
Chapter 6
Deterministic Discrete-Time System
for the Analysis of Iterative Algorithms

6.1 Introduction

The convergence of neural network-based PCA or MCA learning algorithms is a
difficult topic for direct study and analysis. Traditionally, based on the stochastic
approximation theorem, the convergence of these algorithms is indirectly analyzed
via corresponding DCT systems. The stochastic approximation theorem requires
that some restrictive conditions must be satisfied. One important condition is that
the learning rates of the algorithms must approach zero, which is not a reasonable
requirement to be imposed in many practical applications. Clearly, the restrictive
condition is difficult to be satisfied in many practical applications, where a constant
learning rate is usually used due to computational roundoff issues and tracking
requirements. Besides the DCT system, Lyapunov function method, differential
equations method, etc., are also used to analyze the convergence of PCA algo-
rithms. For example, in [1], a Lyapunov function was proposed for globally
characterizing Oja’s DCT model with a single neuron. Another single-neuron
generalized version of Oja’s DCT net was studied in [2] by explicitly solving the
system of differential equations. The global behavior of a several-neuron Oja’s
DCT net was determined in [3] by explicitly solving the equations of the model,
whereas [4] addressed a qualitative analysis of the generalized forms of this DCT
network.

All these studies of DCT formulations are grounded on restrictive hypotheses so
that the fundamental theorem of stochastic approximation can be applied. However,
when some of these hypotheses cannot be satisfied, how to study the convergence
of the original stochastic discrete formulation? In order to analyze the convergence
of neural network-based PCA or MCA learning algorithms, several methods have
been proposed, i.e., DCT, SDT, and DDT methods. The DCT method, first for-
malized by [5, 6], is based on a fundamental theorem of stochastic approximation
theory. Thus, it is an approximation analysis method. The SDT method is a direct
analysis method and it can analyze the temporal behavior of algorithm and derive
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the relation between the dynamic stability and learning rate [7]. The DDT method,
as a bridge between DCT and SDT methods, transforming the original SDT system
into a corresponding DDT system, and preserving the discrete-time nature of the
original SDT systems, can shed some light on the convergence characteristics of
SDT systems [8]. Recently, the convergence of many PCA or MCA algorithms has
been widely studied via the DDT method [8–13].

The objective of this chapter is to study the DDT method, analyze the conver-
gence of PCA or MCA algorithms via DDT method to obtain some sufficient
conditions to guarantee the convergence, and analyze the stability of these algo-
rithms. The remainder of this chapter is organized as follows. A review of per-
formance analysis methods for neural network-based PCA/MCA algorithms is
presented in Sect. 6.2. The main content, a DDT system of a novel MCA algorithm
is introduced in Sect. 6.3. Furthermore, a DDT system of a unified PCA and MCA
algorithm is introduced in Sect. 6.4, followed by the summary in Sect. 6.5.

6.2 Review of Performance Analysis Methods for Neural
Network-Based PCA Algorithms

6.2.1 Deterministic Continuous-Time System Method

According to the stochastic approximation theory (see [5, 6]), if certain conditions
are satisfied, its corresponding DCT systems can represent the SDT system effec-
tively (i.e., their asymptotic paths are close with a large probability) and eventually
the PCA/MCA solution tends with probability 1 to the uniformly asymptotically
stable solution of the ODE. From a computational point of view, the most important
conditions are the following:

1. x (t) is zero-mean stationary and bounded with probability 1.
2. a (t) is a decreasing sequence of positive scalars.
3. RtaðtÞ ¼ 1:

4. RtaPðtÞ\1 for some p.

5. limt!1 sup 1
aðtÞ � 1

aðt�1Þ
h i

\1.

For example, the sequence a (t) = const � t−c satisfies Conditions 2–5 for
0 < c � 1. The fourth condition is less restrictive than the Robbins–Monro con-
dition Rta2ðtÞ\1, which is satisfied, for example, only by a (t) = const � t−c with
1/2 < c � 1.

For example, MCA EXIN algorithm can be written as follows:

wðtþ 1Þ ¼ wðtÞ � aðtÞyðtÞ
wðtÞk k22

xðtÞ � yðtÞwðtÞ
wðtÞk k22

" #
; ð6:1Þ
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and its corresponding deterministic continuous-time (DCT) systems is

dwðtÞ
dt

¼ � 1

wðtÞk k22
R� wTðtÞRwðtÞ

wðtÞk k22

" #
wðtÞ ¼ � 1

wðtÞk k22
½R� rðw;RÞI�wðtÞ:

ð6:2Þ

For the convergence proof using deterministic continuous-time system method,
refer to the proof of Theorem 16 in [7] for details.

6.2.2 Stochastic Discrete-Time System Method

Using only the ODE approximation does not reveal some of the most important
features of these algorithms [7]. For instance, it can be shown that the constancy of
the weight modulus for OJAn, Luo, and MCA EXIN, which is the consequence of
the use of the ODE, is not valid, except, as a very first approximation, in
approaching the minor component [7]. The stochastic discrete-time system method
has led to the very important problem of the sudden divergence [7]. In the fol-
lowing, we will analyze the performance of Luo MCA algorithm using the
stochastic discrete-time system method.

In [14, 15], Luo proposed a MCA algorithm, which is

wðtþ 1Þ ¼ wðtÞ � aðtÞ wðtÞk k22 yðtÞxðtÞ � y2ðtÞ
wðtÞk k22

wðtÞ
" #

: ð6:3Þ

Since (6.3) is the gradient flow of the RQ and using the property of orthogonality
of RQ, it holds that

wTðtÞ yðtÞxðtÞ � y2ðtÞ
wðtÞk k22

wðtÞ
( )

¼ 0; ð6:4Þ

i.e., the weight increment at each iteration is orthogonal to the weight direction.
The squared modulus of the weight vector at instant t + 1 is then given by

wðtþ 1Þk k22¼ wðtÞk k22 þ
a2ðtÞ
4

wðtÞk k62 xðtÞk k42sin2 2#xw; ð6:5Þ

where #xw is the angle between the direction of x(t) and w(t). From (6.5), we can see
that (1) Except for particular conditions, the weight modulus always increases,
wðtþ 1Þk k22 [ wðtÞk k22. These particular conditions, i.e., all data in exact particular

directions, are too rare to be found in a noisy environment. (2) sin2 2#xw is a
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positive function with peaks within the interval ð�p; p�. This is one of the possible
interpretations of the oscillatory behavior of weight modulus.

The remaining part of this section is the convergence analysis of Dougla’s MCA
algorithm via the SDT Method. The purpose of this section is to analyze the
temporal behavior of Dougla’s MCA algorithm and the relation between the
dynamic stability and learning rate, by using mainly the SDT system following the
approach in [7].

Indeed, using only the ODE approximation does not reveal some of the most
important features of MCA algorithms, and the ODE is only the very first
approximation, in approaching the minor component. After the MC direction has
been approached, how is the rule of the weight modulus?

From Dougla’s MCA, it holds that

wðtþ 1Þk k2 ¼ wTðtþ 1Þwðtþ 1Þ ¼ fwðtÞ � aðtÞ½ wðtÞk k4yðtÞxðtÞ � y2ðtÞwðtÞ�gT � fwðtÞ � aðtÞ½ wðtÞk k4yðtÞxðtÞ � y2ðtÞwðtÞ�g
¼ wðtÞk k2�2aðtÞð wðtÞk k4y2ðtÞ � y2ðtÞ wðtÞk k2Þþ a2ðtÞð wðtÞk k8y2ðtÞ xðtÞk k2�2 wðtÞk k4y4ðtÞþ y4ðtÞ wðtÞk k2Þ
¼ wðtÞk k2 þ 2aðtÞy2ðtÞ wðtÞk k2ð1� wðtÞk k2ÞþOða2ðtÞÞ
¼: wðtÞk k2 þ 2aðtÞy2ðtÞ wðtÞk k2ð1� wðtÞk k2Þ:

ð6:6Þ

Hence, if the learning factor is small enough and the input vector is bounded, we
can make such analysis as follows by neglecting the second-order terms of the aðtÞ.

wðtþ 1Þk k2
wðtÞk k2 ¼: 1þ 2aðtÞy2ðtÞð1� wðtÞk k2Þ ¼

[ 1 for wð0Þk k2\1
\ 1 for wð0Þk k2\1
¼ 1 for wð0Þk k2¼ 1

:

8<
: ð6:7Þ

This means that wðtþ 1Þk k2 tends to one whether wðtÞk k2 is equal to one or not,
which is called the one-tending property (OTP), i.e., the weight modulus remains

constant wðtÞk k2! 1
� �

.

To use the stochastic discrete laws is a direct analytical method. In fact, the study
of the stochastic discrete learning laws of the Douglas’s algorithm is an analysis of
their dynamics.

Define

r0 ¼ wTðtþ 1ÞxðtÞj j2
wðtþ 1Þk k2 ; r ¼ wTðtÞxðtÞj j2

wðtÞk k2 ;

qðaÞ ¼ r0

r
� 1; p ¼ wðtÞk k2; u ¼ y2ðtÞ:

The two scalars r0 and r represent, respectively, the squared perpendicular dis-
tance between the input xðtÞ and the data-fitting hyperplane whose normal is given
by the weight and passes through the origin, after and before the weight increment.
Recalling the definition of MC, we should have r0 � r. If this inequality is not valid,
this means that the learning law increases the estimation error due to the
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disturbances caused by noisy data. When this disturbance is too large, it will make
w(t) deviate drastically from the normal learning, which may result in divergence or
fluctuations (implying an increased learning time).

