Chapter 6
Deterministic Discrete-Time System
for the Analysis of Iterative Algorithms

6.1 Introduction

The convergence of neural network-based PCA or MCA learning algorithms is a
difficult topic for direct study and analysis. Traditionally, based on the stochastic
approximation theorem, the convergence of these algorithms is indirectly analyzed
via corresponding DCT systems. The stochastic approximation theorem requires
that some restrictive conditions must be satisfied. One important condition is that
the learning rates of the algorithms must approach zero, which is not a reasonable
requirement to be imposed in many practical applications. Clearly, the restrictive
condition is difficult to be satisfied in many practical applications, where a constant
learning rate is usually used due to computational roundoff issues and tracking
requirements. Besides the DCT system, Lyapunov function method, differential
equations method, etc., are also used to analyze the convergence of PCA algo-
rithms. For example, in [1], a Lyapunov function was proposed for globally
characterizing Oja’s DCT model with a single neuron. Another single-neuron
generalized version of Oja’s DCT net was studied in [2] by explicitly solving the
system of differential equations. The global behavior of a several-neuron Oja’s
DCT net was determined in [3] by explicitly solving the equations of the model,
whereas [4] addressed a qualitative analysis of the generalized forms of this DCT
network.

All these studies of DCT formulations are grounded on restrictive hypotheses so
that the fundamental theorem of stochastic approximation can be applied. However,
when some of these hypotheses cannot be satisfied, how to study the convergence
of the original stochastic discrete formulation? In order to analyze the convergence
of neural network-based PCA or MCA learning algorithms, several methods have
been proposed, i.e., DCT, SDT, and DDT methods. The DCT method, first for-
malized by [5, 6], is based on a fundamental theorem of stochastic approximation
theory. Thus, it is an approximation analysis method. The SDT method is a direct
analysis method and it can analyze the temporal behavior of algorithm and derive
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the relation between the dynamic stability and learning rate [7]. The DDT method,
as a bridge between DCT and SDT methods, transforming the original SDT system
into a corresponding DDT system, and preserving the discrete-time nature of the
original SDT systems, can shed some light on the convergence characteristics of
SDT systems [8]. Recently, the convergence of many PCA or MCA algorithms has
been widely studied via the DDT method [8—13].

The objective of this chapter is to study the DDT method, analyze the conver-
gence of PCA or MCA algorithms via DDT method to obtain some sufficient
conditions to guarantee the convergence, and analyze the stability of these algo-
rithms. The remainder of this chapter is organized as follows. A review of per-
formance analysis methods for neural network-based PCA/MCA algorithms is
presented in Sect. 6.2. The main content, a DDT system of a novel MCA algorithm
is introduced in Sect. 6.3. Furthermore, a DDT system of a unified PCA and MCA
algorithm is introduced in Sect. 6.4, followed by the summary in Sect. 6.5.

6.2 Review of Performance Analysis Methods for Neural
Network-Based PCA Algorithms

6.2.1 Deterministic Continuous-Time System Method

According to the stochastic approximation theory (see [5, 6]), if certain conditions
are satisfied, its corresponding DCT systems can represent the SDT system effec-
tively (i.e., their asymptotic paths are close with a large probability) and eventually
the PCA/MCA solution tends with probability 1 to the uniformly asymptotically
stable solution of the ODE. From a computational point of view, the most important
conditions are the following:

. X (1) is zero-mean stationary and bounded with probability 1.
. o () is a decreasing sequence of positive scalars.

. Za(t) = oo.

. %P (t) < oo for some p.

. lim,_,o sup [ﬁ — ﬁ} <o0.

Whn B~ W=

For example, the sequence o (z) = const - ¢ ’ satisfies Conditions 2-5 for
0 <y < 1. The fourth condition is less restrictive than the Robbins—Monro con-
dition X,0%(¢) < 0o, which is satisfied, for example, only by o () = const - £’ with
12<y < 1.

For example, MCA EXIN algorithm can be written as follows:

w(it+1) =w(r)

)| ()3’

1)y (1) lx 5 y(z)w(z)]
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and its corresponding deterministic continuous-time (DCT) systems is

1

w3

w(t) =

dw(1) 1 lR ~wI(ORw(1) R — r(w, R)w(7).

i w)? w()[15

(6.2)

For the convergence proof using deterministic continuous-time system method,
refer to the proof of Theorem 16 in [7] for details.

6.2.2 Stochastic Discrete-Time System Method

Using only the ODE approximation does not reveal some of the most important
features of these algorithms [7]. For instance, it can be shown that the constancy of
the weight modulus for OJAn, Luo, and MCA EXIN, which is the consequence of
the use of the ODE, is not valid, except, as a very first approximation, in
approaching the minor component [7]. The stochastic discrete-time system method
has led to the very important problem of the sudden divergence [7]. In the fol-
lowing, we will analyze the performance of Luo MCA algorithm using the
stochastic discrete-time system method.
In [14, 15], Luo proposed a MCA algorithm, which is

2 y2(1)
w(t+1) =w(t) —at)|w)l; [y(t)x(t) O W(f)]~ (6.3)
wil)ll2

Since (6.3) is the gradient flow of the RQ and using the property of orthogonality
of RQ, it holds that

wT<r>{y<r>x<r> - 20 2w<r>} -0, (64)
Wl

i.e., the weight increment at each iteration is orthogonal to the weight direction.
The squared modulus of the weight vector at instant ¢ + 1 is then given by

062
wio+ DI3= @I+ S S s 200, (69

where ¥,,, is the angle between the direction of x(f) and w(¢). From (6.5), we can see
that (1) Except for particular conditions, the weight modulus always increases,

|w(z+1)||5 > [[w(z)||3. These particular conditions, i.e., all data in exact particular
directions, are too rare to be found in a noisy environment. (2) sin® 20y, is a
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positive function with peaks within the interval (—=, z]. This is one of the possible
interpretations of the oscillatory behavior of weight modulus.

The remaining part of this section is the convergence analysis of Dougla’s MCA
algorithm via the SDT Method. The purpose of this section is to analyze the
temporal behavior of Dougla’s MCA algorithm and the relation between the
dynamic stability and learning rate, by using mainly the SDT system following the
approach in [7].

Indeed, using only the ODE approximation does not reveal some of the most
important features of MCA algorithms, and the ODE is only the very first
approximation, in approaching the minor component. After the MC direction has
been approached, how is the rule of the weight modulus?

From Dougla’s MCA, it holds that

(e + D)7 =w"(r+ Dw(e+1) = {w(e) — a@)[|w()[*y(0)x() — WO - w(e) — a@) [ 'y(0)x(1) — (e w()]}
MP=200)(Iw @I (1) = 2@ Iw @) + 2@ (w15 O @ =2 w0y () + 5* @ Iw (1))

= [Iw(@)|> +20()y* ) Iw (O P (1 = [w(D)]*) + O (1))

=[w@)| + 20y Olw@I* (1 = w@]).

(
= w(s
(¢
(6.6)

Hence, if the learning factor is small enough and the input vector is bounded, we
can make such analysis as follows by neglecting the second-order terms of the o(¢).

v ) >1 for ||w(0)\|2<1
PAEELL <1 20200 - w0 =4 <1 for wi0)P<1. (67)
[w(@)l =1 for |w(0)*=1

This means that ||w(z+ 1)) tends to one whether ||w(z)||* is equal to one or not,

which is called the one-tending property (OTP), i.e., the weight modulus remains
constant <||w(t)|\2—> 1).

