
Chapter 3
Neural Networks for Principal Component
Analysis

3.1 Introduction

PCA is a statistical method, which is directly related to EVD and SVD. Neural
networks-based PCA method estimates PC online from the input data sequences,
which especially suits for high-dimensional data due to the avoidance of the
computation of large covariance matrix, and for the tracking of nonstationary data,
where the covariance matrix changes slowly over time. Neural networks and
algorithms for PCA will be described in this chapter, and algorithms given in this
chapter are typically unsupervised learning methods.

PCA has been widely used in engineering and scientific disciplines, such as
pattern recognition, data compression and coding, image processing,
high-resolution spectrum analysis, and adaptive beamforming. PCA is based on the
spectral analysis of the second moment matrix that statistically characterizes a
random vector. PCA is directly related to SVD, and the most common way to
perform PCA is via the SVD of a data matrix. However, the capability of SVD is
limited for very large data sets.

It is well known that preprocessing usually maps a high-dimensional space to a
low-dimensional space with the least information loss, which is known as feature
extraction. PCA is a well-known feature extraction method, and it allows the
removal of the second-order correlation among given random processes. By cal-
culating the eigenvectors of the covariance matrix of the input vector, PCA linearly
transforms a high-dimensional input vector into a low-dimensional one whose
components are uncorrelated.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017
X. Kong et al., Principal Component Analysis Networks and Algorithms,
DOI 10.1007/978-981-10-2915-8_3

47

PCA is often based on the optimization of some information criterion, such as
the maximization of the variance of the projected data or the minimization of the
reconstruction error. The aim of PCA is to extract m orthonormal directions wi 2
<n; i ¼ 1; 2; . . .;m; m\n; in the input space that account for as much of the data’s
variance as possible. Subsequently, an input vector x 2 <n may be transformed into
a lower m-dimensional space without losing essential intrinsic information. The
vector x can be represented by being projected onto the m-dimensional subspace
spanned by wi using the inner products xTwi. This achieves dimensionality
reduction.

PCA finds those unitary directions w 2 <n, along which the projections of the
input vectors, known as the principal components (PCs), y ¼ xTw; have the largest

variance EPCAðwÞ ¼ E y2½ � ¼ w
T
Cw ¼ w

T
Cw= wk k2, where w ¼ w= wk k: When

w ¼ ac1, EPCAðwÞ take its maximum value, where a is a scalar. When a ¼ 1;w
becomes a unit vector. By repeating maximization of EPCAðwÞ but limiting w to be
orthogonal to c1, the maximization of EPCAðwÞ is equal to k2 at w ¼ ac2: Following
this deflation procedure, all the m principal directions wi can be derived. The
projections yi ¼ xTwi; i ¼ 1; 2; . . .;m are the PCs of x. A linear least square
(LS) estimate x̂ can be constructed for the original input x as x̂ ¼Pm

i¼1 aiðtÞwi. As
to other interpretations or analyses of PCA, see [1–4] for more details.

3.2 Review of Neural-Based PCA Algorithms

Neural networks on PCA pursue an effective “online” approach to update the eigen
direction after each presentation of a data point, which are especially suitable for
high-dimensional data and for the tracking of nonstationary data. In the last dec-
ades, many neural network-based PCA learning algorithms were proposed, among
which, the Hebbian and Oja’s learning rules are the bases. Overall, the existing
neural network-based PCA algorithms can be grouped into the following classes:
the Hebbian rule-based PCA algorithms, least mean squared error-based PCA
algorithms, other optimization-based PCA algorithms, anti-Hebbian rule-based
PCA algorithms, nonlinear PCA algorithms, constrained PCA algorithms, localized
PCA algorithms, and other generalizations of the PCA. These algorithms will be
analyzed and discussed in the above order.

3.3 Neural-Based PCA Algorithms Foundation

3.3.1 Hebbian Learning Rule

The classical Hebbian synaptic modification rule was first introduced in [5]. In
Hebbian learning rule, the biological synaptic weights change in proportion to the

48 3 Neural Networks for Principal Component Analysis

correlation between the presynaptic and postsynaptic signals. For a single neuron,
the Hebbian rule can be written as

wðtþ 1Þ ¼ wðtÞþ gyðtÞxðtÞ; ð3:1Þ

where the learning rate g[0, w 2 <n is the weight vector, xðtÞ 2 <n is an input
vector at time t, y(t) is the output of the neuron defined by yðtÞ ¼ wTðtÞxðtÞ:

The convergence of Hebbian rule can be briefly analyzed as follows.
For a stochastic input vector x, assuming that x and w are uncorrelated, the

expected weight change is given by

E½Dw� ¼ gE½yx� ¼ gE xxTw
� � ¼ gCE½w�; ð3:2Þ

where E[�] is the expectation operator, and C ¼ E xxT½ � is the autocorrelation matrix
of x:

At equilibrium, E½Dw� ¼ 0; and hence, it holds that the deterministic equation
Cw ¼ 0: Due to the effect of noise terms, C is a full-rank positive-definite
Hermitian matrix with positive eigenvalues ki; i ¼ 1; 2; . . .; n; and the associated
orthogonal eigenvectors ci, where n = rank(C). Thus, w ¼ 0 is the only equilibrium
state.

Equation (3.1) can be further represented in the continuous-time form

_w ¼ yx: ð3:3Þ

Taking expectation on both sides, it holds that

E½ _w� ¼ E½yx� ¼ E xxTw
� � ¼ CE½w�: ð3:4Þ

This can be derived by minimizing the average instantaneous criterion
function [6]

E½EHebb� ¼ � 1
2
E y2
� � ¼ � 1

2
E wTxxTw
� � ¼ � 1

2
E wT
� �

CE½w�; ð3:5Þ

where EHebb is the instantaneous criterion function. At equilibrium, E @EHebb
@w

� � ¼
�CE½w� ¼ 0; thus w ¼ 0: Since E½HðwÞ� ¼ E @E2

Hebb
@2w

h i
¼ �C is nonpositive for all

E½w�; the solution w ¼ 0 is unstable, which drives w to infinite magnitude, with a
direction parallel to that of the eigenvector of C associated with the largest
eigenvalue [6]. Thus, the Hebbian rule is divergent.

To prevent the divergence of the Hebbian rule, one can normalize wk k to unity
after each iteration [7]. This leads to the normalized Hebbian rule. Several other
methods such as Oja’s rule [8], Yuille’s rule [9], Linsker’s rule [10, 11], and
Hassoun’s rule [12] add a weight-decay term to the Hebbian rile to stabilize the
algorithm.

3.3 Neural-Based PCA Algorithms Foundation 49

3.3.2 Oja’s Learning Rule

By adding a weight decay term into the Hebbian rule, Oja’s learning rule was
proposed in [8] and given by

wðtþ 1Þ ¼ wðtÞþ gyðtÞxðtÞ � gy2ðtÞwðtÞ: ð3:6Þ

Oja’s rule converges to a state that minimizes (3.5) subject to wk k ¼ 1: The
solution is the principal eigenvector of C. For small η, Oja’s rule is proved to be
equivalent to the normalized Hebbian rule [8].

Using the stochastic learning theory, the continuous-time version of Oja’s rule is
given by a nonlinear stochastic differential equation

_w ¼ gðyx� y2wÞ: ð3:7Þ

The corresponding deterministic equation based on statistical average is thus
derived as

_w ¼ g Cw� wTCw
� �

w
� �

: ð3:8Þ

At equilibrium, it holds that

Cw ¼ wTCw
� �

w: ð3:9Þ

It can be easily seen that the solutions are w ¼ �ci; i ¼ 1; 2; . . .; n; whose
associated eigenvalues ki are arranged in a descending order as
k1 � k2 � � � � � kn � 0:

Note that the average Hessian

HðwÞ ¼ @

@w
�Cwþ wTCw

� �
w

� � ¼ �CþwTCwIþ 2wwTC ð3:10Þ

is positive-definite only at w ¼ �c1, if k1 6¼ k2 [12], where I is an n� n identity
matrix. This can be seen from

HðciÞcj ¼ ðki � kjÞcj þ 2kjcicTi cj

¼ 2ki2ci i ¼ j

ðki � kjÞcj i 6¼ j

�
:

ð3:11Þ

Thus, Oja’s rule always converges to the principal component of C.
The convergence analysis of the stochastic discrete-time algorithms such as the

gradient descent method is conventionally based on the stochastic approximation
theory [13]. A stochastic discrete-time algorithm is first converted into deterministic
continuous-time ODEs, and then analyzed by using Lyapunov’s second theorem.

