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Preface

Aim of This book

The aim of this book is to (1) to explore the relationship between principal
component analysis (PCA), neural network, and learning algorithms and provide an
introduction to adaptive PCA methods and (2) to present many novel PCA algo-
rithms, their extension/generalizations, and their performance analysis.

In data analysis, one very important linear technique to extract information from
data is principal component analysis (PCA). Here, the principal components
(PCs) are the directions in which the data have the largest variances and capture
most of the information content of data. They correspond to the eigenvectors
associated with the largest eigenvalues of the autocorrelation matrix of the data
vectors. On the contrary, the eigenvectors that correspond to the smallest eigen-
values of the autocorrelation matrix of the data vectors are defined as the minor
components (MCs) and are the directions in which the data have the smallest
variances (they represent the noise in the data). Expressing data vectors in terms
of the minor components is called minor component analysis (MCA).
Through PCA, many variables can be represented by few components, so PCA can
be considered as either a feature extraction or a data compression technology. Now,
PCA has been successfully applied to many data processing problems, such as
high-resolution spectral estimation, system identification, image compression, and
pattern recognition. MCA is mainly used to solve total least squares problem, which
is a technology widely used to compensate for data errors in parameter estimation
or system identification. However, how can we obtain the principal components or
minor components from a stochastic data stream?

This book aims to provide a relatively complete view of neural network-based
principal component analysis or principal subspace tracking algorithms and present
many novel PCA algorithms, their performance analysis, and their
extension/generalizations.
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Novel Algorithms and Extensions

It is well known that many methods exist for the computation of principal com-
ponents, such as the power method, eigenvalue decomposition (ED), singular value
decomposition (SVD), and neural network algorithms. Neural network approaches
on PCA pursue an effective “online” approach to update the eigen direction after
each presentation of a data point, which possess many obvious advantages. Many
neural network learning algorithms have been proposed to extract PC, and this has
been an active field for around two decades up to now.

This book is not oriented toward all neural network algorithms for PCA, but to
some novel neural algorithms and extensions of PCA, which can be summarized as
follows.

(1) Compared with most neural principal component learning algorithms, the
number of neural networks for minor component analysis is somewhat
smaller. A norm divergence problem exists in some existing MCA algorithms.
To guarantee the convergence, it is necessary to use self-stabilizing algo-
rithms. In these self-stabilizing algorithms, the weight vector length converges
to a fixed value independent of the presented input vector. In this book, the
self-stabilizing algorithms are discussed in detail and some novel
self-stabilizing MCA learning algorithms are introduced.

(2) Most neural PCA algorithms only focus on eigenvector extraction using
uncoupled rules, and a serious speed-stability problem exists in most uncou-
pled rules. To overcome this problem, several coupled PCA algorithms are
introduced and their performances are analyzed in this book.

(3) Most neural algorithms only deal with either principal component extraction
or minor component extraction. Are there such algorithms as dual-purpose
subspace tracking algorithm, which are capable of both PC and MC extrac-
tions by simply switching the sign in the same learning rule? This book will
develop a few dual algorithms for such purposes.

(4) The convergence of PCA neural learning algorithms is a difficult topic for
direct study and analysis. Traditionally, the convergence of these algorithms is
indirectly analyzed via certain deterministic continuous-time (DCT) systems.
The DCT method is based on a fundamental theorem of stochastic approxi-
mation theory, and some crucial conditions must be satisfied, which are not
reasonable requirements to be imposed in many practical applications.
Recently, deterministic discrete-time (DDT) systems have been proposed
instead to indirectly interpret the dynamics of neural network learning algo-
rithms described by stochastic discrete-time system. This book will discuss the
DDT method in detail.

(5) It is well known that generalized eigen decomposition (GED) plays very
important roles in various signal processing applications, and PCA can be seen
as a special case of GED problem. The GED neural algorithms will be also
discussed in detail.
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(6) An important aspect of the generalization of classic PCA is the
cross-correlation problem, which studies the maximization of the
cross-correlation between two stochastic signals. The neural learning algo-
rithm to extract cross-correlation feature between two high-dimensional data
streams will be studied in this book as well.

Prerequisites

The mathematical background required for reader is that of college calculus and
probability theory. Readers should be familiar with basic linear algebra and
numerical analysis as well as the fundamentals of statistics, such as the basics of
least squares, and preferably, but not necessarily, stochastic algorithms. Although
the book focuses on neural networks, they are presented only by their learning law,
which is simply an iterative algorithm. Therefore, no a priori knowledge of neural
networks is required. Basic background in mathematics is provided in the review
chapter for convenience.

Some of the materials presented in this book have been published in the archival
literature over the last several years by the authors, and they are included in this
book after necessary modifications or updates to ensure accuracy, relevance,
completeness, and coherence. This book also puts effort into presenting as many
contributions by other researchers in this field as possible. This is a fast-growing
area, so it is impossible to make sure that all works published to date are included.
However, we still have made special efforts to filter through major contributions
and to provide an extensive bibliography for further reference. Nevertheless, we
realize that there may be oversights on critical contributions on this subject. For
these, we would like to offer our apology. More importantly, our sincere thanks go
to the many researchers whose contributions have established a solid foundation for
the topics treated in this book.

Outline of the Book

Chapter 2 reviews some important concepts and theorems of matrix analysis and
optimization theory. We discuss some basic concepts, properties, and theorems
related to matrix analysis, with the emphasis on singular value decomposition and
eigenvalue decomposition. We also introduce some methods of gradient analysis
and optimization theory, which are all important tools which will be instrumental
for our theoretical analysis in the subsequent chapters.

In Chap. 3, we discuss the principal component analysis networks and algo-
rithms. The first half of this chapter analyzes the problem, basic theorems, and
SVD-based methods of principal component analysis. The second half of this
chapter studies the principal component analysis networks in detail, which falls
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into the following classes, such as Hebbian rule-based, LMS error-based,
optimization-based, anti-Hebbian rule-based, nonlinear, constrained, and localized
PCA, providing a theoretical analysis of major networks.

Chapter 4 studies the minor component analysis networks and algorithms. First,
we analyze the problem of the minor component analysis and its classical appli-
cation in total least squares estimation. Second, we present some classical
anti-Hebbian rule-based MCA algorithms, especially analyzing the divergence
(sudden, dynamical, and numerical) property and self-stabilizing property of some
MCA algorithms. This chapter concludes with a self-stabilizing MCA algorithm
and a novel neural algorithm for total least squares filtering of ours, with the
simulations and application presented as aid to the understanding of our algorithm.

Chapter 5 addresses the theoretical issue of the dual-purpose principal and minor
component analyses. We analyze the merit of dual-purpose algorithms in applica-
tion and theory analysis and introduce existing dual-purpose methods, such as
Chen’s, Hasan’s, and Peng’s algorithms. Two important dual-purpose algorithms of
ours are presented. Also, the information criterion, its landscape and gradient flow,
global convergence analysis, and numerical consideration are analyzed. This is one
of the most important chapters in this book.

Chapter 6 deals with the stability and convergence analysis of PCA or MCA
neural network algorithms. The performance analysis methods are classified into
three classes, namely the deterministic continuous-time (DCT) system, the
stochastic discrete-time (SDT) system, and the deterministic discrete-time
(DDT) system, which are discussed in detail. We briefly review the DDT system
of Oja’s PCA algorithm and give a detailed analysis of the DDT systems of a new
self-stabilizing MCA algorithm and Chen’s unified PCA/MCA algorithm.

Chapter 7 studies the generalized feature extraction method. First, we review the
generalized Hermitian eigenvalue problem. Second, a few existing adaptive algo-
rithms to extract generalized eigen pairs are discussed. Third, a minor generalized
eigenvector extraction algorithm and its convergence analysis via the DDT method
are presented. Finally, we analyze a novel adaptive algorithm for generalized
coupled eigen pairs of ours in detail, and a few simulation and application exper-
iments are provided.

Chapter 8 analyzes the demerits of the existing uncoupled feature extraction
algorithm, introduces Moller’s coupled principal component analysis neural algo-
rithm, and concludes with our two algorithms, the one of which is a unified and
coupled self-stabilizing algorithm for minor and principal eigen pair extraction
algorithms and the other an adaptive coupled generalized eigen pair extraction
algorithms.

Chapter 9 presents the generalization of feature extraction from autocorrelation
matrix to cross-association matrix. We briefly review the cross-correlation asym-
metric network and analyze Feng’s neural networks for extracting cross-correlation
features. Then, an effective neural algorithm for extracting cross-correlation feature



Preface xi

between two high-dimensional data streams is proposed and analyzed. Finally,
a novel coupled neural network-based algorithm to extract the principal singular
triplet of a cross-correlation matrix between two high-dimensional data streams is
presented and analyzed in detail.

Suggested Sequence of Reading

This book aims to provide a relatively complete and coherent view of neural
network-based principal component analysis or principal subspace tracking algo-
rithms. This book can be divided into four parts, namely preliminary knowledge,
neural network-based principal component learning algorithm, performance anal-
ysis of algorithms, and generalizations and extensions of PCA algorithms. For
readers who are interested in general principal component analysis and future
research directions, a complete reading of this book is recommended. For readers
who are just interested in some specific subjects, selected chapters and reading
sequences are recommended as follows.

(1) Numerical calculation of principal components
Chapter 2 — Chapter 3 — Chapter 4

(2) Performance analysis of neural network-based PCA algorithms
Chapter 3 — Chapter 4 — Chapter 6

(3) Neural network-based PCA algorithms and their extensions

Chapter 3 — Chapter 4 — Chapter 7 — Chapter 8§ — Chapter 9
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Chapter 1
Introduction

1.1 Feature Extraction

Pattern recognition and data compression are two applications that rely critically on
efficient data representation [1]. The task of pattern recognition is to decide to
which class of objects an observed pattern belonging to, and the compression of
data is motivated by the need to save the number of bits to represent the data while
incurring the smallest possible distortion [1]. In these applications, it is desirable to
extract measurements that are invariant or insensitive to the variations within each
class. The process of extracting such measurements is called feature extraction. It is
also to say feature extraction is a data processing which maps a high-dimensional
space to a low-dimensional space with minimum information loss.

Principal component analysis (PCA) is a well-known feature extraction method,
while minor component analysis (MCA) and independent component analysis
(ICA) can be regarded as variants or generalizations of the PCA. MCA is most
useful for solving total least squares (TLS) problems, and ICA is usually used for
blind signal separation (BSS).

In the following, we briefly review PCA, PCA neural networks, and extensions
or generalizations of PCA.

1.1.1 PCA and Subspace Tracking

The principal components (PC) are the directions in which the data have the largest
variances and capture most of the information contents of data. They correspond to
the eigenvectors associated with the largest eigenvalues of the autocorrelation
matrix of the data vectors. Expressing data vectors in terms of the PC is called PCA.
On the contrary, the eigenvectors that correspond to the smallest eigenvalues of the
autocorrelation matrix of the data vectors are defined as the minor components

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017 1
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2 1 Introduction

(MC), and MC are the directions in which the data have the smallest variances (they
represent the noise in the data). Expressing data vectors in terms of the MC is called
MCA. Now, PCA has been successfully applied in many data processing problems,
such as high-resolution spectral estimation, system identification, image compres-
sion, and pattern recognition, and MCA is also applied in total least squares,
moving target indication, clutter cancelation, curve and surface fitting, digital
beamforming, and frequency estimation.

The PCA or MCA is usually one dimensional. However, in real applications,
PCA or MCA is mainly multiple dimensional. The eigenvectors associated with the
r largest (or smallest) eigenvalues of the autocorrelation matrix of the data vectors is
called principal (or minor) components, and r is referred to as the number of the
principal (or minor) components. The eigenvector associated with the largest
(smallest) eigenvalue of the autocorrelation matrix of the data vectors is called
largest (or smallest) component. The subspace spanned by the principal components
is called principal subspace (PS), and the subspace spanned by the minor compo-
nents is called minor subspace (MS). In some applications, we are only required to
find the PS (or MS) spanned by r orthonormal eigenvectors. The PS is sometimes
called signal subspace, and the MS is called noise subspace. Principal and minor
component analyzers of a symmetric matrix are matrix differential equations that
converge on the PCs and MCs, respectively. Similarly, the principal (PSA) and
minor (MSA) subspace analyzers of a symmetric matrix are matrix differential
equations that converge on a matrix whose columns’ span is the PS and MS,
respectively. PCA/PSA and MCA/MSA are powerful techniques in many infor-
mation processing fields. For example, PCA/PSA is a useful tool in feature
extraction, data compression, pattern recognition, and time series prediction [2, 3],
and MCA/MSA has been widely applied in total least squares, moving target
indication, clutter cancelation, curve and surface fitting, digital beamforming, and
frequency estimation [4].

As discussed before, the PC is the direction which corresponds to the eigen-
vector associated with the largest eigenvalue of the autocorrelation matrix of the
data vectors, and the MC is the direction which corresponds to the eigenvector
associated with the smallest eigenvalue of the autocorrelation matrix of the data
vectors. Thus, implementations of these techniques can be based on batch eigen-
value decomposition (ED) of the sample correlation matrix or on singular value
decomposition (SVD) of the data matrix. This approach is unsuitable for adaptive
processing because it requires repeated ED/SVD, which is a very time-consuming
task [5]. Thus, the attempts to propose adaptive algorithms are still continuing even
though the field has been active for three decades up to now.

1.1.2 PCA Neural Networks

In order to overcome the difficulty faced by ED or SVD, a number of adaptive
algorithms for subspace tracking were developed in the past. Most of these
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techniques can be grouped into three classes [5]. In the first class, classical batch
ED/SVD methods such as QR algorithm, Jacobi rotation, power iteration, and
Lanczos method have been modified for the use in adaptive processing [6—10]. In
the second class, variations in Bunch’s rank-one updating algorithm [11], such as
subspace averaging [12, 13], have been proposed. The third class of algorithms
considers the ED/SVD as a constrained or unconstrained optimization problem.
Gradient-based methods [14-19], Gauss—Newton iterations [20, 21], and conjugate
gradient techniques [22] can then be applied to seek the largest or smallest
eigenvalues and their corresponding eigenvectors adaptively. Rank revealing URV
decomposition [23] and rank revealing QR factorization [24] have been proposed to
track the signal or noise subspace.

Neural network approaches on PCA or MCA pursue an effective “online”
approach to update the eigen direction after each presentation of a data point, which
possess many obvious advantages, such as lower computational complexity,
compared with the traditional algebraic approaches such as SVD. Neural network
methods are especially suited for high-dimensional data, since the computation of
the large covariance matrix can be avoided, and for the tracking of nonstationary
data, where the covariance matrix changes slowly over time. The attempts to
improve the methods and to suggest new approaches are continuing even though
the field has been active for two decades up to now.

In the last decades, many neural network learning algorithms were proposed to
extract PS [25-31] or MS [4, 32-40]. In the class of PS tracking, lots of learning
algorithms such as Oja’s subspace algorithm [41], the symmetric error correction
algorithm [42], and the symmetric version of the back propagation algorithm [43]
were proposed based on some heuristic reasoning [44]. Afterward, some infor-
mation criterions were proposed and the corresponding algorithms such as LMSER
algorithm [31], the projection approximation subspace tracking (PAST) algorithm
[5], the conjugate gradient method [45], the Gauss—Newton method [46], and the
novel information criterion (NIC) algorithm were developed [44]. These
gradient-type algorithms could be claimed to be globally convergent.

In the class of MS tracking, many algorithms [32-40] have been proposed on the
basis of the feedforward neural network models. Mathew and Reddy proposed the
MS algorithm based on a feedback neural network structure with sigmoid activation
function [46]. Using the inflation method, Luo and Unbehauen proposed an MSA
algorithm that does not need any normalization operation [36]. Douglas et al.
presented a self-stabilizing minor subspace rule that does not need periodically
normalization and matrix inverses [40]. Chiang and Chen showed that a learning
algorithm can extract multiple MCs in parallel with the appropriate initialization
instead of inflation method [47]. On the basis of an information criterion, Ouyang
et al. developed an adaptive MC tracker that automatically finds the MS without
using the inflation method [37]. Recently, Feng et al. proposed the OJAm algorithm
and extended it for tracking multiple MCs or the MS, which makes the corre-
sponding state matrix tend to a column orthonormal basis of the MS [35].
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1.1.3 Extension or Generalization of PCA

It can be found that the above-mentioned algorithms only focused on eigenvector
extraction or eigen-subspace tracking with noncoupled rules. However, a serious
speed stability problem exists in the most noncoupled rules [28]. This problem is
that in noncoupled PCA rules the eigen motion in all directions mainly depends on
the principal eigenvalue of the covariance matrix; thus, numerical stability and fast
convergence can only be achieved by guessing this eigenvalue in advance [28]; in
noncoupled MCA rules the speed of convergence does not only depend on the
minor eigenvalue, but also depend on all other eigenvalues of the covariance
matrix, and if these extend over a large interval, no suitable learning rate may be
found for a numerical solution that can still guarantee stability and ensure a suffi-
cient speed of convergence in all eigen directions. Therefore, the problem is even
more severe for MCA rules. To solve this common problem, Moller proposed some
coupled PCA algorithms and some coupled MCA algorithms based on a special
information criteria [28]. In coupled rules, the eigen pair (eigenvector and eigen-
value) is simultaneously estimated in coupled equations, and the speed of con-
vergence only depends on the eigenvalue of its Jacobian. Thus, the dependence of
the eigenvalues on the covariance matrix can be eliminated [28]. Recently, some
modified coupled rules have been proposed [48].

It is well known that the generalized eigen decomposition (GED) plays very
important roles in various signal processing applications, e.g., data compression,
feature extraction, denoising, antenna array processing, and classification.
Though PCA, which is the special case of GED problem, has been widely studied,
the adaptive algorithms for the GED problem are scarce. Fortunately, a few efficient
online adaptive algorithms for the GED problem that can be applied in real-time
applications have been proposed [49-54]. In [49], Chaterjee et al. present new
adaptive algorithms to extract the generalized eigenvectors from two sequences of
random vectors or matrices. Most algorithms in literatures including [49] are
gradient-based algorithms [50, 51]. The main problem of this type of algorithms is
slow convergence and the difficulty in selecting an appropriate step size which is
essential: A too small value will lead to slow convergence and a too large value will
lead to overshooting and instability. Rao et al. [51] have developed a fast recursive
least squares (RLS)-like, not true RLS, sequential algorithm for GED. In [54], by
reinterpreting the GED problem as an unconstrained minimization problem via
constructing a novel cost function and applying projection approximation method
and RLS technology to the cost function, RLS-based parallel adaptive algorithms
for generalized eigen decomposition was proposed. In [55], a power method-based
algorithm for tracking generalized eigenvectors was developed when stochastic
signals having unknown correlation matrices are observed. Attallah proposed a new
adaptive algorithm for the generalized symmetric eigenvalue problem, which can
extract the principal and minor generalized eigenvectors, as well as their corre-
sponding subspaces, at a low computational cost [56]. Recently, a fast and
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numerically stable adaptive algorithm for the generalized Hermitian eigenvalue
problem (GHEP) was proposed and analyzed in [48].

Other extensions of PCA also include dual-purpose algorithm [57-64], the
details of which can be found in Chap. 5, and adaptive or neural networks-based
SVD singular vector tracking [6, 65-70], the details of which can be found in
Chap. 9.

1.2 Basis for Subspace Tracking

In Sect. 1.1, we have reviewed the PCA algorithm and its extensions and gener-
alizations from the viewpoint of the feature extraction. In this section, from another
viewpoint of subspace, we will discuss the concept of subspace and subspace
tracking method.

1.2.1 Concept of Subspace

Definition 1 If S = {u;,u,, ..., u,} is the vector subset of vector space V, then the
set W of all linear combinations of u,us,, .. .,u,, is called the subspace spanned by
uy,uy, ..., Uy, namely

W = Span{u;,uz,.. . uy} = {u:u=ou; +ouy+ -+ + oty }, (1.1)

where each vector in W is called the generator of W, and the set {u,ua, ... 1y}
which is composed of all the generators is called the spanning set of the subspace.
A vector subspace which only comprises zero vector is called a trivial subspace. If
the vector set {u,uy, . ..,u,} is linearly irrespective, then it is called a group basis
of W.

Definition 2 The number of vectors in any group basis of subspace W is called the
dimension of W, which is denoted by dim(W). If any group basis of W is not
composed of finite linearly irrespective vectors, then W is called an
infinite-dimensional vector subspace.

Definition 3 Assume that A = [a;,a;, .. .,a,] € C"" is a complex matrix and all
the linear combinations of its column vectors constitute a subspace, which is called
column space of matrix A and is denoted by Col(A), namely

Col(A) = Span{ay,ay,...,a,} = {y eC":y= Zoc_,-aj IS C}. (1.2)

j=1

Row space of matrix A can be defined similarly.
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As stated in the above, the column space and row space of matrix A,,x, are
spanned by n column vectors and m row vectors, respectively. If rank(A) is equal to
r, then only r column or row vectors of matrix, which are linearly irrespective, can
constitute column space Span(A) and row space Span(A”), respectively. Obviously,
it is an economical and better subspace expression method to use basis vector. The
methods of constituting a subspace have primary transforms, and one can also use
singular value decomposition to set up a normal orthogonal basis of base space.

Suppose that the data matrix A has measure error or noises, and define measure
data matrix as

X=A+W=[x,x;,...,x,) € C"", (1.3)
where x; € C"™*!. In the fields of signal processing and system science, the column
space of measure data matrix Span(X) = Span{x;,x,,...,x,} is called measure
data space.

Define the correlation matrix as:
Rx = E{X"X} = E{(A+W)"(A+W)}. (1.4)

Suppose that error matrix W = [w, w, ..., w,] is statistically irrespective of real
data matrix A, then

Ry = E{X"X} = E{A"A} + E{W"W}. (1.5)

Define R = E{A”A} and E{W"W} = ¢2I, namely every measure noise is
statistically irrespective and they have the same variance ¢, it holds that

Ry =R+l (1.6)

Define rank(4) = r, and the eigenvalue decomposition of matrix Ry = E{X"X}
can be written as Ry = UAU" + 21 = U(A+¢21)U" = UIIU", where I =
X +o2l =diag(o} +02,...,024+02,0%,...,6%), X=diag(d?,...,62,0,...,0),
and af ZG% > 0> af are the nonzero eigenvalues of the real autocorrelation
matrix R = E{A"A}.

Obviously, if the signal-to—noise ratio is large enough, that is, Jf is obviously
bigger than o2, then the first r largest eigenvalues of autocorrelation matrix Ry,
namely 4, = O'% + ai,, lo = G% + (rfv, NS af + (rfv are called the principal
eigenvalues, and the remaining n — r small eigenvalues 4,,; = afv., Apgn =

2 = va are called the minor eigenvalues. Thus, the eigen decomposition of

w?

autocorrelation matrix Ry can be written as

g



1.2 Basis for Subspace Tracking 7

ZS o U? H H
Ry = [Us Un]{o ZJ g | = SZs8” +6.6", (1.7)
def def
where S é[SI,SQ,. . -7sr] = [ulauZa . 'aur]v G ;[glagZ"' '7gnfr} = [ur+l7
Ui, .Uy, Xs=diag(a?+0d2,05+3%,...,0°+02), X,=diag(c2,02, -,

ai); m X r unitary matrix S is the matrix composed of the eigenvectors which
correspond to the r principal eigenvalues, and m x (n — r) unitary matrix G is the
matrix composed of the eigenvectors which correspond to the n — r minor

eigenvalues.

Definition 4 Define S as the eigenvector matrix which correspond to the first
r largest eigenvalues A1, 42, . . ., 4, of the autocorrelation matrix of the measurement
data. Then its column space Span(S) = Span{u,,us,...,u,} is called the signal
subspace of measurement data space Span(X), and the column space Span(G) =
Span{u, . 1,u,.2,...,u,} of the eigenvector matrix G which correspond to the
n — r minor eigenvalues is called the noise subspace of measurement data space.

In the following, we analyze the geometric meaning of the signal subspace and
the noise subspace. From the constitution method of subspace and the feature of
unitary matrix, we know that the signal subspace and noised subspace are
orthogonal, that is,

Span{sy,s2,...,s,} LSpan{g,,gs,...,8,_,} (1.8)

Since U is a unitary matrix, it holds that

that is,
GG" =1 - 55", (1.9)
Define the projection matrix of signal subspace as

Pss(s,8)7 5" = s5H (1.10)

where the matrix inner product (S,S) = S#S =1I.
Thus, Psx can be considered as the projection of vector x on the signal subspace,
and (I — Pg)x means the orthogonal projection of vector x on the signal subspace.

From (G,G) = GG = I, it holds that the projection matrix on the noise subspace
is P, = G(G,G) 'G" = GG". Therefore, the following matrix



8 1 Introduction

GG" =1 - 88" =1 — P (1.11)

is usually called as the orthogonal projection matrix of signal subspace.
The subspace applications have the following characteristics [5, 71]:

(1) Only a few singular vectors or eigenvectors are needed. Since the number of
larger singular values (or eigenvalues) of matrix A,x, is smaller than the
number of smaller singular values (or eigenvalues), it is more efficient to use
the signal subspace with smaller dimension than the noise subspace.

(2) In many application occasions, one does not need to know the singular values
or eigenvalues, and only needs to know the matrix rank and singular vectors or
eigenvectors of matrix.

(3) In most instances, one does not need to know the singular vectors or eigen-
vectors of matrix well and truly, and only needs to know the basis vectors
spanned by the signal subspace or noise subspace.

1.2.2  Subspace Tracking Method

The iterative computation of an extreme (maximal or minimum) eigen pair
(eigenvalue and eigenvector) can date back to 1966 [72]. In 1980, Thompson
proposed a LMS-type adaptive algorithm for estimating eigenvector, which cor-
respond to the smallest eigenvalue of sample covariance matrix, and provided the
adaptive tracking algorithm of the angle/frequency combing with Pisarenko’s
harmonic estimator [14]. Sarkar et al. [73] used the conjugate gradient algorithm to
track the variation of the extreme eigenvector which corresponds to the smallest
eigenvalue of the covariance matrix of the slowly changing signal and proved its
much faster convergence than Thompson’s LMS-type algorithm. These methods
were only used to track single extreme value and eigenvector with limited appli-
cation, but later they were extended for the eigen-subspace tracking and updating
methods. In 1990, Comon and Golub [6] proposed the Lanczos method for tracking
the extreme singular value and singular vector, which is a common method
designed originally for determining some big and sparse symmetrical eigen problem
Ax = Jx [74].

The earliest eigenvalue and eigenvector updating method was proposed by
Golub in 1973 [75]. Later, Golub’s updating idea was extended by Bunch et al. [76,
77], the basic idea of which is to update the eigenvalue decomposition of the
covariance matrix after every rank-one modification, and then go to the matrix’s
latent root using the interlacing theorem, and then update the place of the latent root
using the iterative resolving root method. Thus, the eigenvector can be updated.
Later, Schereiber [78] introduced a transform to change a majority of complex
number arithmetic operation into real-number operation and made use of Karasalo’s
subspace mean method [79] to further reduce the operation quantity. DeGroat and
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Roberts [80] developed a numerically stabilized rank-one eigen structure updating
method based on mutual Gram—Schmidt orthogonalization. Yu [81] extended the
rank-one eigen structure update to block update and proposed recursive update of
the eigenvalue decomposition of a covariance matrix.

The earliest adaptive signal subspace tracking method was proposed by Owsley
[7] in 1978. Using the stochastic gradient method, Yang and Kaveh [18] proposed a
LMS-type subspace tracking algorithm and extended Owsley’s method and
Thompson’s method. This LMS-type algorithm has a high parallel structure and
low computational complexity. Karhumen [17] extended Owsley’s idea by devel-
oping a stochastic approaching method based on computing subspace. Like Yang
and Kaveh’s extension of Thompson’s idea to develop an LMS-type subspace
tracking algorithm, Fu and Dowling [45] extended Sarkar’s idea to develop a
subspace tracking algorithm based on conjugate gradient. During the recent
20 years, eigen-subspace tracking and update has been an active research field.
Since eigen-subspace tracking is mainly applied to real signal processing, these
methods should be fast algorithms.

According to [71], the eigen-subspace tracking and updating methods can be
classified into the following four classes:

(1) In some applications of eigen-subspace method such as MUSIC, one only
needs to use the orthogonal basis of the noise subspace eigenvectors and does
not need to use the eigenvector itself. This characteristic can predigest the
adaptive tracking problem of a class of eigenvectors. The methods which only
track the orthogonal basis of noise subspace are classified as the first class, and
they are based on rank revealing URV [82] and rank revealing QR [83]
decomposition of matrix, respectively.

(2) In the method conducting tracking and updating problem of the eigenvalues
and eigen-subspace simultaneously, a common sight is to regard the covari-
ance matrix of the nonstationary signal at the kth as the sum of the covariance
matrix at the k — /th and another rank-one matrix (the product of the conju-
gate transpose of measure vector and itself). Thus, tracking the eigenvalue
decomposition of the covariance matrix has much to do with the so-called
rank-one updating [81, 84].

(3) Regarding the determination of eigen-subspace as an optimization problem:
The one is a constrained optimization problem, and the other is unconstrained
optimization problem. The constrained optimization problem can be solved
using the stochastic gradient [18] and conjugate gradient [45] methods. The
unconstrained optimization problem presents a new explanation for the
eigen-subspace, and its corresponding method was called projection approx-
imation subspace tracking [5]. The other classical representative is that it is
based on Lanczos algorithm, and to use the Lanczos iteration and stochastic
approach concept to conduct on the computation of subspace of slowly
changing data matrix [85]. Xu et al., proposed [86, 87] three Lanczos and dual
Lanczos subspace tracking algorithms, and the former is suitable for the eigen
decomposition of covariance matrix, and the latter is for the singular value
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decomposition of data matrix, and at the processing of Lanczos iteration they
can test and estimate the number of principal eigenvalues and principal sin-
gular values. In view of the close mathematics connections between the
Lanczos algorithm and conjugate gradient, this algorithm, though it has not
direct connections with the optimization problem, still falls into the third type
of method.

Modify and extend the classical eigen decomposition/singular value decom-
position batch processing methods such as QR decomposition, Jacobi method,
and power iteration to make them adaptive. For example, the singular value
decomposition updating algorithm based on QR updating and Jacobi-type
method [88] falls into this class.

1.3 Main Features of This Book

This book presents principal component analysis algorithms and its extensions
using neural networks approach. Pertinent features include the following:

D

(©))

3
)

(&)

(6)

@)

®)

A tutorial-style overview of neural networks-based principal component
analysis algorithms, minor component analysis algorithms, principal subspace
tracking, and minor subspace tracking.

Analysis of self-stabilizing feature of neural-based PCA/MCA algorithms, and
development of a self-stabilizing neural-based minor component analysis
algorithm.

Total least squares estimation application of MCA algorithms, and develop-
ment of a novel neural-based algorithm for total least squares filtering.
Development of a novel dual-purpose principal and minor subspace gradient
flow and unified self-stabilizing algorithm for principal and minor compo-
nents’ extraction.

Analysis of a discrete-time dynamics of a class of self-stabilizing MCA
learning algorithms and a convergence analysis of deterministic discrete-time
system of a unified self-stabilizing algorithm for PCA and MCA.

Extension of PCA algorithm to generalized feature extraction and develop-
ment of a novel adaptive algorithm for minor generalized eigenvector
extraction and a novel multiple generalized minor component extraction
algorithm.

Development of a unified and coupled PCA and MCA rules and an adaptive
coupled generalized eigen pairs extraction algorithm, based on Moller’s
coupled PCA neural algorithm.

Generalization of feature extraction from autocorrelation matrix to
cross-correlation matrix, and development of an effective neural algorithm for
extracting cross-correlation feature between two high-dimensional data
streams and a coupled principal singular triplet extraction algorithm of a
cross-covariance matrix.
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1.4 Organization of This Book

As reflected in the title, this book is concerned with three areas of principal com-
ponent analysis method, namely neural-based algorithm, performance analysis
method, and generalized/extension algorithm. Consequently, the book can be nat-
urally divided into three parts with a common theme. In the three areas, many novel
algorithms were proposed by us. To appreciate theses new algorithms, the con-
ventional approaches and existing methods also need to be understood.
Fundamental knowledge of conventional principal component analysis, neural-
based feature extraction, subspace tracking, performance analysis methods, and
even feature extraction based on matrix theory is essential for understanding the
advanced material presented in this book. Thus, each part of this book starts with a
tutorial type of introduction of the area.

Part I starts from Chap. 2, which provides an overview of some important
concepts and theorems of decomposition and singular value decomposition related
to principal component analysis. Chapter 3 serves as a starting point to introduce
the neural-based principal component analysis. The key Hebbian network and Oja’s
network forming the core of neural network-based PCA algorithms can be founded
in this chapter. Chapter 4 provides an introduction to neural network-based MCA
algorithms and the self-stabilizing analysis of these algorithms, followed by a novel
self-stabilizing MCA algorithm and a novel neural algorithm for total least squares
filtering proposed by us. Part I ends on Chap. 5, which addresses the theoretical
issue of the dual-purpose principal and minor component analysis. In this chapter,
several important dual-purpose algorithms proposed by us are introduced, and their
performance and numerical consideration are analyzed. Part II starts from a
tutorial-style introduction to deterministic continuous-time (DCT) system, the
stochastic discrete-time (SDT) system, the deterministic discrete-time (DDT) sys-
tem, followed by a detailed analysis of DDT systems of a new self-stabilizing MCA
algorithm and Chen’s unified PCA/MCA algorithm in Chap. 6. Part III starts from
Chap. 7. The generalized Hermitian eigenvalue problem and existing adaptive
algorithms to extract generalized eigen pairs are reviewed, and then, a minor
generalized eigenvector extraction algorithm and a novel adaptive algorithm for
generalized coupled eigen pairs of ours are introduced and discussed. The other two
chapters of Part III are devoted to coupled principal component analysis and
cross-correlation feature extraction, respectively, in which our novel coupled or
extension algorithms are introduced and analyzed.

Some of the materials presented in this book have been published in archival
journals by the authors, and is included in this book after necessary modifications or
updates (some modifications are major ones) to ensure accuracy, relevance, com-
pleteness and coherence. This portion of materials includes:

e Section 4.4 of Chapter 4, reprinted from Neural Networks, Xiangyu Kong,
Changhua Hu, Chongzhao Han, “A self-stabilizing MSA algorithm in
high-dimensional data stream”, Vol. 23, 865-871, © 2010 Elsevier Ltd., with
permission from Elsevier.
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http://dx.doi.org/10.1007/978-981-10-2915-8_6
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http://dx.doi.org/10.1007/978-981-10-2915-8_4
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Section 4.5 of Chapter 4, reprinted from Neural Processing Letter, Xiangyu Kong,
Changhua Hu, Chongzhao Han, “A self-stabilizing neural algorithm for total least
squares filtering”, Vol. 30, 257-271, © 2009 Springer Science+Business Media,
LLC., reprinted with permission.

Section 5.3 of Chapter 5, reprinted from IEEE Transactions on Signal
Processing, Xiangyu Kong, Changhua Hu, Chongzhao Han, “A Dual purpose
principal and minor subspace gradient flow”, Vol. 60, No. 1, 197-210, © 2012
IEEE., with permission from IEEE.

Section 6.3 of Chapter 6, reprinted from IEEE Transactions on Neural
Networks, Xiangyu Kong, Changhua Hu, Chongzhao Han, “On the discrete
time dynamics of a class of self-stabilizing MCA learning algorithm”, Vol. 21,
No. 1, 175-181, © 2010 IEEE., with permission from IEEE.

Section 6.4 of Chapter 6, reprinted from Neural Networks, Xiangyu Kong,
Qiusheng an, Hongguang Ma, Chongzhao Han, Qizhang, “Convergence anal-
ysis of deterministic discrete time system of a unified self-stabilizing algorithm
for PCA and MCA”, Vol. 36, 64-72, © 2012 Elsevier Ltd., with permission
from Elsevier.

Section 7.3 and 7.4 of Chapter 7, reprinted from IEEE Transactions on Signal
Processing, Gao Yingbin, Kong Xiangyu, Hu Changhua, Li Hongzeng, and Hou
Li'an, “A Generalized Information Criterion for generalized Minor Component
Extraction”, Vol. 65, No. 4, 947-959, © 2017 IEEE., with permission from
IEEE.

Section 8.3 of Chapter 8, reprinted from Neural Processing Letter, Xiaowei
Feng, Xiangyu Kong, Hongguang Ma, and Haomiao Liu, “Unified and coupled
self-stabilizing algorithm for minor and principal eigen-pair extraction”,
doi: 10.1007/s11063-016-9520-3, © 2016 Springer Science+Business Media,
LLC., reprinted with permission.

Section 8.4 of Chapter 8, reprinted from IEEE Transactions on Signal
Processing, Xiaowei Feng, Xiangyu Kong, Zhansheng Duan, and Hongguang
Ma, “Adaptive generalized eigen-pairs extraction algorithm and their conver-
gence analysis”, Vol. 64, No. 11, 2976-2989, © 2016 IEEE., with permission
from IEEE.

Section 9.3 of Chapter 9, reprinted from Neural Processing Letter, Xiang yu
Kong, Hong guang Ma, Qiu sheng An, Qi Zhang, “An effective neural learning
algorithm for extracting cross-correlation feature between two high-dimensional
data streams”, Vol. 42, 459-477, © 2015 Springer Science+Business Media,
LLC., reprinted with permission.
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Chapter 2
Matrix Analysis Basics

In this chapter, we review some basic concepts, properties, and theorems of singular
value decomposition (SVD), eigenvalue decomposition (ED), and Rayleigh quo-
tient of a matrix. Moreover, we also introduce some basics of matrix analysis. They
are important and useful for our theoretical analysis in subsequent chapters.

2.1 Introduction

As discussed in Chap. 1, the PC or MC can be obtained by the ED of the sample
correlation matrix or the SVD of the data matrix, and ED and SVD are also primal
analysis tools. The history of SVD can date back to the 1870s, and Beltrami and
Jordan are acknowledged as the founder of SVD. In 1873, Beltrami [1] published
the first paper on SVD, and one year later Jordan [2] published his independent
reasoning about SVD. Now, SVD has become one of the most useful and most
efficient modern numerical analysis tools, and it has been widely used in statistical
analysis, signal and image processing, system theory and control, etc. SVD is also a
fundamental tool for eigenvector extraction, subspace tracking, and total least
squares problem, etc.

On the other hand, ED is important in both mathematical analysis and engi-
neering applications. For example, in matrix algebra, ED is usually related to the
spectral analysis, and the spectral of a linear arithmetic operator is defined as the set
of eigenvalues of the matrix. In engineering applications, spectral analysis is con-
nected to the Fourier analysis, and the frequency spectral of signals is defined as the
Fourier spectral, and then the power spectral of signals is defined as the square of
frequency spectral norm or Fourier transform of the autocorrelation functions.

Besides SVD and ED, gradient and matrix differential are also the important
concepts of matrix analysis. In view of the use of them in latter chapters, we will
provide detailed analysis of SVD, ED, matrix analysis, etc. in the following.
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2.2 Singular Value Decomposition

As to the inventor history of SVD, see Stewart’s dissertation. Later, Autonne [3]
extended SVD to complex square matrix in 1902, and Eckart and Young [4] further
extended it to general rectangle matrix in 1939. Now, the theorem of SVD for
rectangle matrix is usually called Eckart—Young Theorem.

SVD can be viewed as the extension of ED to the case of nonsquare matrices. It
says that any real matrix can be diagonalized by using two orthogonal matrices. ED
works only for square matrices and uses only one matrix (and its inverse) to achieve
diagonalization. If the matrix is square and symmetric, then the two orthogonal
matrices of SVD will be the same, and ED and SVD will also be the same and
closely related to the matrix rank and reduced-rank least squares approximations.

2.2.1 Theorem and Uniqueness of SVD

Theorem 2.1 For any A € R™" (or C™*"), there exist two orthonormal (or uni-
tary) matrices U € ™" (or C"™™) and V € ™" (or C""), such that

A=UzV" (or A=UZV"), (2.1)

where,
P
=% 0
and X = diagloy, 02, . ..0,], its diagonal elements are arranged in the order:

01>0,> -+ >0,>0, t=rank(A)

The quantity o1,0,,...,0, together with 0,1 =0,,2,=---=0,=0 are
called the singular values of matrix A. The column vector u; of matrix U is called
the left singular vector of A, and the matrix U is called the left singular matrix. The
column vector v; of matrix V is called the right singular vector of A, and the matrix
V is called the right singular matrix. The proof of Theorem 2.1 can see [4, 5].
The SVD of matrix A can also be written as:

A :ZO','II,'V[H. (22)
i=1
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It can be easily seen that
AAf = Uyt (2.3)

which shows that the singular value a; of the m x n matrix A is the positive square
root of the eigenvalue (these eigenvalues are nonpositive) of the matrix product
AAM.

The following theorem strictly narrates the singular property of a matrix A.

Theorem 2.2 Define the singular values of matrix A € R™" (m >n) as
612022+ >0,2>0.
Then

6, = min {|\E|| ~rank(A+E)g(k_1)}, k=1,2,...n (2.4)

Eecmxn Spec.

and there is an error matrix which meets ||E¢||,,..= 0% so that

spec
rank(A+Ey)=r—1, k=12,...,n

Theorem 2.2 shows that the singular value of a matrix is equal to the spectral
norm of the error matrix E; which makes the rank of the original matrix reduce one.
If the original n X n matrix A is square and it has a zero singular value, the spectral
norm of error matrix whose rank reduces to one is equal to zero. That is to say,
when the original n X n matrix A has a zero singular value, the rank of the matrix is
rank(A) <n — 1 and the original matrix is not full-rank essentially. So, if a matrix
has a zero singular value, the matrix must be singular matrix. Generally speaking, if
a rectangle matrix has a zero singular value, then it must not be full column rank or
full row rank. This case is called rank-deficient matrix, which is a singular phe-
nomenon with regards to the full-rank matrix.

In the following, we discuss the uniqueness of SVD.

(1) The number r of nonzero singular values and their values o1, 0,,...,0, is
unique relative to matrix A.

(2) If rank(A) = r, the dimension of the sets of vector x € C"* which meets
Ax = 0, namely the zero space of matrix A, is equal to n — r. Thus, one can
select orthogonal basis {v,H, Vpioyeo vn}as the zero space of matrix A in
C". From this point, the subspace Null(4)of C" spanned by column vectors of
V is uniquely determined. However, as long as every vector can constitute the
orthogonal basis of this subspace, they can be selected arbitrarily.

(3) The sets of y(€ C") which can be denoted as y = Ax constitute the image
space ImA of matrix A, whose dimension is equal to r. The orthogonal sup-
plement space (ImA)" of ImA is m-r dimensional. Thus, one can select
{u,1,u,42,...,u,}as the orthogonal basis of (ImA)L. The subspace

(ImA)L of C" spanned by the column vectors u, 1,4, 2,...,u, of U is
uniquely determined.
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(4) If o; is single singular value (o,- # 0j,Vj # i), v; and u; is uniquely determined
except discrepancy of an angle. That is to say, after v; and u; multiply
659(' =v-1 ) and 0 is real number) at the same time, they are still the right
and left singular vectors, respectively.

2.2.2 Properties of SVD

Assume A € ™", B € ™", and r4 =rank(A), p = min{m,n}. The singu-
lar values of matrix A can be arranged as follows: ognx =01 >0,2> -
> 0,_1 >0, = omin >0, and denote by o;(B)the ith largest singular value of matrix
B. A few properties of SVD can summarized as follows [6]:

(1) The relationship between the singular values of a matrix and the ones of its
submatrix.

Theorem 2.3 (interlacing theorem for singular values). Assume A € R"™*", and its
singular values satisfy 61> 0, > -+ > a,, where r = min{m,n}. If B € ¥ % is a
submatrix of A, and its singular values satisfy p; > 7, > -+ 2 Vyingp gy, then it
holds that

>y, i=1,2,...,min{p,q} (2.5)
and

Vi Z Oit (mp)+ (n—q)» i <min{p+q—m,p+q—n}. (2.6)

From Theorem 2.3, it holds that: If B € ®7*("~1) is a submatrix of A € R"*" by

deleting any column of matrix A, and their singular values are arranged in
non-decreasing order, then it holds that

51(A) > 01 (B) > 02(A) > 62(B)> - > a,(A) > a,(B) >0,  (2.7)

where h = min{m,n — 1}.
If B € R"=1*" is a submatrix of A € R”*” by deleting any row of matrix A,
and their singular values are arranged as non-decreasing order, then it holds that

(] (A) > g1 (B) > O'2(A) > O'Q(B) Z s O'h(A) 2 O'h(B) 20 (28)

(2) The relationship between the singular values of a matrix and its norms.
The spectral norm of a matrix A is equal to its largest singular value, namely,
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3

“

A (2.9)

spec

According to the SVD theorem of matrix and the unitary invariability property
of Frobenius norm [|A || of matrix A, namely ||U#AV|| .= ||A|| ., it holds that

A= [ZZ | ] = [[U"AV||, = |12l = /ot + o3+ -+

i=1 j=

(2.10)

That is to say, the Frobenius norm of any matrix is equal to the square root of
the sum of the squares of all nonzero singular values of this matrix.
Consider the rank-k approximation of matrix A and denote it as Ay, in which
k<r =rank(A). The matrix A; is defined as follows:

k
= E ()','ll,"’i-q,k<}"7
i=1

Then the spectral norm of the difference between A and any rank(k) matrix B,
and the Frobenius norm of the difference can be written, respectively, as
follows:

mnlg(lg)l:r”A - BHspec ”A Ak“spec Ok+1, (211)
mln ||A B”F*HA AkHF*Gk+1+O'k+2+ (2.12)

rank(B)

The above properties are the basis of many concepts and applications. For
example, the total least squares, data compression, image enhancement, the
solution of linear equations, etc., all need to approximate A using a lower rank
matrix.

The relationship between the singular values of a matrix and its determinant.
Define A as an n X n square matrix. Since the absolute value of the deter-
minant of a unitary matrix is equal to one, from SVD theorem it holds that

|det(A)| = |detX| = 102 - - - 0y (2.13)

If all ¢; are non-zero, then |det(A)| # 0, which means that A is nonsingular. If
at least one o;(i > r) is equal to zero, then |det(A)| = 0, namely A is singular.
The relationship between the singular values of a matrix and its condition
number.

For an m x n matrix A, its condition number can be defined using SVD as
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cond(A) =ag/0,, p=min{m,n}. (2.14)

Since o1 > 6,, the condition number is a positive number which is equal to or
larger than one. Obviously, since there is at least one singular value which
meets g, = 0, the condition number of a singular matrix is infinite. When the
condition number, though not infinite, is very large, the matrix A is called to
be close to singular. Since the condition number of unitary or orthogonal
matrix is equal to one, the unitary or orthogonal matrix is of “ideal condition”.
Equation (2.14) can be used to evaluate the condition number.

Maximal singular value and minimal singular value.

If m > n, for any matrix A,,x,, it holds that

1/2
Omin(A) = min{ (%) ix #£ 0} 2.15)

= min{(xHAHAx)l/Z: xix=1,x € (C"}

and

xHAHAx\
Omax(A) = max{ <W> x #0

= max{(xHAHAx)1/2: xfx=1,x € (C”}.

