
Chapter 2
Matrix Analysis Basics

In this chapter, we review some basic concepts, properties, and theorems of singular
value decomposition (SVD), eigenvalue decomposition (ED), and Rayleigh quo-
tient of a matrix. Moreover, we also introduce some basics of matrix analysis. They
are important and useful for our theoretical analysis in subsequent chapters.

2.1 Introduction

As discussed in Chap. 1, the PC or MC can be obtained by the ED of the sample
correlation matrix or the SVD of the data matrix, and ED and SVD are also primal
analysis tools. The history of SVD can date back to the 1870s, and Beltrami and
Jordan are acknowledged as the founder of SVD. In 1873, Beltrami [1] published
the first paper on SVD, and one year later Jordan [2] published his independent
reasoning about SVD. Now, SVD has become one of the most useful and most
efficient modern numerical analysis tools, and it has been widely used in statistical
analysis, signal and image processing, system theory and control, etc. SVD is also a
fundamental tool for eigenvector extraction, subspace tracking, and total least
squares problem, etc.

On the other hand, ED is important in both mathematical analysis and engi-
neering applications. For example, in matrix algebra, ED is usually related to the
spectral analysis, and the spectral of a linear arithmetic operator is defined as the set
of eigenvalues of the matrix. In engineering applications, spectral analysis is con-
nected to the Fourier analysis, and the frequency spectral of signals is defined as the
Fourier spectral, and then the power spectral of signals is defined as the square of
frequency spectral norm or Fourier transform of the autocorrelation functions.

Besides SVD and ED, gradient and matrix differential are also the important
concepts of matrix analysis. In view of the use of them in latter chapters, we will
provide detailed analysis of SVD, ED, matrix analysis, etc. in the following.
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2.2 Singular Value Decomposition

As to the inventor history of SVD, see Stewart’s dissertation. Later, Autonne [3]
extended SVD to complex square matrix in 1902, and Eckart and Young [4] further
extended it to general rectangle matrix in 1939. Now, the theorem of SVD for
rectangle matrix is usually called Eckart–Young Theorem.

SVD can be viewed as the extension of ED to the case of nonsquare matrices. It
says that any real matrix can be diagonalized by using two orthogonal matrices. ED
works only for square matrices and uses only one matrix (and its inverse) to achieve
diagonalization. If the matrix is square and symmetric, then the two orthogonal
matrices of SVD will be the same, and ED and SVD will also be the same and
closely related to the matrix rank and reduced-rank least squares approximations.

2.2.1 Theorem and Uniqueness of SVD

Theorem 2.1 For any A 2 <m�n or Cm�nð Þ, there exist two orthonormal (or uni-
tary) matrices U 2 <m�n orCm�mð Þ and V 2 <m�n or Cn�nð Þ, such that

A ¼ URVT or A ¼ URVH
� �

; ð2:1Þ

where,

R ¼ R1 0
0 0

� �

and R ¼ diag r1; r2; . . .rr½ �, its diagonal elements are arranged in the order:

r1 � r2 � � � � � rr � 0; t ¼ rankðAÞ

The quantity r1; r2; . . .; rr together with rrþ 1 ¼ rrþ 2 ¼ � � � ¼ rn ¼ 0 are
called the singular values of matrix A. The column vector ui of matrix U is called
the left singular vector of A, and the matrix U is called the left singular matrix. The
column vector vi of matrix V is called the right singular vector of A, and the matrix
V is called the right singular matrix. The proof of Theorem 2.1 can see [4, 5].
The SVD of matrix A can also be written as:

A ¼
Xr

i¼1

riuivHi : ð2:2Þ
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It can be easily seen that

AAH ¼ UR2UH ð2:3Þ

which shows that the singular value ri of the m� n matrix A is the positive square
root of the eigenvalue (these eigenvalues are nonpositive) of the matrix product
AAH.

The following theorem strictly narrates the singular property of a matrix A.

Theorem 2.2 Define the singular values of matrix A 2 <m�n m[ nð Þ as
r1 � r2 � � � � � rr � 0.
Then

rk ¼ min
E2Cm�n

Ek kspec: rankðAþEÞ� ðk � 1Þ
n o

; k ¼ 1; 2; . . .n ð2:4Þ

and there is an error matrix which meets Ekk kspec¼ rk, so that

rankðAþEkÞ ¼ r � 1; k ¼ 1; 2; . . .; n:
Theorem 2.2 shows that the singular value of a matrix is equal to the spectral

norm of the error matrix Ek which makes the rank of the original matrix reduce one.
If the original n� n matrix A is square and it has a zero singular value, the spectral
norm of error matrix whose rank reduces to one is equal to zero. That is to say,
when the original n� n matrix A has a zero singular value, the rank of the matrix is
rankðAÞ� n� 1 and the original matrix is not full-rank essentially. So, if a matrix
has a zero singular value, the matrix must be singular matrix. Generally speaking, if
a rectangle matrix has a zero singular value, then it must not be full column rank or
full row rank. This case is called rank-deficient matrix, which is a singular phe-
nomenon with regards to the full-rank matrix.

In the following, we discuss the uniqueness of SVD.

(1) The number r of nonzero singular values and their values r1; r2; . . .; rr is
unique relative to matrix A.

(2) If rank(A) = r, the dimension of the sets of vector x 2 C
n which meets

Ax ¼ 0, namely the zero space of matrix A, is equal to n� r. Thus, one can
select orthogonal basis vrþ 1; vrþ 2; . . .; vn

� �
as the zero space of matrix A in

C
n. From this point, the subspace NullðAÞof Cn spanned by column vectors of

V is uniquely determined. However, as long as every vector can constitute the
orthogonal basis of this subspace, they can be selected arbitrarily.

(3) The sets of y 2 C
mð Þ which can be denoted as y ¼ Ax constitute the image

space ImA of matrix A, whose dimension is equal to r. The orthogonal sup-
plement space ðImAÞ? of ImA is m-r dimensional. Thus, one can select
urþ 1; urþ 2; . . .; umf gas the orthogonal basis of ImAð Þ?. The subspace
ImAð Þ? of C

m spanned by the column vectors urþ 1; urþ 2; . . .; um of U is
uniquely determined.
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(4) If ri is single singular value ri 6¼ rj; 8j 6¼ i
� �

, vi and ui is uniquely determined
except discrepancy of an angle. That is to say, after vi and ui multiply
eih j ¼ ffiffiffiffiffiffiffi�1

p� �
and h is real number) at the same time, they are still the right

and left singular vectors, respectively.

2.2.2 Properties of SVD

Assume A 2 <m�n; B 2 <m�n, and rA ¼ rankðAÞ; p ¼ min m; nf g: The singu-
lar values of matrix A can be arranged as follows: rmax ¼ r1 � r2 � � � �
� rp�1 � rp ¼ rmin � 0, and denote by riðBÞthe ith largest singular value of matrix
B. A few properties of SVD can summarized as follows [6]:

(1) The relationship between the singular values of a matrix and the ones of its
submatrix.