Theorem 6.1

If a[
2

p xðtÞk k2ðp� 2 cos2 hxwÞ
^ p xðtÞk k2ðp� 2 cos2 hxwÞ[ 0;

then r0 [ r, which implies divergence.

Proof From Eq. (6.2), we have

wTðtþ 1ÞxðtÞ ¼ yðtÞ � a½ wðtÞk k4yðtÞ xðtÞk k2�y3ðtÞ�
¼ yðtÞð1� a½ wðtÞk k4 xðtÞk k2�y2ðtÞ�Þ ð6:8Þ

wðtþ 1Þk k2 ¼ wTðtþ 1Þwðtþ 1Þ ¼ wðtÞk k2�2aðtÞð wðtÞk k4y2ðtÞ � y2ðtÞ wðtÞk k2Þ
þ a2ðtÞð wðtÞk k8y2ðtÞ xðtÞk k2�2 wðtÞk k4y4ðtÞþ y4ðtÞ wðtÞk k2Þ:

ð6:9Þ

Therefore,

qðaÞ ¼ r0

r
¼ ðwTðtþ 1ÞxðtÞÞ2

wðtþ 1Þk k2
wðtÞk k2
ðyðtÞÞ2 ¼ ð1� aðtÞ½ wðtÞk k4 xðtÞk k2�y2ðtÞ�Þ2

1� 2aðtÞy2ðtÞð wðtÞk k2�1Þþ a2E

¼ ð1� aqÞ2
1� 2auðp� 1Þþ a2E

;

ð6:10Þ

where q ¼ xðtÞk k2p2 � u
� �

and E ¼ up3 xðtÞk k2�2u2pþ u2
� �

.

Then, qðaÞ[ 1 (dynamic instability) if and only if

ð1� aqÞ2 [ 1� 2auðp� 1Þþ a2 up3 xðtÞk k2�2u2pþ u2
� �

: ð6:11Þ

Notice that u=p ¼ xðtÞk k2cos2 hzw.
From (6.11), it holds that

a2 p4 xðtÞk k4sin2 hxw � 2p3 xðtÞk k4cos2 hxw sin2 hxw
h i
[ 2a xðtÞk k2p2 sin2 hxw:

ð6:12Þ

The dynamic instability condition is then
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a[
2

p xðtÞk k2ðp� 2 cos2 hxwÞ
^ p xðtÞk k2 p� 2 cos2 hxw

� �
[ 0: ð6:13Þ

The second condition implies the absence of the negative instability. It can be
rewritten as

cos2 hxw � p
2
: ð6:14Þ

In reality, the second condition is included in the first one. Considering the case
0\ab � c\1, it holds that

cos2 hxw � p
2
� 1

cp xðtÞk k2 ¼ !; ð6:15Þ

which is more restrictive than (6.14). Figure 6.1 shows this condition, where
r ¼ arccos

ffiffiffiffi
!

p
. From (6.15), we can see that the decrease of c and p increases the

domain of r and then increases the stability. From Fig. 6.1, it is apparent that in the
transient (in general low hXW ), there are less fluctuations and this is beneficial to the
stability.

This completes the proof.

6.2.3 Lyapunov Function Approach

Lyapunov function approach has also been applied in the convergence and stability
analysis. For details, see references [7, 16, 17].
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6.2.4 Deterministic Discrete-Time System Method

Traditionally, the convergence of neural network learning algorithms is analyzed
via DCT systems based on a stochastic approximation theorem. However, there
exist some restrictive conditions when using stochastic approximation theorem.
One crucial condition is that the learning rate in the learning algorithm must con-
verge to zero, which is not suitable in most practical applications because of the
roundoff limitation and tracking requirements [8, 13]. In order to overcome the
shortcomings of the DCT method, Zurifia proposed DDT method [8]. Different
from the DCT method, the DDT method allows the learning rate to be a constant
and can be used to indirectly analyze the dynamic behaviors of stochastic learning
algorithms. Since the DDT method is more reasonable for studying the convergence
of neural network algorithms than the traditional DCT method, it has been widely
used to study many neural network algorithms [8, 10–13, 18–20].

6.3 DDT System of a Novel MCA Algorithm

In this section, we will analyze the convergence and stability of a class of
self-stabilizing MCA algorithms via a DDT method. Some sufficient conditions are
obtained to guarantee the convergence of these learning algorithms. Simulations are
carried out to further illustrate the theoretical results achieved. It can be concluded
that these self-stabilizing algorithms can efficiently extract the MCA, and they
outperform some existing MCA methods.

In Sect. 6.3.1, a class of self-stabilizing learning algorithms is presented. In
Sect. 6.3.2, the convergence and stability analysis of these algorithms via DDT
method are given. In Sect. 6.3.3, computer simulation results on minor component
extraction and some conclusions are presented.

6.3.1 Self-stabilizing MCA Extraction Algorithms

Consider a single linear neuron with the following input–output relation: yðkÞ ¼
WTðkÞXðkÞ; k ¼ 0; 1; 2; � � � ; where y(k) is the neuron output, the input sequence
fXðkÞjXðkÞ 2 Rnðk ¼ 0; 1; 2; � � �Þg is a zero-mean stationary stochastic process,
and WðkÞ 2 Rnðk ¼ 0; 1; 2; � � �Þ is the weight vector of the neuron. The target of
MCA is to extract the minor component from the input data by updating the weight
vector W(k) adaptively. Here, based on the OJA + algorithm [21], we add a penalty
term ð1� WðtÞk k2þ aÞRW to OJA + and present a class of MCA algorithms as
follows:
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_W ¼ � Wk k2þ aRWþðWTRWþ 1�WTWÞW; ð6:16Þ

where R ¼ E½XðkÞXTðkÞ� is the correlation matrix of the input data and the integer
0� a� 2. The parameter a can be real-valued. However, for the simplicity of
theoretical analysis and practical computations, it would be convenient to choose a
as an integer. Considering the needs in the proofs of latter theorems, the upper limit
of a is 2. It is worth noting that Algorithm (6.16) coincides with the Chen rule for
minor component analysis [22] in the case a ¼ 0. When a[ 0, these algorithms are
very similar to the Chen algorithm and can be considered as modifications of the
Chen algorithm. Therefore, for simplicity, we refer to all of them as Chen
algorithms.

The stochastic discrete-time system of (6.16) can be written as follows:

Wðkþ 1Þ ¼ WðkÞ � g WðkÞk k2þ ayðkÞXðkÞ � ðy2ðkÞþ 1� WðkÞk k2ÞWðkÞ
h i

;

ð6:17Þ

where g(0\g\1) is the learning rate. From (6.17), it follows that

Wðkþ 1Þk k2� WðkÞk k2¼� 2g WðkÞk k2 y2ðkÞ WðkÞk ka�1ð Þþ WðkÞk k2�1
� �h i

þOðg2Þ
¼: � 2g WðkÞk k2 WðkÞk k � 1ð ÞQ y2ðkÞ; WðkÞk k� �

;

ð6:18Þ

where Q y2ðkÞ; WðkÞk kð Þ ¼ y2ðkÞð WðkÞk ka�1 þ WðkÞk ka�2 þ ; � � � ; WðkÞk kþ 1Þþ
WðkÞk kþ 1ð Þ is a positive efficient. For a relatively small constant learning rate, the

second-order term is very small and can be omitted. Thus, from (6.18), we can
claim that Algorithm (6.17) has self-stabilizing property [23].

6.3.2 Convergence Analysis via DDT System

From yðkÞ ¼ XTðkÞWðkÞ ¼ WTðkÞXðkÞ, by taking the conditional expectation
EfWðkþ 1Þ=Wð0Þ;XðiÞ; i\kg to (6.17) and identifying the conditional expecta-
tion as the next iterate, a DDT system can be obtained as

Wðkþ 1Þ ¼ WðkÞ
� g WðkÞk k2þ aRWðkÞ � WTðkÞRWðkÞþ 1� WðkÞk k2

� �
WðkÞ

h i
;

ð6:19Þ

156 6 Deterministic Discrete-Time System for the Analysis …



where R ¼ E½XðkÞXTðkÞ� is the correlation matrix of the input data. Here, we
analyze the dynamics of (6.19) subject to g being some smaller constant to interpret
the convergence of Algorithm (6.17) indirectly.

