for the registrations is visual assessment. Point

landmark-based registration is performed to obtain a quantitative result, but it is

substantially time-consuming and not practical in clinical settings. It is necessary to

check DIR accuracy from the CT image at exhale (IMexhale) to that at inhale

(IMinhale):

IMexhale : xexhale2 Ωexhale, IMinhale : xinhale2 Ωinhale, ð7:8Þ

where Ωexhale and Ωinhale are discrete domains of CT images at exhale and inhale

and xexhale and xinhale are position vectors on CT images at exhale and inhale,

respectively. Subtracted CT images at inhale and exhale show large differences in

voxel values due to geometrical differences (Fig. 7.7a). DVF is calculated using CT

images at exhale and inhale:

DVF : Ωexhale ! Ωinhale, ð7:9Þ

A warped CT image at inhale is calculated by applying DVF to the CT image at

exhale. If the registration error is zero, the warped CT image and CT image at inhale

are the same:

xinhale ¼ DVF xexhaleð Þ, ð7:10Þ

Geometrical differences between the warped CT image and CT image at inhale are

improved (Fig. 7.7b), but the registration error is not completely zero when using

patient images:

xinhale 6¼ DVF xexhaleð Þ, ð7:11Þ

We then calculated another DVF (DVF’) by using the warped CT image at exhale

and CT image at inhale and applied DVF’ to the warped CT image ( ~IM exhale):
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gDVF : ΩDVF
exhale ! Ωinhale, ð7:12Þ

fIM exhale : ex exhale2ΩfDVFexhale, ð7:13Þex exhale ¼ gDVF DVF xexhaleð Þ½ �, ð7:14Þ

DIR accuracy is quantitatively visualized by the following calculation (Fig. 7.7c):

gDVF exexhaleð Þ � xinhale

			 			
2
, ð7:15Þ

where k∙k represents a norm.

Image registration which utilizes DIR cannot remove registration error

completely, and users should therefore check the contours and modify manually

Fig. 7.7 (a) Subtraction CT image at inhale from that at exhale. (b) Subtraction CT image at

inhale from warped CT at inhale. (c) Magnitude of the DVF color map between CT image at inhale

and warped CT image at inhale
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if necessary. In particular, a lung DIR close to the chest wall could degrade

registration accuracy, because intrafractional chest wall movement is smaller than

lung motion. Biomechanical intensity-based DIR considers physical properties and

in one study improved target registration error, from 1.5 � 1.4 mm (mean � SD)

compared with conventional DIR (2.6 � 1.4 mm) (Samavati et al. 2015). The

author does not provide details of the biomechanical DIR technique here, but

note that it is strongly dependent on the DIR algorithm (Brock 2010). Details

about image registration can be found elsewhere (Hill et al. 2001).

7.3.3 Beam Angle Configuration

Conformal photon beam treatment planning such as IMRT generally uses more

than six beam fields to reduce the doses to normal tissues, while VMAT delivers the

treatment beam using a rotating gantry. The use of multiple beam fields might

minimize dose errors. While a few beam fields provide good target dose conformity

in particle beam therapy, dose error in respective fields should not be neglected.

Given that current TPS are unable to select all beam angles automatically, treatment

planners should select beam angles with consideration to the following:

1. Avoid beam angles along the target and OAR direction to spare OARs.
This is easy to understand in the case of OARs located proximal to the target but

should also be considered for OARs at the distal side. Ideally the particle beam

stops at the distal edge of the target, but range uncertainty might change particle

beam stopping position; an extended particle beam position might increase

harmful dose to OARs located close behind the target.

2. Opposing beam angles achieve a good biologically effective dose.
Since RBE values vary as a function of depth, opposing beam angles are not

good for OAR sparing; except for tumors located around the body center, beam

angles should be separated within the approximate range of 25� to 70� or

something similar.

3. Avoid inhomogeneous tissue and consider patient positional variation to mini-
mize range uncertainty.
Small dose differences were observed between commercial TPS and Monte

Carlo (MC)-derived planning, particularly for the skull and thoracic regions,

which include inhomogeneous tissues (Fig. 7.8). This is because most TPSs use

empirical models for dose calculation, despite the fact that the MC algorithm is

much more accurate for dose calculation. Patient anatomical intra-/

interfractional positional variation is a major factor in range uncertainty. An

example of intrafractional beam range variation is that a single pencil beam stops

at the distal edge of a tumor when passing through the heart at diastole but

penetrates the tumor at systole (Fig. 7.9). Careful selection of beam angle is one

solution to minimizing range uncertainties.
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4. Consider positioning and irradiation systems restrictions.
Photon beam and proton beam treatment use rotating gantry systems to

irradiate from a wide range of gantry angle. However, carbon-ion beam

rotating gantry systems have not been widely adopted, although a few have

been constructed in Japan and Germany. These may allow the selection of

beam angles which avoid the treatment couch edge. Since most CIRT centers

use a fixed beam port irradiation system, extending the range of beam angles

requires the treatment couch to be rotated around the patient long axis.

Planners should leave this part in the tip of the corner.

Fig. 7.8 Proton dose distribution calculated with a commercial TPS (XiO, Elekta Inc.) (left panel)
and by Monte Carlo (MC) (right panel; Geant 4) (Adapted from Paganetti et.al. 2008)

Fig. 7.9 Carbon-ion pencil

beam dose distribution at

diastole and systole
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7.3.4 Irradiation Method

This section provides a brief technical overview of the two most common irradia-

tion techniques used in CIRT, passive scattering, and pencil beam scanning (PBS).

The passive scattering irradiation technique has been long and widely used in

charged particle beam therapy, including proton and carbon-ion beams. A pristine

beam with a narrow beam width in both lateral and depth directions is extracted

from the accelerator. To cover the whole target volume, the pristine beam should be

spread out in both directions. First, a wobbler magnet and scattering system are

used to laterally and uniformly spread the pristine beam (Fig. 7.10a). Second, a

ridge filter modulates the beam energy to obtain a uniform biological dose distri-

bution along depth direction SOBP. Third, a patient collimator (PTC) and/or multi-

leaf collimator (MLC) are used to adjust the beam to the target volume laterally.

Finally, a compensator bolus adjusts the beam stopping position at the distal edge of

the target. This method provides good dose conformity for the distal region of the

target, but cannot avoid an unnecessarily high dose around the proximal side of the

target.

The layer-stacking irradiation technique was developed in 1983 with the aim of

maximizing dose conformation and minimizing the dose to normal tissue around

the proximal side of the target with scattering beams, similar to that with PBS

irradiation. It is now in clinical use at a few carbon-ion beam treatment centers

(Kanai et al. 1983; Kanematsu et al. 2002). Uniform dose within the target is

achieved by combining a number of small SOBPs along a depth direction. These

small SOBP positions are shifted by changing range shifters (Fig. 7.10b). Beam

field size is defined to fit the respective iso-energy layer regions by changing the

MLC opening width.

With regard to PBS, this method was first proposed in the 1980s at NIRS, and

carbon-ion PBS (C-PBS) was first implemented clinically at the Gesellschaft für
Schwerionenforschung (GSI) in Darmstadt, Germany (Kanai et al. 1980; Haberer

et al. 1993). Worldwide, a few treatment centers were using C-PBS as of 2015. The

pencil beam is scanned in all three dimensions over the spot positions of the target

to achieve a uniform dose within the target (Fig. 7.10c). Since PBS has a flexible

dose distribution, OAR sparing is better than with passive scattering irradiation, and

an inhomogeneous dose distribution (e.g., IMPT, additional doses to hypoxic

regions) can be achieved. MLC, PTC, and a compensator bolus are not required,

eliminating the treatment workflow time normally required to change these acces-

sories and minimizing therapist entry into the treatment room. The beam energy is

changed with a range shifter and/or accelerator change. A major problem with the

use of a thicker range shifter is that it causes a broadening of the beam spot size with

increasing depth through range shifters. By contrast, active change using an accel-

erator takes energy change time and requires a massively extended commissioning

time for each beam energy (over a few hundred beam energies). Hybrid depth

scanning with a synchrotron was developed to overcome these problems. Hybrid

depth scanning provides a smaller lateral dose fall off and RBE than range shifter
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scanning (Inaniwa et al. 2012) and uses the range shifter to shift the small SOBPs at

a step size of 3 mm in combination with 11 distinct synchrotron energies

(Fig. 7.11).

7.3.5 Dose Calculations

7.3.5.1 Beam Range Calculation

Beam spot positions are set on steps of a few millimeters (generally 2–3 mm,

depending on C-PBS beam size) on CT images. Water equivalent path length

(WEPL) from the irradiation system (scanning magnet) to respective spots is

calculated by integrating the stopping effective density along each ray line:

WEPL zð Þ ¼
Z z

0

ρs z
0ð Þdz0, ð7:16Þ

where z is the total penetration depth, z’ is the penetration depth, and ρs is the

stopping power.
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Fig. 7.11 C-PBS dose distributions in the depth direction (Dp), lateral direction (σ), and normal-

ized fluence for RS, ES, and HS, respectively (With permission from Inaniwa et al. 2012)
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For the square-shaped case in Fig. 7.12, the same WEPL position (iso-energy

layer) (shown as dotted lines) is oriented in a horizontal line (Fig. 7.12a). Most

distal spot positions (red circles in Fig. 7.12a) are irradiated by the same energy

beam. For the spherically shaped case, in contrast, the iso-energy layer position is

curved and not the same as the target shape (Fig. 7.12b). Most distal spot positions

(red circles in Fig. 7.12b) are irradiated by different beam energies. In a more

realistic case (lung case), the tissue density for lung may be decreased from

approximately 1.0 g/cm3 to 0.3 g/cm3, potentially exerting a strong impact on the

iso-energy layer position by making it more complex. To understand this more

clearly, the lung CT image is transformed in the same WEPL value positions in

Fig. 7.12d; compared to the original lung CT (Fig. 7.12c), the geometrical shape is

substantially deformed, and the lung thickness is substantially shortened in the

WEPL coordinate. C-PBS doses are calculated in respective beam spots.

Fig. 7.12 Schematic diagram of the beam spot position in several iso-energy layers for (a)

rectangular shape and (b) spherical shape. Iso-energy layer number was assigned from the distal

side (With permission from ICRU-72 2007). Lung CT images in coronal section in (c) CT and (d)

WEPL coordinates
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7.3.5.2 Beam Modeling

For the C-PBS beam model, lateral dose distribution can be approximated by the

Gaussian function as a function of penetration depth. Accumulated dose distribu-

tion in the PBS irradiation is superimposed on the respective pencil beam dose

distributions, meaning that beam field size would be varied at the respective

iso-energy layers. The dependence of photon and particle beam doses on beam

field size is well known and is likely emphasized in PBS irradiation. However, a

single Gaussian model does not completely compensate for the field size effect.

Proton beam lateral distribution can be expressed by the sum of two Gaussians: the

first and second components are the primary proton and nuclear beam halo,

respectively (Pedroni et al. 2005). For carbon-ion beams, three Gaussians are

used to accurately model the lateral distributions on account of nuclear fragments;

the first component is primary carbon ion, the second is heavy fragments, and the

third is light fragments (Inaniwa et al. 2009; Kusano et al. 2007) (Fig. 7.13), and the

ith PBS dose distribution (di(x,y,z)) is expressed by the following:

di x; y; zð Þ ¼ dz, i zð Þ
� 1�

X3
j¼2

f j, i zð Þ
 !

D1, i x; y; σ1, i zð Þð Þ þ
X3
j¼2

f j, i zð ÞDj, i x; y; σj, i zð Þ� �( )
,

ð7:17Þ

where dz.,i(z) and σj,i(z) are the integral dose and standard deviation at a penetration
depth z, respectively; Dj,i(x,y, σj,i(z)) is a two-dimensional Gaussian function for the

lateral distribution of the jth component; and fj,i(z) is the fraction of integrated dose
of the jth Gaussian component. Physical dose distribution for PBS (Dphys) is

composed by summing the respective pencil beam doses:

Dphys x; y; zð Þ ¼
XN
i¼1

di x; y; zð Þ ∙wi, ð7:18Þ

where N is the total number of spots and wi is the ith beam spot weight.

7.3.5.3 Biological and Clinical Doses

Since biological effect in heavy charged particle therapy is strongly dependent on

particle type, the primary particle and all fragment particles produced during the

stopping process should be considered (Schardt et al. 2010). To discriminate the

physical dose (Gy), ICRU recommends use of the term “RBE-weighted” dose

(Gy (RBE)) for biological dose (ICRU-72 2007). Biological dose distribution is

expressed as a typical tumor cell response, as defined by the in vitro response of

human salivary gland (HSG) tumor cells. A German group adapted the local effect
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model (LEM) to CIRT (Elsasser et al. 2008). Another model was introduced as the

microdosimetric kinetic model (MKM), which predicts the survival fraction of cells

from the specific energy absorbed by a microscopic subcellular structure (Hawkins

1996; Hawkins 2003). However, MKM does not perfectly predict RBE due to

insufficient overkill correction in high-energy regions (LET >100 keV/μm). To

solve this problem, Kase et al. adapted saturation correction to express the decrease

in RBE due to the overkill effect in a mixed radiation field (modified MKM) (Kase

et al. 2006b). The modified MKM provides RBE values from proton to silicon using

a linear quadratic (LQ) function, which simplifies the calculation of RBE under the

mixed radiation field (Kase et al. 2006a) (Fig. 7.14).

Biological dose in the mixed radiation field is expressed as follows:

Fig. 7.13 (a) Lateral beam

spreads of the first, second,

and third components for

the range shifter thicknesses

of 0, 50, and 100 mm WEL.

(b) Fraction factors of the

second and third

components for the range

shifter thicknesses of 0, 50,

and 100 mm WEL

(Reproduced from Inaniwa

et al. 2009)
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Dbiol x; y; zð Þ ¼ Dphys x; y; zð Þ ∙RBEbiol x; y; zð Þ

¼ � α

2β
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

2β

� �2

� lnS Dphys x; y; zð Þ� �
β

s
, ð7:19Þ

ln S Dphys x; y; zð Þ� �� � ¼ � α0 þ βz*1D mix x; y; zð Þ� �
Dphys x; y; zð Þ

� βDphys x; y; zð Þ2, ð7:20Þ

where α and β are the coefficients of the LQ model for the reference radiation and

α0 is the initial slope of the surviving fraction curve in the limit of LET¼ 0. β value
is independent of radiation type and is selected as 0.0615Gy-2 based on the β value

of HSG cells irradiated by X-ray (Furusawa et al. 2000). To predict RBE in the

mixed radiation field, the saturation-corrected dose means that a single energy

extended to the saturation-corrected dose-mean specific energy ( z*1D mix ), which

can be derived by MC and the Kiefer-Chatterjee model (Kiefer and Straaten 1986),

must be calculated (Fig. 7.15). Details for calculating the saturation-corrected dose-

mean specific energy are described in Inaniwa et al. (2010):
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Fig. 7.14 Relationship between experimental α value and the saturation-corrected dose-mean

lineal energy (With permission from Kase et al. 2006a)
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z*1D mix x; y; zð Þ ¼
PN
i¼1

wi ∙ di x; y; zð Þ ∙ez *1D:i zð Þ
PN
i¼1

wi ∙ di x; y; zð Þ
, ð7:21Þ

where ez *1D:i zð Þ is the saturation-corrected dose-mean specific energy delivered by

the jth beam. To adapt biological response in vitro to patient treatment (in vivo), the

biological dose should be rescaled by multiplying by a clinical factor (Fclin).

Clinical dose can be calculated by the following:

Fig. 7.15 (a) C-PBS depth dose distributions and (b) the saturation-corrected dose-mean specific

energy of the domain of a 290 MeV/u for range shifter thicknesses of 0, 30, 60, and 90 mm (With

permission from Inaniwa et al. 2010)
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Dclin x; y; zð Þ ¼ Dbio x; y; zð Þ ∙Fclin, ð7:22Þ

The clinical factor of 2.41 is used in our facility. Due to word count limitations,

details and historical background are provided elsewhere (Kanematsu et al. 2002;

Kanai et al. 1999; Inaniwa et al. 2015).

7.3.5.4 Dose Optimization

To achieve the desired target conformation and OAR sparing doses, respective

beam spot weights are optimized by an iterative process (inverse planning). Gen-

erally, the objective function ( f(w)) is defined as the errors between the current

target dose and the maximum/minimum target doses (Bortfeld et al. 1990) as

follows:

f wð Þ ¼
X

i2target

αtargetunder D
target
min � Di wð Þ
 �2 þ αtargetover Di wð Þ � Dtarget

max


 �2� 
minimum

w>0
f wð Þ , ð7:23Þ

where the operator [ ] is the Heaviside step function. w is the vector notation of the

beam weights for all pencil beams; Di(w) is the dose at the ith spot position; Dtarget
max

and Dtarget
min are user-defined maximum and minimum doses in the target, respec-

tively; and αtargetunder and α
target
over are the penalties for target underdosage and overdosage,

respectively.

If dose constraint to the target and OAR is considered (maximum dose con-

straint, minimum dose constraint, dose volume constraint, etc.), these constraint

mathematical expressions should be added to the objective functions. To find the

optimum solutions, several types of optimization strategy have been introduced.

1. Gradient descent
The gradient descent method calculates the direction (d) with a large magnitude

of the negative gradient at the current value (series of point, p) (kth iteration). A

learning rate (τ) adjusts the step size to search for the next value:

dk ¼ �τ∇f pkð Þ, ð7:24Þ

2. Conjugate gradient
The conjugate gradient method finds the nearest local minimum in far fewer

steps than the gradient descent method:

dk ¼ �∇f pkð Þ þ βkdk�1, ð7:25Þ

The initial β value is zero, but β can be calculated thereafter using different

methods:
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Fletcher&Reeved : βk ¼
gT
k ∙ gk

� �
gT
k�1 ∙ gk�1

� � , ð7:26Þ

Polak&Ribiere : βk ¼ gk � gk�1ð ÞT ∙ gk
gT
k�1 ∙ gk�1:

� � , ð7:27Þ

with gk¼∇f(pk),

3. Newton
Newton’s method finds the minimum by an iterative approach. This method

provides faster convergence than the gradient descent method. However, the

function f(pk) should be differentiated:

dk ¼ �H�1 pkð Þ∇f pkð Þ, ð7:28Þ

where H is the Hessian matrix as expressed by H(pk)¼∇2f(pk)

4. Quasi-Newton

To omit the calculation of Hessian and the inversed Hessian, matrix Q�1
k is an

approximation of the inverse of the Hessian at iteration k and is updated in every
iteration. One widely used update method is the Broyden-Fletcher-Goldfarb-

Shannon (BFGS):

dk ¼ �Q�1
k pkð Þ∇f pkð Þ, ð7:29Þ

5. Limited-memory BFGS
This method is based on the BFGS method and uses a certain number of vector

corrections to estimate the inverse Hessian matrix, thereby reducing computing

time and memory requirements.

For a clinical example of dose optimization, single-field uniform doses (SFUD) in

which each beam delivered a homogeneous dose to the target and with optimization

in a single time iteration caused large hot spots, and less than 90 % of the dose was

observed within the target (left image in Fig. 7.16). However, increasing the

number of iterations (up to 50 times) improved dose conformation (right image in

Fig. 7.16).

As described above, while the number of beam fields in particle beam therapy is

less than that in photon beam therapy, a single beam field only is not appropriate for

clinical practice (see Sect. 7.3.3). Multiple beam fields are therefore overlaid to

calculate final dose distributions on the CT image for treatment plan review. For

photon and proton beams, the final dose can be calculated by simply summing the

respective beam fields, because the RBE value is assumed to be a constant value.

Where RBE value varies as a function of beam penetration depth for heavy charged

particle beams, the final biological effective dose superposition from multiple beam
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fields depends on the fractionation scheme (Kramer 2001). For example, when

biological effective doses from multiple beam fields are superposed in the same

treatment fraction (same day), the final biological effective dose is increased

nonlinearly. However, since the biological repair process is mostly completed the

next day, the final biological effective dose is increased linearly when a single beam

field is irradiated in the same fraction. Most CIRT centers use a fixed beam port

irradiation system, and most treatment cases receive a single beam field in the same

day. While a limited number of carbon-ion beam rotating gantry systems are now

available, a clinical request for IMPT (simultaneous dose optimization of multiple

fields including all beam spots) might increase the use of a gantry to minimize OAR

doses compared to SFUD.

7.3.6 Other Techniques

7.3.6.1 Hypofractionated Treatment

Owing to the unique physical and biological characteristics of heavy charged

particle beams, it is theoretically possible to decrease the number of treatment

fractions with dose escalation (hypofractionated treatment). A smaller number of

fractions improves patient comfort and might increase the number of treated

patients (improvement of treatment throughput). Hypofractionated CIRT has there-

fore attracted much clinical interest. Clinical doses used in our facility are based on

the survival of HSG cells in vitro and on clinical experience with fast neutron beam

therapy. Carbon-ion beams have the same high-LET components as fast neutrons,

which tend to lower RBE for both tumor and normal tissues by increasing dose per

fraction, albeit that decreasing the tumor RBE is slower than decreasing the normal

Fig. 7.16 SFUD using C-PBS (a) with optimization in a single iteration and (b) in 50 iterations.

Yellow line shows the target volume
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tissue RBE (Fig. 7.17) (Denekamp et al. 1976; Ando and Kase 2009). This can lead

to the assumption that the therapeutic ratio can be increased by increasing the

fraction dose.

Clinical dose can be expressed as equivalent dose to photon beam; in this

assumption, tumor control probability (TCP) can be adopted to CIRT. We esti-

mated TCP values in one, four, and nine treatment fractions from clinical results for

non-small cell lung cancer (NSCLC) patients treated with a treatment scheme of

18 fractions (Fig. 7.18):

TCP¼
X
i

1ffiffiffiffiffi
2π

p
σ

� αi�αð Þ2
2σ2

( )
exp �Nexp �nαd 1þ d

α=βð Þ
� �

þ0:693 T�Tkð Þ
Tp

� �� �
,

ð7:30Þ

where α and β are the coefficients of the LQ model of HSG cells; σ is the standard

deviation of α reflecting patient-specific variation (i) in radiosensitivity; N is the

number of clonogens in a tumor (constant value of 109 was used); n and d are the

total fraction number and dose per fraction, respectively; and T, Tk, and Tp are

treatment course time, kickoff time, and average doubling time of tumor cells,

respectively.

This approach is useful in determining the initially prescribed dose for

hypofractionated CIRT. Because increasing the prescribed dose per fraction could

cause excessive dose to OARs per fraction, however, a dose-escalation study was

performed by increasing the prescribed dose steps by approximately 5 % of the

initially prescribed dose to avoid the serious side effects associated with higher-

dose irradiation. As a clinical example, our center has begun hypofractionated lung

CIRT. In 1994, the optimum prescribed dose of 90 Gy (RBE) in 18 fractions over

6 weeks was adopted for Stage I NSCLC and achieved 95 % local control with
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minimal pulmonary toxicity. Dose escalation with a small number of fractions was

then continued to 72.0 Gy (RBE) in 9 fractions over 3 weeks and 52.8–60.0 Gy

(RBE) in 4 fractions over 1 week. There were no severe toxic reactions, and the

5-year local control rate for 9 and 4 fractions was 95 % and 90 %, respectively

(Miyamoto et al. 2003, 2007). Our center now treats NSCLC in a single fraction

with dose escalation from the initially prescribed dose of 28 Gy (RBE) to 50 Gy

(RBE) (Karube et al. 2015).

With regard to hepatocellular cancer (HCC), hypofractionated dose-escalation

studies have been implemented in CIRT. The initial treatment fractionation scheme

was 15 fractions over 5 weeks, which was then decreased to 12 fractions over

3 weeks, 8 fractions over 3 weeks, and 8 fractions over 2 weeks. The 5-year local

control and survival rates for 4 fractions over 1 week (prescribed dose of 52.8 Gy

(RBE)) were 81 % and 33 %, respectively (Imada et al. 2010). We have continued

this fractionation scheme to 2 fractions in 2 days (prescribed dose of 45 Gy (RBE)).

7.3.6.2 Treatment Replanning

Treatment procedures are generally performed using planning CT data acquired in a

single day based on the assumption that patient geometry might not change

throughout the treatment course. This would be emphasized by the smaller number

of treatment fractions in CIRT than in proton and photon beam therapy: the number

of fractions in prostate treatment, for example, is 38 fractions for photon beam and

12 fractions for CIRT (Fowler and Ritter 1995; Tsujii and Kamada 2012). Most

oncologists and physicists are likely to be anxious about both intra- and

interfractional changes, however, given that the characteristics of these
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uncertainties can differ among individual patients. We have no quantitative infor-

mation on intra-/interfractional changes if IGPT is not applied. Sources of the

interfractional change, such as variations in tumor size, shape, and density, include

weight loss/gain, treatment response, and setup variations. Positional changes of the

tumor over a treatment course have also been reported (3, 4). In addition to range

uncertainties, particle radiotherapy is also challenged by interfractional geometry

changes.

One example of treatment replanning has been introduced to the treatment of

locally advanced cervical cancer with CIRT. Most cervical tumors irradiated with

carbon-ion beam show marked shrinkage after the start of treatment, and treat-

ment planning is therefore routinely repeated twice during the treatment course in

our hospital (Kato et al. 2006). In the first (initial) treatment plan, the CTV

includes whole pelvic irradiation (gross and potentially microscopic disease,

cervical tumor, uterus, parametrium, upper half of the vagina, and pelvic lymph

nodes) (CTV1), and the PTV is designed by the addition of a 5-mm margin to

CTV1 (PTV1). The prescribe dose of 39 Gy (RBE) in 13 fractions is given to

PTV1 (Fig. 7.19a). In the first revised treatment plan, the CTV includes the gross

disease at the primary site, parametrial involvement, remainder of the uterus,

upper vagina, and gross lymph node involvement (CTV2). The revised PTV is

CTV2 plus a 5-mm margin, and the prescribed dose of 15 Gy (RBE) in five

fractions is delivered to PTV2 (Fig. 7.19b). In the second revised treatment plan,

the PTV is shrunk to the GTV (PTV3), and the prescribed dose of 18 Gy (RBE) is

given in two fractions (Fig. 7.19c). This procedure allows for successful delivery

of the total prescribed dose of 72 Gy (RBE) to the tumor with minimal excessive

dosing to normal tissues throughout the treatment course (in 20 fractions), even

though tumor size is significantly changed.

7.3.6.3 LET Painting

Due to word count limitations, the author does not provide details of IMPT here.

However, PBS allows the design of more flexible dose distributions and therefore

has the potential to improve TCP for the hypoxia tumor region by optimizing both

dose and LET distributions (LET painting) (Bassler et al. 2010; Malinen and Sovik

2015). Since CT images do not provide functional information but rather geometric

information only, the effective density derived from a CT image does not provide

the hypoxia region. It is well known that the hypoxia tumor region requires a higher

dosage than the tumor region with a normal oxygen level to obtain the same

radiation response (oxygen enhancement ratio, OER). Although heavy charged

particle beams have a high-LET and low OER values, tumor control may be

decreased if the hypoxia region is included in the tumor region. Functional infor-

mation is obtained from positron emission tomography (PET) images used in

treatment planning by combination with CT image. In an example clinical case

(head and neck region), although a homogeneous C-PBS dose distribution was
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achieved within the PTV, LET around the target edge region was higher than that

around center region (upper panel in Fig. 7.20). Carbon ions were boosted to the

hypoxia tumor region to increase LET, but dose distribution within the PTV was

almost homogeneous (middle panel in Fig. 7.20). This group attempted to further

improve LET distribution by using oxygen-ion boost irradiation instead of carbon-

ion boost irradiation (lower panel in Fig. 7.20). As suggested above, the flexible

dose distribution allowed by PBS provides substantial scope to increase treatment

accuracy.

7.4 4D Treatment Planning

Most particle beam treatment centers using PBS currently restrict treatment to

areas not affected by intrafractional organ motion. Recently, however, two

treatment centers started C-PBS treatment to a moving target. In 2012, the

Heidelberg Ion Therapy Center started carbon-ion treatment for liver patients,

in which they apply an abdominal compression technique to significantly min-

imize respiratory motion (Habermehl et al. 2013), and in 2015, the NIRS started

treatment under free breathing conditions with markerless tumor tracking using

fluoroscopic image gating (see Sect. 7.4.5.4). Most particle beam treatment

centers have already started thoracoabdominal treatment using the passive

Fig. 7.19 Carbon-ion beam dose distribution using a passive scattering technique for locally

advanced cervical cancer in (a) first (initial) treatment planning, (b) second (first revised) treat-

ment planning, and (c) third (second revised) treatment planning. Red 95 %, pink 70 %, green
50 %, blue 30 %, purple 10 % (With permission from 2012)
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scattering technique. The PBS technique in these sites, however, requires

additional motion mitigation techniques to improve dose conformation to the

moving target. Here, we introduce the basic concept of 4D treatment planning

and its motion mitigation techniques as related to C-PBS treatment. We also

suggest that readers obtain more information about motion management (Bert

and Durante 2011; Korreman 2012).

Fig. 7.20 C-PBS homogeneous dose distribution and LET distribution on irradiation by four

different beam fields (upper panel). C-PBS dose distribution and LET distribution with boost

irradiation with carbon ions (middle panel) or oxygen ions (lower panel) to the hypoxia region

(marked as a black curve) (With permission from Bassler et al. 2014)
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7.4.1 Effect of Motion

It is well known that organ geometrical changes are major problems in the degra-

dation of dose conformation in particle beam therapy, but not in photon beam

therapy. The patient is alive, and the activities required to maintain this status

impact the whole body. For nearly all patients, it is impossible to stop the heartbeat,

breathing, digestion, blood circulation, etc. voluntarily. Breathing can be intention-

ally stopped for several seconds, but not all patients can hold their breath for a long

time due to decreased lung/circulation function. Respiratory and cardiac motion

(intrafractional motion) is unavoidable in thoracoabdominal treatment. As of 2015,

most commercially available TPS do not allow 4D dose calculation due to both

patient- and machine-specific considerations. An exception is the

RayStation© (RaySearch, Stockholm), whose 4D dose calculation incorporates

patient-specific motion.

Independently of the use of a motion mitigation technique, particle beam

stopping position is changed, and the magnitude of overdosage is increased when

the solid tumor density is replaced by the lower density of the lung (left upper and

middle panels in Fig. 7.21). Since a passive scattering beam provides a broadened

beam field in both the lateral and depth directions to cover tumor displacement,

both intrafractional motion and time axis should be considered. As a result, the

temporally accumulated dose distribution to the moving target is degraded as a

blurring effect (left lower panel in Fig. 7.21). PBS irradiation to the moving

target also causes a blurring effect; this more severe effect results from the interplay

between intrafractional tumor/organ motion and the timeline of beam spot position

due to the low probability density function (PDF) between them (called the

“interplay effect”) (right panel in Fig. 7.21) (Furukawa et al. 2007; Bert et al.

2008, Knopf et al. 2010). Similar effects have been reported in IMRT (Bortfeld

et al. 2002). PBS irradiation to a moving target should therefore consider scanned

beam spot position as well as both respiratory motion and time axis.

7.4.2 4D Imaging

To achieve good treatment accuracy in the thoracoabdominal region, information

on organ motion should be incorporated in planning CT imaging. The demand for

time-resolved 3DCT imaging has increased in both the photon and particle beam

therapeutic fields. The 4DCT technique adds time information to 3DCT data (Keall

et al. 2006; Mageras et al. 2004). Two different techniques for 4DCT acquisition are

commercially available and have been integrated into clinical application: cine 4D

mode (Pan et al. 2004) and helical 4D mode (Keall et al. 2004). Cine 4D mode sorts

reconstructed CT images into a specific respiratory phase, whereas the helical 4D

mode sorts temporal scans in sinogram space before reconstruction using the

respiratory signal. 4DCT is now routinely used in many treatment centers.
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However, one should be aware that 4DCT acquired with conventional multi-slice

CT includes geometric errors, for example, due to resorting. The resorting process

in 4DCT acquisition is based on respiratory phase, but because respiratory ampli-

tude is not always the same during 4DCT acquisition due to the time it takes for

image acquisition, resorting errors can occasionally occur. The different amplitudes

apparent during the acquisition of different slices sometimes make it impossible to

obtain a precise reproduction of the geometric shape (4DCT artifact) (Fig. 7.22)

(Yamamoto et al. 2008). This can result in the degradation of image quality, which

may in turn hamper quantitative analysis and affect the dose calculation on which

the treatment planning is based.

In one example, use of 4DCT artifact-free planning CT data provided sufficient

dose to the CTV (Fig. 7.23a). When planning was done using a smaller CTV shape

than the actual shape due to 4DCT artifact (Fig. 7.23c), however, underdosage

occurred around the diaphragm region in the treatment stage (Fig. 7.23b). To

overcome these problems, state-of-the-art medical CT scanners can acquire volu-

metric cine CT image data with an area-detector CT, such as with 320 detector rows

(“Aquilion One” by Toshiba Medical Systems) (Mori et al. 2007; Dewey et al.

2008). Because these CT scanners provide a scan region of more than 16 cm within

a single rotation with a coherent absolute time in all slices, resorting of CT data at

each slice position as a function of respiratory phase is not necessary. Several other

Fig. 7.21 Carbon-ion dose distributions at respective phases and accumulated dose for passive

scattering and PBS. Tumor (0 HU) was placed into lung tissue (-650HU) surrounded by tissue

(0HU)
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approaches to this problem have been introduced, but medical staff generally check

4DCT image quality after acquiring 4DCT images to determine whether quality is

clinically acceptable.

7.4.3 4D Dose Calculation

In a review article (Keall 2004), Dr. Paul Keall noted that “4D radiotherapy is the

explicit inclusion of the temporal changes in anatomy during the imaging, planning

and delivery of radiotherapy” and “4D treatment planning is designing treatment

plans on CT image sets obtained for each segment of the breathing cycle.” A basic

approach is to convolve a static dose distribution by a probability density function,

describing the probability that a volume element (voxel) is found at a particular

location, on the basis that it is necessary to calculate absorbed dose at each voxel

during irradiation to quantify dose assessment. As described in Sect. 7.3.5, different

compositions of the mixed particle field affect each voxel, and the residual beam

energy of the particles strongly affects the RBE value. Thus, although photon beam

and proton beams require only simply summing of the biological dose in each voxel

due to the constant RBE value, heavy charged particle beams require that the

Fig. 7.22 Examples of four-dimensional CT images with schematic diagrams for the four types of

artifact: blurring, duplicate structure, overlapping structure, and incomplete structure.

Corresponding artifacts are indicated by arrows in the respective images. Note that other artifacts

can also be observed in these images (With permission from Yamamoto et al. 2008)
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nonlinear addition of the biologically weighted dose should be accounted for in

each voxel. This is more important for dose assessment with C-PBS.

Since passive scattering irradiation uses a wide beam field to sufficiently cover

the target volume, if sufficient dose coverage to the moving target is achieved in

respective phases even though voxel trajectories within the target are not recog-

nized, the resultant accumulated dose will also achieve good dose coverage (left

upper and left middle panels in Fig. 7.21). In this case, however, overshoot was

observed over the distal side of the target region, the exact position of which

changed with respiratory phase. As a result, dose to each voxel could be varied as

a function of respiratory phase. Further, when hot/cold spots were caused within the

target volume, the accumulated target dose was inhomogeneous. Moreover,

because PBS irradiates each beam spot position as a function of time and because

irradiated spot position can differ even in the same respiratory phase (right upper

and middle panels in Fig. 7.21), evaluation of target dose coverage could be

impossible. Therefore, calculation of dose distribution at respective phases is

insufficient to evaluate dose assessment of a moving target. It is therefore necessary

to calculate the accumulated dose distribution, including DIR. We have clearly

defined this as “4D treatment planning.”

However, because human organ structures are moved and deformed naturally by

respiration, it is difficult to track each voxel in respective phases, particularly with

the similar HU value voxels seen in the liver, e.g., determining which voxel (P2 or

P2’) at peak inhalation moved to voxel (P1) within the VOI at peak exhalation

Fig. 7.23 (a) C-PBS dose distribution for a liver case calculated with artifact-less 4DCT and

overlaid on an artifact-less 4DCT image. (b) C-PBS dose distribution calculated with a 4DCT

artifact image and overlaid on an artifact-less 4DCT image. (c) C-PBS dose difference ((b) minus

(a)) overlaid on the 4DCT artifact image. Yellow line shows the CTV
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(Fig. 7.24a). It is well known that human organ movement is well fitted by the

B-spline curve, and this is often used in the DIR algorithm to calculate each voxel

trajectory. In the abdominal region, for example, a checkerboard image overlaid on

the sagittal image at peak exhalation (upper panel in Fig. 7.24b) was deformed at

peak inhalation by intrafractional patient geometrical changes (lower panel in

Fig. 7.24b). The same voxel at peak inhalation (P2 in Fig. 7.24b) can be estimated

using DIR from the voxel at peak exhalation (P1 in Fig. 7.24b). The several DIR

algorithms introduced to date have been shown to significantly affect 4D dose

distribution (Castadot et al. 2008; Brock 2010; Zhang et al. 2012), and planners

should therefore check DIR accuracy, as described in Sect. 7.3.2.2.

Figure 7.25 shows C-PBS dose distributions and accumulated dose distributions

as a function of time for a clinical example of liver 4D dose calculation. Over

50 respiratory cycles were required to give the total prescribed dose. An ungated

strategy with eight iso-energy-layered phase-controlled rescannings (PCR)

(described in the next section) was applied. Dose at the distal side of the target

was irradiated at T50 (T0, peak inhalation, T50, peak exhalation) in the seventh

respiratory cycle; the irradiated iso-energy layer was shifted to the proximal side as

treatment time proceeded (upper panel in Fig. 7.25); and the accumulated dose

gradually filled the target volume (lower panel in Fig. 7.25). Almost all the total

prescribed dose was given to the target at T70 by the 44th cycle.

Fig. 7.24 (a) Schematic drawing of voxel trajectory at peak exhalation and inhalation. Circular
shapes show VOIs at each phase. (b) A checkerboard image overlaid on the sagittal image in the

abdominal region at peak exhalation (upper panel) is warped at peak inhalation by applying DVF

(lower panel). Red curve shows the PTV for pancreatic treatment
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7.4.4 4D Optimization

The optimization process in treatment planning aims to find the best possible plan to

satisfy user-defined criteria; clinically, this usually means that the dose is good at

both sparing OARs and maintaining a good target dose. These user-defined criteria

are integrated mathematically as objective functions into the TPS. Although most

optimization techniques in treatment planning are 3D, state-of-the-art treatment

planning now extends to 4D to allow consideration of intrafractional uncertainties

(4D optimization).

Heath et al. compared two types of robust 4D optimization technique in margin-

based mid-ventilation lung treatment planning (Heath et al. 2009). First, each voxel

trajectory at respective phases was calculated by DIR from respective phases to the

reference phase. The accumulated dose hDii to moving voxel i at the respective

phase is calculated by summing over the contributed doseD ~ri,g
� �

at the location of

voxel i at the trajectory point g ( ~ri,g
�
and multiplying the probability distribution

determined from the respiratory motion curve Pg:

Dih i ¼
Xn
g¼1

D ~ri,g
� �

Pg, ð7:31Þ

where n is the number of voxel trajectory.

The first optimization technique, 4D optimization without consideration of

respiratory motion uncertainties, was performed to optimize beamlet weights by

using the following objective function:

Fig. 7.25 C-PBS dose distributions for the ungated strategy at (a) T50 in the seventh cycle, (b)

T00 in the 24th cycle, and (c) T70 in the 44th cycle. Upper and lower panels show dose

distribution at the respective phases and accumulated dose. Phase control rescanning (described

later) was adapted, but respiratory gating was not used
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F ¼ Ftarget þ
XnOAR
r

FOAR, ð7:32Þ

Ftarget ¼
XNtarget

i

αtargetunder D
target
min � Dih i
 �2 þ αtargetover Dih i � Dtarget

max


 �2
, ð7:33Þ

FOAR ¼
XNOAR

i

αOARover Dih i � DOAR
max


 �2
þ, ð7:34Þ

where nOAR is the number of OAR and Nx is the number of voxels in object x; αx

under and αxover are the penalties for the object x underdosage and overdosage,

respectively; and Dx
max and Dx

min are user-defined maximum and minimum doses

in object x, respectively. Object x is the target volume or OAR.

The second optimization technique is the probabilistic optimization technique,

which was originally applied to patient setup uncertainties (Unkelbach and oelfke

2004). It has now been expanded to the temporal axis by including the variance of

the dose in each voxel as follows:

Ftarget ¼
XNtarget

i

αtargetunder D
target
min � Dih i
 �2

þ þ αtargetover Dih i � Dtarget
max


 �2
þ þ Vi, ð7:35Þ

where Vi represents the variance of the dose in each voxel within the target volume.

