
Chapter 1
Introduction

1.1 Feature Extraction

Pattern recognition and data compression are two applications that rely critically on
efficient data representation [1]. The task of pattern recognition is to decide to
which class of objects an observed pattern belonging to, and the compression of
data is motivated by the need to save the number of bits to represent the data while
incurring the smallest possible distortion [1]. In these applications, it is desirable to
extract measurements that are invariant or insensitive to the variations within each
class. The process of extracting such measurements is called feature extraction. It is
also to say feature extraction is a data processing which maps a high-dimensional
space to a low-dimensional space with minimum information loss.

Principal component analysis (PCA) is a well-known feature extraction method,
while minor component analysis (MCA) and independent component analysis
(ICA) can be regarded as variants or generalizations of the PCA. MCA is most
useful for solving total least squares (TLS) problems, and ICA is usually used for
blind signal separation (BSS).

In the following, we briefly review PCA, PCA neural networks, and extensions
or generalizations of PCA.

1.1.1 PCA and Subspace Tracking

The principal components (PC) are the directions in which the data have the largest
variances and capture most of the information contents of data. They correspond to
the eigenvectors associated with the largest eigenvalues of the autocorrelation
matrix of the data vectors. Expressing data vectors in terms of the PC is called PCA.
On the contrary, the eigenvectors that correspond to the smallest eigenvalues of the
autocorrelation matrix of the data vectors are defined as the minor components
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(MC), and MC are the directions in which the data have the smallest variances (they
represent the noise in the data). Expressing data vectors in terms of the MC is called
MCA. Now, PCA has been successfully applied in many data processing problems,
such as high-resolution spectral estimation, system identification, image compres-
sion, and pattern recognition, and MCA is also applied in total least squares,
moving target indication, clutter cancelation, curve and surface fitting, digital
beamforming, and frequency estimation.

The PCA or MCA is usually one dimensional. However, in real applications,
PCA or MCA is mainly multiple dimensional. The eigenvectors associated with the
r largest (or smallest) eigenvalues of the autocorrelation matrix of the data vectors is
called principal (or minor) components, and r is referred to as the number of the
principal (or minor) components. The eigenvector associated with the largest
(smallest) eigenvalue of the autocorrelation matrix of the data vectors is called
largest (or smallest) component. The subspace spanned by the principal components
is called principal subspace (PS), and the subspace spanned by the minor compo-
nents is called minor subspace (MS). In some applications, we are only required to
find the PS (or MS) spanned by r orthonormal eigenvectors. The PS is sometimes
called signal subspace, and the MS is called noise subspace. Principal and minor
component analyzers of a symmetric matrix are matrix differential equations that
converge on the PCs and MCs, respectively. Similarly, the principal (PSA) and
minor (MSA) subspace analyzers of a symmetric matrix are matrix differential
equations that converge on a matrix whose columns’ span is the PS and MS,
respectively. PCA/PSA and MCA/MSA are powerful techniques in many infor-
mation processing fields. For example, PCA/PSA is a useful tool in feature
extraction, data compression, pattern recognition, and time series prediction [2, 3],
and MCA/MSA has been widely applied in total least squares, moving target
indication, clutter cancelation, curve and surface fitting, digital beamforming, and
frequency estimation [4].

As discussed before, the PC is the direction which corresponds to the eigen-
vector associated with the largest eigenvalue of the autocorrelation matrix of the
data vectors, and the MC is the direction which corresponds to the eigenvector
associated with the smallest eigenvalue of the autocorrelation matrix of the data
vectors. Thus, implementations of these techniques can be based on batch eigen-
value decomposition (ED) of the sample correlation matrix or on singular value
decomposition (SVD) of the data matrix. This approach is unsuitable for adaptive
processing because it requires repeated ED/SVD, which is a very time-consuming
task [5]. Thus, the attempts to propose adaptive algorithms are still continuing even
though the field has been active for three decades up to now.

