Chapter 2
Matrix Analysis Basics

In this chapter, we review some basic concepts, properties, and theorems of singular
value decomposition (SVD), eigenvalue decomposition (ED), and Rayleigh quo-
tient of a matrix. Moreover, we also introduce some basics of matrix analysis. They
are important and useful for our theoretical analysis in subsequent chapters.

2.1 Introduction

As discussed in Chap. 1, the PC or MC can be obtained by the ED of the sample
correlation matrix or the SVD of the data matrix, and ED and SVD are also primal
analysis tools. The history of SVD can date back to the 1870s, and Beltrami and
Jordan are acknowledged as the founder of SVD. In 1873, Beltrami [1] published
the first paper on SVD, and one year later Jordan [2] published his independent
reasoning about SVD. Now, SVD has become one of the most useful and most
efficient modern numerical analysis tools, and it has been widely used in statistical
analysis, signal and image processing, system theory and control, etc. SVD is also a
fundamental tool for eigenvector extraction, subspace tracking, and total least
squares problem, etc.

On the other hand, ED is important in both mathematical analysis and engi-
neering applications. For example, in matrix algebra, ED is usually related to the
spectral analysis, and the spectral of a linear arithmetic operator is defined as the set
of eigenvalues of the matrix. In engineering applications, spectral analysis is con-
nected to the Fourier analysis, and the frequency spectral of signals is defined as the
Fourier spectral, and then the power spectral of signals is defined as the square of
frequency spectral norm or Fourier transform of the autocorrelation functions.

Besides SVD and ED, gradient and matrix differential are also the important
concepts of matrix analysis. In view of the use of them in latter chapters, we will
provide detailed analysis of SVD, ED, matrix analysis, etc. in the following.
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2.2 Singular Value Decomposition

As to the inventor history of SVD, see Stewart’s dissertation. Later, Autonne [3]
extended SVD to complex square matrix in 1902, and Eckart and Young [4] further
extended it to general rectangle matrix in 1939. Now, the theorem of SVD for
rectangle matrix is usually called Eckart—Young Theorem.

SVD can be viewed as the extension of ED to the case of nonsquare matrices. It
says that any real matrix can be diagonalized by using two orthogonal matrices. ED
works only for square matrices and uses only one matrix (and its inverse) to achieve
diagonalization. If the matrix is square and symmetric, then the two orthogonal
matrices of SVD will be the same, and ED and SVD will also be the same and
closely related to the matrix rank and reduced-rank least squares approximations.

2.2.1 Theorem and Uniqueness of SVD

Theorem 2.1 For any A € R™" (or C™*"), there exist two orthonormal (or uni-
tary) matrices U € ™" (or C"™™) and V € ™" (or C""), such that

A=UzV" (or A=UZV"), (2.1)

where,
P
=% 0
and X = diagloy, 02, . ..0,], its diagonal elements are arranged in the order:

01>0,> -+ >0,>0, t=rank(A)

The quantity o1,0,,...,0, together with 0,1 =0,,2,=---=0,=0 are
called the singular values of matrix A. The column vector u; of matrix U is called
the left singular vector of A, and the matrix U is called the left singular matrix. The
column vector v; of matrix V is called the right singular vector of A, and the matrix
V is called the right singular matrix. The proof of Theorem 2.1 can see [4, 5].
The SVD of matrix A can also be written as:

A :ZO','II,'V[H. (22)
i=1
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It can be easily seen that
AAf = Uyt (2.3)

which shows that the singular value a; of the m x n matrix A is the positive square
root of the eigenvalue (these eigenvalues are nonpositive) of the matrix product
AAM.

The following theorem strictly narrates the singular property of a matrix A.

Theorem 2.2 Define the singular values of matrix A € R™" (m >n) as
612022+ >0,2>0.
Then

6, = min {|\E|| ~rank(A+E)g(k_1)}, k=1,2,...n (2.4)

Eecmxn Spec.

and there is an error matrix which meets ||E¢||,,..= 0% so that

spec
rank(A+Ey)=r—1, k=12,...,n

Theorem 2.2 shows that the singular value of a matrix is equal to the spectral
norm of the error matrix E; which makes the rank of the original matrix reduce one.
If the original n X n matrix A is square and it has a zero singular value, the spectral
norm of error matrix whose rank reduces to one is equal to zero. That is to say,
when the original n X n matrix A has a zero singular value, the rank of the matrix is
rank(A) <n — 1 and the original matrix is not full-rank essentially. So, if a matrix
has a zero singular value, the matrix must be singular matrix. Generally speaking, if
a rectangle matrix has a zero singular value, then it must not be full column rank or
full row rank. This case is called rank-deficient matrix, which is a singular phe-
nomenon with regards to the full-rank matrix.

In the following, we discuss the uniqueness of SVD.

(1) The number r of nonzero singular values and their values o1, 0,,...,0, is
unique relative to matrix A.

(2) If rank(A) = r, the dimension of the sets of vector x € C"* which meets
Ax = 0, namely the zero space of matrix A, is equal to n — r. Thus, one can
select orthogonal basis {v,H, Vpioyeo vn}as the zero space of matrix A in
C". From this point, the subspace Null(4)of C" spanned by column vectors of
V is uniquely determined. However, as long as every vector can constitute the
orthogonal basis of this subspace, they can be selected arbitrarily.

(3) The sets of y(€ C") which can be denoted as y = Ax constitute the image
space ImA of matrix A, whose dimension is equal to r. The orthogonal sup-
plement space (ImA)" of ImA is m-r dimensional. Thus, one can select
{u,1,u,42,...,u,}as the orthogonal basis of (ImA)L. The subspace

(ImA)L of C" spanned by the column vectors u, 1,4, 2,...,u, of U is
uniquely determined.
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(4) If o; is single singular value (o,- # 0j,Vj # i), v; and u; is uniquely determined
except discrepancy of an angle. That is to say, after v; and u; multiply
659(' =v-1 ) and 0 is real number) at the same time, they are still the right
and left singular vectors, respectively.