(2.16)

The relationship between the singular values and eigenvalues.

Suppose that the eigenvalues of an n X n symmetrical square matrix A are
My, A > 22]] > -+ > || Aal|]), and  its  singular values are
01,02,...,0, (01 >0,> -+ >0,2>20). Then ag;>|4]|>0,(i=1,2,...,n)
and cond(A) > |A1|/]2a]-

2.3 Eigenvalue Decomposition

2.3.1 Eigenvalue Problem and Eigen Equation

The basic problem of the eigenvalue can be stated as follows. Given an n X n
matrix A, determine a scalar 4 such that the following algebra equation

Au=/u, u#0 (2.17)

has an n x 1 nonzero solution. The scalar / is called as an eigenvalue of matrix A,
and the vector u is called as the eigenvector associated with /. Since the eigenvalue
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A and eigenvector u appear in couples, (4, u) is usually called as an eigen pair of
matrix A. Although the eigenvalues can be zeros, the eigenvectors cannot be zero.
In order to determine a nonzero vector u#, Eq. (2.17) can be modified as

(A—Du =0. (2.18)

The above equation should come into existence for any vector u, so the unique
condition under which Eq. (2.18) has a nonzero solution # = 0 is that the deter-
minant of matrix A — Al is equal to zero, namely

det(A — AI) = 0. (2.19)

Thus, the solution of the eigenvalue problem consists of the following two steps:

(1) Solve all scalar 4 (eigenvalues) which make the matrix A — AI singular.
(2) Given an eigenvalue 4 which makes A = AI singular, and to solve all nonzero
vectors which meets (A — Al)x = 0, i.e., the eigenvectors corresponding to /.

According to the relationship between the singular values of a matrix and its
determinant, a matrix is singular if and only if det(A — AI) = 0,, namely

(A — AIx singular < det(A — AI) = 0. (2.20)

The matrix (A — AI) is called as the eigen matrix of A. When A is an n X n
matrix, spreading the left side determinant of Eq. (2.20) can obtain a polynomial
equation (power-n), namely

oo+ oAt o Ao AT (=) =0, (2.21)

which is called as the eigen equation of matrix A. The polynomial det(A — AI) is
called as the eigen polynomial.

2.3.2 Eigenvalue and Eigenvector

In the following, we list some major properties about the eigenvalues and eigen-
vector of a matrix A.
Several important terms about the eigenvalues and eigenvectors [6]:

(1) The eigenvalue A of a matrix A is called as having algebraic multiplicity y, if 2
is a p-repeated root of the eigen equation det(A — AI) = 0.

(2) If the algebraic multiplicity of eigenvalue 4 is equal to one, the eigenvalue is
called as single eigenvalue. Non-single eigenvalues are called as multiple
eigenvalues.

(3) The eigenvalue A of a matrix A is called as having geometric multiplicity y, if
the number of linear independent eigenvectors associated with 4 is equal to y.
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An eigenvalue is called half-single eigenvalue if its algebraic multiplicity is
equal to geometric multiplicity. Not half-single eigenvalues are called as wane
eigenvalues.

If matrix A,«, is a general complex matrix and 4 is its eigenvalue, the vector
v which meets Av = v is called as the right eigenvector associated with the
eigenvalue 4, and the eigenvector u which meets u?A = ju'! is called as the
left eigenvector associated with the eigenvalue A. If A is Hermitian matrix and
all its eigenvalues are real number, then it holds that v = u, that is to say, the
left and right eigenvectors of a Hermitian matrix are the same.

Some important properties can be summarized as follows:

D
(@)
(©)
“)

S
(©6)
)

®)
(€))

(10)

QY

12)

13)

(14)

Matrix A (€ R™*") has n eigenvalues, of which the multiple eigenvalues are
computed according to their multiplicity.

If A is a real symmetrical matrix or Hermitian matrix, all its eigenvalues are
real numbers.

If A = diag(a;, azs,..., any), its eigenvalues are a;, dos,..., dny; If A is a
trigonal matrix, its diagonal elements are all its eigenvalues.

For A (€ "), if A is the eigenvalue of matrix A, 1 is also the eigenvalue of
matrix A™. If / is the eigenvalue of matrix A, 1* is the eigenvalue of matrix
A If ] is the eigenvalue of matrix A, A+ o2 is the eigenvalue of matrix
A+ d’1. If /. is the eigenvalue of matrix A, 1/ is the eigenvalue of matrix
A

All eigenvalues of matrix A = A are either 0 or 1.

If A is a real orthogonal matrix, all its eigenvalues are on the unit circle.

If a matrix is singular, at least one of its eigenvalues is equal to zero.

The sum of all the eigenvalues is equal to its trace, namely > 2; = tr(A).
i=1

The nonzero eigenvectors uy, u,, . . ., u, associated with different eigenvalues
A1y A2, .. .2y, are linearly independent.
If matrix A (€ R"") has r nonzero eigenvalues, then it holds that
rank(A) > r; If zero is a non-multiple eigenvalue, then rank(A) >n — 1; If
rank(A—/I) >n — 1, then 1 is an eigenvalue of matrix A.
The product of all eigenvalues of matrix A is equal to the determinant of
matrix A, namely [] 4; = det(A) = |A].

i=1
A Hermitian matrix A is positive definite (or positive semi-definite), if and
only if all its eigenvalues are positive (or non-negative).
If the eigenvalues of matrix A are different, then one can find a similar matrix
such that S™'AS = D(diagonal matrix) and the diagonal elements of D are
the eigenvalues of matrix A.

(Cayley—Hamilton Theorem) : If 41, 45, .. .4, are the eigenvalues of an n X n
matrix A, then [[ (A — 4I) =0.

i=1
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It is not possible that the geometric multiplicity of any eigenvalue 4 of an
n X n matrix A is larger than its algebraic multiplicity.
If 1 is an eigenvalue of an n X n matrix A and an n X n matrix B is not
singular, then / is also an eigenvalue of B~'AB. However, the corresponding
eigenvectors are usually different. If 4 is an eigenvalue of an n X n matrix
A and an n x n matrix B is a unitary matrix, then 4 is also an eigenvalue of
BAB. However, the corresponding eigenvectors are usually different. If 1 is
an eigenvalue of an n X n matrix A and an n X n matrix B is a orthogonal
matrix, then / is also an eigenvalue of B’AB. However, the corresponding
eigenvectors are usually different.
The largest eigenvalue of an n X n matrix A = [a,j] is less than or equal to
the maximal of the sum of all the column elements of this matrix, namely
Amax < max zn: a;.

J=1
The eigenvalues of autocorrelation matrix R = E{x(#)x"(¢)} of stochastic
vector x() = [x;(1),x,(1), .. .x,(r)]" is within the maximal power of signal
Prax = mlaxE{|x,~(t)|2} and its minimal power P, = miin E{|x,-(t)|2},

namely Pmin < j-i < Pmax«

The spread of eigenvalues in autocorrelation matrix R of a stochastic vector
x(1) is x(R) = Amax/ 2min-

If |[4|<1,i=1,2,...,n, the matrix A +1I, is nonsingular. |4]|<1,i=
1,2,...,n,is equivalent to the case in which the roots of det(A — zI,,) = 0 is
not on or at the interior of the unit circle.

For m x n(n>m) matrix A and n X m matrix B, if A is an eigenvalue of the
product AB, then A is also an eigenvalue of the product BA. If 1 #£ 0 is an
eigenvalue of the product BA, then 1 is also an eigenvalue of the product AB.
If Ay, 41,...4, are eigenvalues of the product AB, then the eigenvalues of

matrix product BA are A1, /43, ...4y,0,...,0.
If the eigenvalue of matrix A is 4, then the eigenvalue of matrix polynomia
fA)=A"4c A" - e A teld is

FA) =42 et cn
If 4 is an eigenvalue of matrix A, then the eigenvalue of matrix exponential

A A

function e is e

Properties of an eigen pair which consists of an eigenvalue 4 and its associated
eigenvector # can be summarized as follows:

)
(@)
(©)

If (Z,u) is an eigen pair of matrix A, then (cA,u) is an eigen pair of matrix
cA, where ¢ is a nonzero constant.

If (A, u) is an eigen pair of matrix A, then (4, cu) is an eigen pair of matrix A,
where ¢ is a nonzero constant.

If (Z;,u;) and (4;,u;) are eigen pairs of matrix A and A; # J;, then the
eigenvector u; and u; are linearly independent.
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(4) The eigenvectors of an Hermitian matrix associated with different eigen-
values are mutual orthogonal to each other, namely 4; # 4; = uffu; = 0.

(5) If /is an eigenvalue of matrix A and the vectors u; and u, are the eigen-
vectors associated with A, then cyu; + cou; is also an eigenvector of matrix
A associated with the eigenvalue A, in which ¢; and u, are constants and at
least one of them is not zero.

(6) If (4,u) is an eigen pair of matrix A and oy, %, . . ., o, are complex constants,
then f(A) = g+ oA+ -+ + o, A7 is the eigenvalue of matrix polynomial
flA) = ol + 1A + - +a,AP, and the associated eigenvector is still u.

(7) If (A, u) is an eigen pair of matrix A, then (/lk, u) is an eigen pair of matrix
A~

(8) If (4,u) is an eigen pair of matrix A, then (ei, u) is an eigen pair of matrix
exponential function e*.

(9) If A(A) and A(B) are eigenvalues of matrices A and B, respectively, and u(A)
and u(B) are their associated eigenvectors, then A(A)A(B) is an eigenvalue of
matrix Kronecker product A ® B with u(A) ® u(B) being the associated
eigenvector, and A(A) and A(B) are the eigenvalues of matrix direct sum

A @B with [u(g{)} and [u(oB)] being the associated eigenvectors,
respectively.

(10) If an n x n matrix A has n linearly independent eigenvectors, then its ED is
A =UXU™"', where the n x n eigen matrix U consists of n eigenvectors of
matrix A, and the diagonal elements of the n x n diagonal matrix X are the

eigenvalues of matrix A.

The SVD problem of a matrix A can be transformed into its ED problem to
solve, and there are two methods to realize this.

Method 2.1 The nonzero singular values of matrix A,,y, are the positive square
root of nonzero eigenvalue /; of m X m matrix AAT or n x n matrix ATA, and the
left singular vector #; and right singular vector v; of matrix A associated with o; are
the eigenvectors of matrix AA™ and A™A associated with nonzero eigenvalue 4,
respectively.

Method 2.2 The SVD of matrix A,,, can be transformed into the ED of (m + n) x

|0 A
(m+ n) augmented matrix { AT 0} .

The following theorem holds for the eigenvalues of matrix sum A + B.

Theorem 2.4 (Wely theorem): Suppose that A, B € C"™*" are Hermitian matrices,
and their eigenvalues are arranged as an increasing order, namely,
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Then,
Zi(A) + 21 (B)
Ji—1(A) + 12(B)
Ai(A+B)> : (2.22)
71(A) + 44(B)
and
) Zit1(A) 4+ A1 (B)
/i(A+B) < : (2.23)

In(A) + 24(B).

where i = 1,2, .. .u.
Especially, when A is a real symmetric matrix, and B = azzl, the interlace
theorem in the following holds.

Theorem 2.5 (Interlacing eigenvalue theorem): Suppose that A € ™" is a sym-
metric matrix, and its eigenvalues Ay, ..., Ay, meet Ay > Ay > -+ > J,, and let
z € R be a vector satisfying ||z|| = 1. Suppose that a is a real number and the
eigenvalues of matrix A + azz" meet {; >, > -+ >{,, then it holds that

LG2M>020> - >0,> 0 a>0 (2.24)
or
MW2L>2h>2h> 20>, a<0 (2.25)

and whether a > 0 or a <0, it holds that

n

S (G- =a (2.26)

i=1
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2.3.3 Eigenvalue Decomposition of Hermitian Matrix

All the discussions on eigenvalues and eigenvectors in the above hold for general
matrices, and they do not require the matrices to be real symmetric or complex
conjugate symmetric. However, in the statistical and information science, one
usually encounter real symmetric or Hermitian (complex conjugate symmetric)
matrices. For example, the autocorrelation matrix of a real measurement data vector
R = E{x(t)x" ()} is real symmetric, while the autocorrelation matrix of a complex
measurement data vector R = E{x(¢)x"(¢)} is Hermitian. On the other hand, since
a real symmetric matrix is a special case of Hermitian matrix and the eigenvalues
and eigenvectors of a Hermitian matrix have a series of important properties, and it
is necessary to discuss individually the eigen analysis of Hermitian matrix.

1. Eigenvalue and Eigenvector of Hermitian matrix.
Some important properties of eigenvalues and eigenvectors of Hermitian
matrices can be summarized as follows:

(1) The eigenvalues of an Hermitian matrix A must be a real number.

(2) Let (4,u) be an eigen pair of an Hermitian matrix A. If A is invertible, then
(1/2,u) is an eigen pair of matrix A"

(3) If J is a multiple eigenvalue of Hermitian matrix A” = A, and its multi-
plicity is my, then rank(A — 4) = n — my.

(4) Any Hermitian matrix A is diagonalizable, namely U 'AU = X.

(5) All the eigenvectors of an Hermitian matrix are linearly independent, and
they are mutual orthogonal, namely the eigen matrix U = [uy,uy, ..., u,] is
a unitary matrix and it meets U ! = U,

(6) From property (5), it holds that UYAU = ¥ = diag(A, /2, ..., An)

or A = UXU", which can be rewritten as: A = > liuiu? . This is called
i=1

i-
the spectral decomposition of a Hermitian matrix.
(7) The spread formula of the inverse of an Hermitian matrix A is

"]
Al = 27‘ uul! (2.27)
i=1

Thus, if one know the eigen decomposition of an Hermitian matrix A, then
one can directly obtain the inverse matrix A~! using the above formula.
(8) For two n x n Hermitian matrices A and B, there exists a unitary matrix so
that PAP and P”BP are both diagonal if and only if AB = BA.
(9) For two n x n non-negative definite Hermitian matrices A and B, there
exists a nonsingular matrix P so that P?’AP and P"BP are both diagonal.
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2. Some properties of Hermitian matrix.
The ED of an Hermitian matrix A can be written as A = UXU", where U is a
unitary matrix and it meets UU = UU" =1.
From the property of determinant and trace of a matrix, it holds that

tr(4) = w(UXU") = u(U"UZ) = Z 2y (2.28)

det(A) = det(U) det(X) det(U") H; (2.29)

For a positive definite Hermitian matrix A, its inverse A~! exists and can be
written as

A~ =Udiag(2;', 25, 4 UM (2.30)
Let z4 be the number of zero eigenvalues of matrix A € C"*", then
rank(A) = n — z,, (2.31)

That is to say, the rank of a Hermitian matrix is equal to the number of its
nonzero eigenvalues.
3. Solving for maximal or minimal eigenvalue of Hermitian matrix.

In signal processing, one usually needs to compute the maximal or minimal
eigenvalue of a Hermitian matrix A. The power iteration method is a method for
such purposes.

Select some initial vector x(0), and iteratively repeat the following linear
equation

y(k+1) = Ax(k) (2.32)

to obtain y(k + 1), then normalize it. It holds that

k1) =XKL (2.33)
Ok+1
o1 =y (k+ Dy(k+1). (2.34)

The iterative procedure continues until the vector x; converges. The o, obtained
at the last iteration is the maximal eigenvalue, and the x; is its associated eigen-
vector. Only if the initial vector x(0) is not orthogonal to the eigenvector associated
with the maximal eigenvalue, the convergence can be guaranteed.

If one needs to compute the minimal eigenvalue and its associated eigenvector,
use y(k+1) = A~ 'x(k), i.e., the iterative linear equation is Ay(k+ 1) = x(k).
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By combining the power iteration method and shrink mapping method, one can
compute all eigenvalues and the associated eigenvectors of a Hermitian matrix
A. Suppose that one has obtained some eigenvalue ¢ using the power iteration
method. The first step corresponds to the first maximal eigenvalue and uses the
shrink mapping method to eliminate the eigenvalue. Then matrix A (rankA; = k)
is changed into matrix A;_;(rankA;_; = k — 1). Thus, the maximal eigenvalue of
matrix A;_; is the residual maximal eigenvalue of matrix Ay, which is smaller than
o. It should be noted that the kth step corresponds to the kth maximal eigenvalue.
New matrix can be obtained by using the above idea and the following spectral
decomposition formula:

(Ak — axxH) =A;_.

Repeat the above procedure, one can compute all eigenvalues of matrix A in
turn.

2.3.4 Generalized Eigenvalue Decomposition

Let A and B both be n x n square matrices, and they constitute a matrix pencil or
matrix pair, written as (A, B). Now we consider the following generalized eigen-
value problem. That is, to compute all scalar A such that

Au = /Bu (2.33)

has nonzero solution # # 0, where the scalar 4 and the nonzero vector u are called
the generalized eigenvalue and the generalized eigenvector of matrix pencil (A, B),
respectively. A generalized eigenvalue and its associated generalized eigenvector
are called generalized eigen pair, written as (4, u). Equation (2.35) is also called the
generalized eigen equation. It is obvious that the eigenvalue problem is a special
case when the matrix pencil is chosen as (A4, I).

Theorem 2.6 A € C and u € C" are respectively the generalized eigenvalue and
the associated generalized eigenvector of matrix pencil (A,B) .. if and only if:

(1) det(A — AB) = 0.
(2) u € Null(A — AB), and u # 0.

nxn

In the natural science, sometimes it is necessary to discuss the eigenvalue
problem of the generalized matrix pencil.

Suppose that n x n square matrices A and B are both Hermitian, and B is
positive definite. Then (A, B) is called the regularized matrix pencil.

The eigenvalue problem of regularized matrix pencil is similar to the one of
Hermitian matrix.
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Theorem 2.7 If A1, A2,..., 2, are the generalized eigenvalues of a regularized
matrix pencil (A, B), then

(1) there exists a matrix X € C"*", so that
XBX" =1,, XAX" =diag(A1,/2,..., /),
or equivalently
XBX =1,, AX = BXA,

where A = diag(A1, 22, , An)-
(2) all generalized eigenvalues are real numbers, i.e., 4; € R,i=1,2,....n.
(3) Denote X = [x1,x3,...,Xx,]. Then it holds that

Axi:iin,-, i= 1,2,...7}1.
xiHij =6y iL,j=12,...,n

where 0y is the Kronecker 0 function.

Some properties of the generalized eigenvalue problem Ax = ABx can be
summarized as follows, see [7, pp. 176-177]:

(1) If we interchange matrices A and B, then the generalized eigenvalue will be its
reciprocal. However, the generalized eigenvector retain unaltered, i.e.,

1
Ax=/Bx = Bx-= ij.

(2) If matrix B is nonsingular, then the generalized ED will be simplified to the
standard ED

Ax=/)Bx = (B 'A)x=ix.

(3) If matrices A and B are both positive definite and Hermitian, then the gen-
eralized eigenvalues must be real numbers, and the generalized eigenvectors
associated with different generalized values are orthogonal with respect to the
positive definite matrices A and B, i.e.,

x{' = Ax; = x!'Bx; = 0.
(4) If A and B are real symmetrical matrices, and B is positive definite, then the

generalized eigenvalue problem Ax = /Bx can be changed into the standard
eigenvalue problem,
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(L7'AL") (L'x) = A(L"x),

where L is a lower triangular matrix, which is the factor of Cholesky
Decomposition B = LLT.

(5) If A and B are real symmetrical and positive definite matrices, then the gen-
eralized eigenvalues must be positive.

(6) If A is singular, then A = 0 must be a generalized eigenvalue.

(7) If B = B+ (1/a)A, where « is a nonzero scalar, then the following relation-
ship holds between the generalized eigenvalue J. of the modified generalized
value problem Ax = JBx and the original generalized eigenvalue 4, i.e.,

1,
Tl a

ot =

In the following, we introduce a few generalized ED algorithms for matrix
pencil.

We know that if n X n square matrices A and B are both Hermitian, and B is
positive definite, then the generalized ED Eq. (2.35) can be equivalently written as

B 'Au = ju, (2.36)

That is to say, the generalized ED becomes the standard ED of a Hermitian
matrix.

The following algorithm uses the shrink mapping to compute the generalized
eigen pair (4,u) of an n x n real symmetrical matrix pencil (4, B).

Algorithm 2.1 Lanczos algorithm for generalized ED [8, p. 298].

Step 1 Initialization
Select vector u; whose norm meets u’f’Bu 1=1, and let
o = O,Z() = Uy = 07Z1 = Bul.

Step 2 For i =1,2,...,n, compute

u :Aui — 0iZi—1

/))i = <u’ ui)



2.3 Eigenvalue Decomposition 33

%p1 = (w,u)
Ui =w/oi
Zipl =U/%ig
Ai= ﬁi+1/0‘i+1~
The following is the tangent algorithm for generalized ED of a n X n symmetric

positive definite matrix pencil (A, B), which was proposed by Dramc in 1998 [9].

Algorithm 2.2 Generalized ED of symmetric positive definite matrix pencil.
Step 1 Compute Ay = diag(A1,Ax,. . .,A,m)fl/z,AS = A4AAy and
B, = 4,B4,,
Step 2 Compute Cholesky Decomposition RIR, = A5 and RyRp = IT"B, 1.
Step 3 By solving the matrix equation FRz = AIl, compute F = AHRE'.
Step 4 Conduct the SVD X = VFU".
Step 5 Compute X = AAIIR;'U.

Output: Matrix X and X, which meets AX = BXX>.

When matrix B is singular, the above algorithms will be unstable. The gener-
alized ED algorithm of matrix pencil (A, B) under this condition was proposed by
Nour-Omid et al. [10], whose main ideas is to make (A — oB) nonsingular by
introducing a shift factor.

Algorithm 2.3 Generalized ED when matrix B is singular [8, 10], p. 299].

Step 1 Initialization
Select the basis vector w of Range[(A —¢B) 'B]., compute

z1 =Bw,q; = \/<_w‘,21‘> Let ug = 0.
Step 2 For i =1,2,...,n, compute
u,=w/a;
zi=(A—oB)'w
wW=w — ollj_|
Bi = (w,z:)

Ziy1= Bw

%1 =\ (Zir1,w)
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2.4 Rayleigh Quotient and Its Characteristics

The quotient of quadratic function of a Hermitian matrix is defined as Rayleigh
quotient. As an important quantity in matrix algebra and physics, Rayleigh quotient
is a ratio of quadratic functions expressed by eigenvalues and eigenvectors, which
has been widely used in many areas such as optimization, signal processing, pattern
recognition, and communication.

2.4.1 Rayleigh Quotient

Definition 2.1 The Rayleigh quotient (RQ) of an Hermitian matrix C € C"™" is a
scalar, defined as

where u is a quantity to be selected. The objective is to maximize or minimize the
Rayleigh quotient.
The most relevant properties of the RQ are can be summarized as follows:

(@ Homogeneity: r(ou, fu) = fr(u,C) Vo, # 0.

@ Translation invariance: r(u,C — ol) = r(u,C) — o.

® Boundedness: Since u ranges over all nonzero vectors, r(u) fills a region
in the complex plane which is called the field of values of C. This region
is closed, bounded, and convex. If C = C* (selfadjoint matrix), the field
of values is the real interval bounded by the extreme eigenvalues.

@ Orthogonality: u L (C — r(u)l)u.

® Minimal residual: Va # 0 AV scalar g, ||(C — r(w)Du|| < ||(C — pl)ul|.

Proposition 2.1 (Stationarity) Let C be a real symmetric n-dimensional matrix with
eigenvalues A, < J,_1 < --- Ay and associated unit eigenvectors 21,2, . . .,Z,. Then
it holds that Ay = max r(u,C), A, = minr(u, C). More generally, the critical points
and critical values of r(u,C) are the eigenvectors and eigenvalues of C.

Proposition 2.2 (Degeneracy): The RQ critical points are degenerate because at
these points the Hessian matrix is not invertible. Then the RQ is not a Morse
function in every open subspace of the domain containing a critical point.
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Furthermore, the following important theorems also holds for RQ.
Courant-Fischer Theorem: Let C € C" be an Hermitian matrix, and its
eigenvalues are 1; > A, > -+ </, then it holds that for A;(1 <k <u):

. (uH C u)
Ak = min max .

S,dim(S)=n—k+ 1 ucSu#0\ ulu

The Courant—Fischer Theorem can also written as

. u"'Cu
Ar = min max i .
S,dim(S)=k ueSu#0\ u"’'u

2.4.2 Gradient and Conjugate Gradient Algorithm for RQ
If the negative direction of RQ gradient is regarded as the gradient flow of vector x,
e.g.,
x=—[C—r@x)Ix
then vector x can be computed iteratively by the following gradient algorithm:
x(k+1) =x(k) 4+ px = x(k) — u[C — r(x)I]x.

It is worth noting that the gradient algorithm of RQ has faster convergence speed
than the iterative algorithm of standard RQ.

In the following, the conjugate gradient algorithm for RQ will be introduced,
where A in the RQ is a real symmetric matrix.

Starting from some initial vector, the conjugate gradient algorithm uses the
iterative equation, e.g.,

Xk+1 :karockPk (237)

to update and approach the eigenvector, associated with the minimal or maximal
eigenvalue of a symmetric matrix. The real coefficient oy is

1
o =% (—B+ VB - 4CD)7 (2.38)

where “+” is used in the updating of the eigenvector associated with the minimal
eigenvalue, and “—” is used in the updating of the eigenvector associated with the
maximal eigenvalue. The formulae for parameters D, B, C in the above equations are



36 2 Matrix Analysis Basics

D= Pb(k)Pc(k) - Pa(k)Pd(k)
B = Py(k) — AxPa(k)
C = Py(k) — ZxPe(k)

P, (k) = PTAx,/ (xTx
W " o/ X 2 (2.39)
Py (k) :pkApk/(xkxk)
P.(k) = pixi/ (xjxi)
Py(k) ZPZpk/(xek)
Ak = rlxr) = x{Axp/ (x]xy).
At the k + 1th iteration, the search direction can be selected as
Piy1 =Tk +0(k)py, (2.40)

where b(—1) = Oand ry ;| is the residual vector at the k + 1th iteration. ry ; and
b(k) can be computed, respectively, as

1
Frv1 = _var(karI) = (Ak+1Xk 41 —Axk+1)/(x2:1xk+1) (2.41)

and

T APt (e ) (5 ps) _

2.42)
AP, — JaD)py (

b(k) =

Equations (2.5)—(2.9) constitute the conjugate gradient algorithm for RQ, which
was proposed in [11]. If the updated x; is normalized to one and “+” (or “—”) is
selected in Eq. (2.6), the above algorithm will obtain the minimal (or maximal)
eigenvalue of matrix A and its associated eigenvectors.

2.4.3 Generalized Rayleigh Quotient

Definition 2.3 Assume that A € C"*",B € C"*" are both Hermitian matrices, and
B is positive definite. The generalized RQ or generalized Rayleigh—Ritz of the
matrix pencil (A, B) is a scalar function, e.g.,

H
x"Ax
r(x) = ——— 243
®) =S (243)
where x is a quantity to be selected, and the objective is to maximize or minimize
the generalized RQ.
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In order to solve for the generalized RQ, define a new vector x = BY 2x, where B!/?

is the square root of the positive definite B. Replace x by B~'/’% in (2.43). Then it
holds that

5611(371/2)"14 (371/2)"156
X) = — 2.44
r(¥) xHx ( )
which shows that the generalized RQ of matrix pencil (A, B) is equivalent to the RQ

. H H . . ..
of matrix product (B’l/ 2) A (B’l/ 2) . From the Rayleigh—Ritz theorem, it is clear
that when vector X is the eigenvector associated with the smallest eigenvalue A, of

matrix product (B’l/ 2)HA (B’l/ 2)H, the generalized RQ obtains An,. And if vector
X is the eigenvector associated with the largest eigenvalue Ay, of matrix product
(B~ 2)HA (B_l/ Z)H, the generalized RQ obtains Apay.

In the following, we review the eigen decomposition of matrix product
B 'AB ) eg.,

(3*1/2)HA (B*l/z)ﬂic — . (2.45)

n
If B= > Bw»! is an eigen decomposition of matrix B, then
i=1

B!/? = Z \/Evivf{
i=1

and B'/>B'/? = B. Since matrix B'/?and B~'/*have the same eigenvectors and their
eigenvalues are reciprocals to each other, then it follows that

B !/? = Z—vv

which shows that B~'/2 is also an Hermitian matrix, e.g., (B_I/Z)H: B~1/2,

Premultiply both sides of (2.45) by B~'/?, and use (B*l/z)Hz B~'/2, then it
holds that

B 'AB V2% = )B"'%%
or

B 'Ax = Jx
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Since x =B %%, thus the eigen decomposition of matrix product
(B_l/ 2)HA (B_l/ 2)H is equivalent to the one of matrix B~'A. The eigen decom-

position of matrix B~'A is the generalized eigenvalue decompositions of matrix
pencil (A, B). Thus, the conditions for the maximum and minimum of generalized
RQ are

xAx

r(x) = .m = /lma)h Ax :lmaxBxa
xAx

r(x) = .m = /’{min, Ax —imian.

That is to say, to maximize the generalized RQ, vector x must be the eigenvector
associated with the largest generalized eigenvalue Ay.x of matrix pencil (4, B). And
to minimize the generalized RQ, vector x must be the eigenvector associated with
the smallest generalized eigenvalue Ay, of matrix pencil (A, B).

2.5 Matrix Analysis

In the derivation and analysis of neural network-based PCA algorithm and its
extensions, besides SVD, ED, etc., matrix gradient and matrix differential are also
very necessary analysis tools. In this section, we will introduce some important
results and properties of matrix gradient and matrix differential.

2.5.1 Differential and Integral of Matrix with Respect
to Scalar

IfA(r) = {a,j(t)}mxn is a real matrix function of scalar ¢, then its differential and
integral are, respectively, defined as

{ da ={da}

JA@Wdr = {[ay(t)dt},,

If A(t) and B(t) are, respectively, m X n and n X r matrices, then

% [A(1)B(1)] = [dA;l—gt)} B(1)+A(r) [%y)} .
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If A(t) and B(t) are both m x n matrices, then

da(x) | dB()

S e =20 &

dr

If A(t) is a rank-n invertible square matrix, then

-1
L‘dl W _ a1 dATE’)A*I(;).

2.5.2 Gradient of Real Function with Respect to Real Vector

Define gradient operator V, of an n X 1 vector x as
. ] 51T 0
Vx:[alxl7 %a Ty %:| 28_7
n x
Then the gradient of a real scalar quantity function f(x) with respect to x is a
n X 1 column vector, which is defined as

X X X T afx
Vo = [ g ] T

The negative direction of the gradient direction is called as the gradient flow of
variable x, written as

x=-Vf(x).
The gradient of m-dimensional row vector function f(x)=
[fi®),f2(x),...,fm(x)] with respect to the n x 1 real vector x is an n X m matrix,
defined as

8{)1 (x) 8];2 (x) 8{:; (x)

W) _ ol ol shl

Ox = c;x: 5)(: 6x: = vxf (x)
oi(x) 0hkx)  Ifulx)
Oxy, Ox, Oxy

Some properties of gradient operations can be summarized as follows:

@ If f(x) = c is a constant, then gradient & = 0.
@ Linear principle: If f(x) and g(x) are real functions of vector x, and ¢,
and ¢, are real constants, then
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e () +eagtw)] _ | @) | 0gla)
Ox Ox ox

@ Product principle: If f(x) and g(x) are real functions of vector x, then

T _ o) T 1 5 2.

@ Quotient principle: If g(x) # 0, then

of(x)/g(x) 1 of (x)

Ox g2(x) g(x) o _f(x)ag(x) .

Ox

® Chain principle: If y(x) is a vector-valued function of x, then

ofy(x) _ oy'(x)of(y)
Ox ox oy’

) 1S an n X n matrix.
® Ifaisan n x 1 constant vector, then

where % o

da'x . ox'a ;
ox ) ox
@ IfA and y are both independent of x, then
OxTA yTA
X Ay — 14y7 Yy AX _ ATy
Ox Ox

If A is a matrix independent of x, then

OxTA _4 OxTAx
ox Ox

=Ax+ATx = (A +AT)x.

Especially, if A is a symmetric matrix, then @x Ax = 2Ax.

2.5.3 Gradient Matrix of Real Function

The gradient of a real function f(A) with respect to an m X n real matrix A is an
m X n matrix, called as gradient matrix, defined as
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IA) U@ . FA)
Fih o an
Jf(A) Ay OAn T oA
— n =V A
24 : : : af(A),
u@a) A . oA
0Aml aAmz 8Amn

where A; is the element of matrix A on its ith row and jth column.
Some properties of the gradient of a real function with respect to a matrix can be
summarized as follows:

®
@

If f(A) = c is a constant, whereA is an m X n matrix, then % = O,xn-

Linear principle: If f(A) and g(A) are real functions of matrix A, and ¢;
and ¢, are real constants, then

Oeif(A) +cag(A)] _  0f(A) e dg(A)
0A oA 270A

Product principle: If f(A) and g(A) are real functions of matrix A, then

YA _ ) LA i) 24,
Quotient principle: If g(A) # 0,then
fA)/s4) 1 If(A) dg(A)
o4 2 |fWaa W

Chain principle: Let A be an m X n matrix, and y = f(A) and g(y) are
real functions of matrix A and scalar y, respectively. Then

9g(f(4)) _ dg(y) 9f(4)

A dy OA
IfA € ™ x € ™1y € R, then

OxTAy
= AyT.
0A Y

If A € R is nonsingular x € "1,y € ™!, then

ATy

A TAYyTA T,
0A Y
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IfA € ™" x,y € R, then

oxTATA

% =A(xy" +yx").
@ IfA € ™" x,y € ™ then

OxTAATy T

—5a = (xy" +yx")A.

2.5.4 Gradient Matrix of Trace Function

Here, we summarize some properties of gradient matrix of trace functions.
(D—Q are gradient matrices of the trace of a single matrix.

@ If Wis an m x m matrix, then

otr(W)
oW

1,

® If an m x m matrix W is invertible, then

otr(W1
( ) _ _(sz)T'
ow

® For the outer product of two vectors, it holds that

dt(xy")  Omr(yx")
ox  Ox

@ are gradient matrices of the trace of the product of two matrices.
@ IfWeR™" Aec R, then

otr(WA) _ Otr(AW)

_ 4T
oW oW =4

B If WeR™" A e R, then

ow(W'A) B Btr(AWT)
oW  OW
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® If W e R™" then

ow(WWT) _ o (W'W)

=2W.
ow ow
@ If W e R™" then
2
otr(W?) _ otr(WW) oWt
ow ow
If W,A € R and W is nonsingular, then
@tl‘(AWﬁl) T
— J— _(wlaw ) .
W ( )

@-@ are gradient matrices of the trace of the product of three matrices.
@ If W e R A c R then

or(WTAW) T
r T
Especially, if A is a symmetric matrix, then M =2AW
If We R A e R, then
ot (WAW™)
— 2 =W(A+A").
W (A+47)
. T

Especially, if A is a symmetric matrix, then % =2WA

@ If W,A,B € R and W is nonsingular, then

or(AW'B)
oW

— —(w'Baw )"
2.5.5 Gradient Matrix of Determinant

Some properties of the gradient of the determinant of a matrix can be summarized
as follows:
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(D Gradient of the determinant of a single nonsingular matrix

AL iwiw)"= (w)!
olw! e T
o=

where W is the adjoint matrix A.
@ Gradient of the logarithm of a determinant

1 oW

w _—
og|W| = W oW’

5‘W

W is nonsingular.

0 T
Sy loelWl = (w1,

the elements are independent to each other.

0 . -
6W10g|W| =2W' —diag(W '),

W is symmetric matrix.
Q@ Gradient of the determinant of a two-matrix product

owwr| T -1 _
o = 2WWH(WW) W, rank (W) = m.
T
% = 2WIWW(W'W) ', rank(Wy) = n.
o|w?
% = 2|W|2(W*1)T, rank(W,m) = m.

@ Gradient of the determinant of a three-matrix product

O|AWB| T(pTwTAT) ! pT
S~ AWBIAT(BTW'AT) BT,
o|wraw| R -
T_zfxw(wftw) ,|[WrAwW| > 0.
o|lwAWT|

= {(WAWT)“}Tw(AT +4).
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2.5.6 Hessian Matrix

The Hessian matrix is defined as

Ox10x;  Ox10x Ox10x,
2 >f >f . >*f
0 f (x ) _ 0 af (x ) _ Ox,0x1  Oxp0x Oxp 0x,
OxOxT  OxT| Ox : : :
P of O
Ox,0x1  Ox,0x2 Ox, 0x,

and it can also be written as the gradient of gradient, i.e., V2f(x) = V, (V. f(x)).
Here are some properties of Hessian matrix.

(@D For an n x 1 constant vector a, it holds that

0%*a’x
A AT On Xn-
OxOxT
® If A is an n x n matrix, then
*xTAx
———=A+A".
OxOxT +

@ If x is an n x 1 vector, @ is an m x 1 constant vector, A and B,
respectively, are m X n and m X m constant matrices, and B is sym-
metric, then

9?(a — Ax)"B(a — Ax)

_ 4T
T =2A"BA.

2.6 Summary

The singular value decomposition, eigenvalue decomposition, Rayleigh quotient,
and gradient and differentials of a matrix have been reviewed in a tutorial style in
this chapter. The materials presented in this chapter are useful for the understanding
of latter chapters, particularly for the chapters except 3 and 6.


http://dx.doi.org/10.1007/978-981-10-2915-8_3
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Chapter 3
Neural Networks for Principal Component
Analysis

3.1 Introduction

PCA is a statistical method, which is directly related to EVD and SVD. Neural
networks-based PCA method estimates PC online from the input data sequences,
which especially suits for high-dimensional data due to the avoidance of the
computation of large covariance matrix, and for the tracking of nonstationary data,
where the covariance matrix changes slowly over time. Neural networks and
algorithms for PCA will be described in this chapter, and algorithms given in this
chapter are typically unsupervised learning methods.

PCA has been widely used in engineering and scientific disciplines, such as
pattern recognition, data compression and coding, image processing,
high-resolution spectrum analysis, and adaptive beamforming. PCA is based on the
spectral analysis of the second moment matrix that statistically characterizes a
random vector. PCA is directly related to SVD, and the most common way to
perform PCA is via the SVD of a data matrix. However, the capability of SVD is
limited for very large data sets.

It is well known that preprocessing usually maps a high-dimensional space to a
low-dimensional space with the least information loss, which is known as feature
extraction. PCA is a well-known feature extraction method, and it allows the
removal of the second-order correlation among given random processes. By cal-
culating the eigenvectors of the covariance matrix of the input vector, PCA linearly
transforms a high-dimensional input vector into a low-dimensional one whose
components are uncorrelated.

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017 47
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PCA is often based on the optimization of some information criterion, such as
the maximization of the variance of the projected data or the minimization of the
reconstruction error. The aim of PCA is to extract m orthonormal directions w; €
R i=1,2,...,m, m<n, in the input space that account for as much of the data’s
variance as possible. Subsequently, an input vector x € " may be transformed into
a lower m-dimensional space without losing essential intrinsic information. The
vector x can be represented by being projected onto the m-dimensional subspace
spanned by w; using the inner products x'w,. This achieves dimensionality
reduction.

PCA finds those unitary directions w € R", along which the projections of the
input vectors, known as the principal components (PCs), y = x™w, have the largest
variance Epca(w) = E[?] =W Cw =w Cw/||w|]*>, where W =w/|w|. When
w = acy, Epca(w) take its maximum value, where o is a scalar. When o = 1, w
becomes a unit vector. By repeating maximization of Epca(w) but limiting w to be
orthogonal to ¢y, the maximization of Epca (W) is equal to A, at w = oc,. Following
this deflation procedure, all the m principal directions w; can be derived. The
projections y; = x'w;, i =1,2,...,m are the PCs of x. A linear least square
(LS) estimate x can be constructed for the original input x as X = > 1, a;(1)w;. As
to other interpretations or analyses of PCA, see [1-4] for more details.

3.2 Review of Neural-Based PCA Algorithms

Neural networks on PCA pursue an effective “online” approach to update the eigen
direction after each presentation of a data point, which are especially suitable for
high-dimensional data and for the tracking of nonstationary data. In the last dec-
ades, many neural network-based PCA learning algorithms were proposed, among
which, the Hebbian and Oja’s learning rules are the bases. Overall, the existing
neural network-based PCA algorithms can be grouped into the following classes:
the Hebbian rule-based PCA algorithms, least mean squared error-based PCA
algorithms, other optimization-based PCA algorithms, anti-Hebbian rule-based
PCA algorithms, nonlinear PCA algorithms, constrained PCA algorithms, localized
PCA algorithms, and other generalizations of the PCA. These algorithms will be
analyzed and discussed in the above order.

3.3 Neural-Based PCA Algorithms Foundation
3.3.1 Hebbian Learning Rule

The classical Hebbian synaptic modification rule was first introduced in [5]. In
Hebbian learning rule, the biological synaptic weights change in proportion to the
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correlation between the presynaptic and postsynaptic signals. For a single neuron,
the Hebbian rule can be written as

w(t+1) = w(t) +ny(t)x(z), (3.1)

where the learning rate # > 0, w € R" is the weight vector, x(¢) € " is an input
vector at time ¢, y(¢) is the output of the neuron defined by y(¢) = wT(£)x(z).

The convergence of Hebbian rule can be briefly analyzed as follows.

For a stochastic input vector x, assuming that x and w are uncorrelated, the
expected weight change is given by

E[Aw] = qE[x] = nE[xx"w] = nCE[w], (32)

where E[] is the expectation operator, and C = E[xxT] is the autocorrelation matrix
of x.

At equilibrium, E[Aw] = 0, and hence, it holds that the deterministic equation
Cw =0. Due to the effect of noise terms, C is a full-rank positive-definite
Hermitian matrix with positive eigenvalues A;,i = 1,2,...,n, and the associated
orthogonal eigenvectors ¢;, where n = rank(C). Thus, w = 0 is the only equilibrium
state.

Equation (3.1) can be further represented in the continuous-time form

W =yx. (3.3)
Taking expectation on both sides, it holds that
E[W] = E[yx] = E[xx"w]| = CE[w]. (3.4)

This can be derived by minimizing the average instantaneous -criterion
function [6]

E[Enet) = *%E[yz] = f%E[waxTw] = —%E[WT] CEw], (3.5)

where Epey, is the instantaneous criterion function. At equilibrium, E[%] =
—CE[w] =0, thus w = 0. Since E[H(w)] = E[%} = —C is nonpositive for all
E[w], the solution w = 0 is unstable, which drives w to infinite magnitude, with a
direction parallel to that of the eigenvector of C associated with the largest
eigenvalue [6]. Thus, the Hebbian rule is divergent.

To prevent the divergence of the Hebbian rule, one can normalize ||w| to unity
after each iteration [7]. This leads to the normalized Hebbian rule. Several other
methods such as Oja’s rule [8], Yuille’s rule [9], Linsker’s rule [10, 11], and
Hassoun’s rule [12] add a weight-decay term to the Hebbian rile to stabilize the
algorithm.
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3.3.2 Oja’s Learning Rule

By adding a weight decay term into the Hebbian rule, Oja’s learning rule was
proposed in [8] and given by

w(t+1) = w() +ny(0x(0) = ny* (w(7). (3.6)

Oja’s rule converges to a state that minimizes (3.5) subject to ||w| = 1. The
solution is the principal eigenvector of C. For small #, Oja’s rule is proved to be
equivalent to the normalized Hebbian rule [8].

Using the stochastic learning theory, the continuous-time version of Oja’s rule is
given by a nonlinear stochastic differential equation

W =n(yx —y'w). (3.7)

The corresponding deterministic equation based on statistical average is thus
derived as

w=n[Cw— (w'Cw)w]. (3.8)
At equilibrium, it holds that
Cw = (WwiCw)w. (3.9)

It can be easily seen that the solutions are w = +¢;,i = 1,2,...,n, whose
associated eigenvalues A; are arranged in a descending order as
M>io> o 22y 20,

Note that the average Hessian

H(w) = % [—Cw+ (W'Cw)w] = —C +w"Cwl +2ww"C (3.10)

is positive-definite only at w = +c, if A} # A, [12], where I is an n X n identity
matrix. This can be seen from

H(C,‘)Cj = (;Ll — /1})(/‘]' +2/1jCiC;er
B {21,-2@ i=j (3.11)
(2= %) i#]

Thus, Oja’s rule always converges to the principal component of C.

The convergence analysis of the stochastic discrete-time algorithms such as the
gradient descent method is conventionally based on the stochastic approximation
theory [13]. A stochastic discrete-time algorithm is first converted into deterministic
continuous-time ODEs, and then analyzed by using Lyapunov’s second theorem.
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This conversion is based on the Robbins—Monro conditions, which require the
learning rate to gradually approach zero as + — ©o. This limitation is not practical
for implementation, especially for the learning of nonstationary data. In [14],
Zufiria proposed to convert the stochastic discrete-time algorithms into their
deterministic discrete-time formulations that characterize their average evolution
from a conditional expectation perspective. This method has been applied to Oja’s
rule and the dynamics have been analyzed, and chaotic behavior has been observed
in some invariant subspaces. Such analysis can guarantee the convergence of the
Oja’s rule by selecting some constant learning rate. A constant learning rate for fast
convergence has also been suggested as 7 = 0.618 4; [15]. Recently, the conver-
gence of many PCA algorithms of Oja’s rule type have been analyzed by using
deterministic discrete-time methods, the details of which will be discussed in
Chap. 6.

3.4 Hebbian/Anti-Hebbian Rule-Based Principal
Component Analysis

Hebbian rule-based PCA algorithms include the single PCA algorithm, multiple PCA
algorithms and principal subspace analysis algorithm. These neural PCA algorithms
originate from the seminal work by Oja [8]. The output of the neuron is updated by
y =wlx, where w = (wy,wy,. .., w,l)T. Here the activation function is the linear
function ¢(x) = x. The PCA turns out to be closely related to the Hebbian rule.
The PCA algorithms discussed in this section are based on the Hebbian rule. The
network model was first proposed by Oja [16], where a J,—/, FNN is used to extract
the first J, PCs. The architecture of the PCA network is shown in Fig. 3.1, which is

R

Fig. 3.1 Architecture of the PCA network
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a simple expansion of the single-neuron PCA model. The output of the network is
given by y=WTx, where y = (yi,y2,...,y02), x= (x1,%2,..,x71)", W=

[W1;W27 .- ~7W12], Wi = (Wu,Wzi, .. wWJIi)T~

3.4.1 Subspace Learning Algorithms

By using Oja’s learning rule, w will converge to a unit eigenvector of the corre-
lation matrix C, and the variance of the output y is maximized. For zero-mean input
data, this extracts the first PC. Here Oja’s learning rule can be rewritten for the
convenience of presentation as

w(t+1) = w(t) +ny(0)x(r) — ny* (w(7), (3.12)

where the term y(#)x(7) is the Hebbian term, and —yz(t)w(t) is a decaying term,
which is used to prevent instability. In order to keep the algorithm convergent, it is
proved that O < 5(t) < 1/1.24, is required [16], where 4, is the largest eigenvalue of
C. If #(r) > 1/21, w will not converge to £cl even if it is initially close to the
target [17].

