
Chapter 3
Vectors and Linear Algebra

3.1 Introduction

Linear algebra is the language describing systems in finite (or countably infinite)
dimensions, where dimension represents the number of variables at hand. This
appears naturally in systemswithmore than one degrees of freedomor in approximate
descriptions of complex systems in a discrete set of variables. Linear algebra also
gives the basic framework of quantum mechanics, describing observables in terms
of eigenvalues. In two and more dimensions, much of linear algebra is illustrated by
vectors and their linear transformations.

Angular momentum J is a vector that appears in numerous problems. Like energy
and linear momentum, total angular momentum is a conserved quantity. For freely
rotating rigid bodies, angular momentum is in proportion to angular velocity

� = �n. (3.1)

The length � denotes the rate of rotation and the direction denotes its orientation.
According to Mach’s principle, angular velocity is commonly defined relative to the
distant stars, where most of the mass is. For periodic motion with period P , the
angular velocity satisfies

� = 2π

P
. (3.2)

For motion at a separation r about to a given axis, the instantaneous velocity is a
tangent

v = dr
dt

= � × r. (3.3)

The associated linear momentum is the vector
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p = d

dt
mr = mv, (3.4)

when themassm is time-independent. The associated angularmomentumof a particle
with linear momentum p is

J = r × p. (3.5)

Thus, J is a vector formed out of r and p. Transformations of J follow the rules for
vectors, e.g., when considering translation or rotation of a coordinate system.

Maps in linear algebra are represented by n × m matrices, from a linear vector
space of dimension m to a linear vector space of dimension n. These vector spaces
are often over the real or complex numbers, e.g., Rn or Cn . As such, matrices are
comprised of row and column vectors of length m and, respectively, n. An n × m
matrix is said to be of dimension n × m.

Consider, for instance, a 2 × 2 matrix

C =
(
1 2
2 0

)
. (3.6)

Its rows r(i) and columns c(i) (i = 1, 2) can be schematically indicated as

C =
⎛
⎝

⎞
⎠ =

(
rT
1
rT
2

)
, C =

⎛
⎝

⎞
⎠ = (c1 c2) (3.7)

with

rT
1 = (1 2), rT

2 = (2 0), c1 =
(
1
2

)
, c2 =

(
2
0

)
, (3.8)

where we explicitly include the transpose T to denote row vectors according to

(
x
y

)T

= (x y). (3.9)

These 2 × 2matrices describe various transformations in the two-dimensional plane,
such as reflections, rotations and coordinate permutations. Key properties are eigen-
values and the associated eigenvectors, much of which depends on their determinants
and symmetry properties.
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3.2 Inner and Outer Products

Two linearly independent vectors a and b span a parallelogram. The projection of a
onto b defines the inner product (further Sect. 3.5) a · b = |a||b| cos θ with

cos θ = ∠(a,b) = a · b
|a||b| (3.10)

denoting the cosine of the angle between the two, where |a| refers to the length of
a satisfying |a| = √

a · a. Referenced to a Cartesian coordinate system with basis
vectors {i, j,k}, expressions obtain in component form, In three dimensions, we have

a = a1i + a2j + a3k, b = b1i + b2j + b3k (3.11)

and so

a · b = a1ba + a2b2 + a3b3. (3.12)

The outer product represents the area element, in area and orientation, of the paral-
lellogram, represented by the normal vector

(a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k =
⎛
⎝a2b3 − a3b2

a3b1 − a1b3
a1b2 − a2b1

⎞
⎠ ,(3.13)

where we used the right handed rule in the direction of movement of a corkscrew
turned from a to b. Its length equals the area of the parallelogram

|a × b| = |a||b| sin θ. (3.14)

3.3 Angular Momentum Vector

In circular motion, angular momentum J is a vector with the same orientation as the
angular velocity �. By the vector identity

a × (b × c) = b(a · c) − c(a · b) (3.15)

between vectors a,b, c, circular motion gives the specific angular momentum (angu-
lar momentum per unit mass)

j = r × v = r × (� × r) = r2� = r2�n, (3.16)
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Fig. 3.1 Rotation in the
(x, y)-plane over an angle ϕ
obtains by multiplication by
a 2 × 2 matrix R(ϕ) of
vectors z = x ix + yiy . In the
complex plane, it
corresponds to multiplication
by eiϕ

since r · r = r2 and r · � = 0.With (3.4, 3.5), our model problem of circular motion,
therefore, implies

j = r2
2π

P
= 2

πr2

P
= 2

d A

dt
n, (3.17)

that is, j represents twice the rate-of-change of surface area traced out by the radius r
in the orbital motion. Based on (3.4–3.17), this is a geometrical identify, not restricted
to circular motion, familiar as Kepler’s third law in planetary motion.

3.3.1 Rotations

If z = reiθ, then

w = zeiϕ = rei(θ+ϕ) = r (cos(θ + ϕ) + i sin(θ + ϕ)) , (3.18)

as illustrated in Fig. 3.1. That is

w = reiθeiφ = r [cos θ cosφ − sin θ sin φ + i(sin θ cosφ + cos θ sin θ)] . (3.19)

Applied to the basic vectors {ix , iy}, we have

i′x = ix cos θ + iy sin θ, i′y = −ix sin θ + iy cos θ. (3.20)

Example 3.1. Consider a basis {i, j} rotating along with a point (x, y) over
the unit circle S1. That is, i points to (x, y) with local tangent j to S1 with
counter-clockwise orientation. Moving along S1 at constant angular velocity
ω, θ = ωt as a function time t and (3.20) implies
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di
dt

= ω [−i sin θ + j cos θ] ,
dj
dt

= ω [−i cos θ − j sin θ] , (3.21)

and so

di
dt

= ωj,
dj
dt

= −ωi. (3.22)

3.3.2 Angular Momentum and Mach’s Principle

Following (3.5) and (3.23), circular particle motion satisfies

J = I n, I = m�r2, (3.23)

where I denotes the moment of inertia about n.1 Evidently, (3.23) implies that J = 0
whenever � = 0 and visa-versa. In an astronomical context, we may follow Mach2

and define the angular velocity as the rate of change of angles measured relative to
the distant stars. Does (3.23) hold in general?

It turns out that angular momentum is sensitive tomatter in the universe anywhere.
While (3.23) holds true to great precision under ordinary circumstances when � is
defined relative to the distant stars, deviations appear in the proximity of massive
rotating bodies. This can be detected in tracking the orientation n of a freely sus-
pended gyroscope relative to a distant star. Recently, the NASA satellite Gravity
Probe B3 did just that, and measured an angular velocity in n at a minute rate of

ω = −39mas yr−1 = −6 × 10−16 rad s−1. (3.24)

It agreeswithin a 20%windowof uncertaintywith the frame-dragging angular veloc-
ity of space-time around the earth, induced by Earth’s angular momentum according
to the theory of general relativity. According to the exact solution of rotating black
holes in general relativity [3], (3.24) is the frame-dragging angular velocity at about
5 million Schwarzschild radii around a maximally spinning black hole with the same
angular as the Earth (and 27 times its mass).

Though small, (3.24) defines a key result in our views on the relation between
rotation and angular momentum, that comes out non-trivially in curved space-time
predicted by the theory of general relativity. In particular, it changes our perception

1Formally Inn , since I is generally a two-index tensor.
2Ernst Mach (1838–1916).
3Everitt et al. [1] a local measurement on the Riemann tensor. LAGEOS II detected frame dragging
in the orientation of polar orbits [2].
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Fig. 3.2 (Left) In flat space-time, the ballerina effect a correspondence between zero angular veloc-
ity� relative to the distant stars and zero angularmomentum J (Mach’s principle). (Right.) In curved
space-time, the ballerina effect is different. Here, J = (� − ω)I , where I denotes the moment of
inertia and ω is the frame-dragging angular velocity along the angular momentum JM of a massive
object nearby. As a result, � = ω for J = 0 and J < 0 when � = 0. Mach’s principle is to be
generalized include all matter, including massive objects in a local neighborhood

of the ballerina effect (Fig. 3.2). In reality, a ballerina standing stillwith respect to the
distant stars experiences a slight lifting of her arms up, due to her non-zero angular
momentum imparted by frame-dragging around Earth.4 In a twist to the original
formulation of Mach’s principle, she would experience co-rotation with an angular
velocity (3.24) for her arms to be down in a fully relaxed state.

Frame dragging (3.24) induced by the angular momentum of the Earth is man-
ifest also in energetic spin-spin interactions.5 In response, particles with angular
momentum Jp about the spin axis of the Earth experience a potential energy [4]

E = ωJp, (3.25)

that represents a line-integral of Papapetrou forces [5] mediated by ω. The energy
(3.25) is notoriously small for Jp of classical objects. However, for charged parti-
cles like electrons or protons in magnetic fields around black holes, E can be huge
and reach energies on the scale of Ultra High Energy Cosmic Rays (UHECRs).
Measurement of (3.25) around the Earth awaits future satellite experiments.

