
Chapter 8
Coupled Principal Component Analysis

8.1 Introduction

Among neural network-based PCA or MCA algorithms, most previously reviewed
do not consider eigenvalue estimates in the update equations of the weights, except
an attempt to control the learning rate based on the eigenvalue estimates [1]. In [2],
Moller provided a framework for a special class of learning rules where eigen-
vectors and eigenvalues are simultaneously estimated in coupled update equations,
and has proved that coupled learning algorithms are solutions for the speed stability
problem that plagues most noncoupled learning algorithms. The convergence speed
of a system depends on the eigenvalues of its Jacobian, which vary with the
eigenvalues of the covariance matrix in noncoupled PCA/MCA algorithms [2].
Moller showed that, in noncoupled PCA algorithms, the eigen motion in all
directions mainly depends on the principal eigenvalue of the covariance matrix [2].
Numerical stability and fast convergence of algorithms can only be achieved by
guessing this eigenvalue in advance [2]. In particular for chains of principal
component analyzers which simultaneously estimate the first few principal eigen-
vectors [3], choosing the right learning rates for all stages may be difficult. The
problem is even more severe for MCA algorithms. MCA algorithms exhibit a wide
range of convergence speeds in different eigen directions, since the eigenvalues of
the Jacobian cover approximately the same range as the eigenvalues of the
covariance matrix. Using small enough learning rates to still guarantee the stability
of the numerical procedure, noncoupled MCA algorithms may converge very
slowly [2].

In [2], Moller derived a coupled learning rule by applying Newton’s method to a
common information criterion. A Newton descent yields learning rules with
approximately equal convergence speeds in all eigen directions of the system.
Moreover, all eigenvalues of the Jacobian of such a system are approximately.
Thus, the dependence on the eigenvalues of the covariance matrix can be eliminated
[2]. Moller showed that with respect to averaged differential equations, this
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approach solves the speed stability problem for both PCA and MCA rules.
However, these differential equations can only be turned into the aforementioned
online rules for the PCA but not for the MCA case, leaving the more severe MCA
stability problem still unresolved [2]. Interestingly, unlike most existing adaptive
algorithms, the coupled learning rule for the HEP effectively utilizes the latest
estimate of the eigenvalue to update the estimate of the eigenvector [4]. Numerical
examples in [2] showed that this algorithm achieves fast and stable convergence for
both low-dimensional data and high-dimensional data. Unfortunately, there has
been no report about any explicit convergence analysis for the coupled learning
rule. Thus, the condition for the convergence to the desired eigen pair is not clear;
e.g., the region within which the initial estimate of the eigen pair must be chosen to
guarantee the convergence to the desired eigen pair has not yet been known [4].

Recently, Tuan Duong Nguyen et al. proposed novel algorithms in [4] for given
explicit knowledge of the matrix pencil (Ry, Rx). These algorithms for estimating
the generalized eigen pair associated with the largest/smallest generalized eigen-
value are designed (i) based on a new characterization of the generalized eigen pair
as a stationary point of a certain function and (ii) by combining a normalization step
and quasi-Newton step at each update. Moreover, the rigorous convergence analysis
of the algorithms was established by the DDT approach. For adaptive implemen-
tation of the algorithms, Tuan Duong Nguyen et al. proposed to use the expo-
nentially weighted sample covariance matrices and the Sherman–Morrison–
Woodbury matrix-inversion lemma.

The aim of this chapter was to develop some coupled PCA or coupled gener-
alized PCA algorithms. First, on the basis of a special information criterion in [5],
we propose a coupled dynamical system by modifying Newton’s method in this
chapter. Based on the coupled system and some approximation, we derive two
CMCA algorithms and two CPCA algorithms; thus, two unified coupled algorithms
are obtained [6]. Then, we propose a coupled generalized system in this chapter,
which is obtained by using the Newton’s method and a novel generalized infor-
mation criterion. Based on this coupled generalized system, we obtain two coupled
algorithms with normalization steps for minor/principal generalized eigen pair
extraction. The technique of multiple generalized eigen pair extraction is also
introduced in this chapter. The convergence of algorithms is justified by DDT
system.

In this chapter, we will review and discuss the existing coupled PCA or coupled
generalized PCA algorithms. Two coupled algorithms proposed by us will be
analyzed in detail. The remainder of this chapter is organized as follows. An
overview of the existing coupled PCA or coupled generalized PCA algorithms is
presented in Sect. 8.2. An unified and coupled self-stabilizing algorithm for minor
and principal eigen pair extraction algorithms are discussed in Sect. 8.3. An
adaptive generalized eigen pair extraction algorithms and their convergence anal-
ysis via DDT method are presented in Sect. 8.4, followed by summary in Sect. 8.5.
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8.2 Review of Coupled Principal Component Analysis

8.2.1 Moller’s Coupled PCA Algorithm

Learning rules for principal component analysis are often derived by optimizing
some information criterion, e.g., by maximizing the variance of the projected data
or by minimizing the reconstruction error [2, 7]. In [2], Moller proposed the fol-
lowing information criterion as the starting point of his analysis

p ¼ wTCwk�1 � wTwþ ln k: ð8:1Þ

where w denotes an n-dimensional weight vector, i.e., the estimate of the eigen-
vector, k is the eigenvalue estimate, and C = E{xxT} is the n� n covariance matrix
of the data. From (8.1), by using the gradient method and the Newton descent,
Moller derived a coupled system of differential equations for the PCA case

_w ¼ Cwk�1 � wwTCwk�1 � 1
2
w ð1� wTwÞ; ð8:2Þ

_k ¼ wTCw� wTwk; ð8:3Þ

and another for MCA case

_w ¼ C�1wkþwwTCwk�1 � 1
2
w ð1þ 3wTwÞ; ð8:4Þ

_k ¼ wTCw� wTwk: ð8:5Þ

For the stability of the above algorithms, see [2]. It has been shown that for the
above coupled PCA system, if we assume kj � k1, the system converges with
approximately equal speeds in all its eigen directions, and this speed is widely
independent of the eigenvalues kj of the covariance matrix. And for the above
coupled MCA system, if we assume k1 � kj, then the convergence speed is again
about equal in all eigen directions and independent of the eigenvalues of C.

By informally approximating C � xxT, the averaged differential equations of
(8.2) and (8.3) can be turned into an online learning rule:

_w ¼ c yk�1ðx� wyÞ � 1
2
w ð1� wTwÞ

� �
; ð8:6Þ

_k ¼ cðy2 � wTwkÞ: ð8:7Þ

According to the stochastic approximation theory, the resulting stochastic differ-
ential equation has the same convergence goal as the deterministic averaged equation
if certain conditions are fulfilled, the most important of which is that a learning rate
decreases to zero over time. The online rules (8.6) and (8.7) can be understood as a
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learning rule for the weight vector w of a linear neuron which computes its output
y from the scalar product of weight vector and input vector y = wTx.

In [2], the analysis of the temporal derivative of the (squared) weight vector
length in (8.6) has shown that the weight vector length may in general be fluctuating.
By further approximating wTw � 1 (which is fulfilled in the vicinity of the stationary
points) in the averaged systems (8.2) and (8.3), the following system can be derived

_w ¼ Cwk�1 � wwTCwk�1; ð8:8Þ
_k ¼ wTCw� k: ð8:9Þ

This learning rule system is known as ALA [1]. The eigenvalues of the system’s
Jacobian are still approximately equal and widely independent of the eigenvalues of
the covariance matrix. The corresponding online system is given by

_w ¼ cyk�1ðx� wyÞ; ð8:10Þ
_k ¼ cðy2 � kÞ: ð8:11Þ

It is obvious that ALA can be interpreted as an instance of Oja’s PCA rule.
From (8.4) and (8.5), it has been shown that having a Jacobian with eigenvalues

that are equal and widely independent of the eigenvalues of the covariance matrix
appears to be a solution for the speed stability problem. However, when attempting
to turn this system into an online rule, a problem is encountered when replacing the
inverse covariance matrix C−1 by a quantity including the input vector x. An
averaged equation linearly depending on C takes the form _w ¼ f ðC;wÞ ¼
f ðE xxTf g;wÞ¼ Eff ðxxT;wÞg. In an online rule, the expectation of the gradient is
approximated by slowly following _w ¼ cf ðxxT;wÞ for subsequent observations of
x. This transition is obviously not possible if the equation contains C−1. Thus, there
is no online version for the MCA systems (8.4) and (8.5). Despite using the
ALA-style normalization, the convergence speed in different eigen directions still
depends on the entire range of eigenvalues of the covariance matrix. So the speed
stability problem still exists.

8.2.2 Nguyen’s Coupled Generalized Eigen pairs Extraction
Algorithm

In [8], Nguyen proposed a generalized principal component analysis algorithm and
its differential equation form is given as:

_w ¼ R�1
x Ryw� wHRyww: ð8:12Þ
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Let W = [w1, w2,…, wN], in which w1, w2,…, wN are the generalized eigen-
vectors of matrix pencil (Ry, Rx). The Jacobian in the stationary point is given as:

Jðw1Þ ¼ @ _w
@wT w¼w1j ¼ R�1

x Ry � k1I � 2k1w1wH
1 Rx: ð8:13Þ

Solving for the eigenvectors of J can be simplified to the solving for the
eigenvector of its similar diagonally matrix J* = P−1JP, since J* and J have the
same eigenvectors and eigenvalues, and the eigenvalues of diagonal matrix J* are
easy to be obtained. Considering WHRxW = I, let P = W. Then we have
P−1=WHRx. Thus, it holds that

J�ðw1Þ ¼ WHRx R�1
x Ry � k1I � 2k1w1wH

1 Rx
� �

W

¼ K� k1I � 2k1WHRxw1 WHRxw1
� �HDy

Dx
:

ð8:14Þ

Since WHRxw1 = e1 = [1, 0,…, 0]T, (8.14) will be reduced to

J�ðw1Þ ¼ K� k1I � 2k1e1eH1 : ð8:15Þ

The eigenvalues a determined from det ðJ� � aIÞ ¼ 0 are given as:

a1 ¼ �2k1; aj ¼ kj � k1; j ¼ 2; . . .;N: ð8:16Þ

Since the stability requires a\0 and thus k1 � kj; j ¼ 2; 3; . . .; n, it can be seen
that only principal eigenvector–eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers, which can still testify that (8.12) is a
generalized PCA algorithm. In the practical signal processing applications, it
always holds that k1 � kj; j ¼ 2; 3; . . .; n. Thus, aj � −k1, i.e., the eigen motion in
all directions in algorithm (8.12) depends on the principal eigenvalue of the
covariance matrix. Thus, this algorithm has the speed stability problem.