2.2.2 Properties of SVD

Assume A € ™", B € ™", and r4 =rank(A), p = min{m,n}. The singu-
lar values of matrix A can be arranged as follows: ognx =01 >0,2> -
> 0,_1 >0, = omin >0, and denote by o;(B)the ith largest singular value of matrix
B. A few properties of SVD can summarized as follows [6]:

(1) The relationship between the singular values of a matrix and the ones of its
submatrix.

Theorem 2.3 (interlacing theorem for singular values). Assume A € R"™*", and its
singular values satisfy 61> 0, > -+ > a,, where r = min{m,n}. If B € ¥ % is a
submatrix of A, and its singular values satisfy p; > 7, > -+ 2 Vyingp gy, then it
holds that

>y, i=1,2,...,min{p,q} (2.5)
and

Vi Z Oit (mp)+ (n—q)» i <min{p+q—m,p+q—n}. (2.6)

From Theorem 2.3, it holds that: If B € ®7*("~1) is a submatrix of A € R"*" by

deleting any column of matrix A, and their singular values are arranged in
non-decreasing order, then it holds that

51(A) > 01 (B) > 02(A) > 62(B)> - > a,(A) > a,(B) >0,  (2.7)

where h = min{m,n — 1}.
If B € R"=1*" is a submatrix of A € R”*” by deleting any row of matrix A,
and their singular values are arranged as non-decreasing order, then it holds that

(] (A) > g1 (B) > O'2(A) > O'Q(B) Z s O'h(A) 2 O'h(B) 20 (28)

(2) The relationship between the singular values of a matrix and its norms.
The spectral norm of a matrix A is equal to its largest singular value, namely,
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3

“

A (2.9)

spec

According to the SVD theorem of matrix and the unitary invariability property
of Frobenius norm [|A || of matrix A, namely ||U#AV|| .= ||A|| ., it holds that

A= [ZZ | ] = [[U"AV||, = |12l = /ot + o3+ -+

i=1 j=

(2.10)

That is to say, the Frobenius norm of any matrix is equal to the square root of
the sum of the squares of all nonzero singular values of this matrix.
Consider the rank-k approximation of matrix A and denote it as Ay, in which
k<r =rank(A). The matrix A; is defined as follows:

k
= E ()','ll,"’i-q,k<}"7
i=1

Then the spectral norm of the difference between A and any rank(k) matrix B,
and the Frobenius norm of the difference can be written, respectively, as
follows:

mnlg(lg)l:r”A - BHspec ”A Ak“spec Ok+1, (211)
mln ||A B”F*HA AkHF*Gk+1+O'k+2+ (2.12)

rank(B)

The above properties are the basis of many concepts and applications. For
example, the total least squares, data compression, image enhancement, the
solution of linear equations, etc., all need to approximate A using a lower rank
matrix.

The relationship between the singular values of a matrix and its determinant.
Define A as an n X n square matrix. Since the absolute value of the deter-
minant of a unitary matrix is equal to one, from SVD theorem it holds that

|det(A)| = |detX| = 102 - - - 0y (2.13)

If all ¢; are non-zero, then |det(A)| # 0, which means that A is nonsingular. If
at least one o;(i > r) is equal to zero, then |det(A)| = 0, namely A is singular.
The relationship between the singular values of a matrix and its condition
number.

For an m x n matrix A, its condition number can be defined using SVD as
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cond(A) =ag/0,, p=min{m,n}. (2.14)

Since o1 > 6,, the condition number is a positive number which is equal to or
larger than one. Obviously, since there is at least one singular value which
meets g, = 0, the condition number of a singular matrix is infinite. When the
condition number, though not infinite, is very large, the matrix A is called to
be close to singular. Since the condition number of unitary or orthogonal
matrix is equal to one, the unitary or orthogonal matrix is of “ideal condition”.
Equation (2.14) can be used to evaluate the condition number.

Maximal singular value and minimal singular value.

If m > n, for any matrix A,,x,, it holds that

1/2
Omin(A) = min{ (%) ix #£ 0} 2.15)

= min{(xHAHAx)l/Z: xix=1,x € (C"}

and

xHAHAx\
Omax(A) = max{ <W> x #0

= max{(xHAHAx)1/2: xfx=1,x € (C”}.

(2.16)

The relationship between the singular values and eigenvalues.

Suppose that the eigenvalues of an n X n symmetrical square matrix A are
My, A > 22]] > -+ > || Aal|]), and  its  singular values are
01,02,...,0, (01 >0,> -+ >0,2>20). Then ag;>|4]|>0,(i=1,2,...,n)
and cond(A) > |A1|/]2a]-

2.3 Eigenvalue Decomposition

2.3.1 Eigenvalue Problem and Eigen Equation

The basic problem of the eigenvalue can be stated as follows. Given an n X n
matrix A, determine a scalar 4 such that the following algebra equation

Au=/u, u#0 (2.17)

has an n x 1 nonzero solution. The scalar / is called as an eigenvalue of matrix A,
and the vector u is called as the eigenvector associated with /. Since the eigenvalue
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A and eigenvector u appear in couples, (4, u) is usually called as an eigen pair of
matrix A. Although the eigenvalues can be zeros, the eigenvectors cannot be zero.
In order to determine a nonzero vector u#, Eq. (2.17) can be modified as

(A—Du =0. (2.18)

The above equation should come into existence for any vector u, so the unique
condition under which Eq. (2.18) has a nonzero solution # = 0 is that the deter-
minant of matrix A — Al is equal to zero, namely

det(A — AI) = 0. (2.19)

Thus, the solution of the eigenvalue problem consists of the following two steps:

(1) Solve all scalar 4 (eigenvalues) which make the matrix A — AI singular.
(2) Given an eigenvalue 4 which makes A = AI singular, and to solve all nonzero
vectors which meets (A — Al)x = 0, i.e., the eigenvectors corresponding to /.

According to the relationship between the singular values of a matrix and its
determinant, a matrix is singular if and only if det(A — AI) = 0,, namely

(A — AIx singular < det(A — AI) = 0. (2.20)

The matrix (A — AI) is called as the eigen matrix of A. When A is an n X n
matrix, spreading the left side determinant of Eq. (2.20) can obtain a polynomial
equation (power-n), namely

oo+ oAt o Ao AT (=) =0, (2.21)

which is called as the eigen equation of matrix A. The polynomial det(A — AI) is
called as the eigen polynomial.