34.1.1 Symmetrical Subspace Learning Algorithm

Oja proposed a learning algorithm for the PCA network, referred to as the sym-
metrical subspace learning algorithm (SLA) [16]. The SLA can be derived by
maximizing

1
Eqa = Etr(WTRW) subjectto W'W =1, (3.13)

where I is a J, x J, identity matrix. The SLA is given as [16]

wi(t+1) = wi(t) +n(t)yi(1)[x () — x(1)], (3.14)
(1) = Wy. (3.15)

After the algorithm converges, W is roughly orthonormal and the columns of W,
namely w;, i =1,2,...,J,, converge to some linear combination of the first J,
principal eigenvectors of C [16], which is a rotated basis of the dominant eigen-
vector subspace. The value of w; is dependent on the initial condition and the
training samples.

The corresponding eigenvalues A;,i = 1,2,...,J,, which approximate E[yiz],
can be adaptively estimated by
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At +1) = (1—t%1)1,-(t)+$yf(t+1). (3.16)

The PCA performs optimally when there is no noise process involved.

3.4.1.2 Weighted Subspace Learning Algorithm

The weighted SLA can be derived by maximizing the same criterion (3.13), with
the constraint changed to WTW = a, where & = diag(ay, 0, . ..,0y,), is an arbitrary
diagonal matrix with o; > op > -~ > oy, > 0.

The weighted SLA is given by [18, 19]

wilt+ 1) = w;(t) +n(2)yi(1) (1) — 7% (1)), (3.17)
x(t) = Wy, (3.18)
for i=1,2,...,J;, where vy;,i=12,...,J,, are coefficients satisfying

O<y <yp<---<yy,.

Due to the asymmetry introduced by 7y;, w; almost surely converges to the
eigenvectors of C. The weighted subspace algorithm can perform the PCA, how-
ever, norms of the weight vectors are not equal to unity.

The subspace and weighted subspace algorithms are nonlocal algorithms relying
on the calculation of the errors and the backward propagation of the values between
the layers [3]. Several algorithms converting PSA into PCA have been proposed,
the details can be found in [3].

3.4.2 Generalized Hebbian Algorithm

By combining Oja’s rule and the GSO procedure, Sanger proposed the GHA for
extracting the first J, PCs [20]. The GHA can extract the first J, eigenvectors in the
order of decreasing eigenvalues.

The GHA is given by [20]

wilt+1) = wit) +n;(0)yi(0) (1) — xi(1)], (3.19)
%i(1) = ijl w;i(1)y;(1), (3.20)
fori=1,2,...,Jo. The GHA becomes a local algorithm by solving the summation

term in (3.20) in a recursive form
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xi(1) = Xio1 (1) +wi(1)yi (1), (321)

for i =1,2,...,J5, where Xo(¢) = 0. 5;(¢) is usually selected the same for all
neurons. When #; = # for all i, the algorithm can be written in a matrix form

W(t+1) = W(t) — qW(OLT[y(e)y" (1)] +nx()y" (1), (3.22)

where the operator LT[ -] selects the lower triangle of input matrix. In the GHA, the
mth neuron converges to the mth PC, and all the neurons tend to converge together.
w; and E[y?| approach ¢; and 4;, respectively, as 1 — ©0.

Both the SLA and GHA algorithms employ implicit or explicit GSO to decor-
relate the connection weights from one another. The weighted SLA algorithm
performs well for extracting less-dominant components.

3.4.3 Learning Machine for Adaptive Feature
Extraction via PCA

Learning machine for adaptive feature extraction via principal component analysis
is called LEAP algorithm, and it is another local PCA algorithm for extracting all
the J, PCs and their corresponding eigenvectors. The LEAP is given by

wi(t + 1) = wit) + n{Bi()yi(0)[x (1) — wi(1)yi(1)] — Ai(t)wi(1)}, (3.23)
fori=1,2,...,J,, where 1 is the learning rate, y;(¢)x(7) is a Hebbian term, and
0 i=1
Ai(t) = ’ 24
l(t) { Ai,l(t)—kw,-,l(t)wiT_l(t), i=2,...,0" (3 )

Bi(t)=1—-A;(1), i=12-,]. (3.25)

The J; x J; matrices A; and B; are important decorrelating terms for performing
the GSO among all weights at each iteration. Unlike the SLA [16] and GHA [20]
algorithms, whose stability analyses are based on the stochastic approximation
theory [13], the stability analysis of the LEAP algorithm is based on Lyapunov’s
first theorem, and # can be selected as a small positive constant. Due to the use of a
constant learning rate, the LEAP is capable of tracking nonstationary processes.
The LEAP can satisfactorily extract PCs even for ill-conditioned autocorrelation
matrices.
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3.4.4 The Dot-Product-Decorrelation Algorithm (DPD)

The DPD algorithm is a nonlocal PCA algorithm, and it moves w;,i = 1,2,...,J,
toward the J, principal eigenvectors c;, ordered arbitrarily

*(Oi(t) — (Z (0w <r>> l“jgm . (326)
=T i

where #(f) satisfies the Robbins—Monro conditions. The algorithm induces the
norms of the weight vectors toward the corresponding eigenvalues, i.e., |[w;(¢)| —
2i(t), as t — oo. The algorithm is as fast as the GHA [20], weighted SLA [18, 19],
and least mean squared error reconstruction (LMSER) [21] algorithms.

wilt +1) = wi(?) + (1)

3.4.5 Anti-Hebbian Rule-Based Principal
Component Analysis

When the update of a synaptic weight is proportional to the correlation of the
presynaptic and postsynaptic activities, and the direction of the change is opposite
to that in the Hebbian rule, the learning rule is called an anti-Hebbian learning rule
[3]. The anti- Hebbian rule can be used to remove correlations between units
receiving correlated inputs [22, 23], and it is inherently stable.

Anti-Hebbian rule-based PCA algorithms can be derived by using a network
architecture of the J—J, FNN with lateral connections among the output units
[22, 23]. The lateral connections can be in a symmetrical or hierarchical topology.
A hierarchical lateral connection topology is illustrated in Fig. 3.2, based on which
the Rubner—Tavan PCA algorithm [22, 23] and the APEX [24] were proposed.
In [25], the local PCA algorithm is based on a full lateral connection topology.
The feedforward weight matrix W is described in the preceding sections, and the

Fig. 3.2 Architecture of the X1
PCA network with
hierarchical lateral
connections. The lateral
weight matrix U is an upper
triangular matrix with the
diagonal elements being zero
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lateral weight matrix U = [u; ... up] is a J, x J, matrix, where u; = (uy;, Uy, ...,
u JZi)T includes all the lateral weights connected to neuron i and u; denotes the
lateral weight from neuron j to neuron i.

3.4.5.1 Rubner-Tavan PCA Algorithm

The Rubner-Tavan PCA algorithm is based on the PCA network with hierarchical
lateral connection topology [22, 23]. The algorithm extracts the first J, PCs in a
decreasing order of the eigenvalues. The output of the network is given by [22, 23]

yi=wix+uly, i=12,..,/. (3.27)

Note that u;; = 0 for j > iand U is a J, x J, upper triangular matrix.
The weights w; are trained by Oja’s rule, and the lateral weights u; are updated
by the anti-Hebbian rule

wi(t+1) = wi(t) +n, ()i (1) e () — x(1)], (3.28)
=Wy, (3.29)
ui(t+1) = ui(t) — nayi(t)y(t). (3.30)

This is a nonlocal algorithm. Typically, the learning rate #, = #, > 0 is selected
as a small number between 0.001 and 0.1 or according to a heuristic derived from
the Robbins—Monro conditions. During the training process, the outputs of the
neurons are gradually uncorrelated and the lateral weights approach zero. The
network should be trained until the lateral weights u; are below a specified level.

3.4.5.2 APEX Algorithm

The APEX algorithm is used to adaptively extract the PCs [24]. The algorithm is
recursive and adaptive, namely, given i — 1 PCs, it can produce the ith PC itera-
tively. The hierarchical structure of lateral connections among the output units
serves the purpose of weight orthogonalization. This structure also allows the
network to grow or shrink without retraining the old units. The convergence
analysis of the APEX algorithm is based on the stochastic approximation theory,
and the APEX is proved to have the property of exponential convergence.

Assuming that the correlation matrix C has distinct eigenvalues arranged in the
decreasing order as 1; > A, > -+ > A, with the associated eigenvectors w, ..., w,,
the algorithm is given by [24, 26]

y=W', (3.31)

yi = wiTx +uly, (3.32)
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where y = (v, ..., yH)T is the output vector, u = (uy;, U, ..., u(,;l)i)T, and
W =[w; ... w;—{] is the weight matrix of the first i — 1 neurons. These definitions
are for the first i neurons, which are different from their respective definitions given
in the preceding sections. The iteration is given as [24, 26]

wilt+1) = wi(t) + () [yi(0)x (1) = ¥} ()wi(1)], (3.33)
u(t+1) = u(r) = n;(0) [yi(e)y(e) + 7 () (0)]. (3.34)

Equations (3.33) and (3.34) are respectively the Hebbian and anti-Hebbian parts
of the algorithm. y; tends to be orthogonal to all the previous components due to the
anti-Hebbian rule, also called the orthogonalization rule.

Both sequential and parallel APEX algorithms have been presented in [26]. In
the parallel APEX, all J, output neurons work simultaneously. In the sequential
APEX, the output neurons are added one by one. The sequential APEX is more
attractive in practical applications, since one can decide a desirable number of
neurons during the learning process. The APEX algorithm is especially useful when
the number of required PCs is not known a priori. When the environment is
changing over time, a new PC can be added to compensate for the change without
affecting the previously computed principal components. Thus, the network
structure can be expanded if necessary.

The stopping criterion can be that for each i the changes in w; and u are below a
threshold. At this time, w; converges to the eigenvector of the correlation matrix
C associated with the ith largest eigenvalue, and u converges to zero. The stopping
criterion can also be that the change of the average output variance ol.z(t) is suffi-
ciently small.

Most existing linear complexity methods including the GHA [20], the SLA [16],
and the PCA with the lateral connections require a computational complexity of O
(J1J») per iteration. For the recursive computation of each additional PC, the APEX
requires O(J;) operations per iteration, while the GHA utilizes O(J,J,) per iteration.
In contrast to the heuristic derivation of the APEX, a class of learning algorithms,
called the Y-APEX, is presented based on criterion optimization [27]. ¥ can be
selected as any function that guarantees the stability of the network. Some members
in the class have better numerical performance and require less computational effort
compared to that of both the GHA and the APEX.

3.5 Least Mean Squared Error-Based Principal
Component Analysis

Existing PCA algorithms including the Hebbian rule-based algorithms can be
derived by optimizing an objective function using the gradient descent method. The
least mean squared error (LMSE)-based methods are derived from the modified
MSE function
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t
E(W) =3 "y — WW'x, |, (335)

n=1

where 0 < p < 1 is a forgetting factor used for nonstationary observation
sequences, and ¢ is the current time instant. Many adaptive PCA algorithms actually
optimize (3.35) by using the gradient descent method [21, 28] and the RLS method
[28-32].

The gradient descent or Hebbian rule-based algorithms are highly sensitive to
parameters such as #. It is difficult to choose proper parameters guaranteeing both a
small misadjustment and a fast convergence. To overcome these drawbacks,
applying the RLS to the minimization of (3.35) yields the RLS-based algorithms
such as the adaptive principal components extraction (APEX) [24, 26], the
Kalman-type RLS [29], the projection approximation subspace tracking (PAST)
[28], the PAST with deflation (PASTd) [28], and the robust RLS algorithm
(RRLSA) [31].

All RLS-based PCA algorithms exhibit fast convergence and high tracking
accuracy and are suitable for slow changing nonstationary vector stochastic pro-
cesses. All these algorithms correspond to a three-layer J,-J,-J; linear autoasso-
ciative network model, and they can extract all the J, PCs in a descending order of
the eigenvalues, where a GSO-like orthonormalization procedure is used.

3.5.1 Least Mean Square Error Reconstruction
Algorithm (LMSER)

The LMSER algorithm was derived based on the MSE criterion using the gradient
descent method [21]. The LMSER algorithm can be written as

wit+1) = wi(t) +n(t){24(r) — Ci()A(1) — A(t)Ci(t) — y[Bi(1)A(r) +A(0)Bi (1) }wi(t),
(3.36)

for i=1,2,...,Jo, where A(t) =x()xT(t), Ci(t) =wi(t)wl(1),i=1,2,...,Js,
Bi(t) =Bi_1(t)+Ci_y(t), i=2,...,Jo, and B;(¢) = 0. The selection of #(r) is
based on the Robbins—Monro conditions and y > 1.

The LMSER reduces to Oja’s algorithm when W(#) is orthonormal, namely
W (©)W(r) = I. Because of this, Oja’s algorithm can be treated as an approximate
stochastic gradient rule to minimize the MSE. Increasing the values of y and ¢
results in a larger asymptotic MSE but faster convergence and vice versa, namely
the stability speed problem. The LMSER uses nearly twice as much computation as
the weighted SLA [18, 19] and the GHA [20], for each update of the weight.
However, it leads to a smaller asymptotic and faster convergence for the minor
eigenvectors [33].
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3.5.2 Projection Approximation Subspace Tracking
Algorithm (PAST)

The PASTd [28] is a well-known subspace tracking algorithm updating the signal
eigenvectors and eigenvalues. The PASTd is based on the PAST. Both the PAST
and the PASTd are derived for complex-valued signals, which are very common in
signal processing area. At iteration #, the PASTd algorithm is given as [28]

(1) =Wl 1), (3.37)

1) = e — 1)+ () (3.38)

() = Wit~ Do), (3.39)

) =i = 1)+ ) — 5 0] ) (3.40)

(1) = 20~ wi(00), (3.41)

for i =1, ..., Jo, where x,(f) = x,, and the superscript * denotes the conjugate

operator.

w;(0) and §;(0) should be suitably selected. W(0) should contain J, orthonormal
vectors, which can be calculated from an initial block of data or from arbitrary
initial data. A simple way is to set W(0) as the J; leading unit vectors of the J; X J;
identity matrix. d;(0) can be set as unity. The choice of these initial values affects
the transient behavior, but not the steady-state performance of the algorithm.
wi(t) provides an estimate of the ith eigenvector, and J,(f) is an exponentially
weighted estimate of the associated eigenvalue.

Both the PAST and the PASTd have linear computational complexity, that is, O
(J1J») operations in every update, as in the cases of the SLA [16], the GHA [20], the
LMSER [21], and the novel information criterion (NIC) algorithm [30]. The PAST
computes an arbitrary basis of the signal subspace, while the PASTd is able to
update the signal eigenvectors and eigenvalues. Both algorithms produce nearly
orthonormal, but not exactly orthonormal, subspace basis or eigenvector estimates.
If perfectly orthonormal eigenvector estimates are required, an orthonormalization
procedure is necessary. The Kalman-type RLS [29] combines the basic RLS
algorithm with the GSO procedure in a manner similar to that of the GHA. The
Kalman-type RLS and the PASTd are exactly identical if the inverse of the
covariance of the output of the ith neuron, P,(f), in the Kalman-type RLSA is set as
1/6,(¢) in the PASTd.

In the one-unit case, both the PAST and PASTd are identical to Oja’s learning
rule except that the PAST and the PASTd have a self-tuning learning rate 1/0,(¢).
Both the PAST and the PASTd provide much more robust estimates than the EVD
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and converge much faster than the SLA [16]. The PASTd has been extended for the
tracking of both the rank and the subspace by using information theoretic criteria
such as the AIC and the MDL [34].

3.5.3 Robust RLS Algorithm (RRLSA)

The RRLSA [31] is more robust than the PASTd [28]. The RRLSA can be
implemented in a sequential or parallel manner. Given the ith neuron, the sequential
algorithm is given for all patterns as [31]

= . Wi(t 1
wit — 1) ErETE (3.42)
yilt) =W, (t — Dx(1), (3.43)
(1) = S yi (Ot — 1), (3.44)
j=1
wi(t) = pwi(r — 1) + [xi() — %:(1)]yi(7), (3.45)
Ju(e) = il (3.46)

fori =1, ..., J,, where y; is the output of the ith hidden unit, and w;(0) is initialized
as a small random value. By changing (3.44) into a recursive form, the RRLSA
becomes a local algorithm.

The RRLSA has the same flexibility as the Kalman-type RLS [29], the PASTd,
and the APEX, in that increasing the number of neurons does not affect the pre-
viously extracted principal components. The RRLSA naturally selects the inverse of
the output energy as the adaptive learning rate for the Hebbian rule. The Hebbian
and Oja rules are closely related to the RRLSA algorithm by suitable selection of
the learning rates [31].

The RRLSA is also robust to the error accumulation from the previous com-
ponents, which exists in the sequential PCA algorithms such as the Kalman-type
RLS and the PASTd. The RRLSA converges rapidly, even if the eigenvalues
extend over several orders of magnitude. According to the empirical results [31],
the RRLSA provides the best performance in terms of convergence speed as well as
steady-state error, whereas the Kalman-type RLS and the PASTd have similar
performance, which is inferior to that of the RRLSA.
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3.6 Optimization-Based Principal Component Analysis

The PCA can be derived by many optimization methods based on a properly
defined objective function. This leads to many other algorithms, including gradient
descent-based algorithms [9-11, 35], the CG method [36], and the quasi-Newton
method [37, 38]. The gradient descent method usually converges to a local mini-
mum. Second-order algorithms such as the CG and quasi-Newton methods typi-
cally converge much faster than first-order methods but have a computational
complexity of 0(]%]2) per iteration.

The infomax principle [10, 11] was first proposed by Linsker to describe a neural
network algorithm. The principal subspace is derived by maximizing the mutual
information criterion. Other examples of information criterion-based algorithms are
the NIC algorithm [30] and the coupled PCA [39].

3.6.1 Novel Information Criterion (NIC) Algorithm

The NIC algorithm [30] is obtained by applying the gradient descent method to
maximize the NIC. The NIC is a cost function very similar to the mutual infor-
mation criterion [10, 11] but integrates a soft constraint on the weight
orthogonalization

Enic = % {In(det(W'RW)) — cc(W'W)}. (3.47)

Unlike the MSE, the NIC has a steep landscape along the trajectory from a small
weight matrix to the optimum one. Enic has a single global maximum, and all the
other stationary points are unstable saddle points. At the global maximum

1[(&
Exie = 3 (Z In 4; — 12)7 (3.48)
i=1

W yields an arbitrary orthonormal basis of the principal subspace.
The NIC algorithm was derived from Enjc by using the gradient descent method,
and the algorithm is given as

W(t+1) = (1= )W) +nClt+ W [W OCE+ 1)W(H] ', (349)

where C(¢) is the estimate of the covariance matrix C(r)

. 1< A t—1. 1
Ct) =- Tl = pu——C(t — 1)+ —xx] 3.50
(1) ’;:1” xixg = p——C(t— 1)+ —xix; (3.50)
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and p € (0, 1] is a forgetting factor. The NIC algorithm has a computational
complexity of O(J%Jz) per iteration.

Like the PAST algorithm [28], the NIC algorithm is a PSA method. It can extract
the principal eigenvectors when the deflation technique is incorporated.
The NIC algorithm converges much faster than the SLA and the LMSER and can
globally converge to the PSA solution from almost any weight initialization.
Reorthormalization can be applied so as to perform true PCA [30].

By selecting a well-defined adaptive learning rate, the NIC algorithm can also
generalize some well-known PSA/PCA algorithms. For online implementation, an
RLS version of the NIC algorithm has also been given in [30]. The PAST algorithm
[28] is a special case of the NIC algorithm when # is unity, and the NIC algorithm
essentially represents a robust improvement of the PAST.

In order to break the symmetry in the NIC, the weighted information criterion
(WINC) [32] was proposed by adding a weight to the NIC. Two WINC algorithms
are, respectively, derived by using the gradient ascent and the RLS. The gradient
ascent-based WINC algorithm can be viewed as an extended weighted SLA with an
adaptive step size, leading to a much faster convergence speed. The RLS-based
WINC algorithm has not only fast convergence and high accuracy, but also a low
computational complexity.

3.6.2 Coupled Principal Component Analysis

The most popular PCA or MCA algorithms do not consider eigenvalue estimates in
the update of the weights, and they suffer from the stability speed problem because
the eigen motion depends on the eigenvalues of the covariance matrix [39]. The
convergence speed of a system depends on the eigenvalues of its Jacobian. In PCA
algorithms, the eigen motion depends on the principal eigenvalue of the covariance
matrix, while in MCA algorithms it depends on all eigenvalues [39].

Coupled learning rules can be derived by applying the Newton method to a
common information criterion. In coupled PCA/MCA algorithms, both the eigen-
values and eigenvectors are simultaneously adapted. The Newton method yields
averaged systems with identical speed of convergence in all eigen directions. The
Newton descent-based PCA and MCA algorithms, respectively called nPCA and
nMCA, are derived by using the information criterion [39]:

wlCw
2

Ecouplea(W, 1) = —wiw+ In /, (3.51)
where 1 is an estimate of the eigenvalue.

By approximation w'w a 1, the nPCA is reduced to the ALA [17]. Further
approximating the ALA by wTCw = / leads to an algorithm called cPCA. The
cPCA is a stable PCA algorithm, but there may be fluctuation in the weight vector
length in the iteration process. This problem can be avoided by explicitly
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renormalizing the weight vector at every iteration, and this leads to the following
robust PCA (rPCA) algorithm [39]:

w(t+1) =w(t)+n(r) (x(:)();)(t) - w(t)), (3.52)
_ow(t+1)

w(t+1) =TT D (3.53)

At +1) = (1) +n() (1) — A1), (3.54)

where 7(7) is a small positive number and can be selected according to the Robbins—
Monro conditions. The rPCA is shown to be closely related to the RRLSA algo-
rithm [31] by applying the first-order Taylor approximation on the rPCA.
The RRLSA can also be derived from the ALA algorithm by using the first-order
Taylor approximation.

In order to extract multiple PCs, one has to apply an orthonormalization pro-
cedure, e.g., the GSO, or its first-order approximation as used in the SLA, or
deflation as in the GHA. In the coupled learning rules, multiple PCs are simulta-
neously estimated by a coupled system of equations. It has been reported in [40]
that in the coupled learning rules a first-order approximation of the GSO is superior
to the standard deflation procedure in terms of orthonormality error and the quality
of the eigenvectors and eigenvalues generated. An additional normalization step
that enforces unit length of the eigenvectors further improves the orthonormality of
the weight vectors [40].

3.7 Nonlinear Principal Component Analysis

The aforementioned PCA algorithms apply a linear transform to the input data.
The PCA is based on the Gaussian assumption for data distribution, and the opti-
mality of the PCA results from taking into account only the second-order statistics,
namely the covariances. For non-Gaussian data distributions, the PCA is not able to
capture complex nonlinear correlations, and nonlinear processing of the data is
usually more efficient. Nonlinearities introduce higher-order statistics into the
computation in an implicit way. Higher-order statistics, defined by cumulants or
higher-than-second moments, are needed for a good characterization of non-
Gaussian data.

The Gaussian distribution is only one of the canonical exponential distributions,
and it is suitable for describing real-valued data. In the case of binary-valued,
integer-valued, or non-negative data, the Gaussian assumption is inappropriate, and
a family of exponential distributions can be used. For example, the Poisson dis-
tribution is better suited for integer data and the Bernoulli distribution to binary
data, and an exponential distribution to nonnegative data. All these distributions
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belong to the exponential family. The PCA can be generalized to distributions of
the exponential family. This generalization is based on a generalized linear model
and criterion functions using the Bregman distance. This approach permits hybrid
dimensionality reduction in which different distributions are used for different
attributes of the data.

When the feature space is nonlinearly related to the input space, we need to use
nonlinear PCA. The outputs of nonlinear PCA networks are usually more inde-
pendent than their respective linear cases. For non-Gaussian input data, the PCA
may fail to provide an adequate representation, while a nonlinear PCA permits the
extraction of higher-order components and provides a sufficient representation.
Nonlinear PCA networks and learning algorithms can be classified into symmetric
and hierarchical ones similar to those for the PCA networks. After training, the
lateral connections between output units are not needed, and the network becomes
purely feedforward. In the following, we discuss the kernel PCA, robust PCA, and
nonlinear PCA.

3.7.1 Kernel Principal Component Analysis

Kernel PCA [41, 42] is a special, linear algebra-based nonlinear PCA, which intro-
duces kernel functions into the PCA. The kernel PCA first maps the original input data
into a high-dimensional feature space using the kernel method and then calculates the
PCA in the high-dimensional feature space. The linear PCA in the high-dimensional
feature space corresponds to a nonlinear PCA in the original input space.

Given an input pattern set {x; € ®1|i=1,2,...,N},¢ : /' — R is a non-
linear map from the J;-dimensional input to the J>-dimensional feature space. A J,-
by-J, correlation matrix in the feature space is defined by

N

> oxi)e" (x:). (3.55)

i=1

1
C=—
'TN
Like the PCA, the set of feature vectors is limited to zero mean

N

}VZ o(x;) = 0. (3.56)

i=1

A procedure to select ¢ satisfying (3.56) is given in [41, 42]. The PCs can then
be computed by solving the eigenvalue problem [41, 42]

v=Cyw= %Z ((p(xi)Tv)(p(xi). (3.57)

J=1
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Thus, v must be in the span of the mapped data

N
v = Z o p(x;). (3.58)
i=1
After premultiplying both sides of (3.58) by ¢(x;) and performing mathematical
manipulations, the kernel PCA problem reduces to
Ka = Ja, (3.59)

where A and o = (o, ..., ocN)T are, respectively, the eigenvalues and the associated
eigenvectors of K, and K is an N x N kernel matrix with

K;j = k(xi,x;) = o' (x;)p(x;)), (3.60)

where x(-) is a kernel function.
Popular kernel functions used in the kernel method are the polynomial, Gaussian
kernel, and sigmoidal kernels, which are, respectively, given by

KX x;) = (xTx;+0)” (3.61)
sl

K(x;,x;) =€ 27, (3.62)

i(x;,x;) = tanh(co (x]x;) +0), (3.63)

where ag is a positive integer, o > 0, and ¢, 0 € R. Even if the exact form of ¢(-)
does not exist, any symmetric function x (x;, x;) satisfying Mercer’s theorem can be
used as a kernel function.

Arrange the eigenvalues in the descending order 4, > 4, > -+ > A5 >0and
denote their associated eigenvectors as a;, ... &p. The eigenvectors are further
normalized as o] ox = 1/ 4.

The nonlinear PCs of x can be extracted by projecting the mapped pattern
¢(x) onto v,

N
vip(x) = o k(x;,x), (3.64)
j=1
for k=1, 2, ..., J,, where o ; is the jth element of a.

The kernel PCA algorithm is much more complicated and may sometimes be
trapped more easily into local minima. The PCA needs to deal with an eigenvalue
problem of a J; x J; matrix, while the kernel PCA needs to solve an eigenvalue
problem of an N X N matrix. Sparse approximation methods can be applied to
reduce the computational cost.
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3.7.2 Robust/Nonlinear Principal Component Analysis

In order to increase the robustness of the PCA against outliers, a simple way is to
eliminate the outliers or replace them by more appropriate values. A better alter-
native is to use a robust version of the covariance matrix based on the M-estimator.
The data from which the covariance matrix is constructed may be weighted such
that the samples far from the mean have less importance.

Several popular PCA algorithms have been generalized into robust versions by
applying a statistical physics approach [43], where the defined objective function
can be regarded as a soft generalization of the M-estimator. In this subsection,
robust PCA algorithms are defined so that the optimization criterion grows less than
quadratically and the constraint conditions are the same as for the PCA algorithms
[44], which are based on a quadratic criterion. The robust PCA problem usually
leads to mildly nonlinear algorithms, in which the nonlinearities appear at selected
places only and at least one neuron produces the linear response y; = x'w;. When all
neurons generate nonlinear responses y; = ¢(x'w;), the algorithm is referred to as
the nonlinear PCA.

Variance Maximization-based Robust Principal Component Analysis:

The PCA is to maximize the output variances E[y?] = E [(wiTx)z} =w!lCw; of

the linear network under orthonormality constraints. In the hierarchical case, the
constraints take the form wiij = 0;5,j <1,0; being the Kronecker delta. In the
symmetric case, symmetric orthonormality constraints wl.ij = 0; are applied.
The SLA and GHA algorithms correspond to the symmetric and hierarchical net-
work structures, respectively.

To derive robust PCA algorithms, the variance maximization criterion is gen-
eralized as E[o(wlx)] for the ith neuron, subject to hierarchical or symmetric
orthonormality constraints, where o(x) is the M-estimator assumed to be a valid
differentiable cost function that grows less than quadratically, at least for large
x. Examples of such functions are g(x) = Incosh(x) and a(x) = |x|. The robust PCA
in general does not coincide with the corresponding PCA solution, although it can
be close to it. The robust PCA is derived by applying the gradient descent method
[21, 44]

wilt +1) = wi(t) + (1)@ (vi(1))ei?), (3.65)

ei(t) = x(t) — #:(1), (3.66)
1()
%) = D wi(ewi(0), (3.67)

where e,(f) is the instantaneous representation error vector, and the influence
function ¢(x) = do(x)/dx.
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In the symmetric case, I(i) = J, and the errors e;(f) = e(?), i = 1, ..., J,. When
¢(x) = x, the algorithm is simplified to the SLA. Otherwise, it defines a robust
generalization of Oja’s rule, first proposed quite heuristically. In the hierarchical
case, I(i) =1, i=1, ..., Jo. If ¢(x) = x, the algorithm coincides exactly with the
GHA; Otherwise, it defines a robust generalization of the GHA. In the hierarchical
case, e;(f) can be calculated in a recursive form e;() = e;_;(¢) — yi(t)w;(z), with
eo(t) = x(1).

Mean Squared Error Minimization-based Robust Principal Component Analysis:
PCA algorithms can also be derived by minimizing the MSE E [Heiﬂz}, where
e;(1) =x(t) — %;(t). Accordingly, robust PCA can be obtained by minimizing
I"Elo(e;)))| = E [||h(el)||2} , where 1 is a J,-dimensional vector, all of whose entries

are unity, and o(-) and A(-) are applied componentwise on the input vector. Here,

h(x) = \/o(x). When o(x) = x%, it corresponds to the MSE. A robust PCA is
defined if o(x) grows less than quadratically. Using the gradient descent method
leads to

wilt+1) = wile) (0 w0 ples()x ) X" (Owi(D(e(r))] . (3.68)

where w; estimates the robust counterparts of the principal eigenvectors c;. The first
term in the bracket is very small and can be neglected, and thus we can get a
simplified algorithm

wit+1) = wi(r) +n(0x" (Owi(1)p(ei() = wi(t) +n(0)yi(1)p(ei(r)).  (3.69)

Algorithms (3.69) and (3.65) resemble each other. However, Algorithm (3.69)
generates a linear final input—output mapping, while in Algorithm (3.65) the input—
output mapping is nonlinear. When ¢(x) = x, algorithms (3.69) and (3.65) are the
same as the SLA in the symmetric case, and the same as the GHA in the hierar-
chical case.

Another Nonlinear Extension to Principal Component Analysis:

A nonlinear PCA algorithm may be derived by the gradient descent method for

minimizing the MSE E {Hs,” } , where the error vector ¢g; is a nonlinear extension to

e;(r) = x(t) — %,(r). The nonlinear PCA so obtained has a form similar to the robust
PCA given by (3.65) through (3.67)

wi(t+1) = wi(t) +n(1)(vi(r))e(1), (3.70)
1(0)
&(t) = x(1) — Z(P(yj(t))wj(t% (3.71)

fori=1, ..., J,.
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In this case, I(i) = J, and all &(¢) are the same. The nonlinear PCA in the
hierarchical case is a direct nonlinear generalization of the GHA. In the hierarchical
case, I(i) = i and (3.71) can be computed recursively

&(t) = &1 (1) — @(vi(1))wi(t), (3.72)

with g () = x(z).

It has been pointed out in [44] that robust and nonlinear PCA algorithms have
better stability than the corresponding PCA algorithms if the (odd) nonlinearity
¢(x) grows less than linearly, namely |$(x)| < |x|. On the contrary, nonlinearities
growing faster than linearly cause stability problems easily and therefore are not
recommended.

3.7.3 Autoassociative Network-Based Nonlinear PCA

The MLP can be used to perform nonlinear dimension reduction and hence non-
linear PCA. Both the input and output layers of the MLP have J; units, and one of
its hidden layers, known as the bottleneck or representation layer, has J, units,
J> < Ji. The network is trained to reproduce its input vectors. This kind of network
is called the autoassociative MLP. After the network is trained, it performs a
projection onto the J,-dimensional subspace spanned by the first J, principal
components of the data. The vectors of weights leading to the hidden units form a
basis set that spans the principal subspace, and data compression therefore occurs in
the bottleneck layer. Many applications of the MLP in autoassociative mode for
PCA are available in the literature [45, 46].

The three-layer autoassociative Ji-J,-J; feedforward network or MLP network
can also be used to extract the first J, principal components of J;-dimensional data.
If nonlinear activation functions are applied in the hidden layer, the network per-
forms as a nonlinear PCA network. In the case of nonlinear units, local minima
certainly appear. However, if linear units are used in the output layer, nonlinearity
in the hidden layer is theoretically meaningless [45]. This is due to the fact that the
network tries to approximate a linear mapping.

3.8 Other PCA or Extensions of PCA

Besides the algorithms reviewed in the preceding parts, there exist lots of other
PCAs or their extensions. For example, there are minor component analysis, con-
strained PCA, localized PCA, incremental PCA, supervised PCA, complex-valued
PCA, two-dimensional PCA, generalized eigenvalue decomposition, singular value
decomposition, canonical correlation analysis, etc. Among these algorithms, minor
component analysis (MCA), generalized eigenvalue decomposition, and singular
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value decomposition are important PCA algorithms or extensions. So we will have
separate chapters to study them, respectively. See Chaps. 4, 8 and 9 for more
details. Here, we only discuss the remaining algorithms.

Constrained PCA: When certain subspaces are less preferred than others, this
yields the constrained PCA [47]. The optimality criterion for constrained PCA is
variance maximization, as in PCA, but with an external subspace orthogonality
constraint that extracts principal components orthogonal to some undesired sub-
space [3]. Constrained PCA first decomposes the data matrix by projecting the data
matrix onto the spaces spanned by matrices of external information and then applies
PCA to the decomposed matrices, which involves generalized SVD. APEX can be
applied to recursively solve the constrained PCA problem [26].

Localized PCA: The nonlinear PCA problem can be overcome using localized
PCA [3]. First, the data space is partitioned into a number of disjunctive regions,
followed by the estimation of the principal subspace within each partition by linear
PCA. The distribution is then collectively modeled by a collection of linear PCA
models, each characterizing a partition. It should be noted that the localized PCA is
different from local PCA. In the latter, the update at each node makes use of only
local information. VQ-PCA [48] is a locally linear model that uses vector quanti-
zation to define the Voronoi regions for localized PCA. An online localized PCA
algorithm [49] was developed by extending the neural gas method. ASSOM is
another localized PCA for unsupervised extraction of invariant local features from
the input data. Localized PCA provides an efficient means to decompose
high-dimensional data compression problems into low-dimensional ones [3].

Incremental PCA: Incremental PCA algorithm can update eigenvectors and
eigenvalues incrementally. It is applied to a single training sample at a time, and the
intermediate eigen problem must be solved repeatedly for every training sample [50].
Chunk incremental PCA [51] processes a chunk of training samples at a time. It can
reduce the training time effectively and obtain major eigenvectors with fairly good
approximation. In Chunk incremental PCA, the update of an eigen space is com-
pleted by performing single eigenvalue decomposition. The SVD updating-based
incremental PCA algorithm [52] gives a close approximation to the batch-mode PCA
method, and the approximation error is proved to be bounded. Candid
covariance-free IPCA [53] is a fast incremental PCA algorithm, which is used to
compute the principal components of a sequence of samples incrementally without
estimating the covariance matrix.

Supervised PCA: Like supervised clustering, supervised PCA [54] is achieved
by augmenting the input of PCA with the class label of the data set. Class-
augmented PCA [55] is a supervised feature extraction method, which is composed
of processes for encoding the class information, augmenting the encoded infor-
mation to data, and extracting features from class-augmented data by applying
PCA.

Complex-valued PCA: Complex PCA is a generalization of PCA in
complex-valued data sets [56], and it employs the same neural network architecture
as for PCA, but with complex weights. Complex-domain GHA [57] extends GHA
for complex principal component extraction, and it is very similar to GHA except
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that complex notations are introduced. In [58], a complex-valued neural network,
model is developed for nonlinear complex PCA, and it uses the architecture of
Kramer’s nonlinear PCA network, but with complex weights and biases. The
algorithm can extract nonlinear features missed by PCA. Both PAST and PASTd
are, respectively, the PSA and PCA algorithms derived for complex-valued signals
[28]. Complex-valued APEX [59] actually allows for extracting a number of
principal components from a complex-valued signal. The robust complex PCA
algorithms have also been derived in [60] for hierarchically extracting principal
components of complex-valued signals using a robust statistics-based loss function.

Two-dimensional PCA: Because of the small-sample-size problem for image
representation, PCA is prone to be overfitted to the training set. Two-dimensional
PCA can address these problems. In two-dimensional PCA, an image covariance
matrix is constructed directly using the original image matrices instead of the
transformed vectors, and its eigenvectors are derived for image feature extraction.

2DPCA [61] evaluates the covariance (scatter) matrix more accurately than PCA
does, since it only reflects the information between rows and is a row-based PCA.
Diagonal PCA [62] improves 2DPCA by defining the image scatter matrix as the
covariances between the variations of the rows and those of the columns of the
images and is more accurate than PCA and 2DPCA. In modular PCA [63], an
image is divided into n; subimages and PCA is performed on all these subimages.
2DPCA and modular PCA both solve the overfitting problems by reducing the
dimension and by increasing the training vectors yet introduce the high feature
dimension problem.

Bidirectional PCA [64] reduces the dimension in both column and row direc-
tions for image feature extraction, whose feature dimension is much less than that of
2DPCA. It has to be performed in batch mode. PCA-L,; [65] is a fast and robust L;-
norm-based PCA. L;-norm-based two-dimensional PCA (2DPCA-L,) [66] is a
two-dimensional generalization of PCA-L, [65]. It avoids the eigen decomposition
process, and its iteration step is easy to perform. The uncorrelated multilinear PCA
algorithm [67] is used for unsupervised subspace learning of tensorial data. It not
only obtains features that maximize the variance captured, but also enforces a
zero-correlation constraint, thus extracting uncorrelated features.

3.9 Summary

An overview of a variety of neural network-based principal component analysis
algorithms has been presented in this chapter. Many new adaptive PCA algorithms
are being added to this field, indicating a consistent interest in this direction.
Nevertheless, neural network-based PCA algorithms have been considered a
matured subject. Many problems and current research interest lie in performance
analysis of PCA algorithms, minor component analysis, generalization or exten-
sions of PCA algorithms, etc., which will be discussed in the next chapters.
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Chapter 4
Neural Networks for Minor
Component Analysis

4.1 Introduction

The minor subspace (MS) is a subspace spanned by all the eigenvectors associated
with the minor eigenvalues of the autocorrelation matrix of a high-dimensional
vector sequence. The MS, also called the noise subspace (NS), has been extensively
used in array signal processing. The NS tracking is a primary requirement in many
real-time signal processing applications such as the adaptive direction-of-arrival
(DOA) estimation, the data compression in data communications, the solution of a
total least squares problem in adaptive signal processing, and the feature extraction
technique for a high-dimensional data sequence. Although the MS can be efficiently
obtained by the algebraic approaches such as the QR decomposition, such
approaches usually have the computational complexity of O(N*r) per data update,
where N and r are the dimensions of the high-dimensional vector sequence and the
MS, respectively. Hence, it is of great interest to find some learning algorithms with
lower computational complexity for adaptive signal processing applications.

The minor component analysis (MCA) deals with the recovery of the eigen-
vector associated with the smallest eigenvalue of the autocorrelation matrix of the
input data, and it is an important statistical method for extracting minor component.
To solve the MCA problem, many neural learning algorithms have been proposed
for over 30 years [1-7, 8, 9-11]. These learning algorithms can be used to extract
minor component from input data without calculating the correlation matrix in
advance, which makes neural networks method more suitable for real-time appli-
cations. In neural network algorithms for MCA, the only nonlinear network is the
Hopfield network by Mathew and Reddy [12, 13], in which a constrained energy
function was proposed, using a penalty function, to minimize the RQ. The neurons
use sigmoidal activation functions; however, the structure of the network is
problem-dependent (the number of neurons is equal to the dimension of the
eigenvectors). In addition, it is necessary to estimate the trace of the covariance
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matrix for selecting appropriate penalty factors. All other existing neural networks
are made up of one simple linear neuron.

Linear neurons are the simplest units to build a neural network. They are often
considered uninteresting because linear functions can be computed with linear
networks and a network with several layers of linear units can always be collapsed
into a linear network without any hidden layer by multiplying the weights in a
proper fashion [4]. On the contrary, there are very important advantages. Oja [14]
has found that a simple linear neuron with an unsupervised constrained Hebbian
learning rule can extract the principal component from stationary input data.
Contrary to the nonlinear neural networks which are seriously plagued by the
problem of local minima of their cost function, the linear networks have simple cost
landscapes [4, 15].

The adaptive algorithms for tracking one minor component (MC) have been
proposed in [2—4], all resulting in adaptive implementation of Pisarenko’s harmonic
retrieve estimator [16]. Thompson [17] proposed an adaptive algorithm for
extracting the smallest eigenvector from a high-dimensional vector stream. Yang
and Kaveh [18] extended Thompson’s algorithm [17] to estimate multiple MCs
with the inflation procedure. However, Yang and Kaveh’s algorithm requires
normalization operation. Oja [2] and Xu et al. [1] proposed several efficient algo-
rithms that can avoid the normalized operation. Luo et al. [3] presented a minor
component analysis (MCA) algorithm that does not need any normalization oper-
ation. Recently, some modifications for Oja’s MS tracking algorithms have been
proposed in [4, 19, 8, 9, 10]. Chiang and Chen [20] showed that a learning algo-
rithm can extract multiple MCs in parallel with the appropriate initialization instead
of the inflation method. On the basis of an information criterion and by extending
and modifying the total least mean squares (TLMS) algorithm [5], Ouyang et al.
[21] developed an adaptive MC tracker that can automatically find the MS without
using the inflation method. Recently, Cirrincione et al. [4], [22] proposed a learning
algorithm called MCA EXIN that may have satisfactory convergence. Zhang and
Leung [23] proposed a much more general model for the MC and provided an
efficient technique for analyzing the convergence properties of these algorithms.
Interestingly, Cirrincione et al. analyzed these algorithms in detail.

4.2 Review of Neural Network-Based MCA Algorithms

The neural network-based MCA algorithms in the literature can be roughly clas-
sified into the following classes: nonstabilizing algorithm, self-stabilizing algo-
rithm, fast algorithms, etc. In [4], Cirrincione et al. distinguished between two
classes of learning algorithms according to the time course of the length of the
eigenvector estimate. In the algorithms of the first class, e.g., OJAn, Luo, and
MCA EXIN, the length of the weight vector in the fixed point is undetermined. In
an exact solution of the differential equation, the weight vector length would not
deviate from its initial value. However, when a numerical procedure (like Euler’s
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method) is applied, all these rules are plagued by “sudden divergence” of the weight
vector length. In the rules of the second class, e.g., Doug, Chen, XU*, OJA*, OJA
+, FENG, AMEX, ZLlog, ZLdiff, and Wang, the weight vector length converges
toward a fixed value. Within the second class, some rules are self-stabilizing with
respect to the time course of the weight vector length. In these algorithms, the
weight vector length converges toward a fixed value independent of the presented
input vector. The Doug and Chen rules are strictly self-stabilizing, while OJA+,
OJA*, and XU* show this property in the vicinity of the fixed point. All rules
lacking self-stabilization are potentially prone to fluctuations and divergence in the
weight vector length [10]. Besides, there still exists a need to develop fast minor
subspace tracking algorithms. Due to the direct use of Gram—Schmidt orthonor-
malization, the computational complexity of DPM algorithm [18] is O(npz). The
Fast Rayleigh’s quotient-based Adaptive Noise Subspace (FRANS) [24] algorithm
reduces its dominant complexity to 3np. Afterward, several algorithms such as
FDPM [25], [26], HFRANS [27], FOOJA [28], and YAST [29] were proposed. In
the following, we will discuss some well-known MCA/MSA algorithms.

4.2.1 Extracting the First Minor Component

The well-known algorithms for extracting the first minor component include the
anti-Hebbian learning rule (OJA) [1], the normalized anti-Hebbian learning rule
(OJAn) [1], the constrained anti-Hebbian learning algorithm [30], OJA+ algorithm
[2], Luo algorithm [3], the total least mean squares algorithm (TLMS) [5], and the
MCA EXIN algorithm [4]. The OJA algorithm tends rapidly to infinite magnitudes
of the weights, and the OJAn algorithm leads to better convergence, but it may also
lead to infinite magnitudes of weights before the algorithm converges [4]. The
constrained anti-Hebbian learning algorithm has a simple structure and requires a
low computational complexity per update, which has been applied to adaptive FIR
and IIR filtering. It can be used to solve the TLS parameter estimation and has been
extended for complex-valued TLS problem. The TLMS algorithm is a random
adaptive algorithm for extracting the MC, based on which an adaptive step-size
learning algorithm [31] has been derived for extracting the MC by introducing
information criterion. The algorithm outperforms the TLMS in terms of both
convergence speed and estimation accuracy.

Consider a linear unit with input x(r) = [x; (1), x2(¢), ..., x,(t)]" and y(z) =
SOV wi(t)xi(2) = wT(0)x (1), where w(r) = [wi(2), w2(?), ..., wa(r)]" is the weight
vector. In the MCA analysis, x(¢) is a bounded continuous-valued stationary
ergodic data vector with finite second moments. The existing well-known learning
laws for the MCA of the autocorrelation matrix R = E[x(¢)x" (¢)] of the input vector
x(t) are listed below.
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Oja’s MCA algorithm: Changing the Oja’s learning law for PCA into a con-
strained anti-Hebbian rule and by reversing the sign, Oja’s MCA algorithm is given
by

w(t+1) = w(t) — a(0)y(0) (1) — y(0)w(r)], (4-1)

where «(¢) is a positive learning rate. The OJAn algorithm is

w(t+1) = w(t) — a(r)y(r) {x(r) - %} . (4.2)

Another Oja’s learning rule (OJA+) is as follows:
Wit 1) =w(n) — () y()x(0) — (PO +1- W@ )wo].  @3)
In [3], Luo et al. proposed the following rule:
wli+1) = wle) = 2(0) W W)y (e)x() — P (w(r)]. (4.4)
In [5], TLMS algorithm was given by:
w(t+1) = w(t) — a() W (O)w(e)y()x(r) — w(1)]. (4.5)
In [31], by defining an information criterion: max,{J(w) =31 (WTRw—

log||w||*)}, an adaptive step-size learning algorithm has been derived for extracting
the MC as follows:

w(t+ 1) = w(r) - IIW(nt)IIZ W) Px (" ew(n) —w(n)]. (46)

In order to improve the performance of MCA algorithms, a novel algorithm
called MCA EXIN [4] was proposed as follows:

w(it+1) =w(1)

a(t)y(2) [x 0 y(t)W(t)] (4.7)

w1 Iw@IE]

The convergence of the above MCA algorithms is indirectly proven by the
convergence of their corresponding averaging ODE. In [4], the analysis of
the temporal behavior of all the above MCA neurons is analyzed by using not only
the ODE approximation, but especially the stochastic discrete laws. Using only the
ODE approximation does not reveal some of the most important features of these
algorithms. For instance, it will be shown that the constancy of the weight modulus
for OJAn and Luo, which is the consequence of the use of the ODE, is not valid,
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except, as a very first approximation, in approaching the minor component. This
study will also lead to the very important problem of sudden divergence [4].