3.3.3 Energy and Torque

Angular momentum J = Jn can be changed by application of a torque, defined as

T = d

dt
J = n

d

dt
J + J

d

dt
n. (3.26)

4A related result affects her weight by Papapetrou forces [5], here expressed in Eq. (3.25).
5The complete set of frame dragging induced interactions is described by the Riemann tensor.
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The dimension of torque is energy, as follows from [J ]=g cm2 s−1 (mass times
rate of change of area). Because angular momentum is a vector, (3.26) shows the
appearance of a torque already when changing its orientation, even when keeping its
magnitude constant. In this case, (3.26) may be due to a rotation, i.e.,

�T = J (R − I ) n (3.27)

where R is a rotation matrix. (More on matrices in Sect. 3.5) For a rotation over an
angle ϕ about the x-axis, for example, we have (Sect. 3.4.2)

R =
⎛
⎝ 1 0 0
0 cosϕ − sinϕ
0 − sinϕ cosϕ

⎞
⎠ (3.28)

Feymnan [6] gives an illustrative set-up that can be performed using a bicycle wheel
attached freely to a rod. In this event, n is along the y-axis when the rod is initially
held horizontally. Attempting to rotate the rod along the x-axis in an effort to move
the wheel overhead is described by (3.27), see Fig. 3.3. By (3.28), it introduces a
component of �T along the z-axis. The person performing the rotation will experi-
ence a tendency to start rotating in the opposite direction to the angular momentum
of the wheel, by conservation of total angular momentum in all three dimensions (in
each of the three components x, y and z), i.e.,

Jwheel + Jperson = 0. (3.29)

Fig. 3.3 Changing the
orientation n of the angular
momentum of a spinning
wheel by a rotation
introduces a component in an
orthogonal direction, here
along the vertical direction.
Since angular momentum is
conserved, a corresponding
negative amount of angular
momentum along the vertical
direction is imparted by the
person holding the wheel.
The person will experience a
counter-torque along the
vertical axis
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Sincepower is a scalar of dimension energy s−1, the power delivered to or extracted
froma rotating object is given by the inner product of torque and angular velocity, i.e.,

P = � · T. (3.30)

For our circular motion, we have T = d
dt J = I d

dt �, and hence

P = d

dt

(
1

2
�2

)
(3.31)

It follows that the rotational energy in case of J = I� satisfies

Erot = 1

2
�2 I = 1

2
� · J. (3.32)

Although (3.32) applies to non-relativistic mechanics such as spinning tops, some-
what remarkably it gives a fairly good approximation also to the rotational energy
Erot = k � · J, k−1 = 2 cos2(λ/4), of a rotating black hole with non-dimensional
angular momentum sin λ, since

1

2
≤ k ≤ 0.5858. (3.33)

To exemplify angular momentum conservation, consider the problem of the
Moon’s migration, in absorbing angular momentum in the Earth’s spin due to a
gravitational tidal torque.

Example 3.2.Some4.52Gyr ago, theEarth’s spin period at birthwas P = 5.4h
before the Moon was born. The Earth’s normalized angular velocity

A0 =
(

�

�b

)
⊕

(3.34)

then (4.52 Gyr ago) was very similar to the same for Jupiter today, where

� = 2π

P
, �b =

√
G M

R3
(3.35)

denote the actual and, respectively, break-up angular velocity for a planet of
mass M and radius R, and G is Newton’s constant. Some data:

Earth: M⊕ = 5.97 × 1027 g, R⊕ = 6000 km, P⊕ = 24 h,

Jupiter: M � 320M⊕ , R � 11R⊕, P � 0.5P⊕.

(3.36)
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The above follows from the following.

• For the Earth’s �⊕,b and today’s value �⊕ = 2π/P⊕, we have

A1 =
(

�

�b

)
⊕

. (3.37)

• The change P⊕ to 5.4 h from 24 h today satisfies the scaling

(
�

�b

)
⊕

∝ P−1
⊕ . (3.38)

• Consequently, the spin angular velocity relative to break up at birth satisfies

A0 =
(
5.4 h

24 h

)−1

A1. (3.39)

that may be compared to the same ratio of Jupiter today.

With Newton’s constant G = 6.67 × 10−8 g−1 cm3 s−2 (recall that Gρ has
dimension angular velocity squared, i.e., s−2.), we have by explicit calculation

�⊕ = 7.27 × 10−5 rad s−1, �⊕,b = 1.36 × 10−3 rad s−1 (3.40)

and hence the ratio

A1 = 0.0536. (3.41)

By aforementioned scaling with P⊕, we have

A0 =
(
24 h

5.4 h

)
A1 = 4.44A0 � 0.2380 (3.42)

Repeating the above for Jupiter,

B1 =
(

�

�b

)
J

= 0.2185, (3.43)

that is, our A0 4.52 Gyr ago and Jupiter’s B1 today are very similar. As a
consequence, we expect the weather of the Earth at birth to be very similar
to that of Jupiter today, essentially a permanent storm by exceedingly large
Coriolis forces. Recall that Coriolis forces scale with �2⊕ ∝ P−2

⊕ . They were
initially some 20 times stronger than they are now. Thanks, in part, to spin
down by the Moon, we can enjoy today’s clement climate [7].
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3.3.4 Coriolis Forces

Conservation of angularmomentumgives rise to apparent forceswhenmoving things
around by external forces that leave the angular momentum invariant, as in the
absence of any frictional forces. The specific angular momentum in the presence
of an angular velocity ω is

j = ωσ2 : ω = j

σ2
, (3.44)

where σ denotes the distance to the axis of rotation. Moving a fluid element along
the radial direction changes ω, as when the ballerina moves stretched arms inwards,
according to δω = −2 jσ−3δσ. It comes with a change in azimuthal velocity δvϕ =
σδω seen in a corotating frame, satisfying

δvϕ = −2ωδσ. (3.45)

In vector form, (3.45) is

d

dt
vϕ = −2ω × vσ. (3.46)

This result is commonly expressed in terms of the Coriolis force

Fc = m
d

dt
vϕ = 2mv × ω (3.47)

Coriolis forces are particularly relevant when working in a rotating frame of
reference. In particular, all of us terrestrial inhabitants living with the rotating frame
fixed to Earth’s surface. Air moving to a different latitude is subject to (3.47), since it
changes the distance σ to the Earth’s axis of rotation, which is approximately polar.
Let � denote the absolute angular velocity of the Earth (relative to the distant stars),
and express the angular velocity of the air ω′ = ω − � relative to it, as measured
in this rotating frame. Since δω′ = δω, moving air from, say, in the direction of
the equator produces a retrograde azimuthal velocity (rotation at an angular velocity
ω < �). Moving it a constant angular velocity towards the equator produces a curved
trajectory in response to the (retrograde) constant Coriolis force (3.47). This may
give rise to large scale circulation patterns in combination with pressure gradients.
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Fig. 3.4 Precession of the
spinning top causes a
velocity ṅ in the orientation
n of the angular momentum,
such that dJ/dt = J ṅ
absorbs the torque due to the
gravitational force Fg

applied at its center of mass
CM. In the idealized
friction-free set-up, this
process involves no exchange
of energy or dissipation

3.3.5 Spinning Top

The motion of a spinning top tilted at at angle θ exemplifies the interaction of angu-
lar momentum as a vector with a torque, T, applied continuously by the Earth’s
gravitational force Fg as illustrated in Fig. 3.4. In general, we have the relations

T = d

dt
J = r × d

dt
p = r × Fg. (3.48)

For a top that spins with no friction, the magnitude of its angular momentum vector
is conserved. By (3.26, 3.27), the top precesses at an angular velocity �p about the
z-axis, �p = dφ/dt , satisfying

d

dt
J = J

d

dt
n = J�p × n = �p × J. (3.49)

By (3.48), T = �p J sin θ = r W sin θ, and hence the angular velocity of precession
about the vertical axis satisfies

�p J = r W, (3.50)

where W denotes the weight of the top and r the distance of its center of mass away
from its pivot on the table.

Example 3.3. Illustrative for some vector calculations is a more explicit calcu-
lation of the precession frequency (3.50). To this end, Fig. 3.5 shows a massive
ring of radius R spinning at an angular velocityω, whereby it attains an angular
momentum per unit mass J = ωR2. Suppose it is mounted to one end of a rod,
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Fig. 3.5 Shown is a ring of radius R rotating at an angular velocity ω about a horizontal axis of
length l, supported by a pivot that allow rotation at a precession angular velocity ωp about the
vertical axis. Upon translation of the center of mass (CM) to the origin of a spherical coordinate
system, mass elements on the ring move over the surface of a sphere of radius R, parameterized by
a poloidal and azimuthal angle θ and, respectively, ϕ, wherein dθ/dt = ω and dϕ/dt = ωp

that is suspended at a pivot at the other end. An approximately horizontal rod
hereby precesses with an angular velocity ωp about the vertical axis without
dropping to a vertical position, satisfying (3.49). This result is invariant under
linear translation of the CM. Precession is entirely due to the motion of mass-
elements about the ring’s CM, allowing us to place the CM at the origin of a
spherical coordinate system (r, θ,ϕ), as if the CM where placed at the pivot.
With ω = ωiz , the outer product ω × r is the rotational velocity vφ of the end
point of a vector r and that vφ = ωσ, where σ = b sin θ is the distance to the
axis of rotation. A mass element δm = (M/2π)δθ in the ring herein assumes
an angular momentum δJ = r × δp = δmr × v with position vector

r = b

⎛
⎝ sin θ cosϕ

sin θ sinϕ
cos θ

⎞
⎠ , ω = dθ

dt
, ωp = dϕ

dt
, (3.51)

and associated velocity v = dr/dt ,

v = b

⎛
⎝ cos θ cosϕ

cos θ sinϕ
− sin θ

⎞
⎠ω + b

⎛
⎝− sin θ sinϕ

sin θ cosϕ
0

⎞
⎠ωp, (3.52)

and acceleration a = dv/dt ,

a = −b

⎛
⎝ sin θ cosϕ

sin θ sinϕ
cos θ

⎞
⎠ω2 − b

⎛
⎝ sin θ cosϕ

sin θ sinϕ
0

⎞
⎠ω2

p (3.53)