Theorem 2.3 (interlacing theorem for singular values). Assume A 2 <m�n; and its
singular values satisfy r1 � r2 � � � � � rr; where r ¼ min m; nf g: If B 2 <p�q is a
submatrix of A, and its singular values satisfy c1 � c2 � � � � � cmin p;qf g; then it
holds that

ri � ci; i ¼ 1; 2; . . .;min p; qf g ð2:5Þ

and

ci � riþðm�pÞþ ðn�qÞ; i�min pþ q� m; pþ q� nf g: ð2:6Þ
From Theorem 2.3, it holds that: If B 2 <m�ðn�1Þ is a submatrix of A 2 <m�n by

deleting any column of matrix A, and their singular values are arranged in
non-decreasing order, then it holds that

r1ðAÞ� r1ðBÞ� r2ðAÞ� r2ðBÞ� � � � � rhðAÞ� rhðBÞ� 0; ð2:7Þ

where h ¼ min m; n� 1f g:
If B 2 <ðm�1Þ�n is a submatrix of A 2 <m�n by deleting any row of matrix A,

and their singular values are arranged as non-decreasing order, then it holds that

r1ðAÞ� r1ðBÞ� r2ðAÞ� r2ðBÞ� � � � rhðAÞ� rhðBÞ� 0: ð2:8Þ

(2) The relationship between the singular values of a matrix and its norms.
The spectral norm of a matrix A is equal to its largest singular value, namely,
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Ak kspec ¼ r1: ð2:9Þ

According to the SVD theorem of matrix and the unitary invariability property
of Frobenius norm Ak kF of matrix A, namely UHAV

		 		
F¼ Ak kF , it holds that

Ak kF ¼
Xm
i¼1

Xn
j¼1

aij


 

2" #1=2

¼ UHAV
		 		

F ¼ Rk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 þ � � � þ r2r

q
:

ð2:10Þ

That is to say, the Frobenius norm of any matrix is equal to the square root of
the sum of the squares of all nonzero singular values of this matrix.
Consider the rank-k approximation of matrix A and denote it as Ak, in which
k\r ¼ rankðAÞ. The matrix Ak is defined as follows:

Ak ¼
Xk
i¼1

riuivHi ; k\r;

Then the spectral norm of the difference between A and any rank(k) matrix B,
and the Frobenius norm of the difference can be written, respectively, as
follows:

min
rankðBÞ¼r

A� Bk kspec ¼ A� Akk kspec ¼ rkþ 1; ð2:11Þ

min
rankðBÞ¼r

A� Bk k2F ¼ A� Akk k2F ¼ r2kþ 1 þ r2kþ 2 þ � � � r2r : ð2:12Þ

The above properties are the basis of many concepts and applications. For
example, the total least squares, data compression, image enhancement, the
solution of linear equations, etc., all need to approximate A using a lower rank
matrix.

(3) The relationship between the singular values of a matrix and its determinant.
Define A as an n� n square matrix. Since the absolute value of the deter-
minant of a unitary matrix is equal to one, from SVD theorem it holds that

detðAÞj j ¼ detRj j ¼ r1r2 � � � rn: ð2:13Þ

If all ri are non-zero, then detðAÞj j 6¼ 0, which means that A is nonsingular. If
at least one ri i[ rð Þ is equal to zero, then detðAÞj j ¼ 0, namely A is singular.

(4) The relationship between the singular values of a matrix and its condition
number.
For an m� n matrix A, its condition number can be defined using SVD as
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condðAÞ ¼ r1=rp; p ¼ min m; nf g: ð2:14Þ

Since r1 � rp, the condition number is a positive number which is equal to or
larger than one. Obviously, since there is at least one singular value which
meets rp ¼ 0, the condition number of a singular matrix is infinite. When the
condition number, though not infinite, is very large, the matrix A is called to
be close to singular. Since the condition number of unitary or orthogonal
matrix is equal to one, the unitary or orthogonal matrix is of “ideal condition”.
Equation (2.14) can be used to evaluate the condition number.

(5) Maximal singular value and minimal singular value.
If m� n, for any matrix Am�n, it holds that

rminðAÞ ¼ min
xHAHAx
xHx

� �1=2

: x 6¼ 0

( )

¼ min xHAHAx
� �1=2

: xHx ¼1, x 2 C
n

n o ð2:15Þ

and

rmaxðAÞ ¼ max
xHAHAx
xHx

� �1=2

: x 6¼ 0

( )

¼ max xHAHAx
� �1=2

: xHx ¼1, x 2 C
n

n o
:

ð2:16Þ

(6) The relationship between the singular values and eigenvalues.
Suppose that the eigenvalues of an n� n symmetrical square matrix A are
k1; k2; . . .kn k1j j � k2k k� � � � � knk kð Þ, and its singular values are
r1; r2; . . .; rn ðr1 � r2 � � � � � rn � 0Þ. Then r1 � kij j � rnði ¼ 1; 2; . . .; nÞ
and cond(A) � k1j j= knj j:

2.3 Eigenvalue Decomposition

2.3.1 Eigenvalue Problem and Eigen Equation

The basic problem of the eigenvalue can be stated as follows. Given an n� n
matrix A, determine a scalar k such that the following algebra equation

Au ¼ ku; u 6¼ 0 ð2:17Þ

has an n� 1 nonzero solution. The scalar k is called as an eigenvalue of matrix A,
and the vector u is called as the eigenvector associated with k. Since the eigenvalue
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k and eigenvector u appear in couples, (k, u) is usually called as an eigen pair of
matrix A. Although the eigenvalues can be zeros, the eigenvectors cannot be zero.

In order to determine a nonzero vector u, Eq. (2.17) can be modified as

A� kIð Þu ¼ 0: ð2:18Þ

The above equation should come into existence for any vector u, so the unique
condition under which Eq. (2.18) has a nonzero solution u ¼ 0 is that the deter-
minant of matrix A� kI is equal to zero, namely

detðA� kIÞ ¼ 0: ð2:19Þ

Thus, the solution of the eigenvalue problem consists of the following two steps:

(1) Solve all scalar k (eigenvalues) which make the matrix A� kI singular.
(2) Given an eigenvalue k which makes A ¼ kI singular, and to solve all nonzero

vectors which meets A� kIð Þx ¼ 0, i.e., the eigenvectors corresponding to k.

According to the relationship between the singular values of a matrix and its
determinant, a matrix is singular if and only if detðA� kIÞ ¼ 0;, namely

A� kIð Þx singular , detðA� kIÞ ¼ 0: ð2:20Þ

The matrix A� kIð Þ is called as the eigen matrix of A. When A is an n� n
matrix, spreading the left side determinant of Eq. (2.20) can obtain a polynomial
equation (power-n), namely

a0 þ a1kþ � � � þ an�1k
n�1 þð�1Þnkn ¼ 0; ð2:21Þ

which is called as the eigen equation of matrix A. The polynomial det A� kIð Þ is
called as the eigen polynomial.

2.3.2 Eigenvalue and Eigenvector

In the following, we list some major properties about the eigenvalues and eigen-
vector of a matrix A.

Several important terms about the eigenvalues and eigenvectors [6]:

(1) The eigenvalue k of a matrix A is called as having algebraic multiplicity l, if k
is a l-repeated root of the eigen equation det A� kIð Þ ¼ 0:

(2) If the algebraic multiplicity of eigenvalue k is equal to one, the eigenvalue is
called as single eigenvalue. Non-single eigenvalues are called as multiple
eigenvalues.