4.2.2 Oja’s Minor Subspace Analysis

Oja’s minor subspace analysis (MSA) algorithm can be formulated by reversing the
sign of the learning rate of SLA for PSA [32]

W(r+1) = W(r) —ylx(r) = W(ry(n)y' (1), (4.8)

where y(1) = WT(t)x(t), n > 0 is the learning rate. This algorithm requires the
assumption that the smallest eigenvalue of the autocorrelation matrix C is less than
unity. However, Oja’s MSA algorithm is known to diverge [2]. The bigradient PSA
algorithm is a modification to the SLA and is obtained by introducing an additional
bigradient term embodying the orthonormal constraints of the weights, and it can be
used for MSA by reversing the sign of #.

4.2.3 Self-stabilizing MCA

The concept of self-stability was presented in [10]. If the norm of the weight vector
in the algorithm converges toward a fixed value independent of the presented input
vector, then this algorithm is called self-stabilizing. Since all algorithms lacking
self-stability are prone to fluctuations and divergence in the weight vector norm, the
self-stability is an indispensable property for adaptive algorithms.

The MCA algorithm proposed in [33] can be written as

W(r+1) = W) — nlx(y" ()W ()W (1) — W(0)y(0)y" (1)]. (4.9)

During initialization, W (0)W(0) is required to be diagonal. Algorithm (4.9)
suffers from a marginal instability, and thus, it requires intermittent normalization
such that [|w;|| = L.

A self-stabilizing MCA algorithm was given in [8] as

W(t+1) = W(t) =[xy ()W ()W ()W ()W (1) = W(D)y(0)y"(r)]. (4.10)

Algorithm (4.10) is self-stabilizing, such that none of ||w;(¢)|| =1 deviates
significantly from unity. Algorithm (4.10) diverges for PCA when —# is changed to
+7. Both Algorithms (4.9) and (4.10) have complexities of O(J,J5).
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4.2.4 Orthogonal Oja Algorithm

The orthogonal Oja (OOja) algorithm consists of Oja’s MSA plus an orthogonal-
ization of W(¥) at each iteration [34] WT(t)W(t) = I. A Householder transform-based
implementation of the MCA algorithm was given as [27]

x(r) = W(2)y(z) (4.11)
e(t) = x(t) — £(t) (4.12)
9(t) = ! (4.13)
V12 le@ Py
_1-90) Lx(1) + 9(t)e(r) (4.14)
b))
_ )
“O =] (413)
v(t) = WT(0)u(r) (4.16)
W(t+1) = W) - 2u(tyv'(2), (4.17)

where W is initialized as an arbitrary orthogonal matrix and y is given by
y(t) = WT(£)x(¢). The OOja is numerically very stable. By reversing the sign of 7,
we extract J, PCs.

The normalized Oja (NOja) was derived by optimizing the MSE criterion subject
to an approximation to the orthonormal constraint W (©)W(r) = I [35]. This leads to
the optimal learning rate. The normalized orthogonal Oja (NOOja) is an orthogonal
version of the NOja such that W ()W(r) = I is perfectly satisfied [35]. Both
algorithms offer, as compared to Oja’s SLA, a faster convergence, orthogonality,
and a better numerical stability with a slight increase in the computational com-
plexity. By switching the sign of # in the given learning algorithms, both NOja and
NOOja can be used for the estimation of minor and principal subspaces of a vector
sequence. All the Algorithms (4.8), (4.9), (4.10), OOja, NOja, and NOOQja have a
complexity of O(JJ,) [34]. OOja, NOja, and NOOja require less computation load
than Algorithms (4.9) and (4.10) [34, 35].

4.2.5 Other MCA Algorithm

By using the Rayleigh quotient as an energy function, the invariant-norm MCA [3]
was analytically proved to converge to the first MC of the input signals. The MCA
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algorithm has been extended to sequentially extract multiple MCs in the ascending
order of the eigenvalues by using the idea of sequential elimination in [36].
However, the invariant-norm MCA [3] leads to divergence in finite time [4], and
this drawback can be eliminated by renormalizing the weight vector at each iter-
ation. In [11, 33], an alternative MCA algorithm for extracting multiple MCs was
described by using the idea of sequential addition, and a conversion method
between the MCA and the PCA was also discussed.

Based on a generalized differential equation for the generalized eigenvalue
problem, a class of algorithms can be obtained for extracting the first PC or MC by
selecting different parameters and functions [23]. Many existing PCA algorithms,
e.g., the ones in [14, 37, 38], and MCA algorithms, e.g., the one in [37], are special
cases of this class. All the algorithms of this class have the same order of con-
vergence speed and are robust to implementation error.

A rapidly convergent quasi-Newton method has been applied to extract multiple
MCs in [13]. This algorithm has a complexity of O(J»J7), but with a quadratic
convergence. It makes use of an implicit orthogonalization procedure that is built
into it through an inflation technique.

4.3 MCA EXIN Linear Neuron

In [4], Cirrincione et al. proposed a MCA EXIN neuron, and its algorithm is as
follows:

Wi+ 1) = w(r) — 200 [x 0 —y(t)w(t)] (4.7)

- 2 2|

Iw(@)ll2 w(@®)ll2

The convergence of MCA EXIN is indirectly proven by the convergence of their
corresponding averaging ODE. Moreover, its temporal behavior is analyzed by the
stochastic discrete laws. This study leads to the very important problem of sudden

divergence. In this subsection, we will briefly analyze the MCA EXIN neuron and
its algorithm [4].

4.3.1 The Sudden Divergence

The squared modulus of the weight vector at an instant is given by

o (1)
4

w2+ )13= 1w (3 + == Iw (D)5 (1) ll35in* 200, (4.18)
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where 0Oy, is the angle between the directions of x(¢) and w(¢). From (4.18), the
dependence of the squared modulus on the square of the learning rate is apparent.
As a consequence, for low learning rates (as near convergence), the increase in the
weight modulus is less significant.

The following observations can be made [4]:

(1) Except for particular conditions, the weight modulus always increases
2 2
w(+ Dl > (w3 (4.19)

These particular conditions, i.e., all data are in exact particular directions, are
too rare to be met in a noisy environment.

(2) sin®20,, is a positive function with four peaks within the interval (—m, 7.
This is one of the possible interpretations of the oscillatory behavior of the
weight modulus.

In summary, the property of constant modulus for MCA EXIN is not correct [4].
In the following, the divergence will be studied in further detail.

Averaging the behavior of the weight vector after the first critical point has been
reached (7> 1), it then follows that w(t) = ||w(z)||,z., V> ty, Where z,, is the unit
eigenvector associated with the smallest eigenvalue of the autocorrelation matrix of
the input vector x(¢). From (4.7), the discrete law can be easily obtained for the
update of the weight modulus. This discrete law can be regarded as a discretization
of the following ODE:

d T 1 2
GO S
dr (wTw) w'w

2
] . (4.20)

2

Without loss of generality, the input data are considered Gaussian. After some
matrix manipulations, which can be found in [4], it holds that:

dp 1 2

- = —E _i )L,nt R 5 421
d[ p2 [ n + r( )]p ( )
where p = ||w(¢) ; /n is its smallest eigenvalue of R, i.e., autocorrelation matrix of
the input data. Solving this differential equation with p(0) = 1 for the sake of
simplicity yields

p(t) = \/1+2[~2 + Zutr(R)]1 (4.22)

and since the quantity in brackets is never negative, it follows that p(¢) — oo, as
t — oo. Here, the norm of w(z) diverges.
For Luo MCA algorithm, it holds that
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1
pt) = :
V1 =2[=2+ 2n(R)]e

(4.23)

In this case, the divergence happens in a finite time (called sudden divergence),
ie.,

.t
24/ =22 + Jntr(R)

Hence, ¢, depends on the spreading of the eigenvalue spectrum of R. If the
eigenvalues of R are clustered, the sudden divergence appears late. Furthermore, 7,
is proportional to the inverse of 4, (high 4, means noisy data) [4].

p(t) = 0o when — ity = (4.24)

4.3.2 The Instability Divergence

In [4], the instability divergence was defined, and it is related to the dynamic
stability of algorithm and learning rate. We know that in an iterative algorithm, the
learning rate o(¢f) must be very small to avoid the instability and consequent
divergence of the learning law. This implies some problems [4]: (1) A small
learning rate gives a low learning speed; (2) it is difficult to find a good learning rate
to prevent learning divergence; and (3) the transient and accuracy in the solution are
both affected by the choice of the learning rate.

The analysis of instability divergence of MCA EXIN linear neuron is very
complex, and the details can be found in [4]. In Sect. 4.4, the analysis method will
be discussed in detail.

4.3.3 The Numerical Divergence

The MCA learning laws are iterative algorithms and have a different computational
cost per iteration. The limited precision (quantization) errors can degrade the
solution of the gradient-based algorithms with regard to the performance achievable
in infinite precision. These errors accumulate in time without bound, leading, in the
long term, to an eventual overflow. This kind of divergence is here called numerical
divergence. There are two sources of quantization errors [4]: (1) The analog-to-
digital conversion used to obtain the discrete time series input; for a uniform
quantization characteristics, the quantization is zero mean. (2) The finite word
length used to store all internal algorithmic quantities; this error is not zero mean.
This mean is the result of the use of multiplication schemes that either truncate or
round products to fit the given fixed word length.
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It is found that the degradation of the solution is proportional to the conditioning
of the input, i.e., to the spread of the eigenvalue spectrum of the input autocorre-
lation matrix. Hence, this problem is important for near singular matrices, e.g., in
the application of MCA for the computation of translation in computer vision [4].
Obviously, decreasing the learning rate in the infinite precision algorithm leads to
improved performance. Nevertheless, this decrease increases the deviation from
infinite precision performance. However, increasing the learning rate can also
magnify numerical errors, so there is a trade-off in terms of numerical effects on the
size of the learning rate [4].

4.4 A Novel Self-stabilizing MCA Linear Neurons

As mentioned in Sects. 4.2 and 4.3, several adaptive algorithms for tracking one
minor component have been proposed. The dynamics of many MCA algorithms
have been studied, and a divergence problem of the weight vector norm has been
found in some existing MCA algorithms, e.g., OJAn algorithm [1] and Luo algo-
rithm [3]. Also, sudden divergence has been found in some existing algorithms,
e.g., Luo algorithm, OJA algorithm [1], and OJA+ algorithms [2] on some con-
dition. In order to guarantee convergence, several self-stabilizing MCA learning
algorithms have been proposed [8—10]. In these algorithms, the weight vector of the
neuron can be guaranteed to converge to a normalized minor component.

The objective of this section is to develop more satisfactory learning algorithm
for the adaptive tracking of MS. For neural network-based learning algorithms, the
convergence is crucial to their practical applications. Usually, MSA (or MCA)
learning algorithms are described by stochastic discrete time systems. Traditionally,
convergence of MSA algorithms is analyzed via a corresponding DCT system, but
some restrictive conditions must be satisfied in this method. It is realized that using
only DCT method does not reveal some of the most important features of these
algorithms. The SDT method uses directly the stochastic discrete learning laws to
analyze the temporal behavior of MCA algorithms and has been given more and
more attention [4]. In this section, we will introduce a self-stabilizing MCA algo-
rithm and extended it for the tracking of MS [39], which has a more satisfactory
numerical stability compared to some existing MSA algorithms, and the dynamics
of this algorithm will be analyzed via DCT and SDT methods [39].

4.4.1 A Self-stabilizing Algorithm for Tracking One MC

(1) A self-stabilizing MCA algorithm

Let us consider a single linear neuron with the following input—output relation:
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y(t) =W)X (1),(r=0,1,2,...),

where y(7) is the neuron output, the input sequence {X(z)|X(¢) € R"(t =
0,1,2,...)} is a zero-mean stationary stochastic process, and W(t) € R"(t =
0,1,2,...) is the weight vector of the neuron. Let R = E[X(t)X"(¢)] denote the
autocorrelation matrix of the input sequence X(z), and let 4; and v; (i = 1,2,...,N)
denote the eigenvalues and the associated orthonormal eigenvectors of R, respec-
tively. We can arrange the orthonormal eigenvectors vq,vs,---,vy such that the
associated eigenvalues are in a nondecreasing order: 0 <A; <A, < -+ < Ay.

The dynamics of some major MCA algorithms, e.g., OJA, OJAn, OJA+, Luo,
and OJAm algorithms, have been studied, and a MCA EXIN algorithm based on the
gradient flow of the Rayleigh quotient of the autocorrelation matrix
R(=E[X(1)X"(1)]) on R" — {0} was presented as follows [4]:

Wi+ 1) = W) — ) (W OWE) " [60X0) — 2OwE (W owe) ],
(4.25)

where o(7) is the learning rate, which controls the stability and rate of convergence
of the algorithm. MCA EXIN algorithm is analyzed in detail, and it is concluded
that the algorithm is the best MCA neuron in terms of stability (no finite time
divergence), speed, and accuracy. However, by using the same analytical approach,
it is easy to show that it is possible that MCA EXIN converges to infinity. In order
to avoid the possible divergence and preserve the good performance of MCA EXIN
as much as possible, we propose a modified algorithm as follows:

-1

W+ 1) = W(e) =) (W OW0) ™ [y0X(0) = (20 + 1= W) (W OW@) ™ W)

(4.26)

The difference between MCA EXIN algorithm and the modified one is that the

latter refers to OJA+ algorithm, and adds a term (1 — ||W(z)||*)W(). Then, this
renders our algorithm to have satisfactory one-tending property (which will be
explained later), and it outperforms some existing MCA algorithms, e.g., OJAm
algorithm.

(2) The convergence analysis via DCT method

Usually, MCA learning algorithms are described by SDT systems. It is very difficult
to study the convergence of the SDT system directly. So far, dynamics of most of
MCA algorithms are indirectly proved via a corresponding DCT system. According
to the stochastic approximation theory [40, 41], it can be shown that if some
conditions are satisfied, then the asymptotic limit of the discrete learning algorithm
of (4.26) can be obtained by solving the following continuous time differential
equations:
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dw () 1

dr

=~ (W OW©)™ [oxm - (PO +1- [WOI) (W OW0) " W)

(4.27)
Assume X(¢) is stationary, and X(z) is not correlated with W(z), and taking

expectation on both sides of Eq. (4.27), then Eq. (4.27) can be approximated by the
following ordinary differential equation (ODE):

dw(s)
dr

—(WH W)™ [RW() — (WIORW () + 1~ WO ) (W ()W)~ W),

(4.28)

The asymptotic property of (4.28) approximates that of (4.27), and the asymp-
totic property of (4.28) can be ensured by the following theorem.

Theorem 4.1 Let R be a positive semi-definite matrix, ., and v, be respectively its
smallest eigenvalue and the associated normalized eigenvector with nonzero first
component. If the initial weight vector W(0) satisfies W' (0)v; # 0 and J, is single,
then im,_., W(t) = £vy, i.e. W(t) tends to £v, asymptotically as t — 0.

Proof Denote N eigenvalues of R by Ai,4s,..., 4y, where 4; is the smallest
eigenvalue and denotes a set of associated normalized eigenvectors by
Vi,V2,...,Vy. SO R and W(¢) can be written as

R= Z Jvvl, Wt Zﬁ (4.29)

Then, it holds that

dw(n)  -dfi(r)
dr _Z dr

i

i=1

=~ S WP G + (WIORWE@) + 1= W) £, (ileywi)

W)
:;(( HIW @I + (W ORW () + 1= W) Jfiows ) W) |~
(4.30)
and
d];(,) ( AHW()Hz‘i‘(WT(I)RW(I)—&—l—||W(t)||4))fi(t)||w(t)”74 s

Vi=1,2,...,N
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Since f;(t) = WT(t)v; and WT(0)v; # 0, we have fi(¢) # 0 (V¢ >0).
Define

A0
v:(?) =7 0 (i=2,..,N). (4.32)
And then it follows that
dv(1) _ (1 = IWOIPHOAW) _ (1 = )10 (4.33)
dr FROIAGI w>

whose solution on [0, o] is

v;(t) = exp <(||/1W( )ﬁl)/dr> Vi=2,...,N. (4.34)

If 4; > A1 (i.e., the smallest eigenvalue is single but not multiple), then v,(z)
tends to zero as t— oo (Vi=2,...,N). Consequently, limf(r)=0
1—00

(Vi=2,...,N).
So we have

lim W(r) = lim (Z £i(1) ) . (4.35)
From (4.35), it follows that

Tin [[W(e) | = lim [If (61| = lim [/ 1) (4.36)
However, by differentiating WTW along the solution of (4.28), it holds that

WLOWE _ o wrywio)) > [Iwio W RW ()
~(WrORW@) 1 IO ) IW O]
= —2(W W) [WORW () — (W ORW() +1 - [W0)*) |
=2W W) [t - 1wl
>0 for ||[W()| <1
={ <0 for [[W()|>1
=0 for ||W(r)|=1.

(4.37)
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This means that lim ||W(z)|| = 1. Thus, we have lim fi(¢) = £1, which gives
—00 t—00
lim W(r) = tv,.
1—00
This completes the proof.
The asymptotic behavior of MCA ODE can only be considered in the limits of
validity of this asymptotic theory. Therefore, the above theorem’s result is only

approximately valid in the first part of the time evolution of the MCA learning law,
i.e., in approaching the minor component.

(3) The divergence analysis

Cirrincione et al. found that in an exact solution of the differential equation asso-
ciated with some MCA algorithms, e.g., Luo, OJAn, and MCA EXIN algorithms,
the weight vector length would not deviate from its initial value. However, when a
numerical procedure (like Euler’s method) is applied, all these rules are plagued by
“divergence or sudden divergence” of the weight vector length. Obviously, only
from the analysis of the ordinary differential equation, it is not sufficient to deter-
mine the convergence of the weight vector length for MCA algorithms. Thus, it is
necessary and important to analyze the temporal behavior of MCA algorithms via
the stochastic discrete law.

The purpose of this section is to analyze the temporal behavior of the proposed
algorithm by using not only the ODE approximation, but especially, the stochastic
discrete laws. Cirrincione found a sudden divergence for Luo algorithm (OJA and
OJA+ also have this phenomenon on some condition). Sudden divergence is very
adverse for practical application. Does our proposed algorithm have a sudden
divergence? In this section, we will study the proposed algorithm in detail.

Averaging the behavior of the weight vector after the first critical point has been
reached (1> 1y), it follows that:

W) = W)l ez, (4.38)

where v; is the unit eigenvector associated with the smallest eigenvalue of R.
From (4.26), it holds that

WG+ DIP= IWOI + AW (0| +2W" (1) AW (1),

Neglecting the second-order term in «(z), the above equation can be regarded as
a discretization of the following ODE:

W)

TR E{2WT(1)AW (1)}

= eL2w (@) - {~(WT W) hox () - (0 + 1= WO I ) (W owe) W]}
= —2(W W) [IWOIPW ORW() — (W ORW (@) +1— (W))W ()]
—2(WT W) [1 = W]

(4.39)
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The above equation can be approximated as

dp 2 )
—=—-(1- 4.40
2=, (440)
where p = ||W(¢)|>. Denote the time instant at which the MC direction is
approached as 7y and the corresponding value of the squared weight modulus as py.
The solution of (4.40) is given by

|1 —p?| = |1 —p3le~*=0) if py # 1 (4.41)
P="Do if po = 1. '

Figure 4.1 shows these results for different values of py.

From the above results, it can be seen that the norm of the weight increases or
decreases to one according to the initial weight modulus and the sudden divergence
does not happen in a finite time. From (4.41), it is obvious that the rate of increase
or decrease in the weight modulus depends only on the initial weight modulus and
is not relevant to the eigenvalue of the autocorrelation matrix of the input vector.

(4) The convergence analysis via SDT method

The above analysis is based on a fundamental theorem of stochastic approximation
theory [40, 41]. The obtained result is then an approximation on some conditions.
The use of the stochastic discrete laws is a direct analytical method. The purpose of
this section is to analyze the temporal behavior of our MCA neurons and the
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relation between the dynamic stability and learning rate, by using mainly the SDT
system following the approach in [4].
From (4.26), it holds that

W+ 1) =W+ 1)W(r+1)
= [WOIP=2a0 (W W) (IWOIPY(0) ~ (PO +1 = IWOI*) W)
2O W OWE) " (IWO I OIX )P
2 4 2 4 2 2
WO O (0 + 1= W) + (0 +1 - IWOlI) 1w )
Wi OW ()" (1- W) +0(2(1)
Wi oW )" (1- IW@)*).

=||W(z || +2a(r) (
~ |W ()| + 2a(t) ()(
(4.42)

Hence, if the learning factor is small enough and the input vector is bounded, we
can make such analysis as follows by neglecting the second-order terms of the o(#).

= 20w owe) (1 wor)
>1 for ||[W(0)]|<1 (4.43)
— <1 for \|W(0)H>1
=1 for [WO)] =

This shows that |W(z+ 1)||* tends to one whether ||W (z)|| is equal to one or not,
which is called the one-tending property (OTP); i.e. the weight modulus remains
constant (||W()||>— 1 at convergence). The OTP indicates that W(0) with mod-
ulus one should be selected as the initial value of the proposed algorithm; thus,
some practical limitations which may be resulted from an inappropriate initial value
and a larger learning factor can be avoided.

4.4.2 MS Tracking Algorithm

In this section, we will introduce a self-stabilizing neural network learning algo-
rithm for tracking minor subspace in high-dimensional data stream. Dynamics of
the proposed algorithm are analyzed via a DCT and a SDT systems. The proposed
algorithm provides an efficient online learning for tracking the MS and can track an
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orthonormal basis of the MS. Computer simulations are carried out to confirm the
theoretical results.

The MCA learning algorithm given in Sect. 4.4.1 extracts only one
component. We can easily extend the algorithm for tracking multiple MCs or MS.
Let U= [u),uy,...,u,] € RN denote the weight matrix, where u; € RV*!
represents the ith column vector of U and also denote the weight vector of the ith
neuron of a multiple-input—multiple-output (MIMO) linear neural network. The
input—output relation of the MIMO linear neural network is described by

y(t) = U (1)x(2). (4.44)
The extended learning algorithm for training the weight matrix is given by

U(t+1) = U(t) — u(t)x()y" (1)
—UOUT(OU@} ey () +1 = {UT(U)P){UT (U (@0)}
(4.45)

It should be noted that (4.45) is not a trivial extension of (4.26). Although (4.26)
has many extended forms, it may be difficult to find their corresponding Lyapunov
functions in order to analyze their stability.

(1) Convergence analysis

Under similar conditions as those defined in [42], using the techniques of stochastic
approximation theory [40, 41], we can obtain the following averaging differential
equation

dU(t) _ T -1 T

o =~ RU@) - U (U@} (U (1)RU() (4.46)
+1—{U (U ){U (U (1)} "

The energy function associated with (4.46) is given by

E(U) = %tr{(UTRU)(UTU)*l} + %tr{UTU—F (UTU)’l}. (4.47)
The gradient of E(U) with respect to U is
VE(U) =RUU'U)™' —U"RUU(U"U) > +U[I — (U'U)?

- {RUUTU - U(UTRU I (UTU)Z) }(UTU)*2 (4.48)

= {RU -y (UTRU+1 - (UTU)2> }(UTU)*I.
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Clearly, (4.46) is equivalent to the following equation:

dU

< = ~VE). (4.49)

Differentiating E(U) along the solution of (4.46) yields

dE duT
4.50
_dUutdu (4:50)
dr dr’

Since the extended form of Algorithm (4.45) has a Lyapunov function E(U)
only with a lower bound [43], the corresponding averaging equation converges to
the common invariance set P = {U|VE(U) = 0} from any initial value U(0).

(2) Divergence analysis

Theorem 4.2 If the learning factor u(t) is small enough and the input vector is
bounded, then the state flows in Algorithm (4.45) for tracking the MS are bounded.

Proof Since the learning factor u(z) is small enough and the input vector is
bounded, we have

U (t+ 1)U+ 1) = U1+ DU(1 4 1)]
= u{{U(1) = u(O) k()" (1) = UD{UT (U0} (()y" (1)
+I={U" (U0 P){U (U0} '}
x {U () — p(0) (0" (1) = UO{UT (OU(1)} ™ (p(e)y" (1)
H = {UT (U P){U (U (1)} 1)
~ wlUT (U (1)) — 2u(t)er[({UT (U (1)} — D{UT (U (1)} ']
= U (U (1)] = 2u(1) [er{UT (U (1)} — ef U ()U (1)} ).
(4.51)

Notice that in (4.51), the second-order terms associated with the learning factor
have been neglected. It holds that
2
(U (r+ DU+ )|/ |[U" U @),
_ 2
~ 1= 2u(n)[r{U" (U (1)} — w{U" (U0} /U (U 0)||, (4.52)

o)
-1 2u(t)<1 tr{UT(t)U(t)})
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It is obvious that there exists a tr{U"(:)U(f)} large enough such that
(1 —tw{UT(U ()} /u{UT(1)U(1)}) > 0, which results in [|[UT(r+ 1)U(1 + 1)”)2:/
|UT(HU (I)Hfv < 1. Thus, the state flow in the proposed algorithm is bounded.
This completes the proof.

(3) Landscape of nonquadratic criteria and global asymptotical convergence

Given U € RV in the domain Q = {U|0<U"RU <co, U'U # 0}, we analyze
the following nonquadratic criterion (NQC) for tracking the MS:

1 1
min E(U) = Etr{(UTRU)(UTU)*‘} + Etr{UTUJr ')y, (4.53)
Feng et al. [9] analyzed the landscape of nonquadratic criteria for the OJAm
algorithm in detail. We can refer to the analysis method of OJAm algorithm to
analyze Algorithm (4.45). Here, we only give the resulting theorems. The landscape
of E(U) is depicted by the following Theorems 4.3 and 4.4.

Theorem 4.3 U is a stationary point of E(U) in the domain Q if and only if
U = L,Q, where L, € RN*" consists of the r eigenvectors of R, and Q is a r x r
orthogonal matrix.

Theorem 4.4 In the domain Q, E(U) has a global minimum that is achieved if and
only if U=LyQ, where Ly =[vi,v2,...,v,]. At a global minimum,
E(U) =47, Ai+r. All the other stationary points of U = L,Q (L, # L(,)) are
saddle (unstable) points of E(U).

The proofs of Theorems 4.3 and 4.4 can be referred to Section IV in [9]. They are
similar in most parts. From the previous theorems, it is obvious that the minimum of
E(U) automatically orthonormalizes the columns of U, and at the minimum of E(U),
U only produces an arbitrary orthonormal basis of the MS but not the multiple MC.

The global asymptotical convergence of Algorithm (4.45) by considering its
gradient rule (4.46) can be given by the following theorem.

Theorem 4.5 Given the ordinary differential Eq. (4.46) and an initial value
U(0) € Q, then U(r) globally asymptotically converges to a point in the set U =
L)Q as t — oo,where L,y = [vi,v2,...,v,] and Q denotes a r X r unitary
orthogonal matrix.

Remark 4.1 OJAn, Luo, MCA EXIN, FENGm, and OJAm algorithms have been
extended for tracking MS as in Eq. (4.45), and simulations have been performed
[9]. It is concluded that the state matrices in OJAn, Luo, MCA EXIN, and FENGm
do not converge to an orthonormal basis of the MS, but OJAm can. From the
previous analysis, we can conclude that Algorithm (4.26) can be extended for
tracking MS and can converge to an orthonormal basis of the MS.
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4.4.3 Computer Simulations

(1) Simulation experiment on MCA algorithm

In this section, we provide simulation results to illustrate the convergence and
stability of MCA algorithm (4.26). Since the OJAm algorithm and Douglas algo-
rithm are self-stabilizing and have better performance than other MCA algorithms,
we compare the performance of the proposed MCA algorithm with these algorithms
in the following simulations. In the simulations, we use above three algorithms to
extract the minor component from the input data sequence which is generated by
X(1) = C -y(t), where C = randn(5, 5)/5 and y(t) € R°*! is Gaussian and randomly
generated. In order to measure the convergence speed of learning algorithm, we
compute the norm of W(¢) and the direction cosine at the rth update:

L . ‘WT(I) : Vl‘
Direction Cosine(t) = —————
W@ - (vl
where v; is the unit eigenvector associated with the smallest eigenvalue of R. If
direction cosine(s) converges to 1, W(#) must converge to the direction of minor
component v;. Figures 4.2 and 4.3 show the simulation curves about the conver-
gence of ||W(z)|| and direction cosine() (DC), respectively. The learning constant
in the OJAm and the proposed algorithm is 0.3, while the learning constant in the
Douglas is 0.1. All the algorithms start from the same initial value that is randomly
generated and normalized to modulus one.
From the simulation results, we can see easily that when the weight norm and the
direction cosine in the OJAm, Douglas, and Algorithm (4.26) all converge, and the
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convergence precision in Algorithm (4.26) is the best. Since the OJAn,
MCA EXIN, and FENGm are divergent and the OJAm outperforms these algo-
rithms [9], it seems that Algorithm (4.26) for tracking one MC works more satis-
factorily than most existing MCA algorithms.

(2) Simulation experiment on MSA algorithm

In this section, we provide simulation results to illustrate the convergence and
stability of MSA algorithm (4.45). The self-stabilizing Douglas algorithm is
extended for tracking MS as in Eq. (4.45). Since the OJAm algorithm has better
performance than other MSA algorithms, we compare performance of the proposed
MSA algorithm with the OJAm and Douglas algorithms in the following simula-
tions. Here, an MS of dimension 5 is tracked. The vector data sequence is generated
by X(¢) = B - y(t), where B is randomly generated. In order to measure the con-
vergence speed and precision of learning algorithm, we compute the norm of a state
matrix at the tth update:

p(UM) = [[UT (U],

and the deviation of a state matrix from the orthogonality at the ¢th update, which is
defined as:

dist(U(t)) = |UT()U(1)[diag(UT (1)U (1))] " — L] ..
This simulation can be divided into two parts. In the first part, let B = (1/11)

randn(11, 11), and y(¢) € R"'*!' be Gaussian, spatially temporally white, and ran-
domly generated. We simulate the algorithms starting from the same initial value
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U(0) which is randomly generated and normalized to modulus one. The learning
constants in the OJAm and Douglas are 0.02 and 0.01, respectively, while the
learning constant in the proposed algorithm is 0.01. Figures 4.4 and 4.5 show the
norm of state matrix and deviation of a state matrix from the orthogonality versus
the number of iterations, respectively. In the second part, let B = (1/31) randn(31,
31), and y(r) € R*"*! be Gaussian, spatially temporally white, and randomly
generated. The learning constants in the OJAm and Douglas are 0.04 and 0.02,
respectively, while the learning constant in the proposed algorithm is 0.02. Other
conditions are similar to the ones in the first part. We can get the simulation results
as shown in Figs. 4.6 and 4.7.

From the simulation results, we can see easily that the state matrices in the OJAm,
Douglas, and Algorithm (4.45) all converge to an orthonormal basis of the MS, and
the convergence precision of state matrix in algorithm (4.45) is the best, and there are
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Fig. 4.6 Evolution curves of 1.025
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residual deviations of state matrices from the orthogonality in the OJAm and
Douglas. Since the OJAm is superior to OJAn, MCA EXIN, and FENGm, algorithm
(4.45) seems to work more satisfactorily than most existing MSA algorithms.

In summary, a self-stabilizing MCA learning algorithm is presented in this
section. The algorithm has been extended for tracking MS, and a self-stabilizing
MSA algorithm is developed. The theoretical analysis of the proposed MCA
algorithm is given via a corresponding DCT system and a SDT system. The
globally asymptotic stability of the averaging equation of the proposed MSA
algorithm has been studied. Simulation experiments have shown that the proposed
MCA algorithm can efficiently extract one MC and works satisfactorily, the pro-
posed MSA algorithm makes the corresponding state matrix tend to column-
orthonormal basis of the MS, and the performance is superior to that of other MSA
algorithms for high-dimensional data stream.
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4.5 Total Least Squares Problem Application

The problem of linear parameter estimation gives rise to an overdetermined set of
linear equations Ax ~ b where A is the data matrix and b is the observation vector.
In the least squares (LS) approach, there is an underlying assumption that all errors
are confined to the observation vector. This assumption is often unrealistic: The
data matrix is not error-free because of sampling errors, human errors, modeling
errors, and instrumental errors. The method of total least squares (TLS) is a
technique devised to compensate for data errors, and a complete analysis of the TLS
problem can be seen [44-48].

The TLS problem can be solved by using direct and iterative methods. The direct
methods compute directly the SVD. Since the number of multiplications in SVD for
an N x N matrix is 6N°, the application of TLS problems is very limited in practice.
Among the iterative methods, which are good for slow-changing set of equations,
the most important are the inverse iteration, the ordinary and inverse Chebyshev
iteration, the Rayleigh quotient iteration, and the Lanczos methods (for a survey,
see [48]). The neural approaches can be considered iterative methods, and they have
lower computational complexity compared with other iterative methods, which
make them more suitable for real-time applications.

There are two neural ways of solving TLS problem: (1) One is a linear neuron
for MCA, which finds the MC of the correlation matrix of the input data by
minimizing the Rayleigh quotient with a gradient learning, where a subsequent
normalization is needed. (2) Another is linear neural network acting directly on a
hyperplane (TLS NN). The existing TLS NNs are the Hopfield-like neural network
of Luo [7, 49]. The principal limit of it is that it is linked to the dimensions of the
data matrix and cannot be used without structural changes for other TLS problems.
Others are the linear neurons [30, 50-52], which is correct enough for small gains
and, especially, for weight norms much smaller than one. The TLS EXIN linear
neuron [53] is a new neural approach, which is superior in performance.

The objective of this section is to develop more satisfactory self-stabilizing TLS
neural approach, which is applied to the parameter estimation of an adaptive FIR filters
for system identification in the presence of additive noise in both input and output signals.

4.5.1 A Novel Neural Algorithm for Total Least
Squares Filtering

In this section, we present a neural approach for solving the TLS problem. It is
based on a linear neuron with a self-stabilizing neural algorithm, capable of
resolving the TLS problem present in the parameter estimation of an adaptive FIR
filters for system identification, where noisy errors affect not only the observation
vector but also the data matrix. The learning rule is analyzed mathematically, and
the condition to guarantee the stability of algorithm is obtained. The computer
simulations are given to illustrate the effectiveness of this neural approach.
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(1) TLS linear neuron with a self-stabilizing algorithm

The TLS method approximately solves a set of m linear equations in n x 1
unknowns x represented in matrix form by

Ax ~ b, (4.54)

where A is the data matrix composed of elements a; and columns a;, and b is the
observation vector composed of elements b; and m > n (overdetermined system).
The TLS solution X115 can be obtained as [5]

Xs ) Vit
(¥ - Yeor s

)
Vn41n+1

where V| is the right singular vector associated with the smallest singular of
C = [AJb], and v,, 1 1, +1 is the last component of V,, ;1. Vector V,, ;| is equivalent
to the eigenvector associated with the smallest eigenvalue of the autocorrelation
matrix of the input data. Thus, an adaptive algorithm for extracting eigenvector
associated with the smallest eigenvalue of the autocorrelation matrix of the input
data can be used to solve the TLS problem.

Consider the adaptive filter when the input and output observation data are both
corrupted by noise, and denote the input and output observation series at k as
{[E(k),d(k)]|k = 1,2,...,N}, x(k) = x(k) +ni(k), d(k) =d(k)+n,(k), where
n;(k) and n,(k) are additive noises. Denote the filter weight vector as H(k) =
[y h,,]T and the input vector at k as X (k). Then, the filter output at k can be
written as y(k) = X7 (k)H (k) and the output error is £(k) = y(k) — d(k). Denote the
augmented input vector as Z(k) = [X"(k),d(k)]" and the augmented weighted
vector as W(k) = [H"(k),—1]". Then, the output error can be written as
e(k) = ZT (k)W (k).

Let the Rayleigh quotient of the augmented weighted vector W(k) be the TLS
cost function. An adaptive algorithm can then be obtained as follows:

Z (k)| W (k)ll3— (k)W (k)

W(k+1) = W(k) — a(k)e(k) W

, (4.56)

where a(k) is the learning rate, which controls the stability and rate of convergence
of the algorithm. Equation (4.56) is the MCA EXIN algorithm for the TLS problem
[4]. In [4] and [22], Algorithm (4.56) is analyzed in detail and it is concluded that
the above algorithm is the best TLS neuron in terms of stability (no finite time
divergence), speed, and accuracy. However, the MCA or TLS EXIN algorithm are
divergent and do not have self-stabilization property [43].
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In order to avoid the possible divergence and preserve the good performance as
much as possible, based on the MCA EXIN algorithm and by adding a restriction
on norm of weight, we proposed a modified algorithm as follows:

_ k)
W ()]

() +1 — WK

W(k+1) = W(k) ||W(k)||2

W(k)] .

(4.57)

[S(k)l(k) -

From (4.57), the temporal derivative D(k) of the squared weight vector norm is:

1AW () W(r)
T2 dr

_ _m E(k) — (k) +1 — ||W(t>|\2>}

D(k) = W (k) AW (k) = W (k)(W(k+1) — W(k))

>0 W<l
L W@ ={ <0 W) >1
—0 W) =1.

-t
W)

Clearly, the sign of the temporal derivative D(k) is independent of &(k), but
depends only on the sign of (1 — |W(k) ||2) This means that Algorithm (4.57) has

self-stabilizing property. Thus, the norm of weight vector may stably approach the
equilibrium point 1, as k — oo. This also renders our algorithm to have satisfactory
one-tending property, and it outperforms OJA, OJAn, OJA+, and other existing
TLS algorithms. The presented TLS neuron is a linear unit with » inputs, n weights,
one output, and one training error, and the presented algorithm is a modified
gradient algorithm, which can be used for the NN weights estimation where the
input and output observation data are both corrupted by noise.

(2) Performance analysis via a DCT method

According to the stochastic approximation theory [40, 41], it can be shown that if
some conditions are satisfied [4], Eq. (4.57) can be effectively represented by
Eq. (4.58), i.e., their asymptotic paths are close with a large probability, and
eventually, the solution of Eq. (4.57) tends with probability one to the uniformly
asymptotically stable solution of the ODE.

WO 1 e - <WT<r)RW<|riV +($”; IW2(0)II°)

R TATE W()|. (4.58)

From a computational point of view, the most important conditions are as
follows:

(1) Z(¢) is zero mean, stationary, and bounded with probability one;
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(2) a(z) is a decreasing sequence of positive scalars;
3 >, o) = oo;
4) >, o (t) <oo for some p;
(5) Do sup((1/a(t)) — (1/a(z = 1))] <oc.
The asymptotic property of (4.58) can be ensured by the following theorem.

Theorem 4.6 Let R be a positive semi-definite matrix, 1, and V,, be respectively its
smallest eigenvalue and associated normalized eigenvector with nonzero last
component. If the initial weight vector W(0) satisfies WY (0)V, # 0 and J, is
single, then lim,_,., W(t) = £V, holds.

The proof of Theorem 4.6 is similar to that of Theorem 4.1 in [54]. For details,
refer to [54]. Only the difference is given below.

From a series of consequence, we have

:fn(t)vn- (459)

0 = | S0V

Equation (4.59) shows that W(z) tends to the direction of the eigenvector
associated with the smallest eigenvalue of the autocorrelation matrix of the input
data. From (4.59), it follows that

lim W) = fim [V, = lim [,(0)]. (4.60)

Furthermore, from (4.60), it holds that

B ||W?t)||4 [IWEIPWTORW () — (W ORW () + 1~ [ W) )W) ]
__ IIW?t)IIZ [WT(I)RW(t) — (WT(ORW() +1 — HW(t)||2)] -2 {W - 1}

>0 W) <1
= <0 ||W(@)| >1
=0 W =1
(4.61)

Because the initial value of the squared modulus is larger than or equal to one in
the TLS problem, and from (4.61), we have lim|W(¢)|| = 1. Thus, we have
1—00
lim f,(r) = £1, which gives lim W(¢) = £V,,.
1—00 1—00
This completes the proof.

(3) Divergence analysis

In [4] and [22], Cirrincione et al. found a sudden divergence for Luo algorithm.
Sudden divergence is very adverse for practical applications. Does our proposed
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algorithm have a sudden divergence? In this section, we will study Algorithm (4.57)
in detail.

In [4], Corollary 19 gave simple convergence behavior for the solutions of a
gradient flow as follows. The solutions of a gradient flow have a particularly simple
convergence behavior; i.e., there are no periodic solutions, strange attractors, or any
chaotic behaviors. Based on the above corollary, dynamic behaviors of the weight
vector for Luo, OJAn, and MCA EXIN are described, and MCA divergences for
Luo, OJAn, MCA EXIN, OJA, and OJA+ learning laws are proved. Following the
above analysis method, the divergence analysis of the proposed algorithm is per-
formed as follows.

Averaging the behavior of the weight vector after the first critical point has been
reached (7> 1y), it follows that [4]:

W(t) = ||[W()||Va, VI>19 (4.62)

where V,, is the unit eigenvector associated with the smallest eigenvalue of R.

From (4.61), we can obtain that d||W(7)||>/d = 2(1/||W()||*~1). Assuming
that the MC direction has been approached, the equation can be approximated as

%:26—1), (4.63)

where p = ||W()||>. Define the time instant at which the MC direction is approa-
ched as 7y and the corresponding value of the squared weight modulus as py. The
solution of (4.11) is given by

{p+ Injp — 1] = po + Inlpo — 1| = 2(r = 10)  if py # 1 (4.64)
p:po 1fp0:1'

We have simulated the asymptotic behavior of (4.63) for different initial squared
weight modulus p, which is analogous with Fig. 4.1 and is not drawn here. Thus,
the norm of the weight vector of proposed algorithm tends to one and the sudden
divergence does not happen in a finite time.

(4) The temporal behavior analysis via a SDT method

The above analysis is based on a fundamental theorem of stochastic approximation
theory. The obtained results are then approximations on some condition. The
purpose of this section is to analyze the temporal behavior of our TLS neurons and
the relation between the dynamic stability and learning rate, by using mainly the
stochastic discrete time system following the approach in [41, 22, 54].
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Define
) (W™ (k+ 1)Z (k)| (W (k)Z (k)|
r(k) = , r(k) = , 4.65
®) W (k+1)])? ® W (k)||? (463)
o) =" 20, p = WP, 1 =2 (0). (4.66)

The two scalars ' and r represent, respectively, the squared perpendicular dis-
tance from the input Z(k) to the data fitting hyperplane whose normal is given by
the weight and passes through the origin, after and before the weight increment.
Recalling the definition of MC, we should have ' < r. If this inequality is not valid,
it means that the learning law increases the estimation error due to disturbances
caused by noisy data. When this disturbance is too large, it will make W (k) deviate
drastically from the normal learning, which may result in divergence or fluctuations
(implying an increased learning time).

Next, we will prove a theorem which provides the stability condition for
Algorithm (4.57).

Theorem 4.7 Under definitions (4.65)—(4.66), if

2p* 2 oyl —
<a(k)<p||Z(k)H2—2(u+l—p) ApllZ(K)|"=2(u+1-p) >0,

then ¥ <r, which implies algorithm (4.57) is stable.
Proof From Eq. (4.57), we have

— e(k) — o(k) 2, _ _
W+ 10209 = o(6) = s [ IW IO I~ 0+ 1 = W)
o(k) 2 2 2
— &(k) <1 ~ o IV IZEI = 6) + 1= Wk >}>
(4.67)

From (4.57), it holds that

[W(k+1)|> = W (k+ 1)W(k+ 1)

_2a(k)
=W WP
o2 (k)

WOT (H ) * R | Z(k) |2 =2 W (k) |2 (k) (2 (k) + 1 — |[W(R)[|*)

+ (k) +1 - HW(k)IIZ)ZHW(k)HZ)-

T (IWERIE (k) = (k) + 1= [WER)DIWE)IP)

(4.68)
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Therefore,

p() = r(k) _ (W' (k+ DZ(K)* | W(K)|)
r(k) Wk (e(k))?

1= 2w P2k P~ 2(k)+1—||W(k)H2)])2
( war M i

) ( . ) 28

L= twor '~ war) + weor £
_ P—a)ey
p? = 2a(k)(p — 1) + o2 (k)pE’

(4.69)

where g = (1/p?)(|Z(k)|°’p — (u+1—p)) and E=(1/p*)(upl|lZ(k)|*~
2u(u+1—p)+(u+1-p)).

Then, p(a) <1 (dynamic stability) if and only if

P = al0) <p* = 22(0)(p — 1)+ 0
—p) 4 (u+1—-p)). (4.70)

(upl|Z (k) ||*~2u(u + 1

Notice that u/p = ||Z(k)|*cos? Ozw, where Oz is the angle between the aug-
mented input vector and the augmented weight vector.
From (4.70), it holds that

(k)| Z(K)|*p sin® Ozw (cu(k) (2u+2 = 2p — p|Z(K)|*) +2p7) > 0. (4.71)

The dynamic stability condition is then

2

2p 2
<a(k) < A PlZR)|P=2(u+1—-p) >0  (4.72)
PlIZ(K)|*~2(u+1 — p)
The second condition implies the absence of the negative instability. It can be
rewritten as

1 1 p-1
2
cos? O < 5+ —————. (4.73)
2z p

In reality, the second condition is included in the first one. For the case
0<oyp <y<1, it holds

1 1 —1
cos? Ozw < = + 2p — P 5
2 Jzm))= p AyllZE)|

P SR S
IZR)I* 1Z(K)]1* 7

(4.74)
<

)

| =
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which is more restrictive than (4.73). Figure 4.8 shows this condition, where
g = arccos V1. From (4.74), we can see that the decrease of y increases the sta-
bility and the angle Ozw is no relevant to the change in weight vector modulus.
From Fig. 4.8, it is apparent that in the transient (in general low 0z ), there are less
fluctuations and this is beneficial to the stability. From (4.74), it can be concluded
that the angle Ozw between the weight vector W(k) and the input vector Z(k) is
equal to or smaller than 45° when the proposed algorithm is convergent.
This completes the proof.

4.5.2 Computer Simulations

In this section, we provide simulation results to illustrate the convergence and
stability of Algorithm (4.57) in a total least squares filtering. Since the OJAm [9]
and MCA EXIN algorithms [4] have better performance than other TLS algorithms,
we compare the performance of the proposed TLS algorithm of (4.57) with these
algorithms in the following simulations.