For the convenience of analysis, we next give some preliminaries. Since R is a
symmetric positive definite matrix, there exists an orthonormal basis of <n composed
of the eigenvectors of R. Obviously, the eigenvalues of the autocorrelation matrix
R are nonnegative. Assume that k1; k2; � � � ; kn are all eigenvalues of R ordered by
k1 � k2 � � � � � kn�1 [ kn [ 0. Suppose that fV iji ¼ 1; 2; � � � ; ng is an orthogonal
basis of Rn such that each Vi is unit eigenvector of R associated with the eigenvalue
ki. Thus, for each k � 0, the weight vector W(k) can be represented as

WðkÞ ¼
Xn
i¼1

ziðkÞV i; ð6:20Þ

where ziðkÞði ¼ 1; 2; . . .; nÞ are some constants. From (6.19) and (6.20), it holds that

ziðkþ 1Þ ¼ 1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �h i

ziðkÞ
ð6:21Þ

ði ¼ 1; 2; . . .; nÞ, for all k � 0.
According to the properties of Rayleigh Quotient [7], it clearly holds that

knWTðkÞWðkÞ�WTðkÞRWðkÞ� k1WTðkÞWðkÞ; ð6:22Þ

for all WðkÞ 6¼ 0, and k � 0.
Next, we perform the convergence analysis of DDT system (6.19) via the fol-

lowing Theorems 6.2–6.6.

Theorem 6.2 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k� 1, then it holds that WðkÞk k\ð1þ gk1Þ; for all k� 0.

Proof From (6.19) and (6.20), it follows that

Wðkþ 1Þk k2 ¼
Xn
i¼1

z2i ðkþ 1Þ

¼
Xn
i¼1

½1� gki WðkÞk k2þ a þ gðWTðkÞRWðkÞþ 1� WðkÞk k2�2z2i ðkÞ

� 1� g kn WðkÞk k2þ a�k1 WðkÞk k2 þ WðkÞk k2�1
� �h i2Xn

i¼1

z2i ðkÞ

� 1� g kn WðkÞk k2þ a�k1 WðkÞk k2 þ WðkÞk k2�1
� �h i2

WðkÞk k2:
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Thus, we have

Wðkþ 1Þk k2 � ½1þ gðk1 WðkÞk k2 þ 1� WðkÞk k2Þ�2 � WðkÞk k2: ð6:23Þ

Define a differential function

f ðsÞ ¼ ½1þ gðk1sþ 1� sÞ�2s; ð6:24Þ

over the interval [0,1]. It follows from (6.9) that

_f ðsÞ ¼ ð1þ g� gsð1� k1ÞÞð1þ g� 3gsð1� k1ÞÞ;

for all 0\s\1. Clearly,

_f ðsÞ ¼ 0; if s ¼ ð1þ gÞ=ð3gð1� k1ÞÞ or s ¼ ð1þ gÞ=gð1� k1Þ :

Denote

h ¼ ð1þ gÞ=ð3gð1� k1ÞÞ:

Then,

_f ðsÞ
[ 0; if 0\s\h
¼ 0; if s ¼ h
\0; if s[ h:

8<
: ð6:25Þ

By gk1\0:125 and g\0:25, clearly,

h ¼ ð1þ gÞ=ð3gð1� k1ÞÞ ¼ ð1=gþ 1Þ=ð3ð1� k1ÞÞ[ 1: ð6:26Þ

From (6.25) and (6.26), it holds that

_f ðsÞ[ 0;

for all 0\s\1. This means that f ðsÞ is monotonically increasing over the interval
[0,1]. Then, we have

f ðsÞ� f ð1Þ\ð1þ gk1Þ2;

for all 0\s\1.
Thus, WðkÞk k\ð1þ gk1Þ; for all k� 0.
This completes the proof.

Theorem 6.3 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k� 1, then it holds that WðkÞk k[ c for all k� 0, where

c ¼ minf½1� gk1� Wð0Þk k;½1� gk1ð1þ gk1Þ4 þ gð1� ð1þ gk1Þ2Þ�g:
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Proof From Theorem 6.2, we have WðkÞk k\ð1þ gk1Þ for all k � 0 under the
conditions of Theorem 6.3. Next, two cases will be considered.

Case 1: 0\ WðkÞk k� 1.
From (6.19) and (6.20), it follows that

Wðkþ 1Þk k2 ¼
Xn
i¼1

½1� gki WðkÞk k2þ a þ gðWTðkÞRWðkÞþ 1� WðkÞk k2�2z2i ðkÞ

� 1� g k1 WðkÞk k2þ a�kn WðkÞk k2
� �

þ g 1� WðkÞk k2
� �h iXn

i¼1

z2i ðkÞ

� 1� g k1 WðkÞk k2þ a�kn WðkÞk k2
� �h i2

WðkÞk k2

� 1� gk1 WðkÞk k2þ a
h i2

WðkÞk k2

� 1� gk1½ �2 WðkÞk k2:

Case 2: 1\ WðkÞk k\ð1þ gk1Þ.
From (6.19) and (6.20), it follows that

Wðkþ 1Þk k2 � 1� g k1 WðkÞk k2þ a�kn WðkÞk k2
� �

þ g 1� WðkÞk k2
� �h i2Xn

i¼1

z2i ðkÞ

� 1� gk1 WðkÞk k2þ a þ g 1� WðkÞk k2
� �h i2

WðkÞk k2

� 1� gk1 WðkÞk k2þ a þ g 1� WðkÞk k2
� �h i2

� 1� gk1 1þ gk1ð Þ4 þ g 1� 1þ gk1ð Þ2
� �h i2

:

Using the analysis of Cases 1 and 2, clearly,

WðkÞk k[ c ¼ min ½1� gk1� Wð0Þk k; 1� gk1 1þ gk1ð Þ4 þ g 1� 1þ gk1ð Þ2
� �h in o

;

for all k� 0. From the conditions of Theorem 6.2, clearly, c[ 0.
This completes the proof.
At this point, the boundness of DDT system (6.19) has been proven. Next, we

will prove that under some mild conditions, lim
k!þ1

WðkÞ ¼ �Vn, where Vn is the

minor component. In order to analyze the convergence of DDT (6.19), we need to
prove the following lemma first.

Lemma 6.1 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k� 1, then it holds that
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1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

[ 0:

Proof By Theorem 6.2, under the conditions of Lemma 6.1, it holds that
WðkÞk k\1þ gk1; for all k� 0: Next two cases will be considered.
Case 1: 0\ WðkÞk k� 1.
From (6.21) and (6.22), for each ið1� i� nÞ, we have

1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

[ 1� gk1 WðkÞk k2þ a þ gkn WðkÞk k2

[ 1� gk1 WðkÞk k2þ a

[ 1� gk1
[ 0;

for k � 0.
Case 2: 1\ WðkÞk k\1þ gk1.
From (6.21) and (6.22), for each ið1� i� nÞ, we have

1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

[ 1� gk1 WðkÞk k2þ a þ gkn WðkÞk k2�g 2gk1 þ g2k2
1

� �
[ 1� gk1 WðkÞk k2þ a�0:25 � 2gk1 þ g2k2

1

� �
[ 1� gk1 WðkÞk k2þ a� 0:5 � gk1 þ 0:25 � ðgk1Þ2

� �
[ 1� gk1 1þ gk1ð Þ4 þ 0:5þ 0:25 � gk1

� �
[ 0:

This completes the proof.
Lemma 6.1 means that the projection of the weight vector W(k) on eigenvector

V iði ¼ 1; 2; . . .; nÞ, which is denoted as ziðkÞ ¼ WTðkÞV iði ¼ 1; 2; . . .; nÞ, does not
change its sign in (6.21). From (6.20), we have ziðtÞ ¼ WTðtÞV i. Since
WTð0ÞVn 6¼ 0, we have zn(0) 6¼ 0. It follows from (6.6) and Lemma 6.1 that
zn(k) > 0 for all k > 0 if zn(0) > 0; and zn(k) < 0 for all k > 0 if zn(0) < 0. Without
loss of generality, we assume that zn(0) > 0. Thus, zn(k) > 0 for all k > 0.

From (6.20), for each k � 0, W(k) can be represented as

WðkÞ ¼
Xn�1

i¼1

ziðkÞV i þ znðkÞVn: ð6:27Þ
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Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i = 1,2,…,n). Theorems 6.4 and 6.5 below provide the convergence of
zi(k) (i = 1,2,…,n).

Theorem 6.4 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k\1, then lim

k!1
ziðkÞ ¼ 0; ði ¼ 1; 2; . . .; n� 1Þ:

Proof By Lemma 6.1, clearly,

1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

[ 0; ði ¼ 1; 2; . . .; nÞ
ð6:28Þ

for all k� 0. Using Theorems 6.2 and 6.3, it holds that WðkÞk k[ c and
WðkÞk k\ð1þ gk1Þ for all k� 0. Thus, it follows that for all k� 0

1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

1� gkn WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

2
4

3
5
2

¼ð1Þ 1� g ki � knð Þ WðkÞk k2þ a

1� gkn WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

2
4

3
5
2

� 1� g ki � knð Þ WðkÞk k2þ a

1� gkn WðkÞk k2þ a þ g k1 WðkÞk k2 þ 1� WðkÞk k2
� �

2
4

3
5
2

¼ 1� gðki � knÞ
1= WðkÞk k2þ a�gkn þ g k1 WðkÞk k�a þ 1= WðkÞk k2þ a� WðkÞk k�a

� �
2
4

3
5
2

\ 1� g kn�1 � knð Þ
1=cð2þ aÞ � gkn þ g k1c�a þ 1=cð2þ aÞ � 1þ gk1ð Þ�a½ �

� �2
; ði ¼ 1; 2; . . .; n� 1Þ:

ð6:29Þ

Denote

h ¼ 1� g kn�1 � knð Þ
1=cð2þ aÞ � gkn þ g k1c�a þ 1=cð2þ aÞ � 1þ gk1ð Þ�a½ �

� �2
:

Clearly, h is a constant and 0\h\1: By WTð0ÞVn 6¼ 0, clearly, znð0Þ 6¼ 0.
Then, znðkÞ 6¼ 0ðk[ 0Þ.

