Chapter 8
Coupled Principal Component Analysis

8.1 Introduction

Among neural network-based PCA or MCA algorithms, most previously reviewed
do not consider eigenvalue estimates in the update equations of the weights, except
an attempt to control the learning rate based on the eigenvalue estimates [1]. In [2],
Moller provided a framework for a special class of learning rules where eigen-
vectors and eigenvalues are simultaneously estimated in coupled update equations,
and has proved that coupled learning algorithms are solutions for the speed stability
problem that plagues most noncoupled learning algorithms. The convergence speed
of a system depends on the eigenvalues of its Jacobian, which vary with the
eigenvalues of the covariance matrix in noncoupled PCA/MCA algorithms [2].
Moller showed that, in noncoupled PCA algorithms, the eigen motion in all
directions mainly depends on the principal eigenvalue of the covariance matrix [2].
Numerical stability and fast convergence of algorithms can only be achieved by
guessing this eigenvalue in advance [2]. In particular for chains of principal
component analyzers which simultaneously estimate the first few principal eigen-
vectors [3], choosing the right learning rates for all stages may be difficult. The
problem is even more severe for MCA algorithms. MCA algorithms exhibit a wide
range of convergence speeds in different eigen directions, since the eigenvalues of
the Jacobian cover approximately the same range as the eigenvalues of the
covariance matrix. Using small enough learning rates to still guarantee the stability
of the numerical procedure, noncoupled MCA algorithms may converge very
slowly [2].

In [2], Moller derived a coupled learning rule by applying Newton’s method to a
common information criterion. A Newton descent yields learning rules with
approximately equal convergence speeds in all eigen directions of the system.
Moreover, all eigenvalues of the Jacobian of such a system are approximately.
Thus, the dependence on the eigenvalues of the covariance matrix can be eliminated
[2]. Moller showed that with respect to averaged differential equations, this
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approach solves the speed stability problem for both PCA and MCA rules.
However, these differential equations can only be turned into the aforementioned
online rules for the PCA but not for the MCA case, leaving the more severe MCA
stability problem still unresolved [2]. Interestingly, unlike most existing adaptive
algorithms, the coupled learning rule for the HEP effectively utilizes the latest
estimate of the eigenvalue to update the estimate of the eigenvector [4]. Numerical
examples in [2] showed that this algorithm achieves fast and stable convergence for
both low-dimensional data and high-dimensional data. Unfortunately, there has
been no report about any explicit convergence analysis for the coupled learning
rule. Thus, the condition for the convergence to the desired eigen pair is not clear;
e.g., the region within which the initial estimate of the eigen pair must be chosen to
guarantee the convergence to the desired eigen pair has not yet been known [4].

Recently, Tuan Duong Nguyen et al. proposed novel algorithms in [4] for given
explicit knowledge of the matrix pencil (R,, R,). These algorithms for estimating
the generalized eigen pair associated with the largest/smallest generalized eigen-
value are designed (i) based on a new characterization of the generalized eigen pair
as a stationary point of a certain function and (ii) by combining a normalization step
and quasi-Newton step at each update. Moreover, the rigorous convergence analysis
of the algorithms was established by the DDT approach. For adaptive implemen-
tation of the algorithms, Tuan Duong Nguyen et al. proposed to use the expo-
nentially weighted sample covariance matrices and the Sherman—Morrison—
Woodbury matrix-inversion lemma.

The aim of this chapter was to develop some coupled PCA or coupled gener-
alized PCA algorithms. First, on the basis of a special information criterion in [5],
we propose a coupled dynamical system by modifying Newton’s method in this
chapter. Based on the coupled system and some approximation, we derive two
CMCA algorithms and two CPCA algorithms; thus, two unified coupled algorithms
are obtained [6]. Then, we propose a coupled generalized system in this chapter,
which is obtained by using the Newton’s method and a novel generalized infor-
mation criterion. Based on this coupled generalized system, we obtain two coupled
algorithms with normalization steps for minor/principal generalized eigen pair
extraction. The technique of multiple generalized eigen pair extraction is also
introduced in this chapter. The convergence of algorithms is justified by DDT
system.

In this chapter, we will review and discuss the existing coupled PCA or coupled
generalized PCA algorithms. Two coupled algorithms proposed by us will be
analyzed in detail. The remainder of this chapter is organized as follows. An
overview of the existing coupled PCA or coupled generalized PCA algorithms is
presented in Sect. 8.2. An unified and coupled self-stabilizing algorithm for minor
and principal eigen pair extraction algorithms are discussed in Sect. 8.3. An
adaptive generalized eigen pair extraction algorithms and their convergence anal-
ysis via DDT method are presented in Sect. 8.4, followed by summary in Sect. 8.5.
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8.2 Review of Coupled Principal Component Analysis

8.2.1 Moller’s Coupled PCA Algorithm

Learning rules for principal component analysis are often derived by optimizing
some information criterion, e.g., by maximizing the variance of the projected data
or by minimizing the reconstruction error [2, 7]. In [2], Moller proposed the fol-
lowing information criterion as the starting point of his analysis

p=wCwi™ —wTw41In .. (8.1)

where w denotes an n-dimensional weight vector, i.e., the estimate of the eigen-
vector, / is the eigenvalue estimate, and C = E{xx"} is the n x n covariance matrix
of the data. From (8.1), by using the gradient method and the Newton descent,
Moller derived a coupled system of differential equations for the PCA case

1
w=Cwl ' —wwTCwi ™' — ok (1—w'w), (8.2)

A=wlCw —wTwa, (8.3)
and another for MCA case

1
w=C'wit+wwTCwi ' — ok (1+3w'w), (8.4)

L=wlCw —wTwi. (8.5)

For the stability of the above algorithms, see [2]. It has been shown that for the
above coupled PCA system, if we assume /4; < 4y, the system converges with
approximately equal speeds in all its eigen directions, and this speed is widely
independent of the eigenvalues A; of the covariance matrix. And for the above
coupled MCA system, if we assume ; < 4;, then the convergence speed is again
about equal in all eigen directions and independent of the eigenvalues of C.

By informally approximating C = xxT, the averaged differential equations of
(8.2) and (8.3) can be turned into an online learning rule:

1
W=7y (x —wy) — Tk (1—wtw)|, (8.6)

A=p(% —wlwl). (8.7)

According to the stochastic approximation theory, the resulting stochastic differ-
ential equation has the same convergence goal as the deterministic averaged equation
if certain conditions are fulfilled, the most important of which is that a learning rate
decreases to zero over time. The online rules (8.6) and (8.7) can be understood as a
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learning rule for the weight vector w of a linear neuron which computes its output
y from the scalar product of weight vector and input vector y = w'x.

In [2], the analysis of the temporal derivative of the (squared) weight vector
length in (8.6) has shown that the weight vector length may in general be fluctuating.
By further approximating wTw = 1 (which is fulfilled in the vicinity of the stationary
points) in the averaged systems (8.2) and (8.3), the following system can be derived

w=Cw. ' —wwTCwi™, (8.8)
J=wrCw — . (8.9)

This learning rule system is known as ALA [1]. The eigenvalues of the system’s
Jacobian are still approximately equal and widely independent of the eigenvalues of
the covariance matrix. The corresponding online system is given by

W =yyA " (x — wy), (8.10)
i=y(*—1). (8.11)

It is obvious that ALA can be interpreted as an instance of Oja’s PCA rule.

From (8.4) and (8.5), it has been shown that having a Jacobian with eigenvalues
that are equal and widely independent of the eigenvalues of the covariance matrix
appears to be a solution for the speed stability problem. However, when attempting
to turn this system into an online rule, a problem is encountered when replacing the
inverse covariance matrix C”' by a quantity including the input vector x. An
averaged equation linearly depending on C takes the form w =f(C,w) =
f(E{xx"},w)= E{f(xx,w)}. In an online rule, the expectation of the gradient is
approximated by slowly following w = yf(xxT,w) for subsequent observations of
x. This transition is obviously not possible if the equation contains C'. Thus, there
is no online version for the MCA systems (8.4) and (8.5). Despite using the
ALA-style normalization, the convergence speed in different eigen directions still
depends on the entire range of eigenvalues of the covariance matrix. So the speed
stability problem still exists.

8.2.2 Nguyen’s Coupled Generalized Eigen pairs Extraction
Algorithm

In [8], Nguyen proposed a generalized principal component analysis algorithm and
its differential equation form is given as:

w=R_'Rw—wRww. (8.12)
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Let W = [wy, wy,..., wyl, in which w, w,,..., wy are the generalized eigen-
vectors of matrix pencil (R, R,). The Jacobian in the stationary point is given as:

o )
ST o = BBy — 2l = 20w 1wy R (8.13)

J(wy) =

Solving for the eigenvectors of J can be simplified to the solving for the

eigenvector of its similar diagonally matrix J* = P~'JP, since J and J have the

same eigenvectors and eigenvalues, and the eigenvalues of diagonal matrix J* are

easy to be obtained. Considering W’RW =1, let P=W. Then we have
P '=W"R,. Thus, it holds that

T (wi) = WHR.(R'Ry — 2uI — 2w w{R,)W
HAy (8.14)

=A— I =2, W/'Rw (W/Rw)) e

Since W/Rw, = e, = [1, 0,..., 01", (8.14) will be reduced to
J(wi) = A — I —2)eel. (8.15)
The eigenvalues o determined from det (J* — o) = 0 are given as:
o =24, oj=4—Ai, j=2,...,N. (8.16)

Since the stability requires « <0 and thus 4; > 4;, j = 2,3, ..., n, it can be seen
that only principal eigenvector—eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers, which can still testify that (8.12) is a
generalized PCA algorithm. In the practical signal processing applications, it
always holds that 2, > /;, j = 2,3,...,n. Thus, o; = —4,, i.e., the eigen motion in
all directions in algorithm (8.12) depends on the principal eigenvalue of the
covariance matrix. Thus, this algorithm has the speed stability problem.