+2b

⎛
⎝− cos θ sinϕ

cos θ cosϕ
0

⎞
⎠ωωp. (3.54)
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Its inertia introduces a torque

δT = dδJ
dt

= δm

(
d

dt
r × v + r × d

dt
v
)

= δmr × a (3.55)

that evaluates to

δT = δmb

⎛
⎝ω2

pr × iz + 2ωωpr ×
⎛
⎝− cos θ sinϕ

cos θ cosϕ
0

⎞
⎠
⎞
⎠ (3.56)

To finalize, we integrate (3.56) over all mass elements δm. Making use of
the following averages over the fast angle θ,

〈r × iz〉 = 1

2π

∫ 2π

0
r × izdθ = b

2π

∫ 2π

0

⎛
⎝ sin θ sinϕ

− sin θ cosϕ
0

⎞
⎠ dθ = 0 (3.57)

and

〈
r ×

⎛
⎝− cos θ sinϕ

cos θ cosϕ
0

⎞
⎠
〉

= 1

2π

∫ 2π

0
r ×

⎛
⎝− cos θ sinϕ

cos θ cosϕ
0

⎞
⎠ dθ = (3.58)

b

2π

∫ 2π

0

⎛
⎝− cos2 θ cosϕ

− cos2 θ sinϕ
2 sin θ cos θ

⎞
⎠ dθ = −b

2

⎛
⎝ cosϕ

sinϕ
0

⎞
⎠ , (3.59)

we arrive at a total inertial torque T = ∫ 2π
0 δT,

T = M

2π

∫ 2π

0
r × a dθ = Mb

⎛
⎝ω2

p 〈r × iz〉 + 2ωωp

〈
r ×

⎛
⎝− cos θ sinϕ

cos θ cosϕ
0

⎞
⎠
〉⎞
⎠ . (3.60)

With J = Iω expressed in the moment of inertia I = Mb2, the latter reduces
to T = ωωp Mb2 = ωp J , i.e., our vector identity (3.49).

In Fig. 3.5, if the bar holding the rotating wheel is initially suspended horizontally
at the pivot with zero angular momentum about the z-axis, then the onset of preces-
sion ωp—balancing inertial to gravitational torque gMσ—produces a finite angular
momentum Jz = Mσ2ωp about the z-axis (upwards, say), where σ = l cosα is the
arm length to the z-axis, nowat a dip angleα. Since the total angularmomentumabout
the z-axis remains zero, Jz = J sin θ (pointing downwards). Given ωp J = Mgσ, it
follows that (cf. Exercise 3.3)
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tanα = (ωp/�
)2

, (3.61)

where � = √
g/σ.

3.4 Elementary Transformations in the Plane

In the two-dimensional plane with Cartesian coordinates (x, y), transformations
describe a map

z = x ix + yiy → w = x ′ix + y′iy . (3.62)

When linear, such map is a matrix multiplication w = Cz,

z =
(

x
y

)
= x

(
1
0

)
+ y

(
0
1

)
(3.63)

with

Cz =
⎛
⎝

⎞
⎠ z =

(
rT
1 z
rT
2 z

)
(3.64)

and

rT = (a b) : rT z = ax + by. (3.65)

Equivalently, we have

Cz =
⎛
⎝

⎞
⎠{x

(
1
0

)
+ y

(
0
1

)}
= xc1 + yc2. (3.66)

These two views (3.64–3.66) explicitly bring about linearity in the row and column
vectors of C .

When working in the two-dimensional plane, we note that (3.62) is equivalent to
a map of complex numbers z = x + iy → w = x ′ + iy′, that is occasionally useful
when working with conformal transformations w = w(z) (w′(z) �= 0).

3.4.1 Reflection Matrix

Figure3.6 illustrates reflections in the two-dimensional plane about the x-axis, the
y-axis and through the origin, O = (0, 0). Reflection about the x-axis is described
by
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Fig. 3.6 Reflections in the
(x, y)-plane about the x-axis,
the y-axis and through the
origin, take z = (x, y) to,
respectively, w1 = (x,−y),
w2 = (−x, y) and w3 = −z.
Each transformation is
described by a 2 × 2 matrix
acting on the vector
z = x ix + yiy

z = x ix + yiy → w = x ix − yiy . (3.67)

The same transformation can be written as a matrix equation for the equations x ′ = x
and y′ = −y as follows

(
x ′
y′

)
=
(
1 0
0 −1

)(
x
y

)
. (3.68)

Reflection about the y-axis is described by

z = x ix + yiy → w = −x ix + yiy . (3.69)

The same transformation can be written as a matrix equation for x ′ = −x and y′ = y
as follows

(
x ′
y′

)
=
(−1 0

0 1

)(
x
y

)
. (3.70)

As mentioned above, (3.67–3.69) are equivalent to taking z εC into, respectively,

w1 = z̄ = x − iy, w2 = −z̄ = −x + iy. (3.71)

Reflection about the origin is described by

z = x ix + yiy → w = −x ix − yiy, w3 = −z, (3.72)

The same transformation can be written as a matrix equation for the equations x ′ =
−x and y′ = −y as follows

(
x ′
y′

)
=
(−1 0

0 −1

)(
x
y

)
. (3.73)
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The identity matrix is the defined by the transformation which leaves z the same,
i.e.,

I =
(
1 0
0 1

)
. (3.74)

3.4.2 Rotation Matrix

The above can be extended to continuous transformations such as rotations. The
rotationmatrix can be derived from themultiplication of complex numbers following
(3.18) and (3.62). With z = r cos θix + r sin θiy , we have

(
x ′
y′

)
= R(ϕ)

(
x
y

)
, (3.75)

in terms of the rotation matrix

R(ϕ) =
(
cosϕ − sinϕ
sinϕ cosϕ

)
. (3.76)

Evidently, it satisfies

detR = 1, R(−ϕ) = R−1(ϕ) = RT (ϕ), (3.77)

where R−1 refers to the inverse of R, RT refers to the transpose and

det

(
a11 a12

a21 a22

)
= a11a22 − a12a21 (3.78)

defines the determinant of a 2 × 2 matrix.
For what follows, we shall generalize (3.9) to matrices. For a square n × n matrix

A, the transpose obtains by interchanging the off-diagonal components ai j (i �= j)
about the principle diagonal containing the aii . Schematically, if L refers to the upper
diagonal elements and U refers to the lower diagonal elements, then

A =

⎛
⎜⎜⎝

a11 U
a22

· · ·
L ann

⎞
⎟⎟⎠→ AT =

⎛
⎜⎜⎝

a11 L
a22

· · ·
U ann

⎞
⎟⎟⎠ . (3.79)

The rotation matrix R(ϕ) in (3.76) is anti-symmetric in its off-diagonal elements,
i.e., U = −L . A square matrix is said to be anti-symmetric, if U = −L and the
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elements on the principle diagonal are zero. Since the diagonal elements in (3.76)
are non-zero, R(ϕ) is not an anti-symmetric matrix.

Example 3.4. A symmetric matrix, satisfying U = L as defined in (3.79), is
the Lorentz boost

�(μ) =
(
cosh μ sinh μ
sinh μ cosh μ

)
, (3.80)

that appears in the transformation of four-momenta inMalinowski space. Both
R(ϕ) and �(μ) have determinant one,

det R(ϕ) = cos2 ϕ + sin2 ϕ = 1, det�(μ) = cosh2 μ − sinh2 μ = 1. (3.81)

3.5 Matrix Algebra

Multiplication of two matrices A of dimension p × m and B of dimension m × q
produces a new matrix C = AB of dimension p × q. Each entry of C is the inner
product of a row from A and a column from B. Schematically, the product C of two
2 × 2 matrices is

C =
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠ =

(
c11 c12
c21 c22

)
, (3.82)

upon considering A in terms of its rows and B in terms of its columns. The entries
of C satisfy

ci j = (ai1 ai2)

(
b1 j

b2 j

)
= ai1b1 j + ai2b2 j . (3.83)

The product D = B A of the same 2 × 2 matrices satisfies

D =
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠ =

(
d11 d12
d21 d22

)
(3.84)

upon considering B in terms of its rows and A in terms of its columns, so that

di j = (bi1 bi2)

(
a j1

a j2

)
= bi1a1 j + bi2a2 j . (3.85)

It is easy to see that in general D �= C , i.e., matrix multiplication does not commute,
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[A, B] = AB − B A �= 0, (3.86)

where the notation [·, ·] refers to the commutator.