50 3 Neural Networks for Principal Component Analysis

This conversion is based on the Robbins–Monro conditions, which require the
learning rate to gradually approach zero as t ! ∞. This limitation is not practical
for implementation, especially for the learning of nonstationary data. In [14],
Zufiria proposed to convert the stochastic discrete-time algorithms into their
deterministic discrete-time formulations that characterize their average evolution
from a conditional expectation perspective. This method has been applied to Oja’s
rule and the dynamics have been analyzed, and chaotic behavior has been observed
in some invariant subspaces. Such analysis can guarantee the convergence of the
Oja’s rule by selecting some constant learning rate. A constant learning rate for fast
convergence has also been suggested as η = 0.618 k1 [15]. Recently, the conver-
gence of many PCA algorithms of Oja’s rule type have been analyzed by using
deterministic discrete-time methods, the details of which will be discussed in
Chap. 6.

3.4 Hebbian/Anti-Hebbian Rule-Based Principal
Component Analysis

Hebbian rule-based PCA algorithms include the single PCA algorithm, multiple PCA
algorithms and principal subspace analysis algorithm. These neural PCA algorithms
originate from the seminal work by Oja [8]. The output of the neuron is updated by
y ¼ wTx; where w ¼ ðw1;w2; . . .;wJ1ÞT. Here the activation function is the linear
function u(x) = x. The PCA turns out to be closely related to the Hebbian rule.

The PCA algorithms discussed in this section are based on the Hebbian rule. The
network model was first proposed by Oja [16], where a J1–J2 FNN is used to extract
the first J2 PCs. The architecture of the PCA network is shown in Fig. 3.1, which is

Fig. 3.1 Architecture of the PCA network

3.3 Neural-Based PCA Algorithms Foundation 51

http://dx.doi.org/10.1007/978-981-10-2915-8_6

a simple expansion of the single-neuron PCA model. The output of the network is
given by y ¼ WTx; where y ¼ ðy1; y2; . . .; yJ2ÞT; x ¼ ðx1; x2; . . .; xJ1ÞT; W ¼
½w1;w2; . . .;wJ2�; wi ¼ ðw1i;w2i; . . .;wJ1iÞT:

3.4.1 Subspace Learning Algorithms

By using Oja’s learning rule, w will converge to a unit eigenvector of the corre-
lation matrix C, and the variance of the output y is maximized. For zero-mean input
data, this extracts the first PC. Here Oja’s learning rule can be rewritten for the
convenience of presentation as

wðtþ 1Þ ¼ wðtÞþ gyðtÞxðtÞ � gy2ðtÞwðtÞ; ð3:12Þ

where the term y(t)x(t) is the Hebbian term, and −y2(t)w(t) is a decaying term,
which is used to prevent instability. In order to keep the algorithm convergent, it is
proved that 0 < η(t) < 1/1.2k1 is required [16], where k1 is the largest eigenvalue of
C. If η(t) � 1/k1, w will not converge to ±c1 even if it is initially close to the
target [17].

3.4.1.1 Symmetrical Subspace Learning Algorithm

Oja proposed a learning algorithm for the PCA network, referred to as the sym-
metrical subspace learning algorithm (SLA) [16]. The SLA can be derived by
maximizing

ESLA ¼ 1
2
tr WTRW
� �

subject to WTW ¼ I; ð3:13Þ

where I is a J2 � J2 identity matrix. The SLA is given as [16]

wiðtþ 1Þ ¼ wiðtÞþ gðtÞyiðtÞ½xðtÞ � x̂ðtÞ�; ð3:14Þ

x̂ðtÞ ¼ Wy: ð3:15Þ

After the algorithm converges, W is roughly orthonormal and the columns of W,
namely wi; i ¼ 1; 2; . . .; J2, converge to some linear combination of the first J2
principal eigenvectors of C [16], which is a rotated basis of the dominant eigen-
vector subspace. The value of wi is dependent on the initial condition and the
training samples.

The corresponding eigenvalues ki; i ¼ 1; 2; . . .; J2, which approximate E y2i
� �

;

can be adaptively estimated by

52 3 Neural Networks for Principal Component Analysis

k̂iðtþ 1Þ ¼ 1� 1
tþ 1

� �
k̂iðtÞþ 1

tþ 1
y2i ðtþ 1Þ: ð3:16Þ

The PCA performs optimally when there is no noise process involved.

3.4.1.2 Weighted Subspace Learning Algorithm

The weighted SLA can be derived by maximizing the same criterion (3.13), with
the constraint changed toWTW ¼ a; where a ¼ diagða1; a2; . . .; aJ2Þ; is an arbitrary
diagonal matrix with a1 [a2 [� � � [aJ2 [0:

The weighted SLA is given by [18, 19]

wiðtþ 1Þ ¼ wiðtÞþ gðtÞyiðtÞ½xðtÞ � cix̂ðtÞ�; ð3:17Þ

x̂ðtÞ ¼ Wy; ð3:18Þ

for i ¼ 1; 2; . . .; J2, where ci; i ¼ 1; 2; . . .; J2, are coefficients satisfying
0\c1\c2\ � � �\cJ2 .

Due to the asymmetry introduced by ci, wi almost surely converges to the
eigenvectors of C. The weighted subspace algorithm can perform the PCA, how-
ever, norms of the weight vectors are not equal to unity.

The subspace and weighted subspace algorithms are nonlocal algorithms relying
on the calculation of the errors and the backward propagation of the values between
the layers [3]. Several algorithms converting PSA into PCA have been proposed,
the details can be found in [3].

3.4.2 Generalized Hebbian Algorithm

By combining Oja’s rule and the GSO procedure, Sanger proposed the GHA for
extracting the first J2 PCs [20]. The GHA can extract the first J2 eigenvectors in the
order of decreasing eigenvalues.

The GHA is given by [20]

wiðtþ 1Þ ¼ wiðtÞþ giðtÞyiðtÞ½xðtÞ � x̂iðtÞ�; ð3:19Þ

x̂iðtÞ ¼
Xi

j¼1
wjðtÞyjðtÞ; ð3:20Þ

for i ¼ 1; 2; . . .; J2. The GHA becomes a local algorithm by solving the summation
term in (3.20) in a recursive form

3.4 Hebbian/Anti-Hebbian Rule-Based Principal Component Analysis 53

x̂iðtÞ ¼ x̂i�1ðtÞþwiðtÞyiðtÞ; ð3:21Þ

for i ¼ 1; 2; . . .; J2, where x̂0ðtÞ ¼ 0: giðtÞ is usually selected the same for all
neurons. When gi ¼ g for all i, the algorithm can be written in a matrix form

Wðtþ 1Þ ¼ WðtÞ � gWðtÞLT yðtÞyTðtÞ� �þ gxðtÞyTðtÞ; ð3:22Þ

where the operator LT[�] selects the lower triangle of input matrix. In the GHA, the
mth neuron converges to the mth PC, and all the neurons tend to converge together.
wi and E y2i

� �
approach ci and ki, respectively, as t ! ∞.

Both the SLA and GHA algorithms employ implicit or explicit GSO to decor-
relate the connection weights from one another. The weighted SLA algorithm
performs well for extracting less-dominant components.

3.4.3 Learning Machine for Adaptive Feature
Extraction via PCA

Learning machine for adaptive feature extraction via principal component analysis
is called LEAP algorithm, and it is another local PCA algorithm for extracting all
the J2 PCs and their corresponding eigenvectors. The LEAP is given by

wiðtþ 1Þ ¼ wiðtÞþ g BiðtÞyiðtÞ½xðtÞ � wiðtÞyiðtÞ� � AiðtÞwiðtÞf g; ð3:23Þ

for i ¼ 1; 2; . . .; J2, where g is the learning rate, yiðtÞxðtÞ is a Hebbian term, and

AiðtÞ ¼ 0;
Ai�1ðtÞþwi�1ðtÞwT

i�1ðtÞ;
i ¼ 1
i ¼ 2; . . .; J2

�
; ð3:24Þ

BiðtÞ ¼ I � AiðtÞ; i ¼ 1; 2; � � � ; J2: ð3:25Þ

The J1 � J1 matrices Ai and Bi are important decorrelating terms for performing
the GSO among all weights at each iteration. Unlike the SLA [16] and GHA [20]
algorithms, whose stability analyses are based on the stochastic approximation
theory [13], the stability analysis of the LEAP algorithm is based on Lyapunov’s
first theorem, and η can be selected as a small positive constant. Due to the use of a
constant learning rate, the LEAP is capable of tracking nonstationary processes.
The LEAP can satisfactorily extract PCs even for ill-conditioned autocorrelation
matrices.