In [4], an adaptive normalized quasi-Newton algorithm for generalized eigen
pair extraction was proposed and its convergence analysis was conducted. This
algorithm is a coupled generalized eigen pair extraction algorithm, which can be
interpreted as natural combinations of the normalization step and quasi-Newton
steps for finding the stationary points of the function

Ew,2) =wlRwi™ " —wRw +1nJ, (8.17)

which is a generalization of the information criterion introduced in [2] for the
HEP. The stationary point of ¢ is defined as a zero of

[0}4 -1
5= 2Rwi~ — 2R.w
aw | — Y x . .
(%) <wHRywi2+/11> (8.18)
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Hence, from
R,w = /R,W
{ 7o (8.19)

it can be seen that (w, ) € CN x R is a stationary point of &, which implies that a
stationary point (w, /) of ¢ is a generalized eigen pair of the matrix pencil (R, R,).
To avoid these computational difficulties encountered in Newton’s method, Nguyen

proposed to use approximations of H~!(w,]) in the vicinity of two stationary
points of their special interest

_ X ~ X 1/1 H R—l i
1 ~ f-! L Sww . w
H wA)~H, w1 = 2 ( W) 0 ), (8.20)
for (w, 2) = (vy, Av), and
_ ~_ LR —3wwl  —wi
! ~H;' =" 2 .
H (w,A)~H, (w,A) 2( i 0 >, (8.21)

for (w, 1) = (v1, 41). By applying Newton’s strategy for finding the stationary point
of ¢ using the gradient (8.18) and the approximations (8.20) and (8.21), a learning
rule for estimating the generalized eigen pair associated with the largest generalized
eigenvalue was obtained as:

w(k+1) =w(k) +n {R'Ryw(k) 2" (k)

u - 1 u (8.22)
—w(k)Ryw(k) w(k)2™ (k) = 5w(k)[1 —w (k)Rxw(k)]}7

Mk+1) = A(k) +p; [w (k+ D)Ryw(k+ 1) — w” (k+ D)Rew(k + 1)A(k)], (8.23)

and a learning rule for estimating the generalized eigen pair associated with the
smallest generalized eigenvalue was obtained as:

w (k1) = w (k) + no{ Ry Row (k)2 (k) -+ w (K)Ryw () w ()2~ (K)
(8.24)
- %w (k) [143w" (k)Rew (k)] }

Mk+1) = A(k) +p, [w! (k+ DRyw(k+ 1) — w” (k+ DRuw(k + 1)A(k)], (8.25)

where 1, 7,,%,,7, > 0 are the step sizes, and [w(k), A(k)] is the estimate at time
k of the generalized eigen pair associated with the largest/smallest generalized
eigenvalue. By introducing the normalization step in the above learning rules at

each update, using the exponentially weighted sample covariance matrices IAiy and
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R, which are updated recursively, and using the Sherman—Morrison—Woodbury
matrix-inversion lemma, Nguyen’s coupled generalized eigen pair extraction
algorithm was obtained as follows.

Adaptive coupled generalized PCA algorithm:

Wk = wlk = 1) s (R (wlk = 1)

(8.26)
—w! (k — DR, (k)w(k — V)w(k — 1)),

_ w(k)
w(k) ”W(k)HEx(k) ) (8.27)
J(k) = (1 =y)A(k = 1)+ y,w! ()R, (k)w(k), (8.28)

and adaptive coupled generalized MCA algorithm:
W(k) = w(k = 1)+ 1, (@, (O R (kw (k= 1)2(k — 1) 529
(= DRy(k) wlk = Dw(k — 1) (k= 1) = 2w(k — 1)), '

_ w(k)
RN 0 (830)
Mk) = (1= y2)A(k — 1)+ v,w! (k) Ry (k)w (k), (8.31)

where |[u|p = VuTR.u is defined as the R,-norm, Q. =R;"', @, = R, which

are updated recursively as follows:

~

Ry(k+1) = PRy (k) +y(k+ )y" (k+1), (8.32)

R.(k+1) = aRy(k) +x(k+ )x" (k+1), (8.33)

O (B)x(k+ Dx"(k+1)0, (k))
o+ xt(k+1)0,(k)x(k+1) )

0.(k+ 1=} (0.0 (8.34)

Q, (k+ D= <Qy(k) b Lyt UQy(k)) , (8.35)

B B4y (k+1)Qy(k)y(k+ 1)

where o, § € (0, 1) are the forgetting factors.

Different from the analysis of Mdller’s coupled algorithm, the convergence
analysis of Nguyen algorithm in [4] was not conducted via the eigenvalue of
Jacobian matrix. Nguyen established rigorous analysis of the DDT systems
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showing that, for a step size within a certain range, the algorithm converges to the
orthogonal projection of the initial estimate onto the generalized eigen-subspace
associated with the largest/smallest generalized eigenvalue.

Next, we analyze the convergence of Nguyen’s algorithm via the eigenvalues of
Jacobian matrix.

By ignoring the normalization step (8.27), the differential equation form of
GPCA algorithms (8.26) and (8.28) can be written as:

w=2""(R,'Ryw — w'Rww), (8.36)
L=wlRw — ). (8.37)
The Jacobian matrix at the stationary point (wy, 4;) is given as:

LWT ow
ow B2
Jwi, 21) = 9) o)

)

w0 (w, ) (8.38)
[ A'RI'Ry T 2w WiR, 0
- 2/,wHR, -1/
Let
W 0
P= <0T 1). (8.39)
Then, it can be easily seen that
H
pl— (WoTRx ‘1’) (8.40)

Solving for the eigenvectors of J can then be simplified to the solving for the
eigenvector of its similar diagonally matrix J~ = P~'JP. Then it holds that

1 H
, A A—I—2ee 0
* M) = ! ! . 8.41
yom a) = (AR 0 (8.41)
The eigenvalues o determined from det (J* — o) = 0 are
Aj )
0(1:—2, OLN+1:—1, ozj:;——l,]:2,...,N. (842)
s}
Since the stability requires o <0 and thus 4; <1y, j = 2,3,...,n, it can be seen

that only principal eigenvector—eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers. If we further assume that 4, > 4,
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then o j~ —1,j=2,3,...,n. That s to say, the eigen motion in all directions in the
algorithm do not depend on the generalized eigenvalue of the covariance matrix of
input signal. Thus, this algorithm does not have the speed stability problem. Similar
analysis can be applied to the GMCA algorithms (8.29) and (8.31).

8.2.3 Coupled Singular Value Decomposition
of a Cross-Covariance Matrix

In [9], a coupled online learning rule for the singular value decomposition (SVD) of
a cross-covariance matrix was derived. In coupled SVD rules, the singular value is
estimated alongside the singular vectors, and the effective learning rates for the
singular vector rules are influenced by the singular value estimates [9]. In addition,
a first-order approximation of Gram—Schmidt orthonormalization as decorrelation
method for the estimation of multiple singular vectors and singular values was used.
It has been shown that the coupled learning rules converge faster than Hebbian
learning rules and that the first-order approximation of Gram—Schmidt orthonor-
malization produces more precise estimates and better orthonormality than the
standard deflation method [9].

The neural network and its learning algorithm for the singular value decompo-
sition of a cross-covariance matrix will be discussed in Chap. 9, in which the
coupled online learning rules for the SVD of a cross-covariance matrix will be
analyzed in detail.

8.3 Unified and Coupled Algorithm for Minor
and Principal Eigen Pair Extraction

Coupled algorithm can mitigate the speed stability problem which exists in most
noncoupled algorithms. Though unified algorithm and coupled algorithm have
these advantages over single purpose algorithm and noncoupled algorithm,
respectively, there are only few of unified algorithms, and coupled algorithms have
been proposed. Moreover, to the best of the authors’ knowledge, there are no both
unified and coupled algorithms which have been proposed. In this chapter, based on
a novel information criterion, we propose two self-stabilizing algorithms which are
both unified and coupled. In the derivation of our algorithms, it is easier to obtain
the results compared with traditional methods, because there is no need to calculate
the inverse Hessian matrix. Experiment results show that the proposed algorithms
perform better than existing coupled algorithms and unified algorithms.
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8.3.1 Couple Dynamical System

The derivation of neural network learning rules often starts with an information
criterion, e.g., by maximization of the variance of the projected data or by mini-
mization of the reconstruction error [7]. However, as stated in [10], the freedom of
choosing an information criterion is greater if Newton’s method is applied because
the criterion just has to have stationary points in the desired solutions. Thus in [2],
Moller proposed a special criterion. Based on this criterion and by using Newton’s
method, Moller derived some CPCA learning rules and a CMCA learning rule.
Based on another criterion, Hou [5] derived the same CPCA and CMCA learning
rules as that of Moller’s, and Appendix 2 of [5] showed that it is easier and clearer
to approximate the inverse of the Hessian.