Example 3.3. To illustrate, consider the two matrices

A =
(
0 −1
1 0

)
, B =

(
0 1
1 0

)
. (3.87)

The commutation [A, B] then evaluates to
(
0 −1
1 0

)(
0 1
1 0

)
−
(
0 1
1 0

)(
0 −1
1 0

)
= 2

(−1 0
0 1

)
. (3.88)

3.6 Eigenvalue Problems

Eigenvalue problems are defined by the equation

Aa = λa, (3.89)

where a refers to an eigenvector associated with the eigenvalue λ. Equivalently, a is
in the null-space (is a right null-vector) of A − λI :

(A − λI ) a = 0. (3.90)

For (3.90) to have a non-trivial solution a, we must have

det (A − λI ) = 0. (3.91)

3.6.1 Eigenvalues of R(ϕ)

Let us explore (3.90, 3.91) for the rotation matrix R(ϕ),

0 = |R − λI | = (cosϕ − λ)2 + sin2 ϕ : λ± = cosϕ + i sinϕ = e±iϕ. (3.92)

The eigenvalues are S1. It is a consequence of the fact that rotation is unitary (see
Sect. 3.7). Also, the eigenvalues satisfy6

6The product of the eigenvalues equals the determinant of the matrix, as follows from, e.g., the
Jordan decomposition theorem. The same theorem shows that the trace of a matrix given by the
sum of the elements on the principle diagonal equals the sum of the eigenvalues.
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λ1λ2 = |R| = 1. (3.93)

The associated eigenvectors

a =
(

α1

α2

)
(3.94)

satisfy (3.90). To be definite, (3.90) defines two homogeneous equations in the two
unknown coefficients (α1,α2),

{
α1 cosϕ − α2 sinϕ − λα1 = 0,
α1 sinϕ + α2 cosϕ − λα2 = 0.

(3.95)

For the eigenvalues satisfying (3.93), these two equations are linearly dependent. It
suffices to take one of them, to solve for α1 and α2,

α1(cosϕ − λ) − α2 sinϕ = 0 : α1 = −iα2, α1 = iα2 (3.96)

for λ = eiϕ and, respectively, λ = e−iϕ. We thus arrive at the eigenvector-eigenvalue
pairs

{
eiϕ,

(
1
−i

)}
,

{
e−iϕ,

(
1
i

)}
. (3.97)

These two pairs are complex conjugates. This is no surprise since R(ϕ) is a real
matrix, whose determinant |R − λI | defines a quadratic polynomial in λ. With real
coefficients, its roots are either both real or a pair of complex conjugates.

3.6.2 Eigenvalues of a Real-Symmetric Matrix

The matrix

A =
(
2 1
1 0

)
(3.98)

is real-symmetric with eigenvalues-eigenvectors (λ±, x±)

{
1 + √

2,

(
1 + √

2
1

)}
,

{
1 − √

2,

(
1 − √

2
1

)}
. (3.99)

It is readily seen that x± are orthogonal:

xT
+x− = 0. (3.100)
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We can normalize the eigenvectors to

e+ = 1√
4 + 2

√
2

(
1 + √

2
1

)
, e− = 1√

4 − 2
√
2

(
1 − √

2
1

)
, (3.101)

so that (e+, e−) forms a new orthonormal basis set complementary to (i, j) along the
x- and y-axis. Hence, we have the general decompositions

x = x i + yj = ae+ + be+, (3.102)

where x = i · x and y = j · y. The coefficients a and b can be read off using multi-
plication by e±:

a = x i · e+ + y j · e+, b = x i · e− + y j · e−. (3.103)

Note that (3.89) defines the eigenvectors as invariant subspaces. We now arrive at a
new look at A as an operator on x in terms of multiplications by eigenvectors along
the directions given by the associated eigenvectors,

Ax = a λ+e+ + b λ−e−. (3.104)

3.6.3 Hermitian Matrices

Let † denote the Hermitian conjugate,7 defined as the complex conjugate of the
transpose of a matrix element, a column or row vector or a matrix. We define the
scalar product of two vectors a and b in an n-dimensional vector space by

a†b = ā1b1 + ā2b2 + · · · ānbn. (3.105)

Real-symmetric matrices generalize to complex valued matrices with the same
properties of having real eigenvalues and mutually orthogonal eigenvectors asso-
ciated with different eigenvalues according to (3.116) and, respectively, (3.119).
Following the steps of the previous section, these are the self-adjoint or Hermitian
matrices satisfying

H † = H, (3.106)

defined by transformation of the entries H †
i j = H̄ ji . Note that applying † twice is an

identity operation, i.e., (A†)† = A for any n × m matrix A. Hence, if H is an n × n
matrix, we have

7Also referred to as the Hermitian transpose or the conjugate transpose.
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H =

⎛
⎜⎜⎝

a11 L†

a22

· · ·
L ann

⎞
⎟⎟⎠ (3.107)

with real diagonal elements aii (i = 1, 2, · · · n).

Example 3.5. For instance, the rotation matrix R(iμ) with imaginary angle
ϕ = iμ,

H =
(

cosh μ −i sinh μ
i sinh μ cosh μ

)
, (3.108)

is Hermitian. Since |R(ϕ)| = 1 for all ϕ, we have |H | = 1 by analytic contin-
uation, which also follows by inspection,

|H | = cosh2 μ − sinh2 μ = 1. (3.109)

The eigenvalue-eigenvectors obtain by analytic continuation of (3.97), i.e.,

{
e−μ,

(
1
−i

)}
,

{
eμ,

(
1
i

)}
. (3.110)

According to (3.105), the scalar product between the two eigenvectors satisfies

(
1
−i

)† (
1
i

)
= (1 i)

(
1
i

)
= 1 + i2 = 0. (3.111)

This result of Example 3.5 is expected, since (3.117–3.119) continues to hold
upon replacing T by †, i.e.,

λ1 = λ2 or a
†
1a2 = 0. (3.112)

For a Hermitian matrix, the eigenvectors of distinct eigenvalues are mutually orthog-
onal, where orthogonality is defined according to the inner product (3.105).

Very similar properties of the eigenvalue problem (3.89) appear in the real-
symmetricmatrix�(μ) of (3.80). Again, wewill find that the eigenvalues are real and
distinct, whose accompanying eigenvectors are mutually orthogonal. These proper-
ties hold true for all real-symmetric matrices, as shown by the following.

Consider an eigenvalue-eigenvector pair (λ, a) to a Hermition matrix A. Then

a†Aa = λa†a. (3.113)
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Here, a†a is real, obtained from the summation of the squared norms of the entries
of a. For (3.94), for example, we have

a†a = α1α1 + α2α2 ≥ 0. (3.114)

The transpose of the left hand side of (3.113) satisfies

λa†a = a†Aa = (a†Aa
)T = aT AT ā = aT A†a = aT Aa = λaT a. (3.115)

and hence λa†a = λ a†a = λa†a. It follows that the eigenvalues of a Hermitian
matrix are real:

λ̄ = λ, (3.116)

since aT a ≡ a†a.
Following similar arguments, consider

Aa2 = λ2a : a†1 Aa2 = λ2a
†
1a2. (3.117)

For a Hermitian A, we have

(
a†1 Aa2

)† = a†2 A†a1 = a†2 Aa1 = λ1a
†
2a1. (3.118)

By (3.117, 3.118), we have λ2a
†
1a2 = λ1a

†
2a1. Since a

†
1a2 = a†2a1, it follows that

λ1 = λ2 or a
†
1a2 = 0. (3.119)

For a Hermitian matrix, the eigenvectors of distinct eigenvalues are mutually orthog-
onal.

Let us now turn to the example matrix �(μ) in (3.89). Its eigenvalues are defined
by (3.91) with A = �, that is,

0 = |� − λI | = (cosh μ − λ)2 − sinh2 μ, (3.120)

whereby

λ± = cosh μ + sinh μ =
{

eμ

e−μ . (3.121)

Similar to (3.92), we note

λ1λ2 = |�| = 1. (3.122)
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Fig. 3.7 The matrix � in
(3.80) is real-symmetric.
With two distinct
eigenvalues, its eigenvectors
are orthogonal. As shown, a
second eigenvector
a2 = ix − iy hereby follows
immediately from
orthogonality to the first
a1 = ix + iy

The equation for the eigenvectors (3.95) in terms of (α1,α2) are again a linearly
dependent system of equations when λ assumes one of the eigenvalues (3.121).
Considering the first of (3.95) with λ = eμ,

α1(cosh μ − eμ) + α2 sinh μ = 0 : α1 = α2, (3.123)

we obtain the eigenvalue-eigenvector pair

{
eμ,

(
1
1

)}
. (3.124)

According to (3.119), the eigenvector associatedwithλ = e−μ is orthogonal to that of
(3.124). Since we are working in two dimensions, the second eigenvalue-eigenvector
pair is therefore

{
e−μ,

(
1

−1

)}
(3.125)

as illustrated in Fig. 3.7. The same obtains by solving (3.123) with eμ replaced by
e−μ.

3.7 Unitary Matrices and Invariants

The reflections and rotations shown in Fig. 3.6 preserve norm and angles. If a and b
are two real vectors and a′ and b′ are their images, e.g.,

a′ = R(ϕ)a, b′ = R(ϕ)b (3.126)

then the inner product
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ρ = aTb (3.127)

is preserved, since

(a′)Tb′ = (R(ϕ)a)T R(ϕ)b = aT R(ϕ)T R(ϕ)b = aTb (3.128)

by the property of unitarity

R(ϕ)T R(ϕ) = R(−ϕ)R(ϕ) = I. (3.129)

In particular, |a′|2 = (a′)T a′ = |a|2 and, likewise, |b′|2 = |a|2, showing that their
norms are preserved. If θ and θ′ refer to the angle between (a,b) and, respectively,
(a′,b′), then

|a||b| cos θ′ = |a′||b′| cos θ′ = (a′)Tb′ = aTb = |a||b| cos θ, (3.130)

which shows that cos θ′ = cos θ. Since the norms and angles (between two vectors)
are invariant under rotations, we say that R(φ) is unitary, defined by the property
(3.129).