In [4], an adaptive normalized quasi-Newton algorithm for generalized eigen
pair extraction was proposed and its convergence analysis was conducted. This
algorithm is a coupled generalized eigen pair extraction algorithm, which can be
interpreted as natural combinations of the normalization step and quasi-Newton
steps for finding the stationary points of the function

nðw; kÞ ¼ wHRywk
�1 � wHRxwþ ln k; ð8:17Þ

which is a generalization of the information criterion introduced in [2] for the
HEP. The stationary point of n is defined as a zero of

@n
@w
@n
@k

 !
¼ 2Rywk

�1 � 2Rxw
�wHRywk

�2 þ k�1

� �
: ð8:18Þ
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Hence, from

Ry�w ¼ �kRx�w
�wHRy�w ¼ �k

�
; ð8:19Þ

it can be seen that ð�w; �kÞ 2 CN �< is a stationary point of n, which implies that a
stationary point ð�w; �kÞ of n is a generalized eigen pair of the matrix pencil (Ry, Rx).
To avoid these computational difficulties encountered in Newton’s method, Nguyen
proposed to use approximations of H�1ðw; kÞ in the vicinity of two stationary
points of their special interest

H�1ðw; kÞ � eH�1
P ðw; kÞ ¼ 1

2

1
2ww

H � R�1
x �wk

�wHk 0

� �
; ð8:20Þ

for ðw; kÞ � ðvN ; kNÞ, and

H�1ðw; kÞ � eH�1
M ðw; kÞ ¼ 1

2
R�1
y k� 3

2ww
H �wk

�wHk 0

� �
; ð8:21Þ

for ðw; kÞ � ðv1; k1Þ. By applying Newton’s strategy for finding the stationary point
of n using the gradient (8.18) and the approximations (8.20) and (8.21), a learning
rule for estimating the generalized eigen pair associated with the largest generalized
eigenvalue was obtained as:

w ðkþ 1Þ ¼ wðkÞþ g1 R�1
x RywðkÞk�1ðkÞ	

�wHðkÞRy wðkÞwðkÞk�1ðkÞ � 1
2
wðkÞ½1� wHðkÞRx wðkÞ�



;

ð8:22Þ

kðkþ 1Þ ¼ kðkÞþ c1 wHðkþ 1ÞRywðkþ 1Þ � wHðkþ 1ÞRxwðkþ 1ÞkðkÞ� �
; ð8:23Þ

and a learning rule for estimating the generalized eigen pair associated with the
smallest generalized eigenvalue was obtained as:

w ðkþ 1Þ ¼ w ðkÞþ g2 R�1
y Rxw ðkÞk ðkÞ

n
þwHðkÞRyw ðkÞw ðkÞk�1ðkÞ

� 1
2
w ðkÞ 1þ 3wHðkÞRxw ðkÞ� �


;
ð8:24Þ

kðkþ 1Þ ¼ kðkÞþ c2 wHðkþ 1ÞRywðkþ 1Þ � wHðkþ 1ÞRxwðkþ 1ÞkðkÞ� �
; ð8:25Þ

where g1; c1; g2; c2 [ 0 are the step sizes, and ½wðkÞ; kðkÞ� is the estimate at time
k of the generalized eigen pair associated with the largest/smallest generalized
eigenvalue. By introducing the normalization step in the above learning rules at
each update, using the exponentially weighted sample covariance matrices bRy and
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bRx which are updated recursively, and using the Sherman–Morrison–Woodbury
matrix-inversion lemma, Nguyen’s coupled generalized eigen pair extraction
algorithm was obtained as follows.

Adaptive coupled generalized PCA algorithm:

~wðkÞ ¼ wðk � 1Þþ g1
kðk � 1Þ QxðkÞbRyðkÞwðk � 1Þ


�wHðk � 1ÞbRyðkÞwðk � 1Þwðk � 1Þ

�
;

ð8:26Þ

wðkÞ ¼ ~wðkÞ
~wðkÞk kbRxðkÞ

; ð8:27Þ

k ðkÞ ¼ 1� c1ð Þk ðk � 1Þþ c1w
HðkÞbRyðkÞwðkÞ; ð8:28Þ

and adaptive coupled generalized MCA algorithm:

~wðkÞ ¼ wðk � 1Þþ g2 QyðkÞbRxðkÞw k � 1ð Þ


k k � 1ð Þ

þwH k � 1ð ÞbRyðkÞw k � 1ð Þw k � 1ð Þk�1 k � 1ð Þ � 2w k � 1ð Þ
�
;

ð8:29Þ

wðkÞ ¼ ~wðkÞ
~wðkÞk kbRxðkÞ

; ð8:30Þ

kðkÞ ¼ 1� c2ð Þk k � 1ð Þþ c2w
HðkÞbRyðkÞw ðkÞ; ð8:31Þ

where uk kRx
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uHRxu
p

is defined as the Rx-norm, Qx ¼ R�1
x , Qy ¼ R�1

y , which
are updated recursively as follows:

bRyðkþ 1Þ ¼ bbRyðkÞþ yðkþ 1ÞyHðkþ 1Þ; ð8:32Þ

bRxðkþ 1Þ ¼ abRxðkÞþ xðkþ 1ÞxHðkþ 1Þ; ð8:33Þ

Qx kþ 1ð Þ¼ 1
a

QxðkÞ �
QxðkÞx kþ 1ð ÞxH kþ 1ð ÞQxðkÞ
aþ xH kþ 1ð ÞQxðkÞx kþ 1ð Þ

� �
; ð8:34Þ

Qy kþ 1ð Þ¼ 1
b

QyðkÞ �
QyðkÞy kþ 1ð ÞyH kþ 1ð ÞQyðkÞ
bþ yH kþ 1ð ÞQyðkÞy kþ 1ð Þ

 !
; ð8:35Þ

where a; b 2 ð0; 1Þ are the forgetting factors.
Different from the analysis of Möller’s coupled algorithm, the convergence

analysis of Nguyen algorithm in [4] was not conducted via the eigenvalue of
Jacobian matrix. Nguyen established rigorous analysis of the DDT systems
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showing that, for a step size within a certain range, the algorithm converges to the
orthogonal projection of the initial estimate onto the generalized eigen-subspace
associated with the largest/smallest generalized eigenvalue.

Next, we analyze the convergence of Nguyen’s algorithm via the eigenvalues of
Jacobian matrix.

By ignoring the normalization step (8.27), the differential equation form of
GPCA algorithms (8.26) and (8.28) can be written as:

_w ¼ k�1 R�1
x Ryw� wHRyww

� �
; ð8:36Þ

_k ¼ wHRyw� k: ð8:37Þ

The Jacobian matrix at the stationary point (w1, k1) is given as:

Jðw1; k1Þ ¼
@ _w
@wT

@ _w
@k

@ _k
@wT

@ _k
@k

 !�����
ðw1; k1Þ

;

¼ k�1
1 R�1

x Ry � I � 2w1wH
1 Rx 0

2k1wH
1 Rx �1

 !
:

ð8:38Þ

Let

P ¼ W 0
0T 1

� �
: ð8:39Þ

Then, it can be easily seen that

P�1 ¼ WHRx 0
0T 1

� �
: ð8:40Þ

Solving for the eigenvectors of J can then be simplified to the solving for the
eigenvector of its similar diagonally matrix J* = P−1JP. Then it holds that

J�ðw1; k1Þ ¼ k�1
1 K� I � 2e1eH1 0

2k1eH1 �1

� �
: ð8:41Þ

The eigenvalues a determined from det ðJ� � aIÞ ¼ 0 are

a1 ¼ �2; aNþ 1 ¼ �1; aj ¼ kj
k1

� 1; j ¼ 2; . . .;N: ð8:42Þ

Since the stability requires a\0 and thus kj\k1; j ¼ 2; 3; . . .; n, it can be seen
that only principal eigenvector–eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers. If we further assume that k1 � kj,
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then a j� −1, j ¼ 2; 3; . . .; n. That is to say, the eigen motion in all directions in the
algorithm do not depend on the generalized eigenvalue of the covariance matrix of
input signal. Thus, this algorithm does not have the speed stability problem. Similar
analysis can be applied to the GMCA algorithms (8.29) and (8.31).

8.2.3 Coupled Singular Value Decomposition
of a Cross-Covariance Matrix

In [9], a coupled online learning rule for the singular value decomposition (SVD) of
a cross-covariance matrix was derived. In coupled SVD rules, the singular value is
estimated alongside the singular vectors, and the effective learning rates for the
singular vector rules are influenced by the singular value estimates [9]. In addition,
a first-order approximation of Gram–Schmidt orthonormalization as decorrelation
method for the estimation of multiple singular vectors and singular values was used.
It has been shown that the coupled learning rules converge faster than Hebbian
learning rules and that the first-order approximation of Gram–Schmidt orthonor-
malization produces more precise estimates and better orthonormality than the
standard deflation method [9].

The neural network and its learning algorithm for the singular value decompo-
sition of a cross-covariance matrix will be discussed in Chap. 9, in which the
coupled online learning rules for the SVD of a cross-covariance matrix will be
analyzed in detail.

8.3 Unified and Coupled Algorithm for Minor
and Principal Eigen Pair Extraction

Coupled algorithm can mitigate the speed stability problem which exists in most
noncoupled algorithms. Though unified algorithm and coupled algorithm have
these advantages over single purpose algorithm and noncoupled algorithm,
respectively, there are only few of unified algorithms, and coupled algorithms have
been proposed. Moreover, to the best of the authors’ knowledge, there are no both
unified and coupled algorithms which have been proposed. In this chapter, based on
a novel information criterion, we propose two self-stabilizing algorithms which are
both unified and coupled. In the derivation of our algorithms, it is easier to obtain
the results compared with traditional methods, because there is no need to calculate
the inverse Hessian matrix. Experiment results show that the proposed algorithms
perform better than existing coupled algorithms and unified algorithms.

8.2 Review of Coupled Principal Component Analysis 243

http://dx.doi.org/10.1007/978-981-10-2915-8_9


8.3.1 Couple Dynamical System

The derivation of neural network learning rules often starts with an information
criterion, e.g., by maximization of the variance of the projected data or by mini-
mization of the reconstruction error [7]. However, as stated in [10], the freedom of
choosing an information criterion is greater if Newton’s method is applied because
the criterion just has to have stationary points in the desired solutions. Thus in [2],
Moller proposed a special criterion. Based on this criterion and by using Newton’s
method, Moller derived some CPCA learning rules and a CMCA learning rule.
Based on another criterion, Hou [5] derived the same CPCA and CMCA learning
rules as that of Moller’s, and Appendix 2 of [5] showed that it is easier and clearer
to approximate the inverse of the Hessian.

To start the analysis, we use the same information criterion as Hou’s, which is

p ¼ wTCw� wTwkþ k ð8:43Þ

where C ¼ E xxTf g 2 <n�n is the covariance matrix of the n-dimensional input data
sequence x, w 2 <n�1 and k 2 < denotes the estimation of eigenvector (weight
vector) and eigenvalue of C, respectively.