1.1.2 PCA Neural Networks

In order to overcome the difficulty faced by ED or SVD, a number of adaptive
algorithms for subspace tracking were developed in the past. Most of these
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techniques can be grouped into three classes [5]. In the first class, classical batch
ED/SVD methods such as QR algorithm, Jacobi rotation, power iteration, and
Lanczos method have been modified for the use in adaptive processing [6–10]. In
the second class, variations in Bunch’s rank-one updating algorithm [11], such as
subspace averaging [12, 13], have been proposed. The third class of algorithms
considers the ED/SVD as a constrained or unconstrained optimization problem.
Gradient-based methods [14–19], Gauss–Newton iterations [20, 21], and conjugate
gradient techniques [22] can then be applied to seek the largest or smallest
eigenvalues and their corresponding eigenvectors adaptively. Rank revealing URV
decomposition [23] and rank revealing QR factorization [24] have been proposed to
track the signal or noise subspace.

Neural network approaches on PCA or MCA pursue an effective “online”
approach to update the eigen direction after each presentation of a data point, which
possess many obvious advantages, such as lower computational complexity,
compared with the traditional algebraic approaches such as SVD. Neural network
methods are especially suited for high-dimensional data, since the computation of
the large covariance matrix can be avoided, and for the tracking of nonstationary
data, where the covariance matrix changes slowly over time. The attempts to
improve the methods and to suggest new approaches are continuing even though
the field has been active for two decades up to now.

In the last decades, many neural network learning algorithms were proposed to
extract PS [25–31] or MS [4, 32–40]. In the class of PS tracking, lots of learning
algorithms such as Oja’s subspace algorithm [41], the symmetric error correction
algorithm [42], and the symmetric version of the back propagation algorithm [43]
were proposed based on some heuristic reasoning [44]. Afterward, some infor-
mation criterions were proposed and the corresponding algorithms such as LMSER
algorithm [31], the projection approximation subspace tracking (PAST) algorithm
[5], the conjugate gradient method [45], the Gauss–Newton method [46], and the
novel information criterion (NIC) algorithm were developed [44]. These
gradient-type algorithms could be claimed to be globally convergent.

In the class of MS tracking, many algorithms [32–40] have been proposed on the
basis of the feedforward neural network models. Mathew and Reddy proposed the
MS algorithm based on a feedback neural network structure with sigmoid activation
function [46]. Using the inflation method, Luo and Unbehauen proposed an MSA
algorithm that does not need any normalization operation [36]. Douglas et al.
presented a self-stabilizing minor subspace rule that does not need periodically
normalization and matrix inverses [40]. Chiang and Chen showed that a learning
algorithm can extract multiple MCs in parallel with the appropriate initialization
instead of inflation method [47]. On the basis of an information criterion, Ouyang
et al. developed an adaptive MC tracker that automatically finds the MS without
using the inflation method [37]. Recently, Feng et al. proposed the OJAm algorithm
and extended it for tracking multiple MCs or the MS, which makes the corre-
sponding state matrix tend to a column orthonormal basis of the MS [35].
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1.1.3 Extension or Generalization of PCA

It can be found that the above-mentioned algorithms only focused on eigenvector
extraction or eigen-subspace tracking with noncoupled rules. However, a serious
speed stability problem exists in the most noncoupled rules [28]. This problem is
that in noncoupled PCA rules the eigen motion in all directions mainly depends on
the principal eigenvalue of the covariance matrix; thus, numerical stability and fast
convergence can only be achieved by guessing this eigenvalue in advance [28]; in
noncoupled MCA rules the speed of convergence does not only depend on the
minor eigenvalue, but also depend on all other eigenvalues of the covariance
matrix, and if these extend over a large interval, no suitable learning rate may be
found for a numerical solution that can still guarantee stability and ensure a suffi-
cient speed of convergence in all eigen directions. Therefore, the problem is even
more severe for MCA rules. To solve this common problem, Moller proposed some
coupled PCA algorithms and some coupled MCA algorithms based on a special
information criteria [28]. In coupled rules, the eigen pair (eigenvector and eigen-
value) is simultaneously estimated in coupled equations, and the speed of con-
vergence only depends on the eigenvalue of its Jacobian. Thus, the dependence of
the eigenvalues on the covariance matrix can be eliminated [28]. Recently, some
modified coupled rules have been proposed [48].