54 3 Neural Networks for Principal Component Analysis

3.4.4 The Dot-Product-Decorrelation Algorithm (DPD)

The DPD algorithm is a nonlocal PCA algorithm, and it moves wi; i ¼ 1; 2; . . .; J2,
toward the J2 principal eigenvectors ci, ordered arbitrarily

wiðtþ 1Þ ¼ wiðtÞþ gðtÞ xðtÞyiðtÞ �
XJ2
j¼1

wjðtÞwT
j ðtÞ

 !
wiðtÞ
wiðtÞk k

" #
; ð3:26Þ

where η(t) satisfies the Robbins–Monro conditions. The algorithm induces the
norms of the weight vectors toward the corresponding eigenvalues, i.e., wiðtÞk k !
kiðtÞ; as t ! 1. The algorithm is as fast as the GHA [20], weighted SLA [18, 19],
and least mean squared error reconstruction (LMSER) [21] algorithms.

3.4.5 Anti-Hebbian Rule-Based Principal
Component Analysis

When the update of a synaptic weight is proportional to the correlation of the
presynaptic and postsynaptic activities, and the direction of the change is opposite
to that in the Hebbian rule, the learning rule is called an anti-Hebbian learning rule
[3]. The anti- Hebbian rule can be used to remove correlations between units
receiving correlated inputs [22, 23], and it is inherently stable.

Anti-Hebbian rule-based PCA algorithms can be derived by using a network
architecture of the J1–J2 FNN with lateral connections among the output units
[22, 23]. The lateral connections can be in a symmetrical or hierarchical topology.
A hierarchical lateral connection topology is illustrated in Fig. 3.2, based on which
the Rubner–Tavan PCA algorithm [22, 23] and the APEX [24] were proposed.
In [25], the local PCA algorithm is based on a full lateral connection topology.
The feedforward weight matrix W is described in the preceding sections, and the

Fig. 3.2 Architecture of the
PCA network with
hierarchical lateral
connections. The lateral
weight matrix U is an upper
triangular matrix with the
diagonal elements being zero

3.4 Hebbian/Anti-Hebbian Rule-Based Principal Component Analysis 55

lateral weight matrix U = [u1 … uJ2] is a J2 � J2 matrix, where ui = (u1i, u2i, …,
uJ2i)

T includes all the lateral weights connected to neuron i and uji denotes the
lateral weight from neuron j to neuron i.

3.4.5.1 Rubner-Tavan PCA Algorithm

The Rubner-Tavan PCA algorithm is based on the PCA network with hierarchical
lateral connection topology [22, 23]. The algorithm extracts the first J2 PCs in a
decreasing order of the eigenvalues. The output of the network is given by [22, 23]

yi ¼ wT
i xþ uTi y; i ¼ 1; 2; . . .; J2: ð3:27Þ

Note that uji = 0 for j � i and U is a J2 � J2 upper triangular matrix.
The weights wi are trained by Oja’s rule, and the lateral weights ui are updated

by the anti-Hebbian rule

wiðtþ 1Þ ¼ wiðtÞþ g1ðtÞyiðtÞ½xðtÞ � x̂ðtÞ�; ð3:28Þ

x̂ ¼ WTy; ð3:29Þ

uiðtþ 1Þ ¼ uiðtÞ � g2yiðtÞyðtÞ: ð3:30Þ

This is a nonlocal algorithm. Typically, the learning rate η1 = η2 > 0 is selected
as a small number between 0.001 and 0.1 or according to a heuristic derived from
the Robbins–Monro conditions. During the training process, the outputs of the
neurons are gradually uncorrelated and the lateral weights approach zero. The
network should be trained until the lateral weights ui are below a specified level.

3.4.5.2 APEX Algorithm

The APEX algorithm is used to adaptively extract the PCs [24]. The algorithm is
recursive and adaptive, namely, given i − 1 PCs, it can produce the ith PC itera-
tively. The hierarchical structure of lateral connections among the output units
serves the purpose of weight orthogonalization. This structure also allows the
network to grow or shrink without retraining the old units. The convergence
analysis of the APEX algorithm is based on the stochastic approximation theory,
and the APEX is proved to have the property of exponential convergence.

Assuming that the correlation matrix C has distinct eigenvalues arranged in the
decreasing order as k1 > k2 > ��� > kJ2 with the associated eigenvectors w1,…, wJ2,
the algorithm is given by [24, 26]

y ¼ WTx; ð3:31Þ

yi ¼ wT
i xþ uTy; ð3:32Þ

56 3 Neural Networks for Principal Component Analysis

where y = (y1, …, yi−1)
T is the output vector, u = (u1i, u2i, …, u(i−1)i)

T, and
W = [w1 … wi−1] is the weight matrix of the first i − 1 neurons. These definitions
are for the first i neurons, which are different from their respective definitions given
in the preceding sections. The iteration is given as [24, 26]

wiðtþ 1Þ ¼ wiðtÞþ giðtÞ yiðtÞxðtÞ � y2i ðtÞwiðtÞ
� �

; ð3:33Þ

uðtþ 1Þ ¼ uðtÞ � giðtÞ yiðtÞyðtÞþ y2i ðtÞuðtÞ
� �

: ð3:34Þ

Equations (3.33) and (3.34) are respectively the Hebbian and anti-Hebbian parts
of the algorithm. yi tends to be orthogonal to all the previous components due to the
anti-Hebbian rule, also called the orthogonalization rule.

Both sequential and parallel APEX algorithms have been presented in [26]. In
the parallel APEX, all J2 output neurons work simultaneously. In the sequential
APEX, the output neurons are added one by one. The sequential APEX is more
attractive in practical applications, since one can decide a desirable number of
neurons during the learning process. The APEX algorithm is especially useful when
the number of required PCs is not known a priori. When the environment is
changing over time, a new PC can be added to compensate for the change without
affecting the previously computed principal components. Thus, the network
structure can be expanded if necessary.

The stopping criterion can be that for each i the changes in wi and u are below a
threshold. At this time, wi converges to the eigenvector of the correlation matrix
C associated with the ith largest eigenvalue, and u converges to zero. The stopping
criterion can also be that the change of the average output variance r2i ðtÞ is suffi-
ciently small.

Most existing linear complexity methods including the GHA [20], the SLA [16],
and the PCA with the lateral connections require a computational complexity of O
(J1J2) per iteration. For the recursive computation of each additional PC, the APEX
requires O(J1) operations per iteration, while the GHA utilizes O(J1J2) per iteration.
In contrast to the heuristic derivation of the APEX, a class of learning algorithms,
called the w-APEX, is presented based on criterion optimization [27]. w can be
selected as any function that guarantees the stability of the network. Some members
in the class have better numerical performance and require less computational effort
compared to that of both the GHA and the APEX.

3.5 Least Mean Squared Error-Based Principal
Component Analysis

Existing PCA algorithms including the Hebbian rule-based algorithms can be
derived by optimizing an objective function using the gradient descent method. The
least mean squared error (LMSE)-based methods are derived from the modified
MSE function

3.4 Hebbian/Anti-Hebbian Rule-Based Principal Component Analysis 57

EðWÞ ¼
Xt
t1¼1

lt�t1 xt1 �WWTxt1
		 		2; ð3:35Þ

where 0 < l � 1 is a forgetting factor used for nonstationary observation
sequences, and t is the current time instant. Many adaptive PCA algorithms actually
optimize (3.35) by using the gradient descent method [21, 28] and the RLS method
[28–32].

The gradient descent or Hebbian rule-based algorithms are highly sensitive to
parameters such as η. It is difficult to choose proper parameters guaranteeing both a
small misadjustment and a fast convergence. To overcome these drawbacks,
applying the RLS to the minimization of (3.35) yields the RLS-based algorithms
such as the adaptive principal components extraction (APEX) [24, 26], the
Kalman-type RLS [29], the projection approximation subspace tracking (PAST)
[28], the PAST with deflation (PASTd) [28], and the robust RLS algorithm
(RRLSA) [31].

All RLS-based PCA algorithms exhibit fast convergence and high tracking
accuracy and are suitable for slow changing nonstationary vector stochastic pro-
cesses. All these algorithms correspond to a three-layer J1-J2-J1 linear autoasso-
ciative network model, and they can extract all the J2 PCs in a descending order of
the eigenvalues, where a GSO-like orthonormalization procedure is used.