2.3.2 Eigenvalue and Eigenvector

In the following, we list some major properties about the eigenvalues and eigen-
vector of a matrix A.
Several important terms about the eigenvalues and eigenvectors [6]:

(1) The eigenvalue A of a matrix A is called as having algebraic multiplicity y, if 2
is a p-repeated root of the eigen equation det(A — AI) = 0.

(2) If the algebraic multiplicity of eigenvalue 4 is equal to one, the eigenvalue is
called as single eigenvalue. Non-single eigenvalues are called as multiple
eigenvalues.

(3) The eigenvalue A of a matrix A is called as having geometric multiplicity y, if
the number of linear independent eigenvectors associated with 4 is equal to y.
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An eigenvalue is called half-single eigenvalue if its algebraic multiplicity is
equal to geometric multiplicity. Not half-single eigenvalues are called as wane
eigenvalues.

If matrix A,«, is a general complex matrix and 4 is its eigenvalue, the vector
v which meets Av = v is called as the right eigenvector associated with the
eigenvalue 4, and the eigenvector u which meets u?A = ju'! is called as the
left eigenvector associated with the eigenvalue A. If A is Hermitian matrix and
all its eigenvalues are real number, then it holds that v = u, that is to say, the
left and right eigenvectors of a Hermitian matrix are the same.

Some important properties can be summarized as follows:

D
(@)
(©)
“)

S
(©6)
)

®)
(€))

(10)

QY

12)

13)

(14)

Matrix A (€ R™*") has n eigenvalues, of which the multiple eigenvalues are
computed according to their multiplicity.

If A is a real symmetrical matrix or Hermitian matrix, all its eigenvalues are
real numbers.

If A = diag(a;, azs,..., any), its eigenvalues are a;, dos,..., dny; If A is a
trigonal matrix, its diagonal elements are all its eigenvalues.

For A (€ "), if A is the eigenvalue of matrix A, 1 is also the eigenvalue of
matrix A™. If / is the eigenvalue of matrix A, 1* is the eigenvalue of matrix
A If ] is the eigenvalue of matrix A, A+ o2 is the eigenvalue of matrix
A+ d’1. If /. is the eigenvalue of matrix A, 1/ is the eigenvalue of matrix
A

All eigenvalues of matrix A = A are either 0 or 1.

If A is a real orthogonal matrix, all its eigenvalues are on the unit circle.

If a matrix is singular, at least one of its eigenvalues is equal to zero.

The sum of all the eigenvalues is equal to its trace, namely > 2; = tr(A).
i=1

The nonzero eigenvectors uy, u,, . . ., u, associated with different eigenvalues
A1y A2, .. .2y, are linearly independent.
If matrix A (€ R"") has r nonzero eigenvalues, then it holds that
rank(A) > r; If zero is a non-multiple eigenvalue, then rank(A) >n — 1; If
rank(A—/I) >n — 1, then 1 is an eigenvalue of matrix A.
The product of all eigenvalues of matrix A is equal to the determinant of
matrix A, namely [] 4; = det(A) = |A].

i=1
A Hermitian matrix A is positive definite (or positive semi-definite), if and
only if all its eigenvalues are positive (or non-negative).
If the eigenvalues of matrix A are different, then one can find a similar matrix
such that S™'AS = D(diagonal matrix) and the diagonal elements of D are
the eigenvalues of matrix A.

(Cayley—Hamilton Theorem) : If 41, 45, .. .4, are the eigenvalues of an n X n
matrix A, then [[ (A — 4I) =0.

i=1
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s)

(16)

a7

(18)

19)

(20)

2y

(22)

(23)

It is not possible that the geometric multiplicity of any eigenvalue 4 of an
n X n matrix A is larger than its algebraic multiplicity.
If 1 is an eigenvalue of an n X n matrix A and an n X n matrix B is not
singular, then / is also an eigenvalue of B~'AB. However, the corresponding
eigenvectors are usually different. If 4 is an eigenvalue of an n X n matrix
A and an n x n matrix B is a unitary matrix, then 4 is also an eigenvalue of
BAB. However, the corresponding eigenvectors are usually different. If 1 is
an eigenvalue of an n X n matrix A and an n X n matrix B is a orthogonal
matrix, then / is also an eigenvalue of B’AB. However, the corresponding
eigenvectors are usually different.
The largest eigenvalue of an n X n matrix A = [a,j] is less than or equal to
the maximal of the sum of all the column elements of this matrix, namely
Amax < max zn: a;.

J=1
The eigenvalues of autocorrelation matrix R = E{x(#)x"(¢)} of stochastic
vector x() = [x;(1),x,(1), .. .x,(r)]" is within the maximal power of signal
Prax = mlaxE{|x,~(t)|2} and its minimal power P, = miin E{|x,-(t)|2},

namely Pmin < j-i < Pmax«

The spread of eigenvalues in autocorrelation matrix R of a stochastic vector
x(1) is x(R) = Amax/ 2min-

If |[4|<1,i=1,2,...,n, the matrix A +1I, is nonsingular. |4]|<1,i=
1,2,...,n,is equivalent to the case in which the roots of det(A — zI,,) = 0 is
not on or at the interior of the unit circle.

For m x n(n>m) matrix A and n X m matrix B, if A is an eigenvalue of the
product AB, then A is also an eigenvalue of the product BA. If 1 #£ 0 is an
eigenvalue of the product BA, then 1 is also an eigenvalue of the product AB.
If Ay, 41,...4, are eigenvalues of the product AB, then the eigenvalues of

matrix product BA are A1, /43, ...4y,0,...,0.
If the eigenvalue of matrix A is 4, then the eigenvalue of matrix polynomia
fA)=A"4c A" - e A teld is

FA) =42 et cn
If 4 is an eigenvalue of matrix A, then the eigenvalue of matrix exponential

A A

function e is e

Properties of an eigen pair which consists of an eigenvalue 4 and its associated
eigenvector # can be summarized as follows:

)
(@)
(©)

If (Z,u) is an eigen pair of matrix A, then (cA,u) is an eigen pair of matrix
cA, where ¢ is a nonzero constant.