To use the stochastic discrete laws is a direct analytical method. In fact, the study
of the stochastic discrete learning laws of the Douglas’s algorithm is an analysis of

their dynamics.
Define

St xf o wtox(of

o+ D) Iw (0)]*

P =" 21 p= W@, 1=y

b

The two scalars ' and r represent, respectively, the squared perpendicular dis-
tance between the input x(7) and the data-fitting hyperplane whose normal is given
by the weight and passes through the origin, after and before the weight increment.
Recalling the definition of MC, we should have ' < r. If this inequality is not valid,
this means that the learning law increases the estimation error due to the
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disturbances caused by noisy data. When this disturbance is too large, it will make
w(?) deviate drastically from the normal learning, which may result in divergence or
fluctuations (implying an increased learning time).

Theorem 6.1

2
If o > A ple)](p — 2cos? Ony) > 0,

plx(z) ||2(P —2c08? Orw)

then ¥ > r, which implies divergence.

Proof From Eq. (6.2), we have
(1) = af|lw (@) |[*y(0) e (1) [P = (1)]
=y (1= aw@)*x0)]>=¥* (1)) (6.8)

(e + D)7 =w e+ Dw(e+1) = w(@)|*=20() (Iw @)y (1) = 3> @) [[w(D)*)
|

+a2 (1) (w15 Ol @O 1P=2lw @) *y* (1) + y* O lw @) |P).
(6.9)

wl(t+ 1x(r)

Therefore,

r e Dx)? @I (1= a0 @1 (0= (0)?

pla) =—= =
r w(e+DIP () 1= 2a(@)y>@O(w@)|*~1) + 2E
B (1 - og)’
1 —2ou(p — 1) +o2E’
(6.10)
meq:QMmﬁﬁ—@aMEz(@mmmtm%+ﬁ)
Then, p(a) > 1 (dynamic instability) if and only if
afmf>1fmmp4mﬂﬂwmmmtm%+ﬁ) (6.11)
Notice that u/p = ||x(¢)]|*cos? 0z,
From (6.11), it holds that
o [ (1) |*sin® Oy — 27| (1) |*c0S? Oy sin® O] 612,

> 20} ()]|*p? sin? Ogy.

The dynamic instability condition is then
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2
o> 3
x| (p — 2 cos? Oxw)

Pl (p — 2cos? Ouy) > 0. (6.13)

The second condition implies the absence of the negative instability. It can be
rewritten as

082 Oy < g (6.14)
In reality, the second condition is included in the first one. Considering the case
0<op <y<1, it holds that

1
c08% Oy < LA — Y, (6.15)

— 2
2 ypllx@)|l

which is more restrictive than (6.14). Figure 6.1 shows this condition, where

g = arccos v Y. From (6.15), we can see that the decrease of y and p increases the
domain of ¢ and then increases the stability. From Fig. 6.1, it is apparent that in the
transient (in general low fxy), there are less fluctuations and this is beneficial to the
stability.

This completes the proof.

6.2.3 Lyapunov Function Approach

Lyapunov function approach has also been applied in the convergence and stability
analysis. For details, see references [7, 16, 17].
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6.2.4 Deterministic Discrete-Time System Method

Traditionally, the convergence of neural network learning algorithms is analyzed
via DCT systems based on a stochastic approximation theorem. However, there
exist some restrictive conditions when using stochastic approximation theorem.
One crucial condition is that the learning rate in the learning algorithm must con-
verge to zero, which is not suitable in most practical applications because of the
roundoff limitation and tracking requirements [8, 13]. In order to overcome the
shortcomings of the DCT method, Zurifia proposed DDT method [8]. Different
from the DCT method, the DDT method allows the learning rate to be a constant
and can be used to indirectly analyze the dynamic behaviors of stochastic learning
algorithms. Since the DDT method is more reasonable for studying the convergence
of neural network algorithms than the traditional DCT method, it has been widely
used to study many neural network algorithms [8, 10-13, 18-20].

6.3 DDT System of a Novel MCA Algorithm

In this section, we will analyze the convergence and stability of a class of
self-stabilizing MCA algorithms via a DDT method. Some sufficient conditions are
obtained to guarantee the convergence of these learning algorithms. Simulations are
carried out to further illustrate the theoretical results achieved. It can be concluded
that these self-stabilizing algorithms can efficiently extract the MCA, and they
outperform some existing MCA methods.

In Sect. 6.3.1, a class of self-stabilizing learning algorithms is presented. In
Sect. 6.3.2, the convergence and stability analysis of these algorithms via DDT
method are given. In Sect. 6.3.3, computer simulation results on minor component
extraction and some conclusions are presented.

6.3.1 Self-stabilizing MCA Extraction Algorithms

Consider a single linear neuron with the following input—output relation: y(k) =
WT(k)X(k),k =0,1,2,---, where y(k) is the neuron output, the input sequence
{X(k)|X(k) € R"(k=10,1,2,---)} is a zero-mean stationary stochastic process,
and W(k) € R"(k=0,1,2,---) is the weight vector of the neuron. The target of
MCA is to extract the minor component from the input data by updating the weight
vector W(k) adaptively. Here, based on the OJA + algorithm [21], we add a penalty
term (1 — ||[W(7)||>"*)RW to OJA + and present a class of MCA algorithms as
follows:
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W =—|W|*"RW +(WRW +1—- W'W)W, (6.16)

where R = E[X(k)X" (k)] is the correlation matrix of the input data and the integer
0<a<2. The parameter o can be real-valued. However, for the simplicity of
theoretical analysis and practical computations, it would be convenient to choose «
as an integer. Considering the needs in the proofs of latter theorems, the upper limit
of « is 2. It is worth noting that Algorithm (6.16) coincides with the Chen rule for
minor component analysis [22] in the case o = 0. When o > 0, these algorithms are
very similar to the Chen algorithm and can be considered as modifications of the
Chen algorithm. Therefore, for simplicity, we refer to all of them as Chen
algorithms.
The stochastic discrete-time system of (6.16) can be written as follows:

Wik 1) = W) — IR ERX®E) — 020 + 1 [WERWE),
(6.17)

where (0 <n<1) is the learning rate. From (6.17), it follows that

IWk+DIP=IWR)IP= =20 W R [0 (W O =) + (IWE)IP-1) | +06r?)

== 2| WE)P(IWER)| — DG ). IWH),
(6.18)
where Oy (k), [W(k)[|) = Y () (W &) [I"~ + [[W ()| +, - [W(E)|| +1) +
(/W k)|l + 1) is a positive efficient. For a relatively small constant learning rate, the

second-order term is very small and can be omitted. Thus, from (6.18), we can
claim that Algorithm (6.17) has self-stabilizing property [23].

6.3.2 Convergence Analysis via DDT System

From y(k) = X" (k)W(k) = WT(k)X(k), by taking the conditional expectation
E{W(k+1)/W(0),X(i),i<k} to (6.17) and identifying the conditional expecta-
tion as the next iterate, a DDT system can be obtained as
W(k+1) = W(k)
— 1 [WHRIP T RW (k) — (W ORW () + 1 — [W(K)|” ) W(K)]
(6.19)
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where R = E[X(k)XT (k)] is the correlation matrix of the input data. Here, we
analyze the dynamics of (6.19) subject to n being some smaller constant to interpret
the convergence of Algorithm (6.17) indirectly.