From (6.21), (6.28), and (6.29), it holds that

6.3 DDT System of a Novel MCA Algorithm 161



ziðkþ 1Þ
znðkþ 1Þ

� �2
¼

1� gki WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

1� gkn WðkÞk k2þ a þ g WTðkÞRWðkÞþ 1� WðkÞk k2
� �

2
4

3
5
2

� ziðkÞ
znðkÞ

� �2

� h � ziðkÞ
znðkÞ

� �2
� hkþ 1 � zið0Þ

znð0Þ
� �2

; ði ¼ 1; 2; . . .; n� 1Þ;

ð6:30Þ

for all k� 0.
Thus, from 0\h\1 ði ¼ 1; 2; . . .; n� 1Þ , we have

lim
k!1

ziðkÞ
znðkÞ ¼ 0; ði ¼ 1; 2; . . .; n� 1Þ:

By Theorems 6.2 and 6.3, zn(k) must be bounded. Then,

lim
k!1

ziðkÞ ¼ 0; ði ¼ 1; 2; . . .; n� 1Þ:

This completes the proof.

Theorem 6.5 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k\1, then it holds that lim

k!1
znðkÞ ¼ �1.

Proof Using Theorem 6.4, clearly, W(k) will converge to the direction of the minor
component Vn, as k ! 1. Suppose at time k0, W(k) has converged to the direction
of Vn, i.e., Wðk0Þ ¼ znðk0Þ � Vn.

From (6.21), it holds that

znðkþ 1Þ ¼ znðkÞ 1� gknz
ð2þ aÞ
n ðkÞþ gðknz2nðkÞþ 1� z2nðkÞÞ

� �
¼ znðkÞ 1þ g½knz2nðkÞð1� zðaÞn ðkÞÞþ 1� z2nðkÞ�

� �
¼ znðkÞ 1þ gð1� znðkÞÞðknz2nðkÞðzða�1Þ

n ðkÞþ zða�2Þ
n ðkÞþ � � � þ 1Þþ ð1þ znðkÞÞÞ

� �
¼ znðkÞ 1þ gð1� znðkÞÞðknðzðaþ 1Þ

n ðkÞþ zðaÞn ðkÞþ � � � þ z2nðkÞÞþ ð1þ znðkÞÞÞ
� �

¼ znðkÞ 1þ gð1� znðkÞÞQðkn; znðkÞÞð Þ;
ð6:31Þ

where Qðkn; znðkÞÞ ¼ ðknðzðaþ 1Þ
n ðkÞþ zðaÞn ðkÞþ � � � þ z2nðkÞÞþ ð1þ znðkÞÞÞ is a

positive efficient, for all k � k0.
From (6.31), it holds that

znðkþ 1Þ � 1 ¼ znðkÞ 1þ g 1� znðkÞð ÞQ kn; znðkÞð Þð Þ � 1

¼ 1� gznðkÞQ kn; znðkÞð Þ½ � znðkÞ � 1ð Þ; ð6:32Þ

for k > k0.
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Since znðkÞ\ Wðk)k k� ð1þ gk1Þ, we have

1� gznðkÞQðkn; znðkÞÞ
¼ 1� gznðkÞðknðzðaþ 1Þ

n ðkÞþ zðaÞn ðkÞþ � � � þ z2nðkÞÞ þ ð1þ znðkÞÞÞ
[ 1� gð1þ gk1Þðknðð1þ gk1Þðaþ 1Þ þ ð1þ gk1ÞðaÞ þ � � � þ ð1þ gk1Þð2ÞÞ þ ð1þ ð1þ gk1ÞÞÞ
[ 1� ð1þ gk1Þðgk1ðð1þ gk1Þðaþ 1Þ þ ð1þ gk1ÞðaÞ þ � � � þ ð1þ gk1Þð2ÞÞ þ gð1þ ð1þ gk1ÞÞÞ
[ 1� ð1þ gk1Þðgk1ðð1þ gk1Þ3 þð1þ gk1Þ2Þþ gð1þð1þ gk1ÞÞÞ
[ 1� 0:9980

[ 0;

ð6:33Þ

for all k � k0. Thus, denote d ¼ 1� gznðkÞQðkn; znðkÞÞ; Clearly, it holds that
0\d\1.

It follows from (6.32) and (6.33) that

znðkþ 1Þ � 1j j � d znðkÞ � 1j j;

for all k > k0. Then, for k > k0

znðkþ 1Þ � 1j j � dkþ 1 znð0Þ � 1j j � ðkþ 1ÞPe�hðkþ 1Þ;

where h ¼ � ln d, P ¼ ð1þ gk1Þ � 1j j.
Given any e[ 0, there exists a K� 1 such that

P2Ke�hK

ð1� e�hÞ2 � e:

For any k1 > k2 > k, it follows from (6.21) that

znðk1Þ � znðk2Þj j ¼
Xk1�1

r¼k2

½znðrþ 1Þ � znðrÞ�
					

					�
Xk1�1

r¼k2

gznðrÞ ð1� znðrÞÞQðkn; znðrÞÞð Þ
					

					
�

Xk1�1

r¼k2

gznðrÞ ð1� znðrÞÞQðkn; znðrÞÞð Þj j �
Xk1�1

r¼k2

gznðrÞQðkn; 1þ gk1Þ znðrÞ � 1ð Þj j

� gð1þ gk1ÞQðkn; 1þ gk1Þ
Xk1�1

r¼k2

ðznðrÞ � 1Þj j �P2

Xk1�1

r¼k2

re�hr

�P2

Xþ1

r¼k

re�hr �P2Ke�hK
Xþ1

r¼0

rðe�hÞr�1 � P2Ke�hK

ð1� e�hÞ2
� e:
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where P2 ¼ gð1þ gk1ÞQðkn; 1þ gk1Þðznð0Þ � 1Þ: This means that the sequence
znðkÞf g is a Cauchy sequence. By the Cauchy convergence principle, there must

exist a constant z* such that lim
x!1 znðkÞ ¼ z�.

From (6.27), we have lim
k!þ1

WðkÞ ¼ z�n � Vn. Since (6.17) has self-stabilizing

property, it follows that lim
x!1Wðkþ 1Þ=WðkÞ ¼ 1. From (6.21), we have

1 ¼ 1� g½knðz�nÞ2þ a � ðknðz�nÞ2 þ 1� ðz�nÞ2Þ�, which means z�n ¼ �1.
This completes the proof.
Using (6.27), along with Theorems 6.4 and 6.5, we can draw the following

conclusion:

Theorem 6.6 Suppose that gk1\0:125 and g\0:25. If WTð0ÞVn 6¼ 0 and
Wð0Þk k\1, then it holds that lim

k!1
WðkÞ ¼ �Vn.

At this point, we have completed the proof of the convergence of DDT system
(6.19). Next we will further study the stability of (6.19).

Theorem 6.7 Suppose that gk1\0:125 and g\0:25. Then the equilibrium points
Vn and –Vn are locally asymptotical stable and other equilibrium points (6.19) are
unstable.

Proof Clearly, the set of all equilibrium points of (6.21) is
fV1; � � � ;Vng[ f�V1; � � � ;�Vng[ f0g.

Denote

GðWÞ ¼ Wðkþ 1Þ
¼ WðkÞ � g WðkÞk k2þ aRWðkÞ � ðWTðkÞRWðkÞþ 1� WðkÞk k2ÞWðkÞ

h i
:

ð6:34Þ

Then, we have

@G
@W

¼ Iþ g½ðWTðkÞRWðkÞþ 1� WðkÞk k2ÞI� WðkÞk k2þ aRþ 2RWðkÞWTðkÞ
� 2WðkÞWTðkÞ � ð2þ aÞ WðkÞk kaRWðkÞWTðkÞ�;

ð6:35Þ

where I is a unity matrix.
For the equilibrium point 0, it holds that

@G
@W

				
0
¼ Iþ gI ¼ J0:

The eigenvalues of J0 are aðiÞ0 ¼ 1þ g[ 1 ði ¼ 1; 2; � � � ; nÞ: Thus, the
equilibrium point is unstable.
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For the equilibrium points �V jðj ¼ 1; 2; � � � ; nÞ, it follows from (6.35) that

@G
@W

				
V j

¼ Iþ g kjI � R� 2V jVT
j � akjV jVT

j

h i
¼ Jj: ð6:36Þ

After some simple manipulations, the eigenvalues of Jj are given by

aðiÞj ¼ 1þ gðkj � kiÞ if i 6¼ j:

aðiÞj ¼ 1� gð2þ akjÞ if i ¼ j:

(

For any j 6¼ n, it holds that aðnÞj ¼ 1þ gðkj � kiÞ[ 1. Clearly, the equilibrium
points �V jðj 6¼ nÞ are unstable. For the equilibrium points �Vn, from
gkn\gk1\0:125, and g\0:25, it holds that

aðiÞn ¼ 1þ gðkn � kiÞ\1 if i 6¼ n:
aðiÞn ¼ 1� gð2þ aknÞ\1 if i ¼ n:

(
ð6:37Þ

Thus, �Vn are asymptotical stable.
This completes the proof.
From (6.37), we can easily see that the only fixed points where the MCA

condition is fulfilled are the attractors, and all others are repellers or saddle points.
We conclude that the Algorithm (6.17) converges toward the minor eigenvector
�Vn associated with the minor eigenvalue kn.