If (A, u) is an eigen pair of matrix A, then (4, cu) is an eigen pair of matrix A,
where ¢ is a nonzero constant.

If (Z;,u;) and (4;,u;) are eigen pairs of matrix A and A; # J;, then the
eigenvector u; and u; are linearly independent.
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(4) The eigenvectors of an Hermitian matrix associated with different eigen-
values are mutual orthogonal to each other, namely 4; # 4; = uffu; = 0.

(5) If /is an eigenvalue of matrix A and the vectors u; and u, are the eigen-
vectors associated with A, then cyu; + cou; is also an eigenvector of matrix
A associated with the eigenvalue A, in which ¢; and u, are constants and at
least one of them is not zero.

(6) If (4,u) is an eigen pair of matrix A and oy, %, . . ., o, are complex constants,
then f(A) = g+ oA+ -+ + o, A7 is the eigenvalue of matrix polynomial
flA) = ol + 1A + - +a,AP, and the associated eigenvector is still u.

(7) If (A, u) is an eigen pair of matrix A, then (/lk, u) is an eigen pair of matrix
A~

(8) If (4,u) is an eigen pair of matrix A, then (ei, u) is an eigen pair of matrix
exponential function e*.

(9) If A(A) and A(B) are eigenvalues of matrices A and B, respectively, and u(A)
and u(B) are their associated eigenvectors, then A(A)A(B) is an eigenvalue of
matrix Kronecker product A ® B with u(A) ® u(B) being the associated
eigenvector, and A(A) and A(B) are the eigenvalues of matrix direct sum

A @B with [u(g{)} and [u(oB)] being the associated eigenvectors,
respectively.

(10) If an n x n matrix A has n linearly independent eigenvectors, then its ED is
A =UXU™"', where the n x n eigen matrix U consists of n eigenvectors of
matrix A, and the diagonal elements of the n x n diagonal matrix X are the

eigenvalues of matrix A.

The SVD problem of a matrix A can be transformed into its ED problem to
solve, and there are two methods to realize this.

Method 2.1 The nonzero singular values of matrix A,,y, are the positive square
root of nonzero eigenvalue /; of m X m matrix AAT or n x n matrix ATA, and the
left singular vector #; and right singular vector v; of matrix A associated with o; are
the eigenvectors of matrix AA™ and A™A associated with nonzero eigenvalue 4,
respectively.

Method 2.2 The SVD of matrix A,,, can be transformed into the ED of (m + n) x

|0 A
(m+ n) augmented matrix { AT 0} .

The following theorem holds for the eigenvalues of matrix sum A + B.

Theorem 2.4 (Wely theorem): Suppose that A, B € C"™*" are Hermitian matrices,
and their eigenvalues are arranged as an increasing order, namely,
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Then,
Zi(A) + 21 (B)
Ji—1(A) + 12(B)
Ai(A+B)> : (2.22)
71(A) + 44(B)
and
) Zit1(A) 4+ A1 (B)
/i(A+B) < : (2.23)

In(A) + 24(B).

where i = 1,2, .. .u.
Especially, when A is a real symmetric matrix, and B = azzl, the interlace
theorem in the following holds.

Theorem 2.5 (Interlacing eigenvalue theorem): Suppose that A € ™" is a sym-
metric matrix, and its eigenvalues Ay, ..., Ay, meet Ay > Ay > -+ > J,, and let
z € R be a vector satisfying ||z|| = 1. Suppose that a is a real number and the
eigenvalues of matrix A + azz" meet {; >, > -+ >{,, then it holds that

LG2M>020> - >0,> 0 a>0 (2.24)
or
MW2L>2h>2h> 20>, a<0 (2.25)

and whether a > 0 or a <0, it holds that

n

S (G- =a (2.26)

i=1
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2.3.3 Eigenvalue Decomposition of Hermitian Matrix

All the discussions on eigenvalues and eigenvectors in the above hold for general
matrices, and they do not require the matrices to be real symmetric or complex
conjugate symmetric. However, in the statistical and information science, one
usually encounter real symmetric or Hermitian (complex conjugate symmetric)
matrices. For example, the autocorrelation matrix of a real measurement data vector
R = E{x(t)x" ()} is real symmetric, while the autocorrelation matrix of a complex
measurement data vector R = E{x(¢)x"(¢)} is Hermitian. On the other hand, since
a real symmetric matrix is a special case of Hermitian matrix and the eigenvalues
and eigenvectors of a Hermitian matrix have a series of important properties, and it
is necessary to discuss individually the eigen analysis of Hermitian matrix.

1. Eigenvalue and Eigenvector of Hermitian matrix.
Some important properties of eigenvalues and eigenvectors of Hermitian
matrices can be summarized as follows:

(1) The eigenvalues of an Hermitian matrix A must be a real number.

(2) Let (4,u) be an eigen pair of an Hermitian matrix A. If A is invertible, then
(1/2,u) is an eigen pair of matrix A"

(3) If J is a multiple eigenvalue of Hermitian matrix A” = A, and its multi-
plicity is my, then rank(A — 4) = n — my.

(4) Any Hermitian matrix A is diagonalizable, namely U 'AU = X.