3.5.1 Least Mean Square Error Reconstruction
Algorithm (LMSER)

The LMSER algorithm was derived based on the MSE criterion using the gradient
descent method [21]. The LMSER algorithm can be written as

wiðtþ 1Þ ¼ wiðtÞþ gðtÞ 2AðtÞ � CiðtÞAðtÞ � AðtÞCiðtÞ � c½BiðtÞAðtÞþAðtÞBiðtÞ�f gwiðtÞ;
ð3:36Þ

for i ¼ 1; 2; . . .; J2, where AðtÞ ¼ xðtÞxTðtÞ; CiðtÞ ¼ wiðtÞwT
i ðtÞ; i ¼ 1; 2; . . .; J2,

BiðtÞ ¼ Bi�1ðtÞþCi�1ðtÞ, i ¼ 2; . . .; J2, and B1ðtÞ ¼ 0: The selection of η(t) is
based on the Robbins–Monro conditions and c � 1.

The LMSER reduces to Oja’s algorithm when W(t) is orthonormal, namely
WT(t)W(t) = I. Because of this, Oja’s algorithm can be treated as an approximate
stochastic gradient rule to minimize the MSE. Increasing the values of c and d
results in a larger asymptotic MSE but faster convergence and vice versa, namely
the stability speed problem. The LMSER uses nearly twice as much computation as
the weighted SLA [18, 19] and the GHA [20], for each update of the weight.
However, it leads to a smaller asymptotic and faster convergence for the minor
eigenvectors [33].

58 3 Neural Networks for Principal Component Analysis

3.5.2 Projection Approximation Subspace Tracking
Algorithm (PAST)

The PASTd [28] is a well-known subspace tracking algorithm updating the signal
eigenvectors and eigenvalues. The PASTd is based on the PAST. Both the PAST
and the PASTd are derived for complex-valued signals, which are very common in
signal processing area. At iteration t, the PASTd algorithm is given as [28]

yiðtÞ ¼ wH
i ðt � 1ÞxiðtÞ; ð3:37Þ

diðtÞ ¼ ldiðt � 1Þþ yiðtÞj j2; ð3:38Þ

x̂iðtÞ ¼ wiðt � 1ÞyiðtÞ; ð3:39Þ

wiðtÞ ¼ wiðt � 1Þþ xiðtÞ � x̂iðtÞ½ � y
	
i ðtÞ
diðtÞ ; ð3:40Þ

xiþ 1ðtÞ ¼ xiðtÞ � wiðtÞyiðtÞ; ð3:41Þ

for i = 1, …, J2, where x1(t) = xt, and the superscript * denotes the conjugate
operator.

wi(0) and di(0) should be suitably selected. W(0) should contain J2 orthonormal
vectors, which can be calculated from an initial block of data or from arbitrary
initial data. A simple way is to set W(0) as the J2 leading unit vectors of the J1 � J1
identity matrix. di(0) can be set as unity. The choice of these initial values affects
the transient behavior, but not the steady-state performance of the algorithm.
wi(t) provides an estimate of the ith eigenvector, and di(t) is an exponentially
weighted estimate of the associated eigenvalue.

Both the PAST and the PASTd have linear computational complexity, that is, O
(J1J2) operations in every update, as in the cases of the SLA [16], the GHA [20], the
LMSER [21], and the novel information criterion (NIC) algorithm [30]. The PAST
computes an arbitrary basis of the signal subspace, while the PASTd is able to
update the signal eigenvectors and eigenvalues. Both algorithms produce nearly
orthonormal, but not exactly orthonormal, subspace basis or eigenvector estimates.
If perfectly orthonormal eigenvector estimates are required, an orthonormalization
procedure is necessary. The Kalman-type RLS [29] combines the basic RLS
algorithm with the GSO procedure in a manner similar to that of the GHA. The
Kalman-type RLS and the PASTd are exactly identical if the inverse of the
covariance of the output of the ith neuron, Pi(t), in the Kalman-type RLSA is set as
1/di(t) in the PASTd.

In the one-unit case, both the PAST and PASTd are identical to Oja’s learning
rule except that the PAST and the PASTd have a self-tuning learning rate 1/d1(t).
Both the PAST and the PASTd provide much more robust estimates than the EVD

3.5 Least Mean Squared Error-Based Principal Component Analysis 59

and converge much faster than the SLA [16]. The PASTd has been extended for the
tracking of both the rank and the subspace by using information theoretic criteria
such as the AIC and the MDL [34].

3.5.3 Robust RLS Algorithm (RRLSA)

The RRLSA [31] is more robust than the PASTd [28]. The RRLSA can be
implemented in a sequential or parallel manner. Given the ith neuron, the sequential
algorithm is given for all patterns as [31]

wiðt � 1Þ ¼ wiðt � 1Þ
wiðt � 1Þk k ; ð3:42Þ

yiðtÞ ¼ w
T
i ðt � 1ÞxðtÞ; ð3:43Þ

x̂iðtÞ ¼
Xi�1

j¼1

yjðtÞwjðt � 1Þ; ð3:44Þ

wiðtÞ ¼ lwiðt � 1Þþ xiðtÞ � x̂iðtÞ½ �yiðtÞ; ð3:45Þ

k̂iðtÞ ¼ wiðtÞk k
t

; ð3:46Þ

for i = 1, …, J2, where yi is the output of the ith hidden unit, and wi(0) is initialized
as a small random value. By changing (3.44) into a recursive form, the RRLSA
becomes a local algorithm.

The RRLSA has the same flexibility as the Kalman-type RLS [29], the PASTd,
and the APEX, in that increasing the number of neurons does not affect the pre-
viously extracted principal components. The RRLSA naturally selects the inverse of
the output energy as the adaptive learning rate for the Hebbian rule. The Hebbian
and Oja rules are closely related to the RRLSA algorithm by suitable selection of
the learning rates [31].

The RRLSA is also robust to the error accumulation from the previous com-
ponents, which exists in the sequential PCA algorithms such as the Kalman-type
RLS and the PASTd. The RRLSA converges rapidly, even if the eigenvalues
extend over several orders of magnitude. According to the empirical results [31],
the RRLSA provides the best performance in terms of convergence speed as well as
steady-state error, whereas the Kalman-type RLS and the PASTd have similar
performance, which is inferior to that of the RRLSA.

60 3 Neural Networks for Principal Component Analysis

3.6 Optimization-Based Principal Component Analysis

The PCA can be derived by many optimization methods based on a properly
defined objective function. This leads to many other algorithms, including gradient
descent-based algorithms [9–11, 35], the CG method [36], and the quasi-Newton
method [37, 38]. The gradient descent method usually converges to a local mini-
mum. Second-order algorithms such as the CG and quasi-Newton methods typi-
cally converge much faster than first-order methods but have a computational
complexity of O(J1

2J2) per iteration.
The infomax principle [10, 11] was first proposed by Linsker to describe a neural

network algorithm. The principal subspace is derived by maximizing the mutual
information criterion. Other examples of information criterion-based algorithms are
the NIC algorithm [30] and the coupled PCA [39].

3.6.1 Novel Information Criterion (NIC) Algorithm

The NIC algorithm [30] is obtained by applying the gradient descent method to
maximize the NIC. The NIC is a cost function very similar to the mutual infor-
mation criterion [10, 11] but integrates a soft constraint on the weight
orthogonalization

ENIC ¼ 1
2

ln detðWTRWÞ� �� trðWTWÞ
 �
: ð3:47Þ

Unlike the MSE, the NIC has a steep landscape along the trajectory from a small
weight matrix to the optimum one. ENIC has a single global maximum, and all the
other stationary points are unstable saddle points. At the global maximum

E	
NIC ¼ 1

2

XJ2
i¼1

ln ki � J2

 !
; ð3:48Þ

W yields an arbitrary orthonormal basis of the principal subspace.
The NIC algorithm was derived from ENIC by using the gradient descent method,

and the algorithm is given as

Wðtþ 1Þ ¼ ð1� gÞWðtÞþ gĈðtþ 1ÞWðtÞ WTðtÞĈðtþ 1ÞWðtÞ� ��1
; ð3:49Þ

where ĈðtÞ is the estimate of the covariance matrix C(t)

ĈðtÞ ¼ 1
t

Xt
i¼1

lt�ixixTi ¼ l
t � 1
t

Ĉðt � 1Þþ 1
t
xixTi ð3:50Þ

3.6 Optimization-Based Principal Component Analysis 61

and l 2 (0, 1] is a forgetting factor. The NIC algorithm has a computational
complexity of O(J1

2J2) per iteration.
Like the PAST algorithm [28], the NIC algorithm is a PSA method. It can extract

the principal eigenvectors when the deflation technique is incorporated.
The NIC algorithm converges much faster than the SLA and the LMSER and can
globally converge to the PSA solution from almost any weight initialization.
Reorthormalization can be applied so as to perform true PCA [30].