Another 4D optimization method involves dividing the target volume into sub-

sections based on motion phases (Graeff et al. 2013). These subsections were

consistent with the slices dividing the target volume along beam direction

(Fig. 7.26a). Each slice was divided into sectors for respective motion phases

(Fig. 7.26b and Fig. 7.26c), and each sector was deformed using motion function

(Fig. 7.26d). The beam spots were then optimized to each target voxel in each

motion phase by minimizing the error valueE ~N
� �

between the prescribed dose Dpre

and particle numbers Nj,k as follows:

E ~N
� � ¼Xm

k¼1

X
i2CTV kð Þ

Di
pre � Dik

act
~Nk

� �h i2
, ð7:36Þ

¼
Xm
k¼1

X
i2CTV kð Þ

Di
pre � RBE ~Nk

� �Xr
j¼1

cijkNj,k

" #2
ð7:37Þ

where cijk is the factor correlated to the particle number of each beam spot; i and
k are the spot number and motion phase, respectively; andDact is the actual dose. j is
the particle number of each beam spot.

This optimization process is technically successful without introducing

unpredictable respiratory variation throughout the treatment course. There are
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fewer OARs in lung treatment than in abdominal treatment. The radiation oncolo-

gist and medical physicist should discuss any use of currently immature 4D

optimization in clinical treatment planning which requires minimization of OAR

dose in place of a conventional optimization technique.

7.4.5 Motion Mitigation Technique

Several approaches to motion mitigation have been introduced and some treatment

centers have integrated them into clinical protocols. The major motion mitigation

approaches are “margin,” “rescanning,” and “gating.” The motion mitigation tech-

nique emphasizes clinical gain by combining these different motion mitigation

approaches. The scanned beam tracking technique was introduced by a German

group (Grozinger et al. 2008), but many problems required solving before it could

be integrated into clinical use. Substantial additional development, simulation, and

verification are required before such techniques can be used clinically.

Fig. 7.26 Target volume is divided into slices along beam direction (a). These slices are divided

into sectors (four sectors (S1, . . ., S4) in this example) (b) and assigned into motion function (c).

Each sector is deformed according to the motion function (d) (With permission from Graeff et al.

2013)
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7.4.5.1 Intrafractional Range Compensating Margins

The first approach “margin” is generally used in particle beam therapy as well as

photon beam therapy. To avoid missing a moving target, internal margin has been

added to the CTV to construct the internal target volume (ITV) (ICRU-62 1999,

ICRU-50 1993). ITV, however, does not describe intrafractional density changes

within the target volume and is “geometrically” rather than “radiologically path

length oriented” (ICRU-72 2007). If ITV were used for treatment planning, 4D dose

distribution would cause underdosage within the CTV, because replacing the tumor

density with lower lung density produces intrafractional range variation

(Fig. 7.27b). Most cases have focused on range variation around the tumor itself;

however, particle beams may transit through normal tissues such as the chest wall,

pulmonary vessels, esophagus, bone, heart, and other critical structures before

delivering the treatment beam to the tumor. These structures could also cause

range variations.

To solve this problem, we designed range-adapted ITV (called range-ITV) from

respective 4DCT data by selecting maximum and minimum WEPL values at the

distal and proximal sides along the same ray line at respective phases (Knopf et al.

2013). Range-ITV contours were extended along the distal direction to compensate

for intrafractional range variation (Fig. 7.27a), which is the same region that had

underdosage in the ITV plan (Fig. 7.27b). By applying range-ITV, sufficient dose

was given to the CTV without underdosage (Fig. 7.27c).

The range-ITV contour reached the mediastinum (marked as an open arrow in

Fig. 7.27a). Beam spot was set within the range-ITV region. The treatment beam

reached this region around the exhalation phase due to inferior movement of the

tumor, but did not reach it around the inhalation phases. Accordingly, the accumu-

lated dose was not given to the whole range-ITV (marked as the open arrow in

Fig. 7.27c) but to the whole CTV region. For this reason, even though the OAR dose

was not clinically acceptable in 3D treatment planning, it might be acceptable in 4D

treatment planning. This is a clinical merit of 4D treatment planning. Here, we

introduce a clinical example of range-ITV for lung treatment, but this concept can

be extended to OARs (range-OAR). Since range-OAR shape might also be strongly

affected by density changes, especially in the lung and due to bowel gas, an

overlapping problem between range-ITV and range-OAR is quite possible, more

so than between PTV and PRV (see Sect. 7.3.2.1).

Range-ITV is a different shape in each beam angle (beam field-specific shape);

using the example of an orthogonal beam field, the dark gray shape is required to

cover intrafractional range variation for both beam fields (Fig. 7.28a). However,

lateral extensions for respective beam fields would be unnecessary. These different

beam-specific target volumes are not suitable for IMPT using carbon ions, which

instead require the same geometrical target volumes. To perform IMPT, field-

independent range-ITV was calculated using a modified geometrical and WEPL

conversion table (Fig. 7.28b) (Graeff et al. 2012). This allows the same geometrical

target volume to be used for both beam fields in IMPT optimization.
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7.4.5.2 Rescanning

Rescanning, first proposed by Phillips et al. more than 20 years ago (Phillips et al.

1992), is based on the idea of averaging the positional errors of intrafractional

motion and thereby smoothing associated dose errors. Rescanning minimizes the

magnitude of the interplay effect and improves dose conformation within the target.

A basic concept of rescanning is to irradiate the pencil beam to respective beam

spots on multiple times. There are two major rescanning methods: layered and

volumetric rescanning.

Layered rescanning performs repetitive scanning of the same iso-energy layer;

after completing rescanning of the layer, the beam energy is changed to irradiate the

next adjacent iso-energy layer. This process is repeated until all iso-energy layers

are irradiated. The interplay effect is affected by the scanning speed, beam energy

Fig. 7.27 (a) CTV, ITV, and range-ITV contours at the reference phase. Temporally accumulated

carbon-ion beam dose distributions using (b) ITV and (c) range-ITV. Single-field uniform dose

optimization was selected

Fig. 7.28 (a) Schematic drawing of field-independent range-ITV for orthogonal beam fields.

Geometrical ITV and field-specific range-ITV are shown as a light gray circle (GEO-ITV) and

dark ellipses, respectively. (b) Standard and altered geometrical and WEPL conversion table

(With permission from Graeff et al. 2012)
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change time, beam spot size, number of beam fields, etc. Several researchers have

reported optimum rescanning parameters to minimize the interplay effect (Dowdell

et al. 2013; Grassberger et al. 2013; Knopf et al. 2011). However, multiple

rescanning (e.g., 20 times) is not good for the scanning magnet system; and if

raster-scanning method, which makes the spot transition without turning off the

beam, were used, doses between beam spots could be increased. Rescanning is

applied to a moving target, albeit that rescanning does not consider respiratory

cycle and performs the rescanning as rapidly as possible in the irradiation system. A

correlation of rescanning with respiratory motion techniques has been introduced,

namely, breath-sampled rescanning and phase-controlled rescanning (PCR) (Seco

et al. 2009; Furukawa et al. 2010). PCR deposits the dose to respective spots

included in each iso-energy layer to ensure the completion of irradiation within a

single respiratory cycle or within the gating window if gating is applied by

changing the dose rate (Fig. 7.29a). Scanning order in the iso-energy layer is

inversely switched after each rescanning by optimization to minimize total scan-

ning path length. Adequate PCR frequency minimizes the magnitude of the inter-

play effect by averaging the probability density function between the target and

beam spot positions.

One clinical example uses the accumulated dose distribution of a horizontal

beam field with a variable number of rescannings under free breathing conditions

(Fig. 7.30). Dose conformation without rescanning is severely and rapidly degraded

when respiratory cycle is not considered, indeed, as rapidly as the treatment system

can achieve. Although a single PCR (1 � PCR) also resulted in severe dose

degradation due to the slow scanning speed resulting from irradiating a single

layer for a 4-sec respiratory cycle, four or more rescannings improved dose

conformity, and sufficient prescribed dose was successfully delivered to a moving

target. This strategy is already implemented in the Toshiba heavy charged particle

beam treatment system and was in use in treating patients in our hospital and at

Kanagawa Cancer Center in Japan in 2015. A similar system is now under con-

struction at Yamagata University.

Volumetric rescanning irradiates beam spots in the iso-energy layer; beam

energy is then changed to irradiate beam spots in the next iso-energy layer. The

process is repeated until the prescribed dose is delivered to the entire target volume.

This method is preferred to an irradiation system with a short energy change time.

Volumetric PCR irradiation is made to complete at the end of a gating window by

setting the appropriate dose rate constant for all iso-energy layers (Fig. 7.29b).

These rescanning methods are strongly dependent on machine specification. In

comparisons using our irradiation system, we found that volumetric PCR was not a

suitable alternative to layered PCR (Mori et al. 2013).

7.4.5.3 Gating

Although gating is widely used in photon and particle beam therapies, it has a long

history in proton therapy and was in fact integrated into proton therapy in Tsukuba
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University in the late 1980s (Ohara et al. 1989). The general concept of gating is to

irradiate the treatment beam at a specific respiratory phase with a gating signal,

typically obtained by observing the patient’s respiration. Gating is useful in miti-

gating the interplay effect via the minimization of tumor displacement during

irradiation; nevertheless, it is not a fundamental approach but rather adequate for

PCR/breath-sampled rescanning. Here, the author would like to emphasize that the

aim of “gating” is to reduce excessive dose to normal tissues by minimizing beam

field size. A smaller beam field with gating requires greater accuracy to irradiate a

moving tumor than a wide beam field without gating. This gating accuracy could be

affected by both machine inheritance and patient inheritance factors. While tech-

nical progress in hardware and software will likely improve machine inheritance

(e.g., delay time between actual motion and creation of the gating signal), patient

inheritance factors described below should be approached by a reconsideration of

the fundamental concepts of treatment planning.

The first patient inheritance factor is respiratory pattern variation during treat-

ment. The second is imperfect reproducibility of the respiratory pattern and corre-

lation between the skin surface and internal tumor motion across exhalations

(Hoisak et al. 2004; Koch et al. 2004; Liu et al. 2004; Ahn et al. 2004). Together,

these may result in degradation of the accuracy of gated radiotherapy and possible

irradiation of the tumor beyond the gating window. This will in turn cause the

position of the beam-on to be shifted relative to the actual target position (Mori

et al. 2008).

Let us reconsider the basic concept of the treatment plan, which is to irradiate the

treatment beam when the moving tumor is inside the PTV defined at treatment

planning (called amplitude-based gating). The phase-based gating method would be

insufficient to capture exact tumor position. Two commercially available

amplitude-based gating systems have been recently introduced (CyberKnife®
Robotic Radiosurgery System, Accuray, Inc., Sunnyvale CA, USA, and

SyncTraX®, Shimadzu, Kyoto, Japan). These systems detect the position of

implanted fiducial markers in real time, using paired fluoroscopic units.

Temporal dose distribution under regular breathing conditions (plan dose as a

reference) was successful in delivering sufficient dose to a lung tumor (Fig. 7.31a)

(Mori et al. 2014). The use of amplitude-based gating prevented dose degradation

under the assumption of an irregular motion pattern, namely, motion drift in the

superior direction (blue curve on Fig. 7.31b, c). Hot spots (>105 % of a prescribed

dose) within the CTV were observed with the treatment dose (Fig. 7.31b), and

higher and lower treatment doses not seen in the planning doses were distributed in

the respective superior and inferior sides of the CTV (Fig. 7.31c). The amplitude-

based gating strategy with multiple rescans preserved dose distribution to a moving

target even though respiratory pattern was irregular.

7.4.5.4 Clinical Example in C-PBS Gated Treatment

In this section, the author introduces our clinical example of C-PBS treatment for

the thoracic region, started in March 2015. To minimize motion effects, we applied
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motion mitigation techniques (eight times PCR and amplitude-based gating) and

4D treatment planning with range-ITV. To achieve amplitude-based gating, we use

a paired fluoroscopic imaging unit to acquire real-time X-ray images to capture

tumor position. However, fiducial markers are vulnerable to changes in position

over the course of therapy (Imura et al. 2005), which can affect dose distribution

(Newhauser et al. 2007). Further, not all patients or all tumors can be subjected to

fiducial marker implantation. For these reasons, we considered that a markerless

tumor tracking method would be preferable. Markerless tumor tracking uses both

multi-template matching and machine-learning algorithms (Cervino et al. 2009;

Cui et al. 2007, 2008). Tumor position on the fluoroscopic image was detected

automatically in real time (marked as yellow lines in Fig. 7.32a) (Mori et al. 2016).

When tumor position is inside the irradiation region, the treatment beam is “on”

(marked as green/orange lines in Fig. 7.32a). In this case, tumor position was

interfractionally changed in the 1st and 12th fractions. However, amplitude-based

gating corrected the irradiated treatment beam to the moving tumor by directly

capturing tumor position. External gating (monitoring surface motion) did not

directly observe the tumor, so its use would degrade gating accuracy.

In this case, when external gating was used in treatment, gating accuracy was

11.1 mm (95 % confidence interval), significantly worse than the 1.1 mm achieved

Fig. 7.31 Lung dose distributions in axial and coronal views. (a) Planned dose. (b) Delivered

dose. (c) Dose difference. In (d), the respiratory wave data are displayed
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with amplitude-based gating, due to interfractional changes. A major advantage of

amplitude-based gating is its ability to target moving tumors even with large

interfractional ranges. Although a large part of end-expiration in the 12th treatment

fraction was out of the gating window (Fig. 7.32b), the treatment beam was “on”

from end-expiration to inspiration. Despite changes in lung density and rib position

during the respiratory cycle, CTV position closely corresponded to the irradiation

region. Effects on dose distribution are likely smaller than the dose to the CTV

using the external gating methodology, because the setup margin can compensate

for these variations in density and position.

7.5 Summary and Outlook

This chapter has introduced image-guided CIRT treatment planning and empha-

sized differences between particle and photon beams. The basic concept of CIRT

treatment planning is similar to that for photon beams. Initially, heavy charged

particle therapy was used to treat rare cancers, but thanks to strong advances in

medical physics and clinical research/development activities, current CIRT has

been extended to treat common cancers. The CIRT treatment method and tech-

niques have been developed to allow for safe and more robust treatment delivery.

While it is important to take account of “cost-effectiveness” in the widespread

implementation of particle beam therapy around the world, this has already been

achieved with photon beam therapy (Zietman 2007; Vanderstraeten et al. 2014).

One solution is a reduction in constructing costs by making treatment systems more

compact (accelerator and irradiation machine, etc.) and improving treatment

throughput (increasing the number of patients). In this regard, our new treatment

C-PBS system (Toshiba Corp., Tokyo, Japan) facility has improved treatment room

occupancy time (average 10 min per patient) by integrating several technologies

developed over 20 years’ clinical experience and research activities. Several prob-

lems in clinical, technical, and other aspects of particle beam therapy remain, and

constant collaboration efforts among medical staff and treatment system vendors

are mandatory to achieve steady incremental progress over days and weeks. Higher

treatment throughput via hypofractionated treatment might be one solution to

hospital financing.
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Chapter 8

Computer-Assisted Treatment Planning

Approaches for IMRT

Freddy Haryanto

Abstract This chapter gives an overview about the computer aided for IMRT. It

will be begun with the historical of the evolution in radiotherapy techniques and

then continuously with the comparison between 3DCRT and IMRT techniques.

This chapter discusses the terminology in IMRT and also its techniques that are

already implemented in clinical cases. This chapter will be closed with discussion

about the optimization criteria that are used in IMRT.

Keywords IMRT • Terminology • Techniques • Optimization • Criteria

The purpose of radiation treatment planning system is to achieve maximum dose on

the target and minimum dose on organs at risk. Based on this purpose, the

development of delivery technique in radiotherapy becomes one of the important

approaches. Table 8.1 shows the milestones of radiotherapy. Regarding the delivery

technique in radiotherapy, there are three delivery techniques which are

implemented based on the computer aid, namely, 2D, 3D conformal, and

intensity-modulated radiation therapy (IMRT) techniques. Based on Table 8.1,

the evolution of radiotherapy planning and delivery has changed very fast. There-

fore, it brings the benefits for cancer patients, while new techniques or technologies

have increased not only the probability of cure but also the efficiency of delivery.

Here it can be seen that the development of computer technology always gives big

impact on the evolution of radiation technique. Computer is needed not only to

operate the linear accelerator but also to make better treatment plans.

Regarding the delivery techniques in radiotherapy, Fig. 8.1 shows illustrations

on how the delivery techniques evolved. In the early stage, the external beams were

implemented with a limited number of fields and arranged in simple ways that could

be regularly repeated from case to case. The evolution on computer technologies

brings also the influence into the delivery techniques in radiotherapy. In 1988,

Andre Brahme had proposed a theory to modulate the fluence of beam radiation
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through the inverse method (Brahme 1988). This technique became a well-known

technique which was called IMRT technique. However, the clinical implementation

of this technique can be done around 12 years after Brahme’s work (Webb 2005).

Nowadays, IMRT has many derivations. Regarding the radiation source, IMRT

can be implemented not only for photons but also for other particles such as proton

and electron. IMRT also evolves its technique with various methods. One of the

new techniques has used image confirmation of the targets during treatment,

namely, image-guided radiation therapy (IGRT) (Jaffray 2005). The other new

technique based on the high-precision accelerated stereotactic modality is called

stereotactic radiation therapy/surgery (SRT/S) (Blomgren et al. 1995; Hamilton

et al. 1995). The newest delivery technique in IMRT was named intensity-

modulated arc therapy (IMAT). These techniques implement rotational cone

beams of varying shapes to achieve intensity modulations (Yu 1995). In this

chapter, the discussion is focused only on the basic IMRT technique.

8.1 3D Conformal Radiation Therapy Versus IMRT

To understand the advantage of IMRT technique, it can be started by comparison

between the 3D conformal radiation therapy (3DCRT) and IMRT (Webb 2000;

Schlegel and Mahr 2001; Sternick 1997). Figure 8.2b shows that the IMRT is based

on the inverse method to achieve the best dose distribution on the target. It differs

from the 3DCRT which is based on forward method (Fig. 8.2a). IMRT has reformed

the aims of treatment planning from the design of fields to the design of dose

distributions.

IMRT also changes the paradigms in radiotherapy. Based on ICRU-50 recom-

mendation, the dose distribution on the planning target volume (PTV) that is

produced by 3DCRT should be uniformed (ICRU 50, 1993). But IMRT does not

need to produce the uniform dose distribution on PTV. In the IMRT method, the

ability to vary the fluence of radiation across the surface of the beam plays an

important role. The IMRT technique should not produce the beams whose intensity

Table 8.1 The milestones of radiotherapy

Stage Modality

Delivery

technique Dose calculation

Early Ortovolt – X ray Conventional Experiment based

Intermediate Co – 60, low-energy

Linac

2D and 3D

conformal

Pencil beam

Advanced High-energy Linac IMRT Pencil beam convolution

Superposition

Monte Carlo

Analytical anisotropical algorithm

(AAA)

Boltzmann-based method
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is either uniform or changes uniformly, such as by the addition of a wedge filter.

The other paradigm is also shifted in IMRT, namely, the dose at isocenter. In

3DCRT, the dose at isocenter should be reported but not in IMRT. The dose at

isocenter in IMRT became an insignificant parameter. Table 8.2 shows the detailed

comparison between the paradigms in 3DCRT and IMRT.

Fig. 8.1 The dose sculpting to illustrate the evolution of delivery techniques (Modified from John

Schreiner 2006)

a b

Fig. 8.2 Illustration for comparison of (a) 3DCRT and (b) IMRT (Modified from ICRU 83 2010)
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8.2 IMRT Terminology

As on the previous discussion, the IMRT method provides better dose distribution

than 3DCRT method. Unfortunately, even with IMRT, it is impossible to deliver

100 % dose in target and 0 % in organs at risk. Bortfeld et al. confirmed that it is

infeasible to make true inverse dose planning in IMRT. In this section, the IMRT

terminology will be discussed. It is related to the physical variables that will be

optimized and should be defined.

The first variable that should be optimized is the number of beams and their

beam angles. Figure 8.3 shows the illustration of the number of beams and beam

angles. The number of beams and beam angles depends on many factors such as

anatomy, radiation tolerance, and the prescribed dose of target. Based on the

image reconstruction in the CT scan, the early theoretical approaches to inverse

planning assumed a very high number of coplanar beams (Brahme et al. 1982). It

is related that the higher the number of beams is, the higher the dose conformation

potential is. But S€oderstr€om and Brahme 1995 suggested using no more than three

beams. Therefore, the question about the “optimum” number of beams in IMRT

has been discussed frequently in the literature among the researchers (Brahme

1993, 1994; Mackie et al. 1994; Mohan and Ling 1995; Mohan and Wang 1996;

S€oderstr€om and Brahme 1996). Regarding the optimization of orientation and

the number of beams, it should be noted that the noncoplanar beams are

unusually used in IMRT and the parallel-opposed beam should also be avoided

(Stein et al. 1997).

In IMRT, the second variable that should be optimized is the intensity map for

each beam. Usually, each beam is divided into a number of small areas which are

called beam elements (bixels or beamlets). Each bixel or beamlet has a typical size

of 0.5 � 0.5 to 1 � 1 cm2, and the number of bixels or beamlets for all beams is

normally in the order of 1000–10,000. Because it could be very difficult to deliver

intensity-modulated beams directly with a linear accelerator (LINAC), the intensity

maps are developed using a set configuration of multileaf collimator (MLC). One

configuration of MLC is well known as segment. Figure 8.4 shows the illustration to

understand bixels or beamlets and segments. Therefore, finding the best intensity

maps is not only a high-dimensional problem in optimization but also a complex

problem in “leaf sequencing.” Many methods and techniques to optimize intensity

Table 8.2 The paradigms in 3DCRT and IMRT

3DCRT IMRT

Dose calculation Forward method Inverse method

Field composition Simple Complex

Region of interest (ROI) No need to define Target and organs at risk

Fluence distribution Uniform Nonuniform

Dose distribution Uniform High gradient

Monitor unit Low High
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maps have been developed and implemented (Cho and Marks 2000; Alber and

Nüsslin 2001).

Instead of the intermediate step of using intensity maps altogether, there are two

research groups that suggested to directly optimize MLC shapes (apertures) and

their weights (DeNeve et al. 1996; Shepard et al. 2002). Based on the anatomy of

the target or organs at risk, the MLC shapes can be generated. But the MLC shapes

can be directly optimized together with the weights of the segments. The direct

optimization of MLC shapes and weights becomes mathematically a difficult,

non-convex problem.

The last optimization is related to the number of intensity levels. Many

researchers agree that IMRT planning methods assume a continuous modulation

of the intensity. But there are several researchers who have another idea to use a

different approach. They suggested that promising results can be achieved “dis-

creetly” like beam profile as well (Bortfeld et al. 1994a; Gustafsson et al. 1994;

DeNeve et al. 1996). In fact, the results show no significant difference between

using a moderate number of stairstep with 5–20 “intensity levels” in each beam

profile and continuous modulation (Keller-Reichenbecher et al. Keller-

Reichenbecher et al. 1999). Figure 8.5 shows the intensity levels that are produced

by both methods. Therefore, it is unnecessary to use fully dynamic method in IMRT

with MLC. To avoid the high-dose delivery to patients, IMRT can be realized in a

step-and-shoot method. This method delivers the beams based on a number of static

MLC-shaped segments from each direction of incidence. By this way, the total

number of beam segments that is delivered is in the order of 100. Nowadays, the

linac machine can implement this method automatically and quickly. More detailed

Fig. 8.3 An IMRT dose distribution for a prostate cancer from seven beam angles, namely, 25�,
85�, 129�, 180�, 223�, 275�, and 335�
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information about the comparison of the features of dynamic versus step-and-shoot

IMRT can be found in the publication from Chui et al. (2001).

8.3 Inverse Planning Techniques

After the discussion about the variables to be optimized, the inverse planning

techniques became the next topic to discuss. The advantages of IMRT can only

be taken into account through the implementation of these techniques. Using

inverse planning, the aims of the treatments are not only the desired dose distribu-

tion but also the desired biological end points. The plan parameters which best

reflect the treatment’s aims are determined by optimization algorithms.

There are two well-known inverse planning techniques which are implemented

in IMRT, namely, beamlet-based inverse planning and aperture-based inverse

planning. The difference of both techniques is based on the treatment’s variables
that are optimized. Beamlet-based inverse planning begins with dividing the field

into a grid of beamlets, and then the weights of these beamlets are optimized. The

intensity map, which is a distribution of the beamlet’s weights, is provided by the

Fig. 8.4 One segment (red
areas) consists of 23 bixels

or beamlets

Fig. 8.5 The intensity levels based on the step-and-shoot method (a) and the sliding windows

method (b)

188 F. Haryanto



optimization. After the intensity maps are done, each intensity map is sequenced

into a set of deliverable aperture shapes. Figure 8.6 shows the illustration of the two

steps on the beamlet-based inverse planning. On the other hand, aperture-based

inverse planning does not have the sequencing step, while a set of deliverable

apertures is already included in the optimization.

Many researchers proposed beamlet-based inverse planning based on two major

step approaches to produce an optimized treatment plan. In the first step, the pencil

beam intensities of each beamlets are optimized (Bortfeld et al. 1994b; Chui et al.

1994; Galvin et al. 1993; Webb 1994, 1998a, b). During this process, the quality of

the treatment plan is recorded based on an objective function. In the second step,

this technique applied the leaf sequencing algorithm to implement each optimized

intensity map into a set of deliverable beam apertures (Xia and Verhey 1998;

Crooks et al. 2002; Langer et al. 2001; Saw et al. 2001; Convery and Webb 1998).

However, some problem appears from this two-step process (intensity optimi-

zation and leaf sequencing) employed in the beamlet-based inverse planning

process for MLC-based IMRT. Cho et al. reported that a large number of complex

field shapes lead to a loss in efficiency and an increase in collimator artifacts (Cho

and Marks 2000). Some researcher tries to simplify the delivery and smoothing the

intensity maps, but a loss in treatment plan quality occurred (Alber and Nüsslin
2000; Spirou et al. 2001). The other researcher used a large number of segments

with a low number of monitor units (MUs) along with small off-axis fields (van

Santvoort and Heijmen 1996; Webb et al. 1997). This approach not only brings new

challenges for accurate dose calculation and unrealistic requirements for geometry

accuracy of the MLC and dosimetric accuracy of the linear accelerator (Budgell

et al. 2000; LoSasso et al. 1998) but also needs an intensively quality assurance to

achieve the well-established safety and accuracy standards (LoSasso et al. 1998).

First step:
Optimized fluence map

Second step:
Leaf Sequencing

Fig. 8.6 An illustration of a two-step method on the beamlet-based inverse planning (Modified

from Yu et al. 2006)
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Aperture-based inverse planning is made as an inverse planning technique to

solve the complexity of IMRT treatment plans. Each aperture that is considered by

optimization process is determined to satisfy the delivery constraints. There is no

leaf sequencing and no need to divide the final intensity maps into discrete intensity

level. For this planning, there are two methods that already developed, namely,

contour-based treatment planning and direct aperture optimization.

There are two approaches in contour-based treatment planning to define the

aperture shapes. The first approach is based on the patient’s anatomy (Xiao et al.

2000, 2003; Bednarz et al. 2002; Chen et al. 2002). Before the optimization, this

approach constructed the aperture shapes based on a target and organ at risk for

each beam angle from the beam’s eye view (BEV). After the first aperture shape is

confirmed for the target and its appropriate margin, the additional apertures are

added to protect any OAR regarding the first aperture shape. Figure 8.7 demon-

strates an illustration of these processes. After the dose calculation, the aperture

weights are optimized. There are several algorithms, which have been performed

for optimization, such as a simultaneous projection algorithm (Xiao et al. 2000), a

mixed integer algorithm (Bednarz et al. 2002), and an iterative least-square algo-

rithm (Chen et al. 2002). To produce the additional apertures, DeGersem developed

an anatomy-based segmentation tool (ABST) (DeGersem et al. 2001a, b). In the

second approach, isodose curves can be used to perform a contour-based treatment

planning. At William Beaumont Hospital, this approach has been developed to

increase the dose uniformity with tangential breast radiotherapy (Kestin et al. 2000;

Remouchamps et al. 2003).

The second method, namely, direct aperture optimization (DAO), is an inverse

planning technique where the aperture shapes and aperture weights are optimized

simultaneously (Shepard et al. 2002). This technique is needed to specify not only

the beam angles but also the number of apertures. In contrast with the contour-based

planning methods described above, DAO takes account of the aperture shape as a

parameter in the optimization. The optimization only considers aperture shapes that

satisfy the constraints imposed by the MLC. But additional delivery considerations,

such as the minimum aperture size and minimum number of monitor units (MUs),

can also be included in the optimization. Before the process of optimization begins,

DAO computed pencil beam dose distribution for each beam angle to increase the

speed of its process. For this purpose, the rectangular MLC shape that covers the

BEV of the target and its margin is used. In DAO algorithm, the beam angles, beam

energies, and the number of apertures per beam angle became input parameter. The

process of optimization begins to compute the objective function for the initial

beam configuration. Then the leaf positions and aperture weights are to be opti-

mized. At the end of the optimization, a final dose calculation is performed using

the optimized aperture shapes and aperture weights. Then, the treatment plan is

ready for delivery.
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8.4 Optimization Criteria

Although with IMRT it is impossible to guarantee that 100 % of the volume tumor

or cancer will receive dose as it is prescribed by the doctor and 0 % of the volume of

organ at risk, therefore, in this part, after the above discussion of optimization

terminology and inverse planning techniques, optimization criteria will be

discussed.

Regarding the optimization terminology, the optimization criteria belong to the

component that is called the objective function. Beside this component, there are

two other components in IMRT, namely, the driving variables and the driven

variable. The driving variables are the variables that can be controlled. Beamlet

or bixel of intensities of beam belongs to these variables. The other variables are the

driven variable which would be changed and optimized. An example for this

variable is dose distribution. Figure 8.8 shows a common flowchart of optimization

algorithm.

In general, optimization criteria can be divided into physical and biological

criteria (Niemierko 1992; Wang et al. 1995). All of these criteria can be taken

account as constraints or objective function. As constraints, the criteria should have

not over or below their limits. When the criteria act as objective, then the maximum

or the minimum quantities of these criteria should be found. Physical criteria

consist of the characteristic of radiotherapy dose distribution such as dose and

volume of objects related to the characteristic of radiation source and geometrical

object (Langer et al. 1996). Biological aspects are considered in the optimization

process, if the effect of radiation on the living object is considered. There are three

well-known biological criteria, namely, tumor control probability (TCP), normal

A Beam Eye View of a tar-
get and organ at risk (OAR)

Target con-
formal

OAR spar-
ing

Fig. 8.7 An illustration of the processes to construct the aperture shapes based on a target and

organ at risk from a beam’s eye of view (BEV) (Modified from St-Hilaire et al. 2009)
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tissue complication probability (NTCP), uncomplicated TCP (UTCP), and equiv-

alent uniform dose (EUD) (Niemierko 1999).

Generally, objective function is a function to describe the deviation from the

prescribed dose. For tumor target, the objective functions can be expressed in terms

of minimum dose, maximum dose, minimum dose to a given volume, maximum

dose to a given volume, and uniform dose. A simple objective function for tumor

target can be formulated as the following equation (Brahme 1993, 1994):

FT ¼
XN

k¼1

uk DPmin,k � Dk½ �2 þ wk DPmax,k � Dk½ �2
� �

ð8:1Þ

where DPmin, k is the minimum prescribed dose at each voxel k and DPmax, k is the

maximum prescribed dose at each voxel k. N is the number of voxels. uk and wk. are

the weighted factor of under- and overdose for each voxel k. Dk is the calculated

dose at each voxel k, and it depends on the dose calculation that is implemented in

the treatment planning system. In pencil beam convolution algorithm, as an exam-

ple, the dose calculation can be expressed as the following equation (Storchi et al.

1999):

D x; y; zð Þ ¼ SSDþ zrefð Þ2
SSDþ zð Þ2

Z1

�1

Z1

�1
IF u; vð ÞIP u; v; zð ÞK x� u; y� v; zð Þdudv ð8:2Þ

where SSD is the source to surface distance. IF(u,v) and IP(u,v,z) are the intensity of
field and profile, respectively. K(x,y,z) is the pencil beam kernel, and zref is the

reference depth that can be used for normalization.

Beam angles and op-
timization criteria 

are defined

Plan optimization and a final dose calculation
are performed.

Are optimization cri-
teria satisfied?

Plan will be approved for 
delivery

yes

no

Fig. 8.8 A common

flowchart of optimization

algorithm

192 F. Haryanto



Nowadays, there are many techniques to solve the optimization problem in

IMRT. The common and easy technique is the gradient technique. In this technique,

an iterative optimization is implemented, and then at every optimization step, the

correction for each weighted factor is done. It is similar as a skier going down the

hill into the valley (the valley represents the objective function). Therefore, this

technique is also called “downhill technique.” Many IMRT treatment planning

systems used variations of gradient techniques for their optimization algorithm

(Spirou and Chui 1998; Cotrutz et al. 2001). But many of the objective functions in

radiotherapy plans contain many local minima. Therefore, alternative optimization

algorithms such as simulated annealing are implemented (Langer et al. 1996; Webb

1992). These algorithms can reduce the probability that the solution is trapped in a

nonoptimal local minima.

Constraints are the optimization criteria that the optimization algorithm attempts

to meet. Constraints define the criteria for an acceptable solution, but they do not

define an optimal solution. Generally, constraints are divided into two categories,

namely, hard and soft constraints. Hard constraints must be attempted to meet by

the optimization algorithm, but the soft constrains can be violated. The violation of

the soft constraints will earn penalty for the constraints in the objective functions.

By increasing or decreasing penalty of the constraints, the planner can control the

level of “softness” of a constraint.
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Image-Guided Patient Positioning



Chapter 9

X-Ray Image-Based Patient Positioning

Akihiro Haga

Abstract Recent progressed image-guided radiation therapy (IGRT) has improved

both accuracy and precision in patient positioning. Because a setup margin consid-

ered to deliver a prescribed dose to a target becomes small, the dose for normal

tissues surrounding a target can be substantially reduced or the dose for a target can

be escalated as an expected complication probability of normal tissues is kept.

Consequently, the X-ray imaging have played a central role in modern IGRT

technologies. In this chapter, several techniques with the X-ray-based patient

positioning will be introduced, including physics and mathematics regarding dig-

itally reconstructed radiograph, cone-beam computed tomography reconstruction,

and patient registration. In addition, the treatment verification will be given from

the viewpoint of dose reconstruction and in-treatment X-ray imaging. In the last of

this chapter, the development of a quality assurance/quality control program in

IGRT system will also be described.

Keywords Image-guided radiation therapy (IGRT) • X-ray imaging • Computed

tomography (CT) • Patient registration • Treatment verification

9.1 Introduction to Image-Guided Radiation Therapy

(IGRT) and the Use of X-Ray Images

The progress of radiation therapy over the years has achieved an ideal dose

distribution with high-dose gradients to spare the normal tissue close to the target.

However, there is a concern that the steep dose gradients offered by these high-

precision radiotherapies can provide a lower dose to the target and a higher dose

than expected to organs at risk (OARs) in the actual delivery, if the patients and

their anatomies differ from the treatment planning situation. The uncertainties

arising from patient positioning, including anatomical changes, are considered as

the “margin” for the target and the OARs. The dose intended for the target,

A. Haga (*)

Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8655, Japan

e-mail: haga-haga@umin.ac.jp

© Springer Nature Singapore Pte Ltd. 2017

H. Arimura (ed.), Image-Based Computer-Assisted Radiation Therapy,
DOI 10.1007/978-981-10-2945-5_9

199

mailto:haga-haga@umin.ac.jp


including the margin, is often inadvertently delivered to surrounding tissues;

therefore, the achievable dose for the tumor is often compromised to spare these

tissues. Intensity-modulated radiation therapy (IMRT) and its rotational version

(volumetric modulated arc therapy; VMAT), combined with image-guided radia-

tion therapy (IGRT), allow for tighter margins than conventional radiotherapy.

Three-dimensional (3D) volumetric imaging using computed tomography (CT),

which is equipped in the treatment room, represents the latest development in the

IGRT armamentaria (Jaffray et al. 1999; Jaffray and Siewerdsen 2000; Jaffray et al.

2002). Cone-beam CT (CBCT) imaging mounted on a linear accelerator (LINAC)

is accompanied with multiple kilovoltage (kV) two-dimensional (2D) radiographs

acquired by a large flat-panel detector (FPD). The CBCT was also extended to four-

dimensional (4D) imaging by sorting kV radiographs from the respiratory signals of

the patient before reconstruction (Sonke et al. 2005; Li et al. 2006; Dietrich et al.

2006). Using the 2D–4D information obtained immediately prior to treatment, the

patient location can be corrected remotely by controlling the treatment couch, and

the treatment can be quickly started. Numerous articles report the clinical utility

and benefits of IGRT (Bujold et al. 2012; Van Herk 2008; Wikstr€om et al. 2014;

Barney et al. 2011; Deegan et al. 2014; Kestin et al. 2014; Zelefsky et al. 2012).

This chapter focuses on X-ray image-based IGRT. The typical IGRT process is

shown in Fig. 9.1. First, treatment planning CT is performed around a week before

the radiation therapy course is started. Then, the structures for the target and its

surrounding OAR are delineated on the resulting image sets, and a treatment plan is

created with a fiducial point that indicates the positon difference from the

corresponding point of the registration image acquired immediately prior to treat-

ment. The plan isocenter can be defined as the fiducial point to be registered in the

normal LINAC, whereas, similarly to TomoTherapy®, it can be arbitrary defined

within a region allowed by the system. For the patient positioning, assuming that

the patient is rigid and that no structures change from the planning CT, a pair of

projection images with each different angle is necessary. In this case, a reprojection

2D image of the planning CT from the corresponding angle direction is created in

advance. This is called the digitally reconstructed radiograph (DRR). The DRR can

be created by kV cone beams as well as treatment beams. Unlike a CBCT image, a

DRR image cannot visualize the 3D volumetric image and clear anatomical struc-

tures, especially the soft tissues inside a patient body. Nevertheless, this method

plays a central role in the X-ray image-based patient-positioning scheme. In the

next section, the concept of the DRR is discussed, along with 3D/4D CBCT

reconstruction. In Sect. 9.3, the image registration algorithm often used in the

commercial IGRT system is introduced. The nonrigid registration is inapplicable

to online patient positioning; therefore, it is not included here. The verification of

the patient positioning is crucial for clinical practice. This gives, for example, the

site-specific margin of the planning target volume (PTV) unified according to the

treatment data. With such analyses, it is reported that a state-of-the-art IGRT can

reduce the positioning uncertainty to the extent that a 1- to 2-mm PTV margin is

often sufficient to account for this uncertainty, especially if adequate immobiliza-

tion and motion management are available (Bujold et al. 2012). With adaptive
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radiotherapy, the analysis of the actual treatment provides an opportunity to modify

the margin assumed at the beginning of treatment session (Yan et al. 2000). The

robust adaptive strategies must be based on multiple data sets acquired during

treatment (Timmerman and Xing 2009). To fully exploit the information provided

by the IGRT system used, it should be ensured that the system maintains a high

performance. General issues of quality assurance (QA) and quality control (QC) for

the CT-based IGRT systems are discussed toward the end of this chapter.

9.2 Image Preparation

In precise radiation therapy, the patient setup is crucial; the patient position during

treatment planning CT acquisition must be reproduced during each treatment

session as well as possible. The IGRT is helpful for this, providing images acquired

immediately prior to treatment. The dimensionalities for the image registration in

X-ray image-based IGRT are divided into the following categories (Hajnal et al.

2001).

Fig. 9.1 IGRT workflow. Treatment planning CT; the structures and fiducial point of the

treatment planning are included in a reference set of the image registration for in-room imaging.

After the remote couch correction, the treatment is immediately started. During or immediately

after the treatment, in-room imaging is performed for verification, including margin analysis. This

post analysis triggers adaptive replanning. The imaging loop after the remote couch correction can

be omitted with the validation of the accuracy of the remote couch correction
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• 2D-to-2D

If projection images with several angle directions of the X-ray cone-beam source

are obtained independently in the treatment planning CT, they can be used as

reference images to be registered in the treatment session. It may be necessary to

use the same geometry for the acquisition of projection images as is used for the

reference image or to correct for the geometrical differences. In the past, this type of

registration was frequently used with X-ray simulators. However, in modern radi-

ation therapy, the use of this registration is rare.