6.3.3 Computer Simulations

In this section, we provide simulation results to illustrate the convergence and
stability of the MCA Algorithm (6.17) in a stochastic case. Since OJAm [17],
Moller [23], and Peng [11] are self-stabilizing algorithms and have better conver-
gence performance than some existing MCA algorithms, we compare performance
of Algorithm (6.17) with these algorithms. In order to measure the convergence
speed and accuracy of these algorithms, we compute the norm of W(k) and the
direction cosine at the kth update. In the simulation, the input data sequence, which
is generated by [17], X(k) = C h(k), where C = randn(5, 5)/5 and h(k)2R5	1, is
Gaussian and randomly generated with zero-mean and unitary standard deviation.
The above-mentioned four MCA algorithms are used to extract minor component
from the input data sequence {x(k)}. The following learning curves show the
convergence of W(k) and direction cosine(k) with the same initial norm for the
weight vector and constant learning rate, respectively. All the learning curves below
are obtained by averaging over 30 independent experiments. Figures 6.2 and 6.3
investigate the case Wð0Þk k ¼ 1, and Figs. 6.4 and 6.5 show the simulation results
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for higher-dimensional data (D = 12), using different learning rates and maximal
eigenvalues, which satisfy the conditions of Theorem 6.6.

From Fig. 6.3, we can see that for all these MCA algorithms, direction cosine
(k) converge to 1 at approximately the same speeds. However, from Fig. 6.2 we can
see that the Moller and OJAm algorithms have approximately the same conver-
gence for the weight vector length and there appear to be a residual deviation from
unity for the weight vector length, and the norm of the weight vector in Peng
algorithm has larger oscillations, and the norm of the weight vector in Algorithm
(6.17) has a faster convergence, a better numerical stability and higher precision
than other algorithms. From Figs. 6.4 and 6.5, it is obvious that even for
higher-dimensional data, only if the conditions of Theorems 6.2–6.6 are satisfied,
Algorithm (6.17) can satisfactorily extract the minor component of the input data
stream.

In this section, dynamics of a class of algorithms are analyzed by the DDT
method. It has been proved that if some mild conditions about the learning rate and
the initial weight vector are satisfied, these algorithms will converge to the minor
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component with unit norm. At the same time, stability analysis shows that the minor
component is the asymptotical stable equilibrium point in these algorithms.
Simulation results show that this class of self-stabilizing MCA algorithms outper-
forms some existing MCA algorithms.

6.4 DDT System of a Unified PCA and MCA Algorithm

In Sect. 6.3, the convergence of a MCA algorithm proposed by us is analyzed via
DDT in details. However, in the above analysis, we made one assumption, i.e., the
smallest eigenvalue of the correlation matrix of the input data is single. In this
section, we will remove this assumption in the convergence analysis and analyze a
unified PCA and MCA algorithm via the DDT method.
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6.4.1 Introduction

Despite the large number of unified PCA and MCA algorithms proposed to date,
there are few works that analyze these algorithms via the DDT method and derive
the conditions to guarantee the convergence. Obviously, this is necessary from the
point view of application. Among the unified PCA and MCA algorithms, Chen’s
algorithm [22] is regarded as a pioneering work. Other self-normalizing dual sys-
tems [24] or dual-purpose algorithms [19, 20] can be viewed as the generalizations
of Chen’s algorithm [22]. Chen’s algorithm lays sound theoretical foundations for
dual-purpose algorithms. However, no work has been done so far on the study of
Chen’s DDT system. In this section, the unified PCA and MCA algorithm proposed
by Chen et al. [22] will be analyzed and some sufficient conditions to guarantee its
convergence will be derived by the DDT method. These theoretical results will lay a
solid foundation for the applications of this algorithm.

6.4.2 A Unified Self-stabilizing Algorithm for PCA
and MCA

Chen et al. proposed a unified stabilizing learning algorithm for principal compo-
nents and minor components extraction [22], and the stochastic discrete form of the
algorithm can be written as

Wðkþ 1Þ ¼ WðkÞ � g WðkÞk k2yðkÞXðkÞ � y2ðkÞWðkÞ
h i

þ gð1� WðkÞk k2ÞWðkÞ;
ð6:38Þ

where g (0\g\1) is the learning rate. Algorithm (6.38) can extract principal
component if “+” is used. If the sign is simply altered, (6.38) can also serve as a
minor component extractor. It is interesting that the only difference between the
PCA algorithm and the MCA algorithm is the sign on the right hand of (6.38).

In order to derive some sufficient conditions to guarantee the convergence of
Algorithm (6.38), next we analyze the dynamics of (6.38) via the DDT approach.
The DDT system associated with (6.38) can be formulated as follows. Taking the
conditional expectation EfWðkþ 1Þ=Wð0Þ;XðiÞ; i\kg to (6.38) and identifying
the conditional expectation as the next iterate, a DDT system can be obtained and
given as

Wðkþ 1Þ ¼WðkÞ � g WðkÞk k2RWðkÞ �WTðkÞRWðkÞWðkÞ
h i

þ gð1� WðkÞk k2ÞWðkÞ;
ð6:39Þ
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where R ¼ E½XðkÞXTðkÞ� is the correlation matrix of the input data. The main
purpose of this section is to study the convergence of the weight vector W(k) of
(6.39) subject to the learning rate g being some constant.

6.4.3 Convergence Analysis

Since R is a symmetric positive definite matrix, there exists an orthonormal basis of
<n composed of the eigenvectors of R. Let k1; k2; � � � ; kn to be all the eigenvalues of
R ordered by k1 � k2 � � � � � kn�1 � kn [ 0. Denote by r, the largest eigenvalue of
R. Suppose that the multiplicity of r is mð1�m� nÞ. Then, r ¼ k1 ¼ � � � ¼ km:
Suppose that fV iji ¼ 1; 2; � � � ; ng is an orthogonal basis of <n such that each Vi is a
unitary eigenvector of R associated with the eigenvalue ki. Denote by Vr

the eigen-subspace of the largest eigenvalue r, i.e., Vr ¼ spanfV1; � � � ;Vmg.
Denote by V?

r the subspace which is perpendicular to Vr. Clearly, V?
r ¼

spanfVmþ 1; � � � ;Vng. Similarly, we can denote by Vs the eigen-subspace of the
smallest eigenvalue s. Suppose that the multiplicity of s is pð1� p� n� mÞ. Then,
Vs ¼ spanfVn�p; � � � ;Vng and V?

s ¼ spanfV1; � � � ;Vn�p�1g.
Since the vector set V1;V2; � � � ;Vnf g is an orthonormal basis of <n, for each

k� 0, WðkÞ and RWðkÞ can be represented, respectively, as

WðkÞ ¼
Xn
i¼1

ziðkÞV i; RWðkÞ ¼
Xn
i¼1

kiziðkÞV i; ð6:40Þ

where ziðkÞði ¼ 1; 2; . . .; nÞ are some constants.
From (6.39) and (6.40), it holds that

ziðkþ 1Þ ¼ ½1� gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�ziðkÞ; ð6:41Þ

ði ¼ 1; 2; . . .; nÞ, for all k � 0.
By letting QðR;WðkÞÞ ¼ �½ki WðkÞk k2�WTðkÞRWðkÞ�;
(6.41) can be represented as

ziðkþ 1Þ ¼ ½1þ gQðR;WðkÞÞþ gð1� WðkÞk k2Þ�ziðkÞ; ð6:42Þ

ði ¼ 1; 2; . . .; nÞ, for all k � 0. According to the properties of the Rayleigh
Quotient [7], it clearly holds that

knWTðkÞWðkÞ�WTðkÞRWðkÞ� k1WTðkÞWðkÞ; ð6:43Þ

for all k � 0. From (6.43), it holds that
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Qmax ¼ ðk1 � knÞ WðkÞk k2; Qmin ¼ ðkn � k1Þ WðkÞk k2: ð6:44Þ

Next, we will analyze the convergence of DDT system (6.39) via the following
Theorems 6.8–6.11.

Theorem 6.8 Suppose that g� 0:3. If Wð0Þk k� 1 and ðk1 � knÞ\1, then it holds
that WðkÞk k\ð1þ gk1Þ; for all k� 0.