It is well known that the generalized eigen decomposition (GED) plays very
important roles in various signal processing applications, e.g., data compression,
feature extraction, denoising, antenna array processing, and classification.
Though PCA, which is the special case of GED problem, has been widely studied,
the adaptive algorithms for the GED problem are scarce. Fortunately, a few efficient
online adaptive algorithms for the GED problem that can be applied in real-time
applications have been proposed [49–54]. In [49], Chaterjee et al. present new
adaptive algorithms to extract the generalized eigenvectors from two sequences of
random vectors or matrices. Most algorithms in literatures including [49] are
gradient-based algorithms [50, 51]. The main problem of this type of algorithms is
slow convergence and the difficulty in selecting an appropriate step size which is
essential: A too small value will lead to slow convergence and a too large value will
lead to overshooting and instability. Rao et al. [51] have developed a fast recursive
least squares (RLS)-like, not true RLS, sequential algorithm for GED. In [54], by
reinterpreting the GED problem as an unconstrained minimization problem via
constructing a novel cost function and applying projection approximation method
and RLS technology to the cost function, RLS-based parallel adaptive algorithms
for generalized eigen decomposition was proposed. In [55], a power method-based
algorithm for tracking generalized eigenvectors was developed when stochastic
signals having unknown correlation matrices are observed. Attallah proposed a new
adaptive algorithm for the generalized symmetric eigenvalue problem, which can
extract the principal and minor generalized eigenvectors, as well as their corre-
sponding subspaces, at a low computational cost [56]. Recently, a fast and
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numerically stable adaptive algorithm for the generalized Hermitian eigenvalue
problem (GHEP) was proposed and analyzed in [48].

Other extensions of PCA also include dual-purpose algorithm [57–64], the
details of which can be found in Chap. 5, and adaptive or neural networks-based
SVD singular vector tracking [6, 65–70], the details of which can be found in
Chap. 9.

1.2 Basis for Subspace Tracking

In Sect. 1.1, we have reviewed the PCA algorithm and its extensions and gener-
alizations from the viewpoint of the feature extraction. In this section, from another
viewpoint of subspace, we will discuss the concept of subspace and subspace
tracking method.

1.2.1 Concept of Subspace

Definition 1 If S ¼ fu1; u2; . . .; umg is the vector subset of vector space V, then the
set W of all linear combinations of u1; u2; . . .; um is called the subspace spanned by
u1; u2; . . .; um, namely

W ¼ Spanfu1; u2; . . .; umg ¼ fu : u ¼ a1u1 þ a2u2 þ � � � þ amumg; ð1:1Þ

where each vector in W is called the generator of W, and the set fu1; u2; . . .; umg
which is composed of all the generators is called the spanning set of the subspace.
A vector subspace which only comprises zero vector is called a trivial subspace. If
the vector set fu1; u2; . . .; umg is linearly irrespective, then it is called a group basis
of W.

Definition 2 The number of vectors in any group basis of subspace W is called the
dimension of W, which is denoted by dim(W). If any group basis of W is not
composed of finite linearly irrespective vectors, then W is called an
infinite-dimensional vector subspace.

Definition 3 Assume that A ¼ ½a1; a2; . . .; an� 2 Cm�n is a complex matrix and all
the linear combinations of its column vectors constitute a subspace, which is called
column space of matrix A and is denoted by Col(A), namely

ColðAÞ ¼ Spanfa1; a2; . . .; ang ¼ y 2 Cm : y ¼
Xn
j¼1

ajaj : aj 2 C

( )
: ð1:2Þ

Row space of matrix A can be defined similarly.
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As stated in the above, the column space and row space of matrix Am�n are
spanned by n column vectors and m row vectors, respectively. If rank(A) is equal to
r, then only r column or row vectors of matrix, which are linearly irrespective, can
constitute column space Span(A) and row space Span(AH), respectively. Obviously,
it is an economical and better subspace expression method to use basis vector. The
methods of constituting a subspace have primary transforms, and one can also use
singular value decomposition to set up a normal orthogonal basis of base space.

Suppose that the data matrix A has measure error or noises, and define measure
data matrix as

X ¼ AþW ¼ ½x1; x2; . . .; xn� 2 Cm�n; ð1:3Þ

where xi 2 Cm�1: In the fields of signal processing and system science, the column
space of measure data matrix SpanðXÞ ¼ Spanfx1; x2; . . .; xng is called measure
data space.