• 3D-to-3D

Currently, it is typical to use one or several volumetric CT images for treatment

planning. The CT images can be obtained by the standard equipment of the

radiation therapy system immediately prior to treatment (kV/MV CBCT,

fan-beam MVCT, CT-on-rail, etc.). In clinical applications, CT images offer a

distinct advantage over projection images in that they allow the direct imaging of

soft tissue structures. Even for prostate cancer, which is not directly targeted with

projection imaging without implanted fiducial markers, the patient positioning can

be performed flexibly with 3D-to-3D registration around the target area while

viewing the rectal gases and/or bladder size and shape for both the treatment

planning CT and the registration one.

• 3D/4D-to-4D

Especially for stereotactic body radiotherapy (SBRT) of the lung and liver, 4D

CT imaging is indispensable for target delineation in treatment planning. With the

requirement of the imaging of the target motion in the registration, 4D CBCT has

been utilized in IGRT systems. In the currently available IGRT tool, 4D CBCT is

registered into one 3D CT out of the treatment planning 4D CT set or the averaged

3D CT. The operator verifies that the target trajectory is covered by the PTV, which

includes the consideration of the motion in the treatment plan, and then the

treatment is started. In principle, 4D-to-4D registration is possible; however, it is

not practically implemented, because of reasons including its ineffectiveness.

• 3D/4D-to-2D

This case may be required for establishing a correspondence between 3D/4D

volumes used for treatment planning and projection images acquired for IGRT. In

this case, the DRRs are created from 3D/4D CT in advance and used in the patient

registration as reference images to register acquired projection images with the

same angle views. This type of registration has a drawback: it can reproduce only

skeletal features without implanted fiducial markers. However, some radiation

machines provide a real-time monitoring function for motion tracking using the

projection images acquired during treatment beam delivery.

All modern IGRT technologies using X-ray images are based on projection

images (and corresponding DRRs) and/or CT reconstructed from projection data.
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In the following subsections, the physics and principles of the DRR and CT

reconstruction are described.

9.2.1 DRR

In modern radiation therapy, the DRR technique is predominantly used in image-

guidance systems to monitor the patient setup during clinical routines. The geo-

metrical accuracy of the patient setup is guaranteed by superimposing a portal

image of a megavoltage (MV) treatment beam or kV projection image acquired

immediately prior to treatment onto the corresponding DRR created in the treat-

ment planning. Thus, the common anatomical features on both images must be

matched after the image registration. In this registration, various metrics, such as

the least mean squares of the intensity difference, the normal cross correlation, and

mutual information, can be employed. Each metric has advantages and disadvan-

tages. Even if a metric is employed, the contrast mismatch between the portal image

and the DRR affects the registration accuracy. Therefore, the generation of the DRR

should be as realistic as possible, according to the fundamental physical process of

the X-ray quanta (Staub and Murphy 2013).

The basic component of a DRR generation model is ray tracing with information

on the linear attenuation coefficient from CT images. The observed projection in a

detector element at a certain projection angle, yi, is related to the corresponding

photon count ni as follows:

ni ¼ n0e
�yi , i ¼ 1, 2, . . . ,M: ð9:1Þ

Here,M is the number of total projection elements given by the pixel number of the

detector, and n0 is the constant photon number generated in the X-ray source.

Assuming a monoenergetic spectrum in the X-ray beam, the relationship between

the linear attenuation coefficient and the projection is linear, and the projection yi
can be evaluated by performing a line integral of the linear attenuation coefficient

distribution μ(x) in 3D space vector x, along with a line between the X-ray source

and the detector element i, as follows:

yi ¼ ln n0=nið Þ ¼
Z

da μ xð Þ �
X
j

Δaijμj, i ¼ 1, � � �,M: ð9:2Þ

where the variable da is taken along with this line. The integration is approximately

expressed by the summation of Δaijμj over j, which means the sampling point in the

line, with the fact thatΔaij is sufficiently small. The step sizeΔaij could be constant,
but, with the use of CT voxels, it would be more efficient to calculate it analytically

from the coordinates of X-ray source and detector element i. A schematic illustra-

tion is shown in Fig. 9.2, where μj and Δaij are the line attenuation coefficient and
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the length of the photon (which dives into the detector element i) trace in the voxel

j, respectively. Although μj is converted from Hounsfield units (HUs) in CT, the

X-ray energy in the IGRT system can differ from that in the treatment planning CT,

and this conversion is possibly necessary. Here, the geometrical uncertainty of the

X-ray source and detectors must be avoided. Uncertainty may arise with the use of

an onboard FPD; therefore, the geometrical shift values should be measured in a

QA/QC program and recorded for the correction for clinical imaging. This is one of

the simplest ways to create a realistic DRR image.

The projection yi can be influenced by additional physical effects. One such

effect is the scattering, which is considerably large for FPDs in cone-beam pro-

jections. There are various methods for estimating the scattering, including exper-

imental (e.g., beam stop arrays (Ning et al. 2004; Siewerdsen et al. 2004; Sch€orner
et al. 2011; Zhu et al. 2009)), theoretical (e.g., scatter kernel methods (Yao and

Leszczynski 2009a, b; Zhao et al. 2015), and Monte Carlo simulation (Zbijewski

et al. 2006; Jarry et al. 2006) methods, as well as combinations of these. Another

important effect influencing projections is beam hardening (Hsieh et al. 2000;

Grimmer et al. 2009). In Eq. (9.2), a monoenergetic spectrum was assumed for an

X-ray beam, but, the actual X-ray spectra are polyenergetic. As the X-ray passes

deeply through the body of the patient, the spectrum becomes “hard” owing to the

large cross sections for low X-ray energy. The scatter and beam-hardening correc-

tions are discussed in the next subsection, where a simple correction method for

CBCT reconstruction is introduced.

The other effects are relatively unimportant, but a rigorous reproduction requires

them. One representative challenge for a realistic DRR is the consideration of the

X-ray absorption due to the treatment couch, if a different couch is used in the

Fig. 9.2 Schematic of ray

tracing with information

about the attenuation

coefficient from CT images
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treatment planning CT system. This attenuation is considered by inserting the

virtual treatment couch. Other effects, such as veiling glare and signal leakage,

can be considered in the DRR creation (Staub and Murphy 2013).

9.2.2 CBCT

Since it was introduced by Jaffray et al., the CBCT system has taken on a very

important role in IGRT (Jaffray et al. 2002; Dawson and Jaffray 2007; Létourneau

et al. 2005; Boda-Heggemann et al. 2011). Figure 9.3 shows a typical cone-beam

X-ray imaging system, which consists of a kV X-ray tube and an FPD unit

perpendicular to the treatment MV beam, mounted on a LINAC gantry. Volumetric

images can be reconstructed from 2D projection images on the FPD with a half

rotation + fan angle range. Before the introduction of the CBCT imaging system,

orthogonal pairs of portal images of the posterior–anterior and lateral directions

using portal films or electric portal imaging devices (EPIDs) played the main role in

the patient setup workflow (Mongioj et al. 2011; Birkner et al. 2007; Hawkins et al.

2011). In contrast, CBCT visualizes the anatomical information (shapes and loca-

tions) inside the body with a high contrast. After the in-room CBCT system was

established, the accuracy of patient setup, i.e., the accuracy of dose delivery,

drastically improved (Bujold et al. 2012).

In this subsection, the basic formalism of the CBCT reconstruction using an FPD

is briefly introduced, but it can be easily extended to fan-beam CT and other

geometrical cases. Further details are provided in the literature (Kak and Slaney

2001; Buzug 2008). First, we consider a parallel X-ray beam. As shown in Fig. 9.4,

a projection P(θ, p) measured in the detectors aligned perpendicularly to the X-ray

direction, p, in the projection angle θ, is expressed as

Pðθ, pÞ ¼
Z

dxdy f ðx, yÞδðxcosθ þ ysinθ � pÞ, ð9:3Þ

where δ(x) is the Dirac delta function, i.e., the line integral of the photon path, and f
(x, y) is the 2D image of an object. The range of the integral for (x , y) is obvious—
from the X-ray source to each detector element—and is therefore omitted through-

out this chapter.

Equation (9.3) can be transformed as

f ðx, yÞ ¼
Z

dθdp Pðθ, pÞhðxcosθ þ ysinθ � pÞ, ð9:4Þ

where the integral range regarding projection angle θ is [0, π] and the kernel

function h(x cos θ + y sin θ� p) is defined as
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h x cosθ þ y sinθ � pð Þ ¼
Z þ1

�1
dω ωj jeiω x cosθþy sinθ�pð Þ: ð9:5Þ

Equation (9.4) can be ascertained by multiplying both sides of Eq. (9.3) by h(x
0

cos θ + y
0
sin θ� p) and integrating them with respect to p, obtaining

Fig. 9.3 CBCT system

mounted on the LINAC

(Elekta Synergy system)

Fig. 9.4 Geometry of a CT reconstruction using a parallel X-ray beam
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R
dp Pðθ, pÞhðx0

cosθ þ y
0
sinθ � pÞ ¼ R

dxdy f (x, y)

� hðx0
cosθ þ y

0
sinθ � ðxcosθ þ ysinθÞÞ:

ð9:6Þ

Then, integrating the projection angle θ over the range of [0, π] yields Eq. (9.4),
where the relationZ π

0

dθ hðx0
cosθþy

0
sinθ�ðxcosθþysinθÞÞ

¼
Z 2π

0

dθ

Z þ1

0

dωjωjeiωcosθðx0�xÞþiωsinθðy0�yÞ ¼
Z þ1

�1
dudv eiuðx

0�xÞþivðy0�yÞ

¼δðx0 �xÞδðy0 �yÞ
ð9:7Þ

is used (here, u¼ |ω| cos θ and v¼ |ω| sin θ).
The image f(x, y) is reconstructed by the convolution integral of the kernel hwith

the projection. Assuming a monoenergetic X-ray, the relation of the attenuation

coefficient μ(x, y) in the object to observed photons is given as,

nðθ, pÞ ¼ n0exp

�
�
Z

dxdy μðx, yÞδðxcosθ þ ysinθ � pÞ
�

ð9:8Þ

or

yðθ, pÞ ¼ ln ðn0=nðθ, pÞÞ ¼
Z

dxdy μðx, yÞδðxcosθ þ ysinθ � pÞ: ð9:9Þ

Here, n0 and n(θ, p) are the numbers of photon generated in the X-ray source and

detected by the detector with (θ, p), respectively. A comparison with Eq. (9.3)

reveals that the reconstructed image f(x, y) corresponds to μ(x, y) when y(θ, p)¼
ln (n0/n(θ, p)) is used as P(θ, p).

The reconstruction formula for a parallel beam can be easily extended to a fan

beam with a line-detector geometry. As exhibited by the geometry shown

in Fig. 9.5, the projection of the off-axis beam SP is regarded as P(θ, p0) in

the parallel-beam geometry. Therefore, the reconstruction formula can be

represented as

f x; yð Þ ¼
Z

dθdp0P θ; p
0

� �
h x cos θ þ y sin θ � p0ð Þ, ð9:10Þ

where
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θ ¼ β þ γ, p
0 ¼ p cos γ ¼ p

Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ p2

p : ð9:11Þ

By replacing the integrating variables θ and p0 with β and p, respectively, we obtain

f x; yð Þ ¼
Z

dβ
D2

D� sð Þ2
Z

dpR β; pð Þ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ p2

p h
Dt

D� s
� p

� �
, ð9:12Þ

where s¼ � x sin β + y cos β, t¼ x cos β + y sin β, and the projection in the fan-beam
geometry is expressed as R β; pð Þ.

Now, the formula for CBCT reconstruction with an FPD can be obtained by

extending the aforementioned fan-beam CT reconstruction formula. The modifica-

tions are the distance from the source to the reconstruction points on the plane

perpendicular to the s-axis (D2 + p2!D2 + p2 + ζ2), and the projection R β; p; ζð Þ
depends on the z-axis through ζ (see Fig. 9.6):

f x; y; zð Þ ¼
Z

dβ
D2

D� sð Þ2

�
Z

dpR β; p; ζð Þ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ p2 þ ζ2

p h
Dt

D� s
� p

� �
: ð9:13Þ

This is the final expression for the CBCT reconstruction. If ζ is fixed, the sinogram
required in the reconstruction on the cone-beam projectionR β; p; ζð Þ is a line with
v in the FPD corresponding to ζ. For instance, this formula reproduces the fan-beam

Fig. 9.5 Geometry for a

fan-beam CT

reconstruction, where γ is
the fan angle, and β is

regarded as the source angle

instead of θ
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reconstruction formula (Eq. (9.12) at ζ¼ 0, where the sinogram is constructed from

the projection lines in the middle of the v-axis.
In an actual computation, the aforementioned integration is replaced by a

summation. In the case of slow gantry rotation, the summation of the angle β can

be performed during the rotation. Therefore, the reconstruction is processed during

the acquisition of the projection data, allowing the rapid reconstruction of volu-

metric images.

Well-known artifacts are observed in the LINAC-mounted CBCT reconstruction

image. One of them is a “cupping artifact,” which is caused by several factors, the

most dominant being the scattering of the X-ray for CBCT reconstruction using an

FPD. Because of the photons scattered by the human body, the X-ray intensity
measured in each pixel of the FPD becomes higher than that expected without
scattering. This is more serious for the pixel in which the photon passes through the

long range of highly dense materials. The CBCT formula described here does not

consider any scattered photons. Therefore, when Eq. (9.13) is used in the recon-

struction, the strategy of the correction is to remove the scattered photons in the

measured projections. Although there are various methods for estimating the CBCT

scattering, including beam stop aperture/moving blockers, scatter kernel models,

and Monte Carlo simulation, one of the simplest methods is to multiply the detector

count n(θ, p) by a factor κ (0< κ� 1). Then, the corrected projection is obtained as

Fig. 9.6 Geometry for a CBCT reconstruction, where (u, v) constructs an FPD plane with its

intrinsic coordinates. This corresponds to the representation using ( p, ζ)
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ycorr θ; pð Þ ¼ ln n0=κn θ; pð Þð Þ: ð9:14Þ

This means that the number of scattered photons in the detector decreases

depending on the photon number. Thus, this factor can be used to correct the

measured X-ray intensity, which is higher than that predicted with no photon

scattering.

Figure 9.7 shows the effectiveness of this simple correction. Here, the cupping

artifact shown in Fig. 9.7 (a) is visually corrected as shown in Fig. 9.7 (b). The

center gray value profiles support this.

The beam-hardening effect may also yield a cupping artifact. The attenuation of

an X-ray passing through the same tissue depends on the length of the path, owing

to the change of the X-ray spectrum. Because a low-energy (soft) X-ray is attenu-

ated more than a high-energy (hard) one, the magnitude of attenuation coefficient

decreases as the path length increases. Thus, without beam-hardening correction,
the measured X-ray intensity is always higher than the expected one. This also

occurs in the case of scattering. The scattering and hardening of X-rays have similar

influences on the projection image. Therefore, Eq. (9.14) can also be used for the

correction of beam hardening. Of course, the physics differ between the two effects,

and more quantitative corrections should be performed for both. There is a consid-

erable amount of literature concerning beam hardening (Herman 1979; Nalcioglu

and Lou 1979; Search et al. 1985; Hsieh et al. 2000; Ct et al. 2015).

Fig. 9.7 Reduction of the cupping artifact: (a) no correction and (b) correction with κ¼ 0.2 in Eq.

(9.14). The bottom frames show the profiles corresponding to the yellow lines in the top images
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Radar artifacts resulting from image lag are the other type of artifact commonly

observed in CBCT. Image lag is defined as a residual signal present in image frames

subsequent to the frame in which the residual signal is generated. The effect called

“ghosting” (Mail et al. 2007) is similar to image lag and refers to the change in the

detector pixel sensitivity as a long-term effect. Correction methods for image lag

have been proposed in the literature. One of the practical methods is to subtract

from the current projection frame previous frames weighted by a temporal response

function (Mail et al. 2008). The reduction of the X-ray exposure on the detector

using a “bow-tie filter” can be effective because the image lag depends on the X-ray

intensity.

The geometrical uncertainty of the FPD, as well as the X-ray source during

gantry rotation, causes the blurring of the reconstructed image. The distance

between the center of the FPD and the projected point of the object pin located

on the beam isocenter must be recorded for all projection angles, and it should be

applied to correct the coordinates of the detector position or projection image. This

is known as “flexmap correction” (Jaffray et al. 2002), and an example is shown in

Fig. 9.8. Flexmap correction not only removes the blurring but also aligns the

resulting image with the beam isocenter.

9.2.3 4D CBCT

For periodic motions such as breathing or a heartbeat, motion-correlated CBCT

images can be reconstructed by dividing projection images into several phase bins

according to the motion signal (see Fig. 9.9). This technique is called “4D CBCT”

and consists of four dimensions, including space (3D) as well as time. The 4D

CBCT technique is widely utilized in IGRT, especially for SBRT requiring a more

careful patient setup than the conventional treatment.

There are several conditions to implement a 4D CBCT reconstruction. The most

important condition is the stability, i.e., the reproducibility, of periodic breathing.

Generally, in 4D CBCT acquisition using an IGRT system, it takes several minutes

to acquire a sufficient number of projections, which are classified into respective

phases, owing to the slow gantry rotation. This means that the projection images in

a certain phase are acquired at different moments. Therefore, breathing stability is

required to correctly reconstruct images, including the location and shape of tumor

and the surrounding normal tissues, for each phase. This type of 4D CBCT is

regarded as “averaged” 4D CBCT because the projections in each phase are

collected over several minutes. Notably, this does not reflect temporary motions

such as a cough or sneeze. On the other hand, real-time 4D CBCT reconstruction

techniques, including an approach for nonperiodic time-ordered motions, are under

investigation. Hereafter, we focus on the periodic motion.

The acquisition time for the projection images in 4D CBCT is relatively long

with a slow gantry rotation (typically 3–4 min) compared with normal 3D CBCT

acquisition (1–2 min). This is because if the normal gantry rotation speed is used,
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Fig. 9.8 Flexmap (left), which is a plot of the distance between the center of the FPD and the

projected point of the object center located on the beam isocenter (top and bottom right)

Fig. 9.9 Phase-sorting concept for motion-correlated 4D CBCT reconstruction. A certain phase of

CT is reconstructed by only using the projections with the same phase bin (upper), which are

classified by respiratory-signal analysis (bottom)
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the gantry-angle gap between the projection images becomes large in each phase

bin, depending on the respiratory-cycle period, where the relationship between the

gantry-angle gap (phase) Δθ [degrees] and the gantry rotation speed (angular

velocity) vgan [degree/s] is

Δθ ¼ Rcyclevgan: ð9:15Þ

Here, Rcycle [s] is the respiratory-cycle period. For example, in the condition of

Rcycle ¼ 3 s and 60 s for 360� rotation (vgan¼ 6 [degree/s]), the gantry-angle gap Δθ
is 18�. On the other hand, the typical gantry-angle gap for normal 3D CBCT is 0.5�–
1.0�, assuming that the signal-acquisition interval of the FPD is 0.2 s. Such a large

gantry-angle gap in acquiring projections for 4D CBCT yields a severe streak

artifact in the reconstructed image. Thus, for the improvement of the image quality,

the adaptation of slow gantry rotation is simple and effective.

Controlling the patient breathing can also reduce the artifacts. There are forced

and unforced methods for this. Among the former, external breathing control is a

representative example (Wong et al. 1999). This is performed with two pairs of flow

monitors and scissor valves, by using one of each to control the inspiration and

expiration paths to the patient through a mouthpiece. Among the latter methods,

rhythmical sounds (e.g., metronome) or visual indications (e.g., Abches device) can

be useful (Matsuo et al. 2013). Breath control is advantageous for 4D CBCT

imaging, to reduce not only streak artifacts but also the blurring by stabilizing the

breathing depth and cycle.

The 4D CBCT reconstruction method is based on the phase classification of

acquired projections. Here, the knowledge of the respiratory phase during kV

imaging plays a key role. There are several methods for measuring a respiratory

signal synchronized with image acquisition, for example, external respiratory

monitoring and real-time position management (Dietrich et al. 2006; Lu et al.

2007). Additionally, the utility of extracting respiratory signals using kV radio-

graphs by monitoring the trajectory of a radio-opaque fiducial marker was reported

(Li et al. 2006). Image-processing algorithms for projections obtained without

external devices have been proposed by some groups. One such method is the

“Amsterdam Shroud” (Fig. 9.10), which projects edge-enhanced projection images

perpendicular to the axis of gantry rotation, leaving one-dimensional

(1D) information in the cranio-caudal direction (Zijp et al. 2004). The advantage

of the image-based recognition technique is that the respiratory signal can be

detected with a high efficiency without an external system that synchronizes with

projection images. The Amsterdam Shroud method was employed with the Elekta

XVI system. Other methods are available, and respiratory-signal acquisition using

the normal cross correlation with a limited area of projections was adapted to

in-treatment 4D CBCT reconstruction performed during rotational treatment

(Kida et al. 2012).

There are few methods for 4D CBCT reconstruction for nonperiodic motion.

Nevertheless, a recent development of reconstruction methodology with compres-

sive sensing (Donoho 2006) enables us to reconstruct images with a limited
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projection range. The prior image constrained compressive sensing (PICCS)

method (Chen et al. 2008) and, more recently, a reconstruction method based on

the chain-graph model (Nakano 2016) were proposed for slow-gantry-scan CBCT

systems. An iterative reconstruction framework is needed for these methods, which

requires a large computational cost. Therefore, the utility of this type of 4D CBCT

is limited. It is suitable not for online patient registration but for post analysis,

including margin analysis and dose verification.

9.3 Image Registration

Image registration is an essential part of IGRT. The patient positioning is performed

by acquiring an image set (2D projection, 3D or 4D CBCT image, etc.), while the

patient is in the posture in which he/she undergoes the treatment and by shifting a

moveable treatment couch according to a value indicated by the image registration

between planning CT (or its DRR) and the acquired image.

An image registration system for IGRT requires a comprehensive database to

ensure that the patient positioning matches that of the treatment plan. Treatment

planning CT, structure set, and isocenter (or some reference point) information are

commonly necessary in modern IGRT systems. With treatment planning CT and its

isocenter location, the absolute value of the couch correction is calculated on the

basis of the image registration. Displaying the structures enables the visual verifi-

cation of this match.

Fig. 9.10 Amsterdam Shroud method for deriving a respiratory signal. This method first projects

edge-enhanced projection (such as a logarithm operation with a Sobel filter) images perpendicular

to the axis of gantry rotation, leaving 1D information in the cranio-caudal direction, and then sorts

them with respect to the gantry angle (or time)
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A state-of-the-art treatment couch can move with six degrees of freedom

(DOFs)—three translational and three rotational—but this is usually optional.

Couches with three DOFs—for translation only—are widely installed for various

reasons, including cost reduction. Nevertheless, we consider a six-DOF couch

because it includes the functions of a three-DOF couch with no rotation. A 3D

space vector x is then transformed into xT as

xT ¼ Rxþ t, ð9:16Þ

where R and t are the rotation matrix and the translation vector, respectively. The

rotation matrix can be expressed using the Euler angle (α, β, γ) as

R ¼ Rz}Ry0Rz

¼
cos γ sin γ 0

� sin γ cos γ 0

0 0 1

0@ 1A cos β 0 � sin β
0 1 0

sin β 0 cos β

0@ 1A cos α sin α 0

� sin α cos α 0

0 0 1

0@ 1A,

ð9:17Þ

where α, β, and γ represent rotations about the original z-axis, the new y-axis (y0),
and the final z-axis (z00), respectively (Fig. 9.11). This is one representation of the

Euler rotation; a different representation can be employed without any change in

the physics. On the other hand, the translation vector is given as

t ¼
tx
ty
tz

0@ 1A: ð9:18Þ

This type of transformation, which cannot include any scale change or deformation

of the space, is called a “rigid transformation.” A rigid registration is only mean-

ingful for online patient positioning, owing to the limitations of transformation by

couch movement.

A rigid transformation has six variables {α, β, γ, tx, ty, tz}. Once these variables

(i.e., R and t) are known, the patient positioning can be performed. The variables

R and t are given by the image registration via optimization. The term “optimiza-

tion” implies the minimization (or maximization) of a cost function (or objective

function) by tuning the six variables. In general, a “similarity measure” is employed

as the cost function. Thus, this process is conducted by decreasing the similarity

measure by taking the derivative of the variables in the iteration step. As an

example of a similarity measure, we consider a least-squares measure. Suppose

that an image IT¼ψ(I) is a transformed CBCT set to be registered with a reference

image IR, which is a treatment planning CT set. Then, the least-squares measure FLS

is given as
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FLS ¼
X
ω2Ω

IT ωð Þ � IR ωð Þð Þ2: ð9:19Þ

This summation is performed within the volume of interest (VOI) Ω on IR. If the
image I has a similar intensity/feature to the image IR, it is safe to assume that the

minimum value of FLS searched by the possible transformation ψ of the image I
yields the best registration results.

Once the similarity measure is determined, the image registration is

implemented using an optimization scheme. There are several numerical methods

for solving optimization problems. For instance, in the case of matching images of

the brain, the horizontal translation and the rotation around the vertical axis are

more constrained by the shape of the head than the pitching rotation around the left-

to-right horizontal axis. Therefore, aligning the images in the horizontal plane by

optimizing the in-plane parameters may facilitate the optimization of the out-of-

plane parameters. However, as the optimization proceeds, the Powell algorithm

may introduce other optimization directions and change the order in which these are

considered (Maes et al. 1997).

In clinical applications, it is important for the image registration to be conducted

rapidly. Automatic image registration should take less than a few seconds, and the

subsequent visual verification and approval should be completed within a few

minutes. The image registration algorithm must be valid for patient positioning,

with robustness and little computational effort.

A limited overview of the image registration algorithm used in IGRT is

presented in the following subsections, including three examples frequently used

in clinical practice.

Fig. 9.11 Euler angles α , β, and γ and the three Euler rotations Rz (left), Ry0 (middle), and Rz"

(right) that carry the initial (x, y, z) coordinates into the final (x000, y000, z000) coordinate system
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9.3.1 Landmarks

The most intuitively obvious registration method employs corresponding land-

marks in the two images (Peters et al. 2000; West et al. 1997). Histologically or

morphologically clear points (top of nasal bone, external protuberance of occipital

bone, etc.) and fiducial markers can be useful as landmarks. With rigid image

registration, three landmarks that are not aligned are sufficient to determine the

transformation between two 3D images. Including additional landmarks may yield

more reliable results.

The algorithm for calculating the transformation is very simple:

• First, the centroid positions of all or a part of the landmarks in the two images are

calculated. The 3D difference between the centroids represents the translation

vector t. This translation is applied to one image and the corresponding

landmark set.

• Second, this translated landmark set is rotated until the sum of the squared

distances between each pair of corresponding landmarks is minimized.

With more than four landmarks, the root-mean-square error is meaningful for the

reliability of the registration. Although the landmark registration is intuitive, fast,

and easy, a limited number of landmarks can yield a mismatch, depending on the

landmark positions. Moreover, with a limited image quality of the IGRT system,

the registration for soft tissues is quite difficult without the placement of invasive

markers.

9.3.2 Chamfer Matching

Chamfer matching (Borgefors 1988) is a bone-registration algorithm that employs

CT images, whereby regions with densities that are the same as bone densities are

detected and transferred (and rotated) . The chamfer matching algorithm is not very

sensitive to image noise. In addition, the calculation is quick. A schematic

workflow of chamfer matching is shown in Fig. 9.12. Here, the edge detection

both to the reference and input images is first performed. The distant transformation

allows the edge-input image to be converted into a distance image, which has a

pixel value that is a measure of the distance to the nearest edge pixel. This distance

is called the chamfer distance. Finally, the matching between the chamfer-distance

image and the edge-reference image produces the registration result.

Several edge detection algorithms are available. For the present purpose—bone

edge detection—one of the simple methods is threshold adaptation, which sets a

certain range for the bone edge detection. After the edge detection, the images are

binarized. For the input image (i.e., CBCT image), this binarized image is

converted into a distance image:
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D ωð Þ ¼ ψDT B ωð Þð Þ, ð9:20Þ

where D(ω) and B(ω) are the distance and the input binary image, respectively.

While it is not difficult to create a Euclidean distance image, the 3–4 distance

transformation ψDT (Fig. 9.13) can be easier and quicker than the Euclidean

distance transformation. The cost function in image registration using chamfer

matching is then

FCM ¼
X
ω2Ω

IR ωð ÞDT ωð Þ, ð9:21Þ

where DT means the distance image transformed by Eq. (9.16). The couch correc-

tion is determined by minimizing FCM with the transformation parameters (the

gradient decent method is typically applied). This algorithm can be used together

with markers made of metals such as titan, by setting the proper edge detection

threshold.

The chamfer matching algorithm was improved by embedding a hierarchical

resolution pyramid: the matching is performed not only in the original image

resolution but in a series of images, where each image is a low-resolution repre-

sentation of the original scene.

9.3.3 Gray Value Matching

Gray value matching (Roche et al. 1998; Hristov and Fallone 1996) is registration

that employs the pixel intensity values of the volumetric images to calculate the

Fig. 9.12 Schematic workflow of chamfer matching. First, binary images are created by an edge

detection algorithm such as the Sobel filter, the threshold setting, and so on, for both the

registration and reference images. Second, distance transformation is performed, typically for

the registration binary image. Finally, matching yields the optimization of the transformation

parameters
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translations and rotations. Gray value matching has a similar workflow to the

aforementioned two algorithms. That is, the registration involves optimization

with respect to a similarity measure.

Many similarity measures have been proposed for gray value matching, includ-

ing a least-squares criterion, correlation ratio criterion, cross correlation criterion,

and mutual information criterion. The cost function in the least-squares criterion is

explicitly given in Eq. (9.19). For the other criteria, the cost functions are described

as follows:

• Correlation ratio

FCR ¼ 1

Nσ2

X
j

Njσj
2, ð9:22Þ

where

σ2 ¼ 1

N

X
ω2Ω

IR ωð Þ2 � eIR 2, eIR ¼ 1

N

X
ω2Ω

IR ωð Þ, ð9:23Þ

σj
2 ¼ 1

Nj

X
ω2Ωj

IR ωð Þ2 � eIR j
2
, eIR j ¼

1

Nj

X
ω2Ωj

IR ωð Þ: ð9:24Þ

Here, N is the number of voxels in the VOI (Ω) for image registration; Ωj is the

subset regarding the transformed image IT¼ψ(I), defined as Ωj¼ {ω2Ω, IT(ω)¼
j}; and the Nj values are the cardinals Nj¼Card(Ωj).

• Cross correlation

Fig. 9.13 A 3–4 distance transformation. The pixel value is converted depending on the distance

from “1” indicated in a binary image (left). The two local distances in a 3-by-3 neighborhood are

the distance between horizontal/vertical neighbors (“3”) and that between diagonal neighbors

(“4”). This is an approximation of the Euclidean distance transformation
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FCC ¼ Cov IT ; IRð Þ
σ ITð Þσ IRð Þ , ð9:25Þ

where

Cov IT ; IRð Þ ¼ 1

N

X
ω2Ω

IR ωð Þ � eIR� �
IT ωð Þ � eIT� �

, ð9:26Þ

σ IRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ω2Ω

IR ωð Þ � eIR� �2

,

s
ð9:27Þ

σ ITð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ω2Ω

IT ωð Þ � eIT� �2

,

s
ð9:28Þ

• Mutual information

FMI ¼ HIR þ HIT � HIRIT , ð9:29Þ

where

HIR ¼ �
X
i

p ið Þlogp ið Þ, ð9:30Þ

HIT ¼ �
X
j

p jð Þlogp jð Þ, ð9:31Þ

HIRIT ¼ �
X
i, j

p i; jð Þlogp i; jð Þ, ð9:32Þ

and p(i)¼Ni/N is the probability of the image IR having intensity i, whereas p(i, j) is
the joint probability of the images IR and IT having intensities i and j, respectively.

The correlation ratio works with the images obtained in the different modalities

as well as the mutual information. The mutual information requires a 2D histogram,

whereas the correlation ratio does not. This causes an important difference in the

computational efficiency. Classical algorithms for computing the mutual informa-

tion have an O(nAnB) complexity, where nA and nB are the numbers of intensity

levels in the A and B images, respectively, whereas correlation ratio computation

has only an O(nA) complexity and is independent from nB (Roche et al. 1998).
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9.4 In-Treatment Verification and Post Analysis

Intra- and inter-fractional motion analysis can be performed by various methods,

including CBCT or ultrasound imaging before and after treatment, embedded

fiducial markers with a portal imager, and electromagnetic coil systems. The

reported displacement of a target during treatment exceeded a few millimeters

with an increasing probability for a longer delivery time (Ueda et al. 2012),

indicating that the PTV margin is underestimated if it is based on pretreatment

positioning errors.

An in-room CT system can play a central role in margin analysis, as volumetric

images allow the identification of the target or OAR location and the shape during

the treatment. However, a recent study revealed that postdelivery CBCT imaging

overestimated the localization errors due to the delay between the end of the

treatment delivery and posttreatment CBCT (Adamson et al. 2011). Ideally,

CBCT acquisition must be performed during treatment delivery, or combined

cone-beam X-ray projections with online motion measurements must be employed.

Currently, these methods are available for clinical treatment cases (Nakagawa et al.

2009). In the following subsections, in-treatment CBCT imaging and real-time

projection image analysis acquired concurrently with the treatment delivery are

introduced. For the latter, online motion measurement typically requires fiducial

markers and may not be always desirable. Thus, we focus on a recently developed

markerless technique in that subsection. Although these two topics are based on the

use of X-rays in the kV energy range, it is possible to analyze portal images of the

treatment X-ray beam. Volumetric image visualization by portal imaging is

discussed toward the end of this section.

9.4.1 In-Treatment CBCT

Although the CBCT system mounted on the LINAC is intended to provide image

registration with accurate patient setup immediately prior to treatment, it is also

applicable for image volume acquisition in the state of delivered beams. This

method, called “in-treatment CBCT,” can be performed with rotational treatments,

such as VMAT, wherein the gantry of a LINAC rotates continuously during the

radiation therapy. With in-treatment CBCT, the displacement of the target from the

treatment planning can be evaluated. Previously, CBCT reconstruction during

VMAT was not available in any commercial software. Currently, however,

in-treatment CBCT images, including their 4D versions, can be reconstructed

using the equipped IGRT system immediately after treatment.

The principle of in-treatment CBCT reconstruction is the same as that of normal

CBCT reconstruction, which is described in Sect. 9.2.2. However, unlike the case of

normal CBCT acquisition, the gantry rotation speed can vary depending on the

beam-intensity modulation at each angle, so that the sampling interval of sequential
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projections is generally not constant. This is not a serious problem, provided that

the numerical integration over the angle β in Eq. (9.13) is properly performed with

unequal sampling.

The largest concern regarding in-treatment CBCT is the scattering photons from

the MV treatment beam (Ling et al. 2011). The magnitude of the impact of

scattering photons on the image quality depends on the treatment plan. However,

according to several clinical reports, the scattering does not to cause any difficulties

in post analysis (Kida et al. 2012; Shiraishi et al. 2014; Takahashi et al. 2013).

Nevertheless, correction methods have been proposed. One of them involves the

assumption that the scattering effect is homogeneous on the FPD, that is, the whole

projection image (Kida et al. 2012). Then, the projection image is normalized

during the treatment by subtracting the difference between the minimum pixel

value taken immediately prior to the treatment and that during the treatment at

the isocenter line (crossline of the FPD, the line used in the reconstruction of one

axial plane). Prior to the treatment, the projection image is chosen at the angle

closest to the projection image during the treatment. This is applied for all the

projections. In the 4D CBCT case, the respiratory phase during treatment may differ

from that prior to treatment at the same angle. However, such an inconsistency is

negligible because the normalization is performed with the minimum pixel value,

which means that the ray passes through the air.

An alternative approach is to evaluate the scattering photon number at the FPD

with a realistic geometry of the LINAC and patient, according to basic theory. A

Monte Carlo calculation provides an almost complete result but requires an imprac-

tical computation effort in clinical applications. Therefore, in practice, a lowest-

order approximation, i.e., the Compton scattering formula, or a convolution model

may be employed.

Margin analysis using in-treatment CBCT is directly performed by comparing

the daily data with the corresponding treatment planning CT data. Here, the volume

center of in-treatment CBCT is considered to agree with the isocenter of the

treatment plan. The maximum lengths required to cover the target volume during

treatment in each direction of the 3D space are regarded as a part of the component

for the PTV margin (which should also include the treatment dose uncertainty,

geometrical uncertainty in the IGRT system, dose simulation uncertainty, etc.). For

instance, the region protruding outside the target volume can be evaluated by

manually delineating the regions of interest (ROIs) in the treatment planning CT

and the in-treatment CBCT and comparing them. The results of a margin evaluation

using in-treatment CBCT are presented in the literature (Shiraishi et al. 2014;

Takahashi et al. 2013), for prostate cancer and lung cancer, respectively. The results

of a margin analysis for a state-of-the-art 4D CBCT registration system were also

reported (Haga et al. 2015). The current radiation treatment seems to require a

maximum PTV margin of ~5 mm. Of course, this depends on the IGRT equipment,

delivery technique, and patient-immobilization tools; therefore, it should not be

generalized.

At end of this subsection, we emphasize the usefulness of in-treatment CBCT

with regard to dose verification in actual treatment. That is, the actual dose
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distribution in patients can be reconstructed via in-treatment CBCT by using

delivery data such as LINAC logs or portal images. A difficulty arises from the

fact that the HU in CBCT is substantially unreliable. To avoid this uncertainty, a

patient-specific ROI mapping method can be applied (van Zijtveld et al. 2007; Hu

et al. 2010). In this method, the relative densities in the anatomical regions defined

by ROI contouring are measured for an individual patient by using the treatment

planning CT data. Then, these densities are substituted into the corresponding

anatomies delineated in in-treatment CBCT, and the beams are delivered.

For a moving target, the dose reconstruction is not as simple as it is in the static

case. This is mainly because the beam delivery data must link with the motion phase

to reconstruct the 4D dose distribution. This process is summarized as follows

(Saotome 2013):

• The cone-beam projection images and the beam delivery data are acquired

during treatment.

• The motion signal is derived from the cone-beam projection images.

• According to the motion signal, the projection images and beam delivery data

are classified into motion phase bins.

• The 4D CBCT sets are reconstructed with these phase bins.

• The beam data form of the treatment planning system is created from the beam

delivery data for each phase. Thus, beam data sets corresponding to the 4D

CBCT sets are produced for each treatment fraction.

• The image region of the 4D CBCT is extended as much as possible, so as to

include the patient surface in the calculation region.

• The ROIs (e.g., GTV, lung, cord, airway, and soft tissue) are delineated in each

phase.

• Dose calculation is performed for each in-treatment 4D CBCT set, where the

patient-specific ROI mapping method is applied.

• The dose distribution is accumulated into a certain phase of CBCT (e.g.,

maximum exhale CBCT) by a nonrigid transformation.

Because the actual beam information corresponding to the acquisition time of the

projection images is used for the dose calculation in each phase of in-treatment 4D

CBCT, the absolute dose distribution can be reconstructed by using only the

observed data.

9.4.2 Markerless Tracking for Moving Tumor Using
Cone-Beam Projections

In the previous section, the utility of in-treatment CBCT is described. One of the

disadvantages of in-treatment CBCT is that it cannot be used for real-time treatment

analysis. With in-treatment CBCT, the image is reconstructed completely after all

the projections are acquired. Another possible limitation is that anomalous motions
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(e.g., cough) that occur during the CBCT scan are hidden because of the slow

gantry rotation, yielding “averaged” images. Therefore, to verify and control the

target location in real time, the direct use of cone-beam projections must be

considered.

Although many studies have reported the detection of the patient or tumor

location by real-time X-ray imaging, it is challenging to track a location in three

dimensions without markers. In particular, continuous markerless tracking during

rotational delivery (e.g., VMAT) is quite difficult without markers, as the image

contrast of the ROI, such as lung tumor in X-ray projections, depends on the gantry

angle.

One strategy for markerless tracking for all gantry-angle directions involves

utilizing prior information or a model for the motion. The general method for this

employs treatment planning 4D CT, wherein DRRs are generated with all angle

views (e.g., 360� with 1� intervals) for reference or template images for cone-beam

projections in advance. Figure 9.14 shows a schematic workflow to classify the

projections into the motion phase bins defined by the treatment planning 4D CT

phases. The projection image is immediately compared with all the phase DRRs at

the same angle, and the DRR phase with the maximum matching score is regarded

as the actual phase of that projection. This can be performed in real time because no

image registration is required.