It is found that

@p
@w

¼ 2Cw� 2kw ð8:44Þ

@p
@k

¼ �wTwþ 1: ð8:45Þ

Thus, the stationary points ð�w; �kÞ of (8.43) are defined by

@p
@w

����
ð�w;�kÞ

¼ 0;
@p
@k

����
ð�w;�kÞ

¼ 0: ð8:46Þ

Then, we can obtain

C�w ¼ �k�w; ð8:47Þ

�wT�w ¼ 1 ð8:48Þ

from which we can also conclude that �wTC�w ¼ �k. Thus, the criterion (8.43) fulfills
the aforementioned requirement: The stationary points include all associated
eigenvectors and eigenvalues of C. The Hessian of the criterion is given as:
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H ðw; kÞ ¼
@2p
@w2

@2p
@w@k

@2p
@k@w

@2p
@k2

 !
¼ 2

C � kI �w
�wT 0

� �
: ð8:49Þ

Based on the Newton’s method, the equation used by Moller and Hou to derive
the differential equations can be written as:

_w
_k

� �
¼ �H�1ðw; kÞ

@p
@w
@p
@k

 !
: ð8:50Þ

Based on different information criteria, both Moller and Hou tried to find the
inverse of their Hessian H�1ðw; kÞ. Although the inverse Hessian of Moller and
Hou is different, they finally obtained the same CPCA and CMCA rules [5]. Here
we propose to derive the differential equation with another technical, which is

Hðw; kÞ _w
_k

� �
¼ �

@p
@w
@p
@k

 !
: ð8:51Þ

In this case, there is no need to calculate the inverse Hessian. Substituting (8.44),
(8.45), and (8.49) into (8.51), it yields

2
C � kI �w
�wT 0

� �
_w
_k

� �
¼ � 2Cw� 2kw

�wTwþ 1

� �
: ð8:52Þ

Then we can get

ðC � kIÞ _w� w _k ¼ �ðC � kIÞw ð8:53Þ

�2wT _w ¼ wTw� 1: ð8:54Þ

In the vicinity of the stationary point ðw1; k1Þ, by approximating
w � w1; k � k1 � kj ð2	 j	 nÞ, and after some manipulations (see Appendix A
in [6]), we get a coupled dynamical system as

_w ¼ C�1wðwTwþ 1Þ
2wTC�1w

� w ð8:55Þ

_k ¼ wTwþ 1
2

1

wTC�1w
� k

� �
: ð8:56Þ
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8.3.2 The Unified and Coupled Learning Algorithms

8.3.2.1 Coupled MCA Algorithms

The differential equations can be turned into the online form by informally
approximating C = x(k)xT(k), where x(k) is a data vector drawn from the distri-
bution. That is, the expression of the rules in online form can be approximated by
slowly following w(k + 1) = f(x(k)xT(k); w(k)) for subsequent observations of
x. Moller has pointed out [2] that this transition is infeasible if the equation contains
C−1, because it is hard to replace the inverse matrix C−1 by an expression con-
taining the input vector x. However, this problem can be solved in another way [11,
12], in which C−1 is updated as

bC�1ðkþ 1Þ ¼ kþ 1
k

bC�1ðkÞ �
bC�1ðkÞ xðkþ 1ÞxTðkþ 1Þ bC�1ðkÞ
kþ xTðkþ 1Þ bC�1ðkÞ xTðkþ 1Þ

" #
ð8:57Þ

where bC�1ðkÞ starts with bC�1ð0Þ ¼ I and converges to C�1 as k ! 1.Then, the
CMCA system (8.55)–(8.56) has the online form as:

wðkþ 1Þ ¼ wðkÞþ cðkÞ ½wTðkÞwðkÞþ 1�QðkÞwðkÞ
2wTðkÞQðkÞwðkÞ � wðkÞ

� 

ð8:58Þ

kðkþ 1Þ ¼ kðkÞþ cðkÞw
TðkÞwðkÞþ 1

2
1

wTðkÞQðkÞwðkÞ � kðkÞ
� �

ð8:59Þ

Qðkþ 1Þ ¼ kþ 1
ak

QðkÞ � QðkÞ xðkþ 1Þ xTðkþ 1ÞQðkÞ
kþ xTðkþ 1ÞQðkÞ xTðkþ 1Þ

� �
ð8:60Þ

where 0\a	 1 denotes the forgetting factor and cðkÞ is the learning rate. If all
training samples come from a stationary process, we choose a ¼ 1. QðkÞ ¼ C�1ðkÞ
starts with Qð0Þ ¼ I. Here, we refer to the rule (8.55)–(8.56) and its online form
(8.58)–(8.60) as “fMCA,” where f means fast. In the rest of this section, the online
form (which is used in the implementation) and the differential matrix form (which
is used in the convergence analysis) of a rule have the same name, and we will not
emphasize this again. If we further approximate wTw � 1 (which fulfills in the
vicinity of the stationary points) in (8.55)–(8.56), we can obtain q simplified CMCA
system

_w ¼ C�1w
2wTC�1w

� w ð8:61Þ

_k ¼ 1

wTC�1w
� k ð8:62Þ
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and the online form is given as:

wðkþ 1Þ ¼ wðkÞþ cðkÞ QðkÞwðkÞ
wTðkÞQðkÞwðkÞ � wðkÞ
� 


ð8:63Þ

kðkþ 1Þ ¼ kðkÞþ cðkÞ 1
wTðkÞQðkÞwðkÞ � kðkÞ
� �

ð8:64Þ

where Q(k) is updated by (8.60). In the following, we will refer to this algorithm as
“aMCA,” where a means adaptive.

8.3.2.2 Coupled PCA Algorithms

It is known that in unified rules, MCA rules can be derived from PCA rules by
changing the sign or using the inverse of the covariance matrix, and vice versa.
Here we propose to derive unified algorithms by deriving CPCA rules from CMCA
rules. Suppose that the covariance matrix C has an eigen pair ðw; kÞ; then it holds
that [13] Cw ¼ kw and C�1w ¼ k�1w, which means that the minor eigen pair of
C is also the principal eigen pair of the inverse matrix C�1, and vice versa.
Therefore, by replacing C�1 with C in fMCA and aMCA rules, respectively, we
obtain two modified rules to extract the principal eigen pair of C, which is also the
minor eigen pair of C�1. The modified rules are given as:

_w ¼ Cw ðwTwþ 1Þ
2wTCw

� w ð8:65Þ

_k ¼ wTwþ 1
2

wTCw� k
� � ð8:66Þ

and

_w ¼ Cw
2wTCw

� w ð8:67Þ

_k ¼ wTCw� k: ð8:68Þ

Since the covariance matrix C is usually unknown in advance, we use its esti-

mate at time k by bCðkÞ suggested in [11], which is

bCðkþ 1Þ ¼ a
k

kþ 1
bCðkÞþ 1

kþ 1
xðkþ 1ÞxTðkþ 1Þ ð8:69Þ
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where bCðkÞ starts with bCð0Þ ¼ xð0ÞxTð0Þ (or I). Actually, (8.57) is obtained from
(8.69) by using the SM-formula. Then, the online form of (8.65)–(8.66) and (8.67)–
(8.68) is given as:

wðkþ 1Þ ¼ wðkÞþ cðkÞ
wTðkÞ bCðkÞwðkÞþ 1
h ibCðkÞwðkÞ

2wTðkÞbCðkÞwðkÞ � wðkÞ
8<:

9=; ð8:70Þ

kðkþ 1Þ ¼ kðkÞþ cðkÞw
TðkÞwðkÞþ 1

2
wTðkÞbCðkÞwðkÞ � kðkÞ
h i

ð8:71Þ

and

wðkþ 1Þ ¼ wðkÞþ cðkÞ
bCðkÞwðkÞ

wTðkÞ bCðkÞwðkÞ � wðkÞ
( )

ð8:72Þ

kðkþ 1Þ ¼ kðkÞþ cðkÞ wTðkÞ bCðkÞwðkÞ � kðkÞ
h i

ð8:73Þ

respectively. Here we rename this algorithm deduced from fMCA and aMCA as
“fPCA” and “aPCA,” respectively. Finally, we obtain two unified and coupled
algorithms. The first one is fMCA + fGPCA, and the second one is
aMCA + aPCA. These two unified algorithms are capable of both PCA and MCA
by using the original or inverse of covariance matrix.

8.3.2.3 Multiple Eigen Pairs Estimation

In some engineering practice, it is required to estimate the eigen-subspace or
multiple eigen pairs. As introduced in [4], by using the nested orthogonal com-
plement structure of the eigen-subspace, the problem of estimating the p(	 n)-
dimensional principal/minor subspace can be reduced to multiple principal/minor
eigenvectors estimation. The following shows how to estimate there maining p − 1
principal/minor eigen pairs.

For the CMCA case, consider the following equations:

bC j ¼ bC j�1 þ gkj�1wj�1wT
j�1; j ¼ 2; . . .; p ð8:74Þ

where bC1 ¼ bC and g is larger than the largest eigenvalue of bC, and ðwj�1; kj�1Þ is
the (j − 1)th minor eigen pair of bC that has been extracted. It is found that
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bC jwq ¼ ðbC j�1 þ gkj�1wT
j�1Þwq

¼ ðbC1 þ g
Xj�1

r¼1

krwrwT
r Þwq

¼ bC1wq þ g
Xj�1

r¼1

krwrwT
r wq

¼
bC1wq þ gkqwq ¼ ð1þ gÞkqwq for q ¼ 1; . . .; j� 1bC1wq ¼ kqwq for q ¼ j; . . .; p

(
:

ð8:75Þ

Suppose that matrix bC1 has eigenvectors w1;w2; . . .;wn corresponding to
eigenvalues ð0\Þ r1\r2\ 
 
 
\rn, and then matrix Cj has eigenvectors
wj; . . .;wn; w1; . . .;wj�1 corresponding to eigenvalues ð0\Þrj\ 
 
 
\rn
\ð1þ gÞr1\ 
 
 
\ð1þ gÞrj�1. In this case, rj is the smallest eigenvalue of Cj.
Based on the SM-formula, we have

Qj ¼ C�1
j ¼ ðCj�1 þ gkj�1wj�1wT

j�1Þ�1

¼ C�1
j�1 �

gkj�1C�1
j�1wj�1wT

j�1C
�1
j�1

1þ gkj�1wT
j�1
bC�1
j�1wj�1

¼ Qj�1 �
gkj�1Qj�1wj�1wT

j�1Qj�1

1þ gkj�1wT
j�1Qj�1wj�1

; j ¼ 2; . . .; p:

ð8:76Þ

Thus, by replacing bQ with bQj in (8.58)–(8.59) or (8.63)–(8.64), they can be used

to estimate the jth minor eigen pair ðwj; kjÞ of bC.
For the CPCA case, consider the following equations

Cj ¼ Cj�1 � kj�1wj�1wT
j�1; j ¼ 2; . . .; p ð8:77Þ

where ðwj�1; kj�1Þ is the (j − 1)th principal eigen pair that has been extracted. It is
found that

bC jwq ¼ ðbC j�1 � kj�1wj�1wT
j�1Þwq

¼ ðbC1 �
Xj�1

r¼1

krwrwT
r Þwq

¼ bC1wq �
Xj�1

r¼1

krwrwT
r wq

¼ 0 for q ¼ 1; . . .; j� 1bC1wq ¼ kqwq for q ¼ j; . . .; p

�
:

ð8:78Þ
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Suppose that the matrix bC1 has eigenvectors w1;w2; . . .;wn corresponding to
eigenvalues r1 [ r2 [ 
 
 
 [ rnð[ 0Þ, and then the matrix Cj has eigenvectors
wj; . . .;wn;w1; . . .;wj�1 corresponding to eigenvalues rj [ 
 