To start the analysis, we use the same information criterion as Hou’s, which is

p=wCw—wwi+ti (8.43)

where C = E{xxT} € R"" is the covariance matrix of the n-dimensional input data
sequence x, w € ! and A € R denotes the estimation of eigenvector (weight
vector) and eigenvalue of C, respectively.

It is found that

Op ,

— =2 -2 44
o Cw Aw (8.44)
O _ 1

Thus, the stationary points (w, 1) of (8.43) are defined by

9 =0, o =0. (8.46)
oW 52 O .7y
Then, we can obtain
Cw = w, (8.47)
wiw =1 (8.48)

from which we can also conclude that wTCw = . Thus, the criterion (8.43) fulfills
the aforementioned requirement: The stationary points include all associated
eigenvectors and eigenvalues of C. The Hessian of the criterion is given as:
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*p Pp ,
. 4 m C—-—iA —w
H(w,)) = (gyp 302§’~> = 2( W0 ) (8.49)
oiow 9,2

Based on the Newton’s method, the equation used by Moller and Hou to derive
the differential equations can be written as:

Based on different information criteria, both Moller and Hou tried to find the

inverse of their Hessian H~!(w, /). Although the inverse Hessian of Moller and
Hou is different, they finally obtained the same CPCA and CMCA rules [5]. Here
we propose to derive the differential equation with another technical, which is

H(w,i)(j) (é_‘ﬁ) (8.51)

In this case, there is no need to calculate the inverse Hessian. Substituting (8.44),
(8.45), and (8.49) into (8.51), it yields

(S )G -(F) v
Then we can get

(C =MW —wi=—(C—)w (8.53)
Tw — 1. (8.54)

2wt =w

In the vicinity of the stationary point (wi,4;), by approximating
waw, A A < 4 (2<j<n), and after some manipulations (see Appendix A
in [6]), we get a coupled dynamical system as

. ClwwTw 1)
W=——g—" =W
2wTC™'w

. owlw+1 1 .
=" (chlw - A). (8.56)

(8.55)




246 8 Coupled Principal Component Analysis

8.3.2 The Unified and Coupled Learning Algorithms

8.3.2.1 Coupled MCA Algorithms

The differential equations can be turned into the online form by informally
approximating C = x(k)xT(k), where x(k) is a data vector drawn from the distri-
bution. That is, the expression of the rules in online form can be approximated by
slowly following w(k + 1) = fix(k)x"(k); w(k)) for subsequent observations of
x. Moller has pointed out [2] that this transition is infeasible if the equation contains
C™', because it is hard to replace the inverse matrix C~' by an expression con-
taining the input vector x. However, this problem can be solved in another way [11,
12], in which Cclis updated as

k+1 C'(k)x(k+ 1)x"(k+1)C ' (k) (8.57)
k k+xT(k+1)C (k) xT(k+1) '

Cl(k+1)= C (k) —

where C~!(k) starts with C~'(0) =1 and converges to C~' as k — 0o.Then, the
CMCA system (8.55)—(8.56) has the online form as:

T (k)w(k) + 1] Q(k)w(k) w(k)} (8.58)

W(k+1) :w(k)+7(k){ ZWT(k) Q(k)w(k)

T
k1) = 20 + 90 (k)wz(k) 1 [WT i Ql( AT )v(k)] (8.59)
kil Q) x(k+1)xT(k+ 1) (k)
Qk+1) === {Q(k)_k+xT(k+l)Q(k)xT(k+l)] (8.60)

where 0 <o <1 denotes the forgetting factor and y(k) is the learning rate. If all
training samples come from a stationary process, we choose o = 1. Q(k) = C~!(k)
starts with Q(0) = I. Here, we refer to the rule (8.55)-(8.56) and its online form
(8.58)—(8.60) as “fMCA,” where f means fast. In the rest of this section, the online
form (which is used in the implementation) and the differential matrix form (which
is used in the convergence analysis) of a rule have the same name, and we will not
emphasize this again. If we further approximate w'w ~ 1 (which fulfills in the
vicinity of the stationary points) in (8.55)—(8.56), we can obtain ¢ simplified CMCA
system

C'w
W=——+——w 8.61
2wTC'w ( )
1

—_— 8.62
chflw ( )

N
Il
NS
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and the online form is given as:

w(k+1) = w(k)—i—y(k){%—w(k)} (8.63)
k4 1) = A(K) +7(6) {m— i(k)} (8.64)

where Q(k) is updated by (8.60). In the following, we will refer to this algorithm as
“aMCA,” where a means adaptive.

8.3.2.2 Coupled PCA Algorithms

It is known that in unified rules, MCA rules can be derived from PCA rules by
changing the sign or using the inverse of the covariance matrix, and vice versa.
Here we propose to derive unified algorithms by deriving CPCA rules from CMCA
rules. Suppose that the covariance matrix C has an eigen pair (w, /); then it holds
that [13] Cw = /w and C~'w = /"'w, which means that the minor eigen pair of
C is also the principal eigen pair of the inverse matrix C~!, and vice versa.
Therefore, by replacing C~! with C in fMCA and aMCA rules, respectively, we
obtain two modified rules to extract the principal eigen pair of C, which is also the
minor eigen pair of C~'. The modified rules are given as:

. Cw(wTw+1)
p=rWwwry

wicw " (8.63)
T
1
F=PE L WTew - ) (8.66)
and
Cw
J=wlCw — . (8.68)

Since the covariance matrix C is usually unknown in advance, we use its esti-

~

mate at time k by C (k) suggested in [11], which is

_ k
Clht1) =
(k1) =037

C(k)+ k_i%x(k—i— DxT(k+1) (8.69)
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where C (k) starts with C(0) = x(0)xT(0) (or I). Actually, (8.57) is obtained from

(8.69) by using the SM-formula. Then, the online form of (8.65)-(8.66) and (8.67)—

(8.68) is given as:

WwT (k) € (k)w(k) + 1} C(kyw(k)
2wT (k) C (k)w (k)

wk+1) =w(k)+y(k) —w(k) (8.70)

wl(k)w(k) +1

Ak +1) = A(k) + (k) [wT(k)E(k)w(k) - z(k)} (8.71)

2
and
w(k+1) :w(k)—l—y(k){%—w(k)} (8.72)
Mk +1) = 2(k) + (k) [WT(k) C (k) w(k) — ;L(k)} (8.73)

respectively. Here we rename this algorithm deduced from fMCA and aMCA as
“fPCA” and “aPCA,” respectively. Finally, we obtain two unified and coupled
algorithms. The first one is fMCA + fGPCA, and the second one is
aMCA + aPCA. These two unified algorithms are capable of both PCA and MCA
by using the original or inverse of covariance matrix.

8.3.2.3 Multiple Eigen Pairs Estimation

In some engineering practice, it is required to estimate the eigen-subspace or
multiple eigen pairs. As introduced in [4], by using the nested orthogonal com-
plement structure of the eigen-subspace, the problem of estimating the p(<n)-
dimensional principal/minor subspace can be reduced to multiple principal/minor
eigenvectors estimation. The following shows how to estimate there maining p — 1
principal/minor eigen pairs.

For the CMCA case, consider the following equations:

61' = 61',1 +1’]/1j,1Wj,1W]T_1, ] = 2, Y 2 (874)

where C | = C and n is larger than the largest eigenvalue of c ,and (wj_y, A1) is

the (j — 1)th minor eigen pair of C that has been extracted. It is found that
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~

Ciwg = (CJ 1+’MJ )wq
C1+nZA, ,w Wy
r=1

N =1 (8.73)
=Ciwy+1 Z )urw,.wqu

r=1
B alwq+niqwq:(1+n)ﬂvqwq forg=1,...,j—1
E’lwq:)v,jwq forg=j,...,p .

Suppose that matrix c 1 has eigenvectors wj,w,,...,w, corresponding to
eigenvalues (0<) 01 <0< - - <a,, and then matrix C; has eigenvectors
Wj,...,Wn, Wi,...,wj_1 corresponding to eigenvalues (0<)g;<--- <0,
<(14+n)oy<--- <(1+n)oj_1. In this case, ¢; is the smallest eigenvalue of C;.
Based on the SM-formula, we have

Q_,‘ = ijl = (Cj +17/1j71Wj71WjT_1)71
7]/11-716'71 Wi 1WT C7_11
L+nhjaw] C Swi (8.76)

n4j-10;_ 1Wj IW/ 191
14»1/’/1 IQ] 1Wj-1

-1
crl -

=01~ s J =2,

Thus, by replacing @ with Q; in (8.58)~(8.59) or (8.63)~(8.64), they can be used
to estimate the jth minor eigen pair (w;, 4;) of C.
For the CPCA case, consider the following equations

Cj:Cj,I —)j,le,lwﬁl, ]:2,,[7 (877)

where (w;_, 4j—1) is the (j — 1)th principal eigen pair that has been extracted. It is
found that

Ciwg = (Cjoy — A_wiiwl_ )W,

j—1
~ . T
- E ww, )Wy
j
E Jow,wiw,

R (8.78)
Cw

0 forg=1,...,j—1

Ciw,=dgw, forqg=j,...p
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Suppose that the matrix C | has eigenvectors w,w,,...,w, corresponding to
eigenvalues g > 0, > -+ > g,( > 0), and then the matrix C ; has eigenvectors
Wiy ...,Wn,Wyi,...,wj_y corresponding to eigenvalues g¢; > --- >0, >
61 ="---=6;_1(=0). In this case, o; is the largest eigenvalue of C;. Thus, by
replacing C with 61- in (8.70)—(8.71) or (8.72)—(8.73), they can be used to estimate

the jth principal eigen pair (w;, 4;) of C.