The aforementioned method works only if the tumor or VOI is contained within

the region traced in the treatment planning 4D CT. For tracking nonstationary and

nonperiodic motion, this assumption is invalid. In such cases, image registration is

required. Hugo et al. investigated several template tracking-based methods and

reported that the introduction of templates reduces the search area for the registra-

tion (Hugo et al. 2010). Other groups investigated the possibility of a real-time

tracking solution based on the acquisition of CBCT projection images during lung

VMAT (Zhuang et al. 2013; Lewis et al. 2010; Koste et al. 2015). Although a single

2D–2D registration does not cause a shift about the depth from the isocenter, the

position error induced by this cause is negligible because the projected direction is

always perpendicular to the cranio-caudal axis of the patient, which is the normal

dominant direction of the tumor motion for lung and liver cancers. Alternatively,

2D matching is followed by the triangulation of the target position from multiple

2D registrations, e.g., of similar breathing cycle phases, for the 3D localization of

the target. The simultaneous use of portal imaging of the treatment beam is an

alternative solution for 3D target tracking (Liu et al. 2008; Yan et al. 2012).

9.4.3 Visualization of Treatment Area Using
Treatment Beam

Volumetric visualization using MV beams is not new. Tomotherapy and other

MVCT systems have been employed to reconstruct patient images for setup and
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dose reconstruction (Ruchala et al. 2000). However, the studies aiming to visualize

the treatment area using portal images of the treatment beam are limited.

It is mathematically impossible to perform a correct reconstruction with the field
of view (FOV) partially blocked by a multileaf collimator when a filtered back

projection (FBP) algorithm is employed. The blocked area has a lower X-ray

intensity than the area inside the FOV; thus, the conventional reconstruction

scheme does not successfully visualize the imaging object. Instead, it yields an

unrealistically high-attenuation area outside the irradiated site in the object

(Poludniowski et al. 2010).

For successful reconstruction, the PICCS algorithm is promising because mod-

ern radiation therapy always accompanies treatment planning CT and MVCT/

CBCT used in the patient registration, which are the best types of prior information

for this type of algorithm. The PICCS method is not described in this chapter;

details are found in the literature (Chen et al. 2008). Rather, we discuss the

possibility and limitations of applying the FBP algorithm.

For visualization of treatment area using the FBP algorithm, two corrections are

necessary. One is a masking correction, which masks the area outside the FOV so as

not to include this area in the back projection process. For a conventional LINAC,

the corrected portal image ~y β; p; ζð Þ is

~y β; p; ζð Þ ¼ 0, if n β; p; ζð Þ=n0 < p
0

ln n0=n β; p; ζð Þð Þ, otherwise

	
ð9:33Þ

Fig. 9.14 Example of real-time markerless phase recognition. Template DRR images are gener-

ated by 10-phase 4D CT with all the angle views used in the treatment plan. During the treatment,

cone-beam projections are acquired and matched with the DRR images in real time. The template

DRR creation is limited to the target area
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where β is the gantry angle, p and ζ are the same as in Fig. 9.6, and n(β, p, ζ)
indicates the photon number detected in the EPID with the coordinates ( p, ζ) at the
gantry angle of β. In Eq. (9.33), p0defines the threshold for the masking region. With

this threshold, the outside field is regarded as vacuum (~y β; p; ζð Þ ¼ 0), and the

boundary of the masking region is discontinuous. Of course, this is not true, but it

enhances the information from the irradiated area in the FBP reconstruction

scheme.

The other correction is a ray-passing adjustment, which normalizes each voxel

of the reconstructed image to the number of X-rays passing through the

corresponding voxel. This is expressed by

Rβ
0 x; y; zð Þ ¼ θ

R
dβ M β; p; ζð Þ � β

0
 �
1
2π

R
dβ M β; p; ζð Þ, ð9:34Þ

with p¼Dt/(D� s) (where s¼ � x sin β + y cos β, t¼ x cos β + y sin β) and

ζ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ p2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� sð Þ2 þ t2

q
. The coordinates (β, p, ζ) correspond to the

projected point of (x, y, z) on the detector plane (p, ζ) at the gantry angle β. The
masking function is

M β; p; ζð Þ ¼ 0, if n β; p; ζð Þ=n0 < p
0

1, otherwise

	
: ð9:35Þ

The back projection generates stronger signals when the angles pass more X-ray

quanta. The ray-passing correction corrects this effect. The reconstruction area can

be controlled according to β0.
The reconstruction formula using MV portal images can be expressed by making

the replacement

R β; p; ζð Þ ! Rβ
0 x; y; zð Þ~y β; p; ζð Þ ð9:36Þ

in Eq. (9.13). Figure 9.15 shows the reconstructed image with portal images

acquired during VMAT delivery. Here, the delivery area is visualized. In principle,

4D visualization for periodic motion (e.g., lung tumor) can be developed without

difficulty. The requirement is the link between the portal images and the phase bins

in the motion signal. After the periodic-motion signal is somehow acquired, the 4D

images are reconstructed by sorting the portal images in each phase (Kida et al.

2011).

The actual treatment area is visualized by portal imaging of the treatment beam

X-rays. However, the image quality is insufficient for diagnosis and quantitative

margin analysis with an image correlation, as can be done with in-treatment CBCT.

In this context, the aforementioned approach using the FBP algorithm has some

limitations. To increase the reliability of the volume reconstruction obtained by

portal imaging, the use of an a posteriori estimation algorithm, as typified by
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PICCS, is desired. In particular, the image series acquired for the patient position-

ing can be used in this algorithm as prior information.

9.5 QA for IGRT

The accuracy requirements for patient positioning in radiation therapy have

recently increased in order to ensure a high accuracy for treatments designed to

achieve adequate tumor control and the reduction of normal-tissue complications.

In this context, IGRT is essential for every type of modern radiation therapy. All

commercially available IGRT systems provide precise patient setup; however, this

assumes the continuation of the appropriate QA/QC of the system. The QA issues

for IGRT are summarized as follows:

• Geometric accuracy

• Image quality

• Image registration (including remote couch control)

• Imaging dose

The AAPM TG-179 (Bissonnette et al. 2012) reviews the clinical implementations

and QA aspects for commercially available CT-based IGRT, each having unique

capabilities and underlying physics. The following subsections cite this review,

which readers can refer to for a detailed discussion.

Fig. 9.15 kV CBCT (left) and corresponding VMAT CBCT (right) for a head phantom. The

irradiated area is only visualized in the VMAT CBCT

9 X-Ray Image-Based Patient Positioning 227



9.5.1 Geometric Accuracy

LINAC-mounted kV CBCT systems may have a different isocenter location from

that of the treatment beam, owing to the different sources. This discrepancy should

be small, i.e., less than �1 mm. A convenient method for performing kV CBCT

system geometric calibration is derived from the Winston–Lutz procedure. This

procedure is briefly described in Fig. 9.16.

For fan-beam MVCT units, the imaging beam is generated by the same source

that generates the treatment beam, and the two beams share a common geometry.

Spatial accuracy and geometry tests for fan-beam MVCT are described in AAPM

TG-148 (Langen et al. 2010).

The geometric accuracy affects directly the accuracy of the patient setup;

therefore, it is recommended that the simplified geometric calibration be tested

daily to identify sudden performance changes or gross errors.

Fig. 9.16 Example of the Winston–Lutz test procedure
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9.5.2 Image Quality

The QA program of a CT-based IGRT system is based on the utilization of the

system. For image-quality issues, the QA program should focus on localizing the

targets and OARs and executing correction strategies to minimize geometric

uncertainties. The soft tissue detectability is an important aspect, whereas the CT

number linearity and accuracy are only important if the CT scans are also used for

dose calculation.

The QA program recommended by AAPM TG-179 includes the verification of

the following:

• Scale and distance accuracy

• Low contrast resolution

• Spatial resolution

• Uniformity and noise

• Accuracy of CT numbers

These image QC tests can be performed using commercially available phantoms

that contain multiple inserts tailored to test various aspects of the image quality

(Fig. 9.17).

AAPM TG-179 recommends that image-quality tests be performed on a monthly

basis initially, and ultimately on a semiannual basis, after the parameter stability is

demonstrated by the users.

9.5.3 Image Registration and Accuracy of Remote Couch
Control

Automatic image registration is convenient in clinical practice of CT-based IGRT.

Because of the nonrigid nature of the anatomy of the patients and the limited

correction methods, the ideal alignment may depend on the clinical case and

frequently involves manual registration. Therefore, the QA program of image

registration is ineffective, and an offline review of the clinical data is

recommended. It is also highly recommended by AAPM TG-179 that the user

establishes site-specific clinical protocols to explicitly describe the VOI, alignment

goals, and evaluation criteria.

The accuracy of remote couch control is a key component in any image-

guidance system. The couch position accuracy can be measured using high-

precision calipers, optical navigation systems, and film. Of course, this is confirmed

by the IGRT system by analyzing two scanned images in which the target location

has a known different length and rotation angle.

The accuracy and precision of correction movements should be assessed during

commissioning, and the long-term accuracy should be verified through post anal-

ysis of the IGRT procedure (see Sect. 9.4).
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A couch with six DOFs (three translational and three rotational) is commercially

available. Using this equipment, the accuracy of the volumetric image registration

algorithm should be tested with regard to both rotational and translational shifts.

9.5.4 Imaging Dose

One concern regarding daily CT imaging is the additional exposure to the entire

imaged volume, which may cause a secondary malignancy. There is an interplay

between the increased use of CT imaging and the improvement of the patient setup.

In this context, imaging dose as well as the therapeutic dose must be evaluated.

The measurement of the imaging dose consists of several steps (Ma et al. 2001;

Murphy et al. 2007). For dosimetric CT-based imaging studies, the reported doses

were from 0.1 to 2 cGy/scan for kV CBCT and 0.7 to 10.8 cGy/scan for MV CBCT.

For fan-beam MVCT images, the doses range from 0.7 to 4 cGy, depending on the

selected CT pitch and the imaged anatomy thickness (Bissonnette et al. 2012).

These values are generally small compared with the therapeutic doses. Neverthe-

less, the medical staff must reduce them as much as possible within the IGRT

framework. The image quality is intimately linked to the X-ray energy, tube

current, and gantry rotation speed and range. Therefore, it is desired to establish

several protocols depending on the treatment site and the patient body size.

Fig. 9.17 Example of multifunctional imaging phantom (CatPhan500 phantom (The Phantom

Laboratory, Salem)) designed to provide a comprehensive evaluation for different CT scanning

technologies
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9.6 Summary

This chapter introduced the basic concept of X-ray-based patient positioning in

radiation therapy. All modern IGRT systems attempt to reproduce the patient

position during treatment planning CT acquisition. For patient registration, treat-

ment planning CT is used directly or indirectly, depending on the IGRT system

used. If the IGRT system allows the reconstruction of a CT image, the image is

registered to the treatment planning CT as is, whereas if the X-ray projection image

is only available in the IGRT system, it is registered to the DRR image created from

treatment planning CT. The former requires CT reconstruction immediately after or

during the projection-image acquisition. On the other hand, the latter requires a

reprojection process for DRR creation during the treatment planning. These pro-

cesses are discussed in Sect. 9.2.

The accuracy of patient positioning in radiation therapy is drastically improved

by the automatic registration system with IGRT, and the remote couch function is

established. The sequential flow of the patient setup and image acquisition, regis-

tration, correction, verification, and approval is now sophisticated and provides fast

and comfortable treatment for patients and medical staff. In addition, a huge data set

of X-ray images may enable the further development of IGRT technology. The

analysis of medical-image big data and its feedback for following treatments or

other patients can provide a considerable benefit. The detection of outlier or

anomalies by machine learning for sudden motions or unexpected situations is

also important for the next-generation system. This chapter introduced a few

examples of post analysis using X-ray images acquired in an IGRT system;

however, we did not discuss the utility of IGRT beyond margin analysis. Knowl-

edge from the analysis of past treatments is utilized for the improvement of the

sequential treatment and for the other patients. For this purpose, the development of

quantitative imaging in IGRT must continue.

Finally, the IGRT system must be validated thorough QA/QC. This is important

for the successful operation of everything discussed herein. The development of a

QA/QC program is not separate from the other topics discussed. It would be

exciting to develop an efficient and effective QA/QC process for quantitative

image analysis based on mathematical and computational physics.
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Chapter 10

Surface-Imaging-Based Patient Positioning

in Radiation Therapy

Mazen Soufi and Hidetaka Arimura

Abstract The accelerating advancement in surface-imaging technology has led to

promising possibilities with respect to monitoring patient positioning during radi-

ation therapy without the use of radiographic imaging. The aim of this chapter is to

introduce theoretical aspects and key computational techniques utilized in estimat-

ing positioning errors and analysing the patient’s surface during radiation treatment.

In particular, we provide an overview of current surface-imaging technologies.

Next, we introduce quantitative approaches for mathematical reconstruction of a

patient’s surface using non-uniform rational B-spline (NURBS) modelling and

subsequently characterizing of the local shapes of the patient’s surface based on

differential geometry. In addition, an iterative closest point (ICP) registration

algorithm, which is a basic technique for estimating positioning errors, is explained.

We hope that the topics covered in this chapter will be assistive in understanding

the current applications in the field and will create launching points for the

development of novel solutions.

Keywords Radiation therapy • Patient positioning errors • Surface imaging •

Anatomical feature points • Differential geometry features

10.1 Introduction

Surface-imaging systems have become essential in-room imaging modalities in the

era of high-precision radiation therapy (Timmerman and Xing 2009). Modern

external radiation treatments, such as intensity-modulated radiation therapy

(IMRT) and stereotactic body radiation therapy (SBRT), have enabled the dose

directed at the tumours to be escalated while sparing the neighbouring normal

tissues. Nevertheless, the challenging problem of the patient positioning errors

(i.e. the discrepancies in the patient position between the treatment planning time

and the radiation treatment time) has simultaneously attracted an increasing amount
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of attention. The reason is that small position errors (a few millimetres) might

deviate the steep dose distribution towards the neighbouring normal tissues, thereby

raising the probability of complications in the normal tissues and reducing the dose

directed at the target tumour. Therefore, technologies of high-precision radiation

therapy have required the development of accompanying solutions for wisely

controlling the radiation process and compensating for the discrepancies in the

patient position during the patient setup and treatment (Willoughby et al. 2012).

In this context, surface-imaging systems have been suggested for two main

applications: (1) positioning the patient on the treatment couch (for reducing

inter-fractional patient setup error) and (2) monitoring of the patient’s motion

during treatment (for decreasing intra-fractional patient setup error) (Bert et al.

2005). In both applications, errors in the patient’s position are detected by estimat-

ing the displacements in the surface point coordinates between a reference image

acquired in treatment planning and images acquired just before and during the

radiation treatment. Figure 10.1 illustrates the two applications of surface-imaging

systems in radiation therapy for reducing inter- and intra-fractional setup errors.

The main advantages of surface-imaging systems are (1) non-ionization and

(2) real-time acquisition. Intuitively, the non-ionizing approaches can be consid-

ered to be the most important motivation in the employment of surface-imaging

systems in radiation therapy. The conventional radiographic imaging-based

methods provide information about internal body structures and thus enable an

accurate target-based positioning. However, the additional radiation dose that the

patient receives during the CT scan is inevitable.

The current techniques for patient positioning using surface imaging can be

divided in terms of the imaging principle into techniques based on projected light

patterns, techniques based on laser scanning and techniques based on infrared ray

time-of-flight (TOF) imaging. One might think of ultrasound (US) imaging as a

feasible technique for patient positioning because it can produce three-dimensional

(3D) images of body structures without the use of ionizing radiation. However,

despite its advantages, US imaging is limited by its low image quality, as well as the

fact that it deforms the surface and internal structures as a result of the pressure of

the probe. Therefore, US imaging is not discussed in this chapter.

Surface-imaging systems are generally ‘marker-less’ because they do not require
reflective markers (which are used in conventional approaches) to be attached to the

patient’s surface (Wang et al. 2001, Meeks et al. 2005, Wagner et al. 2007,

Yoshitake et al. 2008). Instead of using the reflective markers, the patient’s surface
is illuminated with light rays (e.g. low-energy infrared laser rays) from a light

source installed on an imaging unit, and the rays reflected from the patient’s surface
are detected by cameras installed on the same unit. Measurements of the detected

rays are used to generate a 3D surface image – i.e. a 3D point distribution of the

patient’s surface. The main advantage of the surface image is that it represents the

topography of the patient’s surface, which enables us to estimate the positioning

errors using image registration algorithms.

In this chapter, we introduce the theoretical aspects of surface image registration

and analysis techniques, which are useful for patient positioning in radiation
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therapy. We explain fundamental approaches for mathematical reconstruction of

the patient’s surface by using non-uniform rational B-spline (NURBS) modelling.

Besides, we introduce an approach for analysing the topography of the patient’s
surface based on differential geometry in order to localize anatomical feature points

on the patient’s surface. Finally, we explain the concept of an iterative closest point
(ICP) algorithm, which is a widely adopted algorithm in the estimation of patient

positioning errors.

Fig. 10.1 Illustration of the applications of surface-imaging systems in radiation therapy in the

estimation of (a) inter-fractional and (b) intra-fractional setup errors
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10.2 Surface-Imaging-Based Patient Positioning

A surface-image-based patient positioning and motion detection system consists of

two main components: a surface-imaging device and a surface-image processing

unit (e.g. a personal computer). During the radiation treatment time, the imaging

device captures images of the patient’s surface, which are fed to the personal

computer. Next, these treatment images are preprocessed in order to reduce spatial

and temporal noise, such as that caused by the imaging circuitry. In addition, optical

distortions, which are caused by the optical components of the imaging device, are

corrected using pre-calculated calibration parameters. At the same time, reference

images are retrieved from a database or a storage device. In the context of this

chapter, the reference image is a surface image that can be acquired either at the

beginning of the treatment session or at the planning phase. Another option is to

obtain the reference image from the planning CT image. The moving image, on the

other hand, is the surface image acquired during treatment. Since the surface image

is the essential element in this computational pipeline, we start with its mathemat-

ical definition.

10.2.1 Definition of Surface Image

A surface image can be expressed by using a position vector located in a Cartesian

coordinate system. Let a position vector be p ¼ x; y; z x; yð Þð Þ23. Thus, a surface

image I consisting of N position vectors on the patient’s surface can be expressed as
follows (Colombo et al. 2006):

I ¼
x1 y1 z1 x1; y1ð Þ
⋮ ⋮ ⋮
xN yN zN xN; yNð Þ

24 35: ð10:1Þ

This vector-based representation of the surface image enables the implementation

of shape-modelling techniques and image registration algorithms that can be used

to calculate patient positioning errors using both rigid and nonrigid transformations.

A rigid transformation entails a translation vector and a rotation matrix, whereas a

nonrigid transformation includes scaling and nonlinear deformations represented as

pointwise displacement vectors. For simplicity, we will hereafter refer to a position

vector representing a point on a surface as a point. Next, we introduce basic

technologies for the acquisition of surface images.
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10.2.2 Surface Imaging Based on Projected Light Pattern

Surface-imaging systems based on projected light pattern (e.g. AlignRT, Vision

RT, Ltd., UK) have been widely used to monitor of patient’s positioning. Such

systems consist of two imaging units (pods) suspended at the ceiling of the

treatment room.

In surface-imaging systems based on projected light pattern, the patient’s surface
image is acquired based on the stereovision imaging principle (Bert et al. 2005). In

stereovision imaging, an epipolar geometrical model is used for computing the 3D

coordinates of a point on the object’s surface. This model is based on the cameras’
internal parameters and the relative position of the point in two images captured

from different viewpoints. Therefore, this principle requires a correspondence

between the pixels of the object’s surface points in the acquired images. As the

patient’s skin might not include sufficient information for establishing this corre-

spondence, a speckle pattern is projected on the surface during the acquisition of the

stereo images, and the pattern is detected in the images in order to estimate the

required correspondence.

10.2.3 Surface Imaging Based on Laser Scanning

Surface-imaging systems based on laser scanning have also been developed in order

to monitor patient positioning. Typically, a laser scanner consists of a laser source, a

mirror attached to a motor, and a camera. A laser fan beam is swept over the

patient’s surface by changing the mirror angle using the motor. With each sweep of

the laser beam, the camera captures an image of the reflected laser light over the

patient’s surface. The surface image is then reconstructed by estimating the distance

between the camera and the object based on a triangulation principle (Brahme et al.

2008).

10.2.4 Infrared Ray-Based Time-of-Flight Camera

Recently, low-cost range (distance) imaging systems (e.g. TOF cameras) have been

suggested for use in monitoring patient positioning in radiation therapy (Placht

et al. 2012, Bauer et al. 2013). The TOF camera consists of infrared light-emitting

diodes (IR-LEDs), which irradiate the surface of the patient’s body with infrared

rays, and an imaging sensor that receives the reflected rays.

The TOF camera produces surface images based on measurements of the

distance between the object and the camera. The distance is measured by calculat-

ing the phase shift between the irradiated and reflected infrared light rays over the

patient’s surface according to the following equation:
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d ¼ c

4πfmod

φ, ð10:2Þ

where d is the estimated distance, φ is the phase shift, c� 3� 108 m/s is the speed

of light and fmod is the modulation frequency of irradiated rays (Büttgen and Seitz

2008).

Figure 10.2 shows an example of a surface image acquired by using a TOF

camera. Figure 10.2a shows a picture of an anthropomorphic head phantom, and

Fig. 10.2b shows a surface image of the phantom acquired by a TOF camera

(CamCube 3.0, PMD Technologies, Siegen, Germany). The colours represent the

distance between the camera and phantom’s surface.

10.3 Mathematical Reconstruction of Patient’s Surface
Using NURBS

The mathematical reconstruction of the patient’s surface is a useful technique for

compensating for the sparsity and discontinuity in surface images. More specifi-

cally, the sparsity in the surface image originates from the low spatial resolution of

the imaging sensor (number of pixels in the image) and distance between the

camera and the object. In addition, owing to the noise produced by imaging

circuitry and reflectivity characteristics of the surface, the smoothness of the

acquired surface image may become deteriorated. Such limitations affect the

quality of the acquired image by creating outliers and/or changing the topographic

attributes of the surface image. Consequently, image analysis approaches based on

differential vectors and image registration techniques (explained later) are frus-

trated by the appearance of outliers and/or changes in the topographic attributes. By

using an appropriate reconstruction technique, it is possible to obtain dense and

Fig. 10.2 Example of a surface image acquired by using a time-of-flight (TOF) camera: (a)

anthropomorphic head phantom. (b) Surface image of the head phantom acquired by a TOF

camera. Red points belong to closer regions, whereas black points belong to further regions
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smooth surfaces (i.e. continuously differentiable surfaces) that improve the out-

come of the aforementioned processes. However, first, we must define the principle

of surface parameterization, as it is essential for the following topics.

10.3.1 Parameterized Surface

Let S be a surface consisting of points p23, as shown in Fig. 10.3. A parameter-

ization of the surface is a map S : 2 ! 3. In other words, it can be obtained by

assigning two values of parametric variables u; vð Þ22 to each point p23 in the

surface. Thus, the parameterization of the surface S can be expressed as follows:

p u; vð Þ ¼ p x u; vð Þ; y u; vð Þ; z x u; vð Þ; y u; vð Þð Þð Þ: ð10:3Þ

10.3.2 NURBS Surface Reconstruction

The basic idea of NURBS modelling is to calculate a smooth approximation for the

position of a query point bS u; vð Þ on the object’s surface by using a set of

neighbouring points derived from the original image, which are called control

points, and n-degree piecewise B-spline functions that determine the influence of

each control point on the query point’s position. Given control points pi , j, the query

point bS u; vð Þ can be calculated using the following equation:

bSðu, vÞ ¼
Pn
i¼0

Pm
j¼0

Ni,cðuÞNj,dðvÞwi, jpi, jPn
i¼0

Pm
j¼0

Ni,cðuÞNj,dðvÞwi, j

, ð10:4Þ

where u, v2 are the parametric variables; m + 1 and n+ 1 are the number of

the control points in the u and v directions, respectively; w is a weighting factor; and

Ni , c(u) and Nj , d(v) are the basis functions of degrees c and d in the u and

v directions, respectively (Piegl and Tiller 1997). The numerator of Eq. (10.4)

can be seen as a locally weighted summation of the control points, whereas the

denominator can be seen as a normalization term.

The degree of the basis function is an important factor in determining the shape

of the obtained surface. Cubic functions – for example – produce smoother surfaces

than linear or quadratic functions. The basis functions of the parametric variable

u can be calculated by using the following Cox-de boor recursive formulas (Cox

1972, de Boor 1972):
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Ni, 0ðuÞ ¼ 1 if ui � u < uiþ1

0 otherwise
,

�
ð10:5Þ

Ni,c uð Þ ¼ u� ui
uiþc � ui

Ni,c�1 uð Þ þ uiþcþ1 � u

uiþcþ1 � uiþ1

Niþ1,c�1 uð Þ: ð10:6Þ

Similarly, the basis functions of the parametric variable v can be computed as

Nj, 0ðvÞ ¼ 1 if vj � v < vjþ1

0 otherwise
,

�
ð10:7Þ

Nj,d vð Þ ¼ v� vj
vjþd � vj

Nj,d�1 vð Þ þ vjþdþ1 � v

vjþdþ1 � vjþ1

Njþ1,d�1 vð Þ: ð10:8Þ

For simplicity, we show examples for one-dimensional B-spline functions and

NURBS curves. Figure 10.4 illustrates B-spline functions of the 1st (linear), 2nd

(quadratic) and 3rd (cubic) degrees, which were calculated for five control points

with respect to the parametric variable u.
Figure 10.5 illustrates the effect that the degree of the basis functions has upon

the shape of a reconstructed NURBS curve c(u). In Fig. 10.5, linear basis functions
were used for reconstructing the curve c1, whereas quadratic and cubic functions

were used for reconstructing the curves c2 and c3, respectively. The smoothest

curve was c3, which shows the advantage of using cubic basis functions.

The elements ui and vj in Eqs. (10.5, 10.6, 10.7, 10.8) are called ‘knots’ because
they define the connection between the basis functions in the parametric space. The

knots, concatenated and ordered in ascending order, are called ‘knot vectors’. For
the parametric variables u and v, the knot vectors normalized in the range between

0 and 1 can be expressed as

_u ¼ ½0, . . . , 0, . . . , uk, ukþ1, . . . , 1, . . . , 1�; k ¼ 1, . . . , cþ mþ 2, ð10:9Þ

Fig. 10.3 A surface in a

Cartesian coordinate system

parameterized using two

parametric variables u and v
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_v ¼ 0; . . . ; 0; . . . ; vl; vlþ1; . . . ; 1; . . . ; 1½ �; l ¼ 1, . . . , d þ nþ 2: ð10:10Þ

The design of the knot vectors (i.e. location and spacing of the knots) has an

effect on the shape of the computed surface. The number of repetitions of knots in

both ends of vectors _u and _v is referred to as the multiplicity of the knot.

By increasing the multiplicity of a knot, the control points on its side will have

larger influence on the shape, because more basis functions will be connected at that

knot. A multiplicity equal to the degree of the basis functions plus one is needed for

the first and last elements in order to allow the surface to pass through the

boundary control points. In Fig. 10.4, knot vectors of _u ¼ 0; 0; 0:25; 0:5; 0:75; 1; 1½ �,

Fig. 10.4 Basis functions calculated for five control points with respect to the parametric variable

u: (a) 1st (linear), (b) 2nd (quadratic) and (c) 3rd (cubic) degree functions
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_u ¼ 0; 0; 0; 0:33; 0:67; 1; 1; 1½ � and _u ¼ 0; 0; 0; 0; 0:5; 1; 1; 1; 1½ � were used for com-

puting the linear, quadratic and cubic basis functions, respectively (the knots were

represented as black bars in the u axis).

The algorithm of computing a point bS u; vð Þ on the reconstructed NURBS surface

can be summarized as follows:

Step 1: Select the control points from the original surface image parametrized with

two parametric variables u and v.
Step 2: Set the degrees of the surface in u and v directions – i.e. c and d.
Step 3: Set the knot vectors in the u and v directions.

For the parametric value u, perform the following steps:

Step 4: Find the knot span – i.e. the interval [uk , uk+ 1) in which u lies.

Step 5: Compute the basis functions Nk� c , c(u) . . .Nk , c(u).

For the parametric value v, perform the following steps:

Step 6: Find the knot span – i.e. the interval [vl , vl+ 1) in which v lies.
Step 7: Compute the basis functions Nl� d , d(v) . . .Nl , d(v).

Step 8: Compute the query point bS u; vð Þ using Eq. (10.4).

Figure 10.6 shows a reconstructed surface of the nose region of a head phantom

surface obtained using NURBS modelling. The control points were derived from an

image of the phantom’s surface, as shown in Fig. 10.6b. A smooth surface of the

nose region was obtained by using cubic basis functions, as shown in Fig. 10.6c.

Fig. 10.5 Effect of degree of the basis functions on the smoothness of the reconstructed NURBS

curves
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10.4 Analysis of a Patient’s Surface Using Differential

Geometry

The localization of anatomical landmarks on patient surfaces is beneficial for

monitoring patient positioning during radiation therapy, particularly in the image

registration step. Feature points on the localized landmarks can be used to acceler-

ate the image registration process by dividing it into two steps: coarse registration

and fine registration. During the coarse registration, the feature points are used to

identify initial transformation parameters in a short time, as they constitute a subset

of the original point distribution. Then, the fine registration boosts the estimation of

the transformation parameters by further minimizing the error function (Placht et al.

2012).

One of the intuitive approaches for the localization of anatomical landmarks in a

surface image is to compute differential geometry (curvature) features. The math-

ematical field of differential geometry includes theories for analysing the geomet-

rical characteristics of a surface in a 3D space (Pressley 2010). Differential

geometry uses differential vectors of surface points to identify and analyse the

surface characteristics. However, this method of analysis is limited by its sensitivity

to noise in the surface (Agam and Tang 2005). As a result, this sensitivity affects the

accuracy of the estimated features and, consequently, the stability of the localized

points. Aside from the use of appropriate spatial and filtering techniques, NURBS

surface reconstruction is expected to improve the outcome of such analysis (Soufi

et al. 2016).

In order to localize of anatomical landmarks, we focus on the property of the

surface curvature. The assumption here is that anatomical landmarks on the surface

of patient’s body – especially the surface of the head – have distinctly curved

shapes. For example, Fig. 10.7 shows anatomical landmarks at the nose region of a

head phantom. Apparently, the apex and alae of the nose have convex shapes,

whereas the nasolabial and nasofacial sulci have concave shapes.

We introduce the principles of analysing the patient’s surface based on its

curvature by first defining the curvature of a curve. Next, we explain the concept

Fig. 10.6 An example for reconstruction of a patient’s surface using NURBS modelling from a

surface image. (a) Nose region defined on a head phantom. (b) Control points obtained from the

surface image. (c) The reconstructed NURBS surface of the nose region
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of the curvature of a surface, which will help us to measure the local shape of

surface regions analytically and localize the feature points.

10.4.1 Curvature of a Curve

The curvature of curve can be obtained by studying the changes in a position vector

representing a point’s position on the parameterized curve. Suppose that c(s) is a
parameterized regular curve (i.e. the curve is differentiable, and _c sð Þk k 6¼ 0 at all

the points, where _c sð Þ indicates the first derivative (velocity) of c(s)). The parameter

s2 is called arc length and indicates the length of the curve’s segment measured

between two points of it. Then, the curvature of c(s) can be calculated as

κ ¼ €c sð Þ � _c sð Þk k
_c sð Þk k3 , ð10:11Þ

where ‘�’ denotes the outer product operator and €c sð Þ indicates the second

derivative (acceleration) of c(s).
Now, assume that a short segment of c(s) can be approximated to an arc of a

circle, as shown in Fig. 10.8, and we want to calculate its curvature. In this case, c(s)
can have the following parameterization at that segment:

c sð Þ ¼ x0 þ r cos θð Þ; y0 þ r sin θð Þð Þ: ð10:12Þ

Fig. 10.7 Anatomical landmarks of the nose region with corresponding curvature types
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where m(x0, y0) is the centre of the circle, r is its radius and θ is the central angle of
the arc in Radians. By using the arc-length relationship (s¼ θr), Equation (10.12)

can be rewritten as

c sð Þ ¼ x0 þ r cos
s

r

� �
; y0 þ r sin

s

r

� �� �
: ð10:13Þ

Thus, the first and second derivatives can be derived as shown in Eqs. (10.14) and

(10.15), respectively:

_c sð Þ ¼ � sin
s

r

� �
; cos

s

r

� �� �
, ð10:14Þ

€c sð Þ ¼ �1

r
cos

s

r

� �
;�1

r
sin

s

r

� �� �
: ð10:15Þ

By using the cross product formula:

a� b ¼kakkbk sin ðαÞn, ð10:16Þ

where α is the angle between a and b (α is a right angle because _c sð Þ and €c sð Þ are
perpendicular) and n is a unit normal vector to the plane spanned by _c sð Þ and €c sð Þ;
the curvature of c(s) can be calculated as

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

r cos
s
r

� 	� 	2 þ �1
r sin

s
r

� 	� 	2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos s

r

� 	� 	2 þ sin s
r

� 	� 	2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos s

r

� 	� 	2 þ sin s
r

� 	� 	2q� �3
,

κ ¼ 1

r
:

ð10:17Þ

Equation (10.17) indicates an inverse relationship between the curvature of the

curve and the radius of the approximated circle. In order to clarify this relationship,

let us compare two curves c1 and c2, where c2 has a larger curvature at point p2 than
the curvature of c1 at a point p1, as shown in Fig. 10.9. This implies that the

approximated circle at p1 must have a larger radius r1 than r2 in order to fit within

the curve. On the other side, if c1 were almost flat, then r1 would have to be very

large in order to allow the circle to approximate a flat surface, in which case the

curvature would approach zero.
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10.4.2 Curvature of a Surface

Now, we advance to the concept of surface curvature. At an arbitrary point ps of the
surface S, there can be an infinite number of curves passing through ps and lying on
the surface. As a result, there can be an infinite number of tangential vectors g to the
surface at that point. However, there is a single normal vector n to the surface,

which is oriented at a certain direction from the surface (upwards or downwards).

This normal vector, combined with an arbitrary tangential vector, spans a normal

plane P, which intersects with the surface to form a curve C, as shown in Fig. 10.10.
The curvature of C is called the normal curvature.

Among the normal planes, there exist two planes whose normal curves have

special characteristics. Those are the planes whose normal curves have either the

maximum curvature, κ1, or the minimum curvature, κ2, of the surface at ps, as
shown in Fig. 10.11. The curvatures κ1 and κ2 are called the principal curvatures,

and together with their associated tangential vectors (also called principal direc-

tions), they can be used to define a local quadratic approximation to the surface. In

other words, they define a new coordinate system with axes bx and by in the principal
directions, andbz in the normal direction. The new coordinate system can be used to

characterize the shape of the surface at the local neighbourhood of the point ps.

Fig. 10.8 Definition of the

curvature of a

parameterized curve

Fig. 10.9 Relationship between the radius of the circle used to approximate the curve at a point

and the curvature of the curve at that point
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Using the new coordinate system, the local shape of a surface, which is

represented by its principal curvatures, can be approximated as a paraboloid

described by the following equation:

bz ¼ � κ1bx2 þ κ2by2� 	
: ð10:18Þ

The paraboloid can have one of two shapes at the neighbourhood of ps based on the
signs of the principal curvatures. If both signs are identical, the shape will be elliptic

– i.e. convex if both signs are negative and concave if the signs are positive – as

shown in Fig. 10.12a, b, respectively. If the signs are opposite, the shape will be

hyperbolic (i.e. saddle-shaped), as shown in Fig. 10.12c.

The principal curvatures at a point of a parametric surface can be calculated as

the eigenvalues of a fundamental matrix, which is computed by using first and

second fundamental forms. The first fundamental form is calculated by using first-

order differential vectors of the surface at the point, whereas the second fundamen-

tal form is computed by using the second-order differential vectors and the normal

vector at that point (Pressley 2010).

The calculation procedure of the principal curvatures by using the fundamental

matrix can be summarized as follows:

Fig. 10.10 Definition of

the normal curvature of a

surface S at point ps as the
curvature of the curve C that

results from the intersection

of plane P with the surface.

Plane P (the normal plane)

is spanned by a tangential

vector g and the normal

vector n

Fig. 10.11 Definition of

the principal curvatures –

i.e. maximum and minimum

curvatures and principal

directions at a point ps of an
object’s surface
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Step 1: Calculate the first-order differential vectors of the surface with respect to

the parametric variables u and v:

pu ¼
∂x
∂u

;
∂y
∂u

;
∂z
∂u

� �
, pv ¼

∂x
∂v

;
∂y
∂v

;
∂z
∂v

� �
: ð10:19Þ

Step 2: Calculate the second-order differential vectors of the surface with respect to

the u and v directions:

puu ¼
∂2

x

∂u2
;
∂2

y

∂u2
;
∂2

z

∂u2

 !
, puv ¼

∂2
x

∂u∂v
;
∂2

y

∂u∂v
;
∂2

z

∂u∂v

 !
, pvv ¼

∂2
x

∂v2
;
∂2

y

∂v2
;
∂2

z

∂v2

 !
:

ð10:20Þ

Step 3: Calculate the coefficients of the first fundamental form:

E ¼k puk2, F ¼ pu; pvh i G ¼k pvk2, ð10:21Þ

where h∙, ∙i denotes the inner product operator.
Step 4: Calculate the normal vector perpendicular to the surface at the point ps:

n ¼ pu � pv
pu � pvk k , ð10:22Þ

where ‘�’ denotes the outer product operator.

Step 5: Calculate the coefficients of the second fundamental form:

Fig. 10.12 Classification of the local shape type based on the sign of the principal curvatures. (a)

Elliptic concave shape. (b) Elliptic convex shape. (c) Hyperbolic (saddle) shape
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L ¼ puu; nh i,M ¼ puv; nh i,N ¼ pvv; nh i: ð10:23Þ

Step 6: Calculate the fundamental matrix A:

A ¼ E F
F G


 ��1
L M
M N


 �
, ð10:24Þ

with
E F
F G

���� ���� 6¼ 0.

Step 7: Calculate the eigenvalues of A that represent the principal curvatures κ1 and
κ2 of the surface at ps.

The coefficients of the first fundamental form quantify deformations in the

surface patches that result from non-uniform distribution of the points on the

object’s surface in the surface image. Figure 10.13 shows the effect of the surface

patch on the coefficients of the first fundamental form. The coefficients E and

G represent the length of the first-order differential vectors, whereas the coefficient

F is related to the angle between the two vectors. In Fig. 10.13a, the patch is

deformed into a parallelogram, which leads to positive coefficients. However, the

rectangular patch has F value of zero because the differential vectors are orthogo-

nal, as shown in Fig. 10.13b.

In order to further understand the coefficients of the first fundamental form, let

us examine the computed vectors on the object’s surface. Figure 10.14 shows an

example of the first-order differential vectors and normal vectors in an image of the

nose region of a head phantom’s surface. On the left-hand side, the patches, which

were deformed as a result of the irregular distribution of the points at the nasal wall,

are depicted. On the right-hand side, the rectangular patches on the apex of nose

region are depicted. The effect of the deformation can be observed through the

colour-coded maps of the coefficients of the first fundamental form, as shown in

Figs. 10.15a–c. We can note that large values were obtained at the deformed

patches at the nasal wall. In Figs. 10.15a, c, large values were obtained due to the

large magnitudes of the derivatives in the u and v directions, respectively, at the

deformed patches. In Fig. 10.15b, the colour-coded map is asymmetric owing to the

different signs of the first-order differential vectors between the ascending and

descending regions – i.e. the sign of the differentials of the z-coordinate.

The coefficients of the second fundamental form, which were estimated in

Eq. (10.23), represent the variations in the angle between the second-order differ-

ential vectors and normal vectors. Figures 10.15d–f show colour-coded maps of the

coefficients of the second fundamental form. At the sulci and edges of the object’s
surface, the variations in the angle between the second-order differential vectors

and normal vectors have a larger magnitude than those at the flat regions.
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10.4.3 Surface Curvature Features

In the process of localizing anatomical landmarks on the analysed surface, it is

impractical to use the principal curvatures directly. That is because the relationship

between the two curvatures (rather than their values) is what expresses the shape of

the region. Therefore, four alternative curvature features, which are the mean and

Gaussian curvatures, the curvedness and shape index, are used.

Fig. 10.13 Illustration of the meaning of the coefficients of the first fundamental form, whose

values represent the deformation in the patches of a parameterized object’s surface. (a) Deformed

patch. (b) Rectangular (underformed) patch

Fig. 10.14 Illustration of first-order differential and normal vectors computed on a surface image

of the nose region of a head phantom
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The mean and Gaussian curvatures can be estimated using the principal curva-

tures, as shown in Eqs. (10.25) and (10.26), respectively:

H ¼ 1

2
trace Að Þ ¼ 1

2
κ1 þ κ2ð Þ, ð10:25Þ

G ¼ det Að Þ ¼ κ1κ2: ð10:26Þ

Figure 10.16 illustrates the relationship between the sign of the mean and

Gaussian curvatures and the shape of the surface. Based on this relationship, a

point classification function can be constructed to localize the points at which the

surface has a distinct shape. For example, points located on elliptic-concave regions

can be localized by a selection of points that satisfy H< 0 and G> 0. Similarly,

points on elliptic-convex regions can be localized by using the conditionsH> 0 and

Fig. 10.15 Colour-coded maps of the coefficients of the first and second fundamental forms

computed on a surface image of the nose region of a head phantom: (a) E, (b) F, (c) G, (d) L, (e)
M and (f) N
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G> 0. Points on planar regions can be localized by using the conditions Hffi 0 and

Gffi 0.