The additive noise is independent zero-mean white noise. The input signal is
zero-mean white Gaussian noise with variance 1. In the simulation, the above
algorithms are used for a linear system identification problem. The linear system is
given by H = [—0.3, —0.9, 0.8, —0.7, 0.6, 0.2, —0.5, 1.0, —0.7, 0.9, —0.4]", and its
normalized one is H = H/||H||. Their convergence is compared under different
noise environment and by using different learning factors. Define the learning error

— o~ 2 ~
of the weight vector as: Error(k) = 1010g<HH - H(k)H ), where H (k) is the

estimated weight vector. Figure 4.9 shows the learning curves for SNR=10dB with
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Fig. 4.9 Learning curve at u = 0.1, 10 dB

learning factors equaling to 0.1. All the learning curves below are obtained by
averaging over 30 independent experiments. Assume that the SNR of the input
signal is equal to the rate of the output signal.

These learning curves indicate that for FIR filters with larger number of coef-
ficients, Algorithm (4.57) has excellent convergence and stable accuracy, and the
norm of weight of the algorithm converges to one. From Fig. 4.9(a), we can see that
the convergence and stable accuracy are obviously better than other two algorithms
when a larger learning factor is used or the SNR is smaller in the linear system.
From Fig. 4.9(b), we can see that the norm of the weight of algorithm (4.57)
converges to one, and the norms of the weight of the other algorithms are divergent.
The above learning curves indicate that Algorithm (4.57) is good for larger learning
factor or under higher noise environments.

In this section, a TLS neuron with a self-stabilizing algorithm has been presented
for the parameter estimation of adaptive FIR filters for system identification where
noisy errors affect not only the observation vector but also the data matrix.
Compared with other TLS algorithms, the neural approach is self-stabilizing and
considerably outperforms the existing TLS methods when a larger learning factor is
used or the signal-to-noise rate (SNR) is lower.

4.6 Summary

In this chapter, several neural network-based MCA algorithms, e.g., extracting the
first minor component analysis algorithm, Oja’s minor subspace analysis algorithm,
the self-stabilizing MCA algorithm, the MCA EXIN algorithm, and orthogonal Oja
algorithm, have been reviewed. Three types of divergence for MCA algorithms, i.e.,
the sudden divergence, the instability divergence, and the numerical divergence,
have been analyzed and discussed. Finally, two algorithms we proposed, i.e., a
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novel self-stabilizing MCA linear neuron and a novel neural algorithm for TLS
filtering, are presented, and their performances, e.g., convergence and self-
stabilizing, are mathematically proved and numerically verified.
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Chapter 5
Dual Purpose for Principal and Minor
Component Analysis

5.1 Introduction

The PS is a subspace spanned by all eigenvectors associated with the principal
eigenvalues of the autocorrelation matrix of a high-dimensional vector sequence,
and the subspace spanned by all eigenvectors associated with the minor eigenvalues
is called the MS. PSA is a powerful technique in many information processing
fields, e.g., feature extraction and data compression. Whereas in many real-time
signal processing applications, e.g., the adaptive direction-of-arrival (DOA)
estimation, the adaptive solution of a total least squares problem in adaptive signal
processing, and curve and surface fitting, minor subspace tracking is a primary
requirement. Neural networks can be used to handle PSA and MSA, which possess
many obvious advantages, e.g., lower computational complexity compared with the
traditional algebraic approaches [1]. Hence, it is interesting to find some learning
algorithms with lower computational complexity for adaptive signal processing
applications.

In the past decades, many neural network learning algorithms have been pro-
posed to extract PS [2-9] or MS [1, 10-18]. In the class of PS tracking, lots of
learning algorithms, e.g., Oja’s subspace algorithm [19], the symmetric error cor-
rection algorithm [20], and the symmetric back propagation algorithm [21] were
proposed based on some heuristic reasoning [22]. Afterward, some information
criteria were proposed, and the corresponding algorithms, e.g., LMSER algorithm
[9], the projection approximation subspace tracking (PAST) algorithm [23], the
conjugate gradient method [24], the Gauss-Newton method [25], and the novel
information criterion (NIC) algorithm were developed [22]. These gradient-type
algorithms are claimed to be globally convergent. In the class of MS tracking, many
algorithms [10-18] have been proposed on the basis of feedforward neural network
models. Recently, an information criterion was proposed in [1], and the corre-
sponding globally convergent gradient algorithm, called OJAm, was developed.
The OJAm provided an efficient online learning for tracking the MS.
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However, the above algorithms are either for PS tracking or for MS tracking. Are
there such algorithms as dual-purpose subspace tracking algorithm, which is cap-
able of both PS and MS tracking by simply switching the sign in the same learning
rule? The objective of this chapter is to introduce such a dual-purpose subspace
tracking algorithm. There are several reasons to develop dual-purpose algorithms.
First, in many information processing systems, it is necessary to extract the main
features inherent in complex, high-dimensional input data streams, and PSA is a
technique to extract principal components simultaneously. On the other hand, the
subspace spanned by the eigenvectors associated with the smallest eigenvalues is
the minor subspace, which, in signal processing, represents the noise subspace and
is also an important topic to be investigated [26]. Second, the only difference
between PCA/PSA and MCA/MSA rule in the dual-purpose algorithm is the sign of
the right side of the iterative equation. This simplicity is of practical significance in
the implementation of algorithms, and it can reduce the complexity and cost of
hardware realization [27-29]. Third, it is found that many PCA/PSA algorithms do
not have the corresponding MCA/MSA algorithms dual to each other [27]. It is of
significance to elucidate the fundamental reason for this. Moreover, by the stability
analysis of the dual-purpose algorithms, we can better understand the dynamics of
some PCA/PSA or MCA/MSA algorithms and may find some valuable phenomena.
In summary, we think it is necessary to develop dual-purpose learning algorithms,
which are of significance in both practical applications and theory.

In fact, many pioneering works have been done by Chen et al. [27, 26, 30, 31] in
this research area. In [26, 31], a conversion mechanism between PSA/PCA and
MSA/MCA was given, and it is shown that every PCA algorithm accompanies an
MCA algorithm and vice versa. However, by the conversion mechanism, the
resultant dual-purpose algorithms have different structures. In [30], a unified
algorithm capable of both PCA and MCA by simply switching the sign of the same
learning rule was proposed. However, if the discrete-time update analysis was used,
the MCA rule of unified algorithm in [30] would suffer from a marginal instability
[27]. In [27], the unified algorithms in [30] were modified by adding a penalty term,
and then a unified stabilization approach for principal and minor component
extraction algorithms was proposed and the dynamical behaviors of several
PCA/MCA algorithms were investigated in detail. [27] laid sound theoretical
foundations for dual-purpose algorithm research. Afterward, a dual-purpose prin-
cipal and minor component flow was proposed in [32]. Recently, several
self-normalizing dual systems for minor and principal component extraction were
also proposed, and their stability was widely analyzed [28]. Through our analysis,
we can see that most self-normalizing dual systems in [28] can be viewed as
generalizations of the unified stabilization approach.

However, of these dual systems for PS and MS tracking, most were developed
on some heuristic reasoning. There are few algorithms that possess a unified
information criterion (UIC) formulation and a globally convergent gradient update
equation derived from the UIC. It is well known that a properly chosen criterion is
very important for developing any learning algorithm [22]. Different from the
derivation of the above dual-purpose algorithms in [26-31], we first proposed a
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novel UIC formulation, and then based on this information criterion we derived our
dual-purpose learning algorithm for adaptively tracking PS and MS. Our
dual-purpose algorithms are exact subspace gradient flow and both are
self-stabilizing. Compared with some existing unified algorithms, our dual-purpose
algorithms have faster convergence for the weight matrix, and the computational
complexity do not increase, which will be seen in the latter simulations. In this
chapter, the landscape of the UIC formulation, self-stabilizing property, and the
global asymptotical convergence of our dual-purpose subspace gradient flow will
be analyzed in detail. These theoretical results will lay a solid foundation for the
applications of this algorithm.

5.2 Review of Neural Network-Based Dual-Purpose
Methods

The dual-purpose principal and minor subspace gradient flow can be used to track
PS. If altered simply by the sign, it can also serve as a MS tracker. This is of
practical significance in the implementation of algorithms.

5.2.1 Chen’s Unified Stabilization Approach

In many information processing systems, it is necessary to extract the main features
or eliminate the noise inherent in complex, high-dimensional input data streams.
Two of the most general purpose feature extraction techniques are PCA and MCA.
However, there appeared two intriguing puzzles in PCA and MCA. The first one is
why it is more difficult to find p principal components (eigenvectors) than to find
the principal subspace. Based on the subspace method, Xu used D =
diag(d2, .. .,d;),dl >dy > --- >d, >0 to solve the first puzzle. The second
puzzle is concerned with MCA algorithms. Since PCA algorithms use the gradient
method, the corresponding MCA algorithms seem to be derived from the same idea
by just changing the cost function. This idea suggests to change the sign of the
right-hand side of the PCA algorithms. However, this idea does not work in general.
Most MCA algorithms derived from changing the sign of its PCA algorithm suffer
from marginal instability in discrete-time updating.

In [27], Chen proposed a unified stabilization approach for principal and minor
component extraction algorithms as follows:

W(t) = {CWE)W () )W(1) — W ()W () CW (1)} + W(t){E — W' (1)W(z)},
(5.1)
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W(t) = —{CW(OW ()W(t) — W ()W()CW (1)} + W(t){E — W ()W (t) },
(5.2)

where W(0) = U(0)D(0)V(0)" is the singular value decomposition of the initial
matrix W(0) and E = WT(0)W(0) = V(0)D(0)VT(0). The first term is to extract
principal or minor components, and the second term is used to recover deviation
WT(£)W(z) from E. The rigorous stability analysis shows that Chen’s dual-purpose
algorithms to principal and minor component extraction are both self-stabilizing
[27].

5.2.2 Hasan’s Self-normalizing Dual Systems

As indicated in [32], the task of developing an MCA flow is perceived as being
more complicated than that for a PCA flow. The Hasan’s work in [28] shows that
perhaps there are as many MCA/MSA dynamical flows as there are PCA/PSA
flows. A common method for converting a PCA/PSA flow into an MCA/MSA one
is to change the sign of the given matrix, or by using the inverse of the original
matrix [28, 32]. However, inverting a large matrix is a costly task, and changing the
sign of the original matrix does not always generate a stable system unless frequent
orthonormalization is employed during the numerical implementation. In [28],
Hasan proposed a framework to generate classes of stable dynamic systems that can
be easily converted from PCA flow into MCA flow and vice versa.

First, based on the Rayleigh quotient tr{ (WTC W) (WTW)A} and the inverse
Rayleigh quotient tr{ (W'w) (WTCW)71 }, the following two systems can be

obtained
W =WW'CW — CWW'™W, (5.3)
W =CWW'W — ww'cw. (5.4)

These two systems both appear in the numerator of the gradient of the Rayleigh
and the inverse Rayleigh quotients. For (5.3) and (5.4), the following theorem
holds.

Theorem 5.1 Systems (5.3) and (5.4) are stable and if W(t) is a solution of either
systems for t >0, then W(t)"W(z) = W(0)"W(0) for any t> 0.

Proof To examine the critical points of the Rayleigh quotient and the inverse
Rayleigh quotient for the simple case where W € R™', let A be symmetric and
W be one-dimensional. System (5.3) can be rewritten as
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. wTw 2
W=V wicw)’, 5.5

and system (5.4) can be rewritten as

: wicw 2
W=-V wiw)". 5.6
o (S ) VW) (56
This ~ means  that ~ WW'CW — CWW'W = Vy (VVVVCV@ (WTew)’=

wrw
tems since (WTCW)* and (WTW)?* are positive definite.

To understand the behavior of the Rayleigh quotient along the trajectory of (5.3)
and (5.4), let f(W) = LW T = C, Then, f = Vi (f(W))'W = —Vy (f(W))"
Vw(f(W)) (WTCW)2 < 0. Consequently, f(W(t)) is a decreasing function of ¢ > 0.
Furthermore, since it is bounded from below, lim,_... f(W()) exists. Also, note that
V(W) = W'W remains constant along the trajectory of system (5.3), and the
function V = WTCW is decreasing since V = (WTCW)Z—WTCZWWTW<O. This
implies that W' (£)CW(r) < W CW, and W' (1)W(r) < W W, for 1> 0.

This completes the proof [28].

In the following, several generalizations of systems (5.3) and (5.4) are provided.

—Vw (WTCW) (WTW)z. Thus, both systems (5.3) and (5.4) are gradient-like sys-

Theorem 5.2 Consider the dynamic systems
W = WK(W) — CWWTW, (5.7)
W =CWW'W — WK(W), (5.8)

where K(W) : R"™P — RP*P p<n is a continuously differentiable function. If
K+ K" = WICW + WIC™W + o(I — W'W)B(W), where >0 and B(W)+
B(W)T is positive definite, then systems (5.7) and (5.8) are stable.

Proof By considering a Lyapunov function of the form V(W)= (1/4)tr
((WTW -1 )2> , it can be shown that the time derivative of V along the trajectory
W(z) of system (5.7) is

v =u{(WW 1)K - WICw)wiw}
- %“{(WTW —D)(K"+K - WICW — WCTW)WW)
= —;—.:tr{(WTW _1)2(B(W) +B(W)T)} <o.

Since V(W) — oo as ||W|| — oo, Theorem 5.2 guarantees that system (5.7) is
stable. Similarly, system (5.8) is stable.
This completes the proof [28].
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Special Case: Based on the above theorem, several variations of (5.3) and (5.4)
may be derived. For example, assume that in Theorem 5.2, let

K — WICW = aB(W)(I — W'W), where B(W) + B(W)" is positive definite, and
o > 0. Then, systems (5.7) and (5.8) are simplified to
W =WW'CW — CWW'W — aWB(W)(W'W —1I), (5.9)
W =CWW'W — WW'CW — aWB(W)(W'W —1I). (5.10)
In particular, when B(W) = I, the following MSA/PSA systems hold:
W =WWICW — CWW'W — oW (W'W — 1), (5.9)
W =CWW'W — WWICW — oW (W'W —1I). (5.10)

When C is symmetric, other variations follow by incorporating the term
—aC*W(W'W —1) into systems (5.3) and (5.4):

W =L{WW'CW — CWW'W} — «C*W (W'W 1), (5.11)
where k is an integer and o > 0. Here, the choices of the + and — signs yield MSA
and PSA systems, respectively. If the — sign is chosen and o« = k = 1, it follows
from (5.11) that

W =CW - ww'cw, (5.12)

which is one form of Oja’s subspace system. When o = k = 1, the system (5.11)
with the + sign reduces to

W =WW'CW — CW(2W'W —1). (5.13)
This MSA system is known in the literature and was analyzed in [17].
To convert MSA/PSA systems into MCA/PCA learning rules, a diagonal matrix
D may be incorporated in the above systems. For example, if 7 in system (5.11) is
replaced by D, the following systems can be obtained
W =L£{WWT'CW — CWW'W} — aC*W(W'W — D). (5.14)
If « = k =1, the two systems in (5.14) are simplified to

W =CWD — WW'cw, (5.15)

W = WWTCW — CW(2W'W — D). (5.16)
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System (5.15) is sometimes called Xu’s weighted PCA rule [9]. Also, system
(5.16) is an MCA version of the minor subspace system (5.13). For other more
dual-purpose PCA/MCA systems derived using logarithmic cost functions, see
[28]. In [28], the PCA/PSA and MCA/MSA learning differential equations of the
previous sections may be modified to obtain PCA/PSA and MCA/MSA learning
differential equations for the generalized eigenvalue problem involving two
matrices A and B, where B is positive definite and AT = A.

5.2.3 Peng’s Unified Learning Algorithm to Extract
Principal and Minor Components

In [29], Peng proposed a unified PCA and MCA algorithms as follows:
wk+1)=wk)
£ 5(095(0) - P Ewin) +

wox (k)xT (k)wo

T
Wy

[ @I=1] w0}
(5.17)

wWo

where # > 0 is a constant learning rate, w is an n-dimensional randomly selected
nonzero vector. Here, the choices of the + and — signs yield PCA and MCA
algorithms, respectively.

In order to find a sufficient condition to guarantee the convergence of (5.17),
Peng analyzed the dynamics of (5.17) via the DDT approach. A DDT system of
(5.17) is be given by

T
woRw

T
Wy

wk+1)=wk)+ n{Rw(k) —wT (k)Rw (k)w (k) + [||w(k)||2—l}w(k)},

(5.18)

wo

where R = E[x(k)xT(k)] is the correlation matrix of x(k). By denoting
U= (ngwo)/(wgwo), (5.18) can be simplified to

w(k+1) = w(k) +nCw(k) — nw" (k)Cw(k)w(k) (5.19)
where C = £(R — ) and I is an n X n unitary matrix. In [29], the dynamics of

system (5.19) is analyzed, and some sufficient conditions to guarantee its conver-
gence were obtained.
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5.2.4 Manton’s Dual-Purpose Principal and Minor
Component Flow

It is known that principal component flows are flows converging to the eigenvectors
associated with the largest eigenvalues of a given symmetric matrix, and minor
component flows converge to the eigenvectors associated with the smallest
eigenvalues. Traditional flows require the matrix to be positive definite. Moreover,
finding well-behaved minor component flows appeared to be harder and unrelated
to the principal component case. Manton derived a flow which can be used to
extract either the principal or the minor components and which does not require the
matrix to be positive definite. The flow is shown to be a generalization of the Oja—
Brockett flow.
In [32], Manton used the following cost function:

F(W) :%tr{CWNWT}+ %uHN—WTWHZ, (5.20)

where the following assumptions are made, i.e., (1) scalar y € R is strictly positive,
matrix C € ™" is symmetric, and matrix N € #¥*? is diagonal with distinct
positive eigenvalues.

Then, the critical points of (5.20) were derived. The local stability analysis of
these critical points was conducted, and local minima were established. It was
proved that the essentially unique local minimum of the cost function (5.20) cor-
responds to the minor components of C. It is therefore natural to consider the
corresponding gradient flow. The gradient flow can be written as

W =—CWN+uW(N-W'W), (5.21)

which is the minor component flow. For the detailed theorem and its proof, see [32].
For convenience, the Oja—Brockett flow is restated here but using different
variables,

Z = CZN — INZ"CZ, Z € R (5.22)

where C € " and N € RV are positive definite symmetric matrices with dis-
tinct eigenvalues. The columns of Z converge to the eigenvectors associated with
the p largest eigenvalues of C in an order determined by N [32].

Using the linear coordinate transformation W = AV2C'PZNY2, which is only
defined if both C and N are positive definite symmetric matrices, the Oja—Brockett

flow (5.22) becomes
W = (C— A)WN+/W(N - W'W), (5.23)

which is the minor component flow (5.21) with A = Al — C and p = /.
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Since the Oja—Brockett flow requires C and N to be positive definite and
symmetric, the transformation from the Oja—Brockett flow (5.22) to the minor
component flow (5.21) is always valid. However, the reverse transformation from
(5.21) to (5.22) is not always possible, meaning that the minor component flow
(5.21) is a strict generalization of the Oja—Brockett flow. The reverse of A =
M—Cand yu=21is C = —A and A = u. Since C must be positive definite for
W = /"'2C'?ZN'? to be defined (and for (5.22) to be stable), the reverse
transformation is only valid if p is larger than the largest eigenvalue of A. Since
(5.21) is a generalization of (5.22), it is natural to consider using (5.21) with
A = Al — C to find the principal components of C. Since A is not required to be
positive definite in (5.21), the choice of 4 is relatively unimportant. Thus, Manton’s
dual-purpose principal and minor component flow can be rewritten as follows:

W = L£CWN +uW(N - W'W), (5.24)

where the choices of the + and — signs yield principal and minor component flow,
respectively.

5.3 A Novel Dual-Purpose Method for Principal
and Minor Subspace Tracking

In this section, a UIC will be introduced, and a dual-purpose principal and minor
subspace gradient flow will be derived based on this information criterion. In this
dual-purpose gradient flow, the weight matrix length is self-stabilizing. The
dual-purpose gradient flow can efficiently track an orthonormal basis of the PS or
MS.

5.3.1 Preliminaries

5.3.1.1 Definitions and Properties

Definition 5.1 For a r x r matrix B, its EVD is represented as B = PV P!, where
@ denotes a r xr matrix formed by all its eigenvectors, and ¥ =
diag(Z1,...,4,) > 0 is a diagonal matrix formed by all its eigenvalues.

Property 5.1 IfA is an m X n matrix and B is an n X m matrix, then it holds that
tr(AB) = tr(BA).
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5.3.1.2 Conventional Formulation for PSA or MSA

Suppose that the vector sequence x;,k = 1,2, ... is a stationary stochastic process
with zero mean and covariance matrix R = E[xx}| € RYV. Let 4; and v;(i =
1,2,...,N) denote the eigenvalues and the associated orthonormal eigenvectors of
R, respectively. We can arrange the orthonormal eigenvectors vy, v;, ..., vy in such
a way that the associated eigenvalues are in a nondecreasing order:
0< 4 <A < --- < Ay. The eigenvalue decomposition (EVD) of R is represented
as R = 25\7:1 vyl = LAL", where A = diag(Ay,...,/y) and L = [vy,vs,...,vy].

For some applications in information processing fields, usually it is not neces-
sary to perform true PCA, and the PSA is sufficient to yield the optimal solution by
an arbitrary orthonormal basis spanning the principal subspace [22]. Similarly in
some applications, we require only to find the MS spanned by vy, v,,...,v,, where r
is the dimension of the MS [1]. Only for PS tracking or MS tracking, lots of
algorithms can be used. Here, our objective is to find such algorithms as
dual-purpose subspace tracking, which are capable of both PS and MS tracking by
simply switching the sign in the same learning rule and have also self-stabilizing
property in both PS and MS tracking.

Let W = [uj,uy,...,u,] € RV denote the weight matrix, where u; € RV*!
represents the ith column vector of W = L(,)Q and also represents the weight
vector of the ith neuron of a multiple-input—multiple-output (MIMO) linear neural
network, and r is the dimension of the subspace. The input—output relation of the
MIMO linear neural network is described by

¥ =W (5.25)

where y, is a low-dimensional representation of x;. By minimizing the MSE
between x; and its reconstruction or maximizing the variance of y, and using the
exact gradient descent rule, a few PS tracking algorithms [9, 33] have been derived.
The two frameworks mentioned above are in fact equivalent [22]. In [22], a novel
information criterion was proposed, and a fast PS tracking algorithm was derived by
using the gradient method. Recently, a novel random gradient-based algorithm was
proposed for online tracking the MS, and a corresponding energy function was used
to analyze the globally asymptotical convergence [1]. However, our analysis
indicates that the above information criteria could not derive dual-purpose subspace
tracking algorithms by only changing the sign of the given matrix, which will be
analyzed briefly in what follows. For the convenience of analysis, here we only take
single component extraction algorithm into account.
In [9], by minimizing the MSE of reconstructing x; from y,, i.e.,

. 1
min {Jysse (W)} = 5 E{ v — Wy}

= % [tr(R) — trCW'RW — WRWW'W)], (5.26)
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Following the exact gradient descent rule to minimize Jysg(W), the well-known
LMSER algorithm for principal subspace analysis was derived as follows:

Wis1 = Wi+n(2R — RW,W; — W,W,R)W,. (5.27)

For one-dimensional case, (5.27) can be written as wy,; = wi +1n(2R—
kawZ — wkaR)wk. From this equation, it is easy to obtain that:
Wi Wil 1+ 202w Rw; — 2w Rw,wiwy) 4+ dnwiRwi (1 — wiwy)
Wi Wy - wiwy a WiWg
>1 for wiwe<l
=¢ <1 for wiw>1
=1 for wiw,=1.

(5.28)

Obviously, it shows that the LMSER algorithm for principal component analysis
has self-stabilizing property, which means that the weight vector length is
self-stabilizing, i.e., moving toward unit length at each learning step [17]. If we
change the sign of matrix R in (5.26) and use the exact gradient descent rule, we can
obtain the LMSER algorithm for minor component analysis as follows:

wiir1 = wi — (2R — Rwiw; — wiw R)wy. (5.29)
From (5.29), it follows that:
Wi Wit - 202w Rwy — 2w Rwiwiwy) - dnwiRwi (1 — wiwy)
Wi W Wiwk wiwy

<l for wiwy<l1

for wiw; > 1
=1 for wiw,=1.

Q

|
\%

(5.30)

It is clear that the LMSER algorithm for minor component analysis does not
have self-stabilizing property. We can perform the above analyses on some algo-
rithms in [9, 1, 22, 33, 34], etc., and conclude that the dual-purpose self-stabilizing
algorithm for PCA and MCA cannot be derived from their objective functions by
only changing the sign of the given matrix.

Recently, considerable interest has been given to the construction and analysis of
dual systems for minor and principal component extraction (or subspace analysis)
[26-31, 35]. The above analysis has shown that an appropriately selected objective
function is the key in deriving dual-purpose self-stabilizing systems. In order to
obtain the desirable dual-purpose algorithm for PS and MS tracking, it is necessary
to develop more novel information criterion.
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5.3.2 A Novel Information Criterion and Its Landscape

5.3.2.1 A Novel Criterion for PSA and MSA

Given W € RY*" in the domain Q = {W|0<W'RW <oco, W'W # 0}, we present
a novel unified nonquadratic criterion (NQC) for PSA and MSA as follows:

Hl“i/n]NQc(W,R)

1 5 1 5 (5.31)
Inac(WR) = =zl (WRW) (W'W) ™ L+ S 1= (W'W))*},
where “+” is for MS tracking, “=" is for PS tracking, and I is Identity matrix. From
(5.31), we can see that Jyoc (W, R) has a lower bound and approaches infinity from
the above as W'W — co. Obviously, the gradient searching algorithm can be
derived based on the above unified NQC. This criterion is referred to as novel
because it is different from all existing PSA or MSA criteria. It is worth noting that
if we replace the Rayleigh quotient (WTRW) (WTW)_1 by (WTRW) in (5.31)
when “—” is used, then the objective function can be used to derive a few PCA
algorithms for one-dimensional case [25, 36]. However, following the analysis
method in Sect. 5.3.1.2, it can be easily seen that the objective function in [25, 36]
cannot derive dual-purpose self-stabilizing gradient learning algorithms by only
changing the sign of the given matrix. The landscape of this novel criterion is
depicted by the following four theorems. Since the matrix differential method will
be used extensively, interested readers may refer to [37] for more details.

5.3.2.2 Landscape of Nonquadratic Criteria

Given W € RV*" in the domain Q = {W\O< WIRW <o, WTW +# 0}, we analyze
the following NQC for tracking the MS:

min E1(W) = %tr{ (WRW) (W'W) "'} + %tr{ - wwh (532

The landscape of E1(W) is depicted by Theorems 5.3 and 5.4.

Theorem 5.3 W is a stationary point of E1(W) in the domain Q if and only if
W = L,Q, where L, € RN*" consist of the r eigenvectors of R, and Q is a r X r
orthogonal matrix.

If W is expanded by the eigenvector basis into W = L™W, then we can write the
NQC for the expanded coefficient matrix from (5.32) as
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min £1() = %tr{(WTAW) (W) ]+ %tr{ - Wl (5.3)

where W € RV*" is an expanded coefficient matrix, and A is a N x N diagonal
matrix given by diag(4,,...4y). Obviously, (5.33) represents an equivalent form of
(5.32). Thus, Theorem 5.3 is equivalent to the following Corollary 5.1. Therefore,
we will only provide the proof of Corollary 5.1.

Corollary 51 W is a stationary point of E1(W) in the domain Q=
{W|0<WTAW<OO, WTW +£ 0} if and only if W = P,Q, where P, is a N X r
permutation matrix in which each column has exactly one nonzero element equal to
1, and each row has, at most, one nonzero element, where N > r.

Proof The gradient of E1(W) with respect to W can be written as

VG ELW) = AW (W'W) ™ =W (W'W) WTAW + W[I — (WW)], (5.34)

where the notation Vy;, denotes OE1 /8W, so does for (5.35).
Given a point in {W\W = P,Q for any unitary orthonormal Q}, we have

VwEL(P,Q) = AP,Q(Q"P'P,Q)”' ~P,0(Q"P'P,0) "Q"PTAP,Q + P,Q[I — (Q"P'P,Q)]
= AP,Q — PTQQ"P'AP,Q.
(5.35)

Conversely, E1(W) at a stationary point should satisfy VE1(W) = 0, which
yields

~ -1 ~

{ AW (WIW) ™ W (WTW) "W AW+ W [T (WTW)]} =0, (536)

Premultiplying both sides of (5.36) by WT, we have

wW'w =1, (5.37)
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which implies that the columns of W € R¥*" are column-orthonormal at a sta-
tionary point of E I(W) From (5.36) and (5.37), it holds that

AW = W(WTAW) (5.38)
- _r T o . VT AT
Let W = [“1 ) .uN} , where u;(i = 1,...,N) is a row vector, and B = W' AW

that is a r X r symmetric positive definite matrix. Then, an alternative form of
(5.38) is

O'lil,:ﬂlB(lz 1,7N) (539)

Obviously, (5.39) shows the EVD for B. Since B is a r X r symmetric positive
definite matrix, it has only r orthonormal left row eigenvectors, which means that w
has only r orthonormal row vectors. Moreover, all the r nonzero row vectors in W
form an orthonormal matrix, which means that W can always be represented as
W =P,Q.

This completes the proof.

Theorem 5.3 establishes the property for all the stationary points of E1(W). The
next theorem will distinguish the global minimum point set attained by W spanning
the MS from the other stationary points that are saddle (unstable) points.

Theorem 5.4 In the domain Q, E1(W) has a global minimum that is achieved if
and only if W = L,yQ, where L, = [v1,v2,...,v,]. At the global minimum,
E1(W) = (1/2) >, /. All the other stationary points of W = L,Q(L, # L))
are saddle (unstable) points of EL(W).

Similarly, we can show that Theorem 5.4 is equivalent to the following
Corollary 5.2, and Corollary 5.2 is proved to indirectly prove Theorem 5.4.

Corollary 5.2 In the domain Q, E1(W) has a global minimum that is achieved if
and only if W = PQ, where P = (13 0 )TE RN’ and P is a r x r permutation
matrix. At the global minimum, we have EY(W) = (1/2)S°1_, 4. All the other
stationary points W = P.Q(P, # P) are saddle (unstable) points of E1(W), where
Q is a rxr orthogonal matrix.

Proof By computing E1(W) in the stationary point set for the domain
{W|WTAW > 0,W"W # 0}, we can directly verify that a global minimum of
E1(W) is achieved if and only if W € {PQ|QTAQ > 0}, where the first r row
vectors of the permutation matrix P contain all the nonzero elements of P. By
substituting the above W into the gradient of E1(W) with respect to W and per-

forming some algebraic operations, we can get the global minimum of E1(W) as
follows:
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1<~ .
:EZ;M' (5.40)

Moreover, we can determine whether a stationary point of E1(W) is saddle
(unstable) in such a way that within an infinitesimal neighborhood near the sta-
tionary point, there is a point W’ such that its value E1(W’) is less than E1(W).

Let P, # P. There exists, at least, a nonzero element in the row vectors from
r+ 1 to N for P,. Since P and P, are two permutation matrices, there exist certainly
two diagonal matrices 4 and A such that P'AP =P'PA and PTAP, = P,TP,.;I,

where A is a diagonal matrix diag(4;, .. .4;,) associated with P, and A, in which Ji

is an integer such that the permutation matrix P; has exactly the nonzero entry equal
to 1 in row j; and column i.
This yields

AP = A, (5.41)
P'AP, = A. (5.42)
Thus, it holds that
u(P AP) =" A, (5.43)
i=1
tr(PTAP,) ZA . (5.44)
If )Vjei(i =1,...,r) are rearranged in a nondecreasing order ;11 < /~12 <... < ;1,.,

then it follows that 4; < 4;(i =1,...,r — 1), and 1, <A, for P, # P. That is,
tr(P' AP) <tr(PTAP,). (5.45)

Since

EL(P,Q) = %tr{ (Q"PIAP,Q) (QTPEP,Q)’I} + %tr{l - (Q'PIP,0)}

1 1 (5.46)
=5u{(Q"PIAP,Q)} = Su{PAP,},
EIP)Q = %tr{ (QTFTAFQ) PR } " %tr{l B (QTFTFQ) } (5.47)

—_—

o
Lu{(are)) - yulrar)

[\
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Thus, (5.45) becomes
E1(P,Q) > E1(PQ), (5.48)

which means that the set {P,Q|QT;1Q > 0and P, # T’} is not a global minimum

point set.
Since P, # P, we can always select a column P;(1<i<r) from
P = [P,,...,P,], such that

PP, =0, (5.49)

Otherwise, P,=P. Moreover, we can always select a column P, _j(l <j<r) from
P, = [P,yl, .. .,P,.’,] such that

T p _
PTP=0, (5.50)

Otherwise, P,=P. Let P; have nonzero element only in row ji and P,; have
nonzero entry only in row j. Obviously,;<j; and Z;, > J5; otherwise, P,=P.
Define an orthonormal matrix as B = [P,_yl, e (Pri+eP) /N1 + 62, .. .7Pr,r] ,

where ¢ is a positive infinitesimal. Considering that P,; and P; have one nonzero
entry, it follows that

AB = |:/1]A~1Pr’1, ceey (Ajjprﬁi + /"le,gpi)/\/ 1+¢2,..., ij,Pr,r} . (551)
Considering (5.49), (5.50), and (5.51), we have
BTAB = diag [zjl oo () [(14E), ., H . (5.52)
Since P, is an N X r permutation matrix, we have

PTAP, = diag [/L] A ” (5.53)

G0
Then,
B"AB — P’ AP,

= diag [Ajl, - (/1;]_ +82/1;i)/(1 +&%),..., ’1};} — diag [/la con A

G170 if’..

A

Jr

— diag [o, 0, (=5 + 7)) (148),0,.. .,0]
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Since 4, > 7, BTAB — PT AP, is a negative definite matrix. Thus, we have

E1(BQ) = %tr{ (Q"B"4BQ) (QTBTBQ)’I} + %tr{l - (Q"B'BQ)}
1 ~
=3 w{B"AB} <E1(P,Q)

1 T
5 twr{P AP, }.

This means that {P,Q|QT;1Q > 0and P, # P} is a saddle (unstable) point set.

This completes the proof.

The analysis about the landscape of NQC for tracking the PS is similar to
Theorems 5.3 and 5.4. Here, we only give the resulting theorems, and the detailed
proofs are omitted.

Obviously, the NQC for tracking the PS can be written as

Min E2(W) = —%tr{(WTRW) (WTw)“} n %tr{ = (WTW)]Z}. (5.54)

The landscape of E2(W) is depicted by the following Theorems 5.5 and 5.6.

Theorem 5.5 W is a stationary point of E2(W) in the domain Q if and only if

W = L,Q, where L, € RN*" consist of the r eigenvectors of R, and Q is a r X r
orthogonal matrix.

Theorem 5.6 In the domain Q, E2(W) has a global minimum that is achieved if
and only if W= i(n>Q, where i(n) = [PN—rt1,VNor+2,---, VN At the global
minimum, E2(W) = —(1/2) EiALrH Ai. All the other stationary points of W =
L.Q(L, # L)) are saddle (unstable) points of E2(W).

5.3.3 Dual-Purpose Subspace Gradient Flow

5.3.3.1 Dual Purpose Gradient Flow

Suppose that the vector sequence x;,k = 1,2,... is a stationary stochastic process
with zero mean and covariance matrix R = E[xkxz] € RV*N | According to the
stochastic learning law, the weight matrix W changes in random directions and is
uncorrected with x. Here, we take Jnoc (W, R), which is the unified NQC for PSA
and MSA in (5.31), as the cost or energy function. Then, up to a constant, the
gradient flow of Jxoc(W,R) is given by
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= [RW() = W {W (WO} WIORWO [{WT W)}~ + W [1 - (W OW(0)}],
(5.55)

which is the average version of the continuous-time differential equation

=7 [x(z)xr(t)W(t) - W(t){WT(t)W(t)}71WT(t)x(t)xT(t)W(t)} {WT(t)W(z)}fl + W[ - {W'OW}],

(5.56)

which, after discretization, gives a nonlinear stochastic learning rule

Wiir = WeF vl = Wil WiWe "yl [ {WEW ™ awilt - {Wiw,}],
(5.57)

where 0 < <1 denotes the learning step size, and if “+” is used, then (5.57) is a
PSA algorithm, and if “—” is used, then (5.57) is a MSA algorithm. (5.25)
and (5.57) constitute our unified dual-purpose principal and minor subspace gra-
dient flow. The gradient flow (5.57) has a computational complexity of
3Nr? + (4/3)r 4+ 4Nr + r* flops per update, which is cheaper than 2N?r + O(Nr?)
for algorithm in [22], 12N%7 + O(Nr?) for algorithm in [24], and 8N?r + O(Nr?) for
algorithm in [25]. The operations involved in (5.57) are simple matrix addition,
multiplication, and inversion, which are easy for systolic array implementation [22].

5.3.3.2 Convergence Analysis

Under similar conditions to those defined in [38, 39], using the techniques of
stochastic approximation theory [38, 39], (5.55) can be regarded as the corre-
sponding averaging differential equation of algorithm (5.57). Next, we study the
convergence of (5.55) via the Lyapunov function theory.

For MS tracking algorithm, we can give the energy function associated with
(5.55) as follows:

1 - 1
EVW) = su{ (WRW)(W'W) "' L+ Su{ (1= (W'W))"}. (558)
The gradient of E1(W) with respect to W is given by

VE(W) = [RW — W{W'W}~ WRW | {W'W} ™+ [w{ww} " -w).
(5.59)
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Clearly, (5.55) for MS tracking is equivalent to the following:

dw

o = ~VEIW). (5.60)

Differentiating E1(W) along the solution of (5.55) for MS tracking algorithm

yields
dw' dw
dr dr’

dEL(W) dw"

E1l =
dr dr VEL(W)

(5.61)
Since algorithm (5.55) for MS tracking has the Lyapunov function E1(W) only
with a lower bound, the corresponding averaging equation converges to the com-
mon invariance set P = {W|VE1(W) = 0} from any initial value W(0).
Similarly, for PS tracking algorithm, we can give the energy function associated
with (5.55) as follows:

E2(W) = —%tr{ (W'RW) (W'W) ™" |+ %tr{ - ww'h  (562)

According to the property of Rayleigh quotient, we can see that when
|W]|| — 00,E2(W) — co. Thus, it can be shown that G. = {W;E2(W) <c} is
bounded for each c.

The gradient of E2(W) with respect to W is given by

VE2AW) = — [RW(W'W) ™ W (W'W) "WIRW| - W[I - (W'W)]

1

=— {RW - W(WTw)*IWTRW] (W'w) " —w[I— (W'W)].

(5.63)
Clearly, (5.55) for PS tracking is equivalent to the following:

dw
o = ~VEAW). (5.64)

Differentiating E2(W) along the solution of (5.55) for PS tracking algorithm
yields

dE2(W) dwT dwTaw
= VE2(W)= ———. .
dr dr VE2AW) dr dr (5.63)

Since algorithm (5.55) for PS tracking has the Lyapunov function E2(W) only
with a lower bound, the corresponding averaging equation converges to the com-
mon invariance set P = {W|VE2(W) = 0} from any initial value W(0).
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From the above analysis, we can conclude that the dual-purpose algorithm (5.57)
for tracking PS and MS can converge to a common invariance set from any initial
weight value.

5.3.3.3 Self-stability Property Analysis

Next, we will study the self-stability property of (5.57).

Theorem 5.7 If the learning factor p is small enough and the input vector is
bounded, then the state flows in the unified learning algorithm (5.57) for tracking
the MS and PS is bounded.

Proof Since the learning factor u is small enough and the input vector is bounded,
we have

— _ T
Wl = w[WE, Wai] = tr{{wk = el = WA WIWY ol {Wiw T w1 - {wiw] |
< { W = WA WEWL T [{WIWe} ™ w1 - {WIwi}] )
w[WiWe] + 2 a[{WWi b (1= {WiWi})]
= w[WIW = 2w {WIW Y e {WIWL}].

Q

(5.66)
Notice that in the previous formula the second-order terms associated with the

learning factor have been neglected. It holds that
2
IWes a2/ IWlp = 1= 20 [we{WIWL Y e (WEWLY] /Wil
w{Wiw, )’ w{M?
=1-2u- M‘l :1_2#'(r{ }_1)
tr{WiW,} w{M}
w{PYd 'doPP '} w{oP’o '}
=1-2u- —1)=1-2u- | — -1

w{o¥o'} w{oPeo 'l
B tr{dTIQY’Z} B tr{‘I’z}
AJ%(W_I)_I_Q“'(MW}_1>
o (2l gy (ZebE =)
“t-a (o) s (B

>1 for (<1,(i=1,2,...,r)
=1 for (=1,(i=1,2,...,7)
<1 for {>1,(i=1,2,...,r),

(5.67)
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where M = WEW;( is a r X r matrix, and its EVD is represented as M = dPP!,
where @ denotes a r x r matrix formed by all its eigenvectors and ¥ =
diag({y, ..., () > 0 is a diagonal matrix formed by all its eigenvalues. It is obvious
that the state flow in dual-purpose subspace tracking algorithm (5.57) approaches
one. This completes the proof.

Next, we will study the globally asymptotical convergence of the dual-purpose
algorithm (5.57) for tracking PS and MS following the approaches in [1].

5.3.4 Global Convergence Analysis

We now study the global convergence property of the dual-purpose algorithm by
considering the gradient rule (5.57). Under the conditions that x; is a stationary
process and the step size p is small enough, the discrete-time difference Eq. (5.57)
approximates the continuous-time ODE (5.55). By analyzing the global conver-
gence property of (5.55), we can establish the condition for the global convergence
of (5.57). In particular, we will answer the following questions based on the
Lyapunov function approach [31].

1. Is the dynamic system described by (5.55) able to globally converge to the
principal subspace solution when “+” sign is used? Or if “—” sign is used, is the
dynamic system (5.55) able to globally converge to the minor subspace
solution?

2. What is the domain of attraction around the equilibrium attained at the PS (or at
the MS), or equivalently, what is the initial condition to ensure the global
convergence?

These questions can be answered by the following theorem.

Theorem 5.8 Given the ODE(5.55) and an initial value W(0) € Q, then W(t)
globally asymptotically converges to a point in the set W = L,)Q as t — oo when
“+7 sign in (5.55) is used, where Ly, = [v1,v2,...,v,| and Q denotes a r x r
unitary orthogonal matrix; and if “—” sign in (5.55) is used, W(t) globally

asymptotically converges to a point in the set W:i(,,)Q as t — oo, where
L(n) = [VNfrJrla VN—r+2y-- '7VN]'

Proof For algorithm (5.55) for MS tracking, “—" sign in (5.55) is used. Under this
condition, it is known from (5.60) that W () globally asymptotically converges to a
point in the invariance (stationary point) set of E1(W). At a saddle (unstable) point,
(5.55) is unstable. Thus, we can conclude that W(z) globally asymptotically con-
verges to a point in the global minimum point set W = L, @. For algorithm (5.55)
for PS tracking, similarly we can conclude that W(z) globally asymptotically
converges to a point in the global minimum point set W = I:<,1>Q. This completes
the proof.
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Remark 5.1 From the above analyses, it is concluded that W, will asymptotically
converge to matrix with orthonormal columns as k — oo for stationary signals.
When Wsz is approximated by I,, (5.57) is simplified to the stochastic Oja’s
algorithm for PS and MS tracking:

Wiir = Wi oy — W] (5.68)

In this sense, Oja’s algorithm for PS and MS tracking is derived as an

approximate stochastic gradient rule to minimize the proposed NQC. However, it is

worth noting that Oja’s algorithm for MS tracking, where “—” is used in (5.68),

does not have the self-stabilizing property, whereas the dual-purpose subspace

tracking algorithm (5.57) is self-stabilizing whether for PS tracking or for MS
tracking.

5.3.5 Numerical Simulations

In this section, we provide several interesting experiments to illustrate the perfor-
mance of the dual-purpose principal and minor subspace flow. The first experiment
mainly shows the self-stabilizing property of the dual-purpose gradient flow via
simulations, the second experiments give some performance comparisons with
other algorithms, and the third experiment provides some examples of practical
applications.

5.3.5.1 Self-stabilizing Property and Convergence

Here, a PS or MS with dimension 5 is tracked. The vector data sequence is gen-
erated by X; = B -y,, where B is randomly generated. In order to measure the
convergence speed and precision of learning algorithm, we compute the norm of a
state matrix at the kth update p(W;) and the index parameter dist(W;), which
means the deviation of a state matrix from the orthogonality. Clearly, if dist(Wy)
converges to zero, then it means that W; produces an orthonormal basis of the MS
or PS.

In this simulation, let B =(1/31)randn(31, 31) and y, € R*'*! be Gaussian,
spatially and temporally white, and randomly generated. In order to show that the
self-stabilizing property of the dual-purpose algorithm, let the initial weight value
be randomly generated and normalized to modulus 2.5, which is larger than 1.
Figures 5.1 and 5.2 are the simulation results for PSA and MSA on this condition,
respectively. Figures 5.3 and 5.4 are, respectively, the simulation results for PSA
and MSA with the initial weight modulus value normalized to 0.5, which is smaller
than 1. In Figs. 5.1, 5.2, 5.3, and 5.4, all the learning curves are obtained by
averaging over 30 independent experiments.
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Fig. 5.4 Experiment on 1.4 : : : :
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From Figs. 5.1 and 5.3, we can see that the norm of the state matrices in the
algorithm (5.57) for PS tracking converges to 1, and the state matrices can converge
to an orthonormal basis of the PS, which is consistent with Theorem 5.8. From
Figs. 5.2 and 5.4, we also can see that the norm of the state matrices in the
algorithm for MS tracking converges to 1, and the state matrices can converge to an
orthonormal basis of the MS, which is also consistent with Theorem 5.8. From
Figs. 5.1, 5.2, 5.3, and 5.4, it is obvious that whether the norm of the initial state
matrices is larger than, or smaller than 1, the state matrices in the dual-purpose
algorithm all can converge to an orthonormal basis of PS or MS, which shows the
self-stabilizing property.

5.3.5.2 The Contrasts with Other Algorithms

In this simulation, the PS tracking algorithm is compared with the LMSER algo-
rithm in [9], and the MS tracking algorithm is compared with the OJAm algorithm
in [1], where the norm of state matrix p(Wy}) and the index parameter dist(W;) are
used. Like in the above simulation, here the vector data sequence is generated by
Xy = B - y;, where B is randomly generated, and a PS or MS with dimension 5 is
tracked. All the learning curves are obtained by averaging over 30 independent
experiments.

From Figs. 5.5 and 5.6, it can be observed that our dual-purpose subspace
tracking algorithm outperforms the others in terms of both convergence speed and
estimation accuracy.
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5.3.5.3 Examples from Practical Applications of Our Unified
Algorithm

Data compression is an important application of PS tracking analysis. In this
simulation, we use the PSA algorithm to compress the well-known Lenna picture of
512 x 512 pixels as shown in Fig. 5.7. The original Lenna picture is decomposed
into 8 x 8 nonoverlapping blocks, and from the block set, a 64-dimensional vector
set h = {x(k)|x(k) € R®* (k = 1, 2,..., 4096)} can be constructed. After the removal
of the mean and normalization, vectors randomly selected from this vector set form
an input sequence for the PSA algorithm. In order to measure convergence and
accuracy, we compute the norm of W(k) and the direction cosine(k) between the
weight matrix W (k) and the true PS V of the vector set k at the kth update. Clearly,
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Fig. 5.7 Original Lenna
image

if the norm of W(k) and direction cosine(k) converge to 1, the weight matrix must
approach the direction of PS and the algorithm gives the right result. The recon-
structed Lenna image using the PSA algorithm is presented in Fig. 5.8, where the
dimension of the subspace is 6. Figure 5.9 shows the convergence of direction
cosine and the weight matrix norm for the PSA algorithm with initial weight vector
norm ||[W(0)|| = 0.2, and learning factor u = 0.2.