For the convenience of analysis, we next give some preliminaries. Since R is a
symmetric positive definite matrix, there exists an orthonormal basis of " composed
of the eigenvectors of R. Obviously, the eigenvalues of the autocorrelation matrix
R are nonnegative. Assume that 41, 4,, - - -, 4, are all eigenvalues of R ordered by
M=l > o > A1 > Jy > 0. Suppose that {V;|i = 1,2,---,n} is an orthogonal
basis of R" such that each V; is unit eigenvector of R associated with the eigenvalue
A;. Thus, for each k > 0, the weight vector W(k) can be represented as

W) =3 @)V, (6.20)
i=1

where z;(k)(i = 1,2, ...,n) are some constants. From (6.19) and (6.20), it holds that

alk+ 1) = [1=nz W) 0 (W ORW@E) +1 — [W(0)]1) (k)
(6.21)

(i=1,2,...,n), forall k > 0.
According to the properties of Rayleigh Quotient [7], it clearly holds that

LW OW(K) < W ORW (k) < 2 W (k)W (K), (6.22)

for all W(k) #0, and k > 0.
Next, we perform the convergence analysis of DDT system (6.19) via the fol-
lowing Theorems 6.2—6.6.

Theorem 6.2 Suppose that 5l <0.125 and 1n<0.25. If WT(0)V, #0 and
IW(0)|| <1, then it holds that |W(k)|| < (1 +niy), for all k> 0.

Proof From (6.19) and (6.20), it follows that
Wk+1)|* =Yz k+1)
i=1

- Z (1 — i WE)|> T +n(WT (K)RW (k) + 1 — |[W(k)|*)2} (k)

n

< (L= n(BIW@IP = W EIP + W E-1)] 7> )

i=1

< (L= n(BIW@IP = W@ + W E-1) | Iwe
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Thus, we have
W+ 1) < [L+n(alWEP +1 = [[WEP) - W E)] (6.23)
Define a differential function

f&)=[14+nlis+1— s)]zs, (6.24)

over the interval [0,1]. It follows from (6.9) that

F(s) = (L+n—ns(1 = 24))(L+n—3ps(1 = A1),

for all 0<s< 1. Clearly,

f) =04 s=0+m)/Gn(1=4)) or s=1+n)/n(l—A) .
Denote
0= (1+n)/(3n(1 - ).
Then,
>0, if O0<s<0

f$){ =0, if s=0 (6.25)
<0, if s>0.

By 11 <0.125 and #<0.25, clearly,

0=(1+n)/Gn(l—=4))=1/n+1)/B1 = 4)) > 1. (6.26)

From (6.25) and (6.26), it holds that

f(s) >0,

for all 0<s< 1. This means that f(s) is monotonically increasing over the interval
[0,1]. Then, we have

F(s) <FA)<(1+ni),

for all 0<s<1.
Thus, ||W(k)|| < (14 n4;), for all k> 0.
This completes the proof.

Theorem 6.3 Suppose that nl, <0.125 and n<0.25. If WI(0)V,#0 and
IWO)||<1, then it holds that |W(k)|>c for all k>0, where

¢ = min{[1 — gy ]|[W(O)|,[1 — nis (1 +nay)* +n(1 — (1+ni1))]}.
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Proof From Theorem 6.2, we have ||W(k)||<(1+ni;) for all k& > 0 under the
conditions of Theorem 6.3. Next, two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.19) and (6.20), it follows that

IW(k+1))* = Z [1 =02 WP+ (W (RRW (k) + 1 — W (K)||*}Z} (k)

> (1= n(2 IR =2 WEF ) +n (1~ [WOIF)] iz%u«)
> (LW P2 W @) | 1w )

> [1L=na W@l Iwe)?
> 1= i PR P

Case 2: 1<||W(k)||<(1+4ni).
From (6.19) and (6.20), it follows that

WG+ 1P = [1 = n (WP =2 W) 0 (1 = WG 12) |73 200

i=1

2

|

> [1 = na W@ (1~ 1w )| 1w
(12w 2+ 4 (1 - (W) ]

[ "

> 1= na(L+nk)" + ( — (I+nd) )
Using the analysis of Cases 1 and 2, clearly,
W@l > ¢ = min{ [1 = i)W, [1 = nia(1+n20) +n(1 = (1+02)°) |},

for all k> 0. From the conditions of Theorem 6.2, clearly, ¢ > 0.
This completes the proof.
At this point, the boundness of DDT system (6.19) has been proven. Next, we

will prove that under some mild conditions, lim W(k) = £V, where V, is the
k— + o0

minor component. In order to analyze the convergence of DDT (6.19), we need to
prove the following lemma first.

Lemma 6.1 Suppose that ni;<0.125 and 1<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that
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L= AW 0 (WERRW() + 1 = W) > 0.

Proof By Theorem 6.2, under the conditions of Lemma 6.1, it holds that
|W(k)||<14mni, for all k>0. Next two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.21) and (6.22), for each i(1 <i<n), we have

L=z WP+ (W ORW(K) + 1~ [WH)P)
> 1= WO+ 2| WK
> 1=k W)+

>1-— 7]}1

>0,

for k > 0.
Case 2: 1 <||W(k)|| <14 ni.
From (6.21) and (6.22), for each i(1 <i<n), we have

L=z WO+ n (W ORW(R) + 1~ W)
>1- 17/11||W(k)|\2+“+17),n||W(k)||2—n<217/11 +n2/112)
> 1 — i ||[W(k)[>T*—0.25 « (2;7/11 + Wf)

> 1 —ph||Wk)|* = (o.s s n)p +0.25 % (;7;4)2)

> 11—k ((1 Fna0)t +0.5+0.25 % nxl)

> 0.

This completes the proof.

Lemma 6.1 means that the projection of the weight vector W(k) on eigenvector
Vi(i=1,2,...,n), which is denoted as z;(k) = W' (k)V;(i = 1,2,...,n), does not
change its sign in (6.21). From (6.20), we have z(t) = W'(f)V,. Since
WT(0)V, #0, we have z,(0) # 0. It follows from (6.6) and Lemma 6.1 that
z,(k) > 0 for all k > 0 if z,,(0) > 0; and z,(k) < O for all k > 0 if z,,(0) < 0. Without
loss of generality, we assume that z,,(0) > 0. Thus, z,(k) > 0 for all £ > 0.

From (6.20), for each & > 0, W(k) can be represented as

n—1

W(k) = z(k)Vi+za(k)V,. (6.27)

i=1
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Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i=1,2,...,n). Theorems 6.4 and 6.5 below provide the convergence of
zik) (i = 1,2,...,n).

Theorem 6.4 Suppose that 5, <0.125 and 1n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then klim zi(k)=0,(i=12,..,n—1).

Proof By Lemma 6.1, clearly,
L= WP+ n (W ORW () +1 = [WR)IP) >0, (i=1,2,....n)
(6.28)

for all k>0. Using Theorems 6.2 and 6.3, it holds that |W(k)|| > ¢ and
IW(k)|| < (14 nAy) for all k> 0. Thus, it follows that for all X >0

[1 — AWK+ (W RORW (k) + 1 ||w<k>|2)r
L= WP+ (WERORW () + 1~ [WK)[1?)