(3) The eigenvalue k of a matrix A is called as having geometric multiplicity c, if
the number of linear independent eigenvectors associated with k is equal to c.
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(4) An eigenvalue is called half-single eigenvalue if its algebraic multiplicity is
equal to geometric multiplicity. Not half-single eigenvalues are called as wane
eigenvalues.

(5) If matrix An�n is a general complex matrix and k is its eigenvalue, the vector
v which meets Av ¼ kv is called as the right eigenvector associated with the
eigenvalue k, and the eigenvector u which meets uHA ¼ kuH is called as the
left eigenvector associated with the eigenvalue k. If A is Hermitian matrix and
all its eigenvalues are real number, then it holds that v ¼ u, that is to say, the
left and right eigenvectors of a Hermitian matrix are the same.

Some important properties can be summarized as follows:

(1) Matrix A 2 <n�nð Þ has n eigenvalues, of which the multiple eigenvalues are
computed according to their multiplicity.

(2) If A is a real symmetrical matrix or Hermitian matrix, all its eigenvalues are
real numbers.

(3) If A = diag(a11, a22,…, ann), its eigenvalues are a11, a22,…, ann; If A is a
trigonal matrix, its diagonal elements are all its eigenvalues.

(4) For A 2 <n�nð Þ, if k is the eigenvalue of matrix A, k is also the eigenvalue of
matrix AT. If k is the eigenvalue of matrix A, k� is the eigenvalue of matrix
AH. If k is the eigenvalue of matrix A, kþ r2 is the eigenvalue of matrix
Aþ r2I. If k is the eigenvalue of matrix A, 1=k is the eigenvalue of matrix
A−1.

(5) All eigenvalues of matrix A2 = A are either 0 or 1.
(6) If A is a real orthogonal matrix, all its eigenvalues are on the unit circle.
(7) If a matrix is singular, at least one of its eigenvalues is equal to zero.

(8) The sum of all the eigenvalues is equal to its trace, namely
Pn
i¼1

ki ¼ trðAÞ.
(9) The nonzero eigenvectors u1; u2; . . .;un associated with different eigenvalues

k1; k2; . . .kn are linearly independent.
(10) If matrix A 2 <n�nð Þ has r nonzero eigenvalues, then it holds that

rankðAÞ� r; If zero is a non-multiple eigenvalue, then rankðAÞ� n� 1; If
rankðA�kIÞ� n� 1, then k is an eigenvalue of matrix A.

(11) The product of all eigenvalues of matrix A is equal to the determinant of

matrix A, namely
Qn
i¼1

ki ¼ detðAÞ ¼ Aj j:
(12) A Hermitian matrix A is positive definite (or positive semi-definite), if and

only if all its eigenvalues are positive (or non-negative).
(13) If the eigenvalues of matrix A are different, then one can find a similar matrix

such that S�1AS ¼ D(diagonal matrix) and the diagonal elements of D are
the eigenvalues of matrix A.

(14) (Cayley–Hamilton Theorem) : If k1; k2; . . .kn are the eigenvalues of an n� n

matrix A, then
Qn
i¼1

A� kiIð Þ ¼ 0:
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(15) It is not possible that the geometric multiplicity of any eigenvalue k of an
n� n matrix A is larger than its algebraic multiplicity.

(16) If k is an eigenvalue of an n� n matrix A and an n� n matrix B is not
singular, then k is also an eigenvalue of B�1AB. However, the corresponding
eigenvectors are usually different. If k is an eigenvalue of an n� n matrix
A and an n� n matrix B is a unitary matrix, then k is also an eigenvalue of
BHAB. However, the corresponding eigenvectors are usually different. If k is
an eigenvalue of an n� n matrix A and an n� n matrix B is a orthogonal
matrix, then k is also an eigenvalue of BTAB. However, the corresponding
eigenvectors are usually different.

(17) The largest eigenvalue of an n� n matrix A ¼ aij

 �

is less than or equal to
the maximal of the sum of all the column elements of this matrix, namely

kmax � max
i

Pn
j¼1

aij.

(18) The eigenvalues of autocorrelation matrix R ¼ E xðtÞxHðtÞf g of stochastic
vector xðtÞ ¼ x1ðtÞ; x2ðtÞ; . . .xnðtÞ½ �T is within the maximal power of signal

Pmax ¼ max
i

E xiðtÞj j2
n o

and its minimal power Pmin ¼ min
i

E xiðtÞj j2
n o

,

namely Pmin � ki �Pmax.
(19) The spread of eigenvalues in autocorrelation matrix R of a stochastic vector

xðtÞ is xðRÞ ¼ kmax=kmin:
(20) If kij j\1; i ¼ 1; 2; . . .; n; the matrix A	 In is nonsingular. kij j\1; i ¼

1; 2; . . .; n; is equivalent to the case in which the roots of detðA� zInÞ ¼ 0 is
not on or at the interior of the unit circle.

(21) For m� nðn�mÞ matrix A and n� m matrix B, if k is an eigenvalue of the
product AB, then k is also an eigenvalue of the product BA. If k 6¼ 0 is an
eigenvalue of the product BA, then k is also an eigenvalue of the product AB.
If k1; k1; . . .km are eigenvalues of the product AB, then the eigenvalues of
matrix product BA are k1; k2; . . .km; 0; . . .; 0:

(22) If the eigenvalue of matrix A is k, then the eigenvalue of matrix polynomial
f ðAÞ ¼ An þ c1An�1 þ � � � þ cn�1Aþ cnI is
f ðkÞ ¼ kn þ c1k

n�1 þ � � � þ cn�1kþ cn:
(23) If k is an eigenvalue of matrix A, then the eigenvalue of matrix exponential

function eA is ek

Properties of an eigen pair which consists of an eigenvalue k and its associated
eigenvector u can be summarized as follows:

(1) If k; uð Þ is an eigen pair of matrix A, then ck; uð Þ is an eigen pair of matrix
cA, where c is a nonzero constant.

(2) If k; uð Þ is an eigen pair of matrix A, then k; cuð Þ is an eigen pair of matrix A,
where c is a nonzero constant.

(3) If ki; uið Þ and kj; uj
� �

are eigen pairs of matrix A and ki 6¼ kj, then the
eigenvector ui and uj are linearly independent.
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(4) The eigenvectors of an Hermitian matrix associated with different eigen-
values are mutual orthogonal to each other, namely ki 6¼ kj ) uHi uj ¼ 0.

(5) If k is an eigenvalue of matrix A and the vectors u1 and u2 are the eigen-
vectors associated with k, then c1u1 þ c2u2 is also an eigenvector of matrix
A associated with the eigenvalue k, in which c1 and u2 are constants and at
least one of them is not zero.

(6) If ðk; uÞ is an eigen pair of matrix A and a1; a2; . . .; ap are complex constants,
then f ðkÞ ¼ a0 þ a1kþ � � � þ apk

p is the eigenvalue of matrix polynomial
f ðAÞ ¼ a0Iþ a1A þ � � � þ apAp, and the associated eigenvector is still u.