 
 [ rn [
r̂1 ¼ 
 
 
 ¼ r̂j�1ð¼ 0Þ. In this case, rj is the largest eigenvalue of Cj. Thus, by

replacing bC with bC j in (8.70)–(8.71) or (8.72)–(8.73), they can be used to estimate

the jth principal eigen pair ðwj; kjÞ of bC.
8.3.3 Analysis of Convergence and Self-stabilizing Property

The major work of convergence analysis of coupled rules is to find the eigenvalues
of the Jacobian

J ðw1; k1Þ ¼
@ _w
@wT

@ _w
@k

@ _k
@wT

@
__k

@k

 !
ð8:79Þ

of the differential equations for a stationary point ðw1; k1Þ. For fMCA rule, after
some manipulations (see Appendix B in [6]), we get

JfMCAðw1; k1Þ ¼ C�1k1 � I � w1wT
1 0

�2k1wT
1 �1

� �
: ð8:80Þ

The Jacobian can be simplified by an orthogonal transformation with

U ¼ W 0
0T 1

� �
: ð8:81Þ

The transformed Jacobian J� ¼ UTJU has the same eigenvalues as J. In the

vicinity of a stationary point ðw1; k1Þ, we approximate W
T
w � e1 and obtain

J�fMCAðw1; k1Þ ¼
�K�1k1 � I � e1eT1 0

�2k1eT1 �1

� �
: ð8:82Þ

The eigenvalues a of J� are determined as detðJ� � aIÞ ¼ 0, which are

a1 ¼ anþ 1 ¼ �1; aj ¼ k1
kj

� 1 �k1�kj �1; j ¼ 2; . . .; n: ð8:83Þ

Since stability requires a\0 and thus k1\kj; j ¼ 2; . . .; n, we find that only
minor eigen pairs are stable stationary points, while all others are saddles or
repellers. What’s more, if we further assume k1 � kj; all eigenvalues are a � �1.
Hence, the system converges with approximately equal speed in all its eigen
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directions, and this speed is widely independent of the eigenvalues kj of the
covariance matrix [2]. That is to say, the speed stability problem does not exist in
fMCA algorithm.

Similarly, for aMCA rule, we analyze the stability by finding the eigenvalues of

J�aMCAðw1; k1Þ ¼
�K�1k1 � I � 2e1eT1 0

�2k1eT1 �1

� �
ð8:84Þ

which are

a1 ¼ �2; anþ 1 ¼ �1; aj ¼ k1
kj

� 1; j ¼ 2; . . .; n: ð8:85Þ

The situation of aMCA is similar to that of fMCA, and the only difference is that
the first eigenvalue of Jacobian is a1 ¼ �1 for fMCA and a1 ¼ �2 for aMCA.
Thus, the convergence speed of fMCA and aMCA is almost the same.

Similarly, the transformed Jacobian functions of fPCA and aPCA are given as:

J�fPCAðw1; k1Þ ¼
�K�1k1 � I � e1eT1 0

2k1eT1 �1

� �
ð8:86Þ

and

J�aPCAðw1; k1Þ ¼
�K�1k1 � I � 2e1eT1 0

2k1eT1 �1

� �
ð8:87Þ

respectively. And the eigenvalues of (8.86) and (8.87) are given as:

a1 ¼ anþ 1 ¼ �1; aj ¼ kj
kn

� 1 �kn�kj �1; j ¼ 1; . . .; n� 1 ð8:88Þ

a1 ¼ �2; anþ 1 ¼ �1; aj ¼ kj
kn

� 1 �kn�kj �1; j ¼ 1; . . .; n� 1 ð8:89Þ

respectively. We can see that only principal eigen pairs are stable stationary points,
while all others are saddles or repellers. We can further assume k1 � kj and thus
aj � �1 ðj 6¼ 1Þ for fPCA and aPCA.

The analysis of the self-stabilizing property of the proposed algorithms is
omitted here. For details, see [6].
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8.3.4 Simulation Experiments

In this section, we provide several experiments to illustrate the performance of the
proposed algorithms in comparison with some well-known coupled algorithms and
unified algorithms. Experiments 1 and 2 mainly show the stability of proposed
CMCA and CPCA algorithms in comparison with existing CMCA and CPCA
algorithms, respectively. In experiment 3, the self-stabilizing property of the pro-
posed algorithm is shown. In experiment 4, we compare the performance of aMCA
and aPCA with that of two unified algorithms. Experiments 5 and 6 illustrate some
examples of practical applications.

In experiments 1–4, all algorithms are used to extract the minor or principal
component from a high-dimensional input data sequence, which is generated from
x ¼ B 
 yðtÞ; where each column of B 2 <30�30 is Gaussian with variance 1/30, and
yðtÞ 2 <30�1 is Gaussian and randomly generated.

In all experiments, to measure the estimation accuracy, we compute the norm of
eigenvector estimation (weight vector) wðkÞk k and the projection ½wðkÞ� of the
weight vector onto the true eigenvector at each step:

wðkÞ ¼ wTðkÞw1j j
wðkÞk k

where w1 is the true minor (for MCA) or principal (for PCA) eigenvector with unit
length.

Unless otherwise stated, we set the initial conditions of experiments 1–4 as
follows: (1) The weight vector is initialized with a random vector (unit length).
(2) The learning rate cðkÞ starts at cð0Þ ¼ 10�2 and decays exponentially toward
zero with a final value c ðkmaxÞ ¼ 10�4. (3) We set a ¼ 1 (if used), and k ð0Þ ¼
0:001 for all cMCA and cPCA algorithms.

In experiments 1 and 2, kmax = 20,000 training steps are executed for all algo-
rithms. In order to test the stability of the proposed algorithms, after 10,000 training
steps, we drastically change the input signals; thus, the eigen information changed
suddenly. All algorithms start to extract the new eigen pair since k = 10001. The
learning rate for nMCA is 10 times smaller than that for the others. Then, 20 times
of Monte Carlo simulation are executed for all experiments.

Figure 8.1 shows the time course of the projection of minor weight vector. We
can see that in all rules except mMCA the projection converges toward unity; thus,
these weight vectors align with the true eigenvector. The convergence speed of
mMCA is lower than that of the others and the projection of mMCA cannot
converge toward unity within 10,000 steps. We can also find that the convergence
speed of fMCA and aMCA rules is similar, and higher than that of the others. We
can also find that, at time step k = 10,001, where the input signals changed sud-
denly, all algorithms start to extract the new eigen pair. Figure 8.2 shows the time
course of weight vector length. We can find that the vector length of nMCA
converges to a nonunit length. The convergence speed and the stability of fMCA
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and aMCA are higher and better than that of the others. It can be seen that the
convergence speed of aMCA is a bit higher than that of fMCA.

Figure 8.3 shows the time course of the minor eigenvalue estimation. We can
see that mMCA cannot extract the minor eigenvalue as effective as the other
algorithms after the input signals changed. From Figs. 8.1 to 8.3, we can conclude
that the performance of fMCA and aMCA is better than that of the other cMCA
algorithms. Moreover, nMCA contains C and C−1 simultaneously in the equations,
and we can prove that mMCA also has the speed stability problem though it is a
coupled rule. These may be the reason why our algorithms perform better than
nMCA and mCMA.

In experiment 2, we compare the performance of fPCA and aPCA with that of
ALA and nPCA. The time course of the projection and the eigenvector length of
principal weight vector are shown in Figs. 8.4 and 8.5, and the principal eigenvalue
estimation is shown in Fig. 8.6, respectively. In Fig. 8.5, the curves for fPCA and
aPCA are shown in a subfigure because of its small amplitude. We can see that the
convergence speed of fPCA and aPCA is similar to that of nPCA and ALA, but
fPCA and aPCA have less fluctuations over time compared with nPCA and ALA.

Fig. 8.1 Projection of weight
vector onto the true minor
eigenvector

Fig. 8.2 Weight vector
length
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Fig. 8.3 Minor eigenvalue
estimation

Fig. 8.4 Projection of weight
vector onto the true principal
eigenvector

Fig. 8.5 Weight vector
length
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This is actually because that in fPCA and aPCA the covariance matrix C is updated
by (8.69) while in nPCA and ALAC that is updated by C(k) = x(k) xT(k).

Experiment 3 is used to test the self-stabilizing property of the proposed algo-
rithms. Figure 8.7 shows the time course of weight vector length estimation of
fMCA, aMCA, fPCA, and aPCA which are initialized with nonunit length. We can
find that all algorithms converge to unit length rapidly, which shows the
self-stabilizing property of eigenvector estimates. The self-stabilizing property of
eigenvalue estimates is shown in Figs. 8.3 and 8.6. From the results of experiments
1–3, we can see that the performance off MCA and fPCA is similar to that of aMCA
and aPCA, respectively. Thus in experiment 4, we only compare the performance of
aMCA and aPCA with that of two unified algorithms which were proposed in
recent years, i.e., (1) kMCA + kPCA [14], where k means this algorithm was

Fig. 8.6 Principal eigenvalue
estimation

Fig. 8.7 Weight vector length
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proposed by Kong;(2) pMCA + pPCA [15], where p means this algorithm was
proposed by Peng. The time course of the projection of weight vector onto the true
principal/minor eigenvector and the weight vector length is shown in Figs. 8.8 and
8.9, respectively. In Fig. 8.9, the first 1000 steps of aMCA and kMCA are shown in
a subfigure. We can see that the proposed algorithms perform better the existing
unified algorithms.

Fig. 8.8 Projection of weight vector onto the true principal/minor eigenvector

Fig. 8.9 Weight vector length
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In summary, we propose a novel method to derive neural network algorithms
based on a special information criterion. We firstly obtain two CMCA algorithms
based on the modified Newton’s method. Then, two CPCA rules are obtained from
the CMCA rules. In this case, two unified and coupled algorithms are obtained,
which are capable of both PCA and MCA and can also mitigate the speed-stability
problem. The proposed algorithms converge faster and are more stable than existing
algorithms. Moreover, all of the proposed algorithms are self-stabilized.

8.4 Adaptive Coupled Generalized Eigen Pairs Extraction
Algorithms

In [4], based on Moller’s work, Nguyen developed two well-performed quasi-
Newton-type algorithms to extract generalized eigen pairs. Actually, Nguyen’s
algorithms are the generalization of Moller’s coupled learning algorithms. But with
DDT approach, Nguyen also reported the explicit convergence analysis for their
learning rules, i.e., the region within which the initial estimate of the eigen pair
must be chosen to guarantee the convergence to the desired eigen pair. However, as
stated in [4], the GMCA algorithm proposed in [4] may lose robustness when the
smallest eigenvalue of the matrix pencil is far less than 1.

Motivated by the efficacy of the coupled learning rules in [2] and [4] for the HEP
and GHEP, we will introduce novel coupled algorithms proposed by us to estimate
the generalized eigen pair information in this section. Based on a novel generalized
information criterion, we have obtained an adaptive GMCA algorithm, as well as an
adaptive GPCA algorithm by modifying the GMCA algorithm. It is worth noting
that the procedure of obtaining the algorithms in this section is easier than the
existing methods, for that it does not need to calculate the inverse of the Hessian
matrix when deriving the new algorithms. It can be seen that our algorithms do not
involve the reciprocal of the estimated eigenvalue in equations. Thus, they are
numerically more robust than Nguyen’s algorithms even when the smallest eigen-
value of the matrix pencil is far less than 1. Compared with Nguyen’s algorithms, it
is much easier to choose step size for online implementation of the algorithms.