Generalized to complex valued matrices, we say that A is unitary if

A†A = I, (3.131)

by which A is norm and angle preserving following (3.126–3.130) with † replacing
T . In a unitary matrix, therefore, the columns and rows form orthonormal sets. This
is evident by inspection in the rotation matrix R(ϕ): its row

r1 = (cosϕ − sinϕ), r2 = (sinϕ cosϕ) (3.132)

and column vectors

c1 =
(
cosϕ
sinϕ

)
, c2 =

(− sinϕ
cosϕ

)
(3.133)

satisfy

rirT
j = δi j , cT

i c j = δi j , (3.134)

where δi j denotes the Kronecker delta symbol (δi j = 1 (i = j), δi j = 0 (i �= j)).
The eigenvalues of a unitary matrix (3.131) are on the unit circle, as follows from

a†a = a†A†Aa = (λa)†(λa) = |λ|2a†a, (3.135)

where a denotes an eigenvector of the eigenvalue λ.
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Fig. 3.8 Show are the
eigenvalues λ± = e±iϕ of
the rotation matrix R(ϕ) on
the unit circle S1. Since R
has a complete orthonormal
set of eigenvectors, it is
unitary. Shown are also
λ± = e±μ of �. Away from
S1, � is not unitary

The n × n unitary matrices are U (n). U (n) is a group in that (i) C = AB is in
U (n) for any A, B ε U (n), (ii) every A ε U (n) has an inverse A−1 ε U (n) and (hence)
(iii) U (n) contains the identity matrix I . (Specifically, AI = I A = A.) For any two
matrices A and B, we have

detAB = detA det B = detB A, (3.136)

that we state here without proof. (It may be seen from the fact that the determinant
equals the product of eigenvalues.) According to (3.131), unitary matrices hereby
satisfy

|detA| = 1. (3.137)

Elements of U (n) have a complete set of orthonormal eigenvectors with eigenvalues
on the unit circle (Fig. 3.8). The special unitary group SU (n) ⊂ U (n) have unit
determinant,

detA = 1, (3.138)

exemplified by the rotation matrices R(ϕ) in (3.129).
In contrast, Hermitian matrices have a complete set of orthonormal eigenvectors

with eigenvalues on the real axis. A matrix can be both unitary and Hermitian only
if its eigenvalues are ±1. Examples are n × n Householder matrices representing
reflections across the plane normal to u in Rn ,

H = I − 2uu†, u†u = 1. (3.139)
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3.8 Hermitian Structure of Minkowski Spacetime

A Hermitian n × n matrix A on C
n introduces a metric structure through an inner

product defined by their real eigenvalues λi ,

(a,b) = a† Ab =
n∑

i=1

λia†b. (3.140)

If all eigenvalues are positive, this metric structure introduces a norm equivalent to
the Euclidean norm on R2n ,

|a|∗ = √(a, a) =
√√√√ n∑

i=1

λi |a|2. (3.141)

The Lorentz metric of Sect. 1.5 is an example of a real-symmetric matrix on R
4

with signature (1,−1,−1,−1), referring to one positive and three negative eigen-
values. The metric structure it introduces follows (3.140) with A given by ηab, that is
referred to as hyperbolic rather than Euclidean. We next strengthen this association
to Hermitian matrices with some interesting consequences.

By dimension, we are at liberty to introduce complex combinations of the real
3+1 space-time components of a vector in terms of two complex-valued component
vectors. Embedding the latter into a 2 × 2 Hermitian matrix, (a) the Lorentz metric
obtains by the determinant of the matrix and (b) Lorentz transformations correspond
to unitary transformations by unimodular matrices from SL(2,C). Remarkably, the
unimodular matrices giving a unitary transformation are effectively square roots of
Lorentz transformations of four-vectors. For rotations on the unit sphere,8 it gives a
double cover of the rotations on the unit sphere S2.9

The causal structure of Minkowski spacetime, defined by the Lorentz metric, is
given geometrically byLorentz invariant light cones. The generators of light cones are
light rays. Light rays are integral curves of null-vectorswith length zero. This refers to
the fact that the change in total phase along a light ray is zero by definition—light rays
define the propagation ofwave fronts carrying constant total phase of electromagnetic
radiation. They carry information on direction, but not distance. Projection of light
rays onto the celestial sphere defines a one-to-one map of directions onto S2. Light
rays hereby have two degrees of freedom,10 and are either future- or past-oriented
with opposite signs of their angular velocity in the propagation of an electromagnetic
wave. Since the dimension of Minkowski space is four, this suggests a formulation
in two null-vectors.

8The celestial sphere in the language of cosmology.
9Commonly referred to as SO(3), described by rotation matrices with determinant +1.
10Photons carry an additional degree of freedom in polarization.

http://dx.doi.org/10.1007/978-981-10-2932-5_1
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Expressed in termsof complexvariables, a 2 × 2 formulation is realizedby spinors
of
(
εAB,C2

)
, where εAB refers to the metric spinor as follows.

Given a four-vector kb = (kt , kx , ky, kz), consider the Hermitian matrix

K =
(

kt + kz kx − ik y

kx + ik y kt − kz

)
= ktσt + kxσx + kyσy + kzσz, (3.142)

expanded in terms of the Hermitian Pauli spin matrices11

σt = I, σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(3.143)

with respective eigenvalues λ = ±1, λ = ±i , λ = ±i and λ = ±i . The Pauli spin
matrices embed the basis vectors of Minkowski space,

σt = K

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, σx = K

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,

σy = K

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

, σz = K

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

.

(3.144)

Notice that the σi (i = x, y, z) are trace-free. From the determinant of Z ,

det K = (kt
)2 − (kx

)2 − (ky
)2 − (kz

)2
, (3.145)

the length of kb in Minkowski space satisfies

s2 = det K , (3.146)

incorporating the line-element s2 = ηabkakb with Minkowski metric

ηab =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (3.147)

Here, we use the Einstein summation convention of summing over all index values
a = t, x, y, z in combinations of covariant and contravariant indices. In Exercise
1.11, we noticed that ηab reduced to 1+1 is invariant under Lorentz boosts. It is

11Wolfgang Pauli 1900–1958.
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not difficult to ascertain that ηab is invariant under general Lorentz transformations
including rotations. As such, ηab is a Lorentz invariant tensor.

Consider an element L ε SL(2,C), mentioned above. These unimodular elements
have 8−2=6 degrees of freedom. Then

K → L†K L (3.148)

preserves (3.146), since

det L†K L = det K . (3.149)

Notice that (3.149) holds true also for L = −I , showing that the sign of L is not
determined by a given Lorentz transformation of kb. Even so, a given L fromSL(2,C)
in (3.148) defines a Lorentz transformation of kb.

Example 3.6. Consider a Lorentz boost with rapidity μ of kb = (1, 0, 0, 0)T

to (cosh μ, 0, 0, sinh μ)T along the z-axis,

(
1 0
0 1

)
→
(
cosh μ − sinh μ 0

0 cosh μ + sinh μ

)
=
(

e−μ 0
0 eμ

)
.(3.150)

It obtains by a boost

L(μ) =
(

e− 1
2 μ 0
0 −e

1
2 μ

)
, (3.151)

whereas a rotation of kb = (0, 1, 0, 0) to (0, cos θ, sin θ, 0) about the z-axis,

(
0 1
1 0

)
→
(

0 cos θ + i sin θ
cos θ − i sin θ 0

)
=
(

0 eiθ

e−iθ 0

)
, (3.152)

obtains by a rotation

L(θ) = 1√
2

(
ei 1

2 θ ie−i 1
2 θ

iei 1
2 θ e−i 1

2 θ

)
. (3.153)

Viewed by continuation starting from the identity matrix, (3.153) goes at the
heart of spinors to be introduced below: a rotation over 2π in physical space
gives rise to a change in sign in L(θ). A continuing rotation over 4π restores
the original sign. The L(θ) in (3.153) are elements of SU(2), since L†L = I .
Accordingly, SU(2) is a two-fold cover of SO(3).
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Light cones are described by null-rays kb, satisfying

s2 = detK = 0. (3.154)

Their embedding (3.142) is therefore in rank-one matrices12 (3.142) of the form

Z =
(

ξξ̄ ηξ̄
η̄ξ ηη̄

)
=
(

ξ̄
η̄

) (
ξ η
)
, (3.155)

whose determinant is identically equal to zero. Here, right hand side expresses the
spinor and its transpose indicated by a primed index

κA = ( ξ η
)
, κA′ =

(
ξ
η

)
(ξ, η εC) (3.156)

following the convention, to using unprimed and primed indices for a row and,
respectively, column vector notation. Accordingly, we write

Z AA′ = κAκ̄A′
, (3.157)

where κ̄A′
is the Hermitian transpose of κA.