(5) All the eigenvectors of an Hermitian matrix are linearly independent, and
they are mutual orthogonal, namely the eigen matrix U = [uy,uy, ..., u,] is
a unitary matrix and it meets U ! = U,

(6) From property (5), it holds that UYAU = ¥ = diag(A, /2, ..., An)

or A = UXU", which can be rewritten as: A = > liuiu? . This is called
i=1

i-
the spectral decomposition of a Hermitian matrix.
(7) The spread formula of the inverse of an Hermitian matrix A is

"]
Al = 27‘ uul! (2.27)
i=1

Thus, if one know the eigen decomposition of an Hermitian matrix A, then
one can directly obtain the inverse matrix A~! using the above formula.
(8) For two n x n Hermitian matrices A and B, there exists a unitary matrix so
that PAP and P”BP are both diagonal if and only if AB = BA.
(9) For two n x n non-negative definite Hermitian matrices A and B, there
exists a nonsingular matrix P so that P?’AP and P"BP are both diagonal.
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2. Some properties of Hermitian matrix.
The ED of an Hermitian matrix A can be written as A = UXU", where U is a
unitary matrix and it meets UU = UU" =1.
From the property of determinant and trace of a matrix, it holds that

tr(4) = w(UXU") = u(U"UZ) = Z 2y (2.28)

det(A) = det(U) det(X) det(U") H; (2.29)

For a positive definite Hermitian matrix A, its inverse A~! exists and can be
written as

A~ =Udiag(2;', 25, 4 UM (2.30)
Let z4 be the number of zero eigenvalues of matrix A € C"*", then
rank(A) = n — z,, (2.31)

That is to say, the rank of a Hermitian matrix is equal to the number of its
nonzero eigenvalues.
3. Solving for maximal or minimal eigenvalue of Hermitian matrix.

In signal processing, one usually needs to compute the maximal or minimal
eigenvalue of a Hermitian matrix A. The power iteration method is a method for
such purposes.

Select some initial vector x(0), and iteratively repeat the following linear
equation

y(k+1) = Ax(k) (2.32)

to obtain y(k + 1), then normalize it. It holds that

k1) =XKL (2.33)
Ok+1
o1 =y (k+ Dy(k+1). (2.34)

The iterative procedure continues until the vector x; converges. The o, obtained
at the last iteration is the maximal eigenvalue, and the x; is its associated eigen-
vector. Only if the initial vector x(0) is not orthogonal to the eigenvector associated
with the maximal eigenvalue, the convergence can be guaranteed.

If one needs to compute the minimal eigenvalue and its associated eigenvector,
use y(k+1) = A~ 'x(k), i.e., the iterative linear equation is Ay(k+ 1) = x(k).
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By combining the power iteration method and shrink mapping method, one can
compute all eigenvalues and the associated eigenvectors of a Hermitian matrix
A. Suppose that one has obtained some eigenvalue ¢ using the power iteration
method. The first step corresponds to the first maximal eigenvalue and uses the
shrink mapping method to eliminate the eigenvalue. Then matrix A (rankA; = k)
is changed into matrix A;_;(rankA;_; = k — 1). Thus, the maximal eigenvalue of
matrix A;_; is the residual maximal eigenvalue of matrix Ay, which is smaller than
o. It should be noted that the kth step corresponds to the kth maximal eigenvalue.
New matrix can be obtained by using the above idea and the following spectral
decomposition formula:

(Ak — axxH) =A;_.

Repeat the above procedure, one can compute all eigenvalues of matrix A in
turn.

2.3.4 Generalized Eigenvalue Decomposition

Let A and B both be n x n square matrices, and they constitute a matrix pencil or
matrix pair, written as (A, B). Now we consider the following generalized eigen-
value problem. That is, to compute all scalar A such that

Au = /Bu (2.33)

has nonzero solution # # 0, where the scalar 4 and the nonzero vector u are called
the generalized eigenvalue and the generalized eigenvector of matrix pencil (A, B),
respectively. A generalized eigenvalue and its associated generalized eigenvector
are called generalized eigen pair, written as (4, u). Equation (2.35) is also called the
generalized eigen equation. It is obvious that the eigenvalue problem is a special
case when the matrix pencil is chosen as (A4, I).

Theorem 2.6 A € C and u € C" are respectively the generalized eigenvalue and
the associated generalized eigenvector of matrix pencil (A,B) .. if and only if:

(1) det(A — AB) = 0.
(2) u € Null(A — AB), and u # 0.

nxn

In the natural science, sometimes it is necessary to discuss the eigenvalue
problem of the generalized matrix pencil.

Suppose that n x n square matrices A and B are both Hermitian, and B is
positive definite. Then (A, B) is called the regularized matrix pencil.

The eigenvalue problem of regularized matrix pencil is similar to the one of
Hermitian matrix.
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Theorem 2.7 If A1, A2,..., 2, are the generalized eigenvalues of a regularized
matrix pencil (A, B), then

(1) there exists a matrix X € C"*", so that
XBX" =1,, XAX" =diag(A1,/2,..., /),
or equivalently
XBX =1,, AX = BXA,

where A = diag(A1, 22, , An)-
(2) all generalized eigenvalues are real numbers, i.e., 4; € R,i=1,2,....n.
(3) Denote X = [x1,x3,...,Xx,]. Then it holds that

Axi:iin,-, i= 1,2,...7}1.
xiHij =6y iL,j=12,...,n

where 0y is the Kronecker 0 function.

Some properties of the generalized eigenvalue problem Ax = ABx can be
summarized as follows, see [7, pp. 176-177]:

(1) If we interchange matrices A and B, then the generalized eigenvalue will be its
reciprocal. However, the generalized eigenvector retain unaltered, i.e.,

1
Ax=/Bx = Bx-= ij.

(2) If matrix B is nonsingular, then the generalized ED will be simplified to the
standard ED

Ax=/)Bx = (B 'A)x=ix.

(3) If matrices A and B are both positive definite and Hermitian, then the gen-
eralized eigenvalues must be real numbers, and the generalized eigenvectors
associated with different generalized values are orthogonal with respect to the
positive definite matrices A and B, i.e.,

x{' = Ax; = x!'Bx; = 0.
(4) If A and B are real symmetrical matrices, and B is positive definite, then the

generalized eigenvalue problem Ax = /Bx can be changed into the standard
eigenvalue problem,
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(L7'AL") (L'x) = A(L"x),

where L is a lower triangular matrix, which is the factor of Cholesky
Decomposition B = LLT.

(5) If A and B are real symmetrical and positive definite matrices, then the gen-
eralized eigenvalues must be positive.

(6) If A is singular, then A = 0 must be a generalized eigenvalue.

(7) If B = B+ (1/a)A, where « is a nonzero scalar, then the following relation-
ship holds between the generalized eigenvalue J. of the modified generalized
value problem Ax = JBx and the original generalized eigenvalue 4, i.e.,

1,
Tl a

ot =

In the following, we introduce a few generalized ED algorithms for matrix
pencil.