Fig. 5.8 Reconstructed
results
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Fig. 5.9 Convergence curve of the proposed PSA algorithm

From Figs. 5.8and 5.9, we can see that our PSA algorithm achieves a satisfac-
tory compression performance, and its convergence and accuracy are also
satisfactory.

An important application of the minor component analysis is to solve the total
least squares (TLS) problem. In this section, we will use our MSA algorithm, where
the dimension is one, to conduct the line fitting under the TLS criterion. By adding
Gaussian noises to the 400 sample points on the line x, = —0.5x;, we can obtain a

set of 2-dimensional data points 7' = {[xl(t),xz(t)f,k =1,2,.. .,400} as shown

in Fig. 5.10. The problem of line fitting is to find a parameterized line model (e.g.,
wix1 +wax, = 0) to fit the point set, such that the sum of the squared perpendicular

Fig. 5.10 The line fitting 3 : : ‘ ‘ ‘
problem and results Original Line
hd Gaussian noises
2%, ° : . —-=-= Fitting Line i
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Fig. 5.11 Convergence in 1.05
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distances between the line and these data points is minimized. This line fitting
problem can be reduced to a problem of estimating minor component of this data
set T. After the removal of the mean and normalization, randomly select vectors
from the data set T as the inputs for our MSA algorithm. Figure 5.11 shows the
convergence of the weight vector W(k) with learning rate u = 0.05, where the
direction cosine between the weight vector W (k) and the true minor component v,
is computed. After 150 iterations, the weight vector W(k) converges to
w* = [0.41930.9100]". Figure 4.10 gives the fitting results of w*, from which we
can see that our MSA algorithm has a satisfactory convergence performance.

In summary, in this section, a novel unified NQC for PS and MS tracking has
been introduced. Based on this criterion, a dual-purpose principal and minor sub-
space gradient flow is derived. Also, the landscape of nonquadratic criteria of the
gradient flow is analyzed. The averaging equation of the dual-purpose algorithm for
PS and MS tracking exhibits a single global minimum that is achievable if and only
if its state matrix spans the PS or MS of the autocorrelation matrix of a vector data
stream. Simulations have shown that our dual-purpose gradient flow can guarantee
the corresponding state matrix tend to column-orthonormal basis of the PS and MS,
respectively, and also have shown that the algorithm has fast convergence speed
and can work satisfactorily.

5.4 Another Novel Dual-Purpose Algorithm for Principal
and Minor Subspace Analysis

In this section, we introduce another novel unified information criterion (NUIC) for
PSA and MSA by changing the second term of (5.31) into a nonquadratic form,
which makes NUIC a nonquadratic criterion. Then, the NUIC algorithm is derived
by applying gradient method to NUIC, which has fast convergence speed.
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5.4.1 The Criterion for PSA and MSA and Its Landscape

The information criterion for PSA and MSA is:

mv%X{JNUIC(W) = j;%tr{(WTRW) (WTW)W} e
+ %tr [In(W'W) — W'W] }’

where “+” means the PSA information criterion and “—” means the MSA infor-
mation criterion. The landscape of NUIC is depicted by the following four
theorems.

Let 4; and u;, i=1,2,...,n denote the eigenvalues and the associated
orthonormal eigenvectors of R. Arrange the orthonormal eigenvectors
uy,uy,---,u, in such a way that the associated eigenvalues are in a nonascending
order: 4y > Ay > -+ > J,, then the eigenvalue decomposition (EVD) of R can be
written as

R = UAU" = U, AU + U,AU, (5.70)

where A = diag(4,.. A, Arsty ey ) U = [y, .. u, ] and Uy = [u, o q, .. . 0.
If the eigenvalues of R are allowed to be in an arbitrary order instead of the
nonascending order, the EVD can also be represented by

R=UAU)" =U0,A4U"+U, A, ,U" (5.71)

n—r?

where U' = [U,,U,_,], A" = diag(2},..., A, A A

Sl M1
Given W in the domain {W|WTR W > 0}, we analyze the following information
criterion for tracking PS:

mvslx{El (W) = %tr{(WTRw) (ww)~'| + %tr[ln(WTW) = WTW]} (5.72)

Theorem 5.9 W is a stationary point of E{(W) in the domain {W|W'RW > 0} if
and only if W=U,Q, where U, € R"™" consist any r distinct orthonormal
eigenvectors of R, and Q is an arbitrary orthogonal matrix.

Proof Since WIRW and WTW are positive definite, they are invertible. Thus, the
gradient of E;(W) with respect to W exits and is given by
VE(W) = [RW — W{WW}" WRW | {(WTW} "+ [w{wTw} -],
(5.73)
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If W=U,Q, where Q is an arbitrary orthogonal matrix, we can obtain that
VE|(W) = 0. Conversely, by definition, the stationary point of E;(W) satisfies
VE; (W) = 0, which yields

RW —w{WW} T WIRW{(WW = —[w{ww} W] (5.74)

Premultiplying both sides of (5.74) by W', we obtain WTW = I, which implies
that the columns of W are orthonormal at any stationary point Ej(W). Let
WTRW:QTA:,Q be the EVD and substitute it into (5.74). Then, we have
RU' = U' A, where U. = WQ" with (U.)U’. =1I,. Since A’ is a diagonal matrix

and U’ has full rank, U, and A’ must be the same as U, and A4,.

Theorem 5.10 In the domain {W|W'RW > 0}, E{(W) has a global maximum,
which is achieved if and only if W = U,Q, where U, = [u,u,,...,u,] and Q is an
arbitrary orthogonal matrix. All the other stationary points are saddle points of
E\(W). At this global maximizer,

E((W) =1 /zzr: Ji+1/2(In(r) — r). (5.75)

Proof According to Theorem 5.9, any W = U,Q is the stationary point of E; (W).
Let L; = {i,ia,...,ir}, whose elements are the indexes of the eigenvectors which
make up the matrix U,. Similarly, let L, = {1,2,...,r}.

For any Ly (L; # L,), there must exist j, which satisfies j € L and j & L,. Then,
replace the component #; of matrix U, by u;+euy, where k € L,k ¢ L, and
Ve > 0. Let U.. be the resultant new matrix, and W' = U'Q. Then, we have

E((W) —E\(W) == (& — %)& +0o(&%). (5.76)

D | =

It can be easily seen that along the direction of the component uy, E; (W) will
increase. In addition, if the component u; is replaced by u; + ¢u;, and let U’ be the
resultant new matrix, and W’ = U”'Q. Then, we have

E\(W") — E;{(W) = —2¢% + 0(&?). (5.77)

This means along the direction of the component u;, E;(W) will decrease.
Therefore, W = U,Q is a saddle point. Conversely, it can be shown that if any
component of U, is perturbed by uy (1 <k <r),E;(W) will decrease.

Therefore, W = U,Q is the unique global maximizer. This means E;(W) has a
global maximum without any other local maximum. It can be easily seen that at the
global point
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= %Zr:;ﬁ %(ln(r) —7). (5.78)

The landscape of NUIC for tracking the MS is similar to Theorems 5.9 and 5.10.
Due to limited space, here we only give the resulting theorems. Obviously, the
information criterion for tracking the MS can be written as follows:

mv%x{Ez(W) = —%tr[(WTRW) (WTW)_l} + %tr In(W'W) — w'w] }
(5.79)

The landscape of E,(W) is depicted by Theorems 5.3 and 5.4.

Theorem 5.11 W is a stationary point of Ey(W) in the domain {W|W'RW > 0}
if and only if W =U,Q, where U, € R"™" consist any r distinct orthonormal
eigenvectors of R, and Q is an arbitrary orthogonal matrix.

Theorem 5.12 In the domain {W|W'RW > 0}, E;(W) has a global maximum,

which is achieved if and only if W = l~JlQ, where U, = [/ " 8
and Q is an arbitrary orthogonal matrix. All the other stationary points are saddle
points of E;(W). At this global maximum,

Ey(W) = —1/z§r:zi+ 1/2(In(r) — r). (5.80)
i=1

From Theorems 5.9 and 5.10, we can conclude that E; (W) has a global maxi-
mum and no local ones. This means iterative methods like the gradient ascent
search method can be used to search the global maximizer of E; (W). We can obtain
similar conclusions for E;(W).

5.4.2 Dual-Purpose Algorithm for PSA and MSA

The gradient of Jyyic(W) with respect to W is given by

W(OWT ()R
wT(Hw

dW(r) _

. Hewrowy "+ | 20w,

+|RW(r) — TAWE

By using the stochastic approximation theory, we have the following differential
equation
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dw() :i[x(t)xT(t)W(t) L W(T)( )(xc(t)(t) (t)}

AW WO} + (W {W W}

(5.82)

Discretizing (5.82), then we can get the following nonlinear stochastic
algorithm:
-1 -1
Wit = Wi ulxyl — We(WIWL) "yl ] (WEW:) 559
1 ’
+ [ Wi = W (WiWi) | (WiWs)

where 0 <u <1 is the learning rate. If “+” is used, then (5.83) is a PSA algorithm;
and if “—” is used, then (5.83) is a MSA algorithm.

5.4.3 Experimental Results

5.4.3.1 Simulation Experiment

In this section, we compare the NUIC algorithm with the following algorithms, i.e.,
fast PSA algorithm proposed by Miao [22] (NIC), fast MSA algorithm proposed by
Feng [1] (OJAm), unified algorithm for PSA, and MSA [40] (UIC). In order to
measure the convergence speed and the precision of the algorithms, we compute the
norm p(Wy) of the weight matrix and the index parameter dist(Wy).

In this simulation, we adopt the method in [1] to generate the input sequences:
The input vector is generated by x; = B - gz, where B is a 31 x 31 matrix and is
randomly generated and z; € R3'*! is a zero-mean white noise with variance
02 = 1. In order to make a fair comparison, the same initial conditions are used in
the algorithms, i.e., the same initial weight matrix and learning rates are used in all
algorithms. The simulation results are shown in Figs. 5.12, 5.13, 5.14, and 5.15,
and a PS or MS with dimension 16 is tracked. The processing time of these
algorithms is listed in Table 5.1. The learning curves and the processing times are
obtained by averaging over 100 independent experiments.

From Table 5.1, we can see that the NUIC algorithm and the algorithm in [40]
have almost the same processing time and have less time than other algorithms.
From the four figures, we can see that the norm of the weight matrices in the NUIC
algorithm for PS or MS tracking converges to a constant, and the index parameters
converge to zero, which means the algorithm can track the designated subspace (PS
or MS). When compared with other algorithms, we can conclude that no matter for
PS or MS tracking, the NUIC algorithm has faster convergence speed than other
algorithms, which is mainly due to the complete nonquadratic criterion of NUIC
and the time-varying step size of the NUIC algorithm. From the last several steps of
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the simulation results shown in Figs. 5.13 and 5.15, we can see that although those
algorithms can converge to the designated subspace, but the values convergence to
are different. From Figs. 5.13 and 5.15, we can see that the index parameter
dist(Wy) of the NUIC algorithm has the smallest derivation from zero among these
algorithms. In other words, the NUIC algorithm has the best estimation accuracy as
shown in Fig. 5.14.

5.4.3.2 Real Application Experiment

The first experiment is direction-of-arrival (DOA) estimation. Consider the scenario
where two equipower incoherent plane waves impinge on a uniform linear array
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Fig. 5.14 Norm curves for MSA
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Table 5‘.1 Summary of Time (ms) NUIC UIC NIC OJAm
processing time PSA 6.0 5.8 12.2
MSA 5.6 5.2 7.0

with 13 sensors from 40° to 80°. The receiver noise is spatially white with unit
variance g2=1, and the signal-to-noise ratio is 10 dB. Three algorithms (NIC, UIC,
and NUIC) are used to estimate the signal (principal) subspace, and then the
ESPRIT method is used to get the DOA estimates. Figures 5.16 and 5.17 show the
DOA learning curves of the three algorithms. It can be seen that the three algo-
rithms can provide satisfactory DOA estimates after some iterations. However, the
NUIC algorithm has the fastest convergence speed. In order to show the estimation
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Table 5.2 DOA estimation values
80(°) 40(°)
NIC UIC NUIC NIC UIC NUIC
Estimation(®) 80.6382 80.5008 79.9155 39.7476 40.0439 40.0253
Deviation(°) 0.6382 0.5008 0.0845 0.2524 0.0439 0.0253

accuracy of the three algorithms, we list the estimates in Table 5.2. From Table 5.2,
we can see that the NUIC algorithm has the smallest deviation between the esti-
mates and the true values. So we can conclude that NUIC algorithm has the fastest
convergence speed and the best estimation accuracy among the three algorithms.
In this section, we introduced a novel information criterion for PSA and MSA
and analyzed its landscape. Based on this criterion, a dual-purpose algorithm has
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been developed. Simulation results show that compared with other algorithms, the
NUIC algorithm has lower computation complexity, higher estimation accuracy,
and faster convergence speed.

5.5 Summary

In this chapter, several neural network-based dual-purpose PCA and MCA algo-
rithms have been reviewed. Then, a UIC is introduced, and a dual-purpose principal
and minor subspace gradient flow has been derived based on it. In this dual-purpose
gradient flow, the weight matrix length is self-stabilizing. The energy function
associated with the dual-purpose gradient flow exhibits a unique global minimum
achieved if and only if its state matrices span the PS or MS of the autocorrelation
matrix of a vector data stream. The other stationary points of this energy function
are (unstable) saddle points. The dual-purpose gradient flow can efficiently track an
orthonormal basis of the PS or MS. Simulations comparing the dual-purpose gra-
dient flow with a number of existing dual-purpose algorithms have verified the
feasibility and applicability of the dual-purpose algorithm. Finally, in order to
further improve the performance of dual-purpose algorithms, another novel infor-
mation criterion for PSA and MSA has been proposed, and its landscape has been
analyzed. Based on this criterion, another dual-purpose algorithm has been devel-
oped. Simulation results show that compared with other algorithms, the NUIC
algorithm has lower computation complexity, higher estimation accuracy, and faster
convergence speed.
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Chapter 6
Deterministic Discrete-Time System
for the Analysis of Iterative Algorithms

6.1 Introduction

The convergence of neural network-based PCA or MCA learning algorithms is a
difficult topic for direct study and analysis. Traditionally, based on the stochastic
approximation theorem, the convergence of these algorithms is indirectly analyzed
via corresponding DCT systems. The stochastic approximation theorem requires
that some restrictive conditions must be satisfied. One important condition is that
the learning rates of the algorithms must approach zero, which is not a reasonable
requirement to be imposed in many practical applications. Clearly, the restrictive
condition is difficult to be satisfied in many practical applications, where a constant
learning rate is usually used due to computational roundoff issues and tracking
requirements. Besides the DCT system, Lyapunov function method, differential
equations method, etc., are also used to analyze the convergence of PCA algo-
rithms. For example, in [1], a Lyapunov function was proposed for globally
characterizing Oja’s DCT model with a single neuron. Another single-neuron
generalized version of Oja’s DCT net was studied in [2] by explicitly solving the
system of differential equations. The global behavior of a several-neuron Oja’s
DCT net was determined in [3] by explicitly solving the equations of the model,
whereas [4] addressed a qualitative analysis of the generalized forms of this DCT
network.

All these studies of DCT formulations are grounded on restrictive hypotheses so
that the fundamental theorem of stochastic approximation can be applied. However,
when some of these hypotheses cannot be satisfied, how to study the convergence
of the original stochastic discrete formulation? In order to analyze the convergence
of neural network-based PCA or MCA learning algorithms, several methods have
been proposed, i.e., DCT, SDT, and DDT methods. The DCT method, first for-
malized by [5, 6], is based on a fundamental theorem of stochastic approximation
theory. Thus, it is an approximation analysis method. The SDT method is a direct
analysis method and it can analyze the temporal behavior of algorithm and derive
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the relation between the dynamic stability and learning rate [7]. The DDT method,
as a bridge between DCT and SDT methods, transforming the original SDT system
into a corresponding DDT system, and preserving the discrete-time nature of the
original SDT systems, can shed some light on the convergence characteristics of
SDT systems [8]. Recently, the convergence of many PCA or MCA algorithms has
been widely studied via the DDT method [8—13].

The objective of this chapter is to study the DDT method, analyze the conver-
gence of PCA or MCA algorithms via DDT method to obtain some sufficient
conditions to guarantee the convergence, and analyze the stability of these algo-
rithms. The remainder of this chapter is organized as follows. A review of per-
formance analysis methods for neural network-based PCA/MCA algorithms is
presented in Sect. 6.2. The main content, a DDT system of a novel MCA algorithm
is introduced in Sect. 6.3. Furthermore, a DDT system of a unified PCA and MCA
algorithm is introduced in Sect. 6.4, followed by the summary in Sect. 6.5.

6.2 Review of Performance Analysis Methods for Neural
Network-Based PCA Algorithms

6.2.1 Deterministic Continuous-Time System Method

According to the stochastic approximation theory (see [5, 6]), if certain conditions
are satisfied, its corresponding DCT systems can represent the SDT system effec-
tively (i.e., their asymptotic paths are close with a large probability) and eventually
the PCA/MCA solution tends with probability 1 to the uniformly asymptotically
stable solution of the ODE. From a computational point of view, the most important
conditions are the following:

. X (1) is zero-mean stationary and bounded with probability 1.
. o () is a decreasing sequence of positive scalars.

. Za(t) = oo.

. %P (t) < oo for some p.

. lim,_,o sup [ﬁ — ﬁ} <o0.

Whn B~ W=

For example, the sequence o (z) = const - ¢ ’ satisfies Conditions 2-5 for
0 <y < 1. The fourth condition is less restrictive than the Robbins—Monro con-
dition X,0%(¢) < 0o, which is satisfied, for example, only by o () = const - £’ with
12<y < 1.

For example, MCA EXIN algorithm can be written as follows:

w(it+1) =w(r)

)| ()3’

1)y (1) lx 5 y(z)w(z)]
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and its corresponding deterministic continuous-time (DCT) systems is

1

w3

w(t) =

dw(1) 1 lR ~wI(ORw(1) R — r(w, R)w(7).

i w)? w()[15

(6.2)

For the convergence proof using deterministic continuous-time system method,
refer to the proof of Theorem 16 in [7] for details.

6.2.2 Stochastic Discrete-Time System Method

Using only the ODE approximation does not reveal some of the most important
features of these algorithms [7]. For instance, it can be shown that the constancy of
the weight modulus for OJAn, Luo, and MCA EXIN, which is the consequence of
the use of the ODE, is not valid, except, as a very first approximation, in
approaching the minor component [7]. The stochastic discrete-time system method
has led to the very important problem of the sudden divergence [7]. In the fol-
lowing, we will analyze the performance of Luo MCA algorithm using the
stochastic discrete-time system method.
In [14, 15], Luo proposed a MCA algorithm, which is

2 y2(1)
w(t+1) =w(t) —at)|w)l; [y(t)x(t) O W(f)]~ (6.3)
wil)ll2

Since (6.3) is the gradient flow of the RQ and using the property of orthogonality
of RQ, it holds that

wT<r>{y<r>x<r> - 20 2w<r>} -0, (64)
Wl

i.e., the weight increment at each iteration is orthogonal to the weight direction.
The squared modulus of the weight vector at instant ¢ + 1 is then given by

062
wio+ DI3= @I+ S S s 200, (69

where ¥,,, is the angle between the direction of x(f) and w(¢). From (6.5), we can see
that (1) Except for particular conditions, the weight modulus always increases,

|w(z+1)||5 > [[w(z)||3. These particular conditions, i.e., all data in exact particular
directions, are too rare to be found in a noisy environment. (2) sin® 20y, is a
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positive function with peaks within the interval (—=, z]. This is one of the possible
interpretations of the oscillatory behavior of weight modulus.

The remaining part of this section is the convergence analysis of Dougla’s MCA
algorithm via the SDT Method. The purpose of this section is to analyze the
temporal behavior of Dougla’s MCA algorithm and the relation between the
dynamic stability and learning rate, by using mainly the SDT system following the
approach in [7].

Indeed, using only the ODE approximation does not reveal some of the most
important features of MCA algorithms, and the ODE is only the very first
approximation, in approaching the minor component. After the MC direction has
been approached, how is the rule of the weight modulus?

From Dougla’s MCA, it holds that

(e + D)7 =w"(r+ Dw(e+1) = {w(e) — a@)[|w()[*y(0)x() — WO - w(e) — a@) [ 'y(0)x(1) — (e w()]}
MP=200)(Iw @I (1) = 2@ Iw @) + 2@ (w15 O @ =2 w0y () + 5* @ Iw (1))

= [Iw(@)|> +20()y* ) Iw (O P (1 = [w(D)]*) + O (1))

=[w@)| + 20y Olw@I* (1 = w@]).

(
= w(s
(¢
(6.6)

Hence, if the learning factor is small enough and the input vector is bounded, we
can make such analysis as follows by neglecting the second-order terms of the o(¢).

v ) >1 for ||w(0)\|2<1
PAEELL <1 20200 - w0 =4 <1 for wi0)P<1. (67)
[w(@)l =1 for |w(0)*=1

This means that ||w(z+ 1)) tends to one whether ||w(z)||* is equal to one or not,

which is called the one-tending property (OTP), i.e., the weight modulus remains
constant <||w(t)|\2—> 1).

To use the stochastic discrete laws is a direct analytical method. In fact, the study
of the stochastic discrete learning laws of the Douglas’s algorithm is an analysis of

their dynamics.
Define

St xf o wtox(of

o+ D) Iw (0)]*

P =" 21 p= W@, 1=y

b

The two scalars ' and r represent, respectively, the squared perpendicular dis-
tance between the input x(7) and the data-fitting hyperplane whose normal is given
by the weight and passes through the origin, after and before the weight increment.
Recalling the definition of MC, we should have ' < r. If this inequality is not valid,
this means that the learning law increases the estimation error due to the
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disturbances caused by noisy data. When this disturbance is too large, it will make
w(?) deviate drastically from the normal learning, which may result in divergence or
fluctuations (implying an increased learning time).

Theorem 6.1

2
If o > A ple)](p — 2cos? Ony) > 0,

plx(z) ||2(P —2c08? Orw)

then ¥ > r, which implies divergence.

Proof From Eq. (6.2), we have
(1) = af|lw (@) |[*y(0) e (1) [P = (1)]
=y (1= aw@)*x0)]>=¥* (1)) (6.8)

(e + D)7 =w e+ Dw(e+1) = w(@)|*=20() (Iw @)y (1) = 3> @) [[w(D)*)
|

+a2 (1) (w15 Ol @O 1P=2lw @) *y* (1) + y* O lw @) |P).
(6.9)

wl(t+ 1x(r)

Therefore,

r e Dx)? @I (1= a0 @1 (0= (0)?

pla) =—= =
r w(e+DIP () 1= 2a(@)y>@O(w@)|*~1) + 2E
B (1 - og)’
1 —2ou(p — 1) +o2E’
(6.10)
meq:QMmﬁﬁ—@aMEz(@mmmtm%+ﬁ)
Then, p(a) > 1 (dynamic instability) if and only if
afmf>1fmmp4mﬂﬂwmmmtm%+ﬁ) (6.11)
Notice that u/p = ||x(¢)]|*cos? 0z,
From (6.11), it holds that
o [ (1) |*sin® Oy — 27| (1) |*c0S? Oy sin® O] 612,

> 20} ()]|*p? sin? Ogy.

The dynamic instability condition is then
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2
o> 3
x| (p — 2 cos? Oxw)

Pl (p — 2cos? Ouy) > 0. (6.13)

The second condition implies the absence of the negative instability. It can be
rewritten as

082 Oy < g (6.14)
In reality, the second condition is included in the first one. Considering the case
0<op <y<1, it holds that

1
c08% Oy < LA — Y, (6.15)

— 2
2 ypllx@)|l

which is more restrictive than (6.14). Figure 6.1 shows this condition, where

g = arccos v Y. From (6.15), we can see that the decrease of y and p increases the
domain of ¢ and then increases the stability. From Fig. 6.1, it is apparent that in the
transient (in general low fxy), there are less fluctuations and this is beneficial to the
stability.

This completes the proof.

6.2.3 Lyapunov Function Approach

Lyapunov function approach has also been applied in the convergence and stability
analysis. For details, see references [7, 16, 17].
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6.2.4 Deterministic Discrete-Time System Method

Traditionally, the convergence of neural network learning algorithms is analyzed
via DCT systems based on a stochastic approximation theorem. However, there
exist some restrictive conditions when using stochastic approximation theorem.
One crucial condition is that the learning rate in the learning algorithm must con-
verge to zero, which is not suitable in most practical applications because of the
roundoff limitation and tracking requirements [8, 13]. In order to overcome the
shortcomings of the DCT method, Zurifia proposed DDT method [8]. Different
from the DCT method, the DDT method allows the learning rate to be a constant
and can be used to indirectly analyze the dynamic behaviors of stochastic learning
algorithms. Since the DDT method is more reasonable for studying the convergence
of neural network algorithms than the traditional DCT method, it has been widely
used to study many neural network algorithms [8, 10-13, 18-20].

6.3 DDT System of a Novel MCA Algorithm

In this section, we will analyze the convergence and stability of a class of
self-stabilizing MCA algorithms via a DDT method. Some sufficient conditions are
obtained to guarantee the convergence of these learning algorithms. Simulations are
carried out to further illustrate the theoretical results achieved. It can be concluded
that these self-stabilizing algorithms can efficiently extract the MCA, and they
outperform some existing MCA methods.

In Sect. 6.3.1, a class of self-stabilizing learning algorithms is presented. In
Sect. 6.3.2, the convergence and stability analysis of these algorithms via DDT
method are given. In Sect. 6.3.3, computer simulation results on minor component
extraction and some conclusions are presented.

6.3.1 Self-stabilizing MCA Extraction Algorithms

Consider a single linear neuron with the following input—output relation: y(k) =
WT(k)X(k),k =0,1,2,---, where y(k) is the neuron output, the input sequence
{X(k)|X(k) € R"(k=10,1,2,---)} is a zero-mean stationary stochastic process,
and W(k) € R"(k=0,1,2,---) is the weight vector of the neuron. The target of
MCA is to extract the minor component from the input data by updating the weight
vector W(k) adaptively. Here, based on the OJA + algorithm [21], we add a penalty
term (1 — ||[W(7)||>"*)RW to OJA + and present a class of MCA algorithms as
follows:
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W =—|W|*"RW +(WRW +1—- W'W)W, (6.16)

where R = E[X(k)X" (k)] is the correlation matrix of the input data and the integer
0<a<2. The parameter o can be real-valued. However, for the simplicity of
theoretical analysis and practical computations, it would be convenient to choose «
as an integer. Considering the needs in the proofs of latter theorems, the upper limit
of « is 2. It is worth noting that Algorithm (6.16) coincides with the Chen rule for
minor component analysis [22] in the case o = 0. When o > 0, these algorithms are
very similar to the Chen algorithm and can be considered as modifications of the
Chen algorithm. Therefore, for simplicity, we refer to all of them as Chen
algorithms.
The stochastic discrete-time system of (6.16) can be written as follows:

Wik 1) = W) — IR ERX®E) - 020 + 1= [WERWE)],
(6.17)

where (0 <n<1) is the learning rate. From (6.17), it follows that

IWk+DIP=IWR)IP= =20 W R [0 (W O =) + (IWE)IP-1) | +06r?)

== 2| WE)P(IWER)| — DG ). IWH),
(6.18)
where Oy (k), [W(k)[|) = Y () (W &) [I"~ + [[W ()| +, - [W(E)|| +1) +
(/W k)|l + 1) is a positive efficient. For a relatively small constant learning rate, the

second-order term is very small and can be omitted. Thus, from (6.18), we can
claim that Algorithm (6.17) has self-stabilizing property [23].

6.3.2 Convergence Analysis via DDT System

From y(k) = X" (k)W(k) = WT(k)X(k), by taking the conditional expectation
E{W(k+1)/W(0),X(i),i<k} to (6.17) and identifying the conditional expecta-
tion as the next iterate, a DDT system can be obtained as
W(k+1) = W(k)
— 1 [WHRIP T RW (k) — (W ORW () + 1 — [W(K)|” ) W(K)]
(6.19)
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where R = E[X(k)XT (k)] is the correlation matrix of the input data. Here, we
analyze the dynamics of (6.19) subject to n being some smaller constant to interpret
the convergence of Algorithm (6.17) indirectly.

For the convenience of analysis, we next give some preliminaries. Since R is a
symmetric positive definite matrix, there exists an orthonormal basis of " composed
of the eigenvectors of R. Obviously, the eigenvalues of the autocorrelation matrix
R are nonnegative. Assume that 41, 4,, - - -, 4, are all eigenvalues of R ordered by
M=l > o > A1 > Jy > 0. Suppose that {V;|i = 1,2,---,n} is an orthogonal
basis of R" such that each V; is unit eigenvector of R associated with the eigenvalue
A;. Thus, for each k > 0, the weight vector W(k) can be represented as

W) =3 @)V, (6.20)
i=1

where z;(k)(i = 1,2, ...,n) are some constants. From (6.19) and (6.20), it holds that

alk+ 1) = [1=nz W) 0 (W ORW@E) +1 — [W(0)]1) (k)
(6.21)

(i=1,2,...,n), forall k > 0.
According to the properties of Rayleigh Quotient [7], it clearly holds that

LW OW(K) < W ORW (k) < 2 W (k)W (K), (6.22)

for all W(k) #0, and k > 0.
Next, we perform the convergence analysis of DDT system (6.19) via the fol-
lowing Theorems 6.2—6.6.

Theorem 6.2 Suppose that 5l <0.125 and 1n<0.25. If WT(0)V, #0 and
IW(0)|| <1, then it holds that |W(k)|| < (1 +niy), for all k> 0.

Proof From (6.19) and (6.20), it follows that
Wk+1)|* =Yz k+1)
i=1

- Z (1 — i WE)|> T +n(WT (K)RW (k) + 1 — |[W(k)|*)2} (k)

n

< (L= n(BIW@IP = W EIP + W E-1)] 7> )

i=1

< (L= n(BIW@IP = W@ + W E-1) | Iwe
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Thus, we have
W+ 1) < [L+n(alWEP +1 = [[WEP) - W E)] (6.23)
Define a differential function

f&)=[14+nlis+1— s)]zs, (6.24)

over the interval [0,1]. It follows from (6.9) that

F(s) = (L+n—ns(1 = 24))(L+n—3ps(1 = A1),

for all 0<s< 1. Clearly,

f) =04 s=0+m)/Gn(1=4)) or s=1+n)/n(l—A) .
Denote
0= (1+n)/(3n(1 - ).
Then,
>0, if O0<s<0

f$){ =0, if s=0 (6.25)
<0, if s>0.

By 11 <0.125 and #<0.25, clearly,

0=(1+n)/Gn(l—=4))=1/n+1)/B1 = 4)) > 1. (6.26)

From (6.25) and (6.26), it holds that

f(s) >0,

for all 0<s< 1. This means that f(s) is monotonically increasing over the interval
[0,1]. Then, we have

F(s) <FA)<(1+ni),

for all 0<s<1.
Thus, ||W(k)|| < (14 n4;), for all k> 0.
This completes the proof.

Theorem 6.3 Suppose that nl, <0.125 and n<0.25. If WI(0)V,#0 and
IWO)||<1, then it holds that |W(k)|>c for all k>0, where

¢ = min{[1 — gy ]|[W(O)|,[1 — nis (1 +nay)* +n(1 — (1+ni1))]}.
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Proof From Theorem 6.2, we have ||W(k)||<(1+ni;) for all k& > 0 under the
conditions of Theorem 6.3. Next, two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.19) and (6.20), it follows that

IW(k+1))* = Z [1 =02 WP+ (W (RRW (k) + 1 — W (K)||*}Z} (k)

> (1= n(2 IR =2 WEF ) +n (1~ [WOIF)] iz%u«)
> (LW P2 W @) | 1w )

> [1L=na W@l Iwe)?
> 1= i PR P

Case 2: 1<||W(k)||<(1+4ni).
From (6.19) and (6.20), it follows that

WG+ 1P = [1 = n (WP =2 W) 0 (1 = WG 12) |73 200

i=1

2

|

> [1 = na W@ (1~ 1w )| 1w
(12w 2+ 4 (1 - (W) ]

[ "

> 1= na(L+nk)" + ( — (I+nd) )
Using the analysis of Cases 1 and 2, clearly,
W@l > ¢ = min{ [1 = i)W, [1 = nia(1+n20) +n(1 = (1+02)°) |},

for all k> 0. From the conditions of Theorem 6.2, clearly, ¢ > 0.
This completes the proof.
At this point, the boundness of DDT system (6.19) has been proven. Next, we

will prove that under some mild conditions, lim W(k) = £V, where V, is the
k— + o0

minor component. In order to analyze the convergence of DDT (6.19), we need to
prove the following lemma first.

Lemma 6.1 Suppose that ni;<0.125 and 1<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that



160 6 Deterministic Discrete-Time System for the Analysis ...

L= AW 0 (WERRW() + 1 = W) > 0.

Proof By Theorem 6.2, under the conditions of Lemma 6.1, it holds that
|W(k)||<14mni, for all k>0. Next two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.21) and (6.22), for each i(1 <i<n), we have

L=z WP+ (W ORW(K) + 1 — [WH)P)
> 1= WO+ 2| WK
> 1=k W)+

>1-— 7]}1

>0,

for k > 0.
Case 2: 1 <||W(k)|| <14 ni.
From (6.21) and (6.22), for each i(1 <i<n), we have

L=z WO+ n (W ORW(R) + 1~ W)
>1- 17/11||W(k)|\2+“+17),n||W(k)||2—n<217/11 +n2/112)
> 1 — i ||[W(k)[>T*—0.25 « (2;7/11 + Wf)

> 1 —ph||Wk)|* = (o.s s n)p +0.25 % (;7;4)2)

> 11—k ((1 Fna0)t +0.5+0.25 % nxl)

> 0.

This completes the proof.

Lemma 6.1 means that the projection of the weight vector W(k) on eigenvector
Vi(i=1,2,...,n), which is denoted as z;(k) = W' (k)V;(i = 1,2,...,n), does not
change its sign in (6.21). From (6.20), we have z(t) = W'(f)V,. Since
WT(0)V, #0, we have z,(0) # 0. It follows from (6.6) and Lemma 6.1 that
z,(k) > 0 for all k > 0 if z,,(0) > 0; and z,(k) < O for all k > 0 if z,,(0) < 0. Without
loss of generality, we assume that z,,(0) > 0. Thus, z,(k) > 0 for all £ > 0.

From (6.20), for each & > 0, W(k) can be represented as

n—1

W(k) = z(k)Vi+za(k)V,. (6.27)

i=1
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Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i=1,2,...,n). Theorems 6.4 and 6.5 below provide the convergence of
zik) (i = 1,2,...,n).

Theorem 6.4 Suppose that 5, <0.125 and 1n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then klim zi(k)=0,(i=12,..,n—1).

Proof By Lemma 6.1, clearly,
L= WP+ n (W ORW () +1 = [WR)IP) >0, (i=1,2,....n)
(6.28)

for all k>0. Using Theorems 6.2 and 6.3, it holds that |W(k)|| > ¢ and
IW(k)|| < (14 nAy) for all k> 0. Thus, it follows that for all X >0

[1 — AWK+ (W RORW (k) + 1 ||w<k>|2)r
L= WP+ (WERORW () + 1~ [WK)[1?)

(% — 2) |WE) [P

2
Wl
[ L= WP +n (W ORW (k) + 1 - ||w<k>||2)}

N4 = ) W (R

2
< [1 n 240 2 2 }
L i WO (2 W) + 1 — W) )
2
— |:1 _ ’7(/11‘ - ;Ln) :|
W) =i+ (WO 1/ [ WG W) )
"I()vnfl - j-n) 2 . _
< {1 - 1/cC+0 — i+ qlige+1/c2+2 — (1+nil)ﬁd ,(i=1,2,..,n—1)
(6.29)

Denote

9: 1— 7](/1"*17/1”) ’
1/cR+2) —niy+nliac+1/c2+9 — (14 niy) "]

Clearly, 0 is a constant and 0<0<1. By WT(0)V, # 0, clearly, z,(0) # 0.
Then, z,(k) # 0(k > 0).
From (6.21), (6.28), and (6.29), it holds that
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2
[zi(k+1)r_ 1= 2| WHE) 2 + n(WT W) +1— W) [z,.(k)r
alk+ DL (1=l WP+ (W RW® + 1 - (Weo)?) | L (b
4k _ e {ZI(O)T
<0 - < _
<0 |:Zn(k):| <0 2(0) i=12,...,n—1),
(6.30)
for all £>0.
Thus, from 0<0<1(i=1,2,...,n— 1), we have
Zi(k) .
=0,i=1,2,...,n—1).
dm @) J(i=1,2,..,n—1)

By Theorems 6.2 and 6.3, z,(k) must be bounded. Then,

lim z,(k) =0,(i=1,2,....n — 1).

This completes the proof.

Theorem 6.5 Suppose that ni;<0.125 and n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that klim z(k) = £1.

Proof Using Theorem 6.4, clearly, W(k) will converge to the direction of the minor
component V,, as k — oo. Suppose at time ky, W(k) has converged to the direction
of V,, i.e., W(ko) = zu(ko) - V.

From (6.21), it holds that

2k 1) = () (1 = 12022 2K + (i (0) + 1 = 2(0)) )
zu(k) 1+;1[/ann (k)(1 —z< )(k)) +1-— zﬁ(k)])

(
()

20l) (1401 = 2 ) (20 &V E) +27 () + - + 1)+ (1 +2,(K))
()
(

1411 = 2,00 (G ( V0) 482 () + -+ +2(0) + (14 2,(8))
Zn k)(l + ’7(1 - Zn(k))Q()vm Zn(k)))7

= Zn k

(6.31)

where  Q(n,za(k) = (@ (k) + 27 (k) + - +22(0) + (1 +2,(k))) is a
positive efficient, for all k£ > k.
From (6.31), it holds that

Zu(k+1) = 1 = z,(k) (1 + (1 = 2,(k))Q(4n, 20(K))) — 1

= [1 — 1z, (k) Q(4n, 20 (k)] (zn (k) — 1), (6.32)

for k > ko.
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Since z, (k) <||[W(K)|| < (1+n4y), we have

1- ﬂzn(k)Q(;Ln:Zn(k))
= 1= 0z (k) (2D (k) + 20 (k) + -+ +Z3(k))+(1+zn(k)))

> 1= (1 +120) (L4020 4+ (L4020 + -+ (U020 + (1 + (1L +n44)))
> 1= (1+ ) (2 (L4020 + (14020 + -+ (020 +0(1+ (1+n4)))
> 1— (L+n2) (A (L +n2)° + (l+nhf)+n0+%1+nMD)

> 1-—0.9980

>0,

(6.33)
for all k > ko. Thus, denote 6 = 1 — 5z,(k)Q(4y,z,(k)), Clearly, it holds that
0<o<l.

It follows from (6.32) and (6.33) that
|zn(k +1) — 1] < 6za(k) — 1],
for all k > kgy. Then, for k > kg,
|zu(k+1) = 1] < 1z,(0) — 1] < (k+ 1)TTe 0k + 1),

where 6 = —Ino, IT = |(1+754y) — 1].
Given any & > 0, there exists a K > 1 such that

HzKGioK c
(1—e0)? ™"

For any k; > k, > k, it follows from (6.21) that

k-1
|zn (k1) — za(ka)| = Z [za(r+1) = za(r Z 020 (F) (1 = 2(r)) Q(An; 2 (7))
r=ky r=ky

< Z\nzn (I_Zn )) inzzn |< ZMZII Anvl—"_r,)“l)(Zn(r)_l)‘

r=k, =
k-1 k-t

<L+ 120) Q0 L+ 1) Y [(ea(r) = D[ <TL Y re ™
r=k; r=ky
+ o0 oo ok

ILK
o1t S ke S ety < R
r=k —0 — e

<e.



164 6 Deterministic Discrete-Time System for the Analysis ...

where T, = n(1+441)O(4n, 1 +141)(z,(0) — 1). This means that the sequence
{za(k)} is a Cauchy sequence. By the Cauchy convergence principle, there must
exist a constant z such that lim z,(k) = z*.

From (6.27), we have ) lim W(k) =z - V,. Since (6.17) has self-stabilizing
— + 00
property, it follows that lim W(k+1)/W(k) =1. From (6.21), we have
L=1—y[a(z)* " = (u(zs)’ +1 = (z)*)], which means z; = £1.
This completes the proof.

Using (6.27), along with Theorems 6.4 and 6.5, we can draw the following
conclusion:

Theorem 6.6 Suppose that ni; <0.125 and 1n<0.25. If W'(0)V, #0 and
IW(0)|| <1, then it holds that klim W(k) = +V,.

At this point, we have completed the proof of the convergence of DDT system
(6.19). Next we will further study the stability of (6.19).

Theorem 6.7 Suppose that ni; <0.125 and 1 <0.25. Then the equilibrium points
V,, and =V, are locally asymptotical stable and other equilibrium points (6.19) are
unstable.

Proof Clearly, the set of all equilibrium points of (6.21) is
{Vi,,V,Ju{=Vy,--- =V, }u{0}.
Denote
GW)=W(k+1)
= W) = n[[WR)IP*RW(K) — (W RRW®K) + 1 [ W))W (K)|.
(6.34)

Then, we have

g—va =1+ n[(WT()RW(k) + 1 — [|[W()|D)I — |[W(k)||* " "R+ 2RW (k)W (k)
—2W(R)W' (k) — (2 + o) [[W (&) [|"RW (k)W k)],
(6.35)

where I is a unity matrix.
For the equilibrium point 0, it holds that

0G
T4l = .
ow|, =T =Jo

The eigenvalues of J, are ocg) =14n>1 (i=1,2,---,n). Thus, the

equilibrium point is unstable.
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For the equilibrium points +£V;(j = 1,2,-- -, n), it follows from (6.35) that

G

= =1 |/ =R =2V;V] — a3 ViVT| = ;. (6.36)

v

After some simple manipulations, the eigenvalues of .J; are given by

o) =1y —2) if i#)
o) =1 —p(2+oy) if i=j
For any j # n, it holds that oc;") = 14+n(4 — 4) > 1. Clearly, the equilibrium
points +V;(j #n) are unstable. For the equilibrium points =£V,, from
Ni, <ni; <0.125, and 1 <0.25, it holds that

a,@ =140l — )<l if i#n. (637)
(xﬁl’) =1-n2+ak,) <1l if i=n

Thus, £V, are asymptotical stable.

This completes the proof.

From (6.37), we can easily see that the only fixed points where the MCA
condition is fulfilled are the attractors, and all others are repellers or saddle points.
We conclude that the Algorithm (6.17) converges toward the minor eigenvector
+V, associated with the minor eigenvalue 1,,.

6.3.3 Computer Simulations

In this section, we provide simulation results to illustrate the convergence and
stability of the MCA Algorithm (6.17) in a stochastic case. Since OJAm [17],
Moller [23], and Peng [11] are self-stabilizing algorithms and have better conver-
gence performance than some existing MCA algorithms, we compare performance
of Algorithm (6.17) with these algorithms. In order to measure the convergence
speed and accuracy of these algorithms, we compute the norm of W(k) and the
direction cosine at the kth update. In the simulation, the input data sequence, which
is generated by [17], X(k) = C h(k), where C = randn(5, 5)/5 and h(k)eR>!, is
Gaussian and randomly generated with zero-mean and unitary standard deviation.
The above-mentioned four MCA algorithms are used to extract minor component
from the input data sequence {x(k)}. The following learning curves show the
convergence of W(k) and direction cosine(k) with the same initial norm for the
weight vector and constant learning rate, respectively. All the learning curves below
are obtained by averaging over 30 independent experiments. Figures 6.2 and 6.3
investigate the case ||W(0)|| = 1, and Figs. 6.4 and 6.5 show the simulation results
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for higher-dimensional data (D = 12), using different learning rates and maximal
eigenvalues, which satisfy the conditions of Theorem 6.6.

From Fig. 6.3, we can see that for all these MCA algorithms, direction cosine
(k) converge to 1 at approximately the same speeds. However, from Fig. 6.2 we can
see that the Moller and OJAm algorithms have approximately the same conver-
gence for the weight vector length and there appear to be a residual deviation from
unity for the weight vector length, and the norm of the weight vector in Peng
algorithm has larger oscillations, and the norm of the weight vector in Algorithm
(6.17) has a faster convergence, a better numerical stability and higher precision
than other algorithms. From Figs. 6.4 and 6.5, it is obvious that even for
higher-dimensional data, only if the conditions of Theorems 6.2—6.6 are satisfied,
Algorithm (6.17) can satisfactorily extract the minor component of the input data
stream.

In this section, dynamics of a class of algorithms are analyzed by the DDT
method. It has been proved that if some mild conditions about the learning rate and
the initial weight vector are satisfied, these algorithms will converge to the minor
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Norm and Direction Cosine of W(k)
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component with unit norm. At the same time, stability analysis shows that the minor
component is the asymptotical stable equilibrium point in these algorithms.
Simulation results show that this class of self-stabilizing MCA algorithms outper-
forms some existing MCA algorithms.

6.4 DDT System of a Unified PCA and MCA Algorithm

In Sect. 6.3, the convergence of a MCA algorithm proposed by us is analyzed via
DDT in details. However, in the above analysis, we made one assumption, i.e., the
smallest eigenvalue of the correlation matrix of the input data is single. In this
section, we will remove this assumption in the convergence analysis and analyze a
unified PCA and MCA algorithm via the DDT method.
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6.4.1 Introduction

Despite the large number of unified PCA and MCA algorithms proposed to date,
there are few works that analyze these algorithms via the DDT method and derive
the conditions to guarantee the convergence. Obviously, this is necessary from the
point view of application. Among the unified PCA and MCA algorithms, Chen’s
algorithm [22] is regarded as a pioneering work. Other self-normalizing dual sys-
tems [24] or dual-purpose algorithms [19, 20] can be viewed as the generalizations
of Chen’s algorithm [22]. Chen’s algorithm lays sound theoretical foundations for
dual-purpose algorithms. However, no work has been done so far on the study of
Chen’s DDT system. In this section, the unified PCA and MCA algorithm proposed
by Chen et al. [22] will be analyzed and some sufficient conditions to guarantee its
convergence will be derived by the DDT method. These theoretical results will lay a
solid foundation for the applications of this algorithm.

6.4.2 A Unified Self-stabilizing Algorithm for PCA
and MCA

Chen et al. proposed a unified stabilizing learning algorithm for principal compo-
nents and minor components extraction [22], and the stochastic discrete form of the
algorithm can be written as

W(k+1) = W(k) =+ |||W(K)|*y(k)X (k) —yz(k)W(k)} +n(1— W))W (k),
(6.38)

where n (0<n<1) is the learning rate. Algorithm (6.38) can extract principal
component if “+” is used. If the sign is simply altered, (6.38) can also serve as a
minor component extractor. It is interesting that the only difference between the
PCA algorithm and the MCA algorithm is the sign on the right hand of (6.38).