Define the correlation matrix as:

RX ¼ EfXHXg ¼ EfðAþWÞHðAþWÞg: ð1:4Þ

Suppose that error matrix W ¼ ½w1;w2; . . .;wn� is statistically irrespective of real
data matrix A, then

RX ¼ EfXHXg ¼ EfAHAgþEfWHWg: ð1:5Þ

Define R ¼ EfAHAg and EfWHWg ¼ r2wI, namely every measure noise is
statistically irrespective and they have the same variance r2w, it holds that

RX ¼ Rþ r2wI: ð1:6Þ

Define rank(A) = r, and the eigenvalue decomposition of matrix RX ¼ EfXHXg
can be written as RX ¼ UKUH þ r2wI ¼ UðKþ r2wIÞUH ¼ UPUH ; where P ¼
Rþ r2wI ¼ diag r21 þ r2w; . . .; r

2
r þ r2w; r

2
w; . . .; r

2
w

� �
, R ¼ diagðr21; . . .; r2r ; 0; . . .; 0Þ;

and r21 � r22 � � � � � r2r are the nonzero eigenvalues of the real autocorrelation
matrix R ¼ EfAHAg:

Obviously, if the signal-to–noise ratio is large enough, that is, r2r is obviously
bigger than r2w, then the first r largest eigenvalues of autocorrelation matrix RX ,
namely k1 ¼ r21 þ r2w; k2 ¼ r22 þ r2w; . . .; kr ¼ r2r þ r2w are called the principal
eigenvalues, and the remaining n − r small eigenvalues krþ 1 ¼ r2w; krþ 2 ¼
r2w; . . .; kn ¼ r2w are called the minor eigenvalues. Thus, the eigen decomposition of
autocorrelation matrix RX can be written as
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RX ¼ US Un½ � RS O
O Rn

� �
UH

S

UH
n

" #
¼ SRSSH þGRnGH ; ð1:7Þ

where S ¼def½s1; s2; . . .; sr� ¼ ½u1; u2; . . .; ur�; G ¼def½g1; g2; . . .; gn�r� ¼ ½urþ 1;

urþ 2; . . .; un�; RS ¼ diagðr21 þ r2w; r
2
2 þ r2w; . . .; r

2
r þ r2wÞ; Rn ¼ diagðr2w; r2w; � � � ;

r2wÞ; m� r unitary matrix S is the matrix composed of the eigenvectors which
correspond to the r principal eigenvalues, and m� ðn� rÞ unitary matrix G is the
matrix composed of the eigenvectors which correspond to the n − r minor
eigenvalues.

Definition 4 Define S as the eigenvector matrix which correspond to the first
r largest eigenvalues k1; k2; . . .; kr of the autocorrelation matrix of the measurement
data. Then its column space SpanðSÞ ¼ Spanfu1; u2; . . .; urg is called the signal
subspace of measurement data space SpanðXÞ, and the column space SpanðGÞ ¼
Spanfurþ 1; urþ 2; . . .; ung of the eigenvector matrix G which correspond to the
n − r minor eigenvalues is called the noise subspace of measurement data space.

In the following, we analyze the geometric meaning of the signal subspace and
the noise subspace. From the constitution method of subspace and the feature of
unitary matrix, we know that the signal subspace and noised subspace are
orthogonal, that is,

Spanfs1; s2; . . .; srg?Spanfg1; g2; . . .; gn�rg: ð1:8Þ

Since U is a unitary matrix, it holds that

UUH ¼ S G½ � SH

GH

� �
¼ SSH þGGH ¼ I;

that is,

GGH ¼ I � SSH : ð1:9Þ

Define the projection matrix of signal subspace as

PS ¼def S S; Sh i�1SH ¼ SSH ; ð1:10Þ

where the matrix inner product S;Sh i ¼ SHS ¼ I.
Thus, PSx can be considered as the projection of vector x on the signal subspace,

and ðI � PSÞx means the orthogonal projection of vector x on the signal subspace.
From G;Gh i ¼ GHG ¼ I, it holds that the projection matrix on the noise subspace
is Pn ¼ G G;Gh i�1GH ¼ GGH . Therefore, the following matrix
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GGH ¼ I � SSH ¼ I � PS ð1:11Þ

is usually called as the orthogonal projection matrix of signal subspace.
The subspace applications have the following characteristics [5, 71]:

(1) Only a few singular vectors or eigenvectors are needed. Since the number of
larger singular values (or eigenvalues) of matrix Am�n is smaller than the
number of smaller singular values (or eigenvalues), it is more efficient to use
the signal subspace with smaller dimension than the noise subspace.