8.3.3 Analysis of Convergence and Self-stabilizing Property

The major work of convergence analysis of coupled rules is to find the eigenvalues
of the Jacobian

owT 0L

J(wl,zl)<agg‘ g_) (8.79)

of the differential equations for a stationary point (wy, 4;). For fMCA rule, after
some manipulations (see Appendix B in [6]), we get

—1 D T
C )VI 1 wiw, 0 ) (880)

i =
Jaca(wi, 21) ( 20w 1
The Jacobian can be simplified by an orthogonal transformation with

U= <0V_‘T’ ‘;) (8.81)

The transformed Jacobian J* = UTJU has the same eigenvalues as J. In the

_ . . ) . =T .
vicinity of a stationary point (wy, 4;), we approximate W w = e; and obtain

. oy (AT —T—eel 0
Jcawi, A1) = ( Ty ! 1) (8.82)
The eigenvalues o of J* are determined as det(J* — o) = 0, which are
/’L A <</:j
T —— aj:f—l '~ —1,j=2,...n. (8.83)
J

Since stability requires « <0 and thus 4; <4;, j=2,...,n, we find that only
minor eigen pairs are stable stationary points, while all others are saddles or
repellers. What’s more, if we further assume A; < 4;, all eigenvalues are o =~ —1.
Hence, the system converges with approximately equal speed in all its eigen
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directions, and this speed is widely independent of the eigenvalues /; of the
covariance matrix [2]. That is to say, the speed stability problem does not exist in
fMCA algorithm.

Similarly, for aMCA rule, we analyze the stability by finding the eigenvalues of

/_1_1)4 o 26’18T 0
. ) = 1 84
JaMCA(wl’ 1) ( _Zﬂnle’lr _1 (88 )
which are
A .
o ==2, 01 =—1, s=——1,j=2,...,n (8.85)
2

)

The situation of aMCA 1is similar to that of fMCA, and the only difference is that
the first eigenvalue of Jacobian is oy = —1 for fMCA and o; = —2 for aMCA.
Thus, the convergence speed of fMCA and aMCA is almost the same.

Similarly, the transformed Jacobian functions of fPCA and aPCA are given as:

Ay —TI—eel 0
: M) = 1 8.86
Jipca(Wi, 21) < 2irel . (8.86)
and
J* (W ] ) _ /_1_1/11 —I— 2818]r 0 (8 87)
apCATTL 2 2/s€] -1 '
respectively. And the eigenvalues of (8.86) and (8.87) are given as:
i fon>> 2
m:%H:—szf—NZ-mszmm—l (8.88)
i In <
m:—z%H:—L%:f—liﬂmj:me—l (8.89)

respectively. We can see that only principal eigen pairs are stable stationary points,
while all others are saddles or repellers. We can further assume 4; > 4; and thus
oj ~ —1 (j # 1) for fPCA and aPCA.

The analysis of the self-stabilizing property of the proposed algorithms is
omitted here. For details, see [6].
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8.3.4 Simulation Experiments

In this section, we provide several experiments to illustrate the performance of the
proposed algorithms in comparison with some well-known coupled algorithms and
unified algorithms. Experiments 1 and 2 mainly show the stability of proposed
CMCA and CPCA algorithms in comparison with existing CMCA and CPCA
algorithms, respectively. In experiment 3, the self-stabilizing property of the pro-
posed algorithm is shown. In experiment 4, we compare the performance of aMCA
and aPCA with that of two unified algorithms. Experiments 5 and 6 illustrate some
examples of practical applications.

In experiments 1-4, all algorithms are used to extract the minor or principal
component from a high-dimensional input data sequence, which is generated from
x = B - y(t), where each column of B € %3 is Gaussian with variance 1/30, and
y(t) € ®3%! is Gaussian and randomly generated.

In all experiments, to measure the estimation accuracy, we compute the norm of
eigenvector estimation (weight vector) ||w(k)|| and the projection [(k)] of the
weight vector onto the true eigenvector at each step:

_ Wi kw|

V) = @l

where w is the true minor (for MCA) or principal (for PCA) eigenvector with unit
length.

Unless otherwise stated, we set the initial conditions of experiments 1—4 as
follows: (1) The weight vector is initialized with a random vector (unit length).
(2) The learning rate y(k) starts at (0) = 10~2 and decays exponentially toward
zero with a final value y (kmax) = 107%. (3) We set o = 1 (if used), and A (0) =
0.001 for all cMCA and cPCA algorithms.

In experiments 1 and 2, k. = 20,000 training steps are executed for all algo-
rithms. In order to test the stability of the proposed algorithms, after 10,000 training
steps, we drastically change the input signals; thus, the eigen information changed
suddenly. All algorithms start to extract the new eigen pair since k£ = 10001. The
learning rate for nMCA is 10 times smaller than that for the others. Then, 20 times
of Monte Carlo simulation are executed for all experiments.

Figure 8.1 shows the time course of the projection of minor weight vector. We
can see that in all rules except mMCA the projection converges toward unity; thus,
these weight vectors align with the true eigenvector. The convergence speed of
mMCA is lower than that of the others and the projection of mMCA cannot
converge toward unity within 10,000 steps. We can also find that the convergence
speed of fMCA and aMCA rules is similar, and higher than that of the others. We
can also find that, at time step k = 10,001, where the input signals changed sud-
denly, all algorithms start to extract the new eigen pair. Figure 8.2 shows the time
course of weight vector length. We can find that the vector length of nMCA
converges to a nonunit length. The convergence speed and the stability of fMCA
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and aMCA are higher and better than that of the others. It can be seen that the
convergence speed of aMCA is a bit higher than that of fMCA.

Figure 8.3 shows the time course of the minor eigenvalue estimation. We can
see that mMCA cannot extract the minor eigenvalue as effective as the other
algorithms after the input signals changed. From Figs. 8.1 to 8.3, we can conclude
that the performance of fMCA and aMCA is better than that of the other cMCA
algorithms. Moreover, nMCA contains C and C~' simultaneously in the equations,
and we can prove that mMCA also has the speed stability problem though it is a
coupled rule. These may be the reason why our algorithms perform better than
nMCA and mCMA.

In experiment 2, we compare the performance of fPCA and aPCA with that of
ALA and nPCA. The time course of the projection and the eigenvector length of
principal weight vector are shown in Figs. 8.4 and 8.5, and the principal eigenvalue
estimation is shown in Fig. 8.6, respectively. In Fig. 8.5, the curves for fPCA and
aPCA are shown in a subfigure because of its small amplitude. We can see that the
convergence speed of fPCA and aPCA is similar to that of nPCA and ALA, but
fPCA and aPCA have less fluctuations over time compared with nPCA and ALA.
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This is actually because that in fPCA and aPCA the covariance matrix C is updated
by (8.69) while in nPCA and ALAC that is updated by C(k) = x(k) xT(k).
Experiment 3 is used to test the self-stabilizing property of the proposed algo-
rithms. Figure 8.7 shows the time course of weight vector length estimation of
fMCA, aMCA, fPCA, and aPCA which are initialized with nonunit length. We can
find that all algorithms converge to unit length rapidly, which shows the
self-stabilizing property of eigenvector estimates. The self-stabilizing property of
eigenvalue estimates is shown in Figs. 8.3 and 8.6. From the results of experiments
1-3, we can see that the performance off MCA and fPCA is similar to that of aMCA
and aPCA, respectively. Thus in experiment 4, we only compare the performance of
aMCA and aPCA with that of two unified algorithms which were proposed in
recent years, i.e., (1) kMCA + kPCA [14], where k means this algorithm was

13 : .
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5 § o o 2PCAUMONIF13)
€ .| PoAqwO=13) -
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Fig. 8.8 Projection of weight vector onto the true principal/minor eigenvector

proposed by Kong;(2) pMCA + pPCA [15],

where p means this algorithm was

proposed by Peng. The time course of the projection of weight vector onto the true
principal/minor eigenvector and the weight vector length is shown in Figs. 8.8 and
8.9, respectively. In Fig. 8.9, the first 1000 steps of aMCA and kMCA are shown in
a subfigure. We can see that the proposed algorithms perform better the existing

unified algorithms.
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In summary, we propose a novel method to derive neural network algorithms
based on a special information criterion. We firstly obtain two CMCA algorithms
based on the modified Newton’s method. Then, two CPCA rules are obtained from
the CMCA rules. In this case, two unified and coupled algorithms are obtained,
which are capable of both PCA and MCA and can also mitigate the speed-stability
problem. The proposed algorithms converge faster and are more stable than existing
algorithms. Moreover, all of the proposed algorithms are self-stabilized.