(% — 2) |WE) [P

2
Wl
[ L= WP +n (W ORW (k) + 1 - ||w<k>||2)}

N4 = ) W (R

2
< [1 n 240 2 2 }
L i WO (2 W) + 1 — W) )
2
— |:1 _ ’7(/11‘ - ;Ln) :|
W) =i+ (WO 1/ [ WG W) )
"I()vnfl - j-n) 2 . _
< {1 - 1/cC+0 — i+ qlige+1/c2+2 — (1+nil)ﬁd ,(i=1,2,..,n—1)
(6.29)

Denote

9: 1— 7](/1"*17/1”) ’
1/cR+2) —niy+nliac+1/c2+9 — (14 niy) "]

Clearly, 0 is a constant and 0<0<1. By WT(0)V, # 0, clearly, z,(0) # 0.
Then, z,(k) # 0(k > 0).
From (6.21), (6.28), and (6.29), it holds that
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2
[zi(k+1)r_ 1= 2| WHE) 2 + n(WT W) +1— W) [z,.(k)r
alk+ DL (1=l WP+ (W RW® + 1 - (Weo)?) | L (b
4k _ e {ZI(O)T
<0 - < _
<0 |:Zn(k):| <0 2(0) i=12,...,n—1),
(6.30)
for all £>0.
Thus, from 0<0<1(i=1,2,...,n— 1), we have
Zi(k) .
=0,i=1,2,...,n—1).
dm @) J(i=1,2,..,n—1)

By Theorems 6.2 and 6.3, z,(k) must be bounded. Then,

lim z,(k) =0,(i=1,2,....n — 1).

This completes the proof.

Theorem 6.5 Suppose that ni;<0.125 and n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that klim z(k) = £1.

Proof Using Theorem 6.4, clearly, W(k) will converge to the direction of the minor
component V,, as k — oo. Suppose at time ky, W(k) has converged to the direction
of V,, i.e., W(ko) = zu(ko) - V.

From (6.21), it holds that

2k 1) = () (1 = 12022 2K + (i (0) + 1 = 2(0)) )
zu(k) 1+;1[/ann (k)(1 —z< )(k)) +1-— zﬁ(k)])

(
()

20l) (1401 = 2 ) (20 &V E) +27 () + - + 1)+ (1 +2,(K))
()
(

1411 = 2,00 (G ( V0) 482 () + -+ +2(0) + (14 2,(8))
Zn k)(l + ’7(1 - Zn(k))Q()vm Zn(k)))7

= Zn k

(6.31)

where  Q(n,za(k) = (@ (k) + 27 (k) + - +22(0) + (1 +2,(k))) is a
positive efficient, for all k£ > k.
From (6.31), it holds that

Zu(k+1) = 1 = z,(k) (1 + (1 = 2,(k))Q(4n, 20(K))) — 1

= [1 — 1z, (k) Q(4n, 20 (k)] (zn (k) — 1), (6.32)

for k > ko.
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Since z, (k) <||[W(K)|| < (1+n4y), we have

1- ﬂzn(k)Q(;Ln:Zn(k))
= 1= 0z (k) (2D (k) + 20 (k) + -+ +Z3(k))+(1+zn(k)))

> 1= (1 +120) (L4020 4+ (L4020 + -+ (U020 + (1 + (1L +n44)))
> 1= (1+ ) (2 (L4020 + (14020 + -+ (020 +0(1+ (1+n4)))
> 1— (L+n2) (A (L +n2)° + (l+nhf)+n0+%1+nMD)

> 1-—0.9980

>0,

(6.33)
for all k > ko. Thus, denote 6 = 1 — 5z,(k)Q(4y,z,(k)), Clearly, it holds that
0<o<l.

It follows from (6.32) and (6.33) that
|zn(k +1) — 1] < 6za(k) — 1],
for all k > kgy. Then, for k > kg,
|zu(k+1) = 1] < 1z,(0) — 1] < (k+ 1)TTe 0k + 1),

where 6 = —Ino, IT = |(1+754y) — 1].
Given any & > 0, there exists a K > 1 such that

HzKGioK c
(1—e0)? ™"

For any k; > k, > k, it follows from (6.21) that

k-1
|zn (k1) — za(ka)| = Z [za(r+1) = za(r Z 020 (F) (1 = 2(r)) Q(An; 2 (7))
r=ky r=ky

< Z\nzn (I_Zn )) inzzn |< ZMZII Anvl—"_r,)“l)(Zn(r)_l)‘

r=k, =
k-1 k-t

<L+ 120) Q0 L+ 1) Y [(ea(r) = D[ <TL Y re ™
r=k; r=ky
+ o0 oo ok

ILK
o1t S ke S ety < R
r=k —0 — e

<e.
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where T, = n(1+441)O(4n, 1 +141)(z,(0) — 1). This means that the sequence
{za(k)} is a Cauchy sequence. By the Cauchy convergence principle, there must
exist a constant z such that lim z,(k) = z*.

From (6.27), we have ) lim W(k) =z - V,. Since (6.17) has self-stabilizing
— + 00
property, it follows that lim W(k+1)/W(k) =1. From (6.21), we have
L=1—y[a(z)* " = (u(zs)’ +1 = (z)*)], which means z; = £1.
This completes the proof.

Using (6.27), along with Theorems 6.4 and 6.5, we can draw the following
conclusion:

Theorem 6.6 Suppose that ni; <0.125 and 1n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that klim W(k) = +V,.

At this point, we have completed the proof of the convergence of DDT system
(6.19). Next we will further study the stability of (6.19).

Theorem 6.7 Suppose that ni; <0.125 and 1 <0.25. Then the equilibrium points
V,, and =V, are locally asymptotical stable and other equilibrium points (6.19) are
unstable.

Proof Clearly, the set of all equilibrium points of (6.21) is
{Vi,,V,Ju{=Vy,--- =V, }u{0}.
Denote
GW)=W(k+1)
= W) = n[[WR)IP*RW(K) — (W RRW®K) + 1 [ W))W (K)|.
(6.34)

Then, we have

g—va =1+ n[(WT()RW(k) + 1 — [|[W()|D)I — |[W(k)||* " "R+ 2RW (k)W (k)
—2W(R)W' (k) — (2 + o) [[W (&) [|"RW (k)W k)],
(6.35)

where I is a unity matrix.
For the equilibrium point 0, it holds that

0G
T4l = .
ow|, =T =Jo

The eigenvalues of J, are ocg) =14n>1 (i=1,2,---,n). Thus, the

equilibrium point is unstable.
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For the equilibrium points +£V;(j = 1,2,-- -, n), it follows from (6.35) that

G

= =1 |/ =R =2V;V] — a3 ViVT| = ;. (6.36)

v

After some simple manipulations, the eigenvalues of .J; are given by

o) =1y —2) if i#)
o) =1 —p(2+oy) if i=j
For any j # n, it holds that oc;") = 14+n(4 — 4) > 1. Clearly, the equilibrium
points +V;(j #n) are unstable. For the equilibrium points =£V,, from
Ni, <ni; <0.125, and 1 <0.25, it holds that

a,@ =140l — )<l if i#n. (637)
(xﬁl’) =1-n2+ak,) <1l if i=n

Thus, £V, are asymptotical stable.

This completes the proof.

From (6.37), we can easily see that the only fixed points where the MCA
condition is fulfilled are the attractors, and all others are repellers or saddle points.
We conclude that the Algorithm (6.17) converges toward the minor eigenvector
+V, associated with the minor eigenvalue 1,,.