By selecting a well-defined adaptive learning rate, the NIC algorithm can also
generalize some well-known PSA/PCA algorithms. For online implementation, an
RLS version of the NIC algorithm has also been given in [30]. The PAST algorithm
[28] is a special case of the NIC algorithm when η is unity, and the NIC algorithm
essentially represents a robust improvement of the PAST.

In order to break the symmetry in the NIC, the weighted information criterion
(WINC) [32] was proposed by adding a weight to the NIC. Two WINC algorithms
are, respectively, derived by using the gradient ascent and the RLS. The gradient
ascent-based WINC algorithm can be viewed as an extended weighted SLA with an
adaptive step size, leading to a much faster convergence speed. The RLS-based
WINC algorithm has not only fast convergence and high accuracy, but also a low
computational complexity.

3.6.2 Coupled Principal Component Analysis

The most popular PCA or MCA algorithms do not consider eigenvalue estimates in
the update of the weights, and they suffer from the stability speed problem because
the eigen motion depends on the eigenvalues of the covariance matrix [39]. The
convergence speed of a system depends on the eigenvalues of its Jacobian. In PCA
algorithms, the eigen motion depends on the principal eigenvalue of the covariance
matrix, while in MCA algorithms it depends on all eigenvalues [39].

Coupled learning rules can be derived by applying the Newton method to a
common information criterion. In coupled PCA/MCA algorithms, both the eigen-
values and eigenvectors are simultaneously adapted. The Newton method yields
averaged systems with identical speed of convergence in all eigen directions. The
Newton descent-based PCA and MCA algorithms, respectively called nPCA and
nMCA, are derived by using the information criterion [39]:

Ecoupledðw; kÞ ¼ wTCw
k

� wTwþ ln k; ð3:51Þ

where k is an estimate of the eigenvalue.
By approximation wTw
 1; the nPCA is reduced to the ALA [17]. Further

approximating the ALA by wTCw
 k leads to an algorithm called cPCA. The
cPCA is a stable PCA algorithm, but there may be fluctuation in the weight vector
length in the iteration process. This problem can be avoided by explicitly

62 3 Neural Networks for Principal Component Analysis

renormalizing the weight vector at every iteration, and this leads to the following
robust PCA (rPCA) algorithm [39]:

wðtþ 1Þ ¼ wðtÞþ gðtÞ xðtÞyðtÞ
kðtÞ � wðtÞ

� �
; ð3:52Þ

wðtþ 1Þ ¼ wðtþ 1Þ
wðtþ 1Þk k ; ð3:53Þ

kðtþ 1Þ ¼ kðtÞþ gðtÞðy2ðtÞ � kðtÞÞ; ð3:54Þ

where η(t) is a small positive number and can be selected according to the Robbins–
Monro conditions. The rPCA is shown to be closely related to the RRLSA algo-
rithm [31] by applying the first-order Taylor approximation on the rPCA.
The RRLSA can also be derived from the ALA algorithm by using the first-order
Taylor approximation.

In order to extract multiple PCs, one has to apply an orthonormalization pro-
cedure, e.g., the GSO, or its first-order approximation as used in the SLA, or
deflation as in the GHA. In the coupled learning rules, multiple PCs are simulta-
neously estimated by a coupled system of equations. It has been reported in [40]
that in the coupled learning rules a first-order approximation of the GSO is superior
to the standard deflation procedure in terms of orthonormality error and the quality
of the eigenvectors and eigenvalues generated. An additional normalization step
that enforces unit length of the eigenvectors further improves the orthonormality of
the weight vectors [40].

3.7 Nonlinear Principal Component Analysis

The aforementioned PCA algorithms apply a linear transform to the input data.
The PCA is based on the Gaussian assumption for data distribution, and the opti-
mality of the PCA results from taking into account only the second-order statistics,
namely the covariances. For non-Gaussian data distributions, the PCA is not able to
capture complex nonlinear correlations, and nonlinear processing of the data is
usually more efficient. Nonlinearities introduce higher-order statistics into the
computation in an implicit way. Higher-order statistics, defined by cumulants or
higher-than-second moments, are needed for a good characterization of non-
Gaussian data.

The Gaussian distribution is only one of the canonical exponential distributions,
and it is suitable for describing real-valued data. In the case of binary-valued,
integer-valued, or non-negative data, the Gaussian assumption is inappropriate, and
a family of exponential distributions can be used. For example, the Poisson dis-
tribution is better suited for integer data and the Bernoulli distribution to binary
data, and an exponential distribution to nonnegative data. All these distributions

3.6 Optimization-Based Principal Component Analysis 63

belong to the exponential family. The PCA can be generalized to distributions of
the exponential family. This generalization is based on a generalized linear model
and criterion functions using the Bregman distance. This approach permits hybrid
dimensionality reduction in which different distributions are used for different
attributes of the data.

When the feature space is nonlinearly related to the input space, we need to use
nonlinear PCA. The outputs of nonlinear PCA networks are usually more inde-
pendent than their respective linear cases. For non-Gaussian input data, the PCA
may fail to provide an adequate representation, while a nonlinear PCA permits the
extraction of higher-order components and provides a sufficient representation.
Nonlinear PCA networks and learning algorithms can be classified into symmetric
and hierarchical ones similar to those for the PCA networks. After training, the
lateral connections between output units are not needed, and the network becomes
purely feedforward. In the following, we discuss the kernel PCA, robust PCA, and
nonlinear PCA.

3.7.1 Kernel Principal Component Analysis

Kernel PCA [41, 42] is a special, linear algebra-based nonlinear PCA, which intro-
duces kernel functions into the PCA. The kernel PCA first maps the original input data
into a high-dimensional feature space using the kernel method and then calculates the
PCA in the high-dimensional feature space. The linear PCA in the high-dimensional
feature space corresponds to a nonlinear PCA in the original input space.

Given an input pattern set xi 2 <J1 ji ¼ 1; 2; . . .;Nf g;u : <J1 ! <J2 is a non-
linear map from the J1-dimensional input to the J2-dimensional feature space. A J2-
by-J2 correlation matrix in the feature space is defined by

C1 ¼ 1
N

XN
i¼1

uðxiÞuTðxiÞ: ð3:55Þ

Like the PCA, the set of feature vectors is limited to zero mean

1
N

XN
i¼1

uðxiÞ ¼ 0: ð3:56Þ

A procedure to select / satisfying (3.56) is given in [41, 42]. The PCs can then
be computed by solving the eigenvalue problem [41, 42]

kv ¼ C1v ¼ 1
N

XN
j¼1

uðxiÞTv
�

uðxiÞ: ð3:57Þ

64 3 Neural Networks for Principal Component Analysis

Thus, v must be in the span of the mapped data

v ¼
XN
i¼1

aiuðxiÞ: ð3:58Þ

After premultiplying both sides of (3.58) by /(xj) and performing mathematical
manipulations, the kernel PCA problem reduces to

Ka ¼ ka; ð3:59Þ

where k and a = (a1, …, aN)
T are, respectively, the eigenvalues and the associated

eigenvectors of K, and K is an N � N kernel matrix with

Kij ¼ jðxi; xjÞ ¼ uTðxiÞuðxjÞ; ð3:60Þ

where j(�) is a kernel function.
Popular kernel functions used in the kernel method are the polynomial, Gaussian

kernel, and sigmoidal kernels, which are, respectively, given by

jðxi; xjÞ ¼ xTi xj þ h
� �a0

; ð3:61Þ

jðxi; xjÞ ¼ e�
xi�xjk k2

2r2 ; ð3:62Þ

jðxi; xjÞ ¼ tanh c0 xTi xj
� �þ h

� �
; ð3:63Þ

where a0 is a positive integer, r > 0, and c0, h 2 R. Even if the exact form of /(�)
does not exist, any symmetric function j (xi, xj) satisfying Mercer’s theorem can be
used as a kernel function.

Arrange the eigenvalues in the descending order k1 � k2 � ��� � kJ2 > 0 and
denote their associated eigenvectors as a1, … aJ2. The eigenvectors are further
normalized as aTk ak ¼ 1=kk .

The nonlinear PCs of x can be extracted by projecting the mapped pattern
/(x) onto vk

vTkuðxÞ ¼
XN
j¼1

ak;jjðxj; xÞ; ð3:64Þ

for k = 1, 2, …, J2, where ak, j is the jth element of ak.
The kernel PCA algorithm is much more complicated and may sometimes be

trapped more easily into local minima. The PCA needs to deal with an eigenvalue
problem of a J1 � J1 matrix, while the kernel PCA needs to solve an eigenvalue
problem of an N � N matrix. Sparse approximation methods can be applied to
reduce the computational cost.