Let κ denote the row vector κA in (3.156). Then (3.148) implies a corresponding
Lorentz transformation of a spinor κ,

Z → (κL)† (κL) : κ → κL . (3.158)

Rotation over 2π in real space now has a corresponding sign change in the spinor.
Now write the determinant of K = K AA′

in (3.142) as

det K = K 11K 22 − K 21K 12 ≡ εABεA′ B ′ K AA′
K B B ′

(3.159)

in terms of the anti-symmetric metric spinor εAB = −εB A, εA′ B ′ = −εB ′ A′ with ε01 =
ε0′1′ = 1, i.e.,

εAB =
(

0 1
−1 0

)
, εA′ B ′ =

(
0 1

−1 0

)
. (3.160)

Then

εABεA′ B ′ K AA′
K B B ′ = gabkakb : εABεA′ B ′ = gab (3.161)

with implicit reference to the basis elements (3.170) to be discussed below. In (3.159),
note that the incomplete contraction εA′ B ′ K AA′

K B B ′
is an antisymmetric tensor in

12The image space is comprised of multiples of one vector
(
ξ η
)†.
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our two-dimensional spinor space C2. Since the antisymmetric elements of L(2,C)

are spanned by εAB ,

εA′ B ′ K AA′
K B B ′ = 1

2
εABdet K , (3.162)

taking into account (3.159) and εABεAB = 2.
The metric spinor allows lowering and raising indices

κA = κBεB A, κB = εB AκA. (3.163)

Lowering and raising is by multiplication from the left and, respectively, right. The
same rules apply to A′. Since the metric spinor is skew symmetric, we automatically
have that spinors are null,

κAκA = κAκBεB A = κ2κ1 − κ1κ2 = 0. (3.164)

In practical terms, the spinor κA is a square root of a null-vector kb in Z AA′
.

Consider two null-vectors kb and lb represented by spinors oA and ιA. Then

kclc =
(

oAōA′)
(ιA ῑA′) = (oAιA

) (
oAιA

)† = ∣∣oAιA

∣∣2 ≥ 0, (3.165)

whereby kclc ≥ 0, i.e., kb and lb share the same direction in time, e.g., are future-
oriented. Choosing two distinct null-vectors, we may insist

kclc = 1 : oAιA = 1. (3.166)

As members of C2, choosing such pair as a basis gives

εAB = oAιB − ιAoB =
(

0 1
−1 0

)
. (3.167)

To be explicit, consider

oA = ( 1 0
)
, ιA = ( 0 1

)
. (3.168)

Then ιA = εABιB = (1 0
)
, whereby (3.166) is satisfied, and

oAōA′ =
(
1 0
0 0

)
, ιA ῑA′ =

(
0 0
0 1

)
,

oA ῑA′ =
(
0 1
0 0

)
, ιAōA′ =

(
0 0
1 0

)
.

(3.169)
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The result identifies the Pauli spin-matrices with metric spin-tensors

σAA′
t = oAōA′ + ιA ῑA′

, σAA′
x = oA ῑA′ + ιAōA′

,

σAA′
y = i

(
oA ῑA′ − ιAōA′)

, σAA′
z = oAōA′ − ιA ῑA′

.

(3.170)

In the notation of linear algebra, note that ōA′ = (oA)†, etc. It recovers Pauli matrices
in (3.142) as a basis of four-vectors in 3+1 Minkowski space. Note that (3.170)
also introduces an algebraic map of a complex second-rank spinor, e.g., φAA′ , to
four-vectors with possibly complex valued components.

3.9 Eigenvectors of Hermitian Matrices

For n × n Hermitian matrix A, A† = A, let (λ, a) denote one of its eigenvalue-
eigenvector pairs. The latter always exists by virtue of eigenvalue solutions to (3.91).
Let

â = a√
a†a

(3.171)

denote the normalized eigenvector, satisfying â†a = 1. For instance, we have

a =
(
1
1

)
→ â = 1√

2

(
1
1

)
. (3.172)

Let u be any vector. We may decompose it orthogonally as

u = u|| + u⊥. (3.173)

Here, u|| and u⊥ are parallel and orthogonal to a, obtained from the projection
operator

P = I − ââ† : u⊥ = Pu, u|| = (I − P)u. (3.174)

Geometrically, the image space of P A consists of all vectors orthogonal to u||,

ImP A = (u||
)⊥

. (3.175)

We also note that u⊥ is in the plane with normal a. The expansion (3.173) hereby
satisfies

u = (I − P)u + Pu, (3.176)
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and hence

Au = λ(I − P)u + APu. (3.177)

Since u|| = (I − P)u, being parallel to a, it is an eigenvector of A with eigenvalue
λ. Since u in (3.177) is arbitrary, it follows that

A = λ(I − P) + AP. (3.178)

Since A is Hermitian with λ real, and P† = P , we have

λ(I − P) + AP = A = A† = λ(I − P) + P A† = λ(I − P) + P A. (3.179)

We thus find that A and P commute, i.e.,

AP = P A. (3.180)

It follows that in particular that

ImP A = PA = (u||
)⊥

. (3.181)

Since I and A commute trivially, also (I − P) and A commute: [(I − P), A] = 0 and
the Hermitian matrix A operates completely independently on the one-dimensional
subspace of vectors along an eigenvector a and on the subspace of vectors in the
n − 1 dimensional hypersurface normal to a. Equation (3.180) also shows that P A
is Hermitian:

(P A)† = A†P† = AP = P A. (3.182)

Therefore, we can repeat all the steps (3.171–3.180) for an eigenvector a′ of A1 =
AP . Since APa′ = P Aa′, this eigenvector is in the image space of P , and hence it
is orthogonal to a. By this orthogonality, P ′ associated with a′ commutes with P . It
follows that A1P ′ = AP P ′ is Hermitian. Continuing in this fashion, we ultimately
arrive at n mutually orthogonal eigenvectors a, a′, · · · , a′′···′.

Example 3.7. The 2 × 2 Hermitian matrix

A =
(
2 1
1 0

)
(3.183)

has eigenvalue-eigenvector pairs {(λ1, a1) , (λ2, a2)} with
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{
1 ± √

2,

(
1 ± √

2
1

)}
. (3.184)

Wewish to view the operation of A on a vectoru as the sumof linearly independent
operations associated with the directions a1 and a2. We first rewrite (3.185) in terms
of the equivalent orthonormal pair

â1 = a1√
a†1a1

, â2 = a2√
a†2a2

(3.185)

following (3.171). The
{
â1, â2

}
form an orthonormal basis (a complete set of ortho-

normal vectors) for vectorsu in our two-dimensional space. They satisfy the property

â†i â j = δi j =
{
1 (i = j)
0 (i �= j)

(3.186)

Here, δi j is the commonly used Kronecker delta symbol. For (3.183), we have

â1,2 = 1

2(2 ± √
2)

(
1 ± √

2
1

)
. (3.187)

For an arbitrary vector, we can write

u = αâ1 + βâ2. (3.188)

Multiplication by â1,2 from the left obtains

a†1u = αa†1â1 + βâ†1a2 = α (3.189)

a†2u = αa†2â1 + βâ†2a2 = β. (3.190)

Substitution of (3.190) into (3.188) gives the explicit expression

u = â1â
†
1u + â2â

†
2u. (3.191)

This represents the Gram-Schmidt orthogonal decomposition of uwith respect to the
eigenvectors of A. Accordingly, Au satisfies

Au = αAâ1 + β Aâ2 = αλ1â1 + βλ2â2 = λ1â1â
†
1u + λ2â2â

†
2u. (3.192)

Since u is arbitrary, we conclude
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A = λ1â1â
†
1 + λ2â2â

†
2. (3.193)

The same follows from A = AI , I = â1â
†
1 + â2â

†
2.

Example 3.8. For � in (3.80) we have, according to (3.124, 3.125), a normal-
ized pair of eigenvalues-eigenvectors given by

{
e±μ,

1√
2

(
1

±1

)}
. (3.194)

Following (3.194), we consider

λ1â1â
†
1 = eμ√

2
(1 1) 1√

2

(
1
1

)
= eμ√

2

(
1 1
1 1

)
,

λ2â2â
†
2 = e−μ√

2
(1 –1) 1√

2

(
1

−1

)
= e−μ√

2

(
1 −1

−1 1

)
.

(3.195)

Adding these expressions gives

eμ

2

(
1 1
1 1

)
+ e−μ

2

(
1 −1

−1 1

)
= 1

2

(
eμ + e−μ eμ − e−μ

eμ − e−μ eμ − e−μ

)
, (3.196)

i.e., we recover our definition of a Lorentz boost,

A =
(
cosh μ sinh μ
cosh μ sinh μ

)
. (3.197)

3.10 QR Factorization

In viewing an n × m matrix A as a linear map from the vector space Cm to C
n , we

frequently encounter the question if A is imaging C
m onto all of Cn or just a linear

subspace of it. Similarly, A maymap all nonzero vectors fromC
m to nonzero vectors

or map some linear subspace of Cm to the origin 0 in Cn .
To streamline this discussion, we introduce the image of A, defined by the linear

vector space

Im A = {v | v = Au ,u εCm} (3.198)

and the kernel of A, also known as the null space of A, defined by the linear vector
space
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Ker A = {u | Au = 0,u εCm}. (3.199)

The image space is supported by the column vectors a1, a2, . . . , am of A, e.g., for
a 2 × 2 matrix

A =
⎛
⎝

⎞
⎠ = (a1 a2) , (3.200)

The image space forms out of linear combinations

Au = u1a1 + u2a2 + · · · + umam (3.201)

by choice of u in Cm ,

u =

⎛
⎜⎜⎝

u1

u2

·
um

⎞
⎟⎟⎠ . (3.202)

The row space is supported by the row vectors b1, b2, · · · , bn of A, e.g., for a
2 × 2 matrix

A =
⎛
⎝

⎞
⎠ =

(
bT
1

bT
2

)
(3.203)

that forms out of the linear combinations

r = v1b1 + v2b2 + · · · + vnbn. (3.204)

by choice of v in Cm ,

v =

⎛
⎜⎜⎝

v1
v2
·
vn

⎞
⎟⎟⎠ . (3.205)

Following (3.199), the kernel of A consists of the vectors that are orthogonal to all
of its row vectors bi (i = 1, 2, . . . n), commonly written as

Ker A = (Im A†)⊥ , (3.206)

where ⊥ refers to orthogonality with respect to the inner product a · b = a†b for
vectors in Cm .
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3.10.1 Examples of Image and Null Space

Let A be a nonsingular 2 × 2 matrix. We read off the columns vectors following
(3.200), e.g.,

A =
(
1 2
2 0

)
: a1 =

(
1
2

)
, a2 =

(
2
0

)
. (3.207)

Hence, Im A is defined by all vectors obtained from linear combinations of the a1
and a2 in (3.207). We say

Im A = span{a1, a2} = span

{(
1
2

)
,

(
1
0

)}
. (3.208)

Evidently, we have

Im A = R
2 (3.209)

(or C2) since the a1 and a2 in (3.207) point in different directions, whereby they are
linearly independent. This may also be inferred from the fact that det A �= 0.