(7) If k; uð Þ is an eigen pair of matrix A, then kk; u
� �

is an eigen pair of matrix
Ak.

(8) If k; uð Þ is an eigen pair of matrix A, then ek; u
� �

is an eigen pair of matrix
exponential function eA.

(9) If kðAÞ and kðBÞ are eigenvalues of matrices A and B, respectively, and uðAÞ
and uðBÞ are their associated eigenvectors, then kðAÞkðBÞ is an eigenvalue of
matrix Kronecker product A
 B with u Að Þ 
 u Bð Þ being the associated
eigenvector, and kðAÞ and kðBÞ are the eigenvalues of matrix direct sum

A� B with
uðAÞ
0

� �
and

0
uðBÞ

� �
being the associated eigenvectors,

respectively.
(10) If an n� n matrix A has n linearly independent eigenvectors, then its ED is

A ¼ URU�1, where the n� n eigen matrix U consists of n eigenvectors of
matrix A, and the diagonal elements of the n� n diagonal matrix R are the
eigenvalues of matrix A.

The SVD problem of a matrix A can be transformed into its ED problem to
solve, and there are two methods to realize this.

Method 2.1 The nonzero singular values of matrix Am�n are the positive square
root of nonzero eigenvalue ki of m� m matrix AAT or n� n matrix ATA, and the
left singular vector uj and right singular vector vi of matrix A associated with ri are
the eigenvectors of matrix AAT and ATA associated with nonzero eigenvalue ki,
respectively.

Method 2.2 The SVD of matrix Am�n can be transformed into the ED of mþ nð Þ �
mþ nð Þ augmented matrix

O A
AT O

� �
.

The following theorem holds for the eigenvalues of matrix sum A + B.

Theorem 2.4 (Wely theorem): Suppose that A;B 2 C
m�n are Hermitian matrices,

and their eigenvalues are arranged as an increasing order, namely,
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k1ðAÞ� k2ðAÞ � � � � knðAÞ;

k1ðBÞ� k2ðBÞ � � � � knðBÞ;

k1ðAþBÞ� k2ðAþBÞ� � � � � knðAþBÞ;

Then,

kiðAþBÞ�
kiðAÞþ k1ðBÞ
ki�1ðAÞþ k2ðBÞ

..

.

k1ðAÞþ kiðBÞ

8>>><
>>>:

ð2:22Þ

and

kiðAþBÞ�
kiðAÞþ knðBÞ

kiþ 1ðAÞþ kn�1ðBÞ
..
.

knðAÞþ kiðBÞ:

8>>><
>>>:

ð2:23Þ

where i ¼ 1; 2; . . .u:
Especially, when A is a real symmetric matrix, and B ¼ azzT , the interlace

theorem in the following holds.

Theorem 2.5 (Interlacing eigenvalue theorem): Suppose that A 2 <n�n is a sym-
metric matrix, and its eigenvalues k1; k2; . . .; kn; meet k1 � k2 � � � � � kn, and let
z 2 <n be a vector satisfying zk k ¼ 1. Suppose that a is a real number and the
eigenvalues of matrix Aþ azzT meet f1 � f2 � � � � � fn, then it holds that

f1 � k1 � f2 � k2 � � � � � fn � kn; a[ 0 ð2:24Þ

or

k1 � f1 � k2 � f2 � � � � � kn � fn; a\0 ð2:25Þ

and whether a[ 0 or a\0, it holds that

Xn
i¼1

fi � kið Þ ¼ a: ð2:26Þ

2.3 Eigenvalue Decomposition 27



2.3.3 Eigenvalue Decomposition of Hermitian Matrix

All the discussions on eigenvalues and eigenvectors in the above hold for general
matrices, and they do not require the matrices to be real symmetric or complex
conjugate symmetric. However, in the statistical and information science, one
usually encounter real symmetric or Hermitian (complex conjugate symmetric)
matrices. For example, the autocorrelation matrix of a real measurement data vector
R ¼ E xðtÞxTðtÞf g is real symmetric, while the autocorrelation matrix of a complex
measurement data vector R ¼ E xðtÞxHðtÞf g is Hermitian. On the other hand, since
a real symmetric matrix is a special case of Hermitian matrix and the eigenvalues
and eigenvectors of a Hermitian matrix have a series of important properties, and it
is necessary to discuss individually the eigen analysis of Hermitian matrix.

1. Eigenvalue and Eigenvector of Hermitian matrix.
Some important properties of eigenvalues and eigenvectors of Hermitian
matrices can be summarized as follows:

(1) The eigenvalues of an Hermitian matrix A must be a real number.
(2) Let k; uð Þ be an eigen pair of an Hermitian matrix A. If A is invertible, then

1=k; uð Þ is an eigen pair of matrix A−1.
(3) If kk is a multiple eigenvalue of Hermitian matrix AH = A, and its multi-

plicity is mk , then rankðA� kkIÞ ¼ n� mk:

(4) Any Hermitian matrix A is diagonalizable, namely U�1AU ¼ R:
(5) All the eigenvectors of an Hermitian matrix are linearly independent, and

they are mutual orthogonal, namely the eigen matrix U ¼ u1; u2; . . .; un½ � is
a unitary matrix and it meets U�1 ¼ UH :

(6) From property (5), it holds that UHAU ¼ R ¼ diagðk1; k2; . . .; knÞ
or A ¼ URUH , which can be rewritten as: A ¼ Pn

i¼1
kiuiuHi . This is called

the spectral decomposition of a Hermitian matrix.
(7) The spread formula of the inverse of an Hermitian matrix A is

A�1 ¼
Xn
i¼1

I
ki
uiuHi ð2:27Þ

Thus, if one know the eigen decomposition of an Hermitian matrix A, then
one can directly obtain the inverse matrix A�1 using the above formula.

(8) For two n� n Hermitian matrices A and B, there exists a unitary matrix so
that PHAP and PHBP are both diagonal if and only if AB = BA.

(9) For two n� n non-negative definite Hermitian matrices A and B, there
exists a nonsingular matrix P so that PHAP and PHBP are both diagonal.
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2. Some properties of Hermitian matrix.
The ED of an Hermitian matrix A can be written as A ¼ URUH , where U is a
unitary matrix and it meets UHU ¼ UUH ¼ I.
From the property of determinant and trace of a matrix, it holds that

tr Að Þ ¼ tr URUH
� � ¼ tr UHUR

� � ¼ tr Rð Þ ¼
Xn
i¼1

ki; ð2:28Þ

detðAÞ ¼ detðUÞ detðRÞ det UH
� � ¼ Yn

i¼1

ki: ð2:29Þ

For a positive definite Hermitian matrix A, its inverse A�1 exists and can be
written as

A�1 ¼ Udiag k�1
1 ; k�1

2 ; . . .; k�1
u

� �
UH : ð2:30Þ

Let zA be the number of zero eigenvalues of matrix A 2 C
n�n, then

rank Að Þ ¼ n� zn; ð2:31Þ

That is to say, the rank of a Hermitian matrix is equal to the number of its
nonzero eigenvalues.

3. Solving for maximal or minimal eigenvalue of Hermitian matrix.

In signal processing, one usually needs to compute the maximal or minimal
eigenvalue of a Hermitian matrix A. The power iteration method is a method for
such purposes.