As an example, Fig. 10.17 shows colour-coded maps of the mean and Gaussian

curvature features computed for a surface image of the nose. The convex regions at

the nose, such as the apex and alae, have G> 0 and H> 0. On the other side,

concave regions, such as the nasolabial and nasofacial sulci, have G> 0 and H< 0.

Thus, the mean and Gaussian curvatures could be utilized for characterizing the

local shape of the surface, as shown in Fig. 10.17. However, this method has a

limitation of the need for the two curvatures to characterize the shape, where neither

the mean nor Gaussian curvature holds the shape type information by its own. A

single quantitative measure that characterizes the shape type would be more

convenient.

For solving this problem, Koenderink et al. proposed two shape features that are

calculated using the principal curvatures (Koenderink and van Doorn 1992). The

two measures are the shape index, which is a scale-invariant measure that charac-

terizes the local shape type, and the curvedness, which characterizes the degree of

curvature of the surface. The shape index γ 2 [�1, 1] and curvedness C2 [0 , 1 )

can be calculated by using the following Eqs. (10.27) and (10.28), respectively:

γ ¼ 2

π
tan �1 k1 þ k2

k1 � k2

� �
, ð10:27Þ

Fig. 10.16 Classification of the surface shape at a point based on mean and Gaussian curvatures
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C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

2

s
: ð10:28Þ

Figure 10.18 illustrates the geometrical meaning of the shape index and

curvedness features. Figure 10.18a shows the classification of the shape types

with respect to the shape index. The end values (i.e. γ¼ � 1) indicate the surface

points that have a spherical concave (cup) or convex (cap) shapes. The points with

0< |γ|< 1 indicate a cylindrical region, while points with �0.5� |γ|� 0.5 indicate

saddle or saddle-like regions. Figure 10.18b shows the curvedness scale, in which

larger values indicate larger curvature values. The large curvedness values might

result from one of the principal curvatures or both, regardless of the shape type.

Figure 10.19 shows the shape index and curvedness features computed for the

surface image of the head phantom. Figure 10.19a shows the shape index feature.

The red and white colours indicate the convex regions, whereas the blue colour

indicates concave regions. Since the shape index is scale-invariant, regions with

large and small curvature degrees take similar values. On the other side, the

curvedness feature can distinguish among regions with a large curvature degree,

e.g. the apex region, and small curvature regions, as shown in Fig. 10.19b.

Fig. 10.17 Colour-coded maps of the curvature features computed for a surface image of the nose

region of a head phantom: (a) mean curvature and (b) Gaussian curvature
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Fig. 10.18 Illustration of local shape types at a point with respect to (a) the shape index and (b)

curvedness features

Fig. 10.19 Colour-coded maps of curvature features computed for a surface image of the nose

region of a head phantom: (a) the shape index and (b) curvedness
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10.4.4 Computerized Framework for the Localization
of Anatomical Feature Points in Infrared Ray-Based
Surface Images

10.4.4.1 Overall Scheme

Figure 10.20 shows a flowchart of an automated framework for localization of

anatomical feature points in an infrared ray-based surface image by using differ-

ential geometry features (Soufi et al. 2016). The basic idea was to reconstruct the

patient’s surface in the surface image for the computation of the curvature features

that characterize the shape of the surface, as explained in the previous sections. The

surface image was preprocessed for extracting the region of interest (ROI), which

includes the anatomical landmarks, and reducing the noise. Next, a smooth

(i.e. continually differentiable) mathematical surface of the patient’s body surface

was reconstructed by using the NURBS modelling technique. Curvature features,

i.e. shape index and curvedness, were computed, and a rule-based function was

used for localizing the feature points on the surface.

In the preprocessing step, a template matching technique based on a normalized

cross-correlation function was applied on the amplitude images for the extraction of

the ROI. The template image was selected so that it included the anatomical

landmarks. Next, an edge enhancement Laplacian-of-Gaussian filter was applied

on the template and input amplitude images. The ROI was automatically localized

by extracting the region with same size of the template at a pixel with the maximum

value of the normalized cross-correlation function. Following, temporal filtering

techniques (i.e. averaging and Kalman filters) and spatial filter (i.e. bilateral filter)

were applied for reducing temporal and spatial noise, respectively.

In the NURBS surface reconstruction, the control points were obtained by using

a linear interpolation of the surface image, setting the interval between the points to

1 mm in the X and Y directions in the XY plane. Next, 3rd degree (cubic) B-spline

basis functions were used for calculating the reconstructed surface using Eq. (10.4).

The feature points were localized on the reconstructed surface based on the

shape index and curvedness features, which were calculated by using Eqs. (10.27)

and (10.28), respectively. For localizing the feature points, the following rule-based

function was used:

p ¼

feature point on a convex region

if k1,p < 0, k2,p < 0, γp > γth and Cp 	 Cth,

feature point on a concave region

if k1,p > 0, k2,p > 0, γp < γth and Cp 	 Cth,

not a feature point otherwise,

8>>>><>>>>: ð10:29Þ

where γth and Cth are user-defined thresholds, which were set based on the optimi-

zation of a similarity measure between a reference (ground-truth) point set and the

localized feature point set. The advantages of this method are its simplicity through
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the definition of the feature points based on the shape topography. However, a

major limitation is the dependence in the localization accuracy on the curvedness

and shape index thresholds, which are patient-specific parameters.

For evaluating the localization accuracy, the mean of minimum Euclidean

distances (MMED), which is a similarity measure that evaluates the similarity

between reference (ground-truth) points and the localized points, was used. The

reference points were manually selected by an operator from the anatomical

landmark regions from which the feature points are sought to be localized. The

similarity was quantified by averaging the Euclidean distances between each

reference point and its closest localized point, and similarly the distances between

each localized point with its closest reference points (Soufi et al. 2016).

Assume thatR ¼ frj23; j ¼ 1, . . . ,Ug, whereU is the number of points, is the

set of the reference points and that F ¼ ffi23; i ¼ 1, . . . ,Tg, where T is the

number of points, is the set of the feature points localized based on Eq. (10.29). The

MMED between the reference points and the localized feature points was measured

as shown in Eq. (10.30):

MMED ¼
PT

i¼1 k rmin, j � fi k þPU
j¼1 k rj � fmin, i k

T þ U
, ð10:30Þ

where rmin , j is the closest reference point to the localized feature point fi, and fmin , i

is similarly the closest localized feature point to the reference point rj. Thus, the
points rmin , j and fmin , i in Eq. (10.30) are obtained by using Eqs. (10.31) and

(10.32), respectively:

Fig. 10.20 Flowchart of a computerized framework for the localization of anatomical feature

points on a surface image based on differential geometry features
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rmin, j ¼ argmin
j

rj � fi
 , ð10:31Þ

fmin, i ¼ argmin
i

rj � fi
 : ð10:32Þ

10.4.4.2 Experimental Results

Figure 10.21 shows the MMEDs obtained for the localization of convex and

concave feature points in surface images of a head phantom, which were acquired

by a TOF camera, based on the shape index and curvedness features. The surface

images were acquired for the phantom positioned in an initial positioning and

displaced positioning for �3 mm in right-left (RL), superior-inferior (SI) and

anterior-posterior (AP) directions. The convex and concave feature points were

localized with MMEDs of 1.79�0.16 and 3.60�0.43 mm, respectively.

Figure 10.22 shows reference and localized feature points on convex and

concave anatomical landmarks of the phantom’s surface. The concave feature

points included points localized at the apex region, where local retractions were

present. In addition, less points were localized at the nasofacial sulcus, compared

with the reference points, due to the saddle-shaped and deteriorated edges. There-

fore, the convex feature points had better localization accuracy compared with the

concave feature points.

10.5 Surface Image Registration Algorithms

Image registration is the key step in estimating the positioning errors in surface-

imaging-based systems. Image registration refers to the process of estimating a

mathematical (geometrical) transformation that optimally aligns two images – i.e. a

moving image and a reference (fixed) image based on a similarity measure. In

general, image registration algorithms consist of two major steps: (1) the estimation

of the correspondence between points in the moving image and points in the

reference image and (2) the estimation of the mathematical transformation that

minimizes the distance between the corresponding points when applied to the

moving image. The positioning errors can thus be estimated from the output

parameters of the mathematical transformation. The correspondence step can be

performed manually. This requires the user to select certain points on the reference

image and define their corresponding points on the moving image. However, such

manual definition is time-consuming and prone to uncertainties, such as

interobserver variability. Therefore, the correspondence problem is automatically

solved by searching through the points of the reference image and determining the

point that satisfies a minimum distance criterion with each point in the moving

image.
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Fig. 10.21 Comparison of the MMED between anatomical feature points on convex (grey) and
concave (white) regions of a phantom imaged with a TOF camera with respect to translation

directions

Fig. 10.22 Comparison between reference and localized feature points on the convex regions

(i.e. apex and alae of nose) and concave regions (i.e. nasolabial and nasofacial sulci) of a head

phantom with a TOF camera: (a) reference convex points, (b) localized convex feature points, (c)

reference concave points and (d) localized concave feature points
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Image registration algorithms can be classified based on the utilized mathemat-

ical transformation into rigid and nonrigid registration algorithms, as shown in

Fig. 10.23. The essential difference between the two types is that in a rigid

registration algorithm, the relative distance among the constituent points in a

surface image is preserved after the transformation. Therefore, a translation and

rotation suffice to align the moving image with the reference image, as shown in

Fig. 10.23a. By way of contrast, in nonrigid registration, the relative distance is

altered under localized surface deformations. Therefore, pointwise displacement

vectors are needed, which compose a deformation field, for aligning the two

images, as shown in Fig. 10.23b.

The type of image registration algorithm is selected based on the type of

positioning errors to be assessed and the nature of the surface images. Rigid

image registration has proved to be useful in verifying the patient positioning

after the rotation of the treatment couch during the treatment with non-coplanar

beams (Placht et al. 2012). The most widely used algorithm for such an application

is the iterative closest point (ICP) algorithm (Besl and McKay 1992), which we

discuss in this section in detail.

Fig. 10.23 Comparison

between rigid and nonrigid

registration algorithms

based on the utilized

mathematical

transformations: (a) rigid

registration including a

translation and rotation, (b)

nonrigid registration

including pointwise

displacement vectors

(deformation field)
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10.5.1 Iterative Closest Point (ICP) Algorithm

The ICP algorithm was proposed for the rigid registration of 3D rigid shapes (Besl

and McKay 1992) and has been used to estimate the positioning errors in surface-

imaging-based systems (Bert et al. 2005, Placht et al. 2012, Pallotta et al. 2013).

The algorithm assumes that the correspondences between the points

M ¼ mi23; i ¼ 1; . . . ;NM

� �
, where NM is the number of points, in the moving

image and the points F ¼ rj23; j ¼ 1; . . . ;NF

� �
, where NF is the number of

points, in the reference image are unknown. Therefore, the basic idea of the

algorithm is to find the optimal registration parameters iteratively, with two key

steps performed at each iteration. The first step is to estimate the points

Yk¼ {yi2F; i¼ 1, . . . ,NM} in the reference point set F, where k is the iteration

number, that correspond to the point set M. The second step is to estimate rigid

transformation parameters – i.e. a translation vector t¼ [tx, ty, tz] and a rotation

matrix R that is calculated based on the rotation angles θ¼ [α, β, γ] around the x – ,

y– and z– axes, respectively, as shown in Eq. (10.33):

R

¼
cos βð Þ cos γð Þ cos γð Þ sin αð Þ sin βð Þ � sin γð Þ cos αð Þ sin að Þ sin γð Þ þ cos αð Þ sin βð Þ cos γð Þ
cos βð Þ sin γð Þ cos αð Þ cos γð Þ þ sin αð Þ sin βð Þ sin γð Þ � cos γð Þ sin αð Þ þ sin γð Þ sin βð Þ cos αð Þ
� sin βð Þ sin αð Þ cos βð Þ cos αð Þ cos βð Þ

24 35:
ð10:33Þ

The optimal transformation parameters are estimated by minimizing a distance

(error) function among the points in M and their closest reference points Yk. The
procedure – i.e. the calculation of the correspondence and optimal transformation

parameters – is repeated until the error function is minimized. The detailed steps of

the algorithm can be explained as follows:

Step 1: Set initial transformation parameters t0 and R0.

Step 2 (Correspondence Step): For each point mi , k in the moving image, find the

closest point yi (i.e. the corresponding point) in F that minimizes the following

error function:

dk mi;Qð Þ ¼ min
yi,k2F

yi,k �mi,k

 , ð10:34Þ

where d denotes the Euclidean distance function, k denotes the iteration number and

k∙k denotes the L2 norm.

Step 3: Estimate the transformation parameters – i.e. the translation vector tk and
the rotation matrix Rk that minimize the following error function:
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Jkðtk,RkÞ ¼ 1

NM

XNM

i¼1

k yi,k � Rkmi,k � tk k2: ð10:35Þ

Step 4: Transform the points in the moving image by using the estimated transfor-

mation parameters:

mi,kþ1 ¼ Rkmi,k þ tk: ð10:36Þ

Step 5: Terminate if |Jk� 1� Jk|< E, where E is a threshold value. Otherwise, repeat
Steps 2–5.

Notice that the transformed points in Eq. (10.36) are iteratively reinserted as

moving points into Eq. (10.34).

The minimization of the function in Eq. (10.35) is a least squares problem. In

order to estimate the optimal transformation parameters that satisfy the minimal

error value, a singular value decomposition (SVD) technique can be used as follows

(Bergstr€om 2011). We start by calculating the derivative of the function J(t,R) with
respect to t, assuming a fixed R and setting the derivative equal to zero:

∂Jðt,RÞ
∂t

¼�2

NM

 XNM

i¼1

ðyi�Rmi�tÞ
!
¼ 2

NM

 
NMtþR

XNM

i¼1

mi�
XNM

i¼1

yi

!
¼0: ð10:37Þ

Now, let �m and �y be the centroids of the point setsM and Y, respectively, which can
be calculated as

�m ¼ 1

NM

XNM

i¼1

mi, �y ¼ 1

NM

XNM

i¼1

yi: ð10:38Þ

By rearranging the terms of Eq. (10.37), the optimal translation vector can be

expressed as follows:

bt ¼ �y� R �m: ð10:39Þ

At this stage, by substituting the optimal translation vector back into the error

function, we obtain
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XNM

i¼1

k yi � Rmi �bt k2 ¼XNM

i¼1

k yi � Rmi þ R �m� �y k2

¼
XNM

i¼1

k Rð �m�miÞ � ð�y� yiÞ k2: ð10:40Þ

Then, we apply the following substitution into Eq. (10.40):

pi ¼ �m�mi, qi ¼ �y� yi: ð10:41Þ

In this manner, the problem can be formalized as finding the optimal rotation matrix

R such that

bR ¼ argmin
R

XNM

i¼1

k Rpi � qi k2: ð10:42Þ

Now we expand the expression to be minimized within the summation as follows:

k Rpi � qi k2 ¼ ðRpi � qiÞTðRpi � qiÞ ¼ ðpiTRT � qi
TÞðRpi � qiÞ

¼ pi
Tpi � 2qi

TRpi þ qi
Tqi: ð10:43Þ

Therefore, Equation (10.42) can be reduced to

bR ¼ argmin
R

XNM

i¼1

ð�2qi
TRpiÞ ¼ argmax

R

XNM

i¼1

ðqiTRpiÞ: ð10:44Þ

The summation term on the right-hand side of Eq. (10.44) can be expressed using

matrix notation as follows:

XNM

i¼1

ðqiTRpiÞ ¼ traceðQTRPÞ, ð10:45Þ

where Q is the 3�NM matrix of the corresponding points, P is the 3�NM matrix of

the moving points and trace denotes the trace operator, which sums up the diagonal

elements of a matrix. Thus, Eq. (10.41) can be rewritten as

bR ¼ argmax
R

traceðQTRPÞ: ð10:46Þ

By using the commutative property of the tracer operator, Eq. (10.46) can be

rewritten as
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bR ¼ argmax
R

traceðRPQTÞ: ð10:47Þ

The matrix PQT is a 3�3 matrix, which can be decomposed using SVD as

follows:

PQT ¼ UΛVT , ð10:48Þ

where U and V are orthogonal matrices whose columns are the eigenvectors of the

matrices WWT (W¼PQT) and WTW, respectively, and Λ is a diagonal matrix with

the nonnegative singular values σ1 , σ2 and σ3 on its diagonal. By substituting

Eq. (10.48) into Eq. (10.47), we obtain

bR ¼ argmax
R

traceðΛVTRUÞ ¼ argmax
R

traceðΛBÞ: ð10:49Þ

Because the matrices R, U and V are all orthogonal matrices, the matrix B is also

orthogonal. When the column vectors of B are unit vectors, then bij< 1. Therefore,

the trace to be maximized can be written as

trace ΛBð Þ ¼
X3
i¼1

σibii �
X3
i¼1

σi: ð10:50Þ

Equation (10.50) indicates that the maximum trace value can be obtained when

bii¼ 1, which means that B¼ I, where I is the identity matrix. Therefore, we have

the following:

I ¼ B ¼ VT bRU
V ¼ bRUbR ¼ VUT

: ð10:51Þ

Equation (10.51) holds true because both V and U are orthogonal matrices. How-

ever, the matrix bR computed with this procedure might include a reflection in

addition to the rotation. Therefore, the following modification upon Eq. (10.51)

ensures that we obtain the desired rotation matrix Ropt without a reflection:

Ropt ¼ V
1 0 0

0 1 0

0 0 detðVUTÞ

0@ 1AUT : ð10:52Þ

Finally, the optimal translation vector topt is obtained by substituting Ropt into

Eq. (10.39), which we rewrite here for consistency:
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topt ¼ �y� Ropt �m: ð10:53Þ

The advantages of using the ICP algorithm for patient positioning are as follows:

• It is independent of the shape representation of the surface image, which means

that it can be applied on point distributions represented as scattered points,

triangulated surfaces or surface patches.

• It is feasible for point distributions without outliers, such as patient surface

images acquired with a laser scanner.

• The output of the last iteration can be used directly as the patient positioning

errors.

However, the algorithm has the following disadvantages:

• It is sensitive to outliers in the surface image. Therefore, when registering

images with significant outliers, it might require a prior preprocessing (filtering)

step or a modification that excludes outliers from the registration procedure.

• When the reference image includes a dense point distribution (e.g. if it is derived

from a planning CT image), the ICP algorithm becomes computationally expen-

sive. As a result, real-time performance might not be obtained from the moni-

toring system. In order to overcome this problem, algorithms for a faster search

for the closest points – e.g. the space partitioning or downsampling of the

reference image – can be used to accelerate the search process.

Next, we introduce a simple example of registration by applying the ICP

algorithm to a surface image. The input images are acquired for a head phantom

using a TOF camera and consist of an initial positioning image (with no translation

or rotation) and a treatment image (with a simulated positioning error). The

positioning error was simulated by displacing the initial positioning image by

20 mm in the left-right (LR) direction and rotating it by 15
 about the anterior-

posterior (AP) direction. Figure 10.24 shows the initial positioning and treatment

images without registration (Fig. 10.24a) and with registration (Fig. 10.24b).

10.5.2 Evaluation of Registration Accuracy

In order to evaluate the registration accuracy, two criteria are used. The first

criterion is called the fiducial registration error (FRE) (Fitzpatrick et al. 1998).

This criterion estimates the accuracy with which the corresponding points were

aligned after the registration. However, because the FRE might not reflect the

accuracy of the registration in terms of positioning error, the target registration

error (TRE) is also used (Fitzpatrick et al. 1998, Placht et al. 2012). The TRE

estimates the difference between a reference (ground-truth) positioning error and

the error estimated by the registration algorithm. Let tref and θref be the reference

translation and rotation angle vectors, respectively, and let test and θest be the
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translation and rotation angles vectors estimated by the ICP registration algorithm,

respectively. Then, the TRE of the estimated translation vector (TREtrans) and

rotation angle vector (TRErot) can be calculated as follows:

TREtrans ¼k tref � test k , ð10:54Þ
TRErot ¼k θref � θest k : ð10:55Þ
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Chapter 11

Tumor Tracking Approach

Masayori Ishikawa and Shubhechha J. Shrestha

Abstract In radiotherapy practice, the planning target volume (PTV) must include

larger margin for moving tumor compared to tumors at rest with same clinical target

volume (CTV). In order to avoid normal tissue complications, organ motion should

either be freezed relative to treatment beam or the tumor must be tracked in a real

time. The real-time tracking of the tumor can reduce the tumor motion margin in the

dose distribution, sparing the healthy tissues near the tumor. Several methods have

been proposed for tracking the tumor in a real time. The most widely used method is

external surrogate system, where the tumor position is based on external surrogates,

such as the abdomen that expands and contracts as the patient breathes. Gold

fiducials are also used as a surrogate marker because it is easily detectable in the

fluoroscopic image allowing the continuous monitoring of the tumor. In this

chapter, recent techniques will be introduced with their benefits and limitations.

Keywords Tumor tracking • Radiotherapy • SBRT • IGRT

11.1 Introduction

Image-guided radiotherapy (IGRT) has been widely used for patient setup with

bony structures or fiducial markers, enabling high-accuracy external radiotherapy.

For even higher accurate radiotherapy, organ motion has been the main issue in

external radiotherapy for extracranial diseases. The conventional way to account

for organ motion and setup error is to add a safety margin to the clinical target

volume (CTV) to get the planning target volume (PTV), which is recommended by

ICRU Report 50 and 62 (Wambersie and Landgerg 1999). But we must also keep in

mind that increasing the margin exposes a larger volume of healthy normal tissues

to radiation dose. Efforts have been made to “cut corners” in the sense of keeping

the irradiated volume as close to the CTV as possible (Goitein 2004). Past studies

have also shown a correlation between organ motion and respiration (Keall et al.
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2006b). Furthermore, for lung tumors, it has been reported that lung tumors may

move up to 40 mm in superior-inferior (SI), 15 mm in anterior-posterior (AP), and

10 mm in left-right (LR) direction during normal breathing and follow complicated

3D tracks (Plathow et al. 2004) (Shirato et al. 2007). The maximum movement of

liver tumors was found to be 2.1 cm in the SI direction and about 0.8 cm in the AP

direction (Shimizu et al. 1999). Such motion presents significant limitations during

the entire radiotherapy process: imaging, planning, and delivery. Similarly, another

important source of uncertainty in external radiotherapy is setup error (Shirato et al.

2000b). Setup error comprises of both random and systematic errors. In particular,

the motion of skin with respect to the internal anatomy degrades the reproducibility

of the patient setup on the CT scanner, thereby introducing a systematic setup error

(Van Herk 2004). For lungs, setup errors of the order of 2–4 mm have been reported

(De Boer et al. 2001). Random errors blur the dose distribution (Leong 1987),

whereas systematic errors cause a shift of the cumulative dose distribution relative

to the target (Van Herk 2004).

Several methods have been proposed for tracking the tumor in a real time. The

tumor tracking approach can be grouped into the following categories: [I] internal

surrogate tracking, (1) implanted fiducials, (2) electromagnetic tracking, and

(3) combined MV/kV imaging; [II] external surrogate tracking; [III] internal and

external surrogate tracking, (1) direct tumor tracking (DTT) and (2) respiratory

tracking system (RTS); and [IV] markerless tracking, (1) direct fluoroscopic tumor

tracking and (2) MRI tracking. The most widely used method is the external

surrogate system, where the tumor position is based on external surrogates, such

as on the abdomen that expands and contracts as the patient breathes. Under this

approach, the most common technique is the placement of a pressure sensor belt

(Li et al. 2006) and infrared reflector (Berbeco et al. 2005b; Berbeco et al. 2006) on

the patient’s abdomen that are tracked with an infrared camera. Another approach is

internal surrogate tracking, where high-electron-density metal (gold) markers or

transponders are implanted in the tumor site. Chen, Murphy, and Shirato have used

gold fiducials for tumor tracking (Chen et al. 2001; Murphy et al. 2002; Shirato

et al. 2000b). Gold fiducials are easily detectable in fluoroscopic images allowing

the continuous monitoring of the tumor. One such system that is used clinically for

tumor tracking is the Mitsubishi/Hokkaido RTRT system (Shirato et al. 2000b). For

this purpose, organ motion should either be frozen relative to the treatment beam or

the tumor must be tracked in real time. The former technique is referred as the

breath-hold technique (Hanley et al. 1999; Wong et al. 1999), and the latter is

known as real-time tumor tracking (Chen et al. 2001; Shirato et al. 2000b). Both

techniques transform the problem of targeting a moving tumor into a more easily

manageable static treatment case. The Japanese Society of Therapeutic Radiology

and Oncology (JASTRO) defines real-time tumor tracking (RTRT) as external

radiotherapy which utilizes real-time tracking technology during therapy. Gener-

ally, RTRT can be classified into two divisions; one is interrupted irradiation and

the other pursuing irradiation (Shirato et al. 2007). In the former, the therapeutic

beam is irradiated only when the tumor is within the irradiation field. In the latter,

the therapeutic beam is continuously delivered to amoving target. A 5-mmmotion-limit
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criterion is generally chosen, because this level of motion can cause significant

artifacts and systematic errors during imaging procedures.

Another method of internal surrogate tracking is based on nonionizing electro-

magnetic fields, using a small wireless transponder implanted in the tumor region

(Balter et al. 2003). A combined MV/kV system has also been explored with a

marker tracking approach (Wiersma et al. 2008). The main advantage of the

MV/kV system is that the same treatment beam can be used for therapy and

imaging. Similarly, another approach toward tumor tracking is fluoroscopic track-

ing of the tumor without implanted fiducial markers which is also referred to as

markerless tracking (Berbeco et al. 2005a; Cui et al. 2008; Xu et al. 2007; Lin et al.

2009). In addition, fluoroscopy is an ionizing imaging technique. When acquired

throughout the entire treatment, it adds a considerable dose to the patient. Recently,

several groups are integrating radiotherapy treatment units with magnetic reso-

nance imaging (MRI) (Fallone et al. 2009; Dempsey et al. 2005). The main

advantages of using MRI for treatment guidance purposes is that it does not involve

any additional dose to the patient and has better soft tissue contrast than that of

X-rays. In the following sections, we describe the abovementioned tumor tracking

approaches in detail along with their accuracy and clinical implementation.

11.2 Internal Surrogate Tracking System

11.2.1 Implanted Fiducial Tracking

The fluoroscopic real-time tumor tracking system synchronized with a linear

accelerator was developed by Hokkaido University and Mitsubishi Electronics in

1999. The system gates a linear accelerator such that the beam can be turned on and

off without shutting down the entire linac. It consists of four sets of diagnostic

X-ray fluoroscope systems. Each set consists of an X-ray tube with a fixed colli-

mator embedded under the floor and an image intensifier mounted on the ceiling

(Fig. 11.1). The beam axis of two diagnostic X-ray units will meet at the isocenter

of the linear accelerator (Shirato et al. 2000b). In this technique, a gold marker with

a diameter of 1.5–2 mm is implanted in or near the tumor which can be detected in

fluoroscopic images. Generally, three or more fiducial markers are inserted, and one

is selected at treatment time for tracking. Multiple fiducial markers may also help

measure tumor translation, rotation, and even marker migration which can be

determined by monitoring the distance between markers (Keall et al. 2006b).

Among the four X-ray fluoroscopy systems, two sets are selected to view the

gold marker in the patient body. The marker is first located within each digital

image via a template matching (TM) algorithm. The image processor compares the

digitized image and the template image of the marker by using a correlation

function. The marker position is assumed to be the location with the maximum

pattern recognition score (PRS). If the PRS is less than a predefined value, the
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fluoroscopic RTRT system halts the linac operation. If the PRS is above the

predefined value and the position is within the gating window, the linac is triggered

to irradiate the tumor. When the marker moves outside the gating window, the beam

is turned off. The PRS between the search area and template are displayed on the

CRT every 0.03 s (Shirato et al. 2000a).

Shirato et al. (2000a, b) showed in a phantom experiment that the coordinates of

the marker were detected with an accuracy of +/� 1 mm (Shirato et al. 2007).

Similarly, in the moving targets, the geometric accuracy of the tumor tracking

system was found to be better than 1.5 mm up to a speed of 40 mm/s, which is much

better than the external surrogate approach. The RTRT system significantly

improves the accuracy of irradiation of the target in motion at the expense of an

acceptable amount of diagnostic X-ray exposure (Shimizu et al. 2001).

Shimizu et al. (2001) treated four lung cancer patients with the RTRT system

and found that the range of the marker during the beam on period was reduced to

within 5.3 mm in all directions (Shimizu et al. 2001). Kitamura et al. (2002)

suggested that the RTRT system was useful in prostate cancer for reducing uncer-

tainty due to the effects of the respiratory cycle, especially with the patient in the

prone position (Kitamura et al. 2002). Yamamoto et al. (2004) used the RTRT

system for patients with gynecology malignancies. The PTV margin with three gold

marker setup reduced by 3.3 mm, 6.1 mm, and 4.6 mm with respect to manual

setup, which indicated that RTRT was useful to reduce the PTV margin and to

perform 3DCB (Yamamoto et al. 2004). Similarly, in RTRT-based head and neck

treatment, Oita et al. (2006) concluded that the setup error in RL, CC, and AP

directions was reduced by 1.6 mm, 1.3 mm, and 0.8 mm, respectively, with respect

to manual setup (Oita et al. 2006). Ahn et al. (2004) applied the RTRT system for

unresectable pancreatic cancer. The average movements of markers in RL, CC, and

AP directions were 3.0 mm (range 1.7–5.2 mm), 5.2 mm (range 3.5–6.8 mm), and

3.5 mm (range 2.7–5.1 mm), respectively (Ahn et al. 2004).

Fig. 11.1 The Hokkaido fluoroscopic real-time tumor tracking system with motion-gated linear

accelerator and X-ray tubes (Shirato et al. 2000a, b)
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As there are limitations in any system, the present RTRT system also has

shortcomings. First, the major uncertainty of the system is the migration of the

implanted markers. Second, as the tracking method requires invasive marker

implantation, there is a risk of pneumothorax (Abdefg et al. 2002; Geraghty et al.

2003). Finally, the system irradiates only when the tumor is within the gating

window, thus a duty cycle of no more than 20–30 % leads to long treatment time

(Depuydt et al. 2011).

11.2.2 Electromagnetic Tracking

Electromagnetic tracking is another real-time tumor tracking modality and has

many benefits over the use of simple gold markers (Balter et al. 2003; Balter

et al. 2005). The main advantages are (1) no requirement of ionizing radiation

during localization, (2) the target isocenter may be monitored continuously at the

frequency of 10 Hz during radiation delivery rather than once at the beginning of

each fraction, and (3) real-time feedback is provided so that action may be taken to

limit the influence of intrafraction motion (Litzenberg et al. 2007). Research shows

that the complication rates of gold marker and transponder implantation are similar

(Willoughby et al. 2004; Pouliot et al. 2004). The use of electromagnetic technol-

ogy was first elaborated for stereotactic radiotherapy localization utilizing a wired

transponder sensor (PV et al. 1992). Position tracking systems used in image-

guided surgery using a wired transponder are Aurora and microBird (Hummel

et al. 2002). Similarly, a miniature implantable radiofrequency (RF) coil (8 mm x

0.8 mm) was proposed by Seiler et al. (2000). The coil can be tracked magnetically

in 3D in real time (Seiler et al. 2000). Currently, a novel wireless electromagnetic

localization system, Calypso 4D Localization System (Calypso Medical, Seattle,

WA) has been developed for real-time tracking in radiotherapy (Balter et al. 2003).

The major components of the Calypso 4D Localization System are shown in

Fig. 11.2, which include (1) a mobile AC electromagnetic console; (2) a receiver

array; (3) three ceiling-mounted infrared optical cameras and a hub, all located in

the treatment room; (4) wireless transponders (8 mm � 2 mm) (Beacons); and (5) a

tracking station in the control area (Balter et al. 2005). The array contains four

source coils and 32 receiver coils. The source coil generates an electromagnetic

field in the 300 to 500 kHz frequency range which induces a resonance in the

transponder. The spatial coordinates of the transponder are determined from the

treatment-planning CT scan and the offset between the transponder centroid, and

the intended isocenter is updated at a rate of 10 Hz.

The Calypso system can be used in two ways: localization and tracking. When a

patient is planned for radiotherapy, no fewer than two transponders are first

implanted into the tumor region. The patient then undergoes thin CT simulation

after 4–14 days. Transponder coordinates on the CT scan relative to the treatment

plan isocenter are calculated and entered into the Calypso system. The Calypso

receiver is placed over the patient, and its position relative to the isocenter, as well
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as the transponder position relative to the array, is determined. Transponders are

excited by an external field generated by the array and emit an electromagnetic

signal at one of the three unique resonance frequencies which is detected and

localized by an electromagnetic array placed above the patient (Mayse et al.

2008). Several sensors are placed inside the array which measures the strength

and orientation of the resonant signal from the transponders. The data is then

transferred to a manufacturer-provided software to determine and continuously

monitor the target position with respect to the array. For continuous tracking, the

transponder must be placed 23 cm or less from the detection array above the patient

(Quigley et al. 2009). Infrared cameras continuously monitor the array’s position
relative to the linear accelerator which helps to calculate the position of the target

with respect to the linear accelerator’s isocenter. In this way, the electromagnetic

system serves as a kind of Global Positioning System (GPS), and hence this system

is often referred to as “GPS for Body.”

A phantom experiment showed that submillimeter accuracy was maintained

using the electromagnetic tracking technique (Balter et al. 2005). A clinical eval-

uation showed a comparable localization accuracy to the isocenter (within 1.5 mm)

compared with X-ray localization (Burch et al. 2005; Kupelian et al. 2005; Wil-

loughby et al. 2006). Similarly, the root mean square (RMS) accuracy of this system

for real-time verification of 4DCT data has been shown to be 0.28 mm (maximum

error 1.2 mm) (Parikh et al. 2005). Similarly, the time lapse between the Calypso

readout and X-ray imaging was approximately 8 min, and the patient localization

accuracy (difference between the Calypso system-predicted transponder location

and the radiographic system-predicted transponder position location) was within

1.5+/� 0.9 mm in research carried out by multiple institutions (Santanam et al.

2008).

The initial US Food and Drug Administration (FDA) approval in July 2006

allows for the Calypso system to be used in the treatment of prostate cancer only.

Kupelian et al. reported that the difference between the skin marker and Calypso

Fig. 11.2 (a) Transponder (Mayse et al. 2008). (b) Diagram showing the localization process of

electromagnetic tracking system (Balter et al. 2005)
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alignment was greater than 5 mm in more than 75 % of all fractions (Kupelian et al.

2007). Similarly, Quigley et al. showed the patient positioned with conventional

tattoos and laser to have alignment error exceeding 5 mm when compared with the

Calypso positioning and monitoring system (Quigley et al. 2009). Litzenberg et al.

showed that the margins required to account for intrafraction motion were around

2 mm in all directions considering that 90 % of patients received 95 % of the

prescribed dose using the Calypso system, but in the absence of this system, the

margins are 10 mm (Litzenberg et al. 2007). This shows that a significant reduction

in margin is possible using the Calypso system.

11.2.3 Combined MV/kV Imaging System

The feasibility of using electronic portal image devices (EPIDs) for real-time tumor

tracking has recently been explored (Keall et al. 2004). However, since only a

single in-line MV is used, this approach suffers from insufficient information to

completely determine the 3D coordinates of the implanted fiducials. The combined

use of MV treatment beams with kV projection images has recently been proposed

(Wiersma et al. 2008). Unlike other fluoroscopy tracking systems which require two

or more additional kV X-ray imaging sources for obtaining spatial information, the

system uses the treatment beam and only one kV X-ray imaging source as shown in

Fig. 11.3.

Wiersma et al. demonstrated a real-time 3D internal fiducial tracking system

based on the combined use of MV and kV imaging systems. The Varian Trilogy

system (Varian Medical Systems, Palo Alto, CA) with kV and MV imagers

operating in the 6 MV photon mode was used for this study. MV beam images

were obtained using an aSI EPID (Portal Vision MV AS-500, Varian Medical

Systems, Palo Alto, CA), and the kV imaging was acquired using an onboard kV

imaging system located perpendicular to the treatment beam. Two channels of a

four-channel PCI video grabber (Pro Video 149P, ProVideo Co., Taipei, Taiwan)

were used to grab the kV and MV video streams at 30 fps per channel with a

resolution of 640 � 480 pixels. To analyze the video, software was used with a

sequence of filters for detecting the fiducials.

The geometrical accuracy of the system was found to be on the order of 1 mm in

all three spatial directions. With this tracking system, the MV trace lags behind the

kV trace by approximately 70 msec. Moreover, the system is intensity based in

nature; thus, when the fiducial moves in the vicinity of high-density objects such as

the bone that can have similar intensity values as the fiducial, the tracking becomes

difficult or even impossible.
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11.3 External Surrogate Tracking System

The external surrogate tracking system is a respiratory gating technology which is

based on the correlation between the tumor position and the patient’s respiratory
cycle. The most available and widely discussed respiratory gating system utilizing

external respiration signal is the Real-time Position Management (RPM) system

(Varian Medical Systems, Palo Alto, CA). By measuring the patient’s respiratory
pattern and range of motion, the system software creates a graphical sinusoidal

form (waveform) as a function of time. The major components of the RPM system

are a marker block, an infrared tracking camera, and a predictive filter. The marker

block is a plastic box with two or six reflective dots on one side and serves as the

external fiducial marker. The marker is placed on the patient’s anterior abdominal

surface, usually between the umbilicus and the xiphoid because this region has been

shown to yield the largest amplitude in maker motion (typically 1–2 cm) (Fig. 11.4)

(Mageras et al. 2001). It should be placed nearly horizontal and at the same location

during imaging for planning, simulation, and treatment. The camera is a charge-

coupled device (CCD) with an array of LEDs that emits infrared light. Dots on the

marker block reflect the infrared light back to the camera, which captures the signal.

The system software then utilizes this signal to track and analyze the motion of the

dots, which corresponds to the motion of the chest or abdomen. The predictive filter

is a vital part of the RPM software which detects and predicts the patient’s breathing
pattern. After recognizing the pattern, the predictive filter makes sure that this

pattern is being followed. If there is any interruption in the breathing pattern, the

predictive filter detects the interruption, and RPM instantly turns the beam off.

Berson et al. from September 2000 to January 2002 evaluated RPM on

108 patients (lung, liver, breast, mediastinum) and concluded that the system is a

practical and achievable solution for minimizing respiratory-induced target motion

during both simulation and treatment (Berson et al. 2004). Ford et al. found that the

residual intra- and interfraction movements measured by fluoroscopic and portal

Fig. 11.3 Varian Trilogy

with KV and MV imager,

with KV beam and MV

beam perpendicular to each

other (Modified from

Wiersma et al. 2008)
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imaging using this technique were 2.6+/� 1.7 mm and 2.8 +/�1.0 mm, respec-

tively. With no gating, the intrafraction excursion became 6.9+/�2.1 mm (Ford

et al. 2002). In research carried out by Wagman et al., ten patients with liver tumors

were treated using the RPM system. Average superior-to-inferior (SI) diaphragm

motion on initial fluoroscopy was reduced from 22.7 mm without gating to 5.1 mm

with gating (Wagman et al. 2003). Similarly, reproducible decrease in liver motion

with gating reduced the GTV-to-PTV margin from 2 cm to 1 cm and resulted in a

dose increase of 7–27 % (median 21.3 %) in six patients. Underberg et al. evaluated

4D CT scans on 31 lung tumor patients; the mean mobility vector decreased from

8.5 +/� 6.5 mm for the entire breathing cycle to 1.4 mm +/� 0.7 mm in the tidal-

expiration gated window (Underberg et al. 2005).

Other gating devices have also been used for external surrogate tracking, such as

pressure-sensitive belts (Li et al. 2006). Similar to the positioning of the RPM

marker block (Fig. 11.4), a pressure sensor is placed on the abdomen. The belt

detects the abdominal motion (both amplitude and phase) by measuring pressure

variation and then transfers the motion signal to the monitoring station. The

software records the patient’s respiratory data and controls the irradiation beam

accordingly. However, as in the external surrogate systems, the relationship

between the external surrogate and the internal tumor motion seems to vary, even

during treatment on the same day (Lin et al. 2009). This approach is therefore often

considered to suffer from lack of accuracy.