6.3.3 Computer Simulations

In this section, we provide simulation results to illustrate the convergence and
stability of the MCA Algorithm (6.17) in a stochastic case. Since OJAm [17],
Moller [23], and Peng [11] are self-stabilizing algorithms and have better conver-
gence performance than some existing MCA algorithms, we compare performance
of Algorithm (6.17) with these algorithms. In order to measure the convergence
speed and accuracy of these algorithms, we compute the norm of W(k) and the
direction cosine at the kth update. In the simulation, the input data sequence, which
is generated by [17], X(k) = C h(k), where C = randn(5, 5)/5 and h(k)eR>!, is
Gaussian and randomly generated with zero-mean and unitary standard deviation.
The above-mentioned four MCA algorithms are used to extract minor component
from the input data sequence {x(k)}. The following learning curves show the
convergence of W(k) and direction cosine(k) with the same initial norm for the
weight vector and constant learning rate, respectively. All the learning curves below
are obtained by averaging over 30 independent experiments. Figures 6.2 and 6.3
investigate the case ||W(0)|| = 1, and Figs. 6.4 and 6.5 show the simulation results
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for higher-dimensional data (D = 12), using different learning rates and maximal
eigenvalues, which satisfy the conditions of Theorem 6.6.

From Fig. 6.3, we can see that for all these MCA algorithms, direction cosine
(k) converge to 1 at approximately the same speeds. However, from Fig. 6.2 we can
see that the Moller and OJAm algorithms have approximately the same conver-
gence for the weight vector length and there appear to be a residual deviation from
unity for the weight vector length, and the norm of the weight vector in Peng
algorithm has larger oscillations, and the norm of the weight vector in Algorithm
(6.17) has a faster convergence, a better numerical stability and higher precision
than other algorithms. From Figs. 6.4 and 6.5, it is obvious that even for
higher-dimensional data, only if the conditions of Theorems 6.2—6.6 are satisfied,
Algorithm (6.17) can satisfactorily extract the minor component of the input data
stream.

In this section, dynamics of a class of algorithms are analyzed by the DDT
method. It has been proved that if some mild conditions about the learning rate and
the initial weight vector are satisfied, these algorithms will converge to the minor
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Norm and Direction Cosine of W(k)
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component with unit norm. At the same time, stability analysis shows that the minor
component is the asymptotical stable equilibrium point in these algorithms.
Simulation results show that this class of self-stabilizing MCA algorithms outper-
forms some existing MCA algorithms.

6.4 DDT System of a Unified PCA and MCA Algorithm

In Sect. 6.3, the convergence of a MCA algorithm proposed by us is analyzed via
DDT in details. However, in the above analysis, we made one assumption, i.e., the
smallest eigenvalue of the correlation matrix of the input data is single. In this
section, we will remove this assumption in the convergence analysis and analyze a
unified PCA and MCA algorithm via the DDT method.
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6.4.1 Introduction

Despite the large number of unified PCA and MCA algorithms proposed to date,
there are few works that analyze these algorithms via the DDT method and derive
the conditions to guarantee the convergence. Obviously, this is necessary from the
point view of application. Among the unified PCA and MCA algorithms, Chen’s
algorithm [22] is regarded as a pioneering work. Other self-normalizing dual sys-
tems [24] or dual-purpose algorithms [19, 20] can be viewed as the generalizations
of Chen’s algorithm [22]. Chen’s algorithm lays sound theoretical foundations for
dual-purpose algorithms. However, no work has been done so far on the study of
Chen’s DDT system. In this section, the unified PCA and MCA algorithm proposed
by Chen et al. [22] will be analyzed and some sufficient conditions to guarantee its
convergence will be derived by the DDT method. These theoretical results will lay a
solid foundation for the applications of this algorithm.

6.4.2 A Unified Self-stabilizing Algorithm for PCA
and MCA

Chen et al. proposed a unified stabilizing learning algorithm for principal compo-
nents and minor components extraction [22], and the stochastic discrete form of the
algorithm can be written as

W(k+1) = W(k) =+ |||W(K)|*y(k)X (k) —yz(k)W(k)} +n(1— W))W (k),
(6.38)

where n (0<n<1) is the learning rate. Algorithm (6.38) can extract principal
component if “+” is used. If the sign is simply altered, (6.38) can also serve as a
minor component extractor. It is interesting that the only difference between the
PCA algorithm and the MCA algorithm is the sign on the right hand of (6.38).

In order to derive some sufficient conditions to guarantee the convergence of
Algorithm (6.38), next we analyze the dynamics of (6.38) via the DDT approach.
The DDT system associated with (6.38) can be formulated as follows. Taking the
conditional expectation E{W(k+1)/W(0),X(i),i<k} to (6.38) and identifying
the conditional expectation as the next iterate, a DDT system can be obtained and
given as

W(k-+1) = W(k) £ || W(K) |"RW (k) — W' (ORW(K)W(K)]

(6.39)
+n(1— [W(R)|*)W(k),
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where R = E[X(k)X"(k)] is the correlation matrix of the input data. The main
purpose of this section is to study the convergence of the weight vector W(k) of
(6.39) subject to the learning rate n being some constant.

6.4.3 Convergence Analysis

Since R is a symmetric positive definite matrix, there exists an orthonormal basis of
R" composed of the eigenvectors of R. Let 4, 42, - - -, 4, to be all the eigenvalues of
R ordered by 4, > 7, > -+ > 1,_1 > 4, > 0. Denote by o, the largest eigenvalue of
R. Suppose that the multiplicity of ¢ is m(1 <m<n). Then, 6 = 11 = -+ = .
Suppose that {V;|i = 1,2, ---,n} is an orthogonal basis of " such that each V; is a
unitary eigenvector of R associated with the eigenvalue /;. Denote by V,
the eigen-subspace of the largest eigenvalue o, i.e., V, =span{Vy,---,V,}.
Denote by V? the subspace which is perpendicular to V,. Clearly, VgL =
span{V,,1,---,V,}. Similarly, we can denote by V, the eigen-subspace of the
smallest eigenvalue . Suppose that the multiplicity of 7 is p(1 <p <n — m). Then,
V. =span{V,_p,---,V,} and Vi =span{Vy, -, V,_, 1 }.

Since the vector set {V,V3,---,V,} is an orthonormal basis of R”, for each
k>0, W(k) and RW (k) can be represented, respectively, as

Wk) =Y "zu(k)Vi, RW(k) = lz(k)V;, (6.40)
i=1 =1
where z;(k)(i = 1,2,...,n) are some constants.

From (6.39) and (6.40), it holds that
a(k+1) = [L+£ (| WE)|[? =W (K)RW (k) +n(1 = [|[W(E)|))]z(k), (6.41)
(i=1,2,...,n), forall k > 0.

By letting Q(R, W(k)) = [4{|W(k)|P— W (K RW (k).
(6.41) can be represented as

zi(k+1) = [L+nQ(R, W(k)) +n(1 — [W(K)[*)]z(k), (6.42)

(i=1,2,...,n), for all k > 0. According to the properties of the Rayleigh
Quotient [7], it clearly holds that

LW OW(K) < W ORW (k) < 2 W (k)W (K), (6.43)

for all & > 0. From (6.43), it holds that
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Onax = (1 = 2)IWR)I, Quin = (Zu — 20) [W(K)|. (6.44)

Next, we will analyze the convergence of DDT system (6.39) via the following
Theorems 6.8-6.11.

Theorem 6.8 Suppose that 1 <0.3. If [W(0)|| <1 and (A1 — Ay) <1, then it holds
that ||W(k)|| < (1+niy), for all k> 0.