8.4.1 A Coupled Generalized System for GMCA and GPCA

A. Generalized information criterion and coupled generalized system

Generally speaking, neural network model-based algorithms are often derived by
optimizing some cost function or information criterion [2, 16]. As pointed out in
[17], any criterion may be used if the maximum or minimum (possibly under a
constraint) coincides with the desired principal or minor directions or subspace. In
[2], Moller pointed out that the freedom of choosing an information criterion is
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greater if Newton’s method is applied. In that case, it suffices to find a criterion of
which the stationary points coincide with the desired solutions. Moller first pro-
posed a special criterion which involves both eigenvector and eigenvalue estimates
[2]. Based on Moller’s work, Nguyen [4] first proposed to derive novel generalized
eigen pair extraction algorithms by finding the stationary points of a generalized
information criterion which is actually the generalization of Moller’s information
criterion.

In this section, for a given matrix pencil (Ry, Rx), we propose a generalized
information criterion based on the criteria introduced in [2] and [4] as

pðw; kÞ ¼ wHRyw� kwHRxwþ k: ð8:90Þ

We can see that

@p
@w
@p
@k

 !
¼ 2Ryw� 2kRxw

�wHRxwþ 1

� �
: ð8:91Þ

Thus, the stationary points ð�w; �kÞ are defined by

Ry�w ¼ �kRx�w
�wHRx�w ¼ 1

�
; ð8:92Þ

from which we can conclude that �wHRy�w ¼ �k�wHRx�w ¼ �k. These imply that a
stationary point ð�w; �kÞ of (8.90) is a generalized eigen pair of the matrix pencil (Ry,
Rx). The Hessian of the criterion is given as:

Hðw; kÞ ¼
@2p
@w2

@2p
@w@k

@2p
@k@w

@2p
@k2

 !
¼ 2

Ry � kRx �Rxw
�wHRx 0

� �
: ð8:93Þ

After applying the Newton’s method, the equation used to obtain the system can
be written as:

_w
_k

� �
¼ �H�1ðw; kÞ

@p
@w
@p
@k

 !
; ð8:94Þ

where _w and _k are the derivatives of w and k with respect to time t, respectively.
Based on the above equation, Nguyen [4] obtained their algorithms by finding the
inverse matrix of the Hessian H�1ðw; kÞ. Premultiplying both sides of the above
equation by Hðw; kÞ, it yields

H ðw; kÞ _w
_k

� �
¼ �

@p
@w
@p
@k

 !
: ð8:95Þ
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In this section, all our later algorithms are built on this newly proposed
Eq. (8.95). Substituting (8.91) and (8.93) into (8.95), we get

2
Ry � kRx �Rxw
�wHRx 0

� �
_w
_k

� �
¼ � 2Ryw� 2kRxw

�wHRxwþ 1

� �
: ð8:96Þ

From (8.96), we can get

ðRy � kRxÞ _w� Rxw _k ¼ �ðRy � kRxÞw ð8:97Þ

�2wHRx _w ¼ wHRxw� 1: ð8:98Þ

Premultiplying both sides of (8.97) by ðRy � kRxÞ�1 gives the following:

_w ¼ ðRy � kRxÞ�1Rxw _k� w: ð8:99Þ

Substituting (8.99) into (8.98), we have

�2wHRx ðRy � kRxÞ�1Rxw _k� w
 �

¼ wHRxw� 1: ð8:100Þ

Thus,

_k ¼ wHRxwþ 1

2wHRxðRy � kRxÞ�1Rxw
: ð8:101Þ

Substituting (8.101) into (8.99), we get

_w ¼ ðRy � kRxÞ�1Rxw ðwHRxwþ 1Þ
2wHRx ðRy � kRxÞ�1Rxw

� w: ð8:102Þ

By approximating wHRxw = 1 in the vicinity of the stationary point (w1, k1), we
get a coupled generalized system as:

_w ¼ ðRy � kRxÞ�1Rxw

wHRxðRy � kRxÞ�1Rxw
� w; ð8:103Þ

_k ¼ 1

wHRxðRy � kRxÞ�1Rxw
� k: ð8:104Þ

B. Coupled generalized systems for GMCA and GPCA

Let K be a diagonal matrix containing all generalized eigenvalues of the matrix
pencil (Ry, Rx), i.e., K ¼ diagfk1; . . .; kNg. Let V ¼ ½v1; . . .; vN �, where v1, …, vN
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are the generalized eigenvectors associated with the generalized eigenvalues
k1; . . .; kN . It holds that VHRxV ¼ I; VHRyV ¼ K. Hence, Rx ¼ ðVHÞ�1V�1 and

Ry ¼ ðVHÞ�1
KV�1, and

ðRy � kRxÞ�1 ¼ VðK� kIÞ�1VH : ð8:105Þ

If we consider w � v1 and k � k1 � kjð2	 j	NÞ in the vicinity of the sta-
tionary point ðw1; k1Þ, then we have kj � k � kj. In that case, VHRxw � e1 ¼
½1; 0; . . .; 0�H and

K� kI ¼ diag k1 � k; . . .; kN � kf g
� diag k1 � k; k2; . . .; kNf g
¼ K� ke1eH1 ;

ð8:106Þ

where diag{∙} is the diagonal function. Substituting (8.106) into (8.105), we get the
following:

ðRy � kRxÞ�1 ¼ VðK� kIÞ�1VH

� ½ðVHÞ�1ðK� ke1eH1 ÞV�1��1

¼ ½Ry � kðVHÞ�1e1eH1 V
�1��1

� Ry � kðVHÞ�1ðVHRxwÞðVHRxwÞHV�1
h i�1

¼ Ry � kðRxwÞðRxwÞH
� ��1

:

ð8:107Þ

It can be seen that

Ry � k1ðRxv1ÞðRxv1ÞH
� �

v1

¼ Ryv1 � ðk1Rxv1ÞðvH1 Rxv1Þ ¼ 0:
ð8:108Þ

Since Ryv1 ¼ k1Rxv1 and vH1 Rxv1 ¼ 1. This means that matrix Ry �
kðRxwÞðRxwÞH has an eigenvalue 0 associated with eigenvector v1. This is to say,
the matrix Ry � kðRxwÞðRxwÞH is rank-deficient and hence cannot be inverted if
ðw; kÞ ¼ ðv1; k1Þ. To address this issue, we add a penalty factor e � 1 in (8.107),
and then it yields the following:

ðRy � kRxÞ�1 � Ry � ekðRxwÞðRxwÞH
� ��1

¼ R�1
y þ ekR�1

y RxwwHRxR�1
y

1� ekwHRxR�1
y Rxw

;
ð8:109Þ
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The last step of (8.109) is obtained by using the SM-formula (Sherman–
Morrison formula) [13]. Substituting (8.107) into (8.103), we get the following:

_w ¼
R�1
y þ ekR�1

y RxwwHRxR�1
y

1�ekwHRxR�1
y Rxw

 �
Rxw

wHRx R�1
y þ ekR�1

y RxwwHRxR�1
y

1�ekwHRxR�1
y Rxw

 �
Rxw

� w: ð8:110Þ

Multiplying the numerator and denominator of (8.110) by 1� ekwHRxR�1
y Rxw

simultaneously, and after some manipulations, we get

_w ¼ R�1
y Rxw

wHRxR�1
y Rxw

� w: ð8:111Þ

Similarly, substituting (8.107) into (8.104), we can get

_k ¼ 1
wHRxR�1

y Rxw
� ek: ð8:112Þ

It can be seen that the penalty factor e is not necessarily needed in the equations.
Or in other words, we can approximate e ¼ 1 in future equations. Thus, we get the
following:

_k ¼ 1
wHRxR�1

y Rxw
� k: ð8:113Þ

Thus, (8.111) and (8.113) are the coupled systems for the GMCA case.
It is known that the ith principal generalized eigenvector vi of the matrix pencil

(Ry, Rx) is also the ith minor generalized eigenvector of the matrix pencil (Rx, Ry).
Hence, the problem of extracting principal generalized subspace of the inversed
matrix pencil (Ry, Rx) is equivalent to that of extracting minor generalized subspace
of the matrix pencil (Rx, Ry), and vice versa [4]. Therefore, by swapping Rx and
Ry; R�1

x and R�1
y in (8.111) and (8.113), we obtain a modified system

_w ¼ R�1
x Ryw

wHRyR�1
x Ryw

� w; ð8:114Þ

_k ¼ wHRyR�1
x Ryw� k; ð8:115Þ

to extract the minor eigen pair of matrix pencil (Rx, Ry) as well as the principal
eigen pair of matrix pencil (Ry, Rx).

As was pointed out in [4], by using the nested orthogonal complement structure
of the generalized eigen-subspace, the problem of estimating the p ð	NÞ-dimen-
sional minor/principal generalized subspace can be reduced to multiple GHEPs of
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estimating the generalized eigen pairs associated with the smallest/largest gener-
alized eigenvalues of certain matrix pencils. In the following, we will show how to
estimate the remaining p − 1 minor/principal eigen pairs. In the GMCA case,
consider the following equations:

Rj ¼ Rj�1 þ qRxwj�1wT
j�1Ry; ð8:116Þ

R�1
j ¼ R�1

j�1 �
qR�1

j�1Rxwj�1wT
j�1RyR�1

j�1

1þ qwT
j�1RyR�1

j�1Rxwj�1
; ð8:117Þ

where j ¼ 2; . . .; p; q� kN = k1; R1 ¼ Ry and wj�1 ¼ vj�1 is the (j − 1)th minor
generalized eigenvector extracted. It holds that

Rjvq ¼ ðRy þ q
Xj�1

i¼1
RxvivTi RyÞvq

¼ Ryvq þ q
Xj�1

i¼1
RxvivTi Ryvq

¼ kqRxvq þ qkq
Xj�1

i¼1
RxvivTi Ryvq

¼ ð1þ qÞkqRxvq for q ¼ 1; . . .; j� 1

kqRxvq for q ¼ j; . . .;N

�
:

ð8:118Þ

Thus, the matrix pencil (Rj, Rx) has eigenvalues kj 	 
 
 
 	 kN 	ð1þ qÞ
k1 	 
 
 
 	 ð1þ qÞkj�1 associated with eigenvectors vj; . . .; vN ; v1. . .vj�1.
Equation (8.117) is obtained from (8.116) based on the SM-formula. That is to say,
by replacing Ry with Rj and R�1

y with R�1
j in (8.111) and (8.113), we can estimate

the jth minor generalized eigen pair ðvj; kjÞ.
In the GPCA case, consider the following equation

Rj ¼ Rj�1 � Rxwj�1wT
j�1Ry; ð8:119Þ

where R1 ¼ Ry, and wj�1 ¼ vN�jþ 1 is the (j − 1)th principal generalized eigen-
vector extracted. By replacing Ry with Rj in (8.114) and (8.115), we can estimate
the jth principal generalized eigen pair ðvN�jþ 1; kN�jþ 1Þ.