11.4 Internal and External Surrogate Tracking System

11.4.1 Direct Tumor Tracking System

An RTRT system in which the beam is continuously delivered pursuing the position

of the tumor is known as non-gated RTRT or dynamic tracking radiotherapy (DTT).

Mitsubishi Heavy Industries in collaboration with Kyoto University and Brain LAB

(Feld Kirichen, Germany) developed the DTT system, also referred to as Vero

Fig. 11.4 The external

surrogate system (a)

pressure belt (b) RPM block

(Glide-Hurst and Chetty

2014)
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(Fig. 11.5) (Mukumoto et al. 2012). It is composed of a small and light 6MV C-band

linac mounted on a gimbaled X-ray head with MLC. The entire system is installed

on an O-ring gantry (Takayama et al. 2009). The X-ray head can rotate in both

horizontal and vertical axes relative to the O-ring direction to track a moving target.

The imaging system, which is fixed in the gantry, consists of two types of imaging

systems, each consisting of a kV X-ray tube and a flat panel detector (FPD) with an

infrared IR camera mounted on the ceiling of the treatment room.

IR markers are placed on the surface of patient’s abdominal wall for detecting

respiratory signal, and fiducial markers are implanted in the tumor and are contin-

uously and simultaneously monitored using the IR camera and the orthogonal kV

X-ray imaging system. After tracking, a correlation model (4D) is developed using

the detected respiratory signals and the position of the moving marker (Suzuki et al.

2014). In the 4D model, the peak-to-peak amplitude of the detected target motion,

mean, and the standard deviation between the moving position and the IR marker

are calculated automatically (Mukumoto et al. 2013). Then using the gimbal

mechanism, the therapeutic X-ray beam tracks and follows the real-time position

of the tumor and delivers therapeutic X-rays continuously, while the beam is

tracking the moving tumor until the prescribed dose is completely delivered.

According to Tom Depuydt et al., the systematic tracking error of the Vero system

was found to be below 0.14 mm. Similarly, the sinusoidal motion tracking was

found to be accurate with a tracking error of 90 % percentile E90% <0.82 mm

(Depuydt et al. 2011).

In 2011, the world’s first DTT was performed on a lung cancer patient using

Vero 4DRT at Kyoto University Hospital (Suzuki et al. 2014). Matsuo et al. (2014)

performed DTT on a lung cancer patient using a gimbal-mounted linac. The

tracking plan showed PTV volume reduction from 56.2 cm3 to 39.6 cm3 covering

95 % of the GTV. Dose to the normal lung and liver were also reduced (Matsuo

et al. 2014).

Fig. 11.5 Dynamic tumor

tracking DTT system (Vero

system) with gimbaled MV

X-ray head and KV X-ray

tubes (Mukumoto et al.

2012)
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11.4.2 Respiratory Tracking System (RTS)

The Synchrony™ Respiratory Tracking System (RTS) is a subsystem of the

CyberKnife robotic treatment device (Accuray Inc., Sunnyvale, CA). It is used to

irradiate extracranial tumors that move due to respiration and is considered to be an

external-internal tumor tracking modality. The main advantages of RTS are that the

patients can breathe normally, and there is no loss of duty cycle such as with gated

therapy systems. The duty cycle is generally 100 % (Seppenwoolde et al. 2007).

Tracking is based on a measured correspondence model (linear or polynomial)

between internal tumor motion and external (chest/abdominal) marker motion. The

radiation beam follows the tumor movement via the continuously measured marker

motion. The RTS uses computer simulation based upon the recorded external and

internal marker positions which allow the robot to accurately follow tumor motion

even in the case of irregular respiration signal. The correspondence model predicts

tumor position and sends feedback to the robotic linear accelerator, and the robot

realigns the beam with the tumor (Glide-Hurst and Chetty 2014).

The imaging system consists of two kV X-ray tubes and a pair of orthogonal

positioned flat panel imagers. The internal marker (implanted at or near the tumor

position) is determined via X-ray images. Similarly, three external markers, i.e.,

optical markers, are tracked using a light-emitting diode (LED) fixed on the chest or

abdomen of the patient. A stereo camera system measures the 3D position of the

markers continuously at 30 Hz (Hoogeman et al. 2009).

For the correlation mode, first the position of the internal marker is determined

by X-ray fluoroscopy and is related to the external signal. Functions that are

considered for establishing a correspondence model are linear model and polyno-

mial model. The linear model is applied for the AP and LR directions and the

polynomial model for the CC direction and for the phase shift and hysteresis in the

trajectory (Hoogeman et al. 2009).

Misha et al. calculated residual error of the correlation model using the Syn-

chrony treatment log file from 44 patients with 158 treatment fractions. The

analysis included four log files. The files are comprised of image data, the time

stamp of image acquisition, the center of mass (CoM) of the internal marker, and

the correlation model for each component of motion and external marker sepa-

rately. The correlation model error (e) was calculated for each X-ray image

acquisition. If the value of e is greater than 5 mm, the system operation is halted,

and a new model is generated by removing all existing data points and obtaining

new sets of X-ray images. The operator takes X-ray images until the entire

respiration cycle is included. Usually 6–8 images are needed for analysis.

The accuracy of the RTS calculated using the average and 95th percentile of 3D

residual motion over each fraction phantom experiment showed that Synchrony

performs real-time respiration motion tracking with an accuracy of 0.7 +/� 0.3 mm3

and suggested that irregular breathing, varying the phase relationship between internal

and external markers and rapid baseline shifts, might reduce the clinical accuracy of
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respiratory motion tracking (Hoogeman et al. 2009). In the RTS, as the imaging is

performed before each treatment, setup errors are virtually absent.

Research conducted by Seppenwoolde et al. showed eight lung cancer patients

treated with the RTS (Seppenwoolde et al. 2007). The study found that the

treatment errors due to breathing motion were reduced in all patients. The polyno-

mial model was better for the patients having time delay between internal and

external motion. Similarly, the residual treatment error was greater for fractions

with more tumor motion.

The DTT and RT systems are both real-time beam-positioning methods, i.e., the

treatment beam directly follows the tumor. Another method used for the same

purpose is dynamic multi-leaf collimator (DMLC) tracking (Keall et al. 2005;

Papiez et al. 2005; Rangaraj and Papiez 2005). In this system, once tumor motion

is detected, the motion signal is transferred to the computer, and the software

calculates the required leaf position to track the target based on the incoming signal

(Keall et al. 2006a). The DMLC leaf travel speed can safely reach 2.5 cm/s, which

is comparable with breathing-induced tumor motion speed (Giraud and Houle

2013).

Recently, positron emission tomography (PET) incorporated with linac has been

proposed as one of the dynamic tumor tracking approaches (Darwish et al. 2010;

Yamaya et al. 2011; Tashima et al. 2012). Tong Xu et al. implanted positron

emission marker (PeTrack) and detected in real time using positron-sensitive

detectors which is similar to PET (Xu et al. 2006). The computation time was

less than 20 ms with less than 10 mm initial estimation error. Yamaguchi et al.

studied m-IGRT by comparing the PET-based digitally reconstructed planar image

(PDRI) registration with radiographic registration (Yamaguchi et al. 2011) and

suggested that it is feasible for clinical use. Yang et al. proposed a center of mass

(CoM) tumor tracking algorithm using gated PET images combined with respira-

tory monitor (Yang et al. 2014). The algorithm determines the target position

information through the CoM of the segmented target volume on gated PET images

reconstructed from accumulated coincidence events, which is continuously updated

throughout a scan (Yang et al. 2014). The overall tracking error in phantom studies

was found to be less than 2 mm.

11.5 Tumor Tracking Without Implanted Fiducials

(Markerless Tracking)

11.5.1 Fluoroscopic Tracking

The fiducial implantation method involves the risk of pneumothorax as percutane-

ous marker implantation is involved and markers may also migrate (Jiang 2006).

Many clinicians are thus reluctant to use this method. In order to overcome such

effects, fluoroscopic tracking of the tumor without implanted fiducial markers has
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been developed (Berbeco et al. 2005a; Cui et al. 2008; Xu et al. 2007). Direct

fluoroscopic tumor tracking is possible in the case of lung tumors since the density

difference between the tumor mass and normal lung tissues may be large enough to

provide a good visualization in radiographic images (Giraud and Houle 2013). The

direct detection of a lung tumor in the kV X-ray image is possible if the tumor mass

is small, well defined, and has a high-contrast edge (Berbeco et al. 2005a). How-

ever, it is extremely difficult to track tumors in the abdomen using this tracking

procedure.

The markerless tracking technique can be divided into two groups: one is

classification algorithms and the other direct tracking algorithms. In classification

algorithms, a training data set is used to identify possible tumor locations in

subsequent images. In direct tracking algorithms, a set of features is extracted

and localized on each image frame (Rottmann et al. 2010).

Tong Lin et al. (2009) proposed a markerless method based on the correlation

between the tumor position and surrogate anatomic features in the image (Lin et al.

2009). The algorithm consists of four steps: (1) position of the surrogate features are

tracked using principal component analysis (PCA) of a region of interest (ROI)

(which implies that a surrogate ROI is not tracked directly); (2) obtaining paramet-

ric representation of the motion pattern from the surrogate ROI; (3) building a

regression model between the tumor position and the motion pattern; and

(4) predicting the tumor location using the established regression model. The

following regression methods were used: linear and two-degree polynomial regres-

sion, artificial neural network (ANN), and support vector machine (SVM). The

above algorithm was used to treat ten lung cancer patients showing a mean tracking

error of 2.1 pixels and a maximum error at a 95 % confidence level of 4.6 pixels

(pixel size is about 0.5 mm). However, the presented method lacks the ability to

adapt to change in the breathing pattern that cannot be described with the motion

observed during the training session (extrapolation) (Rottmann et al. 2010).

In direct tracking algorithms, a set of features is extracted and localized on each

image frame. Rottmann et al. described a direct tracking algorithm which can be

implemented in real time and is independent of prior information of the exact tumor

motion range during treatment (Rottmann et al. 2010). Arimura et al. proposed

markerless lung tumor tracking on cine EPID images, which uses cross correlation

to match a single tumor template defined in the center of the treatment aperture to

each portal images (Arimura et al. 2009). The average tracking error ranged from

0.58 mm to 2.53 mm, calculated by comparing with a manually defined gold

standard (Rottmann et al. 2010).

11.5.2 MRI-Guided Tumor Tracking

MRI has become attractive for tumor and organ motion monitoring because it is

noninvasive and nonionizing and provides excellent soft tissue contrast (Korin et al.

1992; Plathow et al. 2004; Doyle et al. 2000). Several research groups are
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integrating radiotherapy with MRI (Fallone et al. 2009; Raaymakers et al. 2009;

Dempsey et al. 2005). Similarly, various algorithms have been proposed for tumor

motion tracking using MRI images. Ries et al. demonstrated 3D tracking in 2DMRI

by continuous shifts of the 2D image plane to follow the through-plane target

motion, which was estimated by a perpendicular pencil beam navigator (Ries

et al. 2010).

In research carried out by Cervino et al., two prediction models were suggested

for tumor tracking (Cervino et al. 2011). They are (1) ANN model and (2) template

matching (TM) algorithm. The ANN model is based on biological neural networks.

For the model to focus on the target motion, an ROI around the target is used rather

than the whole image, which contains the target and its expected motion through the

sequence. The ROI is defined only once and is fixed for all the sequence. The TM

algorithm defines a template and determines the best location of the template in the

image by searching various locations within the search image. But in the TM

algorithm, two problems arise during tracking. One is related to the size of the

search window, and the other is the target moving out of plane. The first issue can be

solved by performing a multi-grid search and limiting the search window. The

second issue can be handled by using a diaphragm as a surrogate for the position of

the target when it moves outside the imaged 2D plane. The performance of the

ANN model was found to be good for regular breathing, but its performance

diminishes when breathing becomes irregular. The TM algorithm, on the other

hand, proved to be good in both regular and irregular breathing. For the TM

algorithm, an average prediction error of 0.6 mm at 95 % confidence level of

1.0 mm was achieved.

Similarly, Lau Brix et al. suggested three-dimensional liver motion tracking

using real-time 2D MRI (Brix et al. 2014). The proposed 3D tracking method has

three steps. First, a 3D volumetric scan of the structure to be tracked is recorded.

Second, the 3D volume is resliced for 2D series orientation, and a library of 2D

templates with well-defined 3D position relative to the tracked structure is defined.

Third, template-based 3D target localization is performed with real-time 2D MRI

series. The template and 2D position that yields the highest cross correlation

coefficient is selected.

11.6 Summary

There are several commercially available devices to track organ motion, especially

respiratory-induced tumor motion. These devices enable gated stereotactic body

radiotherapy. The tumor tracking approaches are summarized in Table 11.1 along

with each system’s benefits and limitations.

Although correlation between external surrogate maker and respiratory phase is

generally high, correlation between respiratory phase and tumor motion due to

phase shift, so that the tracking is based on a measured correspondence model

between internal tumor motion and external marker motion, is less well established.
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Internal fiducial marker tracking can accurately indicate tumor motion. However, it

requires invasive marker implantation.

Several additional tumor tracking approaches have been reported using molec-

ular imaging device such as positron emission tomography (PET). New tumor

tracking approaches are expected to be commercially available in the near future.

Users who attempt to irradiate moving tumors using a tumor tracking device must

understand the characteristics of the device and apply adequate margin for treat-

ment planning.

Table 11.1 Benefits and limitations of recent techniques for tumor tracking approach

Tracking

method Benefits Limitations

I. Internal surrogate

Implanted

gold

fiducials

Real time, high accuracy Invasive, additional dose on patient

from fluoroscope, possibility of migra-

tion of the implanted marker

Implanted

transponder

Real time, high accuracy, no addi-

tional radiation dose to patient

Invasive, clinically available only for

prostate cancer treatment

Combined

MV/kV

Real time, MV treatment beam used

for imaging, use of only one kV X-ray

imaging system

Intensity-based tracking, the fiducial

may be not possible to track in the

vicinity of high-density matter like

bone

II. External surrogate

Pressure

sensor belt

Noninvasive, real time, no additional

radiation dose to patient

Limited dimensionality, variable cor-

relation between tumor position and

external surrogate, accuracy less than

implanted fiducial tracking
Infrared

reflector

III. Internal and external surrogate

RTS Radiation beam dynamically tracks

the tumor, no loss of duty cycle

System has limited beam output and

beam size; treatment time can be

lengthy for large tumors

DTT Radiation beam dynamically tracks

the tumor, no loss of duty cycle

Dependence on 4D modeling and fidu-

cial insertion. If no appropriate 4D

model is acquired DTT, tracking can-

not be performed

IV. Markerless tracking

Direct fluo-

roscopic

tracking

Noninvasive, real time Additional dose to the patient from

fluoroscope, applicable only in the

region where there exists a density

difference between tumor mass and

normal tissue and with high-contrast

edge

MRI

tracking

Noninvasive, real time, large dimen-

sionality, excellent soft tissue contrast

MRI is confounded by distortion

resulting from nonuniformity in the

magnetic susceptibility artifacts,

patient motion
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Chapter 12

Visualization of Dose Distributions

for Photon Beam Radiation Therapy During

Treatment Delivery

Takahiro Nakamoto and Hidetaka Arimura

Abstract In radiation treatment planning, dose distributions within patients’ bod-
ies are designed so that high doses can be delivered to target volumes while

minimizing exposure to normal tissues. The dose distributions are delivered in

accordance with those designed in the treatment plans. However, certain discrep-

ancies inevitably exist between the designed and delivered dose distributions

because of systematic and random errors during the actual treatment. Therefore,

it is necessary to visualize dose distributions during treatment delivery in order to

ensure the quality of the radiation therapy by comparing the actual distributions

against the designed dose distributions. In this chapter, we describe the fundamental

principles involved in visualizing the dose distributions for photon beam radiation

therapy during treatment delivery.

Keywords Dose distributions during treatment delivery • Dose calculation

algorithm • Electronic portal imaging device (EPID) • Portal dose image (PDI)

12.1 Introduction

The principle of radiation therapy is to prescribe high doses to tumors while

reducing the doses to normal tissues (organs at risk (OAR)). Therefore, dose

distributions should be designed based on contours of tumor targets and OAR by

changing various parameters (e.g., number of beams, beam angles, voltages, shapes

of irradiation fields, multi-leaf collimator (MLC) motions, etc.) in a radiation

treatment plan. Several algorithms (Mackie et al. 1985; Boyer and Mok 1985;

Mohan et al. 1986; Ahnesj€o et al. 1987; Ahnesj€o 1989; Battista and Sharpe 1992;

Sharpe and Battista 1993; McNutt et al. 1996a, b; Liu et al. 1997; Verhaegen and

Seuntiens 2003; Chetty et al. 2007; Vassiliev et al. 2010; Kan et al. 2013) enable us
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to produce the dose distributions in computed tomography (CT) images. In

intensity-modulated radiation therapy (IMRT), the dose distributions are designed

so that high-dose regions can be fitted to targets by optimizing fluence maps (Lan

et al. 2012; Dias et al. 2016; Gao 2016). Although the doses are delivered during

treatment based on the treatment plan, there are differences between the designed

and delivered dose distributions owing to mechanical errors in the linear acceler-

ators (linacs), patients’ setup (positioning) errors, and physiological motions,

despite efforts that are made to minimize these errors during treatment (McNutt

et al. 1996a, b, 1997; Mizoguchi et al. 2013; Nakamoto et al. 2015). This results in

uncertainties in the delivered dose distributions, which might lead to dose deficien-

cies with respect to the targets and complications with respect to normal tissues.

Consequently, it is crucial to visualize the dose distributions during treatment

delivery in order to ensure the quality of the radiation therapy.

The authors present a methodology for visualizing the dose distributions for

photon beam radiation therapy during treatment delivery. The methodology con-

sists of the following steps:

• Model-based dose calculation algorithm for visualizing dose distributions

• Estimation of the delivered dose distributions based on electronic portal imaging

device images

• Prediction of the delivered three-dimensional dose distributions using portal

dose images

• Estimation of four-dimensional dose distributions during treatment delivery

In this chapter, the key technologies and theories are described.

12.2 Model-Based Dose Calculation Algorithm

for Visualizing Dose Distributions

12.2.1 Pencil Beam Convolution Method

The pencil beam convolution (PBC) method is a dose calculation algorithm that can

consider scattered doses by modeling all interactions of photons and electrons in

water (Mackie et al. 1985; Boyer and Mok 1985; Mohan et al. 1986; Ahnesj€o et al.
1987; Ahnesj€o 1989; Battista and Sharpe 1992; Sharpe and Battista 1993).

Figure 12.1 shows a conceptual illustration of dose calculation using a PBC

method. The absorbed dose at a position is deposited by incident primary and

scattered photons at that position and can be calculated using the following

equation:
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DðrÞ ¼
ððð

TðτÞ � Kðr� τÞdτ ¼ TðrÞ∗KðrÞ, ð12:1Þ

where r is the three-dimensional (3D) position vector, D is the dose, T is the total

energy released per unit mass (TERMA), and K is the dose deposition kernel

(DDK). τ is the position vector of an interaction point (described later). The dose

distributions are calculated by convolving the DDK with the TERMA for all

positions.

The TERMA is the total released radiant energy per unit mass that results from

interactions of the primary photons with the medium (Ahnesj€o et al. 1987; Ahnesj€o
1989). The TERMA at a position is calculated by using the following equation:

TðrÞ ¼
Z

ΦðE, rÞ � E � μ
ρ
ðE, rÞdE, ð12:2Þ

where E is the energy (often measured in mega-electron volts (MeV)), Φ is the

fluence (MeV�1∙m�2), and (μ/ρ) is the mass attenuation coefficient (m2∙kg�1). The

TERMA at any arbitrary position, r for the PBC method can be described by

Fig. 12.1 A conceptual illustration of a dose calculation using a pencil beam convolution (PBC)

method
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TðrÞ ¼ 1

k r k2
Z

ΦðE, 0Þ � E � exp
�
� μwðEÞ �WðrÞ

�
�
 
μ

ρ

!
w

ðE, rÞdE, ð12:3Þ

where 0 is the position vector of the linac source (origin), μw is the linear attenuation
coefficient of the water (m�1), W is the water-equivalent path length (WEPL) (m),

and (μ/ρ)w is the mass attenuation coefficient of the water (m2∙kg�1). 1/krk2 is a
correction term for beam divergence (Ahnesj€o 1989). Equation (12.3) is rewritten

by

TðrÞ¼kr0 k2
krk2

Z
ΦðE,r0Þ�E �exp

�
�μwðEÞ�Wðr�r0Þ

�
�
 
μ

ρ

!
w

ðE,rÞdE, ð12:4Þ

where

ΦðE, r0Þ ¼ 1

k r0 k2 � ΦðE, 0Þ � exp
�
� μwðEÞ �Wðr0Þ

�
, ð12:5Þ

r0 is the position vector of an intersection with respect to r and the body or phantom
surface (Mackie et al. 1985; Boyer and Mok 1985, 1986; Mohan et al. 1986;

Ahnesj€o et al. 1987; Ahnesj€o 1989; Battista and Sharpe 1992; Papanikolaou et al.

1993; Sharpe and Battista 1993). The WEPL at each position can be calculated by

using the following equation:

WðrÞ ¼
XS�1

i¼0

ρe, reðriÞ � dr, ð12:6Þ

where ρe,re(ri) is the relative electron density at the ith sampling position vector ri
and dr is the sampling interval on a ray (Seco and Evans 2006). The TERMA

distributions within the irradiation field are calculated from the WEPL distribu-

tions, the energy spectrum of the fluence, and the mass attenuation coefficients of

the water by using Eq. (12.6).

Figure 12.2 shows a diagram chart for calculating the TERMA distributions. The

planning CT images are converted into relative electron density maps between the

medium and the water using a conversion curve between Hounsfield unit (HU) and

the relative electron density between the medium and the water. The electron

density of a medium, ρe,med, can be calculated by

ρe,med ¼
NA � Zmed

Amed
� ρmed , ð12:7Þ

where NA is the Avogadro constant (mol�1), Zmed is the atomic number of a

medium, Amed is the atomic weight of the medium (kg∙mol�1), and ρmed is the

mass density of the medium (kg∙m�3) (Seco and Evans 2006; Yang et al. 2008).
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According to the PBC method, the relative electron density of the medium to the

water is required for calculating the WEPL distributions. In particular, the relative

electron density of the medium to the water, ρe,re, can be calculated by

ρe, re ¼
ρe,med
ρe,water

, ð12:8Þ

where ρe ,water is the electron density of the water (Seco and Evans 2006; Yang et al.
2008). Figure 12.3 shows an example of the conversion curve between HU and the

relative electron density. It is worth noting that the conversion curve should be

produced and calibrated using an electron density phantom in each institution

because the HU depends on X-ray spectra produced by CT scanners. The WEPLs

for all positions within the irradiation field are calculated based on an electron

density scaling method (Seco and Evans 2006).

Fig. 12.2 A diagram chart for calculating total energy released per unit mass (TERMA)

distributions
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The X-ray spectra depend on the linacs and accelerating voltages. Since it could

be very difficult to measure the high-energy X-ray spectra, the spectra should be

estimated by using Monte Carlo simulations so that the estimated percent depth

dose (PDD) curves can be similar to the measured PDD curves. Mohan et al. (1985)

calculated the energy spectra of the fluence for each voltage in the range of

4–24 MV using Monte Carlo simulations. Sheikh-Bagheri and Rogers (2002) also

modeled the energy spectra of the fluence for each voltage in the range of 4–25 MV

for a variety of manufacturers (Varian, Elekta, and Siemens) using Monte Carlo

simulations. Figure 12.4 shows the relative fluence spectra of the X-rays estimated

by using Monte Carlo simulations for 4, 6, and 10 MV in a linac manufactured by

Varian derived from the original data of Sheikh-Bagheri and Rogers (2002).

According to the PBC method, the DDK is required in order to calculate

the energy deposited by scattered photons. The DDK describes the spatial distribu-

tion of total released energy from the interaction point in the water (Mackie et al.

1985, 1988; Boyer and Mok 1985; Mohan et al. 1986; Ahnesj€o et al. 1987; Ahnesj€o
1989; Battista and Sharpe 1992; Sharpe and Battista 1993). Ahnesj€o (1989)

modeled the DDK using Monte Carlo simulations based on the following equation:

Fig. 12.3 An example of a conversion curve between Hounsfield unit (HU) and the relative

electron density between the medium and the water
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K r� τð Þ ¼ Aθe
�aθ l þ Bθe

�bθl

l2
, ð12:9Þ

where the following equation holds:

l ¼ r� τk k, ð12:10Þ

where τ is the position vector of the interaction point, θ is the scattering angle

between τ and r� τ (Fig. 12.5), Aθ and aθ are parameters of the energy deposited by

primary photons, and Bθ and bθ are parameters of the energy deposited by scattered

photons (Ahnesj€o 1989).

These parameters for 4–24 MV were provided in Ahnesj€o’s (1989) paper. We

produced the DDKs as image data based on Ahnesj€o’s (1989) paper. Figure 12.6

shows DDKs for 4, 6, and 10 MV based on Ahnesj€o’s (1989) model. The lateral

scattering decreases as the voltages of the linac increase. In addition, the forward

scattering increases, and the shape of the DDKs becomes narrow for high voltages.

Fig. 12.4 Relative fluence spectra of X-rays estimated by using Monte Carlo simulations for 4, 6,

and 10 MV in a linac manufactured by Varian derived from the original data of Sheikh-Bagheri

and Rogers (2002)
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Fig. 12.5 The geometry used for calculating the dose deposition kernel (DDK)

Fig. 12.6 Dose deposition kernels (DDKs) for 4, 6, and 10 MV based on an Ahnesj€o’s model
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12.2.2 Convolution/Superposition Method

According to the PBC method, the heterogeneity of tissues in the directions of

primary photons can be calculated using the WEPLs for all points based on the

electron density scaling method. However, the heterogeneity of tissues in the other

directions can be ignored because of the fact that the homogeneity DDKs in the

water, as expressed by Eqs. (12.9) and (12.10), are convolved in Eq. (12.1).

Therefore, according to the convolution/superposition method, the DDK is modeled

by considering the heterogeneity based on the electron density scaling method

(Sharpe and Battista 1993; McNutt et al. 1996a, b; Liu et al. 1997). Figure 12.7

shows an illustration of the dose calculation differences between the PBC and

convolution/superposition methods. The basic concept used in calculating the

dose distributions for the convolution/superposition method is equal to that of the

PBC method, except the modeling of the DDK. More specifically, the DDK used in

the convolution/superposition method can be expressed by

Fig. 12.7 An illustration of the dose calculation differences between the pencil beam convolution

(PBC) method and the convolution/superposition method
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K0 r� τð Þ ¼ Aθe
�aθ lw þ Bθe

�bθ lw

l2w
, ð12:11Þ

where

lw ¼ W r� τð Þ: ð12:12Þ

In order to model the DDK in the convolution/superposition method, the WEPL

between the interaction point and the deposition point is required (instead of the

physical distance); that is because the heterogeneity (i.e., variation in the relative

electron density) must be considered. Although the dose distributions calculated by

considering the heterogeneity in all directions are more accurate (as compared to

the PBC method), it should be noted that the dose calculation is time-consuming

because of the fact that the DDK must be modeled for each point.

12.3 Estimation of Delivered Dose Distributions Based

on Electronic Portal Imaging Device Images

Electronic portal imaging device (EPID) images are taken before the actual dose

delivery in order to verify whether the patients are appropriately positioned on a

treatment couch in the radiation therapy based on the treatment plan. More specif-

ically, these images are compared with digitally reconstructed radiograph (DRR)

images that are derived from planning CT images. Since the EPID detector can also

acquire dynamic portal images acquired using therapeutic beams during treatment

delivery, tumor motions can be monitored on the EPID during the treatment

delivery.

Certain studies have estimated 2D dose distributions on the EPID detector plane

based on the portal images (Heijmen et al. 1995; Pasma et al. 1998; de Boer et al.

2000; Greer and Popescu 2003; Chen et al. 2006; Mizoguchi et al. 2013). Chen et al.

(2006) proposed two main clinical applications for estimating the 2D dose distri-

butions on the EPID detector planes, which were verification of the delivered

energy fluence in IMRT, and monitoring the exit-beam dose distribution from the

patient during the treatment time. In this section, an effective method for estimating

the delivered 2D dose distributions using the EPID images based on previous

studies (and in particular the approach of Chen et al. (2006)) is introduced.

The basic approach of the method is to convert the EPID images into images that

represent the 2D dose distributions in a water-equivalent phantom at the same level

of the EPID detector planes (hereafter referred to as the portal dose images (PDIs)).

Figure 12.8 shows a conceptual diagram for calculating PDIs based on the method

of Chen et al. The EPID images include signals of laterally scattered photons in the

EPID. Therefore, an EPID signal can be formulated by
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iEðrÞ ¼
ZZ

pEðr
0 Þ � kEðr� r

0 Þdr0 ¼ pEðrÞ∗kEðrÞ, ð12:13Þ

where iE is the EPID signal, pE is the incident primary X-ray signal, kE is the lateral
scatter kernel (LSK) of the EPID, r is the position vector in the spatial domain,

and r0 is a shift vector in the spatial domain. The incident primary X-ray signals are

extracted by deconvolving the EPID signals from the LSK of the EPID. The

deconvolution can be performed in the spatial frequency domain, as follows:

PE uð Þ ¼ IE uð Þ
KE uð Þ , ð12:14Þ

where IE, PE, and KE are the Fourier transforms of iE, pE, and kE, respectively, and
u is the position vector in the spatial frequency domain. The incident primary X-ray

signals are converted to incident primary doses in the water using a pixel-to-dose

conversion function, as expressed by the following equation:

Fig. 12.8 A conceptual diagram for calculating portal dose images (PDIs) based on the method of

Chen et al. (2006)
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pW rð Þ ¼ CF pE rð Þð Þ, ð12:15Þ

where pW is the incident primary dose in the water-equivalent phantom and CF is

the conversion function. After converting the incident primary X-ray signal to the

incident primary dose in the water-equivalent phantom, the PDI is calculated by

convolving the incident primary dose in the water-equivalent phantom with the

LSK of the water by using the following equation:

iWðrÞ ¼
ZZ

pWðr
0 Þ � kWðr� r

0 Þdr0 ¼ pWðrÞ∗kWðrÞ, ð12:16Þ

where iW is the PDI and kW is the LSK of the water-equivalent phantom. Conse-

quently, the following equation holds:

IWðuÞ ¼ PWðuÞ � kWðuÞ, ð12:17Þ

where IW, PW, and KW are the Fourier transforms of iE, pE, and kE, respectively.
The LSK is a model that represents the spread of the laterally scattered X-rays

caused by interaction with incident primary X-rays (Heijmen et al. 1995, Steciw

et al. 2005, Chen et al. 2006, van Elmpt et al. 2006, Mizoguchi et al. 2013). The

LSK is a point spread function (PSF) for describing the blurring effect caused by the

scattered X-rays. The LSKs of the EPID and water-equivalent phantom were

experimentally determined in the approach of Chen et al. (2006). The LSKs were

obtained using Monte Carlo simulations (Mizoguchi et al. 2013). The LSKs of the

EPID and water-equivalent phantom obtained by Monte Carlo simulations at 6 and

10 MV are shown in Fig. 12.9.

The pixel-to-dose conversion function was measured experimentally (Chen et al.

2006). We also measured the pixel-to-dose conversion function at 6 MV based on

the method of Chen et al. (2006) (Mizoguchi et al. 2013). Figure 12.10 shows an

experimental geometry for measuring the pixel-to-dose conversion function at our

institution.

The field size was 5�5 cm2 at an isocenter plane, and an ion chamber was

located in the water-equivalent phantom at the same level of the EPID detector

plane. The EPID signal and dose were measured at the level of the detector plane

with off-axis distances at the detector plane of 0, 7.2, and 14.4 cm while changing

the thickness of the water-equivalent phantom on the treatment couch. Then, the

pixel-to-dose conversion function was produced by approximating measured values

using a first-order polynomial. Figure 12.11 shows the pixel-to-dose conversion

function at 6 MV at our institution.
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Fig. 12.9 Lateral scatter kernels (LSKs) of an electronic portal imaging device (EPID) and water-

equivalent phantom obtained by Monte Carlo simulations at 6 and 10 MV

Fig. 12.10 Experimental geometry for measuring the pixel-to-dose conversion function at our

institution
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12.4 Prediction of the Delivered Three-Dimensional Dose

Distributions Using the Portal Dose Images

The delivered 3D dose distributions within patients’ bodies should be verified

during treatment time. That is because there exist discrepancies between the

designed and delivered dose distributions due to uncertainties associated with

several factors (machine, delineation, organ motion, patient setup errors, etc.)

(McNutt et al. 1996a, b, 1997). Therefore, various methods for reconstructing the

delivered 3D dose distributions within phantoms and patients’ bodies based on

PDIs have been proposed (McNutt et al. 1996a, b, 1997, Hansen et al. 1996;

Partridge et al. 2002; Louwe et al. 2003; Renner et al. 2003, Steciw et al. 2005;

Wendling et al. 2006; van Elmpt et al. 2006). The basic idea in predicting delivered

3D dose distributions during treatment is that the primary energy fluences in

patients’ bodies should be determined iteratively in such a way that 2D dose

distributions calculated on the imaging detector planes (i.e., computed PDIs) are

rendered equal to the 2D dose distributions on the EPID detector planes during

treatment (i.e., measured PDIs) estimated using the method described in Sect. 12.3.

The 3D dose distributions delivered during treatment time are calculated using the

determined primary energy fluences. McNutt et al. (1996a, b , 1997) proposed an
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Fig. 12.11 Pixel-to-dose conversion function at 6 MV at our institution. Pink dots indicate

experimentally measured points with off-axis distances of 0, 7.2, and 14.4 cm. Blue dots indicate
approximated points using a first-order polynomial
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approach for predicting the 3D dose distribution delivered during treatment time,

which was called “back projection.” In this section, the back-projected procedure

for predicting the 3D dose distributions during treatment delivery is reviewed based

on McNutt et al. (1996b).

Algorithm 12.1 A pseudo-code of a back-projected iterative algorithm for

predicting the 3D dose distributions during treatment delivery proposed by McNutt

et al. (1996b)

Algorithm 12.1 shows a pseudo-code of the back-projected iterative algorithm

for predicting the 3D dose distributions during treatment delivery proposed by

McNutt et al. (1996b). The primary goal for predicting the 3D dose distributions

delivered during treatment time is to determine the primary energy fluences in 3D

dose calculation volumes by back-projecting the primary energy fluences at the

detector planes to the calculation volumes, which renders the computed PDIs equal

to the measured PDIs. An initial primary energy fluence at the detector plane should

be determined in order to perform the iterative procedure, and the initial primary

energy fluence is equal to the measured PDI. At this stage, the primary energy

fluence at the detector plane is back-projected through the dose calculation volume

by considering the radiological distance (e.g., the WEPL, as described in Sect. 12.2)

between a point at the detector plane and one in the dose calculation volume. The
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computed PDI is produced by extracting the calculated dose distribution on the

detector plane derived from the primary energy fluence. If the computed PDI is

converged to the measured PDI, the back-projected primary energy fluence is then

used for calculating the 3D dose distribution in the volume, and the calculated 3D

dose distribution is regarded as the delivered 3D dose distribution during treatment

delivery. Otherwise, the primary energy fluence at the detector plane is updated by

Ψ nþ1ðrÞ ¼ DmðrÞ
Dn

c ðrÞ
� Ψ nðrÞ ð12:18Þ

where r is the position vector in the detector plane, Ψ is the primary energy fluence,

Dm is the measured PDI, Dc is the computed PDI, and n is the iteration number.

After updating the primary energy fluence, the procedure returns to the back-

projection step.

12.5 Estimation of Four-Dimensional Dose Distributions

During Treatment Delivery

12.5.1 Background

Discrepancies between the treatment plan and the actual delivery should ideally be

removed in order to administer exact dose distributions. However, discrepancies can

occur as a result of the patients’ setup (positioning) errors and internal errors caused by
the patients’ physiological motions during treatment delivery. If the dose distributions

are delivered without considering these discrepancies, this can lead to a low tumor

control probability and a high normal tissue complication probability. Therefore, the

discrepancies should be monitored during treatment delivery in order to check

whether or not they fall certain within tolerances. In clinical situations (especially

stereotactic body radiation therapy (SBRT) for lung cancer), the patients’ motions

within irradiation fields aremonitored by acquiring the EPID dynamic images in order

to verify location errors during treatment delivery. By contrast, the errors between the

designed and delivered doses are not investigated because the tolerances of the

location errors are considered those of the dose errors in the clinical situations.

However, there might be no correspondence between the location and dose errors.

In such cases, there would be uncertainties in the dose distributions during treatment

delivery. Consequently, it is essential to estimate the 4D dose distributions during

treatment delivery in order to ensure the quality of the radiation therapy.

In response to these considerations, the authors have developed an automated

framework for estimating the 4D dose distributions during treatment delivery based

on the EPID dynamic images (Nakamoto et al. 2015). In this section, we introduce

the basic framework for estimating the 4D dose distributions during treatment

delivery.
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12.5.2 Overall Scheme of the Framework

Figure 12.12 shows a schematic illustration of the procedure for estimating the 4D

dose distributions during treatment delivery based on the EPID dynamic images.

The 4D dose distributions during treatment delivery were estimated by applying the

PBC method to simulated 4D-CT images during treatment delivery (hereafter

referred to as “treatment” 4D-CT images). The “treatment” 4D-CT images were

simulated by transforming the planning CT images using a nonrigid registration

technique so that the planning PDIs (described as computed PDIs in Sect. 12.4)

could be similar to the dynamic clinical PDIs (described as measured PDIs in Sect.

12.4) for all frames. The parameters of the nonrigid registration for transforming the

planning CT images were optimized in each frame. The planning PDIs were

calculated by applying the PBC method to the planning CT images and a virtual

water phantom (described in Sect. 12.4). The dynamic clinical PDIs were also

estimated from the EPID dynamic images by applying the method to all frames

(described in Sect. 12.3).

Fig. 12.12 A schematic illustration of the procedure for estimating four-dimensional (4D) dose

distributions during treatment delivery based on electronic portal imaging device (EPID) dynamic

images
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12.5.3 Calculation of the “Treatment” 4D-CT Images

Figure 12.13 shows a flow chart for calculating the “treatment” 4D-CT images at

each frame. The basic idea is that the planning CT images should be transformed so

that the planning PDIs are rendered similar to the dynamic clinical PDIs for all

frames of the EPID dynamic images. In this manner, the “treatment” 4D-CT images

are constructed from the aggregate data of the transformed planning CT images for

all frames.

The planning CT images were transformed by using an affine transformation

(Burger and Burge 2009). The parameters of the affine transformation matrix

(transformation parameters) were described as a nine-dimensional vector, which

represented a rotation, translation, and scaling in a CT coordinate system, as

expressed by the following vector:

s ¼ ½θx,θy,θz, τx, τy, τz,μx,μy,μz�T, ð12:19Þ

where θ, τ, and μ are the rotation, translation, and scaling parameters, respectively.

(x, y, z) are the CT coordinates, and T indicates transpose. The affine transformation

matrix, A, was produced by using the following equation:

A ¼ RSþ T, ð12:20Þ

where the following equations hold:

Fig. 12.13 A flow chart for calculating “treatment” 4D-CT images at each frame
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R ¼
CθyCθz CθxSθz þ SθxSθyCθz SθxSθz � CθxSθyCθz 0

�CθySθz CθxCθz � SθxSθySθz SθxCθz þ CθxSθySθz 0

Sθy SθxCθy CθxCθy 0

0 0 0 1

2
664

3
775,
ð12:21Þ

S ¼
μx 0 0 0

0 μy 0 0

0 0 μz 0

0 0 0 1

2
664

3
775, ð12:22Þ

and

T ¼
0 0 0 τx
0 0 0 τy
0 0 0 τz
0 0 0 0

2
664

3
775: ð12:23Þ

R, S, and T are the rotation, scaling, and translation matrices, respectively. S and

C in the rotation matrix indicate sine and cosine, respectively. The planning PDI

was calculated from the transformed planning CT image. After calculating the

planning PDI, the similarity between the planning PDI and dynamic clinical PDI

at each frame was calculated, which constituted the main criterion of the procedure.

A gamma pass rate (3 mm/3 %), which will be described in Sect. 12.5.5, was

adopted as a similarity index. If the gamma pass rate reached a threshold value

(described in Sect. 12.5.4), then the transformation parameters were regarded as an

optimal solution and the transformed planning CT image was regarded as the

“treatment” 4D-CT image at each frame. Otherwise, the transformation parameters

were optimized using a Levenberg-Marquardt (LM) algorithm until meeting the

criterion. The “treatment” 4D-CT images can be produced by applying the proce-

dure to all frames.