We know that if n X n square matrices A and B are both Hermitian, and B is
positive definite, then the generalized ED Eq. (2.35) can be equivalently written as

B 'Au = ju, (2.36)

That is to say, the generalized ED becomes the standard ED of a Hermitian
matrix.

The following algorithm uses the shrink mapping to compute the generalized
eigen pair (4,u) of an n x n real symmetrical matrix pencil (4, B).

Algorithm 2.1 Lanczos algorithm for generalized ED [8, p. 298].

Step 1 Initialization
Select vector u; whose norm meets u’f’Bu 1=1, and let
o = O,Z() = Uy = 07Z1 = Bul.

Step 2 For i =1,2,...,n, compute

u :Aui — 0iZi—1

/))i = <u’ ui)
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%p1 = (w,u)
Ui =w/oi
Zipl =U/%ig
Ai= ﬁi+1/0‘i+1~
The following is the tangent algorithm for generalized ED of a n X n symmetric

positive definite matrix pencil (A, B), which was proposed by Dramc in 1998 [9].

Algorithm 2.2 Generalized ED of symmetric positive definite matrix pencil.
Step 1 Compute Ay = diag(A1,Ax,. . .,A,m)fl/z,AS = A4AAy and
B, = 4,B4,,
Step 2 Compute Cholesky Decomposition RIR, = A5 and RyRp = IT"B, 1.
Step 3 By solving the matrix equation FRz = AIl, compute F = AHRE'.
Step 4 Conduct the SVD X = VFU".
Step 5 Compute X = AAIIR;'U.

Output: Matrix X and X, which meets AX = BXX>.

When matrix B is singular, the above algorithms will be unstable. The gener-
alized ED algorithm of matrix pencil (A, B) under this condition was proposed by
Nour-Omid et al. [10], whose main ideas is to make (A — oB) nonsingular by
introducing a shift factor.

Algorithm 2.3 Generalized ED when matrix B is singular [8, 10], p. 299].

Step 1 Initialization
Select the basis vector w of Range[(A —¢B) 'B]., compute

z1 =Bw,q; = \/<_w‘,21‘> Let ug = 0.
Step 2 For i =1,2,...,n, compute
u,=w/a;
zi=(A—oB)'w
wW=w — ollj_|
Bi = (w,z:)

Ziy1= Bw

%1 =\ (Zir1,w)
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2.4 Rayleigh Quotient and Its Characteristics

The quotient of quadratic function of a Hermitian matrix is defined as Rayleigh
quotient. As an important quantity in matrix algebra and physics, Rayleigh quotient
is a ratio of quadratic functions expressed by eigenvalues and eigenvectors, which
has been widely used in many areas such as optimization, signal processing, pattern
recognition, and communication.

2.4.1 Rayleigh Quotient

Definition 2.1 The Rayleigh quotient (RQ) of an Hermitian matrix C € C"™" is a
scalar, defined as

where u is a quantity to be selected. The objective is to maximize or minimize the
Rayleigh quotient.
The most relevant properties of the RQ are can be summarized as follows:

(@ Homogeneity: r(ou, fu) = fr(u,C) Vo, # 0.

@ Translation invariance: r(u,C — ol) = r(u,C) — o.

® Boundedness: Since u ranges over all nonzero vectors, r(u) fills a region
in the complex plane which is called the field of values of C. This region
is closed, bounded, and convex. If C = C* (selfadjoint matrix), the field
of values is the real interval bounded by the extreme eigenvalues.

@ Orthogonality: u L (C — r(u)l)u.

® Minimal residual: Va # 0 AV scalar g, ||(C — r(w)Du|| < ||(C — pl)ul|.

Proposition 2.1 (Stationarity) Let C be a real symmetric n-dimensional matrix with
eigenvalues A, < J,_1 < --- Ay and associated unit eigenvectors 21,2, . . .,Z,. Then
it holds that Ay = max r(u,C), A, = minr(u, C). More generally, the critical points
and critical values of r(u,C) are the eigenvectors and eigenvalues of C.

Proposition 2.2 (Degeneracy): The RQ critical points are degenerate because at
these points the Hessian matrix is not invertible. Then the RQ is not a Morse
function in every open subspace of the domain containing a critical point.
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Furthermore, the following important theorems also holds for RQ.
Courant-Fischer Theorem: Let C € C" be an Hermitian matrix, and its
eigenvalues are 1; > A, > -+ </, then it holds that for A;(1 <k <u):

. (uH C u)
Ak = min max .

S,dim(S)=n—k+ 1 ucSu#0\ ulu

The Courant—Fischer Theorem can also written as

. u"'Cu
Ar = min max i .
S,dim(S)=k ueSu#0\ u"’'u

2.4.2 Gradient and Conjugate Gradient Algorithm for RQ
If the negative direction of RQ gradient is regarded as the gradient flow of vector x,
e.g.,
x=—[C—r@x)Ix
then vector x can be computed iteratively by the following gradient algorithm:
x(k+1) =x(k) 4+ px = x(k) — u[C — r(x)I]x.

It is worth noting that the gradient algorithm of RQ has faster convergence speed
than the iterative algorithm of standard RQ.

In the following, the conjugate gradient algorithm for RQ will be introduced,
where A in the RQ is a real symmetric matrix.