(2) In many application occasions, one does not need to know the singular values
or eigenvalues, and only needs to know the matrix rank and singular vectors or
eigenvectors of matrix.

(3) In most instances, one does not need to know the singular vectors or eigen-
vectors of matrix well and truly, and only needs to know the basis vectors
spanned by the signal subspace or noise subspace.

1.2.2 Subspace Tracking Method

The iterative computation of an extreme (maximal or minimum) eigen pair
(eigenvalue and eigenvector) can date back to 1966 [72]. In 1980, Thompson
proposed a LMS-type adaptive algorithm for estimating eigenvector, which cor-
respond to the smallest eigenvalue of sample covariance matrix, and provided the
adaptive tracking algorithm of the angle/frequency combing with Pisarenko’s
harmonic estimator [14]. Sarkar et al. [73] used the conjugate gradient algorithm to
track the variation of the extreme eigenvector which corresponds to the smallest
eigenvalue of the covariance matrix of the slowly changing signal and proved its
much faster convergence than Thompson’s LMS-type algorithm. These methods
were only used to track single extreme value and eigenvector with limited appli-
cation, but later they were extended for the eigen-subspace tracking and updating
methods. In 1990, Comon and Golub [6] proposed the Lanczos method for tracking
the extreme singular value and singular vector, which is a common method
designed originally for determining some big and sparse symmetrical eigen problem
Ax ¼ kx [74].

The earliest eigenvalue and eigenvector updating method was proposed by
Golub in 1973 [75]. Later, Golub’s updating idea was extended by Bunch et al. [76,
77], the basic idea of which is to update the eigenvalue decomposition of the
covariance matrix after every rank-one modification, and then go to the matrix’s
latent root using the interlacing theorem, and then update the place of the latent root
using the iterative resolving root method. Thus, the eigenvector can be updated.
Later, Schereiber [78] introduced a transform to change a majority of complex
number arithmetic operation into real-number operation and made use of Karasalo’s
subspace mean method [79] to further reduce the operation quantity. DeGroat and
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Roberts [80] developed a numerically stabilized rank-one eigen structure updating
method based on mutual Gram–Schmidt orthogonalization. Yu [81] extended the
rank-one eigen structure update to block update and proposed recursive update of
the eigenvalue decomposition of a covariance matrix.

The earliest adaptive signal subspace tracking method was proposed by Owsley
[7] in 1978. Using the stochastic gradient method, Yang and Kaveh [18] proposed a
LMS-type subspace tracking algorithm and extended Owsley’s method and
Thompson’s method. This LMS-type algorithm has a high parallel structure and
low computational complexity. Karhumen [17] extended Owsley’s idea by devel-
oping a stochastic approaching method based on computing subspace. Like Yang
and Kaveh’s extension of Thompson’s idea to develop an LMS-type subspace
tracking algorithm, Fu and Dowling [45] extended Sarkar’s idea to develop a
subspace tracking algorithm based on conjugate gradient. During the recent
20 years, eigen-subspace tracking and update has been an active research field.
Since eigen-subspace tracking is mainly applied to real signal processing, these
methods should be fast algorithms.

According to [71], the eigen-subspace tracking and updating methods can be
classified into the following four classes:

(1) In some applications of eigen-subspace method such as MUSIC, one only
needs to use the orthogonal basis of the noise subspace eigenvectors and does
not need to use the eigenvector itself. This characteristic can predigest the
adaptive tracking problem of a class of eigenvectors. The methods which only
track the orthogonal basis of noise subspace are classified as the first class, and
they are based on rank revealing URV [82] and rank revealing QR [83]
decomposition of matrix, respectively.

(2) In the method conducting tracking and updating problem of the eigenvalues
and eigen-subspace simultaneously, a common sight is to regard the covari-
ance matrix of the nonstationary signal at the kth as the sum of the covariance
matrix at the k − 1th and another rank-one matrix (the product of the conju-
gate transpose of measure vector and itself). Thus, tracking the eigenvalue
decomposition of the covariance matrix has much to do with the so-called
rank-one updating [81, 84].