12.5.4 Optimization of the Transformation Parameters Using
the Levenberg-Marquardt Algorithm

The LM algorithm is a gradient-based method for solving nonlinear least squares

problems (Levenberg 1944; Marquardt 1963; Press et al. 1986; Nielsen 1999). The

LM algorithm can solve such problems more efficiently and accurately than other

gradient-based methods by changing the damping factor (Press et al. 1986; Nielsen

1999).

In this study, the problem is to minimize the objective function expressed by the

following equation:
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Js ¼ 1

2

X
i, j

fΦðsÞi, j � I ci, jg2, ð12:24Þ

where (i, j) are the pixel coordinates, Φ (s) is the planning PDI calculated from the

transformed planning CT images using s, and Ic is the dynamic clinical PDI at each

frame; this function should be minimized while meeting the gamma pass rate

criterion. The transformation parameters, s, were optimized by solving the above

problem. Figure 12.14 shows the overall procedure for optimizing the transforma-

tion parameters using the LM algorithm. In this study, the transformation parameter

vector as an initial searching point for optimization, sini, was defined as

sini ¼ ½0,0, 0, 0, 0, 0, 1, 1, 1�T: ð12:25Þ

The affine transformation matrix derived from sini was the identity matrix. The

transformation parameter vector, s0, was updated by

s
0 ¼ sþ Δs, ð12:26Þ

Fig. 12.14 The overall procedure for optimizing the transformation parameters using a

Levenberg-Marquardt algorithm
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where Δs is the increment vector of the transformation parameters, which was

calculated according to the following equation:

Δs ¼ ðHs þ cD½Hs�Þ�1 � ð�∇sJÞ, ð12:27Þ

where Hs is the Hessian matrix, D[Hs] is the diagonal matrix of the Hessian matrix,

∇sJ is the gradient of the objective function, and c is the damping factor. Adjusting

the damping factors results in altering the value of the increment Δs in each

iteration. The initial damping factor was 10�4 in this study. ∇sJ and Hs were

calculated by

∇sJ ¼
X
i, j

fΦðsÞi, j � I ci, jg � f∇sfΦðsÞi, j � I ci, jgg

¼
X
i, j

fΦðsÞi, j � I ci, jg � f∇sΦðsÞi, jg, ð12:28Þ

and

Hs ¼
X
i, j

∂2ΦðsÞi, j
∂θ2x

� � � ∂2ΦðsÞi, j
∂θx∂μz

⋮ ⋱ ⋮
∂2ΦðsÞi, j
∂μz∂θx

� � � ∂2ΦðsÞi, j
∂μ2z

0
BBBBB@

1
CCCCCA

�
X
i, j

f∇sΦðsÞi, jg � f∇sΦðsÞi, jgT, ð12:29Þ

respectively, where ∇sΦ(s) is the gradient vector of the planning PDI:

∇sΦðsÞ ¼ ∂ΦðsÞ
∂θx

,
∂ΦðsÞ
∂θy

,
∂ΦðsÞ
∂θz

,
∂ΦðsÞ
∂τx

,
∂ΦðsÞ
∂τy

,
∂ΦðsÞ
∂τz

,
∂ΦðsÞ
∂μx

,
∂ΦðsÞ
∂μy

,
∂ΦðsÞ
∂μz

" #T
:

ð12:30Þ

All elements of the gradient vector were the partial derivatives of the planning

PDI with respect to each of the parameters; and these were approximated by a finite-

difference method (Xu and Wan 2008). After calculating the new transformation

parameters, a gamma pass rate, ps0, was calculated in order to investigate whether or
not ps0 met the criterion; the threshold value of the gamma pass rate was 98 % in the

study. If the gamma pass rate did not exceed 98 %, the transformation parameters

were updated by comparing Js with Js0. If Js0 was smaller than Js, then s and c were
updated to s0 and c/10, respectively, and the procedure returned to the step of

calculating ∇sJ and Hs. This schema was referred to as “coarse searching”.
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Otherwise, c was updated to 10c and the procedure returned to the step of calcu-

lating Δs. This schema was referred to as “fine searching”. Although the procedure

was iterated until meeting the criterion, if the gamma pass rate did not wholly

exceed 98 %, the procedure was forced to stop based on the number of iterations. In

such cases, the transformation parameters with the maximum gamma pass rate in

the iterations were regarded as the optimal transformation parameter vector, sopt.

12.5.5 Gamma Analysis

Gamma analysis is a method for evaluating the similarity between two dose

distributions (Low et al. 1998; Low and Dempsey 2003). Gamma analysis is a

combination of the dose difference (DD) and distance-to-agreement (DTA)

methods, and it is widely used for verifying dose distributions in IMRT. Fig-

ure 12.15 shows a conceptual illustration of verifying the similarity of two dose

distributions using gamma analysis. The ellipsoid which states the acceptable

criteria of the DD and DTA is determined for all reference points on a reference

dose distribution. The boundary of the ellipsoid can be described by the following

equation:

Fig. 12.15 A conceptual illustration for verifying the similarity of two dose distributions using

gamma analysis
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðrr, rÞ
Δd2M

þ δ2ðrr, rÞ
ΔD2

M

s
¼ 1, ð12:31Þ

where

r rr; rð Þ ¼ r� rrk k, ð12:32Þ

is the spatial distance between the reference point on the reference dose distribu-

tion, rr, and the arbitrary point on the dose distribution, r. Furthermore, the dose

difference between rr and r is expressed by

δ rr; rð Þ ¼ D rð Þ � Dr rrð Þ: ð12:33Þ

ΔdM and ΔDM are the criteria of the DTA and DD, respectively. The 3 mm/3 %

quantity that appears in Sect. 12.5.3 indicates thatΔdM andΔDM are 3 mm and 3 %,

respectively. After setting the ellipsoid in the reference point, the Γ (rr, rc) values

are calculated at each compared point using the following equation:

Γðrr, rcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðrr, rcÞ
Δd2M

þ δ2ðrr, rcÞ
ΔD2

M

s
, ð12:34Þ

where rc is the compared point on the compared dose distribution. The gamma

value at the reference point, γ(rr), is defined by the following equation:

γðrrÞ ¼ minfΓðrr, rcÞg8frcg: ð12:35Þ

Therefore, the gamma value at the reference point is a minimum Γ(rr, rc) for all
compared points. The conditions of agreement and disagreement of the dose

similarity at the reference point are shown below:

γ rrð Þ � 1; agreement, γ rrð Þ > 1; disagreement, ð12:36Þ

based on the ellipsoid expressed in Eq. (12.31). Consequently, the agreement

(disagreement) of the dose at the reference point indicates that a compared

point on the compared dose distribution that minimizes Γ(rr, rc) exists in the

boundary and interior (exterior) region of the ellipsoid. The gamma pass rate is

calculated by investigating the agreement for all reference points, and that is

defined as follows:

Gamma passrateð%Þ ¼ Number of agreement points

Number of all reference points
� 100: ð12:37Þ
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12.5.6 Estimation of the Four-Dimensional Dose
Distributions During Treatment Delivery

The 4D dose distributions during treatment delivery were estimated by applying the

convolution method to the “treatment” 4D-CT images for all frames. Figure 12.16

shows the 4D dose distribution on an isocenter plane of the transversal section at

treatment times of 2, 4, 6, 8, and 10 s during SBRT at a gantry angle of 150�.
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Chapter 13

Visualization of Dose Distributions

for Proton

Teiji Nishio and Aya Nishio-Miyatake

Abstract Proton therapy is one of the highly accurate radiation therapies in which

the irradiation can be concentrated on a tumor using a scanned or modulated Bragg

peak. Therefore, it is very important to evaluate whether prescription dose is

delivered to a tumor in order to provide radiation therapy with high dose concen-

tration for patients precisely and safely. Research on imaging of an actual irradiated

region in proton therapy has been conducted, which utilizes positron-emitting

nuclei generated by target nuclear fragment reactions involving incident protons

and nuclei which a human body is composed of in the irradiated region. The proton-

irradiated region can be confirmed by detection of pair annihilation gamma rays

from the generated positron-emitting nuclei using a positron emission tomography

(PET) imaging technique. In the proton treatment room, a beam ON-LINE PET

system (BOLP) was constructed for dose-volume delivery-guided proton therapy

by visualization of activity distribution in proton irradiation. The daily measured

activity images acquired by the BOLPs showed the proton-irradiated region in each

patient. Also, it was found that the biological washout effect of positron-emitting

nuclei generated in tumor was associated with the proton delivery dose to the tumor.

Keywords Proton therapy • Target nuclear fragmentation reaction • Positron-

emitting nuclei • PET imaging technique
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13.1 Introduction

Proton therapy is one of the highly accurate radiation therapies. When proton beam

consisting of protons is irradiated to a thick target, it deposits great energy at the

point just before it stops by energy stopping power. This creates a high-dose region

called Bragg peak. A spread-out Bragg peak is focused on a tumor in proton

therapy, which performs radiation therapy with higher dose concentration. Fig-

ure 13.1 shows characteristics of dose distributions in the depth direction in proton

therapy and common X-ray therapy. In addition, proton therapy has biological

effect on a human body, which is different from photon beam or electron beam.

Recently, the number of facilities of proton therapy has been increasing remarkably

(PTCOG Data 2016). As an example for a facility of proton therapy, Fig. 13.2

shows National Cancer Center Hospital East Japan (Nishio 1999).

Proton therapy can provide high dose concentration on a target tumor. Without

precise irradiation following a treatment plan, a lower rate of treatment control and

a higher risk of serious damage than conventional radiotherapy may be caused by

proton irradiation to a target region including organs at risk (OAR), as shown in

Fig. 13.3.

Although various advances have been made in irradiation technologies to deliver

prescription dose to a tumor more accurately for proton and other radiation thera-

pies, it has been impossible to know whether proton irradiation is performed to a
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Fig. 13.1 Characteristic of dose distributions in the depth direction in proton therapy and common

X-ray therapy
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target tumor following a treatment plan during a patient being irradiated. It is

essential to confirm whether prescription dose is delivered to a tumor in order to

provide radiation therapy with high dose concentration for patients precisely and

safely.

Research on imaging of an actual irradiated region in proton therapy has been

conducted, which utilizes positron-emitting nuclei generated by target nuclear

fragment reactions between incident protons and nuclei in a human body in the

irradiated region.

Fig. 13.2 Proton therapy system in National Cancer Center Hospital East Japan

good irradiation

tumor

OAR
body

proton

bad irradiation

tumor

OAR
body

proton

Fig. 13.3 Conceptual diagram expressing differences in dose concentrations depending on

accuracy of proton beam irradiation
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13.2 Principle of Imaging a Region Irradiated by Proton

Beam Using Target Nuclear Fragment Reaction

Proton beam with around 220-MeV kinetic energy is used in proton therapy. There

are four nuclear reactions around this energy: elastic and inelastic scattering

reactions, Coulomb dissociation reaction, and target nuclear fragment reaction. A

reactant nucleus is fragmented into several pieces in Coulomb dissociation reaction

and nuclear fragment reaction. Coulomb dissociation reaction occurs when a huge

Coulomb force is generated from a reactant nucleus with a large atomic number and

another nucleus is at close range. A patient’s body is mainly composed of hydrogen

nuclei, carbon nuclei, nitrogen nuclei, oxygen nuclei, and calcium nuclei (see

Table 13.1) (ICRU Report 46 1992). Therefore, there is a slight possibility of

Coulomb dissociation reaction in proton therapy.

Target nuclear fragment reaction is defined as nuclear fragmentation in a limited

region where a nucleus collides with another one (Goldhaber 1974). The reaction

occurs by incident protons and target nuclei in a patient’s body, which is like

incident protons ripping nucleons from target nuclei. Many different nuclei which

are lighter than target nuclei are generated by the reaction, and its yield is strongly

related to energy of incident protons. The generated nuclei include positron-

emitting nuclei which are proton-rich nuclei. Positron-emitting nuclei generated

by proton irradiation release positrons, and pairs of annihilation gamma rays with

511 keV are emitted when a positron and an electron collide. We can derive the

position where a positron-emitting nucleus was generated and its intensity from

simultaneous detecting pairs of gamma rays. Figure 13.4 shows a conceptual

diagram illustrating target nuclear fragment reaction between an incident proton

and a target nucleus and a method for deriving the position of the generated

positron-emitting nucleus. Positron emission tomography (PET) is a type of nuclear

medicine imaging using this principle and method. Five elements, hydrogen nuclei,

carbon nuclei, nitrogen nuclei, oxygen nuclei, and calcium nuclei, are regarded as

the main human body’s composition, and target nuclear fragment reactions

occurred by four of five elements except hydrogen nuclei in an energy range used

in proton therapy. Table 13.2 shows target nuclear fragment reactions X(p,A)Y,

which we should take into consideration, for imaging of a region irradiated by

proton beam and positron-emitting nuclei generated by the reactions. Figure 13.5

shows the partial reaction cross sections of generating positron-emitting nuclei by

nuclear fragment reactions about carbon nuclei and oxygen nuclei (NNDC 2016).

Data on reaction cross sections of target nuclear fragment reactions for proton beam

energy is shown in Fig. 13.5. It is insufficient in an energy range of proton therapy

as far as we know from the newest data on the reaction cross sections reported in

nuclear physics field which was released by National Nuclear Data Center (NNDC).

A recoil shift of nuclei generated by target nuclear fragment reactions can be

negligible according to the law of conservation and momentum (law of conserva-

tion of four-momentum) in the special theory of relativity, amounts of kinetic

energy of incident protons. Imaging an actual proton-irradiated region from
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information of detected positions and intensity of positron-emitting nuclei gener-

ated in a patient’s body enables us to verify whether accurate proton irradiation is

performed to a target tumor.

Recently, a number of researchers have been studying imaging of a region

irradiated by proton beam using target nuclear fragment reactions using PET in

order to provide highly accurate proton therapy which takes advantage of high dose

concentration. The papers by Bennett et al. indicated the possibility of imaging the

region irradiated by high-energy proton beam to matter (Bennett et al. 1975, 1978).

Other studies including measurement and simulation of artificial phantoms and real

animals for clinical use with images of irradiated regions (Litzenberg et al. 1992,

1999; Miyatake et al. 2011; Miyatake and Nishio 2013; Nishio et al. 2005, 2006;

Oelfke et al. 1996; Paans and Schippers 1993; Parodi and Enghardt 2000; Parodi

et al. 2002; Parodi et al. 2005; Parodi et al. 2007a, b, Parodi et al. 2007c; Vynckier

et al. 1993) and approaches to measured PET images (Hishikawa et al. 2002;

Miyatake et al. 2010; Nishio et al. 2001, 2008, 2010) have also reported. Especially,

each research team has worked on more actively since commercial PET systems

began to spread widely in 2000.

13.3 Beam OFF-LINE and ON-LINE PET Systems

Target nuclear fragment reactions between incident protons and nuclei generate

many different positron-emitting nuclei in a region irradiated by proton beam in

a patient’s body. A positron-emitting nucleus generated in a patient’s body decays

(β+ decay) and emits a positron according to the half-life of the nucleus. Thus,

A
ZXN ! A

Z�1XNþ1 þ eþ þ νþ, ð13:1Þ

Table 13.1 Examples of composition of human organs

Body tissue

Element composition [%]

Mass density [kg/m3]H C N O Ca Others

Liver (adult) 10.2 13.9 3.0 71.6 0.0 1.3 1060

Adipose tissue (adult) 11.2 51.7 1.3 35.5 0.0 0.3 970

Soft tissue (adult) 10.5 25.6 2.7 60.2 0.0 1.0 1030

Lung (adult) 10.3 10.5 3.1 74.9 0.0 1.2 260

Muscle (adult) 10.2 14.3 3.4 71.0 0.0 1.1 1050

Skeleton sacrum (male) 7.4 30.2 3.7 43.8 9.8 5.1 1290

Skeleton cranium (adult) 5.0 21.2 4.0 43.5 17.6 8.7 1610

Skeleton femur (adult) 7.0 34.5 2.8 36.8 12.9 6.0 1330

Skeleton ribs (adult) 6.4 26.3 3.9 43.6 13.1 6.7 1410

ICRU Report 46 (1992)
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where A
ZXN is the parent isotope, AZ�1XNþ1 is the daughter isotope, e

+ is a positron,

and ν+ is a neutrino. Energy of β+ decay is expressed by

MX A; Zð Þc2 �MY A; Z � 1ð Þc2 ¼ Q ¼ Eβþ þ me�c
2 þ meþc

2, ð13:2Þ

where MX(A,Z )c
2 is the rest mass energy of the parent nucleus, MY(A,Z� 1)c2 is

the rest mass energy of the daughter nucleus, me�c
2 is the rest mass energy of an

Incident proton Target nucleus

Target nuclear fragment reaction

Positron emitter nucleus

+decay

e+

Annihilation 
gamma raysCoincidence

e- e+16 O(p,A)15 O,14 O,...,13N,..11C,..
12 C(p,A)11C,10 C,...
40 Ca(p,A) ...

Detector

Detector

Fig. 13.4 Conceptual diagram expressing target nuclear fragment reaction between an incident

proton and a target nucleus and a method for deriving the position of the generated positron-

emitting nucleus

Table 13.2 Target nuclear

fragment reactions X(p,A)Y

which we should take into

consideration for imaging of a

region irradiated by proton

beam and positron-emitting

nuclei generated by the

reactions

Reaction channel

Half-life [min]X Y
12C 11C 20.39

1 �C 0.321
16O 15O 2.037

14O 1.177
13N 9.965
11C 20.39
1 �C 0.321

14N 13N 9.965
11C 20.39
1 �C 0.321

40Ca 38K 7.636
30P 2.498
15O 2.037
13N 9.965
11C 20.39
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electron,meþc
2 is the rest mass energy of a positron, andEβþ is the kinetic energy of

a positron. Besides, to lead to β+ decay, the Q value is given by

Q � me�c
2 þ meþc

2 ¼ 0:511þ 0:511 ¼ 1:022 MeV½ �: ð13:3Þ

The Q value must be 1.022 MeV or more for β+ decay occurring.

Positrons emitted by β+ decay lose their energy continuously through interac-

tions with orbital electrons of atoms in a human body. When a positron and an

orbital electron collide near the end of the positron track to annihilate, they can
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Fig. 13.5 Experimental and calculated partial reaction cross sections of generating positron-

emitting nuclei by target nuclear fragment reactions about carbon nuclei and oxygen nuclei

(Nishio et al. 2005)
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produce two gamma rays whose energy is equal to the total of their rest mass energy

(1.022 MeV). The energy of the two particles is equivalently divided into the two

gamma rays according to the law of conservation of energy and momentum. Each

of the gamma rays with 511 keV is released in opposite direction. To be precise, we

cannot say that each annihilation gamma ray has an exact energy of 511 keV or that

the two annihilation gamma rays travel at exact 180 degrees to each other because

the rays obtain energy which the positron has as kinetic energy when annihilation

occurs.

A procedure for imaging a region is irradiated by proton beam: (1) target matter

or a patient receives proton irradiation in a treatment room, (2) they move to a room

where a commercial PET system or PET-CT system has been installed, and (3) PET

images of each target are taken. In this procedure, proton treatment system and PET

system or PET-CT system have been installed in separate rooms. The proton

treatment system following this procedure is called beam OFF-LINE PET system.

The most critical issue in this system is that PET images cannot be taken right on

the spot after the proton irradiation. The most essential positron-emitting nuclei

with large yields for imaging the region irradiated by proton beam are 15O nuclei

(half-life, 2 min) generated by a reaction of 16O(p,pn)15O in a human body. We

cannot get enough information of 15O nuclei for the imaging because it takes

several minutes to start taking PET images after the irradiation in this system.

The patient needs to move to the PET room after the proton irradiation, and thus, the

patient’s conditions in proton irradiation and a PET scan are different. Therefore,

the precision of imaging the region deteriorates. The patient has to spend extra time

which is a burden to the patient, until finishing the PET scan after proton irradiation.

However, this system has the advantages of an easy operation, enough preparation

of image-reconstruction algorithms, and functions such as a fusion function

between PET images and other medical images (e.g., CT images) or a function of

analyzing PET or PET-CT images because commercial PET or PET-CT systems

are used.

A system with a PET scanner installed on the beam line in a proton irradiation

room is called beam ON-LINE PET system. Installing new PET developed with

higher spatial resolution and positional accuracy on the beam line enables us to

confirm which region proton beam is delivered in real time during a target tumor in

a patient’s body being irradiated. Precision of proton irradiation can be observed

and kept ensured highly during a treatment period which has the possibility of

changing patient’s condition such as a reduction in tumor size. Finding out about

some changes immediately and coping with them lead to providing patients with

high-precision proton therapy. This system also enables us to verify the precision of

calculating dose distribution in a patient’s body using a proton treatment planning

system, which leads to proposing a more optimal treatment plan and judging the

most optimal condition of proton beam for the patient.

Beam ON-LINE PET system has some difficulties to obtain a large detection

field and to reconstruct three-dimensional images due to a geometrical arrangement

of proton beam and PET apparatus. It is necessary to construct a system with a

device which can take images in a proton irradiation room such as CBCT (cone-
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beam CT) in order to improve the accuracy of fusion of PET and CT images.

However, there is a great advantage of beam ON-LINE system; PET images are

immediately taken, keeping the patient condition after proton irradiation. There-

fore, it is possible to detect activity of positron-emitting nuclei with faster half-lives

including 15O nuclei which is the most essential nuclei for imaging the irradiated

region. Furthermore, patients do not need to have extra time for moving to another

room to take PET images. This advantage overwhelms above difficulties, and beam

ON-LINE PET system would be very useful. Figure 13.6 shows an explanatory

diagram of beam OFF-LINE PET system and beam ON-LINE system.

Fig. 13.6 Explanatory diagram of beam OFF-LINE PET system and beam ON-LINE system
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13.4 Studies on Imaging of the Irradiated Region Using

Beam OFF-LINE PET System

Imaging of a region irradiated by proton beam using beam OFF-LINE PET system

is defined as a procedure: target matter or patients are irradiated by proton beam and

move to a room where a commercial PET system or PET-CT system has been

installed; after that PET scans of target matter or patients are performed.

Let us show some experiments using a commercial PET system. Targets of

polyethylene (CH2) and water were irradiated by proton beam, and their activities

were measured using the PET system. Mono-energy proton beams with about

30 mm FWHM at 138, 179, and 223 MeV were used in this experiment. The targets

were irradiated for 10 s with around 10 GyE measured at a point of targets’ surface
where proton beam arrives. It took about 2 min to start measurement of activity in

the targets in the PET scan room after the irradiation. PET scan took 2 min for each

irradiation. The width of PET scanning was 144.5 mm in the depth direction per one

scan, and an overlap between each scan was 8.5-mm width. The two-dimensional

OSEM (ordered-subsets expectation maximization) method (Boellaard et al. 2001)

was used to reconstruct PET images from the measured activity data. The spatial

resolution of this PET is 4.2–5.8 mm. Figure 13.7 shows the image of measured

activity distribution of the positron-emitting nuclei generated in CH2 target using

the PET when the target was irradiated by mono-energy proton beam at 179 MeV.

Target nuclear fragment reactions do not occur between protons from proton

beam and other protons from CH2 target. The positron-emitting nuclei generated in

CH2 target can be narrowed down to only 11C nuclei generated by 12C(p,A)11C,

considering extra time from the end of proton irradiation to the beginning of

measurement using PET and results of calculations for yields of various positron-

emitting nuclei by target nuclear fragment reactions. Figure 13.8 shows measured

activity distributions and measured dose distributions in CH2 target in the depth

direction and in the lateral direction irradiated by mono-energy proton beams at

138, 179, and 223. The range of PET scan and the number of PET scans were

changed by the energy of proton beam (see Fig. 13.8 top). Raw data of measured

activity was corrected by using half-life of 11C nuclei (20.4 min) as attenuation

correction, taking into consideration activity attenuation during PET measurement

time. In Fig. 13.8, the intensity of activity in the depth direction which depends on a

dose quantity corresponding with stopping power and flux increases gradually up to

beam range with an increase of dose and then decreases sharply. In the lateral

direction, shapes of activity distributions are similar to shapes of dose distributions.

Since a plane at a same depth position in a homogeneous target has almost uniform

energy of proton beam, shapes of both distributions depend on flux of proton at the

depth position. When a target is irradiated by a proton beam of 2.5 GyE which is

generally used in clinical proton therapy, the intensity of activity in the target is

estimated at about 3 kB/cc.

The flux of incident protons to a target decreases with nuclear reactions between

protons and nuclei in the target as proton beam travels through the target in the
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depth direction. The nuclear reaction rate is determined by the total reaction cross

section which depends on relative kinetic energy of protons and nuclei in the target.

Figure 13.9 shows the experimental results of the total reaction cross section of

protons and carbon nuclei. Semi-empirical formulas expressing experimental

results approximately for the total reaction cross section have been reported by

Sihver et al. (1993) and are as follows. When a target nuclear (mass number, At, and

atomic number, Zt) is irradiated by proton beam with kinetic energy Epin the

laboratory system, the total reaction cross section on the condition of Ep� 200MeV

is given by

σreac Ep;At; Zt

� � ¼ σ0 Atð Þ ¼ πr02 1þ At
1=3 � b0 1þ At

�1=3
� �� �2

,

b0 ¼ 2:247� 0:915 1þ At
�1=3

� �
,

ð13:4Þ

where r0¼ 1.36 fm. On the condition of Ep� 200 MeV and 6� Zt� 8, it is given by

σreac Ep;At; Zt

� � ¼ 0:14exp 0:0985Ep

� �
f reac Ep;At; Zt

� �
σ0 Atð Þ: ð13:5Þ

On the condition of 20 MeV�Ep� 150 MeV and 6� Zt� 8, Ep� 150 MeV and

Zt< 6 or Zt> 8, it is given by

σreac Ep;At; Zt

� � ¼ f reac Ep;At; Zt

� �
σ0 Atð Þ: ð13:6Þ

On the condition of 150 MeV�Ep< 200 MeV, it is given by

Fig. 13.7 Images of the measured two-dimensional activity distribution in CH2 target in the depth

direction (left) and the lateral direction (right) (Nishio et al. 2005)
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σreac Ep;At;Zt

� � ¼ f reac Ep;At; Zt

� �
greac Ep;At; Zt

� �þ hreac Ep;At; Zt

� �� �
σ0 Atð Þ:

ð13:7Þ

These functions f, g, and h depend on kinetic energy of proton beam, and each target

nucleus is as follows:

f reac Ep;At; Zt

� � ¼ 1:15þ λ1exp �Ep=λ2
� �� �

� 1� 0:62exp �Ep=200
� �

sin 10:9Ep
�0:28

� �� �
,

greac Ep;At; Zt

� � ¼ 4:00� 0:02Ep,

hreac Ep;At; Zt

� � ¼ 0:02Ep � 3:00,

ð13:8Þ

λ1 ¼ 1:4 Zt � 8ð Þ
0 otherwiseð Þ

�
, λ2 ¼

38 Zt ¼ 4ð Þ
25 Zt ¼ 5ð Þ

10 6 � Zt � 8ð Þ
1 otherwiseð Þ

8>><
>>: : ð13:9Þ

Figure 13.9 shows the total reaction cross section of protons and carbon nuclei

calculated using Eqs. 13.4, 13.5, 13.6, 13.7, 13.8, and 13.9. The results from

calculation seem to be able to draw the results from experiments.

From the total reaction cross section calculated using above equations, the

behavior of flux of incident proton beam to CH2 and water targets in the depth

direction is expressed by

R
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Proton Energy in Lab.sys. [MeV]

 Experimental Data
 Calculation Results

Fig. 13.9 Total reaction cross section of protons and carbon nuclei with kinetic energy of proton

beam (Nishio et al. 2005)
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F z;At; Zt; nð Þ ¼ Fin z ¼ 0ð Þq zð Þ
Y

exp �σreac z;At; Ztð ÞnΔð Þ, ð13:10Þ

where Fin is the flux of incident proton beam to the target, z is the charge of incident
particle, n is the number of target nuclei per unit density, and Δ is the thickness of

the target. Ep can be replaced with z by using the Bethe-Bloch formula of stopping

power:

� dEp

dz
� � 4πe4

mec2β
2
nZt ln

2mec
2β2

I

� �
� ln 1� β2

� �� β2
� 	

, ð13:11Þ

where I is the mean excitation potential, c is the speed of light, β¼ υ/c, e is the

electron charge, and me is the electron mass. q is the factor expressing the effect of

range straggling and given by

q zð Þ ¼ 1ffiffiffiffiffi
2π

p
σRst

Z1
z

exp � x� Rð Þ2
2σRst2

 !
dx,

σRst Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1569ρt

Zt

At
R

1� β2=2
� �
1� β2

s
1
ρt
dE
dz

� ��1

z!R

� �
mean

,

ð13:12Þ

where ρt is the density of target material.

Figure 13.10 shows the results of calculations using Eq. 13.4 to Eq. 13.12, and

the results were normalized to incident flux to the targets, respectively. Data on flux

of proton beam in CH2 and water targets measured from experiments with NIRS-

HIMAC/P131 are also shown in Fig. 13.10. The measured values in both targets are

a bit lower than the calculated values from the entrance surface of targets to around

the range of proton beam, and the measured ones are higher than the calculated ones

around the beam range.

The total reaction cross section between incident protons and nuclei in targets

includes the partial reaction cross section which shows how large reactions as target

nuclei being fragmented by protons are. The partial reaction cross section is one of

the most essential parameters to determine the yields of positron-emitting nuclei in

target matter or a patient’s body after proton irradiation.

Semi-empirical formulas expressing experimental results approximately for the

partial reaction cross section have been reported by Sihver et al. (1993). The partial

reaction cross section for reactions of 12C(p,A)11C and 16O(p,A)11C,13N,14O,15O is

given by
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Fig. 13.10 Flux of proton beam in CH2 and water targets in the depth direction. The marks and

lines express the measured and calculated values, respectively (Nishio et al. 2005)
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σX!Y Ep

� �
¼ σRexp

�2:6Ep
�0:5 At � Apr

� �� 10:2Ep
�0:26

� Zpr � SApr þ 5� 10�4Apr
2

� �2
 !

Ωη,

σR ¼
232:5 At

2=3 � 1
� �

1� 0:3ln At=20ð Þ½ �Ep
�0:63

1� exp �2:6AtEp
�0:5

� � ,

S¼ 0:502� 0:26 At

Zt
� 2

� �1:4
,

ð13:13Þ

where Apr and Zpr are mass number and atomic number of nuclei generated by each

reaction and Ω and η are coefficients depending on the generated nuclei and have

constant values (see Table 13.3). Figure 13.5 shows the partial reaction cross

sections of 12C(p,A)11C and 16O(p,A)11C, 13N, 14O, 15O calculated using values

in Figs. 13.9 and 13.10 and Eq. 13.13. There are large differences in the partial

reaction cross sections between experimental results and calculation ones under

250-MeV proton beam. Incidentally, the range of proton beam is generally from

about 100 MeV to 250 MeV in clinical proton therapy. To reproduce experimental

values more accurately, a simple equation was derived by Nishio et al. (2005):

σX!Y Ep

� � ¼ a

1þ exp
b�Ep

c

� � 1� d 1� eexp �Ep � f

g

� �� �h
( )

, ð13:14Þ

where the coefficients of parameters are shown in Table 13.4, which depends on

nuclei generated by reactions. The results of the partial reaction cross sections were

calculated using Eqs. 13.13 and 13.14 with the calculation program of scatstp.

Since a cyclotron operates continuous wave (CW), the intensity of proton beam

provided by a cyclotron is regarded as constant during irradiation to a target, and

yields of positron-emitting nuclei are constant during the irradiation. When the

half-life of positron-emitting nucleus is T1/2 and the time of beam irradiation ti, the
total number of generated positron-emitting nuclei within ti is given by

NR ti;F; σX!Yð Þ ¼ F z;At; Zt; nð Þ 1� exp �σX!Y Ep

� �
nΔ

� �� �
: ð13:15Þ

Considering a decrease in the number of positron-emitting nuclei by their half-lives,

the number of residual positron-emitting nuclei in the target right after irradiation

Nact is given by

Nact ti; T1=2;F; σX!Y

� � ¼ NR ti;F; σX!Yð Þ 1þ 2�ti=T1=2 � T1=2

tiln2
1� 2�ti=T1=2

� � �
:

ð13:16Þ

When the time from the end of proton irradiation to the beginning of measure-

ment using PET is ts, the time from the end of proton irradiation to the end of

measurement using PET te, the detection efficiency for a single 511-keV gamma ray
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ε, and the solid angle of the total detectors Ωsa, the number of activity counts

detected using PET NPET is given

NPET ti; T1=2; ts; te;F; σX!Y

� � ¼ Nact ti; T1=2;F; σX!Y

� �
2�ts=T1=2 1� 2� te�tsð Þ=T1=2

h i
ε2
Ωsa

4π
:

ð13:17Þ

Figure 13.11 shows activity distributions of CH2 and water targets in the depth

direction which include both results of measurement using PET and calculation

using Eqs. 13.14 and 13.17 with mono-energy proton beam at 179 MeV. It also

shows changes in the distributions with time after proton irradiation. All the activity

distributions shown in Fig. 13.11 were normalized at a depth of 16 mm WEL from

the beam entrance of the targets in the activity of 3 min after proton irradiation. The

activity distributions of CH2 target in the case of right after irradiation (only

calculated distribution) 3 and 23 min after irradiation are shown and the activity

distributions of water target in the case of right after irradiation (only calculated

distribution), 3, 5, 7, and 9 min after irradiation. Since the activity of 3 or more

minutes after irradiation was almost composed by only 11C nuclei in CH2 target, the

activity of 23 minutes after irradiation was half of that of 3 min after irradiation with

both distributions having similar shapes. On the other hand, since the activity of

water target was composed of four kinds of nuclei, 11C, 13N, 14O, and 15O, the

shapes of activity distributions changed with time. There were some differences in

shapes between the measured activity distributions and the calculated ones. These

differences would be mainly caused by accuracies of experiments and calculations

for the partial reaction cross section which is a major factor in calculating distri-

butions and by accuracy of calculation of flux in the targets. The shapes of

measured distributions in distal regions might depend on both accuracy of the

PET and the algorithm of image reconstruction. The activity range is defined as

the 50 % depth point of distal falloff in the activity distribution which is normalized

Table 13.3 Coefficients of Ω and η depending on the generated nuclei in Eq. 13.13 (Nishio et al.

2005)

Product 11C 13N 14O 15O

Ω 1.00 0.40 1.00 1.20

η 1.15 0.90 1.15 1.15

Table 13.4 Coefficients of parameters depending on the generated nuclei in Eq. 13.14

Reaction Channel Parameter

X Y a b c d e f g h
12C 11C 96.0 21.4 0.9 0.5 1.2 39.0 34.5 2.0
16O 15O 71.0 26.0 2.8 0.6 1.1 41.0 36.0 6.0
16O 13N 66.0 10.4 0.4 0.9 0.8 11.6 6.8 1.0
16O 11C 18.8 43.6 3.6 0.5 1.0 49.0 35.0 4.0

Nishio et al. (2005)
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Fig. 13.11 Calculated and measured activity distributions of CH2 target at 3 and 23 min after
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monoenergy proton beam of 179 MeV (Nishio et al. 2005)
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at peak. The ranges of the CH2 and water targets were shorter than the physical

ranges by about 4 mm and about 2 mm, respectively, because of the threshold

energies of the target nuclear fragment reaction. Differences in FWHM of the

measured dose and activity distributions in the CH2 and water targets in the lateral

direction were in an accuracy within 1 mm.

13.5 Studies on Imaging of the Irradiated Region Using

Beam ON-LINE PET System

The great advantage of proton therapy is high dose concentration on the target

tumor, so that it is highly significant to grasp changes in tumor accurately during a

period of proton treatment. If there are some changes in a patient’s condition such

as a reduction in target tumor’s size during a comparatively long period of proton

treatment, and we don’t notice these changes, the patient would be provided the

dose distribution which is greatly different from the planned one.

Figure 13.12 shows the dose distributions with a field irradiation in the anterior-

posterior direction for the paranasal sinuses tumor; the calculated distribution at the

beginning of the treatment is shown in the left side and the calculated distribution in

the case of a partial reduction in tumor size in the right side. The planed proton

beam is highly concentrated on the tumor without any irradiation to the brain stem

as an adjacent organ at risk; however, the tumor is irradiated with lower beam

concentration, and the amount of dose on the brain stem increases sharply when the

tumor shrinks during the treatment period.

Installing new PET with higher spatial resolution and positional accuracy on the

beam line enables us to confirm which region proton beam is delivered in real time

during a target tumor in a patient’s body being irradiated. The prototype of beam

ON-LINE PET system (PT-BOLPs) equipped with a planar-type detector heads

with high positional accuracy was built and mounted with its field of view covering

the isocenter in the treatment room (see Fig. 13.13). The PT-BOLPs system as well

as a commercial PET system can localize positron-emitting nuclei and detect their

activity by measuring pairs of annihilation gamma rays coincidently from positron-

emitting nuclei generated in a patient’s body. The system of detector heads in the

PT-BOLPs was a planar positron imaging system (Hamamatsu Photonics K. K.,

Hamamatsu, Japan) (Uchida et al. 2004) with BGO scintillators. Each detector head

consisted of 24 units per photomultiplier tube, and each unit arranged 10 � 10

arrays of BGO crystals whose individual size was 2 mm � 2 mm � 20 mm. The

field of view (FOV) which means the useful field size for the detection area was

120.8 mm � 186.8 mm. In the PT-BOLPs system, the detector heads were placed

where the center of the detection area matched the isocenter in the treatment room.

The distance between the upper and the lower detector heads was 500 mm. This

system with high positional accuracy (1.6–2.1 mm FWHM) is able to measure data

without dead time if its collection rate of coincident detection of pairs of 511-keV
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gamma rays is up to a few thousand counts per second (kcps). PET images are taken

without deterioration in image resolution under the collection rates of 20 kcps

(Uchida et al. 2004).

When the time from the end of proton irradiation to the beginning of measure-

ment using the PT-BOLPs is ts, the time from the end of proton irradiation to the

end of measurement using the PT-BOLPs te, the detection efficiency for a single

511-keV gamma ray ε, and the solid angle of the total detectors Ωsa, the number of

activity counts measured using the PT-BOLPs is given by

NBOLPs ti; T1=2; ts; te;F; σX!Y

� �
¼ Nact ti; T1=2;F; σX!Y

� �
2�ts=T1=2 1� 2� te�tsð Þ=T1=2

� �
ε2
Ωsa

4π

¼ F ti;Ep

� �
1� exp �σX!Y At; Zt;Ep

� �
nΔ

� �� �
1þ 2�ti=T1=2 � T1=2

tiln2
1� 2�ti=T1=2

� � �

� 2�ts=T1=2 1� 2� te�tsð Þ=T1=2
� �

ε2
Ωsa

4π
:

ð13:18Þ

The total detection efficiency of the PT-BOLPs with a distance between the

detector heads of 500 mm Ceff is as follows:

Ceff ¼ ε2
Ωsa

4 	 π � 0:862 � 0:06 � 0:04 %=100½ �: ð13:19Þ

Let us show an experiment using the PT-BOLPs for an animal. Measurement

using the PT-BOLPs for a frozen rabbit with about 60 cm long was performed

during proton irradiation. Before the measurement, the same procedure for a patient

was followed: CT imaging, treatment planning, and proton irradiation. A virtual

cylindrical-shaped tumor which had a step around the center and a volume of 8.4 ml

Fig. 13.12 Proton dose distributions with one field irradiation in the anterior-posterior direction

for the paranasal sinuses tumor calculated using the proton treatment planning system, (a) at the

beginning of the treatment, and (b) in the case of a partial reduction in tumor size
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was set in the liver of the rabbit on CT images. The virtual tumor was regarded as a

target for proton irradiation, and all of the gross tumor volumes (GTV), the clinical

target volumes (CTV), and the planning target volumes (PTV) were set to be equal.

The proton irradiation of a 4.0-Gy dose to the reference point in PTV with one field

irradiation in the posterior-anterior direction (gantry angle, 90� degree) was

planned and performed. The maximum range of the irradiated proton beam was

82.4 mmWEL from the surface of the rabbit to the deeper rim of PTV in the beam

traveling direction, and the energy was 103 MeV at the point. The size of the

irradiation field was 29 mm � 54 mm using the spread-out Bragg peak (SOBP) of

30 mm, and the maximum thickness of PTV was 21 mmWEL in the beam traveling

direction. The patient compensator and collimator were prepared following the

rabbit’s irradiation plan. Figure 13.14 shows the two-dimensional and three-

dimensional dose distributions calculated using the proton treatment planning

system in the axial, sagittal, and coronal planes for the plan. Figure 13.15 shows

the condition of the proton irradiation to the rabbit and the measurement using the

PT-BOLPs. Both the center of the detection area of the PT-BOLPs and the

reference point of the virtual tumor in the rabbit matched the isocenter. The

measurement for the rabbit using the PT-BOLPs was performed for 33 min

(beam on, 1 min; beam off, 32 minutes) from the start of the proton irradiation.