3.7 Nonlinear Principal Component Analysis 65

3.7.2 Robust/Nonlinear Principal Component Analysis

In order to increase the robustness of the PCA against outliers, a simple way is to
eliminate the outliers or replace them by more appropriate values. A better alter-
native is to use a robust version of the covariance matrix based on the M-estimator.
The data from which the covariance matrix is constructed may be weighted such
that the samples far from the mean have less importance.

Several popular PCA algorithms have been generalized into robust versions by
applying a statistical physics approach [43], where the defined objective function
can be regarded as a soft generalization of the M-estimator. In this subsection,
robust PCA algorithms are defined so that the optimization criterion grows less than
quadratically and the constraint conditions are the same as for the PCA algorithms
[44], which are based on a quadratic criterion. The robust PCA problem usually
leads to mildly nonlinear algorithms, in which the nonlinearities appear at selected
places only and at least one neuron produces the linear response yi = xTwi. When all
neurons generate nonlinear responses yi = u(xTwi), the algorithm is referred to as
the nonlinear PCA.

Variance Maximization-based Robust Principal Component Analysis:

The PCA is to maximize the output variances E y2i
� � ¼ E wT

i x
� �2h i

¼ wT
i Cwi of

the linear network under orthonormality constraints. In the hierarchical case, the
constraints take the form wT

i wj ¼ dij; j� i; dij being the Kronecker delta. In the
symmetric case, symmetric orthonormality constraints wT

i wj ¼ dij are applied.
The SLA and GHA algorithms correspond to the symmetric and hierarchical net-
work structures, respectively.

To derive robust PCA algorithms, the variance maximization criterion is gen-
eralized as E r wT

i x
� �� �

for the ith neuron, subject to hierarchical or symmetric
orthonormality constraints, where r(x) is the M-estimator assumed to be a valid
differentiable cost function that grows less than quadratically, at least for large
x. Examples of such functions are r(x) = lncosh(x) and r(x) = |x|. The robust PCA
in general does not coincide with the corresponding PCA solution, although it can
be close to it. The robust PCA is derived by applying the gradient descent method
[21, 44]

wiðtþ 1Þ ¼ wiðtÞþ gðtÞuðyiðtÞÞeiðtÞ; ð3:65Þ

eiðtÞ ¼ xðtÞ � x̂iðtÞ; ð3:66Þ

x̂iðtÞ ¼
XIðiÞ
j¼1

yjðtÞwjðtÞ; ð3:67Þ

where ei(t) is the instantaneous representation error vector, and the influence
function uðxÞ ¼ drðxÞ=dx:

66 3 Neural Networks for Principal Component Analysis

In the symmetric case, I(i) = J2 and the errors ei(t) = e(t), i = 1, …, J2. When
/(x) = x, the algorithm is simplified to the SLA. Otherwise, it defines a robust
generalization of Oja’s rule, first proposed quite heuristically. In the hierarchical
case, I(i) = i, i = 1, …, J2. If /(x) = x, the algorithm coincides exactly with the
GHA; Otherwise, it defines a robust generalization of the GHA. In the hierarchical
case, ei(t) can be calculated in a recursive form eiðtÞ ¼ ei�1ðtÞ � yiðtÞwiðtÞ; with
e0ðtÞ ¼ xðtÞ:

Mean Squared Error Minimization-based Robust Principal Component Analysis:

PCA algorithms can also be derived by minimizing the MSE E eik k2
h i

; where

eiðtÞ ¼ xðtÞ � x̂iðtÞ: Accordingly, robust PCA can be obtained by minimizing

1TE½rðeiÞ� ¼ E hðeiÞk k2
h i

; where 1 is a J2-dimensional vector, all of whose entries

are unity, and r(�) and h(�) are applied componentwise on the input vector. Here,
hðxÞ ¼ ffiffiffiffiffiffiffiffiffi

rðxÞp
. When r(x) = x2, it corresponds to the MSE. A robust PCA is

defined if r(x) grows less than quadratically. Using the gradient descent method
leads to

wiðtþ 1Þ ¼ wiðtÞþ gðtÞ wiðtÞTuðeiðtÞÞxðtÞþ xTðtÞwiðtÞuðeiðtÞÞ
h i

; ð3:68Þ

where wi estimates the robust counterparts of the principal eigenvectors ci. The first
term in the bracket is very small and can be neglected, and thus we can get a
simplified algorithm

wiðtþ 1Þ ¼ wiðtÞþ gðtÞxTðtÞwiðtÞuðeiðtÞÞ ¼ wiðtÞþ gðtÞyiðtÞuðeiðtÞÞ: ð3:69Þ

Algorithms (3.69) and (3.65) resemble each other. However, Algorithm (3.69)
generates a linear final input–output mapping, while in Algorithm (3.65) the input–
output mapping is nonlinear. When /(x) = x, algorithms (3.69) and (3.65) are the
same as the SLA in the symmetric case, and the same as the GHA in the hierar-
chical case.

Another Nonlinear Extension to Principal Component Analysis:
A nonlinear PCA algorithm may be derived by the gradient descent method for

minimizing the MSE E eik k2
h i

; where the error vector ei is a nonlinear extension to

eiðtÞ ¼ xðtÞ � x̂iðtÞ: The nonlinear PCA so obtained has a form similar to the robust
PCA given by (3.65) through (3.67)

wiðtþ 1Þ ¼ wiðtÞþ gðtÞuðyiðtÞÞeiðtÞ; ð3:70Þ

eiðtÞ ¼ xðtÞ �
XIðiÞ
j¼1

uðyjðtÞÞwjðtÞ; ð3:71Þ

for i = 1, …, J2.

3.7 Nonlinear Principal Component Analysis 67

In this case, I(i) = J2 and all eiðtÞ are the same. The nonlinear PCA in the
hierarchical case is a direct nonlinear generalization of the GHA. In the hierarchical
case, I(i) = i and (3.71) can be computed recursively

eiðtÞ ¼ ei�1ðtÞ � uðyiðtÞÞwiðtÞ; ð3:72Þ

with e0ðtÞ ¼ xðtÞ:
It has been pointed out in [44] that robust and nonlinear PCA algorithms have

better stability than the corresponding PCA algorithms if the (odd) nonlinearity
/(x) grows less than linearly, namely |/(x)| < |x|. On the contrary, nonlinearities
growing faster than linearly cause stability problems easily and therefore are not
recommended.

3.7.3 Autoassociative Network-Based Nonlinear PCA

The MLP can be used to perform nonlinear dimension reduction and hence non-
linear PCA. Both the input and output layers of the MLP have J1 units, and one of
its hidden layers, known as the bottleneck or representation layer, has J2 units,
J2 < J1. The network is trained to reproduce its input vectors. This kind of network
is called the autoassociative MLP. After the network is trained, it performs a
projection onto the J2-dimensional subspace spanned by the first J2 principal
components of the data. The vectors of weights leading to the hidden units form a
basis set that spans the principal subspace, and data compression therefore occurs in
the bottleneck layer. Many applications of the MLP in autoassociative mode for
PCA are available in the literature [45, 46].

The three-layer autoassociative J1-J2-J1 feedforward network or MLP network
can also be used to extract the first J2 principal components of J1-dimensional data.
If nonlinear activation functions are applied in the hidden layer, the network per-
forms as a nonlinear PCA network. In the case of nonlinear units, local minima
certainly appear. However, if linear units are used in the output layer, nonlinearity
in the hidden layer is theoretically meaningless [45]. This is due to the fact that the
network tries to approximate a linear mapping.

3.8 Other PCA or Extensions of PCA

Besides the algorithms reviewed in the preceding parts, there exist lots of other
PCAs or their extensions. For example, there are minor component analysis, con-
strained PCA, localized PCA, incremental PCA, supervised PCA, complex-valued
PCA, two-dimensional PCA, generalized eigenvalue decomposition, singular value
decomposition, canonical correlation analysis, etc. Among these algorithms, minor
component analysis (MCA), generalized eigenvalue decomposition, and singular

68 3 Neural Networks for Principal Component Analysis

value decomposition are important PCA algorithms or extensions. So we will have
separate chapters to study them, respectively. See Chaps. 4, 8 and 9 for more
details. Here, we only discuss the remaining algorithms.

Constrained PCA: When certain subspaces are less preferred than others, this
yields the constrained PCA [47]. The optimality criterion for constrained PCA is
variance maximization, as in PCA, but with an external subspace orthogonality
constraint that extracts principal components orthogonal to some undesired sub-
space [3]. Constrained PCA first decomposes the data matrix by projecting the data
matrix onto the spaces spanned by matrices of external information and then applies
PCA to the decomposed matrices, which involves generalized SVD. APEX can be
applied to recursively solve the constrained PCA problem [26].