In order to derive some sufficient conditions to guarantee the convergence of
Algorithm (6.38), next we analyze the dynamics of (6.38) via the DDT approach.
The DDT system associated with (6.38) can be formulated as follows. Taking the
conditional expectation E{W(k+1)/W(0),X(i),i<k} to (6.38) and identifying
the conditional expectation as the next iterate, a DDT system can be obtained and
given as

W(k-+1) = W(k) £ || W(K) |"RW (k) — W' (ORW(K)W(K)]

(6.39)
+n(1— [W(R)|*)W(k),
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where R = E[X(k)X"(k)] is the correlation matrix of the input data. The main
purpose of this section is to study the convergence of the weight vector W(k) of
(6.39) subject to the learning rate n being some constant.

6.4.3 Convergence Analysis

Since R is a symmetric positive definite matrix, there exists an orthonormal basis of
R" composed of the eigenvectors of R. Let 4, 42, - - -, 4, to be all the eigenvalues of
R ordered by 4, > 7, > -+ > 1,_1 > 4, > 0. Denote by o, the largest eigenvalue of
R. Suppose that the multiplicity of ¢ is m(1 <m<n). Then, 6 = 11 = -+ = .
Suppose that {V;|i = 1,2, ---,n} is an orthogonal basis of " such that each V; is a
unitary eigenvector of R associated with the eigenvalue /;. Denote by V,
the eigen-subspace of the largest eigenvalue o, i.e., V, =span{Vy,---,V,}.
Denote by V? the subspace which is perpendicular to V,. Clearly, VgL =
span{V,,1,---,V,}. Similarly, we can denote by V, the eigen-subspace of the
smallest eigenvalue . Suppose that the multiplicity of 7 is p(1 <p <n — m). Then,
V. =span{V,_p,---,V,} and Vi =span{Vy, -, V,_, 1 }.

Since the vector set {V,V3,---,V,} is an orthonormal basis of R”, for each
k>0, W(k) and RW (k) can be represented, respectively, as

Wk) =Y "zu(k)Vi, RW(k) = lz(k)V;, (6.40)
i=1 =1
where z;(k)(i = 1,2,...,n) are some constants.

From (6.39) and (6.40), it holds that
a(k+1) = [L+£ (| WE)|[? =W (K)RW (k) +n(1 = [|[W(E)|))]z(k), (6.41)
(i=1,2,...,n), forall k > 0.

By letting Q(R, W(k)) = [4{|W(k)|P— W (K RW (k).
(6.41) can be represented as

zi(k+1) = [L+nQ(R, W(k)) +n(1 — [W(K)[*)]z(k), (6.42)

(i=1,2,...,n), for all k > 0. According to the properties of the Rayleigh
Quotient [7], it clearly holds that

LW OW(K) < W ORW (k) < 2 W (k)W (K), (6.43)

for all & > 0. From (6.43), it holds that
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Onax = (1 = 2)IWR)I, Quin = (Zu — 20) [W(K)|. (6.44)

Next, we will analyze the convergence of DDT system (6.39) via the following
Theorems 6.8-6.11.

Theorem 6.8 Suppose that 1 <0.3. If [W(0)|| <1 and (A1 — Ay) <1, then it holds
that ||W(k)|| < (1+niy), for all k> 0.

Proof From (6.40)—(6.44), it follows that

Wl DI = 302+ 1) = 37 [1-+ n0(R W) +1(1 — WGP (0
i=1 i=1
<3 [1 1G4 01— WG] 20

< [+t = 2R (1= W)

< (L4020 = 22) [WER+n(1 = [WER) )P WK

Thus, it holds that [|[W(k + 1)[|* < [1 4 n(A — AW E)||* +n(1 — |[W(&)|P)]?
W (k)|

Define a differential function f(s) = [1+n7(A — 4, — 1)s+1n]%s, over the
interval [0, 1], where s = |[|[W(k)||* and f(s) = ||W(k+ 1)||*. It follows that

F)=04+n—ns(hn+1—=2))1+n—=3ns(2n+1— 1)), (6.45)
for all 0 <s< 1. Clearly,

. . 1479 147
5) =0, s=———~"—— or §S=——————.
Q) if (A +1—41) N +1—=14)

Denote 0 = (1 +1#)/(34(4, + 1 — 41)). Then, we have
. >0, if 0<s<0
fs)d =0, ifs=0 (6.46)
<0, if s>0.
By 1 <0.3, clearly,
0=(1+n)/Bn(dn+1—=4))=0+1/m)/Bl = (L —4)) >1.  (647)

From (6.46) and (6.47), it holds that f (s) > 0 for all 0<s< 1. This means that
f(s) is monotonically increasing over the interval [0,1]. Then, for all 0<s<1, it
follows that



6.4 DDT System of a Unified PCA and MCA Algorithm 171

F) <) = 140 = 2P <(L4+nk)>

Thus, we have [|[W (k)| <(1+#n4,) for all k> 0.

This completes the proof.

Theorem 6.8 shows that there exists an upper bound for |W (k)| in the DDT
system (6.39), for all k> 0.

Theorem 6.9 Suppose that 1 <0.3. If |W(0)|| < 1, then it holds that |W (k)| > ¢
for all k>0, where ¢ = min{[l —a]IW )], [1 = nir (1 +ni)* — n(2ni +
A7)}

Proof From Theorem 6.8, we have |W(k)|| < (1 +n4,) for all k& > 0 under the
conditions of Theorem 6.9. Next, two cases will be considered.

Case 1. 0<||W(k)|| <1.

From (6.40)—(6.44), it follows that

Wk DI 2 3 (1400w +01 — WG] Z 6

i=1

> [t = IW IR + (1= W) S 2w

> [l — ) W] WP > [1 = I W@®I] 1w @)
> [P IWE)

Case 2: 1 <||W(k)|| < (1+nk).
From (6.40)—(6.44), it follows that

WG+ DIP> S (14 1Qmia + (1 — [WRPPE®E)
i=1

= (L0 = 2)[WHEP +n(1 ~ IW(k)Ilz)]zzn;Z?(k)
> [ n WP+ (200 - 2)] IWG0
> [1 — i (1+n4)>=n(2nk +172/”ﬁ)r~
From the above analysis, clearly,
IW (&) > ¢ = min{[L = n2)[WO)[l, [L = n21 (1 +021)* = n(2nZs +0*2)]},

for all £ > 0. From the conditions of Theorem 6.2, clearly, it holds that ¢ > 0.
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This completes the proof.

At this point, the boundness of DDT system (6.39) has been proved. Next, we
will prove that under some mild conditions, ] lim W(k) =>",2zV; € Vfor PCA

— + 00
and lim W(k)=>1, % Vi€V, for MCA.
— + 00

In order to analyze the convergence of DDT (6.39), we need to prove some
preliminary results.

From (6.40), for each £k > 0, W(k) can be represented as

W(k) = f:z,-(k)v,-—k z": Zj(k)Vj for PCA

j=m+1
n—p n
Wk)= > z(k)Vi+ > <z(k)V; for MCA.
i=1 j=n-p+1

Clearly, the convergence of W(k) can be determined by the convergence of
zi(k) (i =1,2,...,n). The following Lemmas 6.2-6.4 provide the convergence of
zi(k) (i=1,2,...,n) for PCA, and Lemmas 6.5-6.7 provide the convergence of
zi(k) (i = 1,2,...,n) for MCA.

In the following Lemmas 6.2-6.4, we will prove that all zj(k) (i = 2,3,...,n) will
converge to zero under some mild conditions.

Lemma 6.2 Suppose that 7 <0.3. If W(0) ¢ VX and |W(0)| <1, then for PCA
algorithm of (6.39) there exist constants 6; >0 and II; >0 such that
Z?:m+ | z]?(k) <TIL e 0% for all k>0, where 0, =—-Inf>0 and

B=[-n(c—Iini1)/(1/E+n(c—1)+n(1/c* - 1))]2. Clearly, f is a constant
and 0<f<1.

Proof Since W(0) ¢ V-, there must exist some i(1 <i<m) such that z;(0) # 0.
Without loss of generality, assume z;(0) # 0. For PCA, it follows from (6.41) that

ailk+1) =[1+n(a|W(k)[|>~WT (k)RW (k)

2 ’ (6.48)
+n(1 = [WE)[[)]zi(k), (1<i<m)
and
gi(k+ 1) =[1+n(%||W(K)[|>~W" (k)RW(k))
5 . (6.49)
+n(1 = [[WK)[[)]z;(k), m+1<j<n
for k> 0.

Using Theorem 6.9, it holds that ||W(k)|| > ¢ for all k> 0. Then, from (6.48)
and (6.49), for each j(m+ 1 <j<n), we have
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[Zj(k+ 1)} P (| W) P - (W ()RW (k)
2 (k+1) |1+ n(al|W(k)||>—(W" (k)RW (k)

L (o = 2) W) r[amr
( ©I?)

1|W@N%T[amr
L W)

2
/WK +'7(0—T) ’1(1/||W(k)” )] L'(k)
- 0(6 = Jms1) r[amr
1/t +n(o —1)+n(1/c> = 1)
ij(k) <pr1d z(0) ij(o) o Oi(k+ 1)
z1(0) Z%(O) ’

(6.50)

for all k>0, where 0; = —Inf§ > 0. Since |W(k)||<(1+niy), z1(k) must be
bounded, i.e., there exists a constant d > 0 such that z2(k) <d for all k > 0. Then,

n B n Zj(k) 2 _s,
5 g0 3 [ qw<Tten

Jj=m+1 Jj=m+1

n 2
for k>0 where [[, =d Y |:szl(((())>):| >0.
Jj=m+1

This completes the proof.
Based on the Lemma, we have Lemma 6.3.

Lemma 6.3 Suppose that ni1 <0.25 and n<0.3. Then for PCA algorithm of
(6.39) there exist constants 0, > 0 and [[, > 0 such that

1= (1= o)||[W(k+1)|>~WT(k+1)RW(k+1)| < (k+1)

H k+l)+max{e 97]( —9 k}]
2

for all k> 0.
Proof For PCA, it follows from (6.41) that
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IW(k+1)|* = Z [+ (Al W)= W ()RW (K)) +n(1 — [|W(k)|[*)]*< (k)
i=1

+ ._Z [L+ (Al W (R) =W (K)RW (K)) +n(1 — [|W(K)|*)]*2 (k)

= > L@ WE)P =W ©RRW () +n(l — [WE))Z (k)

= [1+n(a|WE)|> =W ()RW (k) +n(1 — W))W EK)|* + H(k),
(6.51)

for any k>0,
where H(k) = ‘:2”? 1 [(2+77(/1i+0)||W(1<)H2+2'7(1 — [IWE)P=WT (KRW (K))) n(ii — J)IIW(k)HZ‘Z?(k)]-

Clearly,
Wk +1DRW (k+1) Zi L n(Z | WE) P~ W (RW (k) +n(1 = [W(&)|[*)]*2 (k)

= 3 AL+ (oW P W RRW(R) + (1 — [WEPP2E)
i=1

+ > AL WEP=WTRRW (k) + (1 [[W )| (k)

i=m+1

- Z AL+ (al| W) =W (RRW (k) + (1 — [W(K) [ (k)

i=m+1
= [1+n(a||W(K)|* =W ()RW (k) +n(1 — [|[W(K)||)* W (k)RW (k) + H'(k),
(6.52)

for any k>0,
where H'(k) = i 1[(2+11(ﬂ-i+<7)|\W(k)H2+2'1(1 — W)~ W' ()RW (k) 04 — o) [|W(Kk)]*-

i=m

2iz2(k)]. Then, it follows from (6.51) and (6.52) that

1= (1= a)|[Wk+DP~WT(k+ DRW(k + 1)

= (1= (1= )|WEI W RRWE){L — 21+ (1 — (1 = o) |W(K)|’
— W IORW(R))]((1 = o) [W(K)|* + W' ()RW (K))} — (1 — 0)H (k) — H'(k)

for all £>0.
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Denote
2
k) = [1= (1= a)[|[W(K)|[|*~ W ()RW k)|,
for any k£ > 0. Clearly,

V(k+1) <VE){1 = 2n+n(1 = (1 = o) [W(K) =W (K)RW(K))]((1 — o)W (k)|
+ WIK)RW (k) +|(1 — o)H (k) + H (k)|

Denote
8= {1 =20+ = (1 = o) |WHK)|*~W ()RW(K)]((1 — o) [W(K) | + W (k)RW (k))}|.
From Theorem 6.8, nl; <0.25, #<0.3 and (6.43), it holds that

20+ n*(1 = (1 = o) [|[W(k)|*=WT ()RW (K))]((1 — o) [|W(k)|* + W (k)RW (k))
<[2n+n*(1 = (1 = o) [|W(k)|>—W" (k)RW (k))]
<R+ (1= (1= o) |WK)|[*~ 2| W(K)[*)]

<2+ (L+al|WE)|*) <20+ n(n +nAi(1+ni1)*) <0.8071,

Clearly, 0 <d < 1. Then,
V(k+1)<oV(k)+|(1 —o)H(k)+H'(k)|,k>0.

Since

(1 = 0)H (k) + H'(K)| < (2 + 21| W (k)| +20) (|| W (k) ||*) Z G (01— o) + 4]

i=m+1

<@+ e WO + 20 S 20 <o L™

i=m+1
for any k>0, where ¢ = (24 2na(1 +741)> +21) - no(14n1)%, then
k
Vk+1) <3V ©0)+ o] [, D (se") e
r=0

< V(0) + (k+ 1)¢] [, max{s",e "}
<(k+ 1)1_[2 [6762(k+1> +max{e’92k,e’0‘k}} ,



176 6 Deterministic Discrete-Time System for the Analysis ...

where 0, =—1Ind >0 and [], = max{|1 - (1 — a)|W(0)|*~WT(0)RW(0)],
o1} >0.

This completes the proof.
Based on Lemmas 6.2 and 6.3, we have Lemma 6.4.

Lemma 6.4 For PCA algorithm of (6.39), suppose there exist constants 0 > 0 and
I1 > 0 such that

n|(1 = (1= o)[[W(k+ D|P =W (k+ DRW (k+ 1))zi(k+ 1)| < (k+ D] Je "+,
i=1,...,m)
for all k> 0. Then, klim zi(k)=2,(=1,...,m), where i, (i=1,...,m) are

constants.

Proof Given any ¢ > 0, there exists a K > 1 such that

HKe—HK -

For any k; > k, > K, it follows that

|zi(k1) = zi(k2)| = <n i (@ IWOIP W) RW () +1 = [W(r)]*)z(r)]

r=ky

S flr+ 1) — (7)]

r=ky

ki—1
=0y |(1= (=) |W(r)P=W() RW(r)z(r)]

r=ky
ki—1 + 00 + 00
< H Z ref()r < H Z ref()r < HKefl)K Z r(e—O)rfl
=l =K =0
—0K
N L )
(1—e)

This means that the sequence { z;(k) } is a Cauchy sequence. By the Cauchy

convergence principle, there must exist a constant z*(i =1,...,m) such that
lim z(k)=2z,(G{=1,...,m).
k— 400

This completes the proof.
Using the above theorems and lemmas, the convergence of DDT system (6.39)
for PCA can be proved as in Theorem 6.10 next.

Theorem 6.10 Suppose that ni; <025 and n<03. If W(0) & Vs and
IW(0)|| <1, then the weight vector of (6.39) for PCA will converge to a unitary
eigenvector associated with the largest eigenvalue of the correlation matrix.

Proof By Lemma 6.2, there exist constants 6; >0 and II; >0 such that

Z;:m+1;?(k) <TI, -e %k for all k>0. By Lemma 6.3, there exist constants

0> > 0 and [], > O such that
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(1= (1= o) |[W(k+ 1> =W (k+ DRW(k+1))| < (k+1)- ],
. [efﬂz(k+l) —|—max{ef€2k,e79‘k}],

for all k> 0. Obviously, there exist constants § > 0 and [ > 0 such that

(1= (1= o)[|[W(k+1)|? =W (k+ DRW(k+1))z;(k+ 1)| < (k+ 1) Je "+ Y,
(i=1,....,m)
for k > 0. Using Lemmas 6.4 and 6.2, it follows that

klim zlk)=2,(i=1,...,m)
—+ 00
klim zi(k) =0,(i=m+1,....n).
— + 00

Then, klim W(k)=53",2VieV,. It can be easily seen that
—+ 00

Jim W= 1 (&) = 1.

This completes the proof.

After proving the convergence of DDT system (6.39) for PCA, we can also
prove the convergence of DDT system (6.39) for MCA using similar method. In
order to prove the convergence of the weight vector of (6.39) for MCA, we can use
the following Lemmas 6.5—6.7 and Theorem 6.11, the proofs of which are similar to
those of Lemmas 6.2—6.4 and Theorem 6.10. Here, only these lemmas and theorem
will be given and their proofs are omitted.

Lemma 6.5 Suppose that 1 <0.3 .If W(0) & V& and ||W(0)|| < 1, then for MCA
algorithm of (6.39) there exist constants 0; >0 and TI} >0 such that

Z;:lp Z}(k) < H'l ek for all k>0, where 0i=—Inpf >0 and

B =11 =n(np1—1)/(1/c* = n(z —6)+n(1/c® = 1))]*. Clearly, f is a con-
stant and 0< B/ <1.

Proof For MCA, it follows from (6.41) that

IW(k+1)|* = Z (1= n(Al WR)IP=WTRRW (k) +n(1 — [W®K)|*)] 2 (k)
i=1

= [L=n(z||WE) > =W () RW (k) +n(1 — [W(K) || W (K)|* + H (k),
(6.53)

for any k£ >0 where

n-p

HK) =Y [ = n(a+DIWR)IP +24(1
i=1

— [WE)I” + W RRW(K))) - n(c — ) [W(K)||*2 (k)|
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and,

W (k+ DRW(k+1) = ixiu = (2| WE) =W RORW (k) +n(1 — [ W(K)|[*)] 22 (k)

= [L=n(z|WK)|P=W (K)RW (k) +n(1 — [W(K)[*)W" ()RW (k) +H (k),
(6.54)

for any k£ >0 where

!

H (k)

[ = 0+ ) IWER)IP +20(1 = [WEIP + W ERRWK)) - n(c = 7a) [ W22 (k)]

Then, it follows from (6.53) and (6.54) that

1— (1+0)||Wk+ 1|+ W (k+ D)RW(k + 1)

= (1= (1+0)[[WE)|I* + W ()RW (k) {1+ [-2n+n*(1 — (14 1)|W(K)|
+ WTRRW (k)|[WT(RW () — (1+0)[W(K)} — (1+0)H (k) + ' (k)
for all £>0.
Denote

V(k) = 1 = (1+0)[[WE)|> + W ()RW (k)]
for any k > 0. Clearly,
Vk+1) <VE)[{1 = 27 = (1 = (1+ ) [W(K)||* + W (k)RW (k))][W" (k)RW (k)
—(1+ ) [[WE) P + [H (k) = (1+1)H(K)].
Denote

& =[{1 = 2n—n*(1 = A+ )W) + W ()RW (k)W (k)RW (k) — (14 1)||W(K)[*]}.
From Theorem 6.8, n1; <0.25, #<0.3, and (6.43), it holds that

27 — (1 = (1+0)[[W(E)[|* + W ()RW (k)] [o]| W ()P~ (1 + ) [ W (K)||°]
= 20— (1 = (1+ ) [WE)|* + W ()RW (k))][(0 — (1+72)[|W(K)|’]
<P2n =0’ (1= [WE) )]l WE)[*] < (n20)[2 = n(1 = [|WER)|[P)][IW )]
<0.25%[2—0.3+0.3 % (1+0.25)%](140.25)
= 0.8471.
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Clearly, 0< &' <1. Then,
V(k+1)<oV(k)+|H (k) — (1 +1)H(k)|,k > 0.
Since
[H' (k) = (1+7)H (k)|

< |2 = 202 WO+ 20(1 + o WE)P) (o W) ) S 20 i — (149

i=1
< @+24(1+a|[WK)*) - (na| WK - o — (1 + )] i:ziz(k)
<¢'T[e™,

for any k>0, where ¢ = (2+25(1+0(14+n)%)- (no(1+ni)?) - |o—
(1+1)|, we have

1 k

V(k+1)§5/k+1‘7(0)+¢lﬂz 5/ 0 r 70k
1 r=0

<STW(0) 4 (k+1)¢ H max{5*, e %}
i

!

<(k+1) H [e_%(“ D 4 max{e % e it} |,
2

where 0, = —1Iné >0 and [[, = max{ -1 +’L’)||W(0)||2+WT(0)RW(0)‘,
¢TI} > 0.
This completes the proof.

Lemma 6.6 Suppose that 14, <0.25 and n<0.3. Then for MCA algorithm of
(6.39) there exist constants 0’2 > 0 and le > 0 such that

1= (1+ )W+ D)+ W k+ DRW(k+ 1) < (k+1) - ][
. [e—ﬁ’z(k+ 1) + max{e_glzk, e—f)’,k}L

for all k> 0.
For the proof of this lemma, refer to Lemma 6.3.

Lemma 6.7 For MCA algorithm of (6.39), suppose there exists constants 0' > 0
and [ > 0 such that
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0| (1= (L+ D)Wk + DI + Wk + DRW(k+1))zi(k+ 1) < (k+ D] e 7® Y,
i=n—-p+1,...,n)

Jor k>0. Then, klimz,-(k):zf,(i:n—p—l—l7...7n), where 7', (i=n—

i
p+1,...,n) are constants.
For the proof of this lemma, refer to Lemma 6.4.

Theorem 6.11 Suppose that 1/, <0.25 and n<0.3. If W(0) € V: and
IW(0)|| <1, then the weight vector of (6.39) for MCA will converge to a unitary
eigenvector associated with the smallest eigenvalue of the correlation matrix.

From Lemmas 6.5-6.7, clearly Theorem 6.11 holds.

At this point, we have completed the proof of the convergence of DDT system
(6.39). From Theorems 6.8 and 6.9, we can see that the weight norm of PCA algorithm
and MCA algorithm of DDT system (6.39) have the same bounds, and from Theorems
6.8-6.11, it is obvious that the sufficient conditions to guarantee the convergence of
the two algorithms are also same, which is in favored in practical applications.

6.4.4 Computer Simulations

In this section, we provide simulation results to illustrate the performance of Chen’s
algorithm. This experiment mainly shows the convergence of Algorithm (6.39)
under the condition of Theorems 6.10 and 6.11.

In this simulation, we randomly generate a 12 x 12 correlation matrix and its
eigenvalues are 1; = 0.2733, 1, = 0.2116, 23 = 0.1543, ...and A1, = 0.0001. The
initial weight vector is Gaussian and randomly generated with zero-mean and
unitary standard deviation, and its norm is less than 1. In the following experiments,
the learning rate for PCA is # = 0.05 and the learning rate for MCA is n = 0.20,
which satisfies the condition of #1; <0.25 and # <0.3. Figure 6.6 shows that the
convergence of the component z;(k) of W(k) in (6.39) for PCA where z;(k) =
WY (k)V, is the coordinate of W(k) in the direction of the eigenvector
Vi(i=1,2,3,4,...,12). In the simulation result, z;(k)(i =2,3,4,...,12) con-
verges to zero and z; (k) converges to a constant 1, as k — oo, which is consistent
with the convergence results in Theorem 6.10. Figure 6.7 shows the convergence of
the component z;(k) of W (k) in (6.39) for MCA. In the simulation result, z;(k)(i =
1,2,3,...,11) converges to zero and z;,(k) converges to a constant 1, as k — oo,
which is consistent with the convergence results in Theorem 6.11.

From the simulation results shown in Figs. 6.6 and 6.7, we can see that on
conditions of nl; <0.25, #<0.3, and ||W(0)|| <1, Algorithm (6.39) for PCA
converge to the direction of the principal component of the correlation matrix. And
if we simply switch the sign in the same learning rule, Algorithm (6.39) for MCA
also converge to the direction of minor component of the correlation matrix.
Besides, further simulations with high dimensions, e.g., 16, 20, and 30, also show
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Fig. 6.6 Convergence of 1.2
W (k) for PCA

°c o o
> o o

o
N

Component of W(k)
o

©
)

°
£

06 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Number of lterations
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that Algorithm (6.39) has satisfactory convergence under the conditions of
Theorems 6.10 and 6.11. Figures 6.8 and 6.9 show the simulation results of Chen’s
PCA and MCA algorithm with dimension 20, respectively, where the learning rate
for PCA is n = 0.05 and the learning rate for MCA is n = 0.20, which satisfy the
condition of n4; <0.25 and 5 <0.3.

In this section, dynamics of a unified self-stability learning algorithm for prin-
cipal and minor components extraction are analyzed by the DDT method. The
learning rate is assumed to be constant and thus not required to approach zero as
required by the DCT method. Some sufficient conditions to guarantee the con-
vergence are derived.
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Fig. 6.8 Convergence of 1
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Fig. 6.9 Convergence of
W (k) for MCA

Component of W(k)

8 L L L L L L 1 z1(k) H
0 200 400 600 800 1000 1200 1400 T6UU T8UU 2000

Number of Iterations

6.5 Summary

In this chapter, we have analyzed the DDT systems of neural network principal/
minor component analysis algorithms in details. First, we have reviewed several
convergence or stability performance analysis methods for neural network-based
PCA/MCA algorithms. Then, a DDT system of a novel MCA algorithm proposed
by us has been analyzed. Finally, we have removed the assumption that the smallest
eigenvalue of the correlation matrix of the input data is single, and a DDT system of
a unified PCA and MCA algorithm has been analyzed.
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Chapter 7
Generalized Principal Component
Analysis

7.1 Introduction

Recently, as a powerful feature extraction technique, generalized eigen decompo-
sition (GED) has been attracting great attention and been widely used in many
fields, e.g., spectral estimation [1], blind source separation [2], digital mobile
communications [3], and antenna array processing [4, 5]. The GED problem is to
find a vector v and a scalar /4 such that

Ry = /R, (7.1)
where R, and R, are n x n symmetric positive definite matrices. The positive scalar

A and the associated vector v are called the generalized eigenvalue and generalized
eigenvector, respectively, of the matrix pencil (R,,R,). According to the matrix

theory, this matrix pencil has n positive generalized eigenvalue, 4y, /5, .. ., 4,, and
associated R,-orthonormal generalized eigenvectors, vi,v,, ..., V,, i.e.,
Ryv,- = /linvl-, (72)
T .o
Vl-Rijzéij 1,] € {1,2,...7}1}, (73)

where ()T stands for the transpose of a vector or a matrix and J; is the Kronecker
delta function.

In order to solve the GED problem, some algebraic algorithms have been pro-
posed for given R, and R, [6, 7, 8-11]. Using equivalence transformations, Moler
[11] proposed a QZ algorithm, and Kaufman [9] proposed an LZ algorithm for
solving it iteratively. However, their methods do not exploit the structure in R, and
R.. In the case of symmetric R, and symmetric positive definite R,, several efficient
approaches were proposed. By using the Cholesky factorization of R,, this problem
can be reduced to the standard eigenvalue problem as reported by Martin in [11].
Bunse-Gerstner [6] proposed an approach using congruence transformations for the

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017 185
X. Kong et al., Principal Component Analysis Networks and Algorithms,
DOI 10.1007/978-981-10-2915-8_7



186 7 Generalized Principal Component Analysis

simultaneous diagonalization of R, and R,. Shougen [7] reported an algorithm that
makes use of Cholesky, QR, and SVD when R, is also positive definite. This
algorithm is stable, faster than the QZ algorithm, and is superior to that of [10].
Auchmuty [8] proposed and analyzed certain cost functions that are minimized at
the eigenvectors associated with some specific eigenvalues. He also developed two
iterative algorithms for numerically minimizing these functions.

The approaches mentioned above are for the case where R, and R, are fixed
matrices. In adaptive signal processing applications, however, R, and R, corre-
spond to asymptotic covariance matrices and need to be estimated. On the other
hand, these algebraic algorithms are computationally intensive and belong to batch
processing algorithms [12]. They are inefficient or infeasible in many real appli-
cations. Therefore, it is valuable to develop adaptive algorithms for the GED.
Neural networks can be used to solve this problem, which possess many obvious
advantages. For example, neural network algorithms have lower computational
complexity than algebraic algorithms. Besides, neural network methods are suitable
for the tracking of nonstationary distributions and high-dimensional data, since they
can avoid the computation of the covariance matrix [13].

In recent years, some adaptive or neural network methods have been proposed to
solve the GED problem. In [14], the generalized symmetric eigenvalue problem,
where the underlying matrix pencil consists of symmetric positive definite matrices,
was recasted into an unconstrained minimization problem by constructing an
appropriate cost function. Then, it is extended to the case of multiple eigenvectors
using an inflation technique. Based on this asymptotic formulation, a quasi-
Newton-based adaptive algorithm for estimating the required generalized eigen-
vectors in the data case was derived. The resulting algorithm is modular and parallel,
and it is globally convergent with probability one. Mao et al. proposed a two-step
PCA approach to solve the GED in [15]. They used the Rubner—Tavan model [16,
17] for the PCA steps. Thus, the convergence of their method depends only on the
convergence of the PCA algorithms. In [18], Chatterjee et al. proposed a gradient
algorithm by building a two-layer linear heteroassociative network. However, this
algorithm has low convergence speed and difficulty for selecting an appropriate step
size [18]. Xu et al. [19] developed an online and local algorithm for the GED. The
rule for extracting the first generalized eigenvector is similar to the LDA algorithm in
[18]. But, they used a lateral inhibition network similar to the APEX algorithm for
PCA [20] for extracting the minor components. Most of the above-mentioned
algorithms are based on gradient methods and they involve the selection of right step
sizes to ensure convergence. In general, the step sizes have an upper bound that is a
function of the eigenvalues of the input data as shown in [18]. This fact makes it very
hard on many occasions to choose a proper step size. If we use better optimization
procedures, the computational complexity is also a key issue.

In order to resolve these issues, Rao et al. developed a RLS-like, not true RLS,
algorithm for the GED, which is more computationally feasible and converges
faster than gradient algorithm [21]. The true RLS-based adaptive algorithm was
proposed by Yang et al. in [22]. Although the RLS algorithm can make use of the
data to estimate the covariance matrices and the generalized eigenvectors, it is still
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computationally very costly. Another approach for the GED problem is a so-called
reduced-rank generalized eigenvector extraction (R-GEVE) algorithm [23], which
searches for the generalized eigenvectors in a subspace spanned by the previous
estimate and the current input. However, the R-GEVE algorithm has a limitation in
fast tracking because the dimension of the subspace where the eigenvectors are
searched is much smaller than that of the signal space [24]. In order to obtain fast
adaptive algorithm, Tanaka proposed a power method-based fast generalized
eigenvector extraction (PM-FGE), which reformulated the GED as a classical
eigenvector problem [24]. Inspired by the learning rule [25], Yang et al. presented
an unconstrained cost criterion, whose global minimum is exactly the generalized
eigenvectors, and derived a fast adaptive algorithm by gradient method [12, 26].

The above-mentioned algorithms are very efficient in computing the principal
generalized eigenvectors, which are the eigenvector associated with the largest
generalized eigenvalue of a matrix pencil. However, the minor generalized eigen-
vectors are also needed, since minor generalized eigenvectors also play vital roles in
many signal processing applications [27-31]. In [32], Ye et al. proposed an
adaptive algorithm to extract the minor generalized eigenvector by using a
single-layer linear forward neural network. In [33], Nguyen et al. derived a fast and
stable algorithm for the GED problem by extending the Mdller algorithm [34]. Up
to now, there are very few adaptive algorithms for the minor generalized eigen-
vector extraction [33, 35]. In this chapter, we will develop several adaptive algo-
rithms for minor generalized eigenvector extraction. These algorithms are
self-stabilizing, and they have faster convergence speed and better estimation
accuracy compared with some existing algorithms. Their convergence will be
analyzed via DDT method or Lyapunov function approach.

In this chapter, we will review and discuss the existing generalized principal or
minor component analysis algorithms. Two minor generalized eigenvector extrac-
tion algorithms proposed by us will be analyzed in detail. The remainder of this
chapter is organized as follows. An overview of the existing generalized principal
or minor component analysis algorithms is presented in Sect. 7.2. A minor gen-
eralized eigenvector extraction algorithm and its convergence analysis via the DDT
method are discussed in Sect. 7.3. An information criterion for generalized minor
component and its extension to extract multiple generalized minor components and
their algorithms and performance analyses by Lyapunov function approach are
presented in Sect. 7.4, followed by summary in Sect. 7.5.

7.2 Review of Generalized Feature Extraction Algorithm

7.2.1 Mathew’s Quasi-Newton Algorithm for Generalized
Symmetric Eigenvalue Problem

In [14], the problem Mathew addressed can be formulated as follows. Given the
time series y(n) and R., develop an adaptive algorithm for estimating the first d
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(d < N) R.-orthogonal eigenvectors of the pencil (R, Ry) using (Ry(n),kx) as an
estimate of (R, Ry).
Consider the following problem [14]:

mina’'Rya subjecttoa’ Rya = 1. (7.4)
Using the penalty function method, the constrained minimization problem (7.4)

can be converted into an equivalent unconstrained minimization of the following
cost function:

_a'Rya N (@ Rea — 1)
2 4 ’

J(a, p) (7.3)
where u a positive scalar. Mathew proved that a* is a global minimizer of J(a, y) if
and only if a* is the minimum eigenvector of (R, R,) associated with eigenvalue
Jmin = u(1 — a*TRa*).

Leta;,i=1,2,...,k — 1 (with 2 <k < D) be the R, orthogonal eigenvectors of
(Ry, Ry) associated with the eigenvalues 4; = u(1 — afTRxaj-‘). To obtain the next
R,-orthogonal eigenvector a;, consider the following cost function:

T
_ a;Ryay

U
5 = (

Jelag, 1, o) +2 alRea; —1)°, (7.6)

where a; € RN, o is a positive scalar, and
k—1
Ry, = Ry +o Z (Rxaj)(Rxaf)T = Rye—1 7+ OC(Rva—l)(Rxalt—l)Tv k=2, (1.7)
i=1

with Ry; = R,,. Equation (7.7) represents the inflation step. Mathew has shown in
[14] that the minimizer of Ji(ag,u,o) is the kth R,-orthogonal eigenvector of
(Ry, R,) associated with eigenvalue Zx = u(1 — a;’ R.aj).

Let ax(n),k =1,2,...,D be the estimates of these vectors at the nth adaptation
instant. The Newton-based algorithm updating ax(n — 1) to ax(n) is of the form

ar(n) = ar(n— 1) —H;'(n — gy (n — 1), (7.8)

where Hy(n —1) and g,(n— 1) are the Hessian matrix and gradient vector,
respectively, of Ji(ay, p, «) evaluated at @ = ax(n — 1). By computing g,(n — 1)
and H;(n — 1), and approximating the Hessian to reduce the computation and
guarantee positive definiteness, quasi-Newton adaptive algorithm can be obtained,
which is summarized as follows [14]:

ar(n) = h(n— DR '(nRar(n — 1), k=1,2,...,D, (7.9)
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1+al(n—1)Rear(n—1)

hln = 1) = 117 + 2Rt (n — D]'R, () [Rear(n — 1)] k=12...D,
(7.10)
R;'(n) =R;' (n) — R (R (n = DIRr (1= VIR ()
e e 1/a+ [Rear_1(n— D]'R,! (0)[Reay(n—1)] 7
(7.11)
1 1 . n 1 Ry_l(n_ 1)y(n)yT(n)Ry_l(n_ 1)
o) =) = B ) TR, T — (o)
n>?2,
(7.12)

where y(n) = [y(n),y(n —1),...,y(n —N+1)]" is the data vector at the nth
instant.

It is worth noting that the above algorithm is modular and parallel, and it is
globally convergent with probability one. Simulation results demonstrate that the
performance of this algorithm is almost identical to that of the rank-one updating
algorithm of Karasalo. Furthermore, it does not suffer from the error buildup
problems when a large number of updates are performed.

7.2.2 Self-organizing Algorithms for Generalized Eigen
Decomposition

In [18], Chatterjee et al. proposed a gradient algorithm based on linear discriminant
analysis (LDA). They proposed an online algorithm for extracting the first gener-
alized eigenvector and then used deflation procedure for estimating the minor
components. The algorithm is summarized as follows:

W(k+1) = W(k)+ n(A(k)W(k) — B)W(K)UT[WT (k)A (k)W (k)]), (7.13)
Ak) =A(k — 1)+ y (x(k)x" (k) — A(k — 1)), (7.14)
B(k) = B(k — 1)+ 7, (y(k)y" (k) — B(k — 1)). (7.15)

where W(k) € " (p <n), Ao and By are symmetric, {,} and {7, } are sequences
of scalar gains, respectively.

The main drawback of this method is that the algorithm is based on simple
gradient techniques and this makes convergence dependent on the step sizes that are
difficult to be set a priori.
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7.2.3 Fast RLS-like Algorithm for Generalized Eigen
Decomposition

In [21], the GED equation was rewritten as
Row="""Row. (7.16)
wIR,w

If R, =1, then (7.16) will be reduced to the Rayleigh quotient and the gener-
alized eigenvalue problem will be degenerated to PCA. Premultiplying (7.16) by
R, and rearranging the terms, it holds that

wIR,w
=———R;'Ryw. 7.17
VTR 2 Y (7.17)
Equation (7.17) is the basis of Rao’s iterative algorithm. Let the weight vector
w(n — 1) atiteration (n — 1) be the estimate of the principal generalized eigenvector.
Then, the estimate of the new weight vector at iteration n according to (7.17) is

win)=—ro ] n_ )R;I(n)R,(n)w(n_n. (7.18)

It can be observed that (7.18) tracks the GED equation at every time step, and
this is a fixed-point update. The fixed-point algorithms are known to be faster
compared to the gradient algorithms. However, many fixed-point algorithms work
in batch mode, which means that the weight update is done over a window of time
[21]. This can be a potential drawback of the fixed-point methods. In the following,
the fixed-point update in (7.18) is transformed into a form that can be implemented
online.

By using Sherman—-Morrison—Woodbury matrix-inversion lemma, it holds that

Ry (n — s (mxl(n)R; ' (n — 1)
L+ x3 (R, (n — D)xa(n)

Ry'(n) =R, (n—1) - (7.19)

If w is the weight vector of a single-layer feedforward network, then we can
define y;(n) = wl(n — 1)x1(n) and y2(n) = wl(n — 1)x2(n) as the outputs of the
network for signals x;(n) and x,(n), respectively. With this, it follows easily that
wi(n—DRi(mw(n — 1) = (1/n) - y1(i) and w'(n — DRy (n)w(n — 1) = (1/n) 3 y3(0).

i=1 i=1

This is true for the stationary cases when sample variance estimators can be used
instead of the expectation operators. However, for nonstationary signals, a simple
forgetting factor can be included with a trivial change in the update equation [18].
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With these simplifications, the modified update equation for the stationary case can
be written as

wnﬁZl 1y2’ ¥
(=S SR Z 1)y (i (7.20)

where R, (n) is estimated using (7.19). The fixed-point GED algorithm for prin-
cipal GED vector can be summarized as follows:

(a) Initialize w(0) € R"*! as a random vector.

(b) Initialize P(0) € B! as a vector with small random values.
(c) Fill Q(0) € R™" with small random values.

(d) Initialize C;(0),C,(0) as zeroes for j > 0.

(e) Compute yi(j) = w'(j — 1)x1(j) and y2(j) = w'(j — D)x2(j).
(® Update P by P() = [1 =4 PG = 1) + [e1 ()1 ():
)x2(j)x3 (HQG—1)
(2) Update @ by Q(j) =Q( — 1) — m
(h) Update Cy, C, by Ci(j) = [1 —-} Ci(i— 1)+ Hyg(j), i=1,2.
(i) Update the weight vector by w(j) = CZ(’ Q(])P(})

(j) Normalize the weight vector
(k) Go back to step (e) and repeat until convergence is reached.

The above algorithm extracts the principal generalized eigenvector. For the
minor components, it can resort to the deflation technique. For detail, see [21].

The convergence of the fixed-point GED algorithm is exponential, whereas the
convergence of the online gradient methods is linear. Gradient algorithms are
dependent on step sizes, which result in nonrobust performance. In contrast, a
fixed-point algorithm does not require a step size for the updates. Like the gradient
methods, the above fixed-point algorithm has an online implementation that is
computationally feasible. The computational complexity is O(N*) where N is the
dimensionality of the input signals.

7.2.4 Generalized Eigenvector Extraction Algorithm Based
on RLS Method

In [22], in order to derive efficient online adaptive algorithms, Yang formulated a
novel unconstrained quadratic cost function for the GED problem. By applying
appropriate projection approximation [36], the cost function is modified to be fit for
the RLS learning rule. First, a parallel iterative algorithm for estimating the basis for
r-dimensional dominant generalized eigen subspace is derived. Then, starting from
the parallel algorithm for one vector case (r = 1), a sequential algorithm for
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explicitly estimating the first dominant generalized eigenvectors by using a defla-
tion method is developed. Furthermore, the algorithm for the generalized eigen
subspace is extended to estimate the first principal generalized eigenvectors in
parallel.

Consider the following scalar function:

J(W) = E|[R;'y — wW"y|

. (7.21)
It has been shown that the proposed cost function J(W) has a global minimum at
which the columns of W span r-dimensional dominant generalized eigen subspace
of (R, R,) and no other local minima [22]. This implies that one can search the
global minimizer of J(W) by iterative methods [22].
Consider the following exponentially weighted sum instead of the expectation
(7.21):

JOWIRD) = > B R 1]~ WIIW! Ry (7122)

where the forgetting factor f§ is between 0 and 1. If § = 1, all the samples are given
the same weights, and no forgetting of old data takes place. Choosing <1 is
especially useful in tracking nonstationary changes.

Considering the projection approximation technique [36], the computation can
be simplified by approximating W [k]y[j] in (7.22) with z[j] = W*[j — 1]y[j]. These
vectors can be easily computed because the estimated weight matrices W[j — 1] for
the previous iteration steps j=1,2,...,n are already known at step n. This
approximation yields the modified least squares-type criterion

k

JWIK) =" B[R 1) — WkJ2[] | (7.23)

J=1

Applying the RLS technique to minimize the modified criterion J'(W[k]), the
following recursive algorithm to solve the basis for r-dimensional dominant gen-
eralized eigen subspace can be derived. The parallel RLS-based adaptive algorithm
for principal generalized eigen subspace can be written as

z(k) = WH (k — 1)y(k) (7.24)
h(k) = P(k — 1)z(k) (7.25)

g(k) = h(k)/(B+z" (k)h(k)) (7.26)
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P(k) = Tri (% (P(k—1) — g(k)hH(k))) (7.27)
e(k) = Q(k)y(k) — W(k — 1)z(k) (7.28)
W(k) =Wk —1)+e(k)g" (k) (7.29)
1 Q(k — 1)x[k]x" [K]
0) =, (1= g - )2~ (730

where the notation Tri(-) means that only the upper triangular part of the argument
is computed and its transpose is duplicated to the lower triangular part, thus making
the matrix P[k] symmetric. The total computational complexity of the algorithm is
O(N?) + 3Nr + O(+%) per update.

Furthermore, the sequential adaptive algorithm for the first r principal general-
ized eigenvectors can be summarized as [22]

yi(k) =y(k) (7.31)

1 Ok DrR ) )
Q"“‘)‘T“(u(’ u+xH<k>Qx<k—1>x<k>>Q"(" ”) (7.32)

fori=1,2,...,r do

k) = ek — 1)K, (K) (733
4K = B2 () + [ D) (734

si(k) =y;(k) — ci(k — 1)z;(k) (7.35)
(k) = ek — 1) 5i(k) &L () /() (7.36)
wi(k) = Q(k)c;(k) (7.37)

Yo (6) = 3,(8) — xRyt (7.38)

The above algorithm requires 4Nr + N°r +O(N?) + O(r) operations per update.
In contrast to the parallel algorithm, this method enables an explicit computation of
the generalized eigenvectors. On the other hand, the deflation technique causes a
slightly increased computational complexity [22].

Although the sequential version of the algorithm can give r principal generalized
eigenvectors, the minor generalized eigenvectors may converge slowly because of
the estimation error propagation. In order to overcome these difficulties, Yang et al.
extended the parallel algorithm to find the principal generalized eigenvectors in
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parallel. The modified parallel algorithm for » principal generalized eigenvectors
can be summarized as follows:

z(k) = WH (k — 1)y(k) (7.39)

h(k) = P(k — 1)z(k) (7.40)

g(k) = h(k)/(B+2" (k)h(k)) (7.41)

P(k) = Tri (; (P(k—1) — g(k)hH(k))) (7.42)
(L, Qulk— Dx(k)x" (k) B

Q,{k) = Tn (u <’ X (R)Q, (k 1)x<k>>Q"(" 1)) (743)

e(k) = Q(k)y(k) — W(k — 1)z(k) (7.44)

W(k) =Wk —1)+e(k)g" (k) (7.45)

Ry (k) = nRy(k — 1) +y(k)y" (k) (7.46)

W (k)=Ry-orthogonalize(W (k)) (7.47)

Finally, the convergence properties of the above algorithms were analyzed in
[22]. Obviously, although the RLS algorithm makes use of the data to estimate the
covariance matrices, it is still computationally very costly.

7.2.5 Fast Adaptive Algorithm for the Generalized
Symmetric Eigenvalue Problem

In [23], Samir Attallah et al. proposed a new adaptive algorithm for the generalized
symmetric eigenvalue problem, which can extract the principal and minor gener-
alized eigenvectors, as well as their associated subspaces, at a low computational
cost. It is based, essentially, on the idea of reduced rank. That is, using some
appropriate transformation, the dimension of the problem is first reduced. The
algorithm has the following advantages: (1) lower computational complexity;
(2) faster convergence for large dimensional matrix and large number of principal
(or minor) generalized eigenvectors to be extracted; and (3) it can estimate both
principal and minor generalized eigenvectors, as well as their associated subspaces,
which are spanned by the principal and minor generalized eigenvectors. The idea of
reduced rank appeared for the first time in the context of generalized subspace
estimation [23].
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Let x;(7) and x,(¢) be two sequences of n x 1 random vectors with covariance
matrices C; = Efx;(t)x!(1)] and C; = E[x,(t)x% (¢)], respectively. The following
lemma holds [23].

Lemma 7.1 Assume p<n and (C;, C,) are n X n positive definite covariance
matrices. Let L = diag(ly, .. .,1,) with l; > ... > 1, > 0 be a diagonal matrix and
W a Cy- orthogonal matrix satisfying WSC,W = I. Then, the function J(W) =
tr(LWC\W) reaches its maximum (resp. minimum) when the column vectors of
W correspond to the p principal (resp. minor) generalized eigenvectors of (C;, C5).

Thus, the principal (minor) generalized eigen decomposition (GEV) of (C,,C5)
can be obtained. It should be noted that by choosing L = I, the estimated is the
generalized signal (resp. minor) subspace instead of the principal (resp. minor)
GEV.