Fig. 13.13 Setup of the

PT-BOLPs in the treatment

room
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Fig. 13.14 Dose distributions calculated using the proton treatment planning system for the

rabbit. Two-dimensional distributions in the axial (a), sagittal (b), and coronal (c) planes and

three-dimensional distribution (d) are shown (Nishio et al. 2006)

Fig. 13.15 Condition of the

proton irradiation to the

rabbit and the measurement

using the PT-BOLPs

(Nishio et al. 2006)
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Figure 13.16 shows the calculated dose distributions to the rabbit and the

measured PET images using the PT-BOLPs, and the activities are measured for

1 min, 2 min, 4 min, 10 min, and 30 min after the proton irradiation. The activity

distributions measured using the PT-BOLPs were related to the dose distributions

calculated using the proton treatment planning system in their shapes. The mea-

sured PET images were clearer with the detection time increasing. Figure 13.17

shows the detection counts per second of the activity in the rabbit after the

irradiation. According to the results of the detection counts (see Fig. 13.17), more

than 95 % of total detection of the activity was detected by 10-min measurement

after the proton irradiation using the PT-BOLPs. PET images measured for over

10 min would not be much clearer than PET images for 10 min. The data measured

using the PT-BOLPs included a large amount of background data such as lots of

secondary X-rays, gamma rays, and neutrons generated by proton beam

bombarding the device for making the appropriate irradiation fields during the

proton irradiation.

Considering that a human body is mainly composed of hydrogen nuclei 1H,

carbon nuclei 12C, nitrogen nuclei 14N, and oxygen nuclei 16O, it is predicted that

positron-emitting nuclei generated by target nuclear fragment reaction in the proton

irradiation to a human body are mainly occupied by 15O nuclei (half-life, T1/2(
15

O)¼ 122.2 s), and other nuclei are included: 14O (half-life, T1/2(
14O)¼ 70.6 s), 13N

(half-life, T1/2(
13N)¼ 9.971min), and 11C (half-life, T1/2(

11C)¼ 20.4min). 38K

(half-life, T1/2(
38K)¼ 7.6min) are also generated from calcium nuclei 40Ca which

are one of the main elements of a human bone. However, by dividing the elements

of the positron-emitting nuclei generated in a human body into two groups of short

half-lives and long ones, the detection rate was approximated by

CR tð Þ ¼
X

i¼15O, 14O, 13N, 11C, ::: CR tð Þ½ �i
¼

X
j¼15O, 14O, ::: CR tð Þ½ �j

þ
X

k¼13N , 11C, :::

CR tð Þ½ �k

! 1977:9� 1

2

� � t
110:5

þ 219:7� 1

2

� � t
847:6

,

ð13:20Þ

where t is the measurement time after the beam stop.

Usefulness of the BOLPs in clinical proton therapy was greatly supported by

constructing the PT-BOLPs and the results of studies on it. The next BOLPs: a PET

system with high positional accuracy was set in the rotating gantry directly and was

developed as a beam ON-LINE PET system mounted on rotating gantry port

(BOLPs-RGp) (see Fig. 13.18). A planar-type positron imaging system (Hamama-

tsu Photonics K. K., Hamamatsu, Japan) with a high positional accuracy (about

2 mm FWHM) and detector heads with BGO scintillators was used for the BOLPs-

RGp, which was developed to make the dead region between the detector heads

more narrow than the previous system. Each detector head consisted of 36 units per

a photomultiplier tube by making each unit gap narrow from the previous 11.0 mm
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Fig. 13.16 Calculated dose distribution (a) and measured PET images using the PT-BOLPs for

1 min (b), 2 min (c), 4 min (d), 10 min (e), and 30 min (f) after the proton irradiation to the rabbit

(Nishio et al. 2006)
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to 3.3 mm, and each unit arranged 10� 10 arrays of BGO crystals whose individual

size was 2 mm � 2 mm � 20 mm, and the total number of BGO crystals was 7200

(see Fig. 13.19). The FOV widened to 164.8 mm � 167.0 mm from

120.8 mm � 186.8 mm, which is almost enough size to use the BOLPs-RGp for

every case in proton therapy. The detector heads were set across from each other on

the rotating gantry, and the center of detection area of the BOLPs-RGp was

matched to the isocenter in the treatment room. The both opposing detectors rotate

together if the gantry rotates, and the FOV is always along the axis of the proton

beam direction and observes in beam range direction. The distance between the

detector heads can vary from 30 cm to 100 cm continuously. The BOLPs-RGp is

able to measure data without dead time if its collection rate for the coincident

detection of pairs of 511-keV gamma rays is up to about 4 kcps/cm2. The basic

accuracy of measurements of activity distributions using the BOLPs-RGp was

proved by studies on the PT-BOLPs. Activity distributions measured using the

BOLPs-RGp were reconstructed by a back projection method with FOV including

the axes of the beam direction and the vertical beam direction. The positional

accuracy of activity with the gantry rotating is about 1 mm (1 sigma) by an

experiment using 22Na point source. A device to observe and analyze activity

distributions measured using the BOLPs-RGp was also developed. The measured

images are observed as planar images including the axes of the beam direction and

the rotating angle of the gantry system using the device (see Fig. 13.20).

Let us show some clinical cases using the BOLPs-RGp for patients. Measure-

ments for each treatment site of the head and neck, prostate, liver, lungs, and brain

were performed using the BOLPs-RGp after proton irradiation. Activity of pairs of

Fig. 13.17 Detection counts per second of the activity using the PT-BOLPs in the rabbit after the

irradiation (Nishio et al. 2006)
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annihilation gamma rays was measured using the BOLPs-RGp, and the measure-

ments began when each proton irradiation started, and they ended when 200 s

elapsed from the end of each irradiation. Distances between the detector heads were

set as close as possible to each of the patients. Activity data measured using the

BOLPs-RGp during proton irradiation was almost background data including

X-rays, gamma rays, and neutrons as the measurement data using the PT-BOLPs

showed that previously. Therefore, the measured activity distributions were

reconstructed without the data measured during irradiation. Two coefficients were

considered in the reconstruction process using a back projection method. One is the

attenuation coefficient, and the other is the collection coefficient of detection

activity intensity. The former coefficient of 511-keV gamma rays in each patient’s
body was calculated using each patient’s data on water equivalent length from each

patient’s CT image which was scanned for planning each treatment. The latter

coefficient which depended on the point on the planar detectors was obtained from

an experiment. Figure 13.21 shows examples of the calculated dose distributions

and activity distributions measured using the BOLPs-RGp of each of the target sites

for proton treatments. All the distributions shown in Fig. 13.21 are normalized at

the isocenter in the treatment room. The mean detection rates of the activity

measured using the BOLPs-RGp for 200 s after the irradiation were 1.58 kcps

(head and neck), 1.39 kcps (liver), 0.53 kcps (lungs), 1.08 kcps (prostate), and 1.85

kcps (brain). In all the cases of liver and lungs, respiratory-gated proton beam

therapy was performed, and the length of proton irradiation time was longer.

Therefore, the measured mean detection rates for these treatment sites were lower

than those for other sites by a decrease in activity intensity during proton irradia-

tion. It can be said that all proton irradiation in this study seemed to be performed

Fig. 13.18 Setup of the

BOLPs-RGp in the proton

treatment room
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following the planed treatments by comparing calculated dose distributions with

measured activity distributions visually.

Proton therapy utilizes Bragg peak which is one of the characteristics of proton

dose distribution in the depth direction. That is, when proton beam stops before

organs at risk (OAR) under our control, high dose irradiation is delivered to a target

tumor located before the OAR in the beam direction. If there are some changes such

as a reduction in target tumor size during a period of proton treatment, an unplanned

region would be given the high dose irradiation which was supposed to give to the

target. Observing changes in shapes of activity distributions which are obtained at

daily proton treatment using the BOLPs enables us to verify whether daily proton

irradiation is performed precisely. In a period of proton treatment, activity

Fig. 13.19 Design for the detector head developed for the BOLPs-RGp
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distribution measured at the first treatment day is used as a reference image, and

differences between the reference and daily measured activity distributions are

observed (see Fig. 13.22). Comparing shapes of these distributions makes it possi-

ble to confirm the irradiated regions in a tumor and OAR around the tumor every

day and to guarantee the irradiation accuracy during a period of treatment. In the

case of the head and neck especially paranasal sinus tumor, it is important to

Fig. 13.20 Example screen on the device developed for observing and analyzing activity distri-

butions measured using the BOLPs-RGp

Fig. 13.21 Examples of the calculated dose distributions (color lines) and the activity distribu-

tions (color wash) measured using the BOLPs-RGp for each of the target sites. Red and blue
express high and low activity in color wash, respectively
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Fig. 13.22 Conceptual diagram of the use of the BOLPs-RGp in clinical proton therapy (Nishio

et al. 2010)
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perform proton irradiation with high accuracy because OAR such as the brain stem

and optic nerves are adjacent to the tumor. In the case of paranasal sinus tumor, a

treatment region including matter with different densities such as bone, air, and

tumor causes deterioration in accuracy of dose calculation. Therefore, deterioration

in dose concentration on the tumor or irradiation to OAR resulting from changes in

tumor condition would lead to lowering the rate of treatment control and increasing

the risk of serious damage.

Figure 13.23 shows the calculated dose distributions, the daily activity distribu-

tions measured using the BOLPs-RGp, and the daily projection profiles of the

measured activity in the depth direction in the case of a patient with paranasal

sinus tumor. Total prescription dose of 65-GyE was planned. Some changes in the

measured activity distributions due to a reduction in tumor size were observed

during the treatment days. Daily activity ranges which were obtained from daily

measured activity distributions were longer by around 15 mm than the reference

activity range which was obtained at the first treatment day, namely, the activity

ranges seemed to be extended toward the brain stem. Another CT scan was

performed and a new treatment plan was recalculated after prescribing 35-GyE

(2.5 GyE � 14 fx. ¼ 35GyE) dose in this treatment case. We found out that the

reduction in the tumor volume from 184 to 125 cc, the change in the maximum

beam range by about 20 mmWEL, and the unplanned irradiation to the brain stem.

The same procedure was conducted in other three cases of 46 cases of paranasal

sinus tumor. Observing changes in measured activity distributions revealed

unplanned irradiation to the brain stem caused by reductions in tumor volume

and replanned new treatment plans. It indicates that proper proton treatments

could be provided to the patients using the BOLP-RGp in clinical proton therapy.

The calculated dose distribution and the activity distribution which was mea-

sured for 200 s after the proton irradiation with 3.8-GyE prescription dose at the first

treatment day in the case of the patient with liver tumor are shown in the upper

Fig. 13.24. In this figure, the high activity region which was related to a necrotic

region resulting from a pathological examination before starting proton treatment

was observed in the tumor. Two regions of interest (ROI) are set; ROI area A is the

necrotic region in the tumor, and ROI area B is the tumor region covering the

necrotic region in the liver. The results of the number of detection counts per 20 s of

activity in area A and B-A are shown in the lower Fig. 13.24. Area B-A is

equivalent to the tumor region except the necrotic region. The results of decay

curves in area A and B-A (see the lower right graph in Fig. 13.24) were fitted

adequately using a double exponential equation. Shorter half-lives were 31 
 8 s

and 21 
 4 s, and longer ones were 146 
 20 s and 134 
 11 s in area A and B-A,

respectively. Both shorter and longer half-lives in the necrotic region (area A) were

longer than those in the tumor region except the necrotic region (area B-A).

Figure 13.25 shows the activity distributions measured for 200 s using the

BOLPs-RGp after each proton irradiation for the same patient. The high activity

in the necrotic region decreased to the similar activity in the non-necrotic region

around the necrosis with an increase of prescription dose. In the region of area A
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and B shown in the lower Fig. 13.24, the ratio F of the number of detection counts

of activity at each prescription dose to that at the first treatment day is given by

F Dð Þ ¼

Z SA

0

dN Dð Þ
.

dS

� �
dS
,
Z SA

0

dSZ SB

SA

dN Dð Þ
.

dS

� �
dS
,
Z SB

SA

dS

, ð13:21Þ

where D is the delivery dose, N is the detection number, SA is the square of area A,

and SB is the square of area B. The result of calculations using Eq. 13.21 was shown
in Fig. 13.25. The activity in the necrotic region noticeably decreased with an

increase of prescription dose. This result indicates that each prescription dose can

be determined for each one of patients, in consideration of individual sensibility to

doses, which is absolutely essential for the next step in proton therapy. Dose-

volume delivery-guided proton therapy (DGPT) which is a proton therapy with

observation of individual sensibility to doses during a treatment period will be

established as the most advanced and unique proton therapy.

Fig. 13.23 In the case of the patient with paranasal sinus tumor, (a) the calculated dose distribu-

tion, the measured activity distributions using the BOLPs-RGp: (b) the first day, (c) the fourth day,

(d) the 7th day, (e) the 13th day, and (f) the projection profiles in the depth direction (Nishio et al.

2010)
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13.6 Summary

The BOLPs were developed for imaging of regions irradiated by proton beam using

target nuclear fragment reactions, and the imaging was realized. The results of these

studies on the BOLPs indicate that the clinical use of the BOLPs-RGp leads to dose

concentration on target tumors, a reduction in doses which are delivered to organs at

risk, and the potential to verify dose sensibility of each patient during a period of

proton treatment. We are able to take advantage of various techniques, technolo-

gies, and results of imaging activity from positron-emitting nuclei generated in a

patient’s body by radiation irradiation for the fields of not only proton therapy but

also popular high-energy X-ray therapy and other particle therapies (Nishio et al.

2007). The results of these studies for providing proton therapy with more accuracy

and safety would expand in many fields of cancer treatment.

There are a lot of matters to solve in order to establish techniques and technology

for imaging of proton-irradiated regions. Lots of values of cross section of target

Fig. 13.24 Calculated dose distribution, the measured activity distribution, and the results of the

number of detection counts per 20 s of activity in area A and B-A using the BOLPs-RGp in the case

of the liver tumor including the necrotic region (Nishio et al. 2010)
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nuclear fragment reactions have been left with uncertainty. It is necessary to obtain

the cross section data systematically (Matsushita et al. 2016), and views and

knowledge from basic physics including nuclear physics must be the key to obtain

that. It is also necessary to establish methods of assigning information of CT images

to elemental composition of organs accurately and to develop techniques of simu-

lating activity distribution (Miyatake et al. 2011; Miyatake and Nishio 2013). To

solve those necessities, collaboration with other fields such as basis physics is

needed over the boundaries of fields. One of the most significant studies for the

radiation therapy future is the realization of tailor-made particle therapy for each

patent with observation of individual response to doses from tumors. A further

study is being done using the results of these studies. Tumor response observation

system of observing dose response has both PET system and Compton camera

system, which can detect prompt and annihilation gamma rays emitted from

irradiated regions during and after irradiation with high positional accuracy and

high efficiency (see Fig. 13.26) (JST SENTAN). The important thing is to carry out

research and development in order to improve the standard of cancer treatment and

Fig. 13.25 Activity distributions measured for 200 s using the BOPS-RGp after each proton

irradiation in the case of the liver tumor including the necrotic region and the ratio of the measured

counts of activity using Eq. 13.21 (Nishio et al. 2010)
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provide high accurate cancer treatment to more patients by establishing cooperative

relationship over various fields.
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Chapter 14

Computerized Prediction of Treatment

Outcomes and Radiomics Analysis

Issam El Naqa

Abstract Imaging has been traditionally used in radiotherapy for the purposes of

tumor delineation and treatment planning. Recent evidence suggests that such

imaging information could be also used as biomarkers for predicting response

and personalized treatment as part of an emerging field called “radiomics.” In this

chapter, we discuss the application of imaging-based approaches to predict radio-

therapy outcomes from single and hybrid imaging modalities. We describe the

different steps involved in radiomics analysis and present examples from our own

experiences. We highlight the current challenges and future potentials for image-

based decision support in radiotherapy.

Keywords Radiotherapy • Outcomes prediction • Radiomics

14.1 Introduction

kV X-ray computed tomography (kV-CT) has been historically considered the

standard modality for treatment planning in 3D conformal (3DCRT) or intensity-

modulated radiotherapy (IMRT) because of its ability to provide electron density

information for heterogeneous dose calculations (Khan 2007; Webb 2001). How-

ever, additional information from other imaging modalities could be also used to

improve treatment monitoring and prognosis in different cancer sites (El Naqa et al.

2009; Kumar et al. 2012; Lambin et al. 2012). Physiological information (tumor

metabolism, proliferation, necrosis, hypoxic regions, etc.) can be collected directly

from nuclear imaging modalities such as single-photon emission computed tomog-

raphy (SPECT) and positron emission tomography (PET) or indirectly from mag-

netic resonance imaging (MRI) (Condeelis and Weissleder 2010; Willmann et al.

2008). The complementary nature of these different imaging modalities has led to

efforts toward combining information to achieve better treatment outcomes. For

instance, PET/CT has been utilized for staging, planning, and assessment of
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response to radiation therapy in lung (Verhagen et al. 2004; Bradley et al. 2004a, b;

Bradley 2004; Erdi et al. 2000; Mac Manus and Hicks 2003; MacManus et al. 2003;

MacManus et al. 2003; Pandit et al. 2003; Toloza et al. 2003), gynecological (Mutic

et al. 2003; Miller and Grigsby 2002), and colorectal cancers (Ciernik 2004).

Similarly, MRI has been applied in tumor delineation and assessing toxicities in

head and neck cancer (Newbold et al. 2006; Piet et al. 2008). Most recently,

PET/MR has started to make its appearance in the field (Zaidi et al. 2007;

Thorwarth et al. 2013). There are accumulating evidences that pretreatment or

posttreatment information from anatomical or particularly functional imaging

could be used to monitor and predict treatment outcomes in radiotherapy. For

instance, changes in tumor volume captured on CT images may be predictive of

local control in lung cancer (Seibert et al. 2007; Ramsey et al. 2006). Interestingly,

a study showed that rectum status (full/empty) or the presence of bowel gas at the

time of treatment simulations predicts for treatment failure (Stasi et al. 2006) and

the risk of rectal bleeding(de Crevoisier et al. 2005), probably due to a shift of the

dose field compared to anatomy upon delivery. However, functional/molecular

imaging and in particular fluorodeoxyglucose (FDG)-PET, a glucose metabolism

analog, has shown promise as a potential prognostic factor for predicting radiother-

apy efficacy or potential side effects. The primary focus in the literature to this point

has been directed toward simple metrics describing the FDG image, especially

maximum standardized uptake values (SUVmax). A few attempts have been made to

extend this analysis to include image features. A visual assessment method was

used in Kalff et al. to evaluate heterogeneity in FDG images for patients with

locally advanced rectal carcinoma (Kalff et al. 2006). Hicks et al. applied a simple

pattern recognition technique to FDG images for lung cancer and found that normal

tissue inflammatory changes were linked to tumor responsiveness (Hicks et al.

2004). A shape metric based on the deviation from an idealized ellipsoid structure

(i.e., eccentricity) was found to have strong association with survival in patients

with soft tissue sarcoma (STS) (O’Sullivan et al. 2003, 2005). Beside FDG-PET,

other PET tracers have been shown to be useful in interrogating tumor properties

such as: hypoxia by fluoromisonidazole (FMISO) or copper (II)-diacetyl-bis

(N4-methylthiosemicarbazone (Cu-ATSM) and deoxyribonucleic acid (DNA) syn-

thesis and cell proliferation by fluorothymidine (FLT) (Shields 2006). On the other

hand, dynamic contrast-enhanced MRI (DCE-MRI), a perfusion surrogate, was

used to assess treatment response of soft tissue sarcoma (Shapeero et al. 2002;

van Rijswijk et al. 2003; Vanel et al. 2004), and apparent diffusion coefficient

(ADC) values from diffusion-weighted MRI (DW-MRI), a measure of water

molecule diffusion (Brownian motion) in tissue, were significantly correlated

with sarcoma response to radiotherapy (Einarsdottir et al. 2004). Recently, hybrid

imaging modalities PET/CT and PET/MR have been applied. Benz et al. showed

that combined assessment of metabolic and volumetric changes predicts tumor

response in patients with sarcoma (Benz et al., Benz M et al. 2008). Similarly,

Yang et al. showed that the combined evaluation of contrast-enhanced CT and

FDG-PET/CT predicts the clinical outcomes in patients with aggressive

non-Hodgkin’s lymphoma (Yang et al. 2009). Denecke et al. compared CT, MRI,
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and FDG-PET in the prediction of outcomes to neoadjuvant radiochemotherapy in

patients with locally advanced primary rectal cancer, demonstrating sensitivities of

100 % for FDG-PET, 54 % for CT, and 71 % for MRI and specificities of 60 % for

FDG-PET, 80 % for CT, and 67 % for MRI (Denecke et al. 2005).

In this chapter, we discuss the development of image-based models to predict

radiotherapy outcomes from single and hybrid imaging modalities.

14.2 Imaging as a Biomarker of Radiotherapy Response

(Radiomics)

The extraction of quantitative information from imaging modalities and relating

information to biological and clinical endpoints is a new emerging field referred to

as “radiomics” (Lambin et al. 2012; Kumar et al. 2012).

Radiomics could be thought of as consisting of two main steps: (1) extraction of

relevant static and dynamic imaging features and (2) incorporating these features

into mathematical model to predict outcomes as discussed in the following

subsections.

14.2.1 Image Feature Extraction

The features extracted from images could be divided into static (time invariant) and

dynamic (time variant) features according to the acquisition protocol at the time of

scanning and into pre- or intra-treatment features according to the scanning time

point (El Naqa 2014).

14.2.1.1 Static Image Features

(a) Standardized uptake value (SUV) or Hounsfield unit (HU) descriptors: SUV is

a standard image quantification method particularly used in PET analysis

(Strauss and Conti 1991); likewise, HU is used in CT. In this case, raw

intensity values are converted into SUVs/HUs, and statistical descriptors

such as maximum, minimum, mean, standard deviation (SD), and coefficient

of variation (CV) are extracted.

(b) Total lesion glycolysis (TLG): This is also used in FDG-PET and is defined as

the product of volume and mean SUV (Benz et al., Benz M et al. 2008; Erdi

et al. 2000; Larson et al. 1999).

(c) Intensity volume histogram (IVH): This is analogous to the dose-volume

histogram (DVH) widely used in radiotherapy treatment planning in reducing

complicated 3D data into a single easier to interpret curve. Each point on the
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IVH defines the absolute or relative volume of the structure that exceeds a

variable intensity threshold as a percentage of the maximum intensity

(El Naqa et al. 2009). This method would allow for extracting several metrics

from images for outcome analysis such as Ix (minimum intensity to x %

highest intensity volume), Vx (percentage volume having at least x % intensity

value), and descriptive statistics (mean, minimum, maximum, standard devi-

ation, etc.). We have reported the use of the IVH for predicting local control in

lung cancer (Vaidya et al. 2012), where a combined metric from PET and CT

image-based model provided a superior prediction power compared to com-

monly used dosimteric-based models of local treatment response. More details

are provided in the example of Sect. 14.3.1.

(d) Morphological features: These are generally geometrical shape attributes such

as eccentricity (a measure of non-circularity), which is useful for describing

tumor growth directionality, and Euler number (the number of connected

objects in a region minus the solidity (this is a measurement of convexity),

which may be a characteristics of benign lesions (Jain 1989; O’Sullivan et al.

2005). An interesting demonstration of this principle is that a shaped-based

metric based on the deviation from an idealized ellipsoid structure (i.e.,

eccentricity) was found to have strong association with survival in patients

with sarcoma (O’Sullivan et al. 2003, 2005).

(e) Texture features: Texture in imaging refers to the relative distribution of

intensity values within a given neighborhood. It integrates intensity with

spatial information resulting in higher-order histograms when compared to

common first-order intensity histograms. It should be emphasized that texture

metrics are independent of tumor position, orientation, size, and brightness

and take into account the local intensity spatial distribution (Castleman 1996;

Haralick et al. 1973). This is a crucial advantage over direct (first-order)

histogram metrics (e.g., mean and standard deviation), which only measures

intensity variability independent of the spatial distribution in the tumor micro-

environment. Texture methods are broadly divided into three categories:

statistical methods (e.g., high-order statistics, co-occurrence matrices,

moment invariants), model-based methods (e.g., Markov random fields,

Gabor filter, wavelet transform), and structural methods (e.g., topological

descriptors, fractals) (Zhang and Tan 2002; Castellano et al. 2004). Among

these methods, statistical approaches based on the co-occurrence matrix and

its variants such as the gray-level co-occurrence matrix (GLCM), neighbor-

hood gray-tone difference matrix (NGTDM), run-length matrix (RLM), and

gray-level size zone matrix (GLSZM) have been widely applied for charac-

terizing tumor heterogeneity in images (Chicklore et al. 2013). Four com-

monly used features from the GLCM include energy, entropy, contrast, and

homogeneity (Haralick et al. 1973). The NGTDM is thought to provide more

humanlike perception of texture such as coarseness, contrast, busyness, and

complexity. RLM and GLSZM emphasize regional effects. More details are

provided in the example of 14.3.2.
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An example of different feature extraction from PET in the case of head and

neck cancer is shown in Fig. 14.1.

14.2.1.2 Dynamic Image Features

The dynamic features are extracted from time-varying acquisitions such as dynamic

PET or MR. These features are based on kinetic analysis using tissue compartment

models and parameters related to transport and binding rates (Watabe et al. 2006;

Tofts 1997). Recently, using kinetic approaches, Thorwarth et al. published pro-

vocative data on the scatter of voxel-based measures of local perfusion and hypoxia

in the head and neck (Thorwarth et al. 2006, 2007). Tumors showing widespread in

Fig. 14.1 (a) A pretreatment PET scan of a head and neck cancer case of patient who died from

disease after radiotherapy treatment. The head and neck tumor region of interest (brown) and the

gross tumor volume (GTV) (green) were outlined by the physician. (b) an IVH plot, where Ix and

Vx parameters are derived. (c) A texture map plot of the GTV heterogeneity through intensity

spatial mapping
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both characteristics showed less reoxygenation during RT and had worse local

control. An example from DCE-MRI is shown in Fig. 14.2, in which a three-

compartment model is used and extracted parameters include the transfer constant

(Ktrans), the extravascular-extracellular volume fraction (ve), and the blood volume

(bv) (Sourbron and Buckley, Sourbron and Buckley 2011). A rather interesting

approach to improve the robustness of such features is the use of advanced 4D

iterative techniques (Reader et al. 2006). Further improvement could be achieved

by utilizing multi-resolution transformations (e.g., wavelet transform) to stabilize

kinetic parameter estimates spatially (Turkheimer et al. 2006).

14.2.2 Outcome Modeling

Outcomes in radiation oncology are generally characterized by two metrics: tumor

control probability (TCP) and the surrounding normal tissue complication proba-

bility (NTCP) (Steel 2002; Webb 2001). The dose-response explorer system

(DREES) is a dedicated software tool for modeling of radiotherapy outcome

(El Naqa et al. 2006c). A detailed review of outcome modeling in radiotherapy is

presented in our previous work (El Naqa 2013). In the context of image-based

treatment outcome modeling, the observed outcome (e.g., TCP or NTCP) is con-

sidered to be adequately captured by extracted image features (El Naqa et al. 2009;

El-Naqa et al. 2004), where complementary imaging information are built into a

data-driven model such as classical logistic regression approaches or more

advanced machine learning techniques.

Fig. 14.2 Dynamic features extracted from DCE-MRI in case of soft tissue sarcoma in the lower
leg. Data are presented for two slices (top and bottom row, respectively), showing (a, f) slice
position on a coronal T1-weighted image, (b, g) a fat-saturated high-resolution T2-weighted image

of the slice with region-of-interest outlined, (c, h) the trans-endothelial transfer constant Ktrans

(in 1/s), (d, i) the extravascular, extracellular space volume fraction ve (%), and (e, j) the blood

volume fraction (bv) (%)
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14.2.2.1 Outcome Modeling by Logistic Regression

Logistic modeling is a common tool for multi-metric modeling. In our previous

work (Deasy and El Naqa 2007; El Naqa et al. 2006a), a logit transformation was

used:

f xið Þ ¼ eg xið Þ

1þ eg xið Þ , i ¼ 1, :::, n, ð14:1Þ

where n is the number of cases (patients), and xi is a vector of the input variable

values (i.e., image features) used to predict f(xi) for outcome yi (i.e., TCP or NTCP)

of the ith:

g xið Þ ¼ βo þ
Xd
j¼1

βjxij, i ¼ 1, :::, n, j ¼ 1, :::, d, ð14:2Þ

where d is the number of model variables, and the β’s are the set of model

coefficients determined by maximizing the probability that the data gave rise to the

observations.

14.2.2.2 Outcome Modeling by Machine Learning

Machine learning represents a wide class of artificial intelligence techniques (e.g.,

neural networks, decision trees, support vector machines), which are able to

emulate human intelligence by learning the surrounding environment from the

given input data. These methods are increasingly being utilized in radiation oncol-

ogy because of their ability to detect nonlinear patterns in the data (El Naqa et al.

2015a). This is due to their ability to detect complex patterns in heterogeneous

datasets with superior results when compared to state of the art in each of these

disciplines. In particular, neural networks were extensively investigated to model

post-radiation treatment outcomes for cases of lung injury (Munley et al. 1999; Su

et al. 2005) and biochemical failure and rectal bleeding in prostate cancer (Gulliford

et al. 2004; Tomatis et al. 2012). A rather more robust approach of machine learning

methods is kernel-based methods and its favorite technique of support vector

machines (SVMs), which are universal constructive learning procedures based on

the statistical learning theory (Vapnik 1998). Learning is defined in this context as

estimating dependencies from data (Hastie et al. 2001).

There are two common types of learning: supervised and unsupervised. Super-

vised learning is used to estimate an unknown (input, output) mapping from known

(input, output) samples (e.g., classification or regression). In unsupervised learning,

only input samples are given to the learning system (e.g., clustering or dimension-

ality reduction). In image-based outcome modeling, we focus mainly on supervised
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learning, wherein the endpoints of the treatments such as TCP or NTCP are

provided by experienced oncologists in our case.

For discrimination between patients who are at low risk versus patients who are

at high risk of radiation therapy, the main idea of SVM would be to separate these

two classes with “hyperplanes” that maximize the margin between them in the

nonlinear feature space defined by implicit kernel mapping as shown in Fig. 14.3.

The objective here is to minimize the bounds on the generalization error of a model

on unseen data before rather than minimizing the mean-square error over the

training dataset itself (data fitting). Mathematically, the optimization problem

could be formulated as minimizing the following cost function:

L w; ξð Þ ¼ 1

2
wTwþ C

Xn
i¼1

ξi ð14:3Þ

subject to the constraint:

yi w
TΦ xið Þ þ bð Þ � 1� ζi i ¼ 1, 2, :::, n

ζi � 0 for all i
ð14:4Þ

where wis a weighting vector and Φ(�)is a nonlinear mapping function. The ζi
represents the tolerance error allowed for each sample to be on the wrong side of the

margin (called hinge loss). Note that minimization of the first term in Eq. (14.3)

increases the separation (margin) between the two classes, whereas minimization of

the second term improves fitting accuracy. The trade-off between complexity

(or margin separation) and fitting error is controlled by the regularization parameter

C. However, such a nonlinear formulation would suffer from the curse of dimen-

sionality (i.e., the dimensions of the problem become too large to solve) (Haykin

1999; Hastie et al. 2001). Therefore, the dual optimization problem is solved

instead of Eq. (14.3), which is convex complexity becomes dependent only on

the number of samples and not on the dimensionality of the feature space. The

prediction function in this case is characterized by only a subset of the training data,

each of which are then known as “support vectors” si:

Fig. 14.3 Kernel-based mapping from a lower dimensional space (X) to a higher dimensional

space (Z ) called the feature space, where non-linearly separable classes become linearly separable
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f xð Þ ¼
Xns
i¼1

αiyiK si; xð Þ þ α0, ð14:5Þ

where ns is the number of support vectors (i.e., samples at the boundary as in fig.

14.3), αi are the dual coefficients determined by quadratic programming, and K(�, �)
is the kernel function. Typical kernels (mapping functionals) include:

Polynomials : K x; x
0� � ¼ xTx

0 þ c
� �q

Radial basis function RBFð Þ : K x; x
0� � ¼ exp � 1

2σ2
x� x

0�� ��2� �
,

ð14:6Þ

where c is a constant, q is the order of the polynomial, and σ is the width of the

radial basis functions. Note that the kernel in these cases acts as a similarity

function between sample points in the feature space. Moreover, kernels enjoy

closure properties, i.e., one can create admissible composite kernels by weighted

addition and multiplication of elementary kernels. This flexibility allows for the

construction of a neural network by using a combination of sigmoidal kernels.

Alternatively, one could choose a logistic regression equivalent kernel by proper

choice of the objective function in Eq. (14.3). In Fig. 14.4, we show an example for

the application of machine learning to predict local failure in lung cancer (El Naqa

et al. 2010).

14.3 Radiomics Examples in Different Cancer Sites

In the following, we will provide two representative cases of image-based outcome

modeling and discuss the processes involved in such development. In one case, we

will use separate extracted features from PET and CT for predicting tumor control

in lung cancer. In the other case, fused extracted features from PET and MR are

used to predict distant metastasis to the lung in soft tissue sarcoma.

14.3.1 Predicting TCP in Lung Cancer

In a retrospective study of 30 non-small cell lung cancer (NSCLC) patients,

30 features were extracted from both PET and CT images with and without motion

correction as shown in Fig. 14.5.

The features included tumor volume; SUV/HU measurements, such as mean,

minimum, maximum, and the standard deviation; IVH metrics; and texture-based

features such as energy, contrast, local homogeneity, and entropy. The data

corrected for motion artifacts based on a population-averaged probability spread

function (PSF) using deconvolution methods derived from four 4D CT datasets
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(El Naqa et al. 2006b). An example of such features in this case is shown in

Fig. 14.6.

Using modeling approaches described in Sect. 14.2.2 and implemented in the

DREES software, Fig. 14.7 shows the results for predicting local failure, which
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Fig. 14.4 Kernel-based modeling of TCP in lung cancer using gross tumor volume (GTV) and

volume receiving 75 Gy (V75) with support vector machine (SVM) and a radial basis function

(RBF) kernel. (a) Kernel-based modeling of TCP in lung cancer using the GTV volume and V75

with support vector machine (SVM) and a radial basis function (RBF) kernel. (a) Scatter plot of

patient data (black dots) being superimposed with failure cases represented with red circles. Kernel

parameter selection on leave-one-out cross-validation (LOO-CV) with peak predictive power

attained at σ¼2 and C¼10,000. (b) Plot of the kernel-based local failure (1-TCP) nonlinear

prediction model with four different risk regions: (1) area of low-risk patients with high confidence

prediction level, (2) area of low-risk patients with lower confidence prediction level, (3) area of

high-risk patients with lower confidence prediction level, and (4) area of high-risk patients with

high confidence prediction level. Note that patients within the “margin” (cases ii and iii) represent

intermediate-risk patients, which have border characteristics that could belong to either risk group.

(c) A TCP comparison plot of different models as a function of patients’ being binned into equal

groups using the model with highest predictive power (SVM-RBF). The SVM-RBF is compared to

Poisson-based TCP, cEUD, and best two-parameter logistic model. It is noted that prediction of

low-risk (high control) patients is quite similar; however, the SVM-RBF provides a significant

superior performance in predicting high-risk (low control) patients
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consisted of a model of two parameters from features from both PET and CT based

on intensity volume histograms provided the best.

14.3.2 Predicting Distant Metastasis in Soft Tissue Sarcoma

A dataset of 51 patients with histologically proven STS was retrospectively ana-

lyzed. All patients had pretreatment FDG-PET and MR scans. MR data comprised

of T1-weighted (T1w), T2 fat-saturated (T2FS), and T2 short tau inversion recovery

(STIR) sequences as shown in Fig. 14.8.

Fig. 14.5 A pretreatment PET/CT scan of a lung cancer patient who failed locally after radio-

therapy treatment. Top row shows scan samples in different views (transverse, sagittal, coronal).

The bottom row shows the motion probability spread function (PSF) for not motion-corrected and

motion-corrected (left to right)
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A volume fusion process was carried out to combine information from two

different volumes (PET and MR) into a single composite volume that is potentially

more informative for texture analysis. Fusion of the scans was performed using the

discrete wavelet transform (DWT) and a band-pass frequencies enhancement

technique (Vallieres et al. 2015). In total, 41 different texture features were

extracted out of the tumor regions of five different types of scans: FDG-PET,

T1w and T2FS, fused FDG-PET/T1, and fused FDG-PET/T2FS scans. The texture

features consisted of 3 features from first-order histograms, 7 features from GLCM,

13 features from GLRLM, 13 features from GLSZM, and 5 features from NGTDM.

Optimal features were found using texture optimization based on imbalance-

adjusted 0.632+ bootstrap resampling method (Sahiner et al. 2008). The resulting

model consisted of four texture features representing variations in size and intensity

of the different tumor subregions. It yielded a performance estimate in

bootstrapping evaluations, with an area under the receiver-operating characteristic

curve (AUC) of 0.984 � 0.002, a sensitivity of 0.955 � 0.006, a specificity of

0.926 � 0.004, and an accuracy of 0.934 � 0.003 as shown in Fig. 14.9.
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Fig. 14.6 (a) Intensity volume histograms (IVH) of (b) CT and (b) PET, respectively. (c) and (d)

are the texture maps of the corresponding region of interest for CT (intensity bins equal 100 HU)

and PET (intensity bins equal 1 unit of SUV), respectively. Note the variability between CT and

PET features: the PET-IVH and co-occurrence matrices show much greater heterogeneity for this

patient. Importantly, patients vary widely in the amount of PET and CT gross disease image

heterogeneity between patients
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14.4 Discussion and Conclusions

The use of imaging in outcome modeling of radiotherapy response has witnessed

rapid increase in recent years adding more value to already existing use of imaging

in cancer treatment in general and radiotherapy in particular. However, there are

several issues that are currently limiting its rapid progression. It is well recognized

that image acquisition protocols may impact the reproducibility of extracted fea-

tures from image modalities, which may consequently impact the robustness and

stability of these features for treatment prediction. This includes static features such

as SUV/HU descriptors and texture features. Interestingly, texture-based features
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Fig. 14.7 Image-based modeling of local failure from PET/CT features. (a) Model order selection

using leave-one-out cross-validation. (b) Most frequent model selection using bootstrap analysis

where the y-axis represents the model selection frequency on resampled bootstrapped samples. (c)

Plot of local failure probability as a function of patients binned into equal-size groups showing the

model prediction of treatment failure risk and the original data (Reproduced with permission from

Vaidya et al. 2012)
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Fig. 14.8 FDG-PET and MR diagnostic images of two patients with soft tissue sarcomas of the

extremities. Top row: patient that did not develop lung metastases. Bottom row: patient that
eventually developed lung metastases. From left to right: FDG-PET, MR T1w, T2FS, and STIR

(sagittal). The lines in the images of the fourth column which correspond to the plane shown in the

previous images were taken

Fig. 14.9 Probability of developing lung metastases as a function of the response of the final

multivariable model identified in this work, for all patients of the retrospective cohort (Reproduced

from Vallières et al. 2015).

370 I. El Naqa



were shown to have a reproducibility similar to or better than that of simple SUV

descriptors (Tixier et al. 2012). This demands protocols for standardized acquisi-

tion. In addition, factors that may impact the stability of these features also include

signal-to-noise ratio (SNR), partial volume effect, motion artifacts, parameter

settings, resampling size, and image quantization (El Naqa et al. 2009; Cheng

et al. 2013). Nevertheless, advances in hardware and software technologies will

further facilitate wider application of advanced image processing techniques to

medical imaging to achieve better clinical results. For instance, pre-processing

methods such as denoising and deconvolution methods already help in mitigating

such artifacts (El Naqa et al. 2005; Zaidi et al. 2012); however, more advanced

image restoration methods based on nonlocality and sparsity may be more fruitful

(Gunturk and Li 2012). Outcome modeling using logistic regression has become a

de facto standard; however, more advanced modeling techniques may provide

further predictive power particularly when dealing with more complex and

nonlinear relationships among features and between clinical outcomes. We believe

that the synergy between image analysis and machine learning (El Naqa et al.

2015b) could provide powerful tools to strengthen and further the utilization of

image-based outcome modeling in clinical practice toward improved clinical

decision-making and personalized medicine in the future.
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