Select some initial vector x 0ð Þ, and iteratively repeat the following linear
equation

y kþ 1ð Þ ¼ Ax kð Þ ð2:32Þ

to obtain y kþ 1ð Þ, then normalize it. It holds that

x kþ 1ð Þ ¼ y kþ 1ð Þ
rkþ 1

; ð2:33Þ

rkþ 1 ¼ yHðkþ 1Þyðkþ 1Þ: ð2:34Þ

The iterative procedure continues until the vector xk converges. The rk obtained
at the last iteration is the maximal eigenvalue, and the xk is its associated eigen-
vector. Only if the initial vector x 0ð Þ is not orthogonal to the eigenvector associated
with the maximal eigenvalue, the convergence can be guaranteed.

If one needs to compute the minimal eigenvalue and its associated eigenvector,
use y kþ 1ð Þ ¼ A�1x kð Þ, i.e., the iterative linear equation is Ay kþ 1ð Þ ¼ x kð Þ.
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By combining the power iteration method and shrink mapping method, one can
compute all eigenvalues and the associated eigenvectors of a Hermitian matrix
A. Suppose that one has obtained some eigenvalue r using the power iteration
method. The first step corresponds to the first maximal eigenvalue and uses the
shrink mapping method to eliminate the eigenvalue. Then matrix Ak rankAk ¼ kð Þ
is changed into matrix Ak�1 rankAk�1 ¼ k � 1ð Þ. Thus, the maximal eigenvalue of
matrix Ak�1 is the residual maximal eigenvalue of matrix Ak, which is smaller than
r. It should be noted that the kth step corresponds to the kth maximal eigenvalue.
New matrix can be obtained by using the above idea and the following spectral
decomposition formula:

Ak � rxxH
� � ¼ Ak�1:

Repeat the above procedure, one can compute all eigenvalues of matrix A in
turn.

2.3.4 Generalized Eigenvalue Decomposition

Let A and B both be n� n square matrices, and they constitute a matrix pencil or
matrix pair, written as (A, B). Now we consider the following generalized eigen-
value problem. That is, to compute all scalar k such that

Au ¼ kBu ð2:35Þ

has nonzero solution u 6¼ 0, where the scalar k and the nonzero vector u are called
the generalized eigenvalue and the generalized eigenvector of matrix pencil (A, B),
respectively. A generalized eigenvalue and its associated generalized eigenvector
are called generalized eigen pair, written as k; uð Þ. Equation (2.35) is also called the
generalized eigen equation. It is obvious that the eigenvalue problem is a special
case when the matrix pencil is chosen as (A, I).

Theorem 2.6 k 2 C and u 2 C
n are respectively the generalized eigenvalue and

the associated generalized eigenvector of matrix pencil A;Bð Þn�n if and only if:

(1) det A� kBð Þ ¼ 0.
(2) u 2 Null A� kBð Þ; and u 6¼ 0.

In the natural science, sometimes it is necessary to discuss the eigenvalue
problem of the generalized matrix pencil.

Suppose that n� n square matrices A and B are both Hermitian, and B is
positive definite. Then (A, B) is called the regularized matrix pencil.

The eigenvalue problem of regularized matrix pencil is similar to the one of
Hermitian matrix.
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Theorem 2.7 If k1; k2; . . .; kn are the generalized eigenvalues of a regularized
matrix pencil (A, B), then

(1) there exists a matrix X 2 C
n�n, so that

XBXH ¼ In; XAXH ¼ diag k1; k2; . . .; knð Þ;

or equivalently

XHBX ¼ In; AX ¼ BXA;

where K ¼ diag k1; k2; � � � ; knð Þ.
(2) all generalized eigenvalues are real numbers, i.e., ki 2 <; i ¼ 1; 2; . . .; n:
(3) Denote X ¼ x1; x2; . . .; xn½ �. Then it holds that

Axi ¼ kiBxi; i ¼ 1; 2; . . .; n:

xHi Bxj ¼ dij; i; j ¼ 1; 2; . . .; n:

where dij is the Kronecker d function.

Some properties of the generalized eigenvalue problem Ax ¼ kBx can be
summarized as follows, see [7, pp. 176–177]:

(1) If we interchange matrices A and B, then the generalized eigenvalue will be its
reciprocal. However, the generalized eigenvector retain unaltered, i.e.,

Ax ¼ kBx ) Bx ¼ 1
k
Ax:

(2) If matrix B is nonsingular, then the generalized ED will be simplified to the
standard ED

Ax ¼ kBx ) B�1A
� �

x ¼ kx:

(3) If matrices A and B are both positive definite and Hermitian, then the gen-
eralized eigenvalues must be real numbers, and the generalized eigenvectors
associated with different generalized values are orthogonal with respect to the
positive definite matrices A and B, i.e.,

xHi ¼ Axj ¼ xHi Bxj ¼ 0:

(4) If A and B are real symmetrical matrices, and B is positive definite, then the
generalized eigenvalue problem Ax ¼ kBx can be changed into the standard
eigenvalue problem,

2.3 Eigenvalue Decomposition 31



L�1AL�T
� �

LTx
� � ¼ k LTx

� �
;

where L is a lower triangular matrix, which is the factor of Cholesky
Decomposition B ¼ LLT:

(5) If A and B are real symmetrical and positive definite matrices, then the gen-
eralized eigenvalues must be positive.

(6) If A is singular, then k ¼ 0 must be a generalized eigenvalue.
(7) If ~B ¼ Bþ 1=að ÞA, where a is a nonzero scalar, then the following relation-

ship holds between the generalized eigenvalue ~k of the modified generalized
value problem Ax ¼ ~k~Bx and the original generalized eigenvalue k, i.e.,

1
~k
¼ 1

k
þ 1

a
:

In the following, we introduce a few generalized ED algorithms for matrix
pencil.

We know that if n� n square matrices A and B are both Hermitian, and B is
positive definite, then the generalized ED Eq. (2.35) can be equivalently written as

B�1Au ¼ ku; ð2:36Þ

That is to say, the generalized ED becomes the standard ED of a Hermitian
matrix.

The following algorithm uses the shrink mapping to compute the generalized
eigen pair k; uð Þ of an n� n real symmetrical matrix pencil (A, B).

Algorithm 2.1 Lanczos algorithm for generalized ED [8, p. 298].

Step 1 Initialization
Select vector u1 whose norm meets uH1 Bu1 ¼ 1, and let
a1 ¼ 0; z0 ¼ u0 ¼ 0; z1 ¼ Bu1.

Step 2 For i ¼ 1; 2; . . .; n, compute

u ¼ Aui � aizi�1

bi ¼ u; uih i

u ¼ u� bizi

w ¼ B�1u
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aiþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w; uh i

p
uiþ 1 ¼ w=aiþ 1

ziþ 1 ¼ u=aiþ 1

ki ¼ biþ 1=aiþ 1:

The following is the tangent algorithm for generalized ED of a n� n symmetric
positive definite matrix pencil (A, B), which was proposed by Dramc in 1998 [9].

Algorithm 2.2 Generalized ED of symmetric positive definite matrix pencil.