8.4 Adaptive Coupled Generalized Eigen Pairs Extraction
Algorithms

In [4], based on Moller’s work, Nguyen developed two well-performed quasi-
Newton-type algorithms to extract generalized eigen pairs. Actually, Nguyen’s
algorithms are the generalization of Moller’s coupled learning algorithms. But with
DDT approach, Nguyen also reported the explicit convergence analysis for their
learning rules, i.e., the region within which the initial estimate of the eigen pair
must be chosen to guarantee the convergence to the desired eigen pair. However, as
stated in [4], the GMCA algorithm proposed in [4] may lose robustness when the
smallest eigenvalue of the matrix pencil is far less than 1.

Motivated by the efficacy of the coupled learning rules in [2] and [4] for the HEP
and GHEP, we will introduce novel coupled algorithms proposed by us to estimate
the generalized eigen pair information in this section. Based on a novel generalized
information criterion, we have obtained an adaptive GMCA algorithm, as well as an
adaptive GPCA algorithm by modifying the GMCA algorithm. It is worth noting
that the procedure of obtaining the algorithms in this section is easier than the
existing methods, for that it does not need to calculate the inverse of the Hessian
matrix when deriving the new algorithms. It can be seen that our algorithms do not
involve the reciprocal of the estimated eigenvalue in equations. Thus, they are
numerically more robust than Nguyen’s algorithms even when the smallest eigen-
value of the matrix pencil is far less than 1. Compared with Nguyen’s algorithms, it
is much easier to choose step size for online implementation of the algorithms.

8.4.1 A Coupled Generalized System for GMCA and GPCA

A. Generalized information criterion and coupled generalized system

Generally speaking, neural network model-based algorithms are often derived by
optimizing some cost function or information criterion [2, 16]. As pointed out in
[17], any criterion may be used if the maximum or minimum (possibly under a
constraint) coincides with the desired principal or minor directions or subspace. In
[2], Moller pointed out that the freedom of choosing an information criterion is
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greater if Newton’s method is applied. In that case, it suffices to find a criterion of
which the stationary points coincide with the desired solutions. Moller first pro-
posed a special criterion which involves both eigenvector and eigenvalue estimates
[2]. Based on Moller’s work, Nguyen [4] first proposed to derive novel generalized
eigen pair extraction algorithms by finding the stationary points of a generalized
information criterion which is actually the generalization of Moller’s information
criterion.

In this section, for a given matrix pencil (R, R,), we propose a generalized
information criterion based on the criteria introduced in [2] and [4] as

pw,2) = wiRw — W Row + /. (8.90)
We can see that
&\ (2Rw—22R.w (8.91)
% “\ —wiRw+1 ) :

Thus, the stationary points (w, A) are defined by

WHRw =1 (8.92)

{Ryw = JR,w
from which we can conclude that w#R,w = Jw!R,w = /. These imply that a
stationary point (w, A) of (8.90) is a generalized eigen pair of the matrix pencil (R,,
R,). The Hessian of the criterion is given as:

o O R,— /R, —R.w
H(W,/l) = 0217 02[7' =2 7WHR 0 . (893)
o7ow 92 *

After applying the Newton’s method, the equation used to obtain the system can

be written as:
W 9
(}1) =-H '(w,)) (é_ag) (8.94)

where w and A are the derivatives of w and /. with respect to time #, respectively.
Based on the above equation, Nguyen [4] obtained their algorithms by finding the
inverse matrix of the Hessian H ' (w, 1). Premultiplying both sides of the above
equation by H(w, 1), it yields

H(w,z)@) :-(%). (8.95)
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In this section, all our later algorithms are built on this newly proposed
Eq. (8.95). Substituting (8.91) and (8.93) into (8.95), we get

(B B)(5) = (TRE ) e
From (8.96), we can get
(R, — \R )W — Rewl. = —(R, — AR )w (8.97)
—2wH R = wiR W — 1. (8.98)
Premultiplying both sides of (8.97) by (R, — JR,)”" gives the following:
W= (R, — /R;) 'Rewi —w. (8.99)

Substituting (8.99) into (8.98), we have

—_2whR, ((Ry —JR:) 'Rew). — w) — wHRow — 1. (8.100)
Thus,
. HR. 1
= wARWEL (8.101)
2wHR,(Ry — ARy)” R.w
Substituting (8.101) into (8.99), we get
-1
_ (Ry —R:) Rew W'Rww +1) . (8.102)

2wHR, (R, — /R,)"'R.w

By approximating w”R,w = 1 in the vicinity of the stationary point (w1, ), we
get a coupled generalized system as:

(R, — JR.)'Row

= - —w, (8.103)
wHR,(Ry — ARy)” Ryw

. 1
L=
wHR (R, — /R;) 'R,w

— (8.104)

B. Coupled generalized systems for GMCA and GPCA

Let A be a diagonal matrix containing all generalized eigenvalues of the matrix
pencil (R, Ry), i.e., A =diag{4y,...,An}. Let V = [vy,...,vy], where v, ..., vy
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are the generalized eigenvectors associated with the generalized eigenvalues
2, ... 2n. It holds that VAR,V =1, VHR,V = A. Hence, R, = (V?)"'V~! and
R, = (VIY'AV~!, and

(Ry — IR,) ™ = V(A —1)~'VH, (8.105)

If we consider w = v, and 1~ A; < 4j(2<j<N) in the vicinity of the sta-
tionary point (wy,4;), then we have 4; — A~ 4;. In that case, VARw ~ e, =
[1,0,...,0]" and

A— = diag{il — )\.7 .. .,lN — i}
~ diag{1 — A, A2, .., An} (8.106)
=A—Jeel,

where diag{-} is the diagonal function. Substituting (8.106) into (8.105), we get the
following:

(Ry — IR,) ™ = V(A —1)~'vH
~ (V) (A= et V]!
Ry — (V") leref v (8.107)

-1

~ R, - A(V”)*l(vHRxw)(v”Rxw)”v—‘}
= [Ry — A(Row)(Rew)"]

It can be seen that

[Ry — /ll(val)(val)H}vl (8 108)

= Ryvl — ()lexvl)(v{]val) = O

Since Ryv; = 41Ryv; and vPR.v; =1. This means that matrix R, —

A(Rew)(Rew)™ has an eigenvalue 0 associated with eigenvector v,. This is to say,

the matrix R, — A(R,w)(Rew)" is rank-deficient and hence cannot be inverted if

(w, 1) = (v1,41). To address this issue, we add a penalty factor ¢ ~ 1 in (8.107),
and then it yields the following:

(Ry — /Ry) ™ ~ [Ry — ei(Row) (Rew)"] !

| eRRww!R.R! (8.109)
. ,
Y 1—ewlRR'Row
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The last step of (8.109) is obtained by using the SM-formula (Sherman—
Morrison formula) [13]. Substituting (8.107) into (8.103), we get the following:

1, #R'RwwR.R
. (Ry + 1—e/wHR R Rew Rcw
W= —w. (8.110)

. —1 H -1
H -1 {,)Ry R.wwiR.R,
WiRy (Ry T R R Row ) KW

Multiplying the numerator and denominator of (8.110) by 1 — eiw® R:R; R.w
simultaneously, and after some manipulations, we get

) R;lew
W= RR R " (8.111)
X y X

Similarly, substituting (8.107) into (8.104), we can get

1

/’L =
wHRny"Rxw

ex. (8.112)

It can be seen that the penalty factor ¢ is not necessarily needed in the equations.
Or in other words, we can approximate ¢ = 1 in future equations. Thus, we get the
following:

1
= wHRxR;lew A (8.113)

Thus, (8.111) and (8.113) are the coupled systems for the GMCA case.

It is known that the ith principal generalized eigenvector v; of the matrix pencil
(Ry, R,) is also the ith minor generalized eigenvector of the matrix pencil (R, R)).
Hence, the problem of extracting principal generalized subspace of the inversed
matrix pencil (Ry, R,) is equivalent to that of extracting minor generalized subspace
of the matrix pencil (R, R,), and vice versa [4]. Therefore, by swapping R, and
Ry, R.' and R, in (8.111) and (8.113), we obtain a modified system

R.'R
e L (8.114)
wiR,R_"R,w
2=wiRR'Rw — ), (8.115)

to extract the minor eigen pair of matrix pencil (R,, R,) as well as the principal
eigen pair of matrix pencil (R,, R,).

As was pointed out in [4], by using the nested orthogonal complement structure
of the generalized eigen-subspace, the problem of estimating the p ( <N)-dimen-
sional minor/principal generalized subspace can be reduced to multiple GHEPs of
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estimating the generalized eigen pairs associated with the smallest/largest gener-
alized eigenvalues of certain matrix pencils. In the following, we will show how to
estimate the remaining p — 1 minor/principal eigen pairs. In the GMCA case,
consider the following equations:

R, =R; |+ PRijleijlRy» (8.116)

R 'R.w._ wl RR !
R =R - YT (8.117)
1 + pwjflRij_lewj,l

where j=2,...,p, p>Ay /21, Ri =R, and w;_; =v;_; is the (j — 1)th minor
generalized eigenvector extracted. It holds that
j—1
Ry, = (Ry+p Zizl ReviviRy)v,
j—1
=Ry, +p Zi:l Ry Ry,
) j—1
= AqRxv, + ply Z]i:l Ry Ry,

(14+p)igRvy forg=1,....j—1
ARV, forg=j,...N

(8.118)

Thus, the matrix pencil (R;, R,) has eigenvalues ;< --- <Ay <(1+p)
<+ <(1+p)ij1 associated with eigenvectors  vj,...,vy,Vi...Vj_|.
Equation (8.117) is obtained from (8.116) based on the SM-formula. That is to say,
by replacing R, with R; and Ry’1 with Rj’1 in (8.111) and (8.113), we can estimate
the jth minor generalized eigen pair (v}, 4;).