8.4.2 Adaptive Implementation of Coupled Generalized
Systems

In engineering practice, the matrices Ry and Rx are the covariance matrices of
random input sequences yðkÞf gk2z and xðkÞf gk2z, respectively. Thus, the matrix
pencil (Ry, Rx) is usually unknown in advance, and even slowly changing over time
if the signal is nonstationary. In that case, the matrices Ry and Rx are variables and
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thus need to be estimated with online approach. In this section, we propose to
update Ry and Rx with:

bRyðkþ 1Þ ¼ bbRyðkÞþ yðkþ 1ÞyHðkþ 1Þ; ð8:120Þ

bRxðkþ 1Þ ¼ abRxðkÞþ xðkþ 1ÞxHðkþ 1Þ: ð8:121Þ

By using the MS-formula, QyðkÞ ¼ bR�1
y ðkÞ and QxðkÞ ¼ bR�1

x ðkÞ can be updated
as:

Qy kþ 1ð Þ¼ 1
b

QyðkÞ �
QyðkÞy kþ 1ð ÞyH kþ 1ð ÞQyðkÞ
aþ yH kþ 1ð ÞQyðkÞy kþ 1ð Þ

 !
; ð8:122Þ

Qx kþ 1ð Þ¼ 1
a

QxðkÞ �
QxðkÞx kþ 1ð ÞxH kþ 1ð ÞQxðkÞ
aþ xH kþ 1ð ÞQxðkÞx kþ 1ð Þ

� �
: ð8:123Þ

It is known that

lim
k!1

1
k
bRyðkÞ ¼ Ry ð8:124Þ

lim
k!1

1
k
bRxðkÞ ¼ Rx ð8:125Þ

when a = b = 1. By replacing Ry;Rx;R�1
y and R�1

x in (8.111)–(8.115) withbRyðkÞ; bRxðkÞ; QyðkÞ and QxðkÞ, respectively, we can easily obtain the online
GMCA algorithm with normalized step as:

~w ðkþ 1Þ ¼ g1
Qy kþ 1ð ÞbRx kþ 1ð Þw ðkÞ

wHðkÞbRx kþ 1ð ÞQy kþ 1ð ÞbRx kþ 1ð Þw ðkÞ
þ ð1� g1Þw ðkÞ;

ð8:126Þ

w kþ 1ð Þ ¼ ~w kþ 1ð Þ
~w kþ 1ð Þk kbRx kþ 1ð Þ

; ð8:127Þ

k kþ 1ð Þ ¼ c1
1

wHðkÞbRxðkþ 1ÞQyðkþ 1ÞbRxðkþ 1ÞwðkÞ
þ ð1� c1Þkðk); ð8:128Þ

and the online GPCA algorithm with normalized step as:
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~wðkþ 1Þ ¼ g2
Qxðkþ 1ÞbRyðkþ 1ÞwðkÞ

wHðkÞbRyðkþ 1ÞQxðkþ 1ÞbRyðkþ 1ÞwðkÞ
þ ð1� g2ÞwðkÞ; ð8:129Þ

wðkþ 1Þ ¼ ~wðkþ 1Þ
~wðkþ 1Þk kbRyðkþ 1Þ

; ð8:130Þ

k kþ 1ð Þ ¼ c2w
HðkÞ bRy kþ 1ð ÞQx kþ 1ð ÞbRy kþ 1ð Þw ðkÞþ ð1� c2ÞkðkÞ; ð8:131Þ

where η1, η2, c1, c22 (0, 1] are the step sizes.
In the rest of this section, for convenience, we refer to the GPCA and GMCA

algorithms proposed in [4] as nGPCA and nGMCA for short, respectively, where
n means that these algorithms were proposed by Nguyen. Similarly, we refer to the
algorithm in (8.126)–(8.128) as fGMCA and the algorithm in (8.129)–(8.131) as
fGPCA for short.

At the end of this section, we discuss the computational complexity of our
algorithms. Taking fGMCA as an example, the computation of bRxðkÞ and QyðkÞ
requires 5N2 + O(N) multiplications. Moreover, by using (8.121), we have the
following:

bRxðkþ 1ÞwðkÞ

¼ k
kþ 1

bRxðkÞþ 1
kþ 1

xðkþ 1ÞxHðkþ 1Þ
� �

wðkÞ

¼ k
kþ 1

bRxðkÞwðkÞþ 1
kþ 1

xðkþ 1Þ½xHðkþ 1ÞwðkÞ�;

ð8:132Þ

where

bRxðkÞwðkÞ ¼
bRxðkÞ~wðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~wðkÞH bRxðkÞ~wðkÞ
q : ð8:133Þ

Since bRxðkÞ~wðkÞ has been computed at the previous step when calculating the
Rx-norm of w(k), the update of bRxðkþ 1Þw ðkÞ requires only O(N) multiplications.
Thus, the updates of w(k) and k(k) in fGMCA requires 2N2 + O(N) multiplications.
Hence, fGMCA requires a total of 7N2 +O(N) multiplications at each iteration. In a
similar way, we can see that fGPCA also requires a total of 7N2 + O
(N) multiplications at each iteration. Thus, the computational complexity of both
fGMCA and fGPCA is less than that of nGMCA and nGPCA (i.e., 10N2 + O(N)).
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8.4.3 Convergence Analysis

The convergence of neural network learning algorithms is a difficult topic for direct
study and analysis, and as pointed out [18], from the application point of view.
The DDT method is more reasonable for studying the convergence of algorithms
than traditional method. Using the DDT approach, Nguyen first reported the explicit
convergence analysis of coupled generalized eigen pair extraction algorithms [4]. In
this section, we will also analyze the convergence of our algorithms with the DDT
approach on the basis of [4].

The DDT system of fGMCA is given as:

~w kþ 1ð Þ ¼ wðkÞþ g1
Qy
bRxwðkÞ

wHðkÞbRxQy
bRxwðkÞ

� wðkÞ
" #

; ð8:134Þ

wðkþ 1Þ ¼ ~wðkþ 1Þ
~wðkþ 1Þk kRx

; ð8:135Þ

kðkþ 1Þ ¼ kðkÞþ c1
1

wHðkÞbRxQy
bRxwðkÞ

�kðkÞ
" #

: ð8:136Þ

which is referred to as DDT System 1.
And the DDT system of fGPCA is given as:

~wðkþ 1Þ ¼ wðkÞþ g2
Qx
bRywðkÞ

wHðkÞbRyQx
bRywðkÞ

� wðkÞ
" #

; ð8:137Þ

wðkþ 1Þ ¼ ~wðkþ 1Þ
~wðkþ 1Þk kRy

; ð8:138Þ

kðkþ 1Þ ¼ kðkÞþ c2½wHðkÞbRyQx
bRywðkÞ � kðkÞ�: ð8:139Þ

which is referred to as DDT System 2.
Similar to [4], we also denote by uk kR ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
uHRu

p
the R-norm of a vector u,

where R 2 CN�N and u 2 CN ; PR
VðuÞ 2 V is the R-orthogonal projection of u onto

a subspace V 2 CN ; i.e., PR
VðuÞ is the unique vector satisfying u� PR

VðuÞ
�� ��

R ¼
minv2V u� vk kR; Vki is the generalized eigen-subspace associated with the ith
smallest generalized eigenvalue ki, i.e., Vki ¼ v 2 CN jRyv ¼ kiRxv

	 �
ði ¼ 1; 2; . . .;NÞ. (Note that Vki ¼ Vkj if ki ¼ kj for some i 6¼ j), V?

\R[ is the R-
orthogonal complement subspace of V for any subspace V � CN ; i:e:;
V?

\R[ ¼ u 2 CN j\u; v[ R ¼ vHRu ¼ 0; 8v 2 Vf g.
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Next, we will present two theorems to show the convergence of our algorithms.
In the following, two cases will be considered. In Case 1, k1 = k2 = 


 = kN and in
Case 2, k1 < kN.

Theorem 8.1 (Convergence analysis of fGMCA) Suppose that the sequence
½wðkÞ; kðkÞ�1k¼0 is generated by DDT System 1 with any g1; c1 2 ð0; 1�, any initial

Rx-normalized vector wð0Þ 62 ðVk1Þ?\Rx [ , and any k(0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k � 0, which is also a generalized eigenvector
associated with the generalized eigenvalue k1 of the matrix pencil (Ry, Rx), and
lim
k!1

kðkÞ ¼ k1. For Case 2, it holds that

lim
k!1

w ðkÞ ¼
PRx
Vk1

wð0Þ½ �
PRx
Vk1

wð0Þ½ �
��� ���

Rx

; ð8:140Þ

lim
k!1

k ðkÞ ¼ k1: ð8:141Þ

Proof Case 1:
Since k1 = k2 = 


 = kN ensures Vk1 ¼ CN , we can verify that for all k � 0 that

wðkÞ ¼ wð0Þ 6¼ 0, which is also a generalized eigenvector associated with the
generalized eigenvalue k1 of matrix pencil (Ry, Ry). Moreover, from (8.128) we
have k(k + 1) = (1 − c1)k(k) + c1k1 for all k � 0. Hence

kðkþ 1Þ ¼ ð1� c1ÞkðkÞþ c1k1 ¼ 
 
 

¼ ð1� c1Þkþ 1kð0Þþ c1k1½1þð1� c1Þþ 
 
 
 þ ð1� c1Þk�
¼ ð1� c1Þkþ 1kð0Þþ k1½1� ð1� c1Þkþ 1�
¼ k1 þð1� c1Þkþ 1½kð0Þ � k1�:

ð8:142Þ

Since c1 2 ð0; 1�, we can verify that lim
k!1

k ðkÞ ¼ k1.