Step 1 Compute DA ¼ diagðA11;A22; . . .;AnnÞ�1=2;A5 ¼ DAADA and
B1 ¼ DABDA;

Step 2 Compute Cholesky Decomposition RT
ARA ¼ AS and RT

BRB ¼ PTB1P:

Step 3 By solving the matrix equation FRB ¼ AP, compute F ¼ APR�1
B :

Step 4 Conduct the SVD R ¼ VFUT:

Step 5 Compute X ¼ DAPR�1
B U:

Output: Matrix X and R, which meets AX ¼ BXR2.
When matrix B is singular, the above algorithms will be unstable. The gener-

alized ED algorithm of matrix pencil (A, B) under this condition was proposed by
Nour-Omid et al. [10], whose main ideas is to make A� rBð Þ nonsingular by
introducing a shift factor.

Algorithm 2.3 Generalized ED when matrix B is singular [8, 10], p. 299].

Step 1 Initialization
Select the basis vector w of Range½ðA� rBÞ�1B�:, compute
z1 ¼ Bw; a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w; z1h ip

. Let u0 ¼ 0.
Step 2 For i ¼ 1; 2; . . .; n, compute

ui ¼ w=ai

zi ¼ A� rBð Þ�1w

w ¼ w� aiui�1

bi ¼ w; zih i

ziþ 1¼ Bw

aiþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ziþ 1;wh i

p
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2.4 Rayleigh Quotient and Its Characteristics

The quotient of quadratic function of a Hermitian matrix is defined as Rayleigh
quotient. As an important quantity in matrix algebra and physics, Rayleigh quotient
is a ratio of quadratic functions expressed by eigenvalues and eigenvectors, which
has been widely used in many areas such as optimization, signal processing, pattern
recognition, and communication.

2.4.1 Rayleigh Quotient

Definition 2.1 The Rayleigh quotient (RQ) of an Hermitian matrix C 2 C
n�n is a

scalar, defined as

r uð Þ ¼ r u;Cð Þ ¼ uHCu
uHu

;

where u is a quantity to be selected. The objective is to maximize or minimize the
Rayleigh quotient.
The most relevant properties of the RQ are can be summarized as follows:

① Homogeneity: r au; buð Þ ¼ br u;Cð Þ 8a; b 6¼ 0:
② Translation invariance: r u;C � aIð Þ ¼ r u;Cð Þ � a:
③ Boundedness: Since u ranges over all nonzero vectors, r uð Þ fills a region

in the complex plane which is called the field of values of C. This region
is closed, bounded, and convex. If C ¼ C� (selfadjoint matrix), the field
of values is the real interval bounded by the extreme eigenvalues.

④ Orthogonality: u? C � rðuÞIð Þu:
⑤ Minimal residual: 8u 6¼ 0 ^ 8 scalar l, C � rðuÞIð Þuk k� C � lIð Þuk k:

Proposition 2.1 (Stationarity) Let C be a real symmetric n-dimensional matrix with
eigenvalues kn � kn�1 � � � � k1 and associated unit eigenvectors z1; z2; . . .; zn. Then
it holds that k1 ¼ max r u;Cð Þ, kn ¼ min r u;Cð Þ. More generally, the critical points
and critical values of rðu;CÞ are the eigenvectors and eigenvalues of C.

Proposition 2.2 (Degeneracy): The RQ critical points are degenerate because at
these points the Hessian matrix is not invertible. Then the RQ is not a Morse
function in every open subspace of the domain containing a critical point.
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Furthermore, the following important theorems also holds for RQ.
Courant–Fischer Theorem: Let C 2 C

n�n be an Hermitian matrix, and its
eigenvalues are k1 � k2 � � � � � kn, then it holds that for kk 1� k� uð Þ:

kk ¼ min
S;dim Sð Þ¼n�kþ 1

max
u2S;u 6¼0

uHCu
uHu

� �
:

The Courant–Fischer Theorem can also written as

kk ¼ min
S;dim Sð Þ¼k

max
u2S;u 6¼0

uHCu
uHu

� �
:

2.4.2 Gradient and Conjugate Gradient Algorithm for RQ

If the negative direction of RQ gradient is regarded as the gradient flow of vector x,
e.g.,

_x ¼ � C � rðxÞI½ �x

then vector x can be computed iteratively by the following gradient algorithm:

x kþ 1ð Þ ¼ xðkÞþ l _x ¼ xðkÞ � l½C � rðxÞI]x:

It is worth noting that the gradient algorithm of RQ has faster convergence speed
than the iterative algorithm of standard RQ.

In the following, the conjugate gradient algorithm for RQ will be introduced,
where A in the RQ is a real symmetric matrix.

Starting from some initial vector, the conjugate gradient algorithm uses the
iterative equation, e.g.,

xkþ 1 ¼ xk þ akPk ð2:37Þ

to update and approach the eigenvector, associated with the minimal or maximal
eigenvalue of a symmetric matrix. The real coefficient ak is

ak ¼ 	 1
2D

�Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4CD

p� �
; ð2:38Þ

where “+” is used in the updating of the eigenvector associated with the minimal
eigenvalue, and “−” is used in the updating of the eigenvector associated with the
maximal eigenvalue. The formulae for parameters D, B, C in the above equations are
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D ¼ PbðkÞPcðkÞ � PaðkÞPdðkÞ
B ¼ PbðkÞ � kkPdðkÞ
C ¼ PaðkÞ � kkPcðkÞ
PaðkÞ ¼ PT

kAxk= xTk xk
� �

PbðkÞ ¼ pTkApk= xTk xk
� �

PcðkÞ ¼ pTk xk= xTk xk
� �

PdðkÞ ¼ pTk pk= xTk xk
� �

kk ¼ rðxkÞ ¼ xTkAxk= xTk xk
� �

:

:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2:39Þ

At the kþ 1th iteration, the search direction can be selected as

pkþ 1 ¼ rkþ 1 þ bðkÞpk; ð2:40Þ

where bð�1Þ ¼ 0and rkþ 1 is the residual vector at the kþ 1th iteration. rkþ 1 and
bðkÞ can be computed, respectively, as

rkþ 1 ¼ � 1
2
rxr xkþ 1ð Þ ¼ kkþ 1xkþ 1 � Axkþ 1ð Þ= xTk¼1xkþ 1

� � ð2:41Þ

and

b kð Þ ¼ � rTkþ 1Apk þ rTkþ 1rkþ 1
� �

xTkþ 1pk
� �

pTk Apk � kkþ 1Ið Þpk
: ð2:42Þ

Equations (2.5)–(2.9) constitute the conjugate gradient algorithm for RQ, which
was proposed in [11]. If the updated xk is normalized to one and “+” (or “−”) is
selected in Eq. (2.6), the above algorithm will obtain the minimal (or maximal)
eigenvalue of matrix A and its associated eigenvectors.