Proof From (6.40)—(6.44), it follows that

Wl DI = 302+ 1) = 37 [1-+ n0(R W) +1(1 — WGP (0
i=1 i=1
<3 [1 1G4 01— WG] 20

< [+t = 2R (1= W)

< (L4020 = 22) [WER+n(1 = [WER) )P WK

Thus, it holds that [|[W(k + 1)[|* < [1 4 n(A — AW E)||* +n(1 — |[W(&)|P)]?
W (k)|

Define a differential function f(s) = [1+n7(A — 4, — 1)s+1n]%s, over the
interval [0, 1], where s = |[|[W(k)||* and f(s) = ||W(k+ 1)||*. It follows that

F)=04+n—ns(hn+1—=2))1+n—=3ns(2n+1— 1)), (6.45)
for all 0 <s< 1. Clearly,

. . 1479 147
5) =0, s=———~"—— or §S=——————.
Q) if (A +1—41) N +1—=14)

Denote 0 = (1 +1#)/(34(4, + 1 — 41)). Then, we have
. >0, if 0<s<0
fs)d =0, ifs=0 (6.46)
<0, if s>0.
By 1 <0.3, clearly,
0=(1+n)/Bn(dn+1—=4))=0+1/m)/Bl = (L —4)) >1.  (647)

From (6.46) and (6.47), it holds that f (s) > 0 for all 0<s< 1. This means that
f(s) is monotonically increasing over the interval [0,1]. Then, for all 0<s<1, it
follows that
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F) <) = 140 = 2P <(L4+nk)>

Thus, we have [|[W (k)| <(1+#n4,) for all k> 0.

This completes the proof.

Theorem 6.8 shows that there exists an upper bound for |W (k)| in the DDT
system (6.39), for all k> 0.

Theorem 6.9 Suppose that 1 <0.3. If |W(0)|| < 1, then it holds that |W (k)| > ¢
for all k>0, where ¢ = min{[l —a]IW )], [1 = nir (1 +ni)* — n(2ni +
A7)}

Proof From Theorem 6.8, we have |W(k)|| < (1 +n4,) for all k& > 0 under the
conditions of Theorem 6.9. Next, two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.40)—(6.44), it follows that

Wk DI 2 3 (1400w +01 — WG] Z 6

i=1

> [t = IW IR + (1= W) S 2w

> [l — ) W] WP > [1 = I W@®I] 1w @)
> [P IWE)

Case 2: 1 <||W(k)|| < (1+nk).
From (6.40)—(6.44), it follows that

WG+ DIP> S (14 1Qmia + (1 — [WRPPE®E)
i=1

= (L0 = 2)[WHEP +n(1 ~ IW(k)Ilz)]zzn;Z?(k)
> [ n WP+ (200 - 2)] IWG0
> [1 — i (1+n4)>=n(2nk +172/”ﬁ)r~
From the above analysis, clearly,
IW (&) > ¢ = min{[L = n2)[WO)[l, [L = n21 (1 +021)* = n(2nZs +0*2)]},

for all £ > 0. From the conditions of Theorem 6.2, clearly, it holds that ¢ > 0.
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This completes the proof.

At this point, the boundness of DDT system (6.39) has been proved. Next, we
will prove that under some mild conditions, ] lim W(k) =>",2zV; € Vfor PCA

— + 00
and lim W(k)=>1, % Vi€V, for MCA.
— + 00

In order to analyze the convergence of DDT (6.39), we need to prove some
preliminary results.

From (6.40), for each £k > 0, W(k) can be represented as

W(k) = f:z,-(k)v,-—k z": Zj(k)Vj for PCA

j=m+1
n—p n
Wk)= > z(k)Vi+ > <z(k)V; for MCA.
i=1 j=n-p+1

Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i =1,2,...,n). The following Lemmas 6.2-6.4 provide the convergence of
zi(k) (i=1,2,...,n) for PCA, and Lemmas 6.5-6.7 provide the convergence of
zi(k) (i = 1,2,...,n) for MCA.

In the following Lemmas 6.2-6.4, we will prove that all zj(k) (i = 2,3,...,n) will
converge to zero under some mild conditions.

Lemma 6.2 Suppose that 7 <0.3. If W(0) ¢ VX and |W(0)| <1, then for PCA
algorithm of (6.39) there exist constants 6; >0 and II; >0 such that
Z?:m+ | z]?(k) <TIL e 0% for all k>0, where 0, =—-Inf>0 and

B=[-n(c—Iini1)/(1/E+n(c—1)+n(1/c* - 1))]2. Clearly, f is a constant
and 0<f<1.

Proof Since W(0) ¢ V-, there must exist some i(1 <i<m) such that z;(0) # 0.
Without loss of generality, assume z;(0) # 0. For PCA, it follows from (6.41) that

ailk+1) =[1+n(a|W(k)[|>~WT (k)RW (k)

2 ’ (6.48)
+n(1 = [WE)[[)]zi(k), (1<i<m)
and
gi(k+ 1) =[1+n(%||W(K)[|>~W" (k)RW(k))
5 . (6.49)
+n(1 = [[WK)[[)]z;(k), m+1<j<n
for k> 0.

Using Theorem 6.9, it holds that ||W(k)|| > ¢ for all k> 0. Then, from (6.48)
and (6.49), for each j(m+ 1 <j<n), we have
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[Zj(k+ 1)} P (| W) P - (W ()RW (k)
2 (k+1) |1+ n(al|W(k)||>—(W" (k)RW (k)

L (o = 2) W) r[amr
( ©I?)

1|W@N%T[amr
L W)

2
/WK +'7(0—T) ’1(1/||W(k)” )] L'(k)
- 0(6 = Jms1) r[amr
1/t +n(o —1)+n(1/c> = 1)
ij(k) <pr1d z(0) ij(o) o Oi(k+ 1)
z1(0) Z%(O) ’

(6.50)

for all k>0, where 0; = —Inf§ > 0. Since |W(k)||<(1+niy), z1(k) must be
bounded, i.e., there exists a constant d > 0 such that z2(k) <d for all k > 0. Then,

n B n Zj(k) 2 _s,
5 g0 3 [ qw<Tten

Jj=m+1 Jj=m+1

n 2
for k>0 where [[, =d Y |:szl(((())>):| >0.
Jj=m+1

This completes the proof.
Based on the Lemma, we have Lemma 6.3.