(3) Regarding the determination of eigen-subspace as an optimization problem:
The one is a constrained optimization problem, and the other is unconstrained
optimization problem. The constrained optimization problem can be solved
using the stochastic gradient [18] and conjugate gradient [45] methods. The
unconstrained optimization problem presents a new explanation for the
eigen-subspace, and its corresponding method was called projection approx-
imation subspace tracking [5]. The other classical representative is that it is
based on Lanczos algorithm, and to use the Lanczos iteration and stochastic
approach concept to conduct on the computation of subspace of slowly
changing data matrix [85]. Xu et al., proposed [86, 87] three Lanczos and dual
Lanczos subspace tracking algorithms, and the former is suitable for the eigen
decomposition of covariance matrix, and the latter is for the singular value
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decomposition of data matrix, and at the processing of Lanczos iteration they
can test and estimate the number of principal eigenvalues and principal sin-
gular values. In view of the close mathematics connections between the
Lanczos algorithm and conjugate gradient, this algorithm, though it has not
direct connections with the optimization problem, still falls into the third type
of method.

(4) Modify and extend the classical eigen decomposition/singular value decom-
position batch processing methods such as QR decomposition, Jacobi method,
and power iteration to make them adaptive. For example, the singular value
decomposition updating algorithm based on QR updating and Jacobi-type
method [88] falls into this class.

1.3 Main Features of This Book

This book presents principal component analysis algorithms and its extensions
using neural networks approach. Pertinent features include the following:

(1) A tutorial-style overview of neural networks-based principal component
analysis algorithms, minor component analysis algorithms, principal subspace
tracking, and minor subspace tracking.

(2) Analysis of self-stabilizing feature of neural-based PCA/MCA algorithms, and
development of a self-stabilizing neural-based minor component analysis
algorithm.

(3) Total least squares estimation application of MCA algorithms, and develop-
ment of a novel neural-based algorithm for total least squares filtering.

(4) Development of a novel dual-purpose principal and minor subspace gradient
flow and unified self-stabilizing algorithm for principal and minor compo-
nents’ extraction.

(5) Analysis of a discrete-time dynamics of a class of self-stabilizing MCA
learning algorithms and a convergence analysis of deterministic discrete-time
system of a unified self-stabilizing algorithm for PCA and MCA.

(6) Extension of PCA algorithm to generalized feature extraction and develop-
ment of a novel adaptive algorithm for minor generalized eigenvector
extraction and a novel multiple generalized minor component extraction
algorithm.

(7) Development of a unified and coupled PCA and MCA rules and an adaptive
coupled generalized eigen pairs extraction algorithm, based on Moller’s
coupled PCA neural algorithm.

(8) Generalization of feature extraction from autocorrelation matrix to
cross-correlation matrix, and development of an effective neural algorithm for
extracting cross-correlation feature between two high-dimensional data
streams and a coupled principal singular triplet extraction algorithm of a
cross-covariance matrix.
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1.4 Organization of This Book

As reflected in the title, this book is concerned with three areas of principal com-
ponent analysis method, namely neural-based algorithm, performance analysis
method, and generalized/extension algorithm. Consequently, the book can be nat-
urally divided into three parts with a common theme. In the three areas, many novel
algorithms were proposed by us. To appreciate theses new algorithms, the con-
ventional approaches and existing methods also need to be understood.
Fundamental knowledge of conventional principal component analysis, neural-
based feature extraction, subspace tracking, performance analysis methods, and
even feature extraction based on matrix theory is essential for understanding the
advanced material presented in this book. Thus, each part of this book starts with a
tutorial type of introduction of the area.