2.4.3 Generalized Rayleigh Quotient

Definition 2.3 Assume that A 2 C
n�n;B 2 C

n�n are both Hermitian matrices, and
B is positive definite. The generalized RQ or generalized Rayleigh–Ritz of the
matrix pencil (A, B) is a scalar function, e.g.,

r xð Þ ¼ xHAx
xHBx

; ð2:43Þ

where x is a quantity to be selected, and the objective is to maximize or minimize
the generalized RQ.
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In order to solve for the generalized RQ, define a new vector ~x ¼ B1=2x, where B1=2

is the square root of the positive definite B. Replace x by B�1=2~x in (2.43). Then it
holds that

r ~xð Þ ¼ ~xH B�1=2
� �H

A B�1=2
� �H

~x
~xH~x

; ð2:44Þ

which shows that the generalized RQ of matrix pencil (A, B) is equivalent to the RQ

of matrix product B�1=2
� �H

A B�1=2
� �H

. From the Rayleigh–Ritz theorem, it is clear
that when vector ~x is the eigenvector associated with the smallest eigenvalue kmin of

matrix product B�1=2
� �H

A B�1=2
� �H

, the generalized RQ obtains kmin. And if vector
~x is the eigenvector associated with the largest eigenvalue kmax of matrix product

B�1=2
� �H

A B�1=2
� �H

, the generalized RQ obtains kmax.
In the following, we review the eigen decomposition of matrix product

ðB�1=2ÞHAðB�1=2ÞH , e.g.,

B�1=2
� �H

A B�1=2
� �H

~x ¼ k~x: ð2:45Þ

If B ¼ Pn
i¼1

biviv
H
i is an eigen decomposition of matrix B, then

B1=2 ¼
Xn
i¼1

ffiffiffiffi
bi

p
vivHi

and B1=2B1=2 ¼ B. Since matrix B1=2and B�1=2have the same eigenvectors and their
eigenvalues are reciprocals to each other, then it follows that

B�1=2 ¼
Xn
i¼1

1ffiffiffiffi
bi

p vivHi ;

which shows that B�1=2 is also an Hermitian matrix, e.g., B�1=2
� �H¼ B�1=2:

Premultiply both sides of (2.45) by B�1=2, and use B�1=2
� �H¼ B�1=2, then it

holds that

B�1AB�1=2~x ¼ kB�1=2~x

or

B�1Ax ¼ kx:
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Since x ¼ B�1=2~x, thus the eigen decomposition of matrix product

B�1=2
� �H

A B�1=2
� �H

is equivalent to the one of matrix B�1A. The eigen decom-
position of matrix B�1A is the generalized eigenvalue decompositions of matrix
pencil (A, B). Thus, the conditions for the maximum and minimum of generalized
RQ are

rðxÞ ¼ xHAx
xHBx

¼ kmax; Ax ¼kmaxBx;

rðxÞ ¼ xHAx
xHBx

¼ kmin; Ax ¼kminBx:

That is to say, to maximize the generalized RQ, vector x must be the eigenvector
associated with the largest generalized eigenvalue kmax of matrix pencil (A, B). And
to minimize the generalized RQ, vector x must be the eigenvector associated with
the smallest generalized eigenvalue kmin of matrix pencil (A, B).

2.5 Matrix Analysis

In the derivation and analysis of neural network-based PCA algorithm and its
extensions, besides SVD, ED, etc., matrix gradient and matrix differential are also
very necessary analysis tools. In this section, we will introduce some important
results and properties of matrix gradient and matrix differential.

2.5.1 Differential and Integral of Matrix with Respect
to Scalar

If AðtÞ ¼ aijðtÞ
� �

m�n is a real matrix function of scalar t, then its differential and
integral are, respectively, defined as

d
dtAðtÞ ¼ d

dt aijðtÞ
n o

m�nR
AðtÞdt ¼ R

aijðtÞdt
� �

m�n

(
:

If A(t) and B(t) are, respectively, m� n and n� r matrices, then

d
dt

AðtÞBðtÞ½ � ¼ dAðtÞ
dt

� �
BðtÞþAðtÞ dBðtÞ

dt

� �
:
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If A(t) and B(t) are both m� n matrices, then

d
dt

AðtÞþBðtÞ½ � ¼ dAðtÞ
dt

þ dBðtÞ
dt

:

If A(t) is a rank-n invertible square matrix, then

dA�1ðtÞ
dt

¼ �A�1ðtÞ dAðtÞ
dt

A�1ðtÞ:

2.5.2 Gradient of Real Function with Respect to Real Vector

Define gradient operator rx of an n� 1 vector x as

rx ¼ @
@x1

; @
@x2

; � � � ; @
@xn

h iT
¼ @

@x
;

Then the gradient of a real scalar quantity function f xð Þ with respect to x is a
n� 1 column vector, which is defined as

rxf ðxÞ ¼ @f ðxÞ
@x1

; @f ðxÞ
@x2

; � � � ; @f ðxÞ
@xn

h iT
¼ @f ðxÞ

@x
:

The negative direction of the gradient direction is called as the gradient flow of
variable x, written as

_x ¼ �rxf ðxÞ:

The gradient of m-dimensional row vector function f ðxÞ ¼
f1ðxÞ; f2ðxÞ; . . .; fmðxÞ½ � with respect to the n� 1 real vector x is an n� m matrix,
defined as

@f ðxÞ
@x

¼
@f1ðxÞ
@x1

@f2ðxÞ
@x1

@fmðxÞ
@x1

@f1ðxÞ
@x2

@f2ðxÞ
@x2

@fmðxÞ
@x2

@f1ðxÞ
@xn

@f2ðxÞ
@xn

@fmðxÞ
@xn

2
664

3
775 ¼ rxf ðxÞ:

Some properties of gradient operations can be summarized as follows:

① If f ðxÞ ¼ c is a constant, then gradient @c
@x ¼ O:

② Linear principle: If f ðxÞ and gðxÞ are real functions of vector x, and c1
and c2 are real constants, then
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@ c1f ðxÞþ c2gðxÞ½ �
@x

¼ c1
@f xð Þ
@x

þ c2
@g xð Þ
@x

:

③ Product principle: If f ðxÞ and gðxÞ are real functions of vector x, then

@f xð Þg xð Þ
@x

¼ gðxÞ @f xð Þ
@x

þ f ðxÞ @g xð Þ
@x

:

④ Quotient principle: If gðxÞ 6¼ 0; then

@f xð Þ=gðxÞ
@x

¼ 1
g2ðxÞ gðxÞ @f ðxÞ

@x
� f ðxÞ @gðxÞ

@x

� �
:

⑤ Chain principle: If yðxÞ is a vector-valued function of x, then

@f yðxÞð Þ
@x

¼ @yTðxÞ
@x

@f ðyÞ
@y

;

where @yTðxÞ
@x is an n� n matrix.

⑥ If a is an n� 1 constant vector, then

@aTx
@x

¼ a;
@xTa
@x

¼ a

⑦ If A and y are both independent of x, then

@xTAy
@x

¼ Ay;
@yTAx
@x

¼ ATy:

⑧ If A is a matrix independent of x, then

@xTA
@x

¼ A;
@xTAx
@x

¼ AxþATx ¼ AþAT
� �

x:

Especially, if A is a symmetric matrix, then @xTAx
@x ¼ 2Ax:

2.5.3 Gradient Matrix of Real Function

The gradient of a real function f ðAÞ with respect to an m� n real matrix A is an
m� n matrix, called as gradient matrix, defined as
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@f ðAÞ
@A

¼

@f ðAÞ
@A11

@f ðAÞ
@A12

� � � @f ðAÞ
@A1n

@f ðAÞ
@A21

@f ðAÞ
@A22

� � � @f ðAÞ
@A2n

..