Starting from some initial vector, the conjugate gradient algorithm uses the
iterative equation, e.g.,

Xk+1 :karockPk (237)

to update and approach the eigenvector, associated with the minimal or maximal
eigenvalue of a symmetric matrix. The real coefficient oy is

1
o =% (—B+ VB - 4CD)7 (2.38)

where “+” is used in the updating of the eigenvector associated with the minimal
eigenvalue, and “—” is used in the updating of the eigenvector associated with the
maximal eigenvalue. The formulae for parameters D, B, C in the above equations are
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D= Pb(k)Pc(k) - Pa(k)Pd(k)
B = Py(k) — AxPa(k)
C = Py(k) — ZxPe(k)

P, (k) = PTAx,/ (xTx
W " o/ X 2 (2.39)
Py (k) :pkApk/(xkxk)
P.(k) = pixi/ (xjxi)
Py(k) ZPZpk/(xek)
Ak = rlxr) = x{Axp/ (x]xy).
At the k + 1th iteration, the search direction can be selected as
Piy1 =Tk +0(k)py, (2.40)

where b(—1) = Oand ry ;| is the residual vector at the k + 1th iteration. ry ; and
b(k) can be computed, respectively, as

1
Frv1 = _var(karI) = (Ak+1Xk 41 —Axk+1)/(x2:1xk+1) (2.41)

and

T APt (e ) (5 ps) _

2.42)
AP, — JaD)py (

b(k) =

Equations (2.5)—(2.9) constitute the conjugate gradient algorithm for RQ, which
was proposed in [11]. If the updated x; is normalized to one and “+” (or “—”) is
selected in Eq. (2.6), the above algorithm will obtain the minimal (or maximal)
eigenvalue of matrix A and its associated eigenvectors.

2.4.3 Generalized Rayleigh Quotient

Definition 2.3 Assume that A € C"*",B € C"*" are both Hermitian matrices, and
B is positive definite. The generalized RQ or generalized Rayleigh—Ritz of the
matrix pencil (A, B) is a scalar function, e.g.,

H
x"Ax
r(x) = ——— 243
®) =S (243)
where x is a quantity to be selected, and the objective is to maximize or minimize
the generalized RQ.
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In order to solve for the generalized RQ, define a new vector x = BY 2x, where B!/?

is the square root of the positive definite B. Replace x by B~'/’% in (2.43). Then it
holds that

5611(371/2)"14 (371/2)"156
X) = — 2.44
r(¥) xHx ( )
which shows that the generalized RQ of matrix pencil (A, B) is equivalent to the RQ

. H H . . ..
of matrix product (B’l/ 2) A (B’l/ 2) . From the Rayleigh—Ritz theorem, it is clear
that when vector X is the eigenvector associated with the smallest eigenvalue A, of

matrix product (B’l/ 2)HA (B’l/ 2)H, the generalized RQ obtains An,. And if vector
X is the eigenvector associated with the largest eigenvalue Ay, of matrix product
(B~ 2)HA (B_l/ Z)H, the generalized RQ obtains Apay.

In the following, we review the eigen decomposition of matrix product
B 'AB ) eg.,

(3*1/2)HA (B*l/z)ﬂic — . (2.45)

n
If B= > Bw»! is an eigen decomposition of matrix B, then
i=1

B!/? = Z \/Evivf{
i=1

and B'/>B'/? = B. Since matrix B'/?and B~'/*have the same eigenvectors and their
eigenvalues are reciprocals to each other, then it follows that

B !/? = Z—vv

which shows that B~'/2 is also an Hermitian matrix, e.g., (B_I/Z)H: B~1/2,

Premultiply both sides of (2.45) by B~'/?, and use (B*l/z)Hz B~'/2, then it
holds that

B 'AB V2% = )B"'%%
or

B 'Ax = Jx
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Since x =B %%, thus the eigen decomposition of matrix product
(B_l/ 2)HA (B_l/ 2)H is equivalent to the one of matrix B~'A. The eigen decom-

position of matrix B~'A is the generalized eigenvalue decompositions of matrix
pencil (A, B). Thus, the conditions for the maximum and minimum of generalized
RQ are

xAx

r(x) = .m = /lma)h Ax :lmaxBxa
xAx

r(x) = .m = /’{min, Ax —imian.

That is to say, to maximize the generalized RQ, vector x must be the eigenvector
associated with the largest generalized eigenvalue Ay.x of matrix pencil (4, B). And
to minimize the generalized RQ, vector x must be the eigenvector associated with
the smallest generalized eigenvalue Ay, of matrix pencil (A, B).

2.5 Matrix Analysis

In the derivation and analysis of neural network-based PCA algorithm and its
extensions, besides SVD, ED, etc., matrix gradient and matrix differential are also
very necessary analysis tools. In this section, we will introduce some important
results and properties of matrix gradient and matrix differential.

2.5.1 Differential and Integral of Matrix with Respect
to Scalar

IfA(r) = {a,j(t)}mxn is a real matrix function of scalar ¢, then its differential and
integral are, respectively, defined as

{ da ={da}

JA@Wdr = {[ay(t)dt},,

If A(t) and B(t) are, respectively, m X n and n X r matrices, then

% [A(1)B(1)] = [dA;l—gt)} B(1)+A(r) [%y)} .
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If A(t) and B(t) are both m x n matrices, then

da(x) | dB()

S e =20 &

dr

If A(t) is a rank-n invertible square matrix, then

-1
L‘dl W _ a1 dATE’)A*I(;).

2.5.2 Gradient of Real Function with Respect to Real Vector

Define gradient operator V, of an n X 1 vector x as
. ] 51T 0
Vx:[alxl7 %a Ty %:| 28_7
n x
Then the gradient of a real scalar quantity function f(x) with respect to x is a
n X 1 column vector, which is defined as

X X X T afx
Vo = [ g ] T

The negative direction of the gradient direction is called as the gradient flow of
variable x, written as

x=-Vf(x).
The gradient of m-dimensional row vector function f(x)=
[fi®),f2(x),...,fm(x)] with respect to the n x 1 real vector x is an n X m matrix,
defined as

8{)1 (x) 8];2 (x) 8{:; (x)

W) _ ol ol shl

Ox = c;x: 5)(: 6x: = vxf (x)
oi(x) 0hkx)  Ifulx)
Oxy, Ox, Oxy

Some properties of gradient operations can be summarized as follows:

@ If f(x) = c is a constant, then gradient & = 0.
@ Linear principle: If f(x) and g(x) are real functions of vector x, and ¢,
and ¢, are real constants, then
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e () +eagtw)] _ | @) | 0gla)
Ox Ox ox

@ Product principle: If f(x) and g(x) are real functions of vector x, then

T _ o) T 1 5 2.

@ Quotient principle: If g(x) # 0, then

of(x)/g(x) 1 of (x)

Ox g2(x) g(x) o _f(x)ag(x) .