Alternatively, consider the singular matrix

B =
(
1 2
2 4

)
: a1 =

(
1
2

)
, a2 =

(
2
4

)
. (3.210)

In this event, the second column satisfies

a2 = 2a1 (3.211)

and the two columns are linearly dependent, as follows also from the fact that

det B = 0. (3.212)

Consequently, the image space is the one dimensional subspace given by

Im B = span{a1, a2} = span

{(
1
2

)}
. (3.213)

Proceeding with (3.207) above, we have, following (3.203), the row vectors

A =
(
1 2
2 0

)
: b1 =

(
1
2

)
, b2 =

(
2
0

)
. (3.214)

They happen to be the same as the column vectors since A is real-symmetric. Ker A is
defined by vectors that are orthogonal to both b1 and b2. Since b1 and b2 are linearly
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independent, we have

Ker A = 0. (3.215)

For the alternative (3.210), we have the row vectors

B =
(
1 2
2 4

)
: b1 =

(
1
2

)
, b2 =

(
2
4

)
. (3.216)

In this event, the second row satisfies b2 = 2b1, whereby they are linearly dependent.
Consequently, the null space of A is the one dimensional subspace, given by the
vectors orthogonal to b1, i.e.,

Ker B =
(
1
2

)⊥
= span

{(−2
1

)}
. (3.217)

The matrices (3.207) and (3.210) satisfy, respectively,

dim Im A + dimKer A = 2 + 0 = 2,

dim Im B + dimKer B = 1 + 1 = 2.
(3.218)

3.10.2 Dimensions of Image and Null Space

In what follows, we will restrict our discussion to square matrices of size n × n.
In this event, the dimension dim Im A of (3.198) is n whenever A is of full rank,
i.e., when det A �= 0. Complementary to this, we have that dimKer A of (3.199)
is 0 whenever A is of full rank, i.e., when det A �= 0. However, dim Im A < n and
dimKer A > 0 when det A = 0.

The matrices (3.207) and (3.210) exemplify a general relationship of n × n matri-
ces, satisfying

dim Im A + dimKer A = n (3.219)

To derive this relationship, we begin by observing the invariance

Im A = Im A′ (3.220)

for A′ = (a′
1 a

′
2 . . . a′

n

)
obtained from A = (a1 a2 . . . an) by changing a column

vector a j by linear superposition with any of the other column vectors. Specifically,
this may be by choice of 1 ≤ j ≤ n and a linear superposition
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a′
i = ai (i �= j), a′

j = a j −
j−1∑
i=1

μiai . (3.221)

This transformation has a corresponding upper triangular transformation matrix U
such that A′ = AU . For instance, when n = 3 and j = 2, 3

U2 =
⎛
⎝ 1 −μ1 0
0 1 0
0 0 1

⎞
⎠ , U3 =

⎛
⎝ 1 0 −μ′

1
0 1 −μ′

2
0 0 1

⎞
⎠ . (3.222)

Since the AU2 and AU2U3 form as superpositions of the column vectors of A, their
image space remains Im A.

The Gram-Schmidt orthogonalization of a j from A to mutually orthoginalized ai

(1 ≤ i ≤ j − 1) satisfies

a′
j = a j −

j−1∑
i=1

μiai , μi = a†jai

a†i ai

. (3.223)

Here, we omit projections μiai whenever ai = 0. Performing (3.223) for each j =
2, 3, . . . consecutively up to j = n produces A′′···′ with column vectors that are all
orthogonal. For 2 × 2 matrix A, the Gram-Schmidt orthogonalization of its colum
vectors obtains in one step

A′ = AU2 =
⎛
⎝

⎞
⎠
(
1 −μ1

0 1

)
, (3.224)

If A has full rank, then so has A′. This may also be seen from the product rule

det A′ = det A detU = det A, (3.225)

since detU = 1. The determinant of A′ is nonzero iff the determinant of A is nonzero.
For a 3×3 matrix, we apply (3.222). The product U = U2U3 is upper triangular,

U = U2U3 =
⎛
⎝ 1 −μ1 −μ′

1 + μ1μ
′
2

0 1 −μ′
2

0 0 1

⎞
⎠ . (3.226)

The above is readily extended to n × n matrices

A′ = AU = AU2U3 · · · Un (3.227)

whose columns are mutually orthogonal, whereU is upper triangular with unit deter-
minant.
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If det A = 0, some of the columns of A′ are zero, i.e.,

A′ = (a1 a2 . . . 0 . . . a j . . . 0 . . . an
)
. (3.228)

The null vectors of A′ are of the form u′ = (0 · · · 1 · · · 0)T , where 1 appears at a
position j where a j = 0. Since U is invertible, A = A′U−1, and hence u = Uu′ is a
null vector of A. Our theorem (3.219) now readily follows: the number of non-zero
columns in A′ define the dimension of the image space of A and the number of zero
columns of A′ define the dimension of the null space of A.

Example 3.9. Consider the non-singular matrix

A =

⎛
⎜⎜⎝
1 2 1

2 1 0

0 2 3

⎞
⎟⎟⎠ . (3.229)

The first and second steps in (3.223) produce, respectively,

A′ = AU2 =

⎛
⎜⎜⎝
1 6/5 1

2 −3/5 0

0 2 3

⎞
⎟⎟⎠ , U2 =

⎛
⎜⎜⎝
1 −4/5 0

0 1 0

0 0 1

⎞
⎟⎟⎠ , (3.230)

A′′ = A′U3 =

⎛
⎜⎜⎝
1 6/5 − 20

29

2 −3/5 10
29

0 2 15
29

⎞
⎟⎟⎠ , U3 =

⎛
⎜⎜⎝
1 0 −1/5

0 1 − 36
29

0 0 1

⎞
⎟⎟⎠ . (3.231)

It follows that⎛
⎜⎜⎝
1 6/5 − 20

29

2 −3/5 10
29

0 2 15
29

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 2 1

2 1 0

0 2 3

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 −4/5 23

29

0 1 − 36
29

0 0 1

⎞
⎟⎟⎠ , (3.232)

where the second matrix on the right hand side is U = U2U3. Similarly, con-
sider the singular matrix

B =

⎛
⎜⎜⎝
1 2 1

2 4 0

0 0 3

⎞
⎟⎟⎠ . (3.233)
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The first and second step in (3.223) produce, respectively,

B ′ = BU2

⎛
⎜⎜⎝
1 0 1

2 0 0

0 0 3

⎞
⎟⎟⎠ , U2 =

⎛
⎜⎜⎝
1 −2 0

0 1 0

0 0 1

⎞
⎟⎟⎠ , (3.234)

B ′′ = B ′U3 =

⎛
⎜⎜⎝
1 0 4/5

2 0 −2/5

0 0 3

⎞
⎟⎟⎠ , U3 =

⎛
⎜⎜⎝
1 0 −1/5

0 1 0

0 0 1

⎞
⎟⎟⎠ . (3.235)

It follows that
⎛
⎜⎜⎝
1 0 4/5

2 0 −2/5

0 0 3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 2 1

2 4 0

0 0 3

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1 −2 −1/5

0 1 0

0 0 1

⎞
⎟⎟⎠ , (3.236)

where the second matrix on the right hand side is U = U1U2.

Comparing (3.232–3.236), we see that A in (3.229) has full rank with the trivial
null space Ker A = 0, whereas B in (3.233) is of rank 2 with the nontrivial null space
given by the second column of U = U2U3, i.e.,

Ker B = span U

⎛
⎝0
1
0

⎞
⎠ = span

⎛
⎝−2

1
0

⎞
⎠ . (3.237)

3.10.3 Q R Factorization by Gram-Schmidt

The above is more commonly used to derive the Q R factorization of a matrix upon
including normalization in each step of the Gram-Schmidt procedure,

a′
j → â j = a′

j√
(a′)†a′ (3.238)

if a′
j �= 0 (otherwise, we skip this step). The result A = Q R has column vectors of

Q forming an orthonormal bases for Im A and R upper triangular. If A is square and
invertible, then Q is unitary, Q†Q = I , whereby R = Q†A.
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Example 3.10. Consider the Q R factorizations of the non-singular 2 × 2
matrix. Let A′ = AU2 be the outcome of the Gram-Schmidt procedure and D2

denote the diagonal matrix D2 containing the norms its column vectors. Then
A′ = Q D2 defines

(
1 2

2 1

)
=
⎛
⎝

1√
5

2√
5

1√
5

− 1√
5

⎞
⎠
⎛
⎝

√
5 4√

5

0 3√
5

⎞
⎠ ≡ Q R. (3.239)

For a singular matrix, we similarly obtain

(
1 2

2 4

)
=
⎛
⎝

1√
5

2√
5

2√
5

− 1√
5

⎞
⎠
(√

5 2
√
5

0 0

)
. (3.240)

For the A and B in (3.229) and (3.233), the Q R factorizations are

A =

⎛
⎜⎜⎝
1/5

√
5 6

145

√
145 − 4

29

√
29

2/5
√
5 − 3

145

√
145 2

29

√
29

0 2
29

√
145 3

29

√
29

⎞
⎟⎟⎠

⎛
⎜⎜⎝

√
5 4/

√
5 1/

√
5

0 1/
√
145 36

145

√
145

0 0 5
29

√
29

⎞
⎟⎟⎠ , (3.241)

B =

⎛
⎜⎜⎝
1/

√
5 2/

√
5 0

2/
√
5 −1/

√
5 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

√
5 4/

√
5 1/

√
5

0 3/
√
5 2/

√
5

0 0 3

⎞
⎟⎟⎠ . (3.242)

Table3.1 summarizes this discussion.