Case 2: Suppose that the generalized eigenvalues of the matrix pencil (Ry, Rx)
have been ordered as k1 ¼ 
 
 
 ¼ kr\krþ 1 	 
 
 
 	 kN ð1	 r	NÞ. Since
v1; v2; . . .; vNf g is an Rx-orthonormal basis of CN , w(k) in DDT System 1 can be

written uniquely as:

wðkÞ ¼
XN
i¼1

ziðkÞ vi; k ¼ 0; 1; . . . ð8:143Þ

where ziðkÞ ¼ wðkÞ; vih iRx
¼ vHi RxwðkÞ; i ¼ 1; 2; . . .;N:

First, we will prove by mathematical induction that for all k > 0, w(k) is well
defined, Rx-normalized, i.e.,
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wðkÞHRxwðkÞ ¼
XN
i¼1

zi kð Þj j2 ¼ 1; ð8:144Þ

and w kð Þ 62 Vk1ð Þ?hRxi, i.e., [z1(k), z2(k),…, zr(k)] 6¼ 0. Note that w 0ð Þ 62 Vk1ð Þ?hRxi is

Rx-normalized. Assume that w(k) is well defined, Rx-normalized, and w kð Þ 62
Vk1ð Þ?hRxi for some k > 0. By letting ~w ðkþ 1Þ ¼PN

i¼1 ~ziðkþ 1Þvi, from (8.134) and
(8.143), we have the following:

~ziðkþ 1Þ ¼ ziðkÞ 1þ g1
1

kiwHðkÞRxR�1
y RxwðkÞ

� 1

" #( )
: ð8:145Þ

Since matrix pencil Rx;RxR�1
y Rx

 �
has the same eigen pairs as Ry;Rx

� �
, and w

(k) is Rx-normalized, it follows that

k1 	 wHðkÞRxwðkÞ
wHðkÞRxR�1

y Rxw ðkÞ ¼
1

wHðkÞRxR�1
y RxwðkÞ

	 kN ; ð8:146Þ

which is a generalization of the Rayleigh–Ritz ratio [19]. For i = 1,…, r, (8.146)
and (8.145) guarantee that

1þ g1
1

kiwHðkÞRxR�1
y RxwðkÞ

� 1

" #
¼ 1þ g1

1
k1

1

wHðkÞRxR�1
y RxwðkÞ

� 1

" #
� 1;

ð8:147Þ

and [z1(k + 1), z2(k + 1), …, zr(k + 1)] 6¼ 0. These imply that ~w ðkþ 1Þ 6¼ 0 and
w ðkþ 1Þ ¼PN

i¼1 ziðkþ 1Þ vi is well defined, Rx-normalized, and w kþ 1ð Þ 62
Vk1ð Þ?hRxi, where

ziðkþ 1Þ ¼ ~ziðkþ 1Þ
~wðkþ 1Þk kRx

: ð8:148Þ

Therefore, w(k) is well defined, Rx-normalized, and w kð Þ 62 Vk1ð Þ?hRxi for all
k � 0.

Second, we will prove (8.125). Note that w 0ð Þ 62 Vk1ð Þ?hRxi implies the existence
of some m2 {1,…, r} satisfying zm(0) 6¼ 0, where k1 = 


 = km = 


 = kr. From
(8.145) and (8.148), we have zm(k + 1)/zm(0) > 0 for all k � 0. By using (8.145)
and (8.148), we can see that for i = 1,…, r, it holds that
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ziðkþ 1Þ
zmðkþ 1Þ ¼

~ziðkþ 1Þ
~wðkþ 1Þk kRx

~wðkþ 1Þk kRx

~zmðkþ 1Þ

¼ ziðkÞ
zmðkÞ 


1þ g1
1

kiwHðkÞRxR�1
y RxwðkÞ � 1

h i
1þ g1

1
kmwHðkÞRxR�1

y RxwðkÞ � 1
h i

¼ ziðkÞ
zmðkÞ ¼ 
 
 
 ¼ zið0Þ

zmð0Þ :

ð8:149Þ

On the other hand, by using (8.145) and (8.148), we have for all k � 0 and
i = r + 1, …, N that

ziðkþ 1Þj j2
zmðkþ 1Þj j2 ¼

~ziðkþ 1Þ
~wðkþ 1Þk kRx

~wðkþ 1Þk kRx

~zmðkþ 1Þ

¼
1þ g1

1
kiwHðkÞRxR�1

y RxwðkÞ � 1
 �

1þ g1
1

kmwHðkÞRxR�1
y RxwðkÞ � 1

 �
264

375
2


 ziðkÞj j2
zmðkÞj j2

¼ 1�
1
k1
� 1

ki

ð 1g1 � 1ÞwHðkÞRxR�1
y RxwðkÞþ 1

k1

" #2

 ziðkÞj j2
zmðkÞj j2 ¼ wðkÞ ziðkÞj j2

zmðkÞj j2 ;

ð8:150Þ

where

w ðkÞ ¼ 1�
1
k1
� 1

ki

1
g1
� 1

 �
wHðkÞRxR�1

y RxwðkÞþ 1
k1

24 352

: ð8:151Þ

For all i = r + 1, …, N, together with η1 2 (0, 1] and 1/k1−1/ki > 0, Eq. (8.146)
guarantees that

1�
1
k1
� 1

ki

1
g1
� 1

 �
wHðkÞRxR�1

y RxwðkÞþ 1
k1

	 1�
1
k1
� 1

krþ 1

1
g1
� 1

 �
1
k1
þ 1

k1

¼ 1� g1 1� k1
krþ 1

� �
\1;

ð8:152Þ

and
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1�
1
k1
� 1

ki

1
g1
� 1

 �
wHðkÞRxR�1

y RxwðkÞþ 1
k1

� 1�
1
k1
� 1

kN

1
g1
� 1

 �
wHðkÞRxR�1

y RxwðkÞþ 1
k1

= 1�
1
k1
� 1

kN

1
g1

1
kN

þ 1
k1
� 1

kN

 � [ 0:

ð8:153Þ

From (8.152) and (8.153), we can verify that

0\wðkÞ\1; i ¼ rþ 1; . . .;N; ð8:154Þ

for all k � 0. Denote wmax = max{w(k)|k � 0}. Clearly 0 < wmax < 1. From
(8.150), we have the following:

ziðkþ 1Þj j2
zmðkþ 1Þj j2 	wmax

ziðkÞj j2
zmðkÞj j2 	 
 
 
 	wkþ 1

max
zið0Þj j2
zmð0Þj j2 : ð8:155Þ

Since w(k) is Rx-normalized, |zm(k)|
2	 1 for all k � 0, it follows from (8.155)

that

XN
i¼rþ 1

ziðkÞj j2 	
XN

i¼rþ 1

ziðkÞj j2
zmðkÞj j2 	 
 
 


	wk
max

XN
i¼rþ 1

zið0Þj j2
zmð0Þj j2 ! 0 as k ! 1;

ð8:156Þ

which along with (8.144) implies that

lim
k!1

Xr
i¼1

ziðkÞj j2¼ 1: ð8:157Þ

Note that zm(k)/zm(0) > 0 for all k � 0. Then, from (8.149) and (8.157) we have
the following:

lim
k!1

ziðkÞ ¼ zi 0ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1 zjð0Þ
�� ��2q ; i ¼ 1; 2; . . .; r: ð8:158Þ

Based on (8.156) and (8.158), (8.140) can be obtained as follows:

lim
k!1

wðkÞ ¼
Xr
i¼1

zið0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPr
j¼1 zjð0Þ
�� ��2q vi ¼

PRx
Vk1

½w ð0Þ�
PRx
Vk1

½wð0Þ�
��� ���

Rx

: ð8:159Þ
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Finally, we will prove (8.141). From (8.159), we can see that

lim
k!1

1
wHðkÞRxR�1

y RxwðkÞ
¼ k1: ð8:160Þ

That is, for any small positive d, there exists a K > 0 satisfying

k1 � d\
1

wHðkÞRxR�1
y RxwðkÞ

\k1 þ d; ð8:161Þ

for all k > K. It follows from (8.128) that

k ðkÞ[ 1� c1ð Þk k � 1ð Þþ c1 k1 � dð Þ[ 
 
 
 [ 1� c1ð Þk�KkðK)þ c1 k1 � dð Þ
� 1þ 1� c1ð Þþ 
 
 
 þ 1� c1ð Þk�K
h i

¼ 1� c1ð Þk�KkðK)þ c1 k1 � dð Þ

� 1� 1� c1ð Þk�K
h i

¼ k1 � dð Þþ 1� c1ð Þk�K kðK)� k1 þ d½ �;
ð8:162Þ

and

k ðkÞ\ 1� c1ð Þk k � 1ð Þþ c1 k1 þ dð Þ\ 
 
 
\ 1� c1ð Þk�Kk ðKÞþ c1 k1 þ dð Þ
� 1þ 1� c1ð Þþ 
 
 
 þ 1� c1ð Þk�K�1
h i

¼ 1� c1ð Þk�Kk ðKÞþ k1 þ dð Þ

� 1� 1� c1ð Þk�K
h i

¼ k1 þ dð Þþ 1� c1ð Þk�K k ðKÞ � k1 � d½ �;
ð8:163Þ

for all k > K. Since c1 2 (0, 1], it is easy to verify from (8.162) and (8.163) that
lim
k!1

k ðkÞ ¼ k1.

This completes the proof.

Theorem 8.2 (Convergence analysis of fGPCA) Suppose that the sequence
½wðkÞ; kðkÞ�1k¼0 is generated by DDT System 2 with any g2; c2 2 ð0; 1�, any initial

Ry-normalized vector wð0Þ 62 ðVkN Þ?\Rx [ , and any k(0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k � 0, which is also a generalized eigenvector
associated with the generalized eigenvalue kN of the matrix pencil (Ry, Rx), and
lim
k!1

kðkÞ ¼ kN. For Case 2, it holds that

lim
k!1

w ðkÞ ¼
ffiffiffiffiffiffi
1
kN

r PRx
VkN

w ð0Þ½ �
PRx
VkN

w ð0Þ½ �
��� ���

Rx

; ð8:164Þ
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lim
k!1

kðkÞ ¼ kN : ð8:165Þ
The proof of Theorem 8.2 is similar to that of Theorem 8.1. A minor difference is

that we need to calculate the Ry-norm of w(k) at each step. Another minor difference
is that in (8.146), it holds that matrix pencil ðRyR�1

x Ry;RyÞ has the same eigen pairs
as (Ry, Rx) and w(k) is well defined, Ry-normalized, and w ðkÞ 62 ðVkN Þ?Rxh i for all
k� 0. Therefore,

k1 	 wHðkÞRyR�1
x RywðkÞ

wHðkÞRywðkÞ ¼ wHðkÞRyR�1
x RywðkÞ	 kN : ð8:166Þ

Particularly, if k1 and k2 are distinct ðk1\k2 	 
 
 
 	 kNÞ, we have Vk1 ¼
span V1f g; PRx

Vk1
½w ð0Þ� ¼ w ð0Þ; V1h iRx

V1, and PRx
Vk1

½w ð0Þ�
��� ���

Rx

¼ w ð0Þ; V1h iRx

��� ���.
Moreover, if kN�1 and kN are distinct (k1 	 
 
 
 	 kN�1\kNÞ, we have VkN ¼
span VNf g; PRy

VkN
½wð0Þ� ¼ wð0Þ;VNh iRy

VN and PRy
VkN

½w ð0Þ�
��� ���

Ry

¼ w ð0Þ; VNh iRy

��� ���.
Hence, the following corollaries hold.

Corollary 8.1 Suppose that k1\k2 	 
 
 
 	 kN. Then the sequence ½w ðkÞ; kðkÞ�1k¼0
generated by DDT System 1 with any g1; c1 2 ð0; 1�, any initial Rx-normalized
vector w ð0Þ 62 ðVk1Þ?Rxh i, and any kð0Þ[ 0 satisfies

lim
k!1

wðkÞ ¼ wð0Þ;V1h iRx
V1

wð0Þ;V1h iRx

�� �� ; ð8:167Þ

lim
k!1

kðkÞ ¼ k1: ð8:168Þ

Corollary 8.2 Suppose that k1 	 
 
 
 	 kN�1\kN. Then the sequence
½wðkÞ; kðkÞ�1k¼0 generated by DDT System 2 with any g2; c2 2 ð0; 1�, any initial Ry-
normalized vector w ð0Þ 62 ðVkN Þ?Ryh i, and any kð0Þ[ 0 satisfies

lim
k!1

wðkÞ ¼
ffiffiffiffiffiffi
1
kN

r
wð0Þ;VNh iRx

VN

wð0Þ;VNh iRx

��� ��� ; ð8:169Þ

lim
k!1

kðkÞ ¼ kN : ð8:170Þ

8.4.4 Numerical Examples

In this section, we present two numerical examples to evaluate the performance of
our algorithms (fGMCA and fGPCA). The first estimates the principal and minor
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generalized eigenvectors from two random vector processes, which are generated
by two sinusoids with additive noise. The second illustrates performance of our
algorithms for the BSS problem. Besides nGMCA and nGPCA, we also compare
with the following algorithms, which were proposed in the recent ten years:

(1) Gradient-based: adaptive version of ([4], Alg. 2) with negative (for GPCA)
and positive (for GMCA) step sizes;

(2) Power-like: fast generalized eigenvector tracking [20] based on the power
method;

(3) R-GEVE: reduced-rank generalized eigenvector extraction algorithm [21];
(4) Newton-type: adaptive version of Alg. I proposed in [22].