Proof From (6.40)–(6.44), it follows that

Wðkþ 1Þk k2 ¼
Xn
i¼1

z2i ðkþ 1Þ ¼
Xn
i¼1

½1þ gQðR;WðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

�
Xn
i¼1

1þ gQmax þ gð1� WðkÞk k2Þ
h i2

z2i ðkÞ

� 1þ gðk1 � knÞ WðkÞk k2 þ g 1� WðkÞk k2
� �h i2Xn

i¼1

z2i ðkÞ

� ½1þ gðk1 � knÞ WðkÞk k2 þ gð1� WðkÞk k2Þ�2 WðkÞk k2:

Thus, it holds that Wðkþ 1Þk k2 � ½1þ gðk1 � knÞ WðkÞk k2 þ gð1� WðkÞk k2Þ�2
WðkÞk k2:
Define a differential function f ðsÞ ¼ ½1þ gðk1 � kn � 1Þsþ g�2s; over the

interval [0, 1], where s ¼ WðkÞk k2 and f ðsÞ ¼ Wðkþ 1Þk k2. It follows that

_f ðsÞ ¼ ð1þ g� gsðkn þ 1� k1ÞÞð1þ g� 3gsðkn þ 1� k1ÞÞ; ð6:45Þ

for all 0\s\1. Clearly,

_f ðsÞ ¼ 0; if s ¼ 1þ g
3gðkn þ 1� k1Þ or s ¼ 1þ g

gðkn þ 1� k1Þ :

Denote h ¼ ð1þ gÞ=ð3gðkn þ 1� k1ÞÞ. Then, we have

_f ðsÞ
[ 0; if 0\s\h
¼ 0; if s ¼ h
\0; if s[ h:

8<
: ð6:46Þ

By g� 0:3, clearly,

h ¼ ð1þ gÞ=ð3gðkn þ 1� k1ÞÞ ¼ ð1þ 1=gÞ=ð3½1� ðk1 � knÞ�Þ[ 1: ð6:47Þ

From (6.46) and (6.47), it holds that _f ðsÞ[ 0 for all 0\s\1. This means that
f ðsÞ is monotonically increasing over the interval [0,1]. Then, for all 0\s\1, it
follows that
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f ðsÞ� f ð1Þ ¼ ½1þ gðk1 � knÞ�2\ð1þ gk1Þ2:

Thus, we have WðkÞk k\ð1þ gk1Þ for all k� 0.
This completes the proof.
Theorem 6.8 shows that there exists an upper bound for WðkÞk k in the DDT

system (6.39), for all k� 0.

Theorem 6.9 Suppose that g� 0:3. If Wð0Þk k� 1, then it holds that WðkÞk k[ c

for all k� 0, where c ¼ min ½1� gk1� Wð0Þk k; ½1� gk1ð1þ gk1Þ2 � gð2gk1 þ
n

g2k21Þ�g:
Proof From Theorem 6.8, we have WðkÞk k\ð1þ gk1Þ for all k � 0 under the
conditions of Theorem 6.9. Next, two cases will be considered.

Case 1: 0\ WðkÞk k� 1.
From (6.40)–(6.44), it follows that

Wðkþ 1Þk k2 �
Xn
i¼1

1þ gQmin þ gð1� WðkÞk k2Þ
h i2

z2i ðkÞ

� 1þ gðkn � k1Þ WðkÞk k2 þ g 1� WðkÞk k2
� �h i2Xn

i¼1

z2i ðkÞ

� 1þ gðkn � k1Þ WðkÞk k2
h i2

WðkÞk k2 � 1� gk1 WðkÞk k2
h i2

WðkÞk k2

� 1� gk1½ �2 WðkÞk k2:

Case 2: 1\ WðkÞk k� ð1þ gk1Þ.
From (6.40)–(6.44), it follows that

Wðkþ 1Þk k2 �
Xn
i¼1

½1þ gQmin þ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼ ½1þ gðkn � k1Þ WðkÞk k2 þ gð1� WðkÞk k2Þ�2
Xn
i¼1

z2i ðkÞ

� 1� gk1 WðkÞk k2 þ g �2gk1 � g2k21
� �h i2

WðkÞk k2

� 1� gk1 1þ gk1ð Þ2�g 2gk1 þ g2k21
� �h i2

:

From the above analysis, clearly,

WðkÞk k[ c ¼ minf½1� gk1� Wð0Þk k; ½1� gk1ð1þ gk1Þ2 � gð2gk1 þ g2k21Þ�g;

for all k� 0. From the conditions of Theorem 6.2, clearly, it holds that c[ 0.
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This completes the proof.
At this point, the boundness of DDT system (6.39) has been proved. Next, we

will prove that under some mild conditions, lim
k!þ1

WðkÞ ¼ Pm
i¼1 z

�
i V i 2 V for PCA

and lim
k!þ1

WðkÞ ¼ Pn
i¼n�p z

�
i V i 2 Vs for MCA.

In order to analyze the convergence of DDT (6.39), we need to prove some
preliminary results.

From (6.40), for each k � 0, W(k) can be represented as

WðkÞ ¼ Pm
i¼1

ziðkÞV i þ
Pn

j¼mþ 1
zjðkÞV j for PCA

WðkÞ ¼ Pn�p

i¼1
ziðkÞV i þ

Pn
j¼n�pþ 1

zjðkÞV j for MCA:

8>><
>>:

Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i = 1,2,…,n). The following Lemmas 6.2–6.4 provide the convergence of
zi(k) (i = 1,2,…,n) for PCA, and Lemmas 6.5–6.7 provide the convergence of
zi(k) (i = 1,2,…,n) for MCA.

In the following Lemmas 6.2–6.4, we will prove that all zi(k) (i = 2,3,…,n) will
converge to zero under some mild conditions.

Lemma 6.2 Suppose that g� 0:3. If Wð0Þ 62 V?
r and Wð0Þk k� 1, then for PCA

algorithm of (6.39) there exist constants h1 [ 0 and P1 � 0 such thatPn
j¼mþ 1 z

2
j ðkÞ�

Q
1 �e�h1k for all k� 0, where h1 ¼ � ln b[ 0 and

b ¼ 1� gðr� kmþ 1Þ=ð1=c2 þ gðr� sÞþ gð1=c2 � 1ÞÞ½ �2. Clearly, b is a constant
and 0\b\1:

Proof Since Wð0Þ 62 V?
r , there must exist some ið1� i�mÞ such that zið0Þ 6¼ 0:

Without loss of generality, assume z1ð0Þ 6¼ 0: For PCA, it follows from (6.41) that

ziðkþ 1Þ ¼ ½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞ
þ gð1� WðkÞk k2Þ�ziðkÞ; ð1� i�mÞ ð6:48Þ

and

zjðkþ 1Þ ¼ ½1þ gðkj WðkÞk k2�WTðkÞRWðkÞÞ
þ gð1� WðkÞk k2Þ�zjðkÞ; mþ 1� j� n

ð6:49Þ

for k� 0.
Using Theorem 6.9, it holds that WðkÞk k[ c for all k� 0. Then, from (6.48)

and (6.49), for each jðmþ 1� j� nÞ, we have
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zjðkþ 1Þ
z1ðkþ 1Þ

� �2
¼ 1þ gðkj WðkÞk k2�ðWTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ

1þ gðr WðkÞk k2�ðWTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ

" #2

� zjðkÞ
z1ðkÞ

� �2

¼ 1� gðr� kjÞ WðkÞk k2
1þ gðr WðkÞk k2�ðWTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ

" #2

� zjðkÞ
z1ðkÞ

� �2

¼ 1� gðr� kjÞ
1= WðkÞk k2 þ gðr� sÞþ gð1= WðkÞk k2�1Þ

" #2

� zjðkÞ
z1ðkÞ

� �2

� 1� gðr� kmþ 1Þ
1=c2 þ gðr� sÞþ gð1=c2 � 1Þ

� �2
� zjðkÞ
z1ðkÞ

� �2

¼ b
z2j ðkÞ
z21ðkÞ

� bkþ 1 z
2
j ð0Þ
z21ð0Þ

¼ z2j ð0Þ
z21ð0Þ

e�h1ðkþ 1Þ;

ð6:50Þ

for all k� 0, where h1 ¼ � ln b[ 0. Since WðkÞk k\ð1þ gk1Þ, z1ðkÞ must be
bounded, i.e., there exists a constant d[ 0 such that z21ðkÞ� d for all k� 0. Then,

Xn
j¼mþ 1

z2j ðkÞ ¼
Xn

j¼mþ 1

zjðkÞ
z1ðkÞ

� �2
� z21ðkÞ�

Y
1

e�h1k;

for k� 0 where
Q

1 ¼ d
Pn

j¼mþ 1

zjð0Þ
z1ð0Þ
h i2

� 0:

This completes the proof.
Based on the Lemma, we have Lemma 6.3.

Lemma 6.3 Suppose that gk1\0:25 and g� 0:3. Then for PCA algorithm of
(6.39) there exist constants h2 [ 0 and

Q
2 [ 0 such that

1� ð1� rÞ Wðkþ 1Þk k2�WTðkþ 1ÞRWðkþ 1Þ		 		�ðkþ 1Þ
�
Y
2

�½e�h2ðkþ 1Þ þmaxfe�h2k; e�h1kg�;

for all k� 0.

Proof For PCA, it follows from (6.41) that
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Wðkþ 1Þk k2 ¼
Xn
i¼1

½1þ gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼
Xn
i¼1

½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

þ
Xn

i¼mþ 1

½1þ gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

�
Xn

i¼mþ 1

½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼ ½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2 WðkÞk k2 þHðkÞ;
ð6:51Þ

for any k� 0,

where HðkÞ ¼ Pn
i¼mþ 1

ð2þ gðki þrÞ WðkÞk k2 þ 2gð1� WðkÞk k2�WTðkÞRWðkÞÞÞ
h

�gðki � rÞ WðkÞk k2�z2i ðkÞ
i
.