Lemma 6.3 Suppose that ni1 <0.25 and n<0.3. Then for PCA algorithm of
(6.39) there exist constants 0, > 0 and [[, > 0 such that

1= (1= o)||[W(k+1)|>~WT(k+1)RW(k+1)| < (k+1)

H k+l)+max{e 97]( —9 k}]
2

for all k> 0.
Proof For PCA, it follows from (6.41) that
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IW(k+1)|* = Z [+ (Al W)= W ()RW (K)) +n(1 — [|W(k)|[*)]*< (k)
i=1

+ ._Z [L+ (Al W (R) =W (K)RW (K)) +n(1 — [|W(K)|*)]*2 (k)

= > L@ WE)P =W ©RRW () +n(l — [WE))Z (k)

= [1+n(a|WE)|> =W ()RW (k) +n(1 — W))W EK)|* + H(k),
(6.51)

for any k>0,
where H(k) = ‘:2”? 1 [(2+77(/1i+0)||W(1<)H2+2'7(1 — [IWE)P=WT (KRW (K))) n(ii — J)IIW(k)HZ‘Z?(k)]-

Clearly,
Wk +1DRW (k+1) Zi L n(Z | WE) P~ W (RW (k) +n(1 = [W(&)|[*)]*2 (k)

= 3 AL+ (oW P W RRW(R) + (1 — [WEPP2E)
i=1

+ > AL WEP=WTRRW (k) + (1 [[W )| (k)

i=m+1

- Z AL+ (al| W) =W (RRW (k) + (1 — [W(K) [ (k)

i=m+1
= [1+n(a||W(K)|* =W ()RW (k) +n(1 — [|[W(K)||)* W (k)RW (k) + H'(k),
(6.52)

for any k>0,
where H'(k) = i 1[(2+11(ﬂ-i+<7)|\W(k)H2+2'1(1 — W)~ W' ()RW (k) 04 — o) [|W(Kk)]*-

i=m

2iz2(k)]. Then, it follows from (6.51) and (6.52) that

1= (1= a)|[Wk+DP~WT(k+ DRW(k + 1)

= (1= (1= )|WEI W RRWE){L — 21+ (1 — (1 = o) |W(K)|’
— W IORW(R))]((1 = o) [W(K)|* + W' ()RW (K))} — (1 — 0)H (k) — H'(k)

for all £>0.
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Denote
2
k) = [1= (1= a)[|[W(K)|[|*~ W ()RW k)|,
for any k£ > 0. Clearly,

V(k+1) <VE){1 = 2n+n(1 = (1 = o) [W(K) =W (K)RW(K))]((1 — o)W (k)|
+ WIK)RW (k) +|(1 — o)H (k) + H (k)|

Denote
8= {1 =20+ = (1 = o) |WHK)|*~W ()RW(K)]((1 — o) [W(K) | + W (k)RW (k))}|.
From Theorem 6.8, nl; <0.25, #<0.3 and (6.43), it holds that

20+ n*(1 = (1 = o) [|[W(k)|*=WT ()RW (K))]((1 — o) [|W(k)|* + W (k)RW (k))
<[2n+n*(1 = (1 = o) [|W(k)|>—W" (k)RW (k))]
<R+ (1= (1= o) |WK)|[*~ 2| W(K)[*)]

<2+ (L+al|WE)|*) <20+ n(n +nAi(1+ni1)*) <0.8071,

Clearly, 0 <d < 1. Then,
V(k+1)<oV(k)+|(1 —o)H(k)+H'(k)|,k>0.

Since

(1 = 0)H (k) + H'(K)| < (2 + 21| W (k)| +20) (|| W (k) ||*) Z G (01— o) + 4]

i=m+1

<@+ e WO + 20 S 20 <o L™

i=m+1
for any k>0, where ¢ = (24 2na(1 +741)> +21) - no(14n1)%, then
k
Vk+1) <3V ©0)+ o] [, D (se") e
r=0

< V(0) + (k+ 1)¢] [, max{s",e "}
<(k+ 1)1_[2 [6762(k+1> +max{e’92k,e’0‘k}} ,
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where 0, =—1Ind >0 and [], = max{|1 - (1 — a)|W(0)|*~WT(0)RW(0)],
o1} >0.

This completes the proof.
Based on Lemmas 6.2 and 6.3, we have Lemma 6.4.

Lemma 6.4 For PCA algorithm of (6.39), suppose there exist constants 0 > 0 and
I1 > 0 such that

n|(1 = (1= o)[[W(k+ D|P =W (k+ DRW (k+ 1))zi(k+ 1)| < (k+ D] Je "+,
i=1,...,m)
for all k> 0. Then, klim zi(k)=2,(=1,...,m), where i, (i=1,...,m) are

constants.

Proof Given any ¢ > 0, there exists a K > 1 such that

HKe—HK -

For any k; > k, > K, it follows that

|zi(k1) = zi(k2)| = <n i (@ IWOIP W) RW () +1 = [W(r)]*)z(r)]

r=ky

S flr+ 1) — (7)]

r=ky

ki—1
=0y |(1= (=) |W(r)P=W() RW(r)z(r)]

r=ky
ki—1 + 00 + 00
< H Z ref()r < H Z ref()r < HKefl)K Z r(e—O)rfl
=l =K =0
—0K
N L )
(1—e)

This means that the sequence { z;(k) } is a Cauchy sequence. By the Cauchy

convergence principle, there must exist a constant z*(i =1,...,m) such that
lim z(k)=2z,(G{=1,...,m).
k— 400

This completes the proof.
Using the above theorems and lemmas, the convergence of DDT system (6.39)
for PCA can be proved as in Theorem 6.10 next.

Theorem 6.10 Suppose that ni; <025 and n<03. If W(0) & Vs and
IW(0)|| <1, then the weight vector of (6.39) for PCA will converge to a unitary
eigenvector associated with the largest eigenvalue of the correlation matrix.

Proof By Lemma 6.2, there exist constants 6; >0 and II; >0 such that

Z;:m+1;?(k) <TI, -e %k for all k>0. By Lemma 6.3, there exist constants

0> > 0 and [], > O such that
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(1= (1= o) |[W(k+ 1> =W (k+ DRW(k+1))| < (k+1)- ],
. [efﬂz(k+l) —|—max{ef€2k,e79‘k}],

for all k> 0. Obviously, there exist constants § > 0 and [ > 0 such that

(1= (1= o)[|[W(k+1)|? =W (k+ DRW(k+1))z;(k+ 1)| < (k+ 1) Je "+ Y,
(i=1,....,m)
for k > 0. Using Lemmas 6.4 and 6.2, it follows that

klim zlk)=2,(i=1,...,m)
—+ 00
klim zi(k) =0,(i=m+1,....n).
— + 00

Then, klim W(k)=53",2VieV,. It can be easily seen that
—+ 00

Jim W= 1 (&) = 1.

This completes the proof.

After proving the convergence of DDT system (6.39) for PCA, we can also
prove the convergence of DDT system (6.39) for MCA using similar method. In
order to prove the convergence of the weight vector of (6.39) for MCA, we can use
the following Lemmas 6.5—6.7 and Theorem 6.11, the proofs of which are similar to
those of Lemmas 6.2—6.4 and Theorem 6.10. Here, only these lemmas and theorem
will be given and their proofs are omitted.

Lemma 6.5 Suppose that 1 <0.3 .If W(0) & V& and ||W(0)|| < 1, then for MCA
algorithm of (6.39) there exist constants 0; >0 and TI} >0 such that

Z;:lp Z}(k) < H'l ek for all k>0, where 0i=—Inpf >0 and

B =11 =n(np1—1)/(1/c* = n(z —6)+n(1/c® = 1))]*. Clearly, f is a con-
stant and 0< B/ <1.

Proof For MCA, it follows from (6.41) that

IW(k+1)|* = Z (1= n(Al WR)IP=WTRRW (k) +n(1 — [W®K)|*)] 2 (k)
i=1

= [L=n(z||WE) > =W () RW (k) +n(1 — [W(K) || W (K)|* + H (k),
(6.53)

for any k£ >0 where

n-p

HK) =Y [ = n(a+DIWR)IP +24(1
i=1

— [WE)I” + W RRW(K))) - n(c — ) [W(K)||*2 (k)|
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and,

W (k+ DRW(k+1) = ixiu = (2| WE) =W RORW (k) +n(1 — [ W(K)|[*)] 22 (k)

= [L=n(z|WK)|P=W (K)RW (k) +n(1 — [W(K)[*)W" ()RW (k) +H (k),
(6.54)

for any k£ >0 where

!