Ox

® Chain principle: If y(x) is a vector-valued function of x, then

ofy(x) _ oy'(x)of(y)
Ox ox oy’

) 1S an n X n matrix.
® Ifaisan n x 1 constant vector, then

where % o

da'x . ox'a ;
ox ) ox
@ IfA and y are both independent of x, then
OxTA yTA
X Ay — 14y7 Yy AX _ ATy
Ox Ox

If A is a matrix independent of x, then

OxTA _4 OxTAx
ox Ox

=Ax+ATx = (A +AT)x.

Especially, if A is a symmetric matrix, then @x Ax = 2Ax.

2.5.3 Gradient Matrix of Real Function

The gradient of a real function f(A) with respect to an m X n real matrix A is an
m X n matrix, called as gradient matrix, defined as
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IA) U@ . FA)
Fih o an
Jf(A) Ay OAn T oA
— n =V A
24 : : : af(A),
u@a) A . oA
0Aml aAmz 8Amn

where A; is the element of matrix A on its ith row and jth column.
Some properties of the gradient of a real function with respect to a matrix can be
summarized as follows:

®
@

If f(A) = c is a constant, whereA is an m X n matrix, then % = O,xn-

Linear principle: If f(A) and g(A) are real functions of matrix A, and ¢;
and ¢, are real constants, then

Oeif(A) +cag(A)] _  0f(A) e dg(A)
0A oA 270A

Product principle: If f(A) and g(A) are real functions of matrix A, then

YA _ ) LA i) 24,
Quotient principle: If g(A) # 0,then
fA)/s4) 1 If(A) dg(A)
o4 2 |fWaa W

Chain principle: Let A be an m X n matrix, and y = f(A) and g(y) are
real functions of matrix A and scalar y, respectively. Then

9g(f(4)) _ dg(y) 9f(4)

A dy OA
IfA € ™ x € ™1y € R, then

OxTAy
= AyT.
0A Y

If A € R is nonsingular x € "1,y € ™!, then

ATy

A TAYyTA T,
0A Y
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IfA € ™" x,y € R, then

oxTATA

% =A(xy" +yx").
@ IfA € ™" x,y € ™ then

OxTAATy T

—5a = (xy" +yx")A.

2.5.4 Gradient Matrix of Trace Function

Here, we summarize some properties of gradient matrix of trace functions.
(D—Q are gradient matrices of the trace of a single matrix.

@ If Wis an m x m matrix, then

otr(W)
oW

1,

® If an m x m matrix W is invertible, then

otr(W1
( ) _ _(sz)T'
ow

® For the outer product of two vectors, it holds that

dt(xy")  Omr(yx")
ox  Ox

@ are gradient matrices of the trace of the product of two matrices.
@ IfWeR™" Aec R, then

otr(WA) _ Otr(AW)

_ 4T
oW oW =4

B If WeR™" A e R, then

ow(W'A) B Btr(AWT)
oW  OW
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® If W e R™" then

ow(WWT) _ o (W'W)

=2W.
ow ow
@ If W e R™" then
2
otr(W?) _ otr(WW) oWt
ow ow
If W,A € R and W is nonsingular, then
@tl‘(AWﬁl) T
— J— _(wlaw ) .
W ( )

@-@ are gradient matrices of the trace of the product of three matrices.
@ If W e R A c R then

or(WTAW) T
r T
Especially, if A is a symmetric matrix, then M =2AW
If We R A e R, then
ot (WAW™)
— 2 =W(A+A").
W (A+47)
. T

Especially, if A is a symmetric matrix, then % =2WA

@ If W,A,B € R and W is nonsingular, then

or(AW'B)
oW

— —(w'Baw )"
2.5.5 Gradient Matrix of Determinant

Some properties of the gradient of the determinant of a matrix can be summarized
as follows:
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(D Gradient of the determinant of a single nonsingular matrix

AL iwiw)"= (w)!
olw! e T
o=

where W is the adjoint matrix A.
@ Gradient of the logarithm of a determinant

1 oW

w _—
og|W| = W oW’

5‘W

W is nonsingular.

0 T
Sy loelWl = (w1,

the elements are independent to each other.

0 . -
6W10g|W| =2W' —diag(W '),

W is symmetric matrix.
Q@ Gradient of the determinant of a two-matrix product

owwr| T -1 _
o = 2WWH(WW) W, rank (W) = m.
T
% = 2WIWW(W'W) ', rank(Wy) = n.
o|w?
% = 2|W|2(W*1)T, rank(W,m) = m.

@ Gradient of the determinant of a three-matrix product

O|AWB| T(pTwTAT) ! pT
S~ AWBIAT(BTW'AT) BT,
o|wraw| R -
T_zfxw(wftw) ,|[WrAwW| > 0.
o|lwAWT|

= {(WAWT)“}Tw(AT +4).
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2.5.6 Hessian Matrix

The Hessian matrix is defined as

Ox10x;  Ox10x Ox10x,
2 >f >f . >*f
0 f (x ) _ 0 af (x ) _ Ox,0x1  Oxp0x Oxp 0x,
OxOxT  OxT| Ox : : :
P of O
Ox,0x1  Ox,0x2 Ox, 0x,

and it can also be written as the gradient of gradient, i.e., V2f(x) = V, (V. f(x)).
Here are some properties of Hessian matrix.

(@D For an n x 1 constant vector a, it holds that

0%*a’x
A AT On Xn-
OxOxT
® If A is an n x n matrix, then
*xTAx
———=A+A".
OxOxT +

@ If x is an n x 1 vector, @ is an m x 1 constant vector, A and B,
respectively, are m X n and m X m constant matrices, and B is sym-
metric, then

9?(a — Ax)"B(a — Ax)

_ 4T
T =2A"BA.

2.6 Summary

The singular value decomposition, eigenvalue decomposition, Rayleigh quotient,
and gradient and differentials of a matrix have been reviewed in a tutorial style in
this chapter. The materials presented in this chapter are useful for the understanding
of latter chapters, particularly for the chapters except 3 and 6.


http://dx.doi.org/10.1007/978-981-10-2915-8_3
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