3.11 Exercises

3.1. Let

a =
⎛
⎝ 1
2
0

⎞
⎠ , b =

⎛
⎝0
1
2

⎞
⎠ , c =

⎛
⎝ 2
0
1

⎞
⎠ . (3.243)

Calculate
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Table 3.1 Matrices and some symmetry properties
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(i) : a × b · c, a · b × c; (i i) : a × (b × c), (a × b) × c. (3.244)

Compare your answers to (i) and explain.

3.2. Consider a Cartesian coordinate system (x, y, z) and rotation of a vector r about
the z-axis with angular velocity ω = �iz , where iz denotes the unit vector along the
z-axis. The velocity of r satisfies v = ω × r, where × denotes the outer product.
(i) If r = 2ix + 3iz , calculate the velocity v.
(i i) Show that |v| = �σ, where σ denotes the distance to the axis of rotation.

3.3. Derive the equivalent expression for the dip angle (3.245), given by

sin θ = Mσ2ωp

J
= M2gσ3

J 2
=
( g

σ

) (σ

b

)4 1

ω2
. (3.245)

3.4. For the each of the following transformations in the two-dimensional plane, state
which are projections, reflections and rotations:

A1 =
(
1 0
0 0

)
, A2 =

(
1 0
0 1

)
, A3 =

(
1 0
0 −1

)
, A4 =

(
0 1
1 0

)
,

A5 = 1√
2

(
1 −1
1 1

)
.

(3.246)

3.5. Show that complex numbers z = x + iy can be written in terms of the matrices

A(z) =
(

x −y
y x

)
(3.247)

satisfying A(z)A(w) = A(zw) by the rules of matrix multiplication. In particular,
show that for z = i , (3.247) satisfies I + A2 = 0, where I denotes the identifymatrix
(z = 1).

3.6. Consider the matrix

A =
(
1 2
2 0

)
. (3.248)

Compute the, determinant, the eigenvalues and eigenvectors.

3.7. Permutation of the x- and y-coordinates is described by

z = x ix + yiy → w = yix + ziy, w = y + i x . (3.249)
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Show that w(z) is not analytic in z, i.e., the Cauchy-Riemann relations are not satis-
fied. Derive the equivalent 2 × 2 matrix equation for x ′ = y and y′ = x .

3.8. Consider the matrix

A =
(
1 2
2 1

)
. (3.250)

Obtain the eigenvalues λi and eigenvectors ai (i = 1, 2) and decompose A in the
form

A = λ1A1 + λ2 A2, Ai = âi â
†
i , (3.251)

where hat refers to normalization to unit norm.

3.9. Show the orthogonality (3.119).

3.10. If A is both unitary and Hermitian, show that A = A−1.

3.11.Consider the Householder matrix (3.139). Show that H is Hermitian (H † = H)

and unitary (H †H = I ), whence it is involuntary (H is its own inverse): H 2 = I . In
two dimensions, determine its eigenvalue-eigenvector pairs for a general direction
u and interpret the result geometrically. What happens in three dimensions to the
multiplicity of the eigenvalues?

3.12. Let A be Hermitian, i.e., A† = A. Show that A is diagonalizable according to

A = U�U †, (3.252)

where U is the unitary matrix satisfying U †U = I . Compute U for A in (3.250).
[Hint : Compose U from the eigenvectors of A.]

3.13. Consider the matrix

A =
(
1 2
2 4 + a

)
. (3.253)

Compute the determinant and determine the condition number of A, defined by the
ratio of the maximal to the minimal square root of the eigenvalues of A†A. [Hint :
use (3.252).] What happens when a approaches zero? Compute the solution to the
system of equations

Au = v. (3.254)

Show that the solution is regular, respectively, ill-behaved as a approaches zerowhen
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v =
(
1
2

)
,

(−2
1

)
. (3.255)

What is the condition number of A2. How does it generalize to An (n ≥ 3)?

3.14. Show that U (1) can be identified with the tangents of complex numbers on
the unit circle S1. [Hint: Express elements of S1 by eiθ and generalize the Taylor
expansion θ,

eiθ = 1 + iθ + O
(
θ2
)
, (3.256)

about the identity θ = 0 to arbitrary θ.]13

3.15. Show that U (1) is abelian:

AB − B A = 0 (A, B ε U (1)) . (3.257)

3.16. Show that the elements of U (2) are of the form

A = eiθ

(
z −w̄

w z̄

)
, zz̄ + ww̄ = 1 (3.258)

and that they are in general not Hermitian.

3.17. Following (3.258), specialize to det A = 1.14 Give a general representation of
SU (2) in terms of traceless 2 × 2matrices (the sumof diagonal elements being zero).
Determine the number of degrees of freedom in view of the conditions A†A = I
and det A=1. Show that these traceless matrices are Hermitian and derive their
eigenvalues.

3.18. Illustrate a double cover of S1 by way of a curve on a two-torus.

3.19. From the definition of the inner product of two arbitrary spinors oA and ιA and
the definition of lowering indices, show that

oAιA = −oAιA. (3.259)

13S1 is illustrative of a one-dimensional manifold which is compact and simply connected. It has
nontrivial topology, since the winding number of a loop in S1 can take any value in Z. By homotopy,
the topology of S1 is the same as that of the punctured disk 0 < |z| ≤ 1.
14As a result, we say SU (2) ⊂ U (2) ∼= SU (2) × U (1).
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3.20. In (3.165), obtain ιA from a rotation of oA and evaluate their inner product as
a function of the rotation angle. Next, consider a spinor basis

oA = 1√
2

(
1 i
)
, ιA = 1√

2

(
i 1
)
. (3.260)

Show thatoAιA = 1 in (3.166).Rank-onematrices of the formoA ῑA′
maybe expanded

as15

oA ῑA′ = 1

2

[(−i
1

) (
1 i
)]T

=
(−i 1

1 i

)T

=
(−i 1

1 i

)
. (3.261)

where T denotes the ordinary matrix transpose. Express the Pauli spin matrices in
this new basis similar to (3.170).

3.21. Occasionally, we allow coordinates to become complex. For reference, recall
the line-element

ds2 = dx2 + dy2 = dr2 + r2dθ2 (3.262)

of the Euclidean plane, expressed in Cartesian and, respectively, polar coordinates.
The Euclidean is flat, like an ordinary sheet of paper. Consider16

ds2 = −x2dt2 + dx2. (3.263)

Show that (3.263) again is the line-element of a flat two-surface using analytic con-
tinuation in t .17

3.22. Consider the matrix

A =
(
1 2
2 4 + a

)
. (3.264)

(i) Obtain the image space and the null space of the matrix for all a. [Hint : Distin-
guish between a = 0 and a �= 0.];
(i i) Apply Gram-Schidt orthogonalization to obtain A′ = AU , where the column
factors of A′ are orthogonal and U is upper triangular;
(i i i) Obtain the Q R factorization of A.

15The symbols oA ῑA′
and ῑA′

oA are the same, i.e., there is no ordering between unprimed and
primed indices. Only upon expansion into a matrix, a choice of ordering is made.
16A so-called Rindler space.
17It can be shown that flatness is preserved under analytic continuation, whereby the Lorentz metric
ds2 = −dt2 + dx2 = (idt)2 + dx2 is trivially flat.
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3.23. Following (3.239), obtain the QR factorizations of the 2 × 2 rotation matrix
R(ϕ) and the Lorentz boost �(μ) of Example 3.8.

3.24. Obtain the QR factorizations of general 2 × 2 matrices that are (a) Hermitian
or (b) unitary.

3.25. Let i = 0, 1, 2, 3 correspond to (t, x, y, z). For the Pauli spin matrices (3.143),
show or calculate
(i) The σi are involutory: σ2

1 = σ2
2 = σ2

3 = −iσ1σ2σ3 = I ; det σi = −1 for i =
1, 2, 3 and they are trace-free, Tr(σi ) = 0.
(i i) The σi satisfy σiσ j + σ jσi = 2δi j I (i, j = 1, 2, 3).
(i i i) The σa (a = 0, 1, 2, 3) form a basis of the 2 × 2 Hermitian matrices.
(iv) The eigenvalues and eigenvectors of the σi (i = 1, 2, 3).
(v) The commutator [σi ,σ j ] for all i, j = 1, 2, 3.
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