Part I starts from Chap. 2, which provides an overview of some important
concepts and theorems of decomposition and singular value decomposition related
to principal component analysis. Chapter 3 serves as a starting point to introduce
the neural-based principal component analysis. The key Hebbian network and Oja’s
network forming the core of neural network-based PCA algorithms can be founded
in this chapter. Chapter 4 provides an introduction to neural network-based MCA
algorithms and the self-stabilizing analysis of these algorithms, followed by a novel
self-stabilizing MCA algorithm and a novel neural algorithm for total least squares
filtering proposed by us. Part I ends on Chap. 5, which addresses the theoretical
issue of the dual-purpose principal and minor component analysis. In this chapter,
several important dual-purpose algorithms proposed by us are introduced, and their
performance and numerical consideration are analyzed. Part II starts from a
tutorial-style introduction to deterministic continuous-time (DCT) system, the
stochastic discrete-time (SDT) system, the deterministic discrete-time (DDT) sys-
tem, followed by a detailed analysis of DDT systems of a new self-stabilizing MCA
algorithm and Chen’s unified PCA/MCA algorithm in Chap. 6. Part III starts from
Chap. 7. The generalized Hermitian eigenvalue problem and existing adaptive
algorithms to extract generalized eigen pairs are reviewed, and then, a minor
generalized eigenvector extraction algorithm and a novel adaptive algorithm for
generalized coupled eigen pairs of ours are introduced and discussed. The other two
chapters of Part III are devoted to coupled principal component analysis and
cross-correlation feature extraction, respectively, in which our novel coupled or
extension algorithms are introduced and analyzed.

Some of the materials presented in this book have been published in archival
journals by the authors, and is included in this book after necessary modifications or
updates (some modifications are major ones) to ensure accuracy, relevance, com-
pleteness and coherence. This portion of materials includes:

• Section 4.4 of Chapter 4, reprinted from Neural Networks, Xiangyu Kong,
Changhua Hu, Chongzhao Han, “A self-stabilizing MSA algorithm in
high-dimensional data stream”, Vol. 23, 865–871, © 2010 Elsevier Ltd., with
permission from Elsevier.
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• Section 4.5 of Chapter 4, reprinted fromNeural Processing Letter, Xiangyu Kong,
Changhua Hu, Chongzhao Han, “A self-stabilizing neural algorithm for total least
squares filtering”, Vol. 30, 257–271, © 2009 Springer Science+Business Media,
LLC., reprinted with permission.

• Section 5.3 of Chapter 5, reprinted from IEEE Transactions on Signal
Processing, Xiangyu Kong, Changhua Hu, Chongzhao Han, “A Dual purpose
principal and minor subspace gradient flow”, Vol. 60, No. 1, 197–210, © 2012
IEEE., with permission from IEEE.

• Section 6.3 of Chapter 6, reprinted from IEEE Transactions on Neural
Networks, Xiangyu Kong, Changhua Hu, Chongzhao Han, “On the discrete
time dynamics of a class of self-stabilizing MCA learning algorithm”, Vol. 21,
No. 1, 175–181, © 2010 IEEE., with permission from IEEE.

• Section 6.4 of Chapter 6, reprinted from Neural Networks, Xiangyu Kong,
Qiusheng an, Hongguang Ma, Chongzhao Han, Qizhang, “Convergence anal-
ysis of deterministic discrete time system of a unified self-stabilizing algorithm
for PCA and MCA”, Vol. 36, 64–72, © 2012 Elsevier Ltd., with permission
from Elsevier.

• Section 7.3 and 7.4 of Chapter 7, reprinted from IEEE Transactions on Signal
Processing, Gao Yingbin, Kong Xiangyu, Hu Changhua, Li Hongzeng, and Hou
Li'an, “A Generalized Information Criterion for generalized Minor Component
Extraction”, Vol. 65, No. 4, 947–959, © 2017 IEEE., with permission from
IEEE.

• Section 8.3 of Chapter 8, reprinted from Neural Processing Letter, Xiaowei
Feng, Xiangyu Kong, Hongguang Ma, and Haomiao Liu, “Unified and coupled
self-stabilizing algorithm for minor and principal eigen-pair extraction”,
doi: 10.1007/s11063-016-9520-3, © 2016 Springer Science+Business Media,
LLC., reprinted with permission.

• Section 8.4 of Chapter 8, reprinted from IEEE Transactions on Signal
Processing, Xiaowei Feng, Xiangyu Kong, Zhansheng Duan, and Hongguang
Ma, “Adaptive generalized eigen-pairs extraction algorithm and their conver-
gence analysis”, Vol. 64, No. 11, 2976–2989, © 2016 IEEE., with permission
from IEEE.

• Section 9.3 of Chapter 9, reprinted from Neural Processing Letter, Xiang yu
Kong, Hong guang Ma, Qiu sheng An, Qi Zhang, “An effective neural learning
algorithm for extracting cross-correlation feature between two high-dimensional
data streams”, Vol. 42, 459–477, © 2015 Springer Science+Business Media,
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