In the GPCA case, consider the following equation

R, =R, | —Row;_w _|R,, (8.119)

where Ry =R, and w;_; =vy_j is the (j — 1)th principal generalized eigen-
vector extracted. By replacing R, with R; in (8.114) and (8.115), we can estimate
the jth principal generalized eigen pair (Vy_j41, An—j+1)-

8.4.2 Adaptive Implementation of Coupled Generalized
Systems

In engineering practice, the matrices R, and R, are the covariance matrices of
random input sequences {y(k)},., and {x(k)},.,. respectively. Thus, the matrix
pencil (R, R,) is usually unknown in advance, and even slowly changing over time
if the signal is nonstationary. In that case, the matrices R, and R, are variables and
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thus need to be estimated with online approach. In this section, we propose to
update R, and R, with:

Ry(k+1) = PR, (k) +y(k+ )y" (k+1), (8.120)

~

Ro(k+1) = aR, (k) +x(k+ Dx (k +1). (8.121)

By using the MS-formula, Q, (k) = E;l(k) and Q. (k) = ﬁ;l (k) can be updated
as:

1 0, (k)y(k+ 1)y (k+1)0, (k)
Qy(kJr 1)*3 (Qy(k) - ac+yH(k+ 1)Qy(k)y(k+ 1) ) (8-122)
1 Q. (k)x(k + 1)x" (k + 1)Q, (k)
Ok )=, (Qx(k) o (k+ 1O, (k)x(k+1) ) (8.123)
It is known that
Jlim kR (k) =R, (8.124)
lim lﬁx(k) =R, (8.125)

k—00
when o =f =1. By replacing R, Rx,Ry and R;l in (8.111)—(8.115) with
IAQy(k), R.(k), Q,(k) and Q. (k), respectively, we can easily obtain the online
GMCA algorithm with normalized step as:

] B Q,(k+ DRe(k+ 1w (k) -
P = Rk + D@y k4 DR+ D () 0P
(8.126)
wk+1)
wlk+1) = Lo (8.127)
Ak+1) =7, l (1 —)Ak), (8.128)

wH (k)R (k-l—l)Qy(k-i-l) «(k+ w(k)

and the online GPCA algorithm with normalized step as:
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0.(k+ DR, (k+ Dwk) )

wkED =n SR (k- 10, (k+ DRy (k+ w(k) T =nwlk), (8.129)
w(k—+1)

w(k+1) = [P (8.130)

Ak +1) = p,w! (k) Ry (k+ 1)@, (k+ )R, (k+ Dw (k) + (1 — 7,) A(k), (8.131)

where 71, #2, 71, 72€ (0, 1] are the step sizes.

In the rest of this section, for convenience, we refer to the GPCA and GMCA
algorithms proposed in [4] as nGPCA and nGMCA for short, respectively, where
n means that these algorithms were proposed by Nguyen. Similarly, we refer to the
algorithm in (8.126)—(8.128) as f{GMCA and the algorithm in (8.129)—(8.131) as
fGPCA for short.

At the end of this section, we discuss the computational complexity of our

algorithms. Taking fGMCA as an example, the computation of R (k) and 0, (k)

requires SN* + O(N) multiplications. Moreover, by using (8.121), we have the
following:

Ry (k+ 1)w(k)
- %ﬁx(k)—i—ﬂ%x(k-&-l)xfl(k*-l) w(k) (8.132)
— %ﬁx(k)w(k) + ﬁx(lﬂ— 1) [x" (k+ 1)w(k)],
where
Re(bw(t) - PO (5.13)

Since R, (k)w(k) has been computed at the previous step when calculating the
R, -norm of w(k), the update of I/éx(k + 1)w (k) requires only O(N) multiplications.
Thus, the updates of w(k) and A(k) in {GMCA requires 2N? + O(N) multiplications.
Hence, fGMCA requires a total of 7N* +O(N) multiplications at each iteration. In a
similar way, we can see that fGPCA also requires a total of 7N>+ O
(N) multiplications at each iteration. Thus, the computational complexity of both
fGMCA and fGPCA is less than that of nGMCA and nGPCA (i.e., 10N? + O(N)).
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8.4.3 Convergence Analysis

The convergence of neural network learning algorithms is a difficult topic for direct
study and analysis, and as pointed out [18], from the application point of view.
The DDT method is more reasonable for studying the convergence of algorithms
than traditional method. Using the DDT approach, Nguyen first reported the explicit
convergence analysis of coupled generalized eigen pair extraction algorithms [4]. In
this section, we will also analyze the convergence of our algorithms with the DDT
approach on the basis of [4].
The DDT system of f{GMCA is given as:

N —w Qyﬁxw(k) —w
B+ 1) = w(k) 41, Ty (k)], (8.134)
wik+1) =ﬁ (8.135)
Ak+1) = A(K)+7, wH(k)ieleyTexw(k) —i(k)] . (8.136)

which is referred to as DDT System 1.
And the DDT system of fGPCA is given as:

~ o Qxl/éyw(k) _
wk+1)=wk)+n, [w”(k)finxlA{yw(k) w(k)} ) (8.137)
o ow(k+1)
wk+1) = N OIS (8.138)
A+ 1) = Ak) + 72w (k) RyQ Ryw (k) — A(K)]. (8.139)

which is referred to as DDT System 2.

Similar to [4], we also denote by ||u||p = Vu?Ru the R-norm of a vector u,
where R € C¥*N andu € CV, PR(u) € V is the R-orthogonal projection of u onto
a subspace V € CV; ie., P§(u) is the unique vector satisfying |ju — P§(u)||, =
min,ey||lu — v||, V;, is the generalized eigen-subspace associated with the ith
smallest generalized eigenvalue /;, ie., V, = {v ecV Ry = )L,-va}
(i=1,2,...,N). (Note that V;, = V, if Z; = J; for some i # j), VZp . is the R-
orthogonal complement subspace of V for any subspace V C CV, i.e.,
Vig. ={uecC | <u,y>g=viRu=0, weVl

<R >
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Next, we will present two theorems to show the convergence of our algorithms.
In the following, two cases will be considered. In Case 1, 4; = A, = --- = Ay and in
Case 2, 11 < An.

Theorem 8.1 (Convergence analysis of fGMCA) Suppose that the sequence
w(k), A(k)];, is generated by DDT System 1 with any 1,7, € (0, 1], any initial
R -normalized vector w(0) ¢ (V;l)in -, and any A0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k > 0, which is also a generalized eigenvector
associated with the generalized eigenvalue 1., of the matrix pencil (R, R,), and

klim Ak) = Ay. For Case 2, it holds that
—00

lim w (k) = M, (8.140)
o Ol
lim 7 (k) = Ay, (8.141)

Proof Case 1:
Since A; = A, = -+ = Ayensures V,;, = CV, we can verify that for all k > 0 that
w(k) =w(0) # 0, which is also a generalized eigenvector associated with the

generalized eigenvalue A, of matrix pencil (R, R,). Moreover, from (8.128) we
have A(k + 1) = (1 — yAk) + 14, for all k& > 0. Hence

AMk+1) = (1 —=9)ak) +714 =
(1_)’)k+1 (0) +7141 [1+(1_V1)+"'+(1_V1)k]
(1_7’1)](+l 0) + 41 [1_(1_“/1)“]]

— J (1= 1 A0) = 4]

(8.142)

Since y, € (0, 1], we can verify that klim A(k) = A4.
Case 2: Suppose that the generalized eigenvalues of the matrix pencil (R, R,)
have been ordered as A =---=2<A 1< - <Jy (1<r<N). Since

{v1,v2,...,vy} is an R,-orthonormal basis of CV, w(k) in DDT System 1 can be
written uniquely as:

k)= zi(k)vi, k=0,1,... (8.143)
i=1
where z;(k) = (W(k),vi)p = v Rew(k), i =1,2,...,N.
First, we will prove by mathematical induction that for all £k > 0, w(k) is well
defined, R,-normalized, i.e.,
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w(k)"Rw(k) = ZN: (k) =1, (8.144)

and w(k) & (V,)ig,)» 2. [2100), 22(K),...., 2(k)] # 0. Note that w(0) & (V1) g, i
R.-normalized. Assume that w(k) is well defined, R,-normalized, and w(k) &
(Vi,)i, for some k > 0. By letting w (k+ 1) = >_Y, Z(k + 1)v;, from (8.134) and
(8.143), we have the following:

Zi(k+1) = Zi(k){l +m

1
)»in(k)RxR;lew(k) - 1] } (8.145)

Since matrix pencil (R,c7 Rny’ le) has the same eigen pairs as (Ry, Rx), and w
(k) is R,-normalized, it follows that
wh (k)R w (k) 1