. ..
. ..

.

@f ðAÞ
@Am1

@f ðAÞ
@Am2

� � � @f ðAÞ
@Amn

2
66664

3
77775 ¼ rAf ðAÞ;

where Aij is the element of matrix A on its ith row and jth column.
Some properties of the gradient of a real function with respect to a matrix can be

summarized as follows:

① If f ðAÞ ¼ c is a constant, whereA is an m� n matrix, then @c
@A ¼ Om�n:

② Linear principle: If f ðAÞ and gðAÞ are real functions of matrix A, and c1
and c2 are real constants, then

@ c1f ðAÞþ c2gðAÞ½ �
@A

¼ c1
@f ðAÞ
@A

þ c2
@gðAÞ
@A

:

③ Product principle: If f ðAÞ and gðAÞ are real functions of matrix A, then

@f ðAÞgðAÞ
@A

¼ gðAÞ @f ðAÞ
@A

þ f ðAÞ @gðAÞ
@A

:

④ Quotient principle: If gðAÞ 6¼ 0;then

@f ðAÞ=gðAÞ
@ðAÞ ¼ 1

g2ðAÞ gðAÞ @f ðAÞ
@A

� f ðAÞ @gðAÞ
@A

� �
:

⑤ Chain principle: Let A be an m� n matrix, and y ¼ f ðAÞ and gðyÞ are
real functions of matrix A and scalar y, respectively. Then

@g f ðAÞð Þ
@A

¼ dgðyÞ
dy

@f ðAÞ
@A

:

⑥ If A 2 <m�n; x 2 <m�1; y 2 <n�1, then

@xTAy
@A

¼ AyT:

⑦ If A 2 <n�n is nonsingular x 2 <n�1; y 2 <n�1, then

@xTA�1y
@A

¼ �A�TAyTA�T:
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⑧ If A 2 <m�n; x; y 2 <n�1, then

@xTATAy
@A

¼ A xyT þ yxT
� �

:

⑨ If A 2 <m�n; x; y 2 <m�1, then

@xTAATy
@A

¼ xyT þ yxT
� �

A:

2.5.4 Gradient Matrix of Trace Function

Here, we summarize some properties of gradient matrix of trace functions.
①–③ are gradient matrices of the trace of a single matrix.

① If W is an m� m matrix, then

@tr Wð Þ
@W

¼ Im:

② If an m� m matrix W is invertible, then

@tr W�1
� �
@W

¼ � W�2
� �T

:

③ For the outer product of two vectors, it holds that

@tr xyTð Þ
@x

¼ @tr yxTð Þ
@x

¼ y:

④–⑦ are gradient matrices of the trace of the product of two matrices.
④ If W 2 <m�n; A 2 <n�m, then

@trðWAÞ
@W

¼ @trðAWÞ
@W

¼ AT:

⑤ If W 2 <m�n;A 2 <m�n, then

@tr WTA
� �
@W

¼ @tr AWT
� �
@W

¼ A:
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⑥ If W 2 <m�n, then

@tr WWT
� �
@W

¼ @tr WTW
� �
@W

¼ 2W:

⑦ If W 2 <m�n, then

@trðW2Þ
@W

¼ @trðWWÞ
@W

¼ 2WT:

⑧ If W;A 2 <m�m and W is nonsingular, then

@tr AW�1
� �
@W

¼ � W�1AW�1� �T
:

⑨–⑪ are gradient matrices of the trace of the product of three matrices.
⑨ If W 2 <m�n;A 2 <m�m, then

@tr WTAW
� �
@W

¼ AþAT� �
W:

Especially, if A is a symmetric matrix, then
@tr WTAWð Þ

@W ¼ 2AW
⑩ If W 2 <m�n;A 2 <n�n, then

@tr WAWT
� �
@W

¼ W AþAT� �
:

Especially, if A is a symmetric matrix, then
@tr WAWTð Þ

@W ¼ 2WA
⑪ If W;A;B 2 <m�m and W is nonsingular, then

@tr AW�1B
� �
@W

¼ � W�1BAW�1� �T
:

2.5.5 Gradient Matrix of Determinant

Some properties of the gradient of the determinant of a matrix can be summarized
as follows:

2.5 Matrix Analysis 43



① Gradient of the determinant of a single nonsingular matrix

@ Wj j
@W

¼ Wj j W�1� �T¼ W#
� �T

@ W�1


 


@W

¼ � Wj j�1 W�1� �T
;

where W# is the adjoint matrix A.
② Gradient of the logarithm of a determinant

@

@W
log Wj j ¼ 1

Wj j
@ Wj j
@W

;

W is nonsingular.

@

@W
log Wj j ¼ W�1

� �T
;

the elements are independent to each other.

@

@W
log Wj j ¼ 2W�1 � diag W�1� �

;

W is symmetric matrix.
③ Gradient of the determinant of a two-matrix product

@ WWT


 


@W

¼ 2 WWT


 

 WWT� ��1

W; rank Wm�nð Þ ¼ m:

@ WWT


 


@W

¼ 2 WTW


 

W WTW

� ��1
; rank Wm�nð Þ ¼ n:

@ W2


 


@W

¼ 2 Wj j2 W�1� �T
; rank Wm�mð Þ ¼ m:

④ Gradient of the determinant of a three-matrix product

@ AWBj j
@W

¼ AWBj jAT BTWTAT� ��1
BT:

@ WTAW


 


@W

¼ 2AW WTAW
� ��1

; WTAW


 

[ 0:

@ WAWT


 


@W

¼ WAWT� ��1
h iT

W AT þA
� �

:
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2.5.6 Hessian Matrix

The Hessian matrix is defined as

@2f ðxÞ
@x@xT

¼ @

@xT
@f ðxÞ
@x

� �
¼

@2f
@x1@x1

@2f
@x1@x2

� � � @2f
@x1@xn

@2f
@x2@x1

@2f
@x2@x2

� � � @2f
@x2@xn

..

. ..
. ..

.

@2f
@xn@x1

@2f
@xn@x2

� � � @2f
@xn@xn

2
666664

3
777775

and it can also be written as the gradient of gradient, i.e., r2
x f ðxÞ ¼ rx rxf ðxÞð Þ.

Here are some properties of Hessian matrix.

① For an n� 1 constant vector a, it holds that

@2aTx
@x@xT

¼ On�n:

② If A is an n� n matrix, then

@2xTAx
@x@xT

¼ AþAT:

③ If x is an n� 1 vector, a is an m� 1 constant vector, A and B,
respectively, are m� n and m� m constant matrices, and B is sym-
metric, then

@2 a� Axð ÞTB a� Axð Þ
@x@xT

¼ 2ATBA:

2.6 Summary

The singular value decomposition, eigenvalue decomposition, Rayleigh quotient,
and gradient and differentials of a matrix have been reviewed in a tutorial style in
this chapter. The materials presented in this chapter are useful for the understanding
of latter chapters, particularly for the chapters except 3 and 6.
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