Clearly,

WTðkþ 1ÞRWðkþ 1Þ ¼
Xn
i¼1

ki½1þ gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼
Xn
i¼1

ki½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

þ
Xn

i¼mþ 1

ki½1þ gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

�
Xn

i¼mþ 1

ki½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼ ½1þ gðr WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2WTðkÞRWðkÞþH0ðkÞ;
ð6:52Þ

for any k� 0,

where H0ðkÞ ¼ Pn
i¼mþ 1

ð2þ gðki þ rÞ WðkÞk k2 þ 2gð1� WðkÞk k2�WTðkÞRWðkÞÞÞ
h

�gðki � rÞ WðkÞk k2�

kiz2i ðkÞ�. Then, it follows from (6.51) and (6.52) that

1� ð1� rÞ Wðkþ 1Þk k2�WTðkþ 1ÞRWðkþ 1Þ
¼ ð1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞÞf1� ½2gþ g2ð1� ð1� rÞ WðkÞk k2

�WTðkÞRWðkÞÞ�ðð1� rÞ WðkÞk k2 þWTðkÞRWðkÞÞg � ð1� rÞHðkÞ � H0ðkÞ

for all k� 0.
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Denote

VðkÞ ¼ 1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞ		 		;
for any k� 0. Clearly,

Vðkþ 1Þ�VðkÞ f1� ½2gþ g2ð1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞÞ�ðð1� rÞ WðkÞk k2		
þ WTðkÞRWðkÞÞg		þ ð1� rÞHðkÞþH0ðkÞj j:

Denote

d ¼ f1� ½2gþ g2ð1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞÞ�ðð1� rÞ WðkÞk k2 þWTðkÞRWðkÞÞg		 		:
From Theorem 6.8, gk1\0:25, g� 0:3 and (6.43), it holds that

½2gþ g2ð1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞÞ�ðð1� rÞ WðkÞk k2 þWTðkÞRWðkÞÞ
\½2gþ g2ð1� ð1� rÞ WðkÞk k2�WTðkÞRWðkÞÞ�
\½2gþ g2ð1� ð1� rÞ WðkÞk k2�kn WðkÞk k2Þ�
\2gþ g2ð1þ r WðkÞk k2Þ� 2gþ gðgþ gk1ð1þ gk1Þ2Þ� 0:8071;

Clearly, 0\d\1. Then,

Vðkþ 1Þ� dVðkÞþ ð1� rÞHðkÞþH0ðkÞj j; k� 0:

Since

ð1� rÞHðkÞþH0ðkÞj j � ð2þ 2gr WðkÞk k2 þ 2gÞðgr WðkÞk k2Þ
Xn

i¼mþ 1

z2i ðkÞ½ð1� rÞþ ki�

� ð2þ 2gr WðkÞk k2 þ 2gÞðgr WðkÞk k2Þ
Xn

i¼mþ 1

z2i ðkÞ�/
Y
1

e�h1k;

for any k� 0, where / ¼ ð2þ 2grð1þ gk1Þ2 þ 2gÞ � grð1þ gk1Þ2, then

Vðkþ 1Þ� dkþ 1Vð0Þþ/
Y

1

Xk
r¼0

ðdeh1Þre�h1k

� dkþ 1Vð0Þþ ðkþ 1Þ/
Y

1
maxfdk; e�h1kg

� ðkþ 1Þ
Y

2
e�h2ðkþ 1Þ þmaxfe�h2k; e�h1kg
h i

;
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where h2 ¼ � ln d[ 0 and
Q

2 ¼ maxf 1� ð1� rÞ Wð0Þk k2�WTð0ÞRWð0Þ		 		;
/
Q

1g[ 0.
This completes the proof.
Based on Lemmas 6.2 and 6.3, we have Lemma 6.4.

Lemma 6.4 For PCA algorithm of (6.39), suppose there exist constants h[ 0 andQ
[ 0 such that

g ð1� ð1� rÞ Wðkþ 1Þk k2�WTðkþ 1ÞRWðkþ 1ÞÞziðkþ 1Þ		 		�ðkþ 1Þ
Y

e�hðkþ 1Þ;
ði ¼ 1; . . .;mÞ
for all k� 0. Then, lim

k!1
ziðkÞ ¼ z�i ; ði ¼ 1; . . .;mÞ, where z�i ; ði ¼ 1; . . .;mÞ are

constants.

Proof Given any e[ 0, there exists a K � 1 such that

Q
Ke�hK

ð1� e�hÞ2 � e:

For any k1 > k2 > K, it follows that

ziðk1Þ � ziðk2Þj j ¼
Xk1�1

r¼k2

½ziðrþ 1Þ � ziðrÞ�
					

					� g
Xk1�1

r¼k2

ðr WðrÞk k2�WðrÞTRWðrÞþ 1� WðrÞk k2ÞziðrÞ
		 		

¼ g
Xk1�1

r¼k2

ð1� ð1� rÞ WðrÞk k2�WðrÞTRWðrÞÞziðrÞ
		 		

�
YXk1�1

r¼k2

re�hr �
YXþ1

r¼K

re�hr �
Y

Ke�hK
Xþ1

r¼0

rðe�hÞr�1

�
Q
Ke�hK

ð1� e�hÞ2 � e; ði ¼ 1; . . .;mÞ:

This means that the sequence { ziðkÞ } is a Cauchy sequence. By the Cauchy
convergence principle, there must exist a constant z�ði ¼ 1; . . .;mÞ such that
lim

k!þ1
ziðkÞ ¼ z�; ði ¼ 1; . . .;mÞ:

This completes the proof.
Using the above theorems and lemmas, the convergence of DDT system (6.39)

for PCA can be proved as in Theorem 6.10 next.

Theorem 6.10 Suppose that gk1\0:25 and g� 0:3. If Wð0Þ 62 V?
r and

Wð0Þk k� 1, then the weight vector of (6.39) for PCA will converge to a unitary
eigenvector associated with the largest eigenvalue of the correlation matrix.

Proof By Lemma 6.2, there exist constants h1 [ 0 and P1 � 0 such thatPn
j¼mþ 1 z

2
j ðkÞ�

Q
1 � e�h1k; for all k� 0. By Lemma 6.3, there exist constants

h2 [ 0 and
Q

2 [ 0 such that

176 6 Deterministic Discrete-Time System for the Analysis …



ð1� ð1� rÞ Wðkþ 1Þk k2�WTðkþ 1ÞRWðkþ 1ÞÞ		 		�ðkþ 1Þ �
Y

2

� ½e�h2ðkþ 1Þ þmaxfe�h2k; e�h1kg�;

for all k� 0. Obviously, there exist constants h[ 0 and
Q

[ 0 such that

g ð1� ð1� rÞ Wðkþ 1Þk k2�WTðkþ 1ÞRWðkþ 1ÞÞziðkþ 1Þ		 		�ðkþ 1Þ
Y

e�hðkþ 1Þ;
ði ¼ 1; . . .;mÞ
for k� 0. Using Lemmas 6.4 and 6.2, it follows that

lim
k!þ1

ziðkÞ ¼ z�i ; ði ¼ 1; . . .;mÞ
lim

k!þ1
ziðkÞ ¼ 0; ði ¼ mþ 1; . . .; nÞ:

(

Then, lim
k!þ1

WðkÞ ¼ Pm
i¼1 z

�
i V i 2 Vr: It can be easily seen that

lim
k!þ1

WðkÞk k2¼ Pm
i¼1 ðz�i Þ2 ¼ 1:

This completes the proof.
After proving the convergence of DDT system (6.39) for PCA, we can also

prove the convergence of DDT system (6.39) for MCA using similar method. In
order to prove the convergence of the weight vector of (6.39) for MCA, we can use
the following Lemmas 6.5–6.7 and Theorem 6.11, the proofs of which are similar to
those of Lemmas 6.2–6.4 and Theorem 6.10. Here, only these lemmas and theorem
will be given and their proofs are omitted.