_ <y, 8.146
'S wH (KRR, Row (k) wH ()RR, Row(k) — (8.146)

which is a generalization of the Rayleigh—Ritz ratio [19]. For i = 1,..., r, (8.146)
and (8.145) guarantee that

1
1+ 1
W ()RR Row (k)

1 1
— - —1]>1
AW ()RR, Row (k)

(8.147)

=1+n

i

and [z;(k + 1), zo(k + 1), ..., z(k + 1)] # 0. These imply that w (k+ 1) # 0 and
w(k+1) =S z(k+1)v; is well defined, R,-normalized, and w(k+1) ¢
(Vil)tm’ where

zZi(k+1)

Therefore, w(k) is well defined, R,-normalized, and w(k) & (Vil)fo) for all
k> 0.
Second, we will prove (8.125). Note that w(0) & (V, )<LRx> implies the existence

of some me {1,..., r} satisfying z,,(0) # 0, where 4, = --- = 4,, = -+ = 1. From
(8.145) and (8.148), we have z,,(k + 1)/7,,(0) > O for all £ > 0. By using (8.145)
and (8.148), we can see that for i = 1,..., r, it holds that
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zi(k+1) Zik+1) [wk+1)||g,

an(k+1) Wk +1)llg, Zn(k+1)

S
_ Zi(k) . 1 + 7]1 |:},in(k>RxR;1Rxw(k) 1:| (8149)
m(k T R R
Zm(k) I +n meﬁ(k)RxR;leW(k) 1}
_autk) o w(0)
Zm(k) Zm(O) .

On the other hand, by using (8.145) and (8.148), we have for all k¥ > 0 and
i=r+1, ..., N that

(k+ D) Zk+1) Wk 1),
lzm(k+ D> IWE+1)|g, Zm(k+1)

- 2
1
L+mn (i,wH(k)Rny’lR,w(k) - 1) _ |z (k)|

1 2
1+ n (—).,,IWH(k)RxR;]Rxw(k) — 1) |Zm(k)|

B 1 1 2 2
|- W 001 |zi(K)|
- G- = DwH (k)RR 'Rew (k) + | [zu(k)[ V) |zm ()
(8.150)
where
11 ’
yk)=|1- 2R . (8.151)

(= 1)wh (ORR; Row(k) + -

Foralli =r+ 1, ..., N, together with #; € (0, 1] and 1/4,—1/4; > 0, Eq. (8.146)
guarantees that

1— Tl B /»_z <1-— 41 Ari1
1 -1 L 1 1 1

m

and
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1_1 L1

1— n A >1— W
(ﬁ - l)wH(k)Rny"Rxw(k) + L (n—ll - 1)wH (KRR, Row(k) + L
1 _ 1
=1 A My >0
11 1 1
o T (Z - m)
(8.153)
From (8.152) and (8.153), we can verify that
O<y(k)<1,i=r+1,...,N, (8.154)

for all &k > 0. Denote ,.x = max{y(k)]k > 0}. Clearly 0 < .x < 1. From
(8.150), we have the following:

(k+ 1)
|Z(—+)|2§wmax
|zm (k + 1)

(k) _
|2 (K )I2 -

Since w(k) is R,-normalized, |zm(k)|2 < 1 forall k > 0, it follows from (8.155)
that

) 2
e

XN: |Zi(k)|2§ ZN: |Zi(k)|2 <

2
i=r i=r Zm
T =1 |zm(K)] (8.156)
|2:(0)[*
_lﬁmdxz — 0ask — oo,
i=r+1 |Zm )|
which along with (8.144) implies that
lim Z|z, )= 1. (8.157)

Note that z,,,(k)/z,,(0) > O for all k > 0. Then, from (8.149) and (8.157) we have
the following:

z(0)

—1 ’ZJ(O)

lim Z,'(k) =

k—00

L= 1,2, (8.158)

Based on (8.156) and (8.158), (8.140) can be obtained as follows:

lim w(k)zzr: a© Py [w (0)]
R R E T LA

(8.159)

R.
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Finally, we will prove (8.141). From (8.159), we can see that

1
lim —
k=oo wH (k)RR " Rxw (k)

= (8.160)

That is, for any small positive 0, there exists a K > 0 satisfying

1
wH (k)RR ' R.w (k)

Al—0< <A+, (8161)

for all k£ > K. It follows from (8.128) that

2K > (L= )k = 1) 710 = 0) > -+ > (1= 30 AK) + 7, (h = 0)
1=+ (=) ] = =) 9 - 0)
x U= (=90 K] = (= 0)+ (1= AK) — a4+ ),
(8.162)

and

A0 < (1= )ik = 1) 49, (1 +8) < -+ < (1= K 4(K) 47, (s +0)
X [l (L =p)+ -+ (1= Vl)kiKil} = (1 =) *2(K) + (21 +9)
x 1= (1= = (i +0)+ (1 =) ¥ 2(K) = 21 — 0],
(8.163)
for all £k > K. Since 7y, € (0, 1], it is easy to verify from (8.162) and (8.163) that
This completes the proof.

Theorem 8.2 (Convergence analysis of fGPCA) Suppose that the sequence
w(k), A(k)];—, is generated by DDT System 2 with any 1,7, € (0, 1], any initial
Ry-normalized vector w(0) ¢ (V;,N)iRX -, and any (0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k > 0, which is also a generalized eigenvector
associated with the generalized eigenvalue /i of the matrix pencil (R, R,), and
khjgc (k) = An. For Case 2, it holds that

A )
ler&w( )= \/%W, (8.164)

R,
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klin@l() Ak) = An. (8.165)

The proof of Theorem 8.2 is similar to that of Theorem 8.1. A minor difference is

that we need to calculate the R,-norm of w(k) at each step. Another minor difference

is that in (8.146), it holds that matrix pencil (RyR, 'Ry, R,) has the same eigen pairs

s (R,, R,) and w(k) is well defined, Ry-normalized, and w (k) & (VXN)<LRX> for all
k> 0. Therefore,

H -1
n< w" (k)RyR " Ryw(k)

=T WHORw(K) wi (k)RR Ryw (k) < 2. (8.166)

Particularly, if 4; and A, are distinct (4 </ < </L,N we have VA1 =
span{V1}. P [w (0)] = {w (0), Vi)g, V1. and HP’&;, O], = ©), Vi)
Moreover, if Jy_; and Ay are distinct (4; < --- < Ay_ <),N), we have V,, =
span{Viv}, PV, w(0)] = 09(0), Vi, Vi and. || o (0)] = |00 0), Vi |
Hence, the following corollaries hold.

Corollary 8.1 Suppose that Ay </, < --- < Ay. Then the sequence [w (k), 2(k)];—,
generated by DDT System 1 with any 3,7, € (0,1], any initial R.-normalized
vector w (0) ¢ (V;,l)ém, and any A(0) > 0 satisfies

(w(0), Vi)p V1

lim w(k) = ITORANE (8.167)
lim (k) = 4. (8.168)

Corollary 8.2 Suppose that 1< - - <Ay_1<Ay. Then the sequence
w(k), A(k)];~, generated by DDT System 2 with any 1,7, € (0, 1], any initial R,-

normalized vector w (0) ¢ (VAN)J(R‘V>’ and any A(0) > 0 satisfies

lim w(k) = L W), Vil V (8.169)

Jim In ‘<w(o), VN>RA’ ’

lim A(k) = Jy. (8.170)

k—00

8.4.4 Numerical Examples

In this section, we present two numerical examples to evaluate the performance of
our algorithms (fGMCA and fGPCA). The first estimates the principal and minor
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generalized eigenvectors from two random vector processes, which are generated
by two sinusoids with additive noise. The second illustrates performance of our
algorithms for the BSS problem. Besides nGMCA and nGPCA, we also compare
with the following algorithms, which were proposed in the recent ten years:

(1) Gradient-based: adaptive version of ([4], Alg. 2) with negative (for GPCA)
and positive (for GMCA) step sizes;

(2) Power-like: fast generalized eigenvector tracking [20] based on the power
method;

(3) R-GEVE: reduced-rank generalized eigenvector extraction algorithm [21];

(4) Newton-type: adaptive version of Alg. I proposed in [22].

A. Experiment 1

In this experiment, the input samples are generated by:
y(n) = \/Esin(0.627m+01)+g1(n), (8.171)

x(n) = V2sin(0.467n + 0,) + V2 sin(0.747n + 03) + ¢, (n), (8.172)

where 0; (i = 1, 2, 3) are the initial phases, which follow uniform distributions
within [0, 27], and {;(n) and (,(n) are zero-mean white noises with variance
62 =02=0.1
1 =0y =YL
The input vectors {y(k)} and {x(k)} are arranged in blocks of size N = 8, i.e., y
k) = [y(k),..., y(k = N+D]" and x(k) = [x(k),..., x(k = N + D]*, k > N. Define
the N x N matrix pencil (Ry, R,) with the (p, ¢) entry (p, ¢ = 1.2,...,N) of R, and
R, given by

[I_Qy]pq: c0s[0.627 (p — )] + 8,407, (8.173)
[Ry],,= c0s[0.467 (p — q)] +c0s[0.747 (p — q)] + 0pg03- (8.174)
For comparison, the direction cosine DC(k) is used to measure the accuracy of

direction estimate. We also measure the numerical stability of all algorithms by the
sample standard deviation of the direction cosine:

SSD(k) = ﬁi [DC;(k) — DC(K)]?, (8.175)
=

where DCj(k) is the direction cosine of the jth independent run j = 1, 2,..., L) and
DC(k) is the average over L = 100 independent runs.