Localized PCA: The nonlinear PCA problem can be overcome using localized
PCA [3]. First, the data space is partitioned into a number of disjunctive regions,
followed by the estimation of the principal subspace within each partition by linear
PCA. The distribution is then collectively modeled by a collection of linear PCA
models, each characterizing a partition. It should be noted that the localized PCA is
different from local PCA. In the latter, the update at each node makes use of only
local information. VQ-PCA [48] is a locally linear model that uses vector quanti-
zation to define the Voronoi regions for localized PCA. An online localized PCA
algorithm [49] was developed by extending the neural gas method. ASSOM is
another localized PCA for unsupervised extraction of invariant local features from
the input data. Localized PCA provides an efficient means to decompose
high-dimensional data compression problems into low-dimensional ones [3].

Incremental PCA: Incremental PCA algorithm can update eigenvectors and
eigenvalues incrementally. It is applied to a single training sample at a time, and the
intermediate eigen problem must be solved repeatedly for every training sample [50].
Chunk incremental PCA [51] processes a chunk of training samples at a time. It can
reduce the training time effectively and obtain major eigenvectors with fairly good
approximation. In Chunk incremental PCA, the update of an eigen space is com-
pleted by performing single eigenvalue decomposition. The SVD updating-based
incremental PCA algorithm [52] gives a close approximation to the batch-mode PCA
method, and the approximation error is proved to be bounded. Candid
covariance-free IPCA [53] is a fast incremental PCA algorithm, which is used to
compute the principal components of a sequence of samples incrementally without
estimating the covariance matrix.

Supervised PCA: Like supervised clustering, supervised PCA [54] is achieved
by augmenting the input of PCA with the class label of the data set. Class-
augmented PCA [55] is a supervised feature extraction method, which is composed
of processes for encoding the class information, augmenting the encoded infor-
mation to data, and extracting features from class-augmented data by applying
PCA.

Complex-valued PCA: Complex PCA is a generalization of PCA in
complex-valued data sets [56], and it employs the same neural network architecture
as for PCA, but with complex weights. Complex-domain GHA [57] extends GHA
for complex principal component extraction, and it is very similar to GHA except

3.8 Other PCA or Extensions of PCA 69

http://dx.doi.org/10.1007/978-981-10-2915-8_4
http://dx.doi.org/10.1007/978-981-10-2915-8_8
http://dx.doi.org/10.1007/978-981-10-2915-8_9

that complex notations are introduced. In [58], a complex-valued neural network,
model is developed for nonlinear complex PCA, and it uses the architecture of
Kramer’s nonlinear PCA network, but with complex weights and biases. The
algorithm can extract nonlinear features missed by PCA. Both PAST and PASTd
are, respectively, the PSA and PCA algorithms derived for complex-valued signals
[28]. Complex-valued APEX [59] actually allows for extracting a number of
principal components from a complex-valued signal. The robust complex PCA
algorithms have also been derived in [60] for hierarchically extracting principal
components of complex-valued signals using a robust statistics-based loss function.

Two-dimensional PCA: Because of the small-sample-size problem for image
representation, PCA is prone to be overfitted to the training set. Two-dimensional
PCA can address these problems. In two-dimensional PCA, an image covariance
matrix is constructed directly using the original image matrices instead of the
transformed vectors, and its eigenvectors are derived for image feature extraction.

2DPCA [61] evaluates the covariance (scatter) matrix more accurately than PCA
does, since it only reflects the information between rows and is a row-based PCA.
Diagonal PCA [62] improves 2DPCA by defining the image scatter matrix as the
covariances between the variations of the rows and those of the columns of the
images and is more accurate than PCA and 2DPCA. In modular PCA [63], an
image is divided into n1 subimages and PCA is performed on all these subimages.
2DPCA and modular PCA both solve the overfitting problems by reducing the
dimension and by increasing the training vectors yet introduce the high feature
dimension problem.

Bidirectional PCA [64] reduces the dimension in both column and row direc-
tions for image feature extraction, whose feature dimension is much less than that of
2DPCA. It has to be performed in batch mode. PCA-L1 [65] is a fast and robust L1-
norm-based PCA. L1-norm-based two-dimensional PCA (2DPCA-L1) [66] is a
two-dimensional generalization of PCA-L1 [65]. It avoids the eigen decomposition
process, and its iteration step is easy to perform. The uncorrelated multilinear PCA
algorithm [67] is used for unsupervised subspace learning of tensorial data. It not
only obtains features that maximize the variance captured, but also enforces a
zero-correlation constraint, thus extracting uncorrelated features.

3.9 Summary

An overview of a variety of neural network-based principal component analysis
algorithms has been presented in this chapter. Many new adaptive PCA algorithms
are being added to this field, indicating a consistent interest in this direction.
Nevertheless, neural network-based PCA algorithms have been considered a
matured subject. Many problems and current research interest lie in performance
analysis of PCA algorithms, minor component analysis, generalization or exten-
sions of PCA algorithms, etc., which will be discussed in the next chapters.

70 3 Neural Networks for Principal Component Analysis

References

1. Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks: Theory and
applications. New York: Wiley.

2. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Berlin: Springer.
3. Du, K. L., & Swamy, M. N. S. (2013). Neural networks and statistical learning. Berlin:

Springer.
4. Liu J. L, Wang H., Lu J. B., Zhang B. B., & Du K. L. (2012). Neural network

implementations for PCA and its extensions. Artificial Intelligence. doi:10.5402/2012/847305
5. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
6. Zafeiriou, S., & Petrou, M. (2010). Nonlinear non-negative component analysis algorithms.

IEEE Transactions on Image Processing, 19(4), 1050–1066.
7. Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-component analysis.

Europhysics Letters, 10(7), 693–698.
8. Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of

Mathematical Biology, 15(3), 267–273.
9. Yuille, A. L., Kammen, D. M., & Cohen, D. S. (1989). Quadrature and development of

orientation selective cortical cells by Hebb rules. Biological Cybernetics, 61(3), 183–194.
10. Linsker, R. (1986). From basic network principles to neural architecture. Proceedings of the

National Academy of Sciences of the USA (Vol. 83, pp. 7508–7512), 8390-8394, 9779-8783.
11. Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer, 21(3),

105–117.
12. Hassoun, M. H. (1995). Fundamentals of artificial neural networks. Cambridge, MA: MIT

Press.
13. Ljung, L. (1977). Analysis of recursive stochastic algorithm. IEEE Transactions on Automatic

Control, 22(4), 551–575.
14. Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural-network

node. IEEE Transactions on Neural Networks, 13(6), 1342–1352.
15. Zhang, Y., Ye, M., Lv, J. C., & Tan, K. K. (2005). Convergence analysis of a deterministic

discrete system of Oja’s PCA learning algorithm. IEEE Transactions on Neural Networks,
16(6), 1318–1328.

16. Oja, E., & Karhunen, J. (1985). On stochastic approximation of the eigenvectors and
eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications, 106(1), 69–84.

17. Chen, L. H., & Chang, S. (1995). An adaptive learning algorithm for principal component
analysis. IEEE Transactions on Neural Networks, 6(5), 1255–1263.

18. Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural
Networks, 5(6), 929–935.

19. Oja, E., Ogawa, H., & Wangviwattana, J. (1992). Principal component analysis by
homogeneous neural networks. IEICE Transactions on Information and Systems, 75(3),
366–382.

20. Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Networks, 2(6), 459–473.

21. Xu, L. (1993). Least mean square error reconstruction principle for self-organizing
neural-nets. Neural Networks, 6(5), 627–648.

22. Rubner, J., & Schulten, K. (1990). Development of feature detectors by self-organization.
Biological Cybernetics, 62(62), 193–199.

23. Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-component analysis.
Europhysics Letters, 10(7), 693–698.

24. Kung, S. Y., & Diamantaras, K. I. (1990). A neural network learning algorithm for adaptive
principal components extraction (APEX). Proceedings of IEEE ICCASSP (pp. 861–864).
Albuquerque, NM.

References 71

http://dx.doi.org/10.5402/2012/847305

25. Foldiak, P. (1989). Adaptive network for optimal linear feature extraction. Proceedings
of International Joint Conference Neural Networks (IJCNN) (Vol. 1, pp. 401–405).
Washington, DC.

26. Kung, S. Y., Diamantaras, K. I., & Taur, J. S. (1994). Adaptive principal components
extraction (APEX) and applications. IEEE Transactions on Signal Processing, 42(5),
1202–1217.

27. Fiori, S., & Piazza, F. (1998). A general class of w-APEX PCA neural algorithms. IEEE
Transactions on Circuits and Systems I, 47(9), 1394–1397.

28. Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal
Processing, 43(1), 95–107.

29. Bannour, S., & Azimi-Sadjadi, M. R. (1995). Principal component extraction using recursive
least squares learning. IEEE Transactions on Neural Networks, 6(2), 457–469.

30. Miao, Y., & Hua, Y. (1998). Fast subspace tracking and neural network learning by a novel
information criterion. IEEE Transactions on Signal Processing, 46(7), 1967–1979.

31. Ouyang, S., Bao, Z., & Liao, G. (2000). Robust recursive least squares learning algorithm for
principal component analysis. IEEE Transactions on Neural Networks, 11(1), 215–221.

32. Ouyang, S., & Bao, Z. (2002). Fast principal component extraction by a weighted information
criterion. IEEE Transactions on Signal Processing, 50(8), 1994–2002.

33. Chatterjee, C., Roychowdhury, V. P., & Chong, E. K. P. (1998). On relative convergence
properties of principal component analysis algorithms. IEEE Transactions on Neural
Networks, 9(2), 319–329.

34. Yang, B. (1995). An extension of the PASTd algorithm to both rank and subspace tracking.
IEEE Signal Processing Letters, 2(9), 179–182.

35. Chauvin, Y. (1989). Principal component analysis by gradient descent on a constrained linear
Hebbian cell. Proceedings of the International Joint Conference on Neural Networks
(pp. 373–380). Washington, DC.

36. Fu, Z., & Dowling, E. M. (1995). Conjugate gradient eigenstructure tracking for adaptive
spectral estimation. IEEE Transactions on Signal Processing, 43(5), 1151–1160.

37. Kang, Z., Chatterjee, C., & Roychowdhury, V. P. (2000). An adaptive quasi-Newton
algorithm for eigensubspace estimation. IEEE Transactions on Signal Processing, 48(12),
3328–3333.

38. Ouyang, S., Ching, P. C., & Lee, T. (2003). Robust adaptive quasi-Newton algorithms for
eigensubspace estimation. IEEE Proceedings—Vision, Image and Signal Processing, 150(5),
321–330.

39. Moller, R., & Konies, A. (2004). Coupled principal component analysis. IEEE Transactions
on Neural Network, 15(1), 214–222.

40. Moller, R. (2006). First-order approximation of Gram-Schmidt orthonormalization beats
deflation in coupled PCA learning rules. Neurocomputing, 69(13–15), 1582–1590.

41. Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computations, 10(5), 1299–1319.

42. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K. R., Rätsch, G., et al. (1970). Input
space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10(5), 1000–1017.

43. Xu, L., & Yuille, A. L. (1995). Robust principal component analysis by self-organizing rules
based on statistical physics approach. IEEE Transactions on Neural Networks, 6(1), 131–143.

44. Karhunen, J., & Joutsensalo, J. (1995). Generalizations of principal component analysis,
optimization problems, and neural networks. Neural Networks, 8(4), 549–562.

45. Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular
value decomposition. Biological Cybernetics, 59(4–5), 291–294.

46. Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural
networks. AIChE Journal, 37(2), 233–243.

47. Kung, S. Y. (1990). Constrained principal component analysis via an orthogonal learning
network. Proceedings of the IEEE International Symposium on Circuits and Systems (Vol. 1,
pp. 719–722). New Orleans, LA.

72 3 Neural Networks for Principal Component Analysis

48. Kambhatla, N., & Leen, T. K. (1993). Fast non-linear dimension reduction. Proceedings
of IEEE International Conference on Neural Networks (Vol. 3, pp. 1213–1218). San
Francisco, CA.

49. Moller, R., & Hoffmann, H. (2004). An extension of neural gas to local PCA.
Neurocomputing, 62(1), 305–326.

50. Hall, P., & Martin, R. (1998). Incremental eigenanalysis for classification. Proceedings of
British Machine Vision Conference (Vol. 1, pp. 286–295).

51. Ozawa, S., Pang, S., & Kasabov, N. (2008). Incremental learning of chunk data for online
pattern classification systems. IEEE Transactions on Neural Networks, 19(6), 1061–1074.

52. Zhao, H., Yuen, P. C., & Kwok, J. T. (2006). A novel incremental principal component
analysis and its application for face recognition. IEEE Transactions on Systems, Man, and
Cybernetics, 36(4), 873–886.

53. Weng, J., Zhang, Y., & Hwang, W. S. (2003). Candid covariance-free incremental principal
component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8),
1034–1040.

54. Chen, S., & Sun, T. (2005). Class-information-incorporated principal component analysis.
Neurocomputing, 69(1–3), 216–223.

55. Park, M. S., & Choi, J. Y. (2009). Theoretical analysis on feature extraction capability of
class-augmented PCA. Pattern Recognition, 42(11), 2353–2362.

56. Horel, J. D. (1984). Complex principal component analysis: Theory and examples. Journal of
Climate and Applied Meteorology, 23(12), 1660–1673.

57. Zhang, Y., & Ma, Y. (1997). CGHAfor principal component extraction in the complex
domain. IEEE Transactions on Neural Networks, 8(5), 1031–1036.

58. Rattan, S. S. P., & Hsieh, W. W. (2005). Complex-valued neural networks for nonlinear
complex principal component analysis. Neural Networks, 18(1), 61–69.

59. Chen, Y., & Hou, C. (1992). High resolution adaptive bearing estimation using a
complex-weighted neural network. Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (Vol. 2, pp. 317–320). San
Francisco, CA.

60. Cichocki, A., Swiniarski, R. W., & Bogner, R. E. (2010). Hierarchical neural network
forrobust PCA computation of complex valued signals. In World Congress on Neural
Networks (pp. 818–821).

61. Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004). Two-dimensional PCA: A new
approach to appearance-based face representation and recognition. IEEE Transactions on
Pattern Analysis Machine Intelligence, 26(1), 131–137.

62. Zhang, D., Zhou, Z. H., & Chen, S. (2006). Diagonal principal component analysis for face
recognition. Pattern Recognition, 39(1), 140–142.

63. Gottumukkal, R., & Asari, V. K. (2004). An improved face recognition technique based on
modular PCA approach. Pattern Recognition Letters, 25(4), 429–436.

64. Zuo, W., Zhang, D., & Wang, K. (2006). Bidirectional PCA with assembled matrix distance
metric for image recognition. IEEE Transactions on Systems, Man, and Cybernetics B, 36(4),
863–872.

65. Kwak, N. (2008). Principal component analysis based on L1-norm maximization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.

66. Li, X., Pang, Y., & Yuan, Y. (2010). L1-norm-based 2DPCA. IEEE Transactions on Systems,
Man, and Cybernetics B, 40(4), 1170–1175.

67. Lu, H., Plataniotis, K. N. K., & Venetsanopoulos, A. N. (2009). Uncorrelated multilinear
principal component analysis for unsupervised multilinear subspace learning. IEEE
Transactions on Neural Networks, 20(11), 1820–1836.

References 73

	3 Neural Networks for Principal Component Analysis
	3.1 Introduction
	3.2 Review of Neural-Based PCA Algorithms
	3.3 Neural-Based PCA Algorithms Foundation
	3.3.1 Hebbian Learning Rule
	3.3.2 Oja’s Learning Rule

	3.4 Hebbian/Anti-Hebbian Rule-Based Principal Component Analysis
	3.4.1 Subspace Learning Algorithms
	3.4.1.1 Symmetrical Subspace Learning Algorithm
	3.4.1.2 Weighted Subspace Learning Algorithm

	3.4.2 Generalized Hebbian Algorithm
	3.4.3 Learning Machine for Adaptive Feature Extraction via PCA
	3.4.4 The Dot-Product-Decorrelation Algorithm (DPD)
	3.4.5 Anti-Hebbian Rule-Based Principal Component Analysis
	3.4.5.1 Rubner-Tavan PCA Algorithm
	3.4.5.2 APEX Algorithm

	3.5 Least Mean Squared Error-Based Principal Component Analysis
	3.5.1 Least Mean Square Error Reconstruction Algorithm (LMSER)
	3.5.2 Projection Approximation Subspace Tracking Algorithm (PAST)
	3.5.3 Robust RLS Algorithm (RRLSA)

	3.6 Optimization-Based Principal Component Analysis
	3.6.1 Novel Information Criterion (NIC) Algorithm
	3.6.2 Coupled Principal Component Analysis

	3.7 Nonlinear Principal Component Analysis
	3.7.1 Kernel Principal Component Analysis
	3.7.2 Robust/Nonlinear Principal Component Analysis
	3.7.3 Autoassociative Network-Based Nonlinear PCA

	3.8 Other PCA or Extensions of PCA
	3.9 Summary
	References