Lemma 6.5 Suppose that g� 0:3 .If Wð0Þ 62 V?
s and Wð0Þk k� 1, then for MCA

algorithm of (6.39) there exist constants h01 [ 0 and P0
1 � 0 such thatPn�p

j¼1 z2j ðkÞ�
Q0

1 �e�h1k, for all k� 0, where h01 ¼ � ln b0 [ 0, and

b0 ¼ ½1� gðkn�p�1 � sÞ=ð1=c2 � gðs� rÞþ gð1=c2 � 1ÞÞ�2. Clearly, b0 is a con-
stant and 0\b0\1:

Proof For MCA, it follows from (6.41) that

Wðkþ 1Þk k2 ¼
Xn
i¼1

½1� gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼ ½1� gðs WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2 WðkÞk k2 þ �HðkÞ;
ð6:53Þ

for any k� 0 where

�HðkÞ ¼
Xn�p

i¼1

ð2� gðki þ sÞ WðkÞk k2
h

þ 2gð1

� WðkÞk k2 þWTðkÞRWðkÞÞÞ � gðs� kiÞ WðkÞk k2�z2i ðkÞ
i
:
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and,

WTðkþ 1ÞRWðkþ 1Þ ¼
Xn
i¼1

ki½1� gðki WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2z2i ðkÞ

¼ ½1� gðs WðkÞk k2�WTðkÞRWðkÞÞþ gð1� WðkÞk k2Þ�2WTðkÞRWðkÞþH
0ðkÞ;

ð6:54Þ

for any k� 0 where

�H0ðkÞ ¼
Xn�p

i¼1

ð2� gðki þ sÞ WðkÞk k2 þ 2gð1� WðkÞk k2
h

þWTðkÞRWðkÞÞÞ � gðs� kiÞ WðkÞk k2�kiz2i ðkÞ
i
:

Then, it follows from (6.53) and (6.54) that

1� ð1þ sÞ Wðkþ 1Þk k2 þWTðkþ 1ÞRWðkþ 1Þ
¼ ð1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞÞf1þ ½�2gþ g2ð1� ð1þ sÞ WðkÞk k2

þWTðkÞRWðkÞÞ�½WTðkÞRWðkÞ � ð1þ sÞ WðkÞk k2�g � ð1þ sÞ�HðkÞþ �H0ðkÞ

for all k� 0.
Denote

�VðkÞ ¼ 1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞ		 		;
for any k� 0. Clearly,

�Vðkþ 1Þ� �VðkÞ f1� ½2g� g2ð1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞÞ�		 ½WTðkÞRWðkÞ
�ð1þ sÞ WðkÞk k2�g		þ H0ðkÞ � ð1þ sÞHðkÞj j:

Denote

d0 ¼ f1� ½2g� g2ð1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞÞ�½WTðkÞRWðkÞ � ð1þ sÞ WðkÞk k2�g		 		:
From Theorem 6.8, gk1\0:25, g� 0:3, and (6.43), it holds that

½2g� g2ð1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞÞ�½r WðkÞk k2�ð1þ sÞ WðkÞk k2�
¼ ½2g� g2ð1� ð1þ sÞ WðkÞk k2 þWTðkÞRWðkÞÞ�½ðr� ð1þ sÞÞ WðkÞk k2�
\½2g� g2ð1� WðkÞk k2Þ�½r WðkÞk k2�\ðgk1Þ½2� gð1� WðkÞk k2Þ�½ WðkÞk k2�
� 0:25 � ½2� 0:3þ 0:3 � ð1þ 0:25Þ2�ð1þ 0:25Þ2
¼ 0:8471:
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Clearly, 0\d0\1. Then,

�Vðkþ 1Þ� d�VðkÞþ H0ðkÞ � ð1þ sÞHðkÞj j; k� 0:

Since

H0ðkÞ � ð1þ sÞHðkÞj j

� ð2� 2gs WðkÞk k2 þ 2gð1þ r WðkÞk k2ÞÞðgr WðkÞk k2Þ
Xn�p

i¼1

z2i ðkÞ½ki � ð1þ sÞ�
					

					
�ð2þ 2gð1þ r WðkÞk k2ÞÞ � ðgr WðkÞk k2Þ � r� ð1þ sÞj j �

Xn�p

i¼1

z2i ðkÞ

�/0Y0
1
e�h01k;

for any k� 0, where /0 ¼ ð2þ 2gð1þ rð1þ gk1Þ2ÞÞ � ðgrð1þ gk1Þ2Þ � r�j
ð1þ sÞj, we have

�Vðkþ 1Þ� d0kþ 1 �Vð0Þþ/0 Y0
1

Xk
r¼0

ðd0eh01Þre�h01k

� d0kþ 1 �Vð0Þþ ðkþ 1Þ/0 Y0
1

maxfd0k; e�h01kg

� ðkþ 1Þ
Y0
2

e�h02ðkþ 1Þ þmaxfe�h02k; e�h01kg
h i

;

where h02 ¼ � ln d0 [ 0 and
Q0

2 ¼ max 1� ð1þ sÞ Wð0Þk k2 þWTð0ÞRWð0Þ		 		;n
/0 Q0

1g[ 0.
This completes the proof.

Lemma 6.6 Suppose that gk1\0:25 and g� 0:3. Then for MCA algorithm of
(6.39) there exist constants h02 [ 0 and

Q0
2 [ 0 such that

1� ð1þ sÞ Wðkþ 1Þk k2 þWTðkþ 1ÞRWðkþ 1Þ		 		�ðkþ 1Þ �
Y0

2

� ½e�h02ðkþ 1Þ þmaxfe�h02k; e�h01kg�;

for all k� 0.
For the proof of this lemma, refer to Lemma 6.3.

Lemma 6.7 For MCA algorithm of (6.39), suppose there exists constants h0 [ 0
and

Q0 [ 0 such that
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g ð1� ð1þ sÞ Wðkþ 1Þk k2 þWTðkþ 1ÞRWðkþ 1ÞÞziðkþ 1Þ		 		�ðkþ 1Þ
Y0

e�h0ðkþ 1Þ;
ði ¼ n� pþ 1; . . .; nÞ

for k� 0. Then, lim
k!1

ziðkÞ ¼ z�i ; ði ¼ n� pþ 1; . . .; nÞ, where z�i ; ði ¼ n�
pþ 1; . . .; nÞ are constants.

For the proof of this lemma, refer to Lemma 6.4.

Theorem 6.11 Suppose that gk1\0:25 and g� 0:3. If Wð0Þ 62 V?
s and

Wð0Þk k� 1, then the weight vector of (6.39) for MCA will converge to a unitary
eigenvector associated with the smallest eigenvalue of the correlation matrix.

From Lemmas 6.5–6.7, clearly Theorem 6.11 holds.
At this point, we have completed the proof of the convergence of DDT system

(6.39). FromTheorems 6.8 and 6.9, we can see that theweight norm of PCA algorithm
andMCAalgorithm ofDDT system (6.39) have the same bounds, and fromTheorems
6.8–6.11, it is obvious that the sufficient conditions to guarantee the convergence of
the two algorithms are also same, which is in favored in practical applications.

6.4.4 Computer Simulations

In this section, we provide simulation results to illustrate the performance of Chen’s
algorithm. This experiment mainly shows the convergence of Algorithm (6.39)
under the condition of Theorems 6.10 and 6.11.

In this simulation, we randomly generate a 12	 12 correlation matrix and its
eigenvalues are k1 ¼ 0:2733; k2 ¼ 0:2116; k3 ¼ 0:1543; …and k12 ¼ 0:0001: The
initial weight vector is Gaussian and randomly generated with zero-mean and
unitary standard deviation, and its norm is less than 1. In the following experiments,
the learning rate for PCA is g ¼ 0:05 and the learning rate for MCA is g ¼ 0:20,
which satisfies the condition of gk1 � 0:25 and g� 0:3. Figure 6.6 shows that the
convergence of the component ziðkÞ of WðkÞ in (6.39) for PCA where ziðkÞ ¼
WTðkÞV i is the coordinate of WðkÞ in the direction of the eigenvector
V iði ¼ 1; 2; 3; 4; . . .; 12Þ. In the simulation result, ziðkÞði ¼ 2; 3; 4; . . .; 12Þ con-
verges to zero and z1ðkÞ converges to a constant 1, as k ! 1, which is consistent
with the convergence results in Theorem 6.10. Figure 6.7 shows the convergence of
the component ziðkÞ of WðkÞ in (6.39) for MCA. In the simulation result, ziðkÞði ¼
1; 2; 3; . . .; 11Þ converges to zero and z12ðkÞ converges to a constant 1, as k ! 1,
which is consistent with the convergence results in Theorem 6.11.

From the simulation results shown in Figs. 6.6 and 6.7, we can see that on
conditions of gk1 � 0:25, g� 0:3, and Wð0Þk k� 1, Algorithm (6.39) for PCA
converge to the direction of the principal component of the correlation matrix. And
if we simply switch the sign in the same learning rule, Algorithm (6.39) for MCA
also converge to the direction of minor component of the correlation matrix.
Besides, further simulations with high dimensions, e.g., 16, 20, and 30, also show
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that Algorithm (6.39) has satisfactory convergence under the conditions of
Theorems 6.10 and 6.11. Figures 6.8 and 6.9 show the simulation results of Chen’s
PCA and MCA algorithm with dimension 20, respectively, where the learning rate
for PCA is g ¼ 0:05 and the learning rate for MCA is g ¼ 0:20, which satisfy the
condition of gk1 � 0:25 and g� 0:3.

In this section, dynamics of a unified self-stability learning algorithm for prin-
cipal and minor components extraction are analyzed by the DDT method. The
learning rate is assumed to be constant and thus not required to approach zero as
required by the DCT method. Some sufficient conditions to guarantee the con-
vergence are derived.
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Fig. 6.6 Convergence of
WðkÞ for PCA
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Fig. 6.7 Convergence of
WðkÞ for MCA
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6.5 Summary

In this chapter, we have analyzed the DDT systems of neural network principal/
minor component analysis algorithms in details. First, we have reviewed several
convergence or stability performance analysis methods for neural network-based
PCA/MCA algorithms. Then, a DDT system of a novel MCA algorithm proposed
by us has been analyzed. Finally, we have removed the assumption that the smallest
eigenvalue of the correlation matrix of the input data is single, and a DDT system of
a unified PCA and MCA algorithm has been analyzed.
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Fig. 6.8 Convergence of
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