In this example, we conduct two simulations. In the first simulation, we use
fGMCA, nGMCA, and the other aforementioned algorithms to extract the minor
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Fig. 8.10 Example 1: Direction cosine of the principal/minor generalized eigenvector. a First
simulation. b Second simulation

generalized eigenvector of matrix pencil (R,, R,). Note that in gradient-based
algorithm a positive step size is used, and the other algorithms are applied to
estimate the principal generalized eigenvector of matrix pencil (R,, R,) which is
also the minor generalized eigenvector of (R,, R,). In the second simulation, we use
fGPCA, nGPCA, and the other algorithms to extract the principal generalized
eigenvector of matrix pencil (R,, R,). Note that in gradient-based algorithm a
negative step size is used. The sets of parameters used in simulations refer to [4],
[22]. All algorithms have been initialized with R,(0) = ﬁy(O) =0,(0)=0,(0) =
Iy (if used) and w(0) = e;, where e; stands for the first columns of Iy.

The experimental results are shown in Figs. 8.10 to 8.12 and Table 8.1.

Figures 8.10 and 8.11 depict the time course of direction cosine for generalized
eigenvector estimation and sample standard deviation of the direction cosine. The
results of minor and principal generalized eigenvalues estimation of all generalized
eigen-pair extraction algorithms are shown in Fig. 8.12. We find that f{GM(P)CA
converge faster than nGMCA and nGPCA at the beginning steps, respectively, and

(a) 1) T .
i i 0.14 s Pewer-like
£ Power-li | Newlon-type
025 Gradient-based 0.42 24 Al |
L[
s b o R-GEVE < 4, g Grmmr:bm
= 02} - nGMCA = o
k] \ A = 1GPCA
g I o R-GEVE
1 —— 0.08
o 015 | o000 9500 10000 e e
4 'kl Gradienl-based 4 8 ooe| = 1GPCA |
Bl i AGMCA | @ NGPCA |
2 1 j- NGMCA  pewton-type Gradient-based i 004 Newton-t Gradient-based | |
E R :“";;:E“ E | Power-like Power-tke
& R-GEVE = @ « R-GEVE
i { 0.02 AGPCA
Power-like Newton-Type ".'4‘ e Gradnt-based Newton-Type
Y Ao & o — .
) 9 == BN L
IGMCA 1GPCA
-0.02 -
2000 4000 6000 8000 10000 (] 2000 4000 6000 8000 10000
lteration Number(k) Iteration Number(k)

Fig. 8.11 Example 1: Sample standard deviation of the direction cosine. a First simulation.
b Second simulation



274 8 Coupled Principal Component Analysis

Fig. 8.12 Example 1: (a)
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Table 8.1 Computational Algorithm | fGM(P)CA | nGM(P)CA | Gradient-based
complexity of all algorithms - > > >
Complexity | 7N+ O(N) 10N” + O(N) | 10N~ + O(N)
Algorithm | Power-like R-GEVE Newton-type
Complexity | 13N> + O(N) | 6N* + O(N) | 4N* + O(N)

fGMCA and fGPCA have similar estimation accuracy as nGMCA and nGPCA,
respectively. Figure 8.12 shows that all generalized eigen-pair extraction algorithms
can extract the principal or minor generalized eigenvalue efficiently.

The computational complexities of all aforementioned algorithms are shown in
Table 8.1. We find that Newton-type has the lowest computational complexity but
the worst estimation accuracy and standard deviation. The Power-like has the
highest computational complexity compared with the other algorithms. The nGM
(P)CA and gradient-based algorithms have same computational complexity. The
computational complexities of R-GEVE and the proposed algorithms are similar,
which are lower than that of nGM(P)CA and gradient-based algorithms.

B. Experiment 2

We perform this experiment to show the performance of our algorithm for the BSS
problem. Consider a linear BSS model [23]:
x(n) = As(n) +e(n), (8.176)

where x(n) is a r-dimensional vector of the observed signals at time k, s(n) is a /-
dimensional vector of the unknown source signals, A € R denotes the unknown
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mixing matrix, and e(n) is an unknown noise vector. In general, BSS problem is
that of finding a separating matrix W such that the r-dimensional output signal
vector y = W'x contains components that are as independent as possible. In this
experiment, we compare the proposed algorithms with nGMCA and nGPCA
algorithms, as well as batch-processing generalized eigenvalue decomposition
method (EVD method in MATLAB software). We use the method given in [20, 22]
to formulate the matrix pencil by applying FIR filtering. z(n), the output of FIR
filter, is given as

m

z(n)=> t(x(n—1) (8.177)

t=0

where 1(r) are the coefficients of the FIR filter. Let R, = Elx(k)x"(k)] and
R, = E[z(k)z"(k)]. It was shown in [20] that the separating matrix W can be found
by extracting the generalized eigenvectors of matrix pencil (R_, R,). Hence, the BSS
problem can be formulated as finding the generalized eigenvectors associated with
the two sample sequences x(k) and z(k). Therefore, we can directly apply our
algorithm to solve the BSS problem.

In the simulation, four benchmark signals are extracted from the file ABio7.mat
provided by ICALAB [23], as shown in Fig. 8.13. We use the mixing matrix

27914 —0.1780 —-0.4945 0.3013
1.3225 —1.7841 —-0.3669 0.4460
A= 0.0714 —1.9163 0.4802 —0.3701 |’ (8.178)

—1.7396 0.1302  0.9249 —0.4007

which was randomly generated. e[n] is a zero-mean white noise vector with
covariance 10°I. Figure 8.14 shows the mixed signals. We use a simple FIR filter
with coefficients 7 = [1, — 1]T.

Fig. 8.13 Four original 2=
signals £
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Suppose that the matrix pencil (R,, R,) has four eigenvectors wy, w,, w3, wy
associated with four eigenvalues 0, <0, <03 <o4. Thus, B = [w|,w,, w3, ws]. We
use f{GPCA, nGPCA, and all other algorithms to extract the two principal gener-
alized eigenvectors (w3 and wy). To extract the two minor generalized eigenvectors
(w; and w,), we use {GMCA, nGMCA, and gradient-based algorithms to extract the
minor generalized eigenvectors of matrix pencil (R,, R,) and other algorithms to
extract the principal generalized eigenvectors of matrix pencil (R,, R;). All
parameters and initial values are the same as in Example 1.

Similar to Example 1, a total of L = 100 independent runs are evaluated in this
example. The separating matrix B is calculated as B = (1 /L) Z].Lzl B;, where B; is
the separating matrix extracted from the jth independent run (j = 1, 2,..., L).

Figures 8.15 to 8.16 show the recovered signals by EVD and our method,
respectively. Signals separated by other algorithms are similar to Figs. 8.15 and
8.16, which are not shown in these two figures. Table 8.2 shows the absolute values
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Table 8.2 Absolute values Method Source 1 | Source 2 | Source 3 | Source 4
of correlation coefficients

between sources and EVD 1.0000 0.9998 0.9997 0.9989
recovered signals fGM(P)CA 1.0000 0.9997 0.9992 0.9987
nGM(P)CA 1.0000 0.9996 0.9994 0.9987
Gradient-based | 0.9983 0.9811 0.9989 0.9983
Power method | 0.9998 0.9995 0.9991 0.9980
R-GEVE 0.9999 0.9995 0.9993 0.9988

of correlation coefficients between the sources and the recovered signals. The
simulation results demonstrate that all methods can solve the BSS problem effec-
tively, and our algorithms and the algorithms proposed in [4] can separate the
signals more accurately than other algorithms. Moreover, the advantage of neural
network model-based algorithms over EVD method for the BSS problem is that
they are recursive algorithms and therefore can be implemented online, whereas
EVD is a batch-processing method and therefore needs intensive computation.

In this section, we have derived a coupled dynamic system for GHEP based on a
novel generalized information criterion. Compared with the existing work, the
proposed approach is easier to obtain for that it does not need to calculate the
inverse of the Hessian. Based on the dynamic system, a coupled GMCA algorithm
(fGMCA) and a coupled GPCA algorithm (fGPCA) have been obtained. The
convergence speed of fGMCA and fGPCA is similar to that of Nguyen’s
well-performed algorithms (nGMCA and nGPCA), but the computational com-
plexity is less than that of Nguyen. Experiment results show that our algorithms
have better numerical stability and can extract the generalized eigenvectors more
accurately than the other algorithms.
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8.5 Summary

In this chapter, the speed stability problem that plagues most noncoupled learning
algorithms has been discussed and the coupled learning algorithms that are a
solution for the speed stability problem have been analyzed. Moller’s coupled PCA
algorithm, Nguyen’s coupled generalized eigen pair extraction algorithm, coupled
singular value decomposition of a cross-covariance matrix, etc., have been
reviewed. Then, unified and coupled algorithms for minor and principal eigen pair
extraction proposed by us have been introduced, and their convergence has been
analyzed. Finally, a fast and adaptive coupled generalized eigen pair extraction
algorithm proposed by us has been analyzed in detail, and their convergence
analysis has been proved via the DDT method.
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