A. Experiment 1

In this experiment, the input samples are generated by:

y ðnÞ ¼
ffiffiffi
2

p
sinð0:62pnþ h1Þþ 11ðnÞ; ð8:171Þ

x ðnÞ ¼
ffiffiffi
2

p
sinð0:46pnþ h2Þþ

ffiffiffi
2

p
sinð0:74pnþ h3Þþ 12ðnÞ; ð8:172Þ

where hi (i = 1, 2, 3) are the initial phases, which follow uniform distributions
within [0, 2p], and f1(n) and f2(n) are zero-mean white noises with variance
r21 ¼ r22 ¼ 0:1.

The input vectors {y(k)} and {x(k)} are arranged in blocks of size N = 8, i.e., y
(k) = [y(k),…, y(k − N+1)]T and x(k) = [x(k),…, x(k − N + 1)]T, k � N. Define
the N � N matrix pencil ðRy; RxÞ with the (p, q) entry (p, q = 1,2,…,N) of Ry and
Rx given by

Ry
� �

pq¼ cos 0:62p ðp� qÞ½ � þ dpqr
2
1; ð8:173Þ

Rx
� �

pq¼ cos 0:46p ðp� qÞ½ � þ cos 0:74p ðp� qÞ½ � þ dpqr
2
2: ð8:174Þ

For comparison, the direction cosine DC(k) is used to measure the accuracy of
direction estimate. We also measure the numerical stability of all algorithms by the
sample standard deviation of the direction cosine:

SSDðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L� 1

XL
j¼1

DCjðkÞ � DCðkÞ� �2vuut ; ð8:175Þ

where DCj(k) is the direction cosine of the jth independent run (j = 1, 2,…, L) and
DCðkÞ is the average over L = 100 independent runs.

In this example, we conduct two simulations. In the first simulation, we use
fGMCA, nGMCA, and the other aforementioned algorithms to extract the minor
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generalized eigenvector of matrix pencil (Ry, Rx). Note that in gradient-based
algorithm a positive step size is used, and the other algorithms are applied to
estimate the principal generalized eigenvector of matrix pencil (Ry, Rx) which is
also the minor generalized eigenvector of (Ry, Rx). In the second simulation, we use
fGPCA, nGPCA, and the other algorithms to extract the principal generalized
eigenvector of matrix pencil (Ry, Rx). Note that in gradient-based algorithm a
negative step size is used. The sets of parameters used in simulations refer to [4],
[22]. All algorithms have been initialized with bRxð0Þ = bRyð0Þ ¼ Qxð0Þ ¼ Qyð0Þ ¼
IN (if used) and w(0) = e1, where e1 stands for the first columns of IN.

The experimental results are shown in Figs. 8.10 to 8.12 and Table 8.1.
Figures 8.10 and 8.11 depict the time course of direction cosine for generalized

eigenvector estimation and sample standard deviation of the direction cosine. The
results of minor and principal generalized eigenvalues estimation of all generalized
eigen-pair extraction algorithms are shown in Fig. 8.12. We find that fGM(P)CA
converge faster than nGMCA and nGPCA at the beginning steps, respectively, and

Fig. 8.10 Example 1: Direction cosine of the principal/minor generalized eigenvector. a First
simulation. b Second simulation

Fig. 8.11 Example 1: Sample standard deviation of the direction cosine. a First simulation.
b Second simulation
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fGMCA and fGPCA have similar estimation accuracy as nGMCA and nGPCA,
respectively. Figure 8.12 shows that all generalized eigen-pair extraction algorithms
can extract the principal or minor generalized eigenvalue efficiently.

The computational complexities of all aforementioned algorithms are shown in
Table 8.1. We find that Newton-type has the lowest computational complexity but
the worst estimation accuracy and standard deviation. The Power-like has the
highest computational complexity compared with the other algorithms. The nGM
(P)CA and gradient-based algorithms have same computational complexity. The
computational complexities of R-GEVE and the proposed algorithms are similar,
which are lower than that of nGM(P)CA and gradient-based algorithms.

B. Experiment 2

We perform this experiment to show the performance of our algorithm for the BSS
problem. Consider a linear BSS model [23]:

xðnÞ ¼ AsðnÞþ eðnÞ; ð8:176Þ

where x(n) is a r-dimensional vector of the observed signals at time k, s(n) is a l-
dimensional vector of the unknown source signals, A 2 Rl�r denotes the unknown

Fig. 8.12 Example 1:
Generalized eigenvalues
estimation. a First simulation:
principal generalized
eigenvalues estimation.
b Second simulation: minor
generalized eigenvalues
estimation

Table 8.1 Computational
complexity of all algorithms

Algorithm fGM(P)CA nGM(P)CA Gradient-based

Complexity 7N2 + O(N) 10N2 + O(N) 10N2 + O(N)

Algorithm Power-like R-GEVE Newton-type

Complexity 13N2 + O(N) 6N2 + O(N) 4N2 + O(N)
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mixing matrix, and e(n) is an unknown noise vector. In general, BSS problem is
that of finding a separating matrix W such that the r-dimensional output signal
vector y = WTx contains components that are as independent as possible. In this
experiment, we compare the proposed algorithms with nGMCA and nGPCA
algorithms, as well as batch-processing generalized eigenvalue decomposition
method (EVD method in MATLAB software). We use the method given in [20, 22]
to formulate the matrix pencil by applying FIR filtering. z(n), the output of FIR
filter, is given as

z ðnÞ ¼
Xm
t¼0

s ðtÞx ðn� tÞ; ð8:177Þ

where s(t) are the coefficients of the FIR filter. Let Rx ¼ E½xðkÞxTðkÞ� and
Rz ¼ E½zðkÞzTðkÞ�. It was shown in [20] that the separating matrix W can be found
by extracting the generalized eigenvectors of matrix pencil (Rz, Rx). Hence, the BSS
problem can be formulated as finding the generalized eigenvectors associated with
the two sample sequences x(k) and z(k). Therefore, we can directly apply our
algorithm to solve the BSS problem.

In the simulation, four benchmark signals are extracted from the file ABio7.mat
provided by ICALAB [23], as shown in Fig. 8.13. We use the mixing matrix

A ¼
2:7914 �0:1780 �0:4945 0:3013
1:3225 �1:7841 �0:3669 0:4460
0:0714 �1:9163 0:4802 �0:3701
�1:7396 0:1302 0:9249 �0:4007

2664
3775; ð8:178Þ

which was randomly generated. e[n] is a zero-mean white noise vector with
covariance 10−5I. Figure 8.14 shows the mixed signals. We use a simple FIR filter
with coefficients s = [1, − 1]T.

Fig. 8.13 Four original
signals
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Suppose that the matrix pencil (Rz, Rx) has four eigenvectors w1, w2, w3, w4

associated with four eigenvalues r1\r2\r3\r4. Thus, B ¼ ½w1;w2;w3;w4�. We
use fGPCA, nGPCA, and all other algorithms to extract the two principal gener-
alized eigenvectors (w3 and w4). To extract the two minor generalized eigenvectors
(w1 and w2), we use fGMCA, nGMCA, and gradient-based algorithms to extract the
minor generalized eigenvectors of matrix pencil (Rz, Rx) and other algorithms to
extract the principal generalized eigenvectors of matrix pencil (Rx, Rz). All
parameters and initial values are the same as in Example 1.

Similar to Example 1, a total of L = 100 independent runs are evaluated in this
example. The separating matrix B is calculated as B ¼ ð1 = LÞPL

j¼1 Bj, where Bj is
the separating matrix extracted from the jth independent run (j = 1, 2,…, L).

Figures 8.15 to 8.16 show the recovered signals by EVD and our method,
respectively. Signals separated by other algorithms are similar to Figs. 8.15 and
8.16, which are not shown in these two figures. Table 8.2 shows the absolute values

Fig. 8.14 Mixed signals

Fig. 8.15 Signals separated
by EVD method
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of correlation coefficients between the sources and the recovered signals. The
simulation results demonstrate that all methods can solve the BSS problem effec-
tively, and our algorithms and the algorithms proposed in [4] can separate the
signals more accurately than other algorithms. Moreover, the advantage of neural
network model-based algorithms over EVD method for the BSS problem is that
they are recursive algorithms and therefore can be implemented online, whereas
EVD is a batch-processing method and therefore needs intensive computation.

In this section, we have derived a coupled dynamic system for GHEP based on a
novel generalized information criterion. Compared with the existing work, the
proposed approach is easier to obtain for that it does not need to calculate the
inverse of the Hessian. Based on the dynamic system, a coupled GMCA algorithm
(fGMCA) and a coupled GPCA algorithm (fGPCA) have been obtained. The
convergence speed of fGMCA and fGPCA is similar to that of Nguyen’s
well-performed algorithms (nGMCA and nGPCA), but the computational com-
plexity is less than that of Nguyen. Experiment results show that our algorithms
have better numerical stability and can extract the generalized eigenvectors more
accurately than the other algorithms.

Fig. 8.16 Signals separated
by proposed method

Table 8.2 Absolute values
of correlation coefficients
between sources and
recovered signals

Method Source 1 Source 2 Source 3 Source 4

EVD 1.0000 0.9998 0.9997 0.9989

fGM(P)CA 1.0000 0.9997 0.9992 0.9987

nGM(P)CA 1.0000 0.9996 0.9994 0.9987

Gradient-based 0.9983 0.9811 0.9989 0.9983

Power method 0.9998 0.9995 0.9991 0.9980

R-GEVE 0.9999 0.9995 0.9993 0.9988
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8.5 Summary

In this chapter, the speed stability problem that plagues most noncoupled learning
algorithms has been discussed and the coupled learning algorithms that are a
solution for the speed stability problem have been analyzed. Moller’s coupled PCA
algorithm, Nguyen’s coupled generalized eigen pair extraction algorithm, coupled
singular value decomposition of a cross-covariance matrix, etc., have been
reviewed. Then, unified and coupled algorithms for minor and principal eigen pair
extraction proposed by us have been introduced, and their convergence has been
analyzed. Finally, a fast and adaptive coupled generalized eigen pair extraction
algorithm proposed by us has been analyzed in detail, and their convergence
analysis has been proved via the DDT method.
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