H (k)

[ = 0+ ) IWER)IP +20(1 = [WEIP + W ERRWK)) - n(c = 7a) [ W22 (k)]

Then, it follows from (6.53) and (6.54) that

1— (1+0)||Wk+ 1|+ W (k+ D)RW(k + 1)

= (1= (1+0)[[WE)|I* + W ()RW (k) {1+ [-2n+n*(1 — (14 1)|W(K)|
+ WTRRW (k)|[WT(RW () — (1+0)[W(K)} — (1+0)H (k) + ' (k)
for all £>0.
Denote

V(k) = 1 = (1+0)[[WE)|> + W ()RW (k)]
for any k > 0. Clearly,
Vk+1) <VE)[{1 = 27 = (1 = (1+ ) [W(K)||* + W (k)RW (k))][W" (k)RW (k)
—(1+ ) [[WE) P + [H (k) = (1+1)H(K)].
Denote

& =[{1 = 2n—n*(1 = A+ )W) + W ()RW (k)W (k)RW (k) — (14 1)||W(K)[*]}.
From Theorem 6.8, n1; <0.25, #<0.3, and (6.43), it holds that

27 — (1 = (1+0)[[W(E)[|* + W ()RW (k)] [o]| W ()P~ (1 + ) [ W (K)||°]
= 20— (1 = (1+ ) [WE)|* + W ()RW (k))][(0 — (1+72)[|W(K)|’]
<P2n =0’ (1= [WE) )]l WE)[*] < (n20)[2 = n(1 = [|WER)|[P)][IW )]
<0.25%[2—0.3+0.3 % (1+0.25)%](140.25)
= 0.8471.
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Clearly, 0< &' <1. Then,
V(k+1)<oV(k)+|H (k) — (1 +1)H(k)|,k > 0.
Since
[H' (k) = (1+7)H (k)|

< |2 = 202 WO+ 20(1 + o WE)P) (o W) ) S 20 i — (149

i=1
< @+24(1+a|[WK)*) - (na| WK - o — (1 + )] i:ziz(k)
<¢'T[e™,

for any k>0, where ¢ = (2+25(1+0(14+n)%)- (no(1+ni)?) - |o—
(1+1)|, we have

1 k

V(k+1)§5/k+1‘7(0)+¢lﬂz 5/ 0 r 70k
1 r=0

<STW(0) 4 (k+1)¢ H max{5*, e %}
i

!

<(k+1) H [e_%(“ D 4 max{e % e it} |,
2

where 0, = —1Iné >0 and [[, = max{ -1 +’L’)||W(0)||2+WT(0)RW(0)‘,
¢TI} > 0.
This completes the proof.

Lemma 6.6 Suppose that 14, <0.25 and n<0.3. Then for MCA algorithm of
(6.39) there exist constants 0’2 > 0 and le > 0 such that

1= (1+ )W+ D)+ W k+ DRW(k+ 1) < (k+1) - ][
. [e—ﬁ’z(k+ 1) + max{e_glzk, e—f)’,k}L

for all k> 0.
For the proof of this lemma, refer to Lemma 6.3.

Lemma 6.7 For MCA algorithm of (6.39), suppose there exists constants 0' > 0
and [ > 0 such that
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0| (1= (L+ D)Wk + DI + Wk + DRW(k+1))zi(k+ 1) < (k+ D] e 7® Y,
i=n—-p+1,...,n)

Jor k>0. Then, klimz,-(k):zf,(i:n—p—l—l7...7n), where 7', (i=n—

i
p+1,...,n) are constants.
For the proof of this lemma, refer to Lemma 6.4.

Theorem 6.11 Suppose that 1/, <0.25 and n<0.3. If W(0) € V: and
IW(0)|| <1, then the weight vector of (6.39) for MCA will converge to a unitary
eigenvector associated with the smallest eigenvalue of the correlation matrix.

From Lemmas 6.5-6.7, clearly Theorem 6.11 holds.

At this point, we have completed the proof of the convergence of DDT system
(6.39). From Theorems 6.8 and 6.9, we can see that the weight norm of PCA algorithm
and MCA algorithm of DDT system (6.39) have the same bounds, and from Theorems
6.8-6.11, it is obvious that the sufficient conditions to guarantee the convergence of
the two algorithms are also same, which is in favored in practical applications.

6.4.4 Computer Simulations

In this section, we provide simulation results to illustrate the performance of Chen’s
algorithm. This experiment mainly shows the convergence of Algorithm (6.39)
under the condition of Theorems 6.10 and 6.11.

In this simulation, we randomly generate a 12 x 12 correlation matrix and its
eigenvalues are 1; = 0.2733, 1, = 0.2116, 23 = 0.1543, ...and A1, = 0.0001. The
initial weight vector is Gaussian and randomly generated with zero-mean and
unitary standard deviation, and its norm is less than 1. In the following experiments,
the learning rate for PCA is # = 0.05 and the learning rate for MCA is n = 0.20,
which satisfies the condition of #1; <0.25 and # <0.3. Figure 6.6 shows that the
convergence of the component z;(k) of W(k) in (6.39) for PCA where z;(k) =
WY (k)V, is the coordinate of W(k) in the direction of the eigenvector
Vi(i=1,2,3,4,...,12). In the simulation result, z;(k)(i =2,3,4,...,12) con-
verges to zero and z; (k) converges to a constant 1, as k — oo, which is consistent
with the convergence results in Theorem 6.10. Figure 6.7 shows the convergence of
the component z;(k) of W (k) in (6.39) for MCA. In the simulation result, z;(k)(i =
1,2,3,...,11) converges to zero and z;,(k) converges to a constant 1, as k — oo,
which is consistent with the convergence results in Theorem 6.11.

From the simulation results shown in Figs. 6.6 and 6.7, we can see that on
conditions of nl; <0.25, #<0.3, and ||W(0)|| <1, Algorithm (6.39) for PCA
converge to the direction of the principal component of the correlation matrix. And
if we simply switch the sign in the same learning rule, Algorithm (6.39) for MCA
also converge to the direction of minor component of the correlation matrix.
Besides, further simulations with high dimensions, e.g., 16, 20, and 30, also show
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Fig. 6.6 Convergence of 1.2
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that Algorithm (6.39) has satisfactory convergence under the conditions of
Theorems 6.10 and 6.11. Figures 6.8 and 6.9 show the simulation results of Chen’s
PCA and MCA algorithm with dimension 20, respectively, where the learning rate
for PCA is n = 0.05 and the learning rate for MCA is n = 0.20, which satisfy the
condition of n4; <0.25 and 5 <0.3.

In this section, dynamics of a unified self-stability learning algorithm for prin-
cipal and minor components extraction are analyzed by the DDT method. The
learning rate is assumed to be constant and thus not required to approach zero as
required by the DCT method. Some sufficient conditions to guarantee the con-
vergence are derived.
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Fig. 6.8 Convergence of 1
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6.5 Summary

In this chapter, we have analyzed the DDT systems of neural network principal/
minor component analysis algorithms in details. First, we have reviewed several
convergence or stability performance analysis methods for neural network-based
PCA/MCA algorithms. Then, a DDT system of a novel MCA algorithm proposed
by us has been analyzed. Finally, we have removed the assumption that the smallest
eigenvalue of the correlation matrix of the input data is single, and a DDT system of
a unified PCA and MCA algorithm has been analyzed.
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