Following the same idea as the approach in [37], Samir Attallah et al. proposed to
reduce the cost of the previous optimization problem by limiting the search of W (k)
to a reduced-rank subspace, which is chosen to be the range space of W(k — 1) plus
one or two additional search directions. Here, they proposed to search for W(k) in

the subspace spanned by V(r) é[W(k — 1)x1(#)] so that one can have
W(k) =V()U(r), (7.48)

where U(t) is a (p + 1) X p matrix. By doing so, one ends up with a similar GEV
problem but with dimensionality-reduced matrices, i.e., one now seeks a matrix
U(¢) to minimize (resp. maximize), under the constraint U"C,U =1, the cost
function

J(U) = w(LU"C,U), (7.49)

where

CAvicy, i=1,2. (7.50)

In other words, U is the matrix of the least (resp. principal) GEV of (Cy,C5) and
can be computed using a brute force method in O(p?). The R-GEVE algorithm can
be summarized as follows: At time instant ¢

(a) Compute C;(¢) and C,(t).
(b) Compute U(t) of the p minor (resp. principal) GEV of [Cy(t), C,(t)].
(c) Compute W(r) using (7.48).

The reduced-rank generalized eigenvalue extraction (R-GEVE) algorithm is
given as follows:

Initialization:

W(0), C;(0), C,;(0) = WH(0)C;(0)W(0),i=1,2, and 0<B<1.

Fort=1onward and i = 1, 2:
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yilt) = WH(t = Dxi(r) (7.51)

zi(t) = Ci(t — 1)x (1) (7.52)

yit) = Wt = 1)z(1) (7.53)

3it) = Byi(r) + (! (01 (1) )yi(0) (7.54)
(1) = et (1)zi(o) + [l (e (1) (7.55)
Ci(t—1)=U"(t-1)Ci(t — 1)Ut — 1) (7.56)
Ci(1) = BCyilt — 1) +3; (0! (1) (7.57)
0= {30 1) 58
Cit) = Ci(t — 1) +x;(0)x]' (1) (7.59)
U(r) — GEV(C\(1), Cx(1)) (7.60)
V) =[Wi—-1) x()] (7.61)
W) =V()U() (7.62)

R-GEVE is also suitable for the extraction of both principal and minor gener-
alized eigenvectors, as well as their associated subspaces, at a low computational
complexity.

7.2.6 Fast Generalized Eigenvector Tracking Based
on the Power Method

The power method is a classical way to find the subspace (principal subspace)
spanned by eigenvectors associated with the largest eigenvalues of a Hermitian
matrix. The power method-based algorithm can track generalized eigenvectors quite
fast. An iterative algorithm based on a power method can be shown as follows:

Ry (k) = oR,(k — 1) +y(k)y" (k) (7.63)

R, (k) = PR, (k — 1) +x(k)x" (k) (7.64)
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K(k) = R '(k) (7.65)

C(k) = K(k)R, (k)K" (k) (7.66)

W(k) = C(k)W(k —1) (7.67)

W(k) = Q(k)R(k), W(k) = First r columns of Q(k) (7.68)
W(k) = K (k)W (k), (7.69)

in which the first two equations are used to update R, and R,, and the first three
equations are devoted to obtaining R '/ (k)R, (k)R "/?(k), followed by the rest
standard steps in the power method. The fifth equation in this algorithm is the QR
decomposition. It can obtain the principal generalized eigenvectors, but not the
eigen subspace. Also, it can be replaced by either the Gram—Schmidt orthonor-
malization or the Householder transformation. It can be seen that this algorithm
obtains the generalized principal eigenvector of the matrix pencil (R,, R,) by
extracting the principal eigenvector of R /?(k)R, (k)R "/? (k).

In order to avoid the computation of a matrix square root and its inverse, K (k) =
R '(k) can be obtained as follows:

K(k) = (1//B) (I + (k)% (k)2" (k) ) K (k — 1), (7.70)

in which
(k) = (1//P)K(k — Dx(k), (7.71)
r(k) ! ! —1]. (7.72)

RECIRWANERTE

Thus, C(k) in (7.66) can be written as

C(k) = K(k)Ry (k)K" (k) = K(k) (oaRy(k — 1) + y(k)y" (k)) K" (k)
(#Ck = 1)+ 5K () + SR K)E () + (0% (K™ (k) + (0% (KA (K)").

1
B
(7.73)

Fast generalized eigenvector tracking based on the power method proposed by
Toshihisa Tanaka can be summarized as follows [24]:
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y(k) = K(k — 1)y(k) (7.74)

= (1/VB)K (k= 1)x(k) (7.75)

= (1/v/B)K (k — 1)x (k) (7.76)

z2(k) = C(k — 1)y(k) (7.77)

/00 = (18 ) (1 G0 - 1) (1.78)

e(k) = y" (k)x (k) (7.79)

S(k) = r(k)* (o (k)z(k) + le(k) ) (7.80)

h(k) = oz(k) + e(k)y (k) (7.81)

C(k) = (l/ﬁ)(~ Clk—1) +§(k)i~”(k) +o(k)x (k)" (k) (7.82)
+ (R (k)R (k) + ((k)E(R)R" (k)"

W(k) = C(k)W(k — 1) (7.83)

W (k) = Q(k)R(k), W(k) = First r columns of Q(k) (7.84)

K(k) = (1/B)K(k — 1)+ r(k)x(k)x" (k) (7.85)

W(k) = K (k)W (k). (7.86)

In summary, the above algorithm has complexity O(rN?), but the tracking speed
achieves almost the same as the direct SVD computation.

7.2.7 Generalized Eigenvector Extraction Algorithm Based
on Newton Method

In order to deal with the adaptive signal receiver problem in multicarrier
DS-CDMA system, Yang et al. proposed an adaptive algorithm based on Newton
method [38] as follows:

P(k+1) :%P(k) (1_

x(k+ Dx (k+ 1)P(k) )

u+x7 (k+ DPk)x(k+1) (7.87)

clk+1) =wi (k)y(k+1) (7.88)
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rik+1)=prik+1)+ (1 - py(k+1)c*(k+1) (7.89)
d(k+1) = pd(k+ 1)+ (1 — f)clk+ 1)c*(k+ 1) (7.90)
wk+1)=rk+1)/dk+1) (7.91)

w(k+1) 2P(k+ D)w(k+1) (7.92)

T 1w (k+ DP(k+ Dk +1)

which is used to extract the maximum generalized eigenvector. In this algorithm,
the initial condition can be simply determined as P(0) = I, w(0) = r(0) =
[, 0, ..., 01" and d(0) = n3.in which #; (i = 1, 2, 3) is a suitable positive number.
Since this algorithm has the subtraction operation in the updating of P(k), P(k) may
lose definiteness in the computation procedure, while P(k) is theoretically Hermitian
positive definite. One efficient and robust method to solve this problem is to use the
OR decomposition to resolve the matrix root P'2(k) of P(k) and then obtain P(k) by
P(k) = PP (k) to keep the definite nature of P(k).

However, the above algorithm can only extract the generalized principal
eigenvector. Later, Yang et al. also proposed another similar algorithm [26]

Py =L () PEDERORE )y
c(k) = WT(k — Dx(k) (7.94)

0 0t e (7.99)

Q(k) = (1/B)(Q(k — 1) — g(k)c" (K)Q(k — 1)) (7.96)
d(k) = Q(k)e(k) (7.97)

¢(k) = Wik — 1)c(k) (7.98)
W(k)=W(k—1) +P(k)x(k)[lT(k) —e(k)g" (k) (7.99)

which is used to extract multiple generalized eigenvectors, whose corresponding
initial conditions of variables are set to P(0) = d1,,, Q(0) = d-I,,, and W(0) =
dsley, ..., e,), in which J; (i = 1, 2, 3) are suitable positive numbers, e; is the ith
column vector with its ith element being 1, and the rest are zeros.
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7.2.8 Online Algorithms for Extracting Minor Generalized
Eigenvector

The previous adaptive algorithms all focus on extracting principal generalized
eigenvectors. However, in many practical applications, e.g., dimensionality
reduction and signal processing, extracting the minor generalized eigenvectors
adaptively is also needed. The eigenvector associated with the smallest generalized
eigenvalue of a matrix pencil is called minor generalized eigenvector. In [32],
several approaches that led to a few algorithms for extracting minor generalized
eigenvectors were proposed and discussed.

(1) Algorithm for Extracting the First Minor LDA Transform

First, an adaptive algorithm was derived by using a single-layer linear forward
neural network from the viewpoint of linear discriminant analysis. Here, the minor
generalized eigenvector extracting algorithm is discussed as follows. Consider a
two-layer linear forward network with weight matrix W from the input-to-hidden
layer and the weight matrix V from the hidden-to-output layer.

Based on the criterion,

J(w,v) = E[Hd - vatz} +u(wrSyw — 1), (7.100)

and using gradient ascent method, the iterative algorithm for computing the first
principal generalized eigenvector can be derived:

w(k+1) = w(k) +n(S,wk) — Syw(k)w" (k)S,w(k)), (7.101)

where 7 is the learning rate. It should be noted that S,, = E[xx"], S, = MM", where
M = E[xd"). When (7.101) converges, the weight vector w(k) — w, where w is the
first principal generalized eigenvector of matrix pencil (S,,,S;). The first minor
generalized eigenvector (S,,,S;) can be obtained as follows:

w

(2) Algorithm for Extracting Multiple Minor LDA Transforms

Assume that there are p hidden neurons and the (j — 1)th neurons have already
been trained whose input weights W = [wy, ..., w;_] converge to the (j-) principal
generalized eigenvectors. By using the objective function,

2 i1
Ji(w;,v;) = E[Hd - vjwfo } + 5 awTSywi+ u(wISpm; — 1), (7.103)
i=1



7.2 Review of Generalized Feature Extraction Algorithm 201
and the gradient ascent method, an adaptive algorithm for w; is

wi(k+1) = wi(k) +n(Suw;(k) — Spw;(k)w] (k)S,w;(k)

=5 ji wi(k)w! (k)Swi(k)). (7.104)

For matrix form, the above algorithm can be rewritten as
W(k+1)=W(k)+n(S,W(k) — S,W(k) UT[WT(k)SmW(k)]), (7.105)

where W(k) = [wi(k),...,w;](j <m) and UTI] sets all elements below the diagonal
to zero, i.e., makes the matrix upper triangular. Since the above algorithms compute
the principal generalized eigenvectors of matrix pencil (S,,,S;), for a weight vector
w; at convergence, w; is the desired minor generalized eigenvector by using the
following computation:

~ Wi

Wj — Ti
Wi Smw;

In [32], other objective functions were also proposed and the corresponding
algorithms for extracting the first principal generalized eigenvector and multiple
principal generalized eigenvector were derived. For detail, see [32].

(7.106)

(3) Extensions to the Generalized Eigen Decomposition

The algorithms (7.101), (7.104), (7.105), etc., can be easily generalized to obtain
online algorithms for extracting minor generalized eigenvectors of matrix pencil (A,
B) if matrices A, B are considered as Sj, S,, respectively, where A, B are assumed to
be positive definite and symmetric. In real situation, matrices A and B cannot be
obtained directly. Two sequences of random matrices {A; € RV} and {By €
RVNY with limg_o E[A] =A and lim;_, E[B;] = B are known. Thus, the
algorithms (7.101) and (7.105) can be extended to generalized eigen decomposition
problem as

w(k+1) =w(k) +n(Biw(k) — Agw(k)w™ (k)Biw(k)), (7.107)
and
W(k+1) = W(k) +n(BsW(k) — A,W(k)UT[WT (k)B,W(k)]),  (7.108)
where sequences {A;} and {B;} are obtained through
Ay = A +ax] —Ary), (7.109)

and
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By = Bi1 + vy — Bi), (7.110)

and {y,} is a constant sequence. When the weight vector w; converges, the desired
minor generalized eigenvector w; can be computed as follows:

~ Wi

ni VWIBw;

The stability and convergence of these algorithms were analyzed theoretically,
and simulations validated the efficiency and effectiveness of these algorithms.

(7.111)

7.3 A Novel Minor Generalized Eigenvector Extraction
Algorithm

In this section, we will introduce an adaptive algorithm to extract the minor gen-
eralized eigenvector of a matrix pencil. In this algorithm, although there is no
normalization step, the norm of the weight vector is self-stabilizing, i.e., moving
toward unit length at each learning step.

In [39], Cirrincione studied some neural network learning algorithms and divi-
ded them into two classes. In the rules of the first class, the norm of the weight
vector is undermined. When a numerical procedure is applied, these algorithms are
plagued by “divergence or sudden divergence” of the weight vector length.
However, the algorithms in the second class are self-stabilizing, which means that
the weight vector length converges toward a fixed value independent of the input
vector. Since all algorithms lacking self-stabilization are prone to fluctuations and
divergence in weight vector norm, self-stability is an indispensable property for
neural network learning algorithms. However, the algorithms mentioned above are
only suitable for extracting the eigenvector of a matrix, not a matrix pencil. Up to
now, almost all analyses of self-stabilizing property are in allusion to eigenvector
extraction algorithms of a matrix, not generalized eigenvector extractions of a
matrix pencil. In this section, the concept of self-stabilizing property will be
extended to the generalized algorithms and the self-stabilizing property of our
algorithm will be also analyzed.

Nowadays, the convergence behavior of many neural network algorithms [40—
43] has been analyzed via the DDT method. However, the algorithms analyzed
above are all eigenvector extraction algorithms. Up to now, there have been few
works which analyze generalized eigenvector extraction algorithms via the DDT
method. In this section, the convergence of our generalized eigenvector extraction
algorithm will be analyzed via the DDT method and some sufficient conditions to
guarantee its convergence will be derived.
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7.3.1 Algorithm Description

Definition 7.1 Given an n x 1 vector w and an n X n matrix R, define the R-norm

of vector w as |w||z= VWTRw.

Suppose that the two vector sequences x; and y,, k = 1,2, ... are two stationary
stochastic processes with zero means and autocorrelation matrices R, = E[xx] ]
and R, = E[yy}], respectively. Then, we propose the following algorithm to
estimate the generalized eigenvector associated with the smallest generalized
eigenvalue of matrix pencil (R, R,):

w(k+1) =w(k)+n[w" (k)Rw(k)w(k) +w(k)

T . (7.112)
~wIORW (k) (I + (R)™'Rw(K)),

where 7 is the learning rate and w; is the estimate of the minor generalized
eigenvector at time k.

In some practical signal processing applications, the autocorrelation R, and R,
may be unknown and have to be estimated online from their respective sample data
sequences. Therefore, it is very necessary to develop adaptive algorithms, espe-
cially in nonstationary signal environments. In this section, we will change the
above algorithms into adaptive algorithms by exponentially weighted method. The
sample autocorrelation matrices are estimated by the following equations:

Ry(k+1) = PR, (k) +y" (k+ L)y(k+ 1), (7.113)
Ro(k+1) = R (k) +x"(k+ Dx(k + 1), (7.114)

where 0 <o, f <1 are the forgetting factors. As to how to choose a proper for-
getting factor, see [23] for detail.
By using the matrix-inversion lemma, we can write the time update for the

inverse matrix Q(k) = R, ' (k) as

Q(k)x(k+ 1)xT(k+ 1)Q(k)
a+xT(k+1)Q(k)x(k+1) |

Q(k) — (7.115)

1
o

Ok +1) =

Table 7.1 Adaptive version of the proposed algorithm

Initialization: Set k = 0, and set initial estimates R, (0), R,(0),Q,(0) and randomly generate a
weight vector w(0)

Iteration:
Step 1. Set k = k+ 1 and update R, (k), R, (k),Q,(k) by (7.113)~(7.115)
Step 2. Update w(k) by the following algorithm:
w(k+1) = w(k) + 1 [wT (k) Ryw(k)w (k) +w(k)

—wT()Rw(K) (T +Q.R,)w(k)] (7.116)
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By replacing R, R,, R, ! in the above algorithm by R, (k + 1), R, (k +1),Q(k + 1),
respectively, we can obtain the following adaptive algorithm as in Table 7.1.

7.3.2  Self-stabilizing Analysis

Next, we will study the self-stability of (7.112).

Theorem 7.1 If the learning rate n is small enough and the input vector is
bounded, then the R,-norm of the weight vector in the algorithm (7.112) for
extracting the minor generalized eigenvector will converge to one.

Proof Since the learning rate # is small enough and the input vector is bounded, we
have

[[w(k+ 1)z, =w"(k+ 1)Row(k+1)
= [w(k) +n(w" (k)Ryw(k)w (k) +w(k) —w(k) Row(k) x (I +R;1Ry)w(k))]T
R [w(k) +n(w" (K)Ryw (k)w (k) +w(k) — w(k) Row (k) (I + R;‘Ry)W(k))]
= w(k)"Row (k) + 20w (k) Row (k) [1 - w(k)TRxw(k)]
o [(w(k)TRXw(k)) o (w(k)TRxw(k))z Fw(k)"Row(k)
—wT (k)R w(k) (w(k)le(k))2 +2wT (k)R,w (k)w (k)" Row (k)

—w(k)"Rw(k) (W (k)Rw(K))*

W (R w(b)|

= w(k)"Raw (k) + 2w (k) Row (k) {1 - w(k)TRxw(k)] +o(n)

~w(O) R ({14211 = w( Raw()] }.

(7.117)

Note that the second-order terms associated with the learning rate in the above
equation are neglected. Then, it holds that

i+ DI w(k)TRxw(k){l +2n [1 - w(k)TRxw(k)} }
Wl w(k) Row(k)
1421 [1 - w(k)TRxw(k)}

>1 if w()lp <1

(7.118)

={ =1 i |w()lz=1

<l if |w(t)|z, > 1.
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It can be easily seen that the norm of weight vector Hw(t)||l2a in algorithm
(7.112) will tend to one whether the norm of the initial weight vector is equal to one
or not. We denote this property as one-tending property. In other words, the
algorithm has self-stabilizing property.

This completes the proof.

7.3.3 Convergence Analysis

In this section, we will present convergence analysis of algorithm (7.112) by the
DDT method. By taking the conditional expectation E{w(k+1)/w(0),x(i),i <k}
to (7.116) and identifying the conditional expectation as the next iterate, the DDT
system of (7.116) can be obtained, which is the same as (7.112). That is, (7.112) is
also the DDT system of its adaptive algorithm (7.116).

Since the autocorrelation matrices R, and R, are two symmetric nonnegative
definite matrices, their generalized eigenvalues are nonnegative and their general-
ized eigenvectors compose an R,-orthonormal basis of R". For convenience,
arrange the generalized eigenvectors in such a way that the associated eigenvalues
are in a nonascending order, i.e., A; > 1; > --- > 4, >0. Then, the weight vector
w(k) can be represented as

w(k) = zn:Zi(k)Vi; (7.119)

where z;(k) =vIRw(k)(i=1,2,...,n) are some constants. By substituting
(7.119) into (7.112), we have

zik+1) = [1+n(1+w" (K)Rw(k)— (7 + L)W' (k)Rw(k))]z:(k),  (7.120)

for all £>0.
According to the properties of the Rayleigh quotient [41], it holds that
T(k)Ryw(k
0< < WT( Rwk) ;. (7.121)

wT(k)R.w (k)

for each k> 0.

Next, we will discuss some conditions under which the weight vector will
converge to the minor generalized eigenvector of the matrix pencil (Ry, R,). Before
this, the following theorems are needed.



206 7 Generalized Principal Component Analysis

Theorem 7.2 Suppose that n<0.3 and nly <0.35. If the initial vector satisfies
wI(0)R, # 0, then it holds that ||w(k)|| <11k for all k>O0.

Proof From (7.119) and (7.120), it follows that
ek + 1)l = >z (k+1)
i=1
- T T 22
=3 [t n(1+wT(R)Rw(k) — (7 + D)W ()Rw (k)] 27 (k)
i=1

<[1+n(1+aw' (k)Rw(k) — (2 + l)wT(k)Rxw(k)]zzn: 22 (k)
i=1

<[V (1 + (i = D)W RORw ()] [w(K) [,
(7.122)
Then, we have
2 217 2
Iw(k+ Dllg, < [1+n(1+ G = DIw®IR | Iw@ R (7.123)
Over the interval [0, 1], define a differential function
f(s) = (1+n(1+ (4 — 1)s5))%s, (7.124)

where s = ||w(k)||12e and f(s) = Hw(k—i—l)”f{r. Then, the gradient of f(s) with
respect to s is given by

f(s)= (1 +n+n(i = Ds)(1+n+3n(2 — 1)s). (7.125)

Clearly, the roots of the function f(s) = 0 are

S o/ A e o
(-1 727 30 —1)

Next, two cases are considered.
Case I: 41 > 1
Since 1 > 0, 4; > 1, we have s; <s <0. That is, for all 0 <s<1 ,we have

S = (7126)

f(s)>o0. (7.127)

Case 2: )1 <1
From 1 <0.3, we have s; > s, > 1. Then, it follows that for all 0 <s <1

f(s)>0. (7.128)
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Equations (7.127) and (7.128) mean that over the interval [0, 1], f(s) is a
monotonically increasing function. Then, for all 0 <s< 1, we have

£l) <f() = (1+ni). (7.129)
So for all £ >0, we have

W (k)[lg, <1+ ns. (7.130)

This completes the proof.

Theorem 7.3 Suppose that # <0.3 and n4; <0.35. If the initial vector satisfies
wT(0)R, # 0, then it holds that [|w(k)|| > c for all k>0, where c is a constant

and equals (1+n/;) [1 —n(1 +’711)2}

Proof From (7.119) and (7.120), it follows that

W DR =3 2k 1)

i=1

= Z (14 11+ wT (R w(K) — (4 + )W (k)R w(k)]* 2 (k)

> [1- an(k)Rxw(k)]ZZn: 2 (k).

(7.131)

Next, two cases are considered to complete the proof.

Case 1: 1 +w  (k)Rw(k) — (Z; + D)w  (k)Rw(k) > 0

From Theorem 7.2, we have |[w(k)|[g <1+n4; for all k>0. By using
Theorem 7.2, we have

L n[(1+wT (R)Rw(K) — (s + D)W ()R w(k)]

> 140 —n(1+2)w" (k)Rw(k)

> 1 —n(nd)(2+ni1) —nia(1+nk) (7.132)
>1-0.3x0.35 x (2+0.35) — 0.35 x (1+0.35)

=0.1154>0
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By using (7.131) and (7.132), we can obtain that
2
e+ )7, > [14+5 = n(14+2) (1 +02)°] (14021 (7.133)

Case 2: 1 +wT(k)Ryw (k) — (Z; + 1)wT (k)Rw (k) <0
In this case, we can obtain the following in equation

(Zi+ 1w ()R w(k) — 1 > wT (k)Rw(k) >0 (7.134)
From Theorem 7.2, we have

L—n[(i+Dw (k)Rw(k) — 1 —w' (k)R,w(k)]
> 1+ —n(i+ 1w (k)Row(k)

> 1= n(nh)2+ni1) = na(1+nk)? (7.135)
>1-0.3x0.35x (240.35) — 0.35 x (140.35)*
=0.1154 >0

By using (7.131) and (7.135), we have
2 ) , (212 2
e+ 1), > |17 = (14 4) (14020 (1+n21) (7.136)

Denote ¢ = [1 +n—n(l+4)(1 —&—17&1)2} (1+n4), and then, by using
ni; <0.35 and 1<0.3, we can obtain that

c= [1 +n—n(1+4)(1 +77/11)2:|(1 +nia)
> (1+0.35)[1+0.3 — (0.3+0.35)(1 +0.35) (7.137)
—0.1558 > 0

Clearly, we have
||w(k+1)||RX2c (7.138)

for all £ > 0.

This completes the proof.

At this point, the boundness of the DDT system (7.112) of our algorithm has
been proved. Next, we will prove that under some mild conditions, it holds that
klilgc w(k) = av,, where a is a constant. In order to analyze the convergence of the

DDT system (7.112), the following preliminary results are needed.
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Lemma 7.2 Suppose that 1 <0.3 and niy <0.35. If the initial vector satisfies
wI(0)Rv, #0, then it holds that 1+n(1+wT(k)Ryw(k) — (A+ 1w’
(k)Rw(k)) > 0 for all k>0, where i =1,2,...,n.

Proof From Theorem 7.1 and n4; <0.2, we have

L+ n(L+w (K)Rw(k) — (2 + 1w (k)Rw(k))
> 1 —nw' (k)Rw(k)

>1—n(l+nk) (7.139)
>1-03x (140.35)?
= 0.4532 > 0.

This completes the proof.

Lemma 7.2 shows that z;(k) =v]Rw(k) (i =1,2,...,n), which is the R,-
orthogonal projection of the weight vector w(k) onto the generalized eigenvector v;
and does not change its sign in (7.120). Since w(0)R,v, # 0, we have

zu(k) = v Rw(k) # 0. (7.140)

From (7.119), for all k >0, w(k) can be represented as

w(k) = nifzi(k)vi+zn(k)v,l. (7.141)

i=1

Clearly, the convergence of w(k) can be determined by the convergence of
zi(k)(i=1,2,...,n). Lemmas 7.3 and 7.4 will provide the convergence analysis of
z(k)(i=1,2,...,n).

Lemma 7.3 Suppose that 1 <0.3 and ni; <0.35. If the initial vector satisfies
wT(0)R,v, # 0, then it holds that klim z(k)=0, (i=1,2,...,n—1).
—00

Proof From Lemma 7.2, we have
1+ nqwT (k)Ryw (k) — nZ:(w™ (k)Rw(k))* > 0, (7.142)

for all k>0, where i=1,2,...,n. Furthermore, from Theorem 7.1 and
Theorem 7.2, it holds that

c<|lw(k)llg, <1+ nii, (7.143)

for all £ > 0. Then, we have
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|:Zl(k+ 1):|
zn(k+1
_ {1 +n(L+wT (R)Rw(k) — (2 + D)w" (k) xw<k>>r 2 (k)
L4+ p(L+wT(k)Rw(k I+ DWT(K)R.w(k k
i W= W RRW] 26
|- 15— W R ES
1+n(1 erT(k)Ryw(k) — (+ DwT(k)Rw(k)) Zﬁ(k)
< { = 2w (R (k) rzﬁk)
- L+n(1+ (4 — 2y — DwT(K)Rw (k)] 23 (k)
for all k>0, where i =1,2,...,n— 1.
Let 6 =+ +’7<fif"(;fj))f_%))f;’(”,f&w(k)). Then, we will prove that 0 < §; <2.
First, we will prove that 6; > 0. From 5 <0.3 and n4; <0.2, we have
1+ n(1+ (A4 — A — W (K)Rw(k))
> 1 — nwT (k)Rw(k)
>1—n(1+n4)* (7.145)
>1-03x (140.35)
=0.4532 > 0.
From A; > 7, and wT(k)R,w(k) > 0, we have & > 0.
Next, we will prove that o; <?2.
s i TR
T+ (= An — DWT ()R w(k))
nawT (k)R.w (k)
1+5n(1 —wT(k)Rw(k))
_ ma(ltnk)’ (7.146)
1—n(14n4)?
0.35 x (1+0.35)
T 1-03x(14+0.35)
=1.4073 <2.
Denote 0; = (1 — 5k)2. Then, 0 <6, < 1. From (7.144), we have
wk+1)] = "zg k =13 fz,% 0 ‘

for all k>0, where i =1,2,...,n— 1.
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Denote 0 = max (0, 0y, - O, - -). Clearly, 0<0< 1. Then, it holds that

[&w+iﬂ2§m+ﬂﬂm. (7.148)

Since 0 <6< 1, then it follows that

zi(k)
k—00 Z, (k)

=0 i=12,...n—1. (7.149)

From Theorem 7.1 and Theorem 7.2, we can see that z,(k) must be bounded.
Then, we have

lim z;(k) =0, i=1,2,..,n—1 (7.150)

k—o00

This completes the proof.
Lemma 7.4 Suppose that 1 <0.3 and ni; <0.35. If the initial vector satisfies

wT(0)Rv, # 0, then it holds that klirn zu(k) = a, where a is a constant.

Proof From Lemma 7.3, we know that w(k) will converge to the direction of the
minor generalized eigenvector v,,, as k — co. Suppose that w(k) has converged to
the direction of v, at time ko, i.e., w(ko) = z,(ko)Vy.

From (7.120), we have

Zu(k+1) = [L+p[L+ Luza(k) — (A + 1)z2(k)] ] 2a(k)
= [L+n(1 = 22(k))]za (k).

From (7.151), it holds that

(7.151)

z(k+1) = 1= [1+n(1 — 22 (k))]za(k) — 1
[1 — ylza(k) — 1[za(k) + 1]z, (k) — 1 (7.152)
[Zn(k) - 1][1 - ﬂZn(k)[Zn(k + 1]],

for all k > ky. Then, from #<0.3 and n4; <0.35, we have

1=z, (K)[za(k) + 1] > 1 — (1 +ni) (1 +ni + 1)
>1-03x (1+0.35)(1+035+1) (7.153)
= 0.0482 > 0,

for all k> k.
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Denote i =| 1 — nz,(k)[z,(k) +1]|. Clearly, 0<f<1. From (7.152) and
(7.153), it follows that for all k£ > k

Jan(k+1) = 1] < Blan(k) — 1] < -+ < B 1z,(0) — 1. (7.154)

Denote o = —In f§ and I1; = |z,(0) — 1|. Substituting them into (7.154), then
we have

|za(k+1) — 1| < (k+ 1) e 2+, (7.155)

Given any & > 0, there exists a constant K > 1 such that

LK —aK
22 <. (7.156)
(I—e)

For any k; > k, > K, it follows from (7.120) and (7.155) that

ki—1

|2n (k1) — zn(k2)| = Z [za(r+ 1) — z,(r)]

i’:kz
k=1 k-1
<> Iz =z (][ < D alan()llan(r) +1lza(r) = 1]
r:kz r:kg
kl kl
<L+ 1) 2+10) Y Jea(r) =1 ST Y re™
r:kz r:kz
+ o0 + o0 ) K —akK
<II, ) re ™ <I,Ke ™k Z rle™) < Lz <e,
r=K r=0 (1 - e*a)

(7.157)

where I1, = n(1 +n41)(2+n41)|z,(0) — 1].
This implies that the sequence {z,(k)} is a Cauchy sequence. By using the
Cauchy convergence principle, there must exist a constant a such that

klim (k) = a.

This completes the proof.
Theorem 7.4 Suppose that n<0.3 and nly <0.35. If the initial vector satisfies
wT(0)R v, # 0, then it holds that Jim w(k) = av,.

Proof From (7.141) and Lemmas 7.3-7.4, we have



7.3 A Novel Minor Generalized Eigenvector Extraction Algorithm 213

(7.158)

= av,,.
This completes the proof.
At this point, we have finished the proof of the convergence analysis of algo-
rithm (7.51). Next, we will provide some remarks on the convergence conditions
obtained in Theorem 7.4.

Remark 7.1 From the conditions # <0.3 and n4; <0.35 in Theorem 7.4, we can
see that the selection of the learning rate is related to the largest generalized
eigenvalue. In many signal processing fields, although the largest generalized
eigenvalue is unknown, its upper can be estimated based on the problem-specific
knowledge [42]. So it is very easy to choose an appropriate learning rate to satisfy
the two conditions # < 0.3 and 54, <0.35. Another required condition is that the
initial weight vector must satisfy wT(0)R,v, # 0. In practical applications, when
the initial weight vector is randomly generated, the probability for the above
condition to be satisfied will be one. So the conditions in Theorem 7.4 are rea-
sonable and easy to be satisfied in practical applications.

Remark 7.2 Tt is worth to note that by simply switching some signs in (7.112), the
proposed algorithm can become a principal generalized eigenvector extraction
algorithm. Similar to Eq. (7.112), the principal generalized eigenvector extraction
algorithm also has self-stabilizing property. The analysis about the self-stabilizing
property and the convergence is very similar to that for Eq. (7.112), so we omit the
proofs here.

7.3.4 Computer Simulations

In this section, we will provide simulation results to illustrate the performance of
our algorithm for extracting the minor generalized eigenvectors. The first simulation
is designed to extract minor generalized eigenvectors from two random vector
processes and compare our algorithm with the other algorithm. The second simu-
lation mainly shows the convergence of our algorithm under the conditions in
Theorem 7.4. The simulation results in Figs. 7.1, 7.2, 7.3, 7.4, and 7.6 are obtained
by averaging over 100 independent experiments.

In order to evaluate the convergence speed and the estimation accuracy of our
algorithm, we compute the R,-norm of the weight vector at the kth update
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Fig. 7.1 DC curves of the
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Fig. 7.2 R,-norm curves of
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and the direction cosine(k) (DC(k)).
Simulation 1

In this simulation, we compare our algorithm with the modified coupled learning
rule (MCLR) [31] and the modified Oja—Xu algorithm (MOX) [33], which are two
well-known minor generalized eigenvector extraction algorithms proposed in recent
years.
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The input samples are generated by

y(k) = V/25in(0.627k + 0,) + ny (), (7.160)

x(k) = v/2sin(0.467k + 05) + V2 sin(0.747k + 03) + na (k), (7.161)

where 0;(i = 1,2, 3) are the initial phases, which follow uniform distributions over
[0,27], ny (k) and ny(k) are zero-mean white noises with variances ¢ = 63 = 0.1.

In this simulation, the input vectors y(k) and x(k) are arranged in blocks of size
eight (n = 8), ie., yk) = [y(k),...,y(k+7)]" and x(k) = [x(k),...,x(k+7)]".
The minor generalized eigenvectors of (Ry,Rx) are extracted via MCLR, MOX,
and our algorithm.

The initial conditions in the three algorithms are as follows. For MCLR, y =
0.998 and 4(0) = 100. For all algorithms, & = ff = 0.998, R,(0) = R,(0) = 0, and
0,(0) = dI, where ¢ is a small positive number and 0 is an n X n zero matrix. For
the three algorithms, the same initial weight vector is used, which is randomly
generated, and the same learning rate is also used. The simulation results are shown
in Figs. 7.1 and 7.2.

From Fig. 7.1, we can see that the direction cosine curve of our algorithm
converges to 1, which means that it can extract the minor generalized eigenvector.
From the last 150 iterations of the whole procedure, we can observe that our
algorithm has the least deviation from one, which means our algorithm has the best
estimation accuracy among these algorithms. From Fig. 7.2, we can see that the R -
norms of the weight vector in MCRL and MOX are equal to 1 due to a normal-
ization step in the algorithms. Although there is no normalization step in our
algorithm, the R,-norm curve in our algorithm also converges to one. Since the
normalization step is omitted, the computational complexity is also reduced for our
algorithm.

Simulation 2

Consider the following two nonnegative symmetric definite matrices, which are
randomly generated. The generalized eigenvalues of the matrix pencil (R,,R,) are
A = 1.8688, 1, = 1.1209, /3 = 1.0324, 14 = 0.7464.

[ 08313 00876 —0.0510 0.1362 ]
0.0876 08895  0.0790 —0.0351
Ry=1_00510 0079 09123 —0.0032 (7.162)
| 01362 —0.0351 —0.0032 07159 |
[ 07307 —0.1700 —0.0721  0.0129 T
_0.1700  0.6426 00734  —0.0011
Re=1_00721 00734 08202 —0.0102 (7.163)
| 00129 00011 —0.0102 0.7931 |
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The initial weight vector is randomly generated, and the learning rate is 7 = 0.1,
which satisfies the condition that n < 0.3 and n4; <0.35. Figure 7.3 shows that the
convergence of the component z;(k) of w(k), where z;(k) = wT(k)Rv; is the
coordinate of w(k) in the direction of the generalized eigenvector v;(i = 1,2,3,4).
In the simulation result, z;(k) (i = 1, 2,3) converges to zero and z4(k) converges to a
constant, which is consistent with the results in Theorem 7.4.

Next, we will provide a simulation to show that the proposed algorithm can deal
with high-dimensional matrix pencil. We randomly generate two 15 x 15 matrices,
and their largest generalized eigenvalue is A; = 9.428. The other initial conditions
are the same as in the above simulation. The simulation results are shown in
Fig. 7.4. From this figure, we can see the same results as in the above simulations.
So we can say that our algorithm can deal with high-dimensional matrix pencil.

The last simulation is an example, in which the learning rate does not satisfy the
conditions and the norm of w(k) diverges. We still use the two matrices (7.162) and
(7.163), and the learning rate is # =0.5. When the initial vector is
w = [0.1765, —0.791471.3320,2.3299]T, we can obtain the following simulation
result, as shown in Fig. 7.5. From this figure, we can see that the divergence may
occur when the learning rate does not satisfy the conditions in Theorem 7.4.

In Sect. 7.3, we have provided an algorithm for extracting the minor generalized
eigenvector of a matrix pencil, which has the self-stabilizing property. The con-
vergence of the algorithm has been analyzed by the DDT method, and some suf-
ficient conditions have also been obtained to guarantee its convergence. Simulation
experiments show that compared with other algorithms, this algorithm has faster
convergence speed and better estimation accuracy and can deal with
high-dimensional matrix pencil.

7.4 Novel Multiple GMC Extraction Algorithm

In Sect. 7.3, we propose an adaptive GMC algorithm. However, this algorithm can
only extract one minor generalized eigenvector of a matrix pencil. In some appli-
cations, estimating multiple GMCs or the subspace spanned by these GMCs is of
interest. The methods for solving the multiple eigenvector extraction have the
“inflation” procedure and parallel algorithms. The purpose of this part is to develop
an information criterion and an algorithm for multiple GMC extraction.

7.4.1 An Inflation Algorithm for Multiple GMC Extraction

Here, multiple GMC extraction algorithm is to estimate the first » GMCs of the
matrix pencil (Ry,R,). Through some modification, the information criterion in
[44] can be extended into a GMC extraction information criterion (GIC) as follows:
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w* = arg max Jeic(w)

7.164
Jeic(w) = %tr [ln (wTRxw) - wTRyw] ( )

where w € R™! is a vector. GIC can only estimate the first GMC of the matrix
pencil (R, R,).

In the domain Q = {w|0<w'R,w <oo}, wIR,w is a positive scalar. Thus, the
gradient of Jgic(w) with respect to w exists and is given by

g = Viac(w) = Rw(w'Rw) ™ —Ryw (7.165)

After some discretization operations, we can obtain the following nonlinear
stochastic learning rule:

wik+1) = w(k) +14 [Rxw(k) (wT(k)Rxw(k))*—Ryw(k)} (7.166)
where 7 is the learning rate and satisfies 0 <x<1. Generally, gradient method

cannot lead to a fast algorithm, so we use the quasi-Newton method to derive a fast
algorithm. By using (7.165), we can obtain the Hessian matrix of Jgic(w):

H =R, (w'Rw)  —2(w'Rw) "Rww'R, — R, (7.167)

In order to use the Quasi-Newton method, we use some approximation in the
Hessian matrix H; and define another matrix, which can be written as

H, =2(w"Rw) "Roww'R,+R, (7.168)
Obviously, we can obtain that H; ~ —H,. Then, the inverse of H; is given by

2R,'Rww'R.R"
(WTRw)* +2wTR.R;'R.w

Hy' =R, - (7.169)

Following the procedures of the quasi-Newton method, we can obtain the fol-
lowing fast learning rule for updating the state vector of the neural network:

w(k+1) = w(k)+nH;" *gl,

3(wT(k)R.w (k)RR ow (k) (7.170)
(WT(k)Row (k))* +2wT (K)R.R; 'Row (k)

=L =mw(k)+n

Considering the autocorrelation matrices (R, and R,) are often unknown in prior,

we use the exponentially weighted sample correlation matrices kx(k) and ky(k)
instead of R, and R, respectively. The recursive update equation can be written as
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R.(k+1) = oyR (k) +x(k+ 1)x"(k+ 1) (7.171)
Ry(k+1) = auR, (k) +y(k+ 1)y (k+1) (7.172)

By using the matrix-inversion lemma and Eq. (7.172), we can also obtain the

updating equation for Q, (k) = k;l (k):

O\ (k)y(k+ 1y"(k+ 1)@, (k)
o +y"(k+1)Q,(k)y(k+1)

0,(k+1) =ai2 0, (k) (7.173)

where o, o, denote the forgetting factors and satisfy 0 <oy, o, < 1. The rules for
choosing the values of oy, o, can be found in [45], and the interested readers may
refer to it for detail.

The above learning rule has fast convergence speed, but it can only extract one
GMC. By using the inflation technique, the above learning rule can accomplish the
extraction of multiple GMCs, whose detail implementation procedures are shown in
Table 7.2.

In the above table, /, is the largest generalized eigenvalue of the matrix pencil
(Ry,R,). In many practical applications, although the value of 4, is unknown, its
upper bound can be estimated based on the problem-specific knowledge [46]. After
the iteration procedure in Table 7.2, we can obtain vector sequences
wi(i =1,2,...,r), which can justly compose the first » GMCs of the matrix pencil
(Ry,R,).

The above inflation procedure is computationally expensive when extracting
higher-order components, and it belongs to sequential methods and this method
usually produces a long processing delay since the different components are
extracted one after another, but also it needs more memory to store the input
samples since they are repeatedly used. Different from the sequential methods, the
parallel methods can extract the components simultaneously and overcome the
drawbacks of the sequential methods. In the following, we will develop a parallel
multiple GMC extraction algorithm.

Table 7.2 The iteration
procedure for multiple GMC
extraction

Multiple GMC extraction by inflation method

Initialization: Set i = 1 and R; = R,

Iteration: For i =1,2,...,r,

Step 1. Calculate the first FMC of the matrix pencil (R;,R;) by
using Eq. (7.170), and denote it as w;

Step 2. Set i = i+ 1, and update the matrix R; by the following
equation:

R,‘ = Ri*l + ‘ERXWI',IW;ILIRX/(W;l;lewifl) (7174)

where 7 is some constant and satisfies T > A,
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7.4.2 A Weighted Information Criterion and Corresponding
Multiple GMC Extraction

(1) A weighted information criterion for multiple GMC extraction

In this section, Eq. (7.99) is modified into a multiple GMC extraction infor-
mation by using the weighted matrix method. Here, we denote this information
criterion as WGIC, which can be expressed as

W* = argmax Jwaic (W)

1 . . (7.175)
ch,[c(W) = Etr[ln(W RYWA) - W RVW]

where W € R™ is the state matrix of the neural networks and A =
diag(ay,a,...,a,) is a diagonal matrix and its diagonal elements satisfy
a; > ap > --- > a,. The landscape of the WGIC is described by the following two
theorems.

(2) Landscape of Generalized Information Criterion

Theorem 7.5 In the domain Q = {W|O< WTRXW<oo}, W is a stationary point
of Jwaic(W) if and only if W = L,A;%Q’, where A, is a r X r diagonal matrix,
whose diagonal elements are any r distinct generalized eigenvalues of the matrix
pencil (Ry,R,), L. is an n X r matrix and is composed of the corresponding
generalized eigenvectors, and Q' is a permutation matrix.

Proof Since WTR,W is positive define in the domain €, it is invertible. By using
(7.175), we can calculate the first-order differential of Jwgic(W)

dJwaic(W) = d{tr[log(W'R,WA)| — r( W'R,W)}

7.176
= tr[(WTRxWA)*‘AWTRXdW} — tr(W'R,dW) ( )

Then, we can obtain the gradient of Jwgic(W) with respect to W:
Viwaic(W) = RW (AWTRWA™) ™' —R,W (7.177)

If W=L,A7Q, it is easy to show that VJwaic(W) = 0. Conversely, by def-
inition, the stationary point of Jwgic(W) satisfies VJwagic(W) = 0. Then, we have

RWAWRWA ) '=RW (7.178)
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Premultiplying both sides of (7.178) by W', we can obtain
W'RW(AW'RWA) "' = WR,W (7.179)

Let WIR.W = Q,4,0] and AW'R.WA™' = 0,4,0; be the EVD of the two
matrices, respectively, where @, and Q, are two orthonormal matrices. According
to the matrix theory, WTR,W has the same eigenvalues as matrix AW R WA~
Then, we can obtain

0,4,0] =AQ,4,07A™" (7.180)

From the above equation, we have AI,QgAQl = Q;AQIA,,, which implies that
gAQ1 must be a diagonal matrix since 4, has different diagonal elements. Since A
is also a diagonal matrix and Q,,Q, are two orthonormal matrices, we have
0, = 0, = I. By using this fact, we can obtain that WTR W = Ap. Substituting it
into Eq. (7.179) yields

WIR,W =1, (7.181)

Substituting generalized eigen decomposition of R, into the above formula, we
have (Q' )TQ’ =1I,, where Q' = A*'V'R, W, which means that the columns of Q' are
orthonormal at any point of Jwgic(W). Hence, we can obtain that W = L.AQ isa
stationary point of Jwgic(W).

Theorem 7.5 establishes the property of all the stationary point of Jwgic(W).
The following theorem will distinguish the global maximum point set attained by
W composing the desired GMCs from any other stationary point, which are saddle
points.

This completes the proof of Theorem 7.5.

Theorem 7.6 In the domain Q, Jwic(W) has a global maximum that is attained if
and only if W = LlA]_%, where Ay = diag([A1, A2, . . ., 4,]) is a diagonal matrix and
its diagonal elements are composed by the first r generalized eigenvalues of the
matrix pencil (Ry,Ry), L1 = [vi,v2,...,v,] is an n X r matrix and is composed of
the corresponding generalized eigenvectors. All the other stationary points are
saddle points of Jwcic(W). At this global maximum, we have

JWGIC(W) = (1/2) (ia,//b—r) (7182)
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Proof From (7.176), it is very easy to obtain the second order of Jwgic(W):

Pweic(W) = d{tr [(WTRXWA)’IAWTRxdW} - tr(WTRydW)}
— —u[d(WRAW] + [ (4" WTRWA) " d(WT)RaW |
- tr[(A*lWTRXWA)*‘d(A*‘WTRXWA)(A*‘WTRXWA)*‘WTRXdW}
— —u[d(WRAW] + [ (A" WTRWA) " d(WT)RaW|
—tr [(A*1 WTR.WA) ™ (A~ d(WR, WA +A~'W'R.dWA)
x (A-'WTR,WA)~! WTRXdW]
— —u[d(WRAW] + [ (A" WTRWA) " a(WT)RAW |

tr WTRXWA)’ld(WT)RxW(A"WTRXW)’IWTRxdW}

[
r [(WTRXWA)’I WIR.A(W)(A~ ' WIR,W) " WTRXdW}

(7.183)
Let HJwgic(W) be the Hessian matrix of Jwgic(W) with respect to the nr-
dimensional vector vec(W) = [wl,wl ... wl], which is defined by
LAY
Hiweic(W) = . waic( )T (7.184)
O(vec(W))  \d(vec(W))

By using (7.183), we have

1 . 1 .
Hiwaic(W) = ~1, &R, + 5 [(AWTRXWA*) 1} ®R:+ [(A*IWTRXWA) 1} R,
1

2
1

[(awR W) | @ [RWAWTRW) ' WTR,]
[(WTRXWA)_I} ® [RXW(WTRXWA")_IWTRX}

K{ [RXW(AWTRxW)*l] ® [(A*IWTRXW)"WTRX]

RWWRWA™) | @ [(WR.WA) 'WR, |

e N = N

Jr

(7.185)

where ® means the Kronecker product and K, is the rn X rn commutation matrix

such that K,,vec(M) = vec(M") for any matrix M. The commutation matrix K,

has some good properties, such as for any matrices M; € R™*" and M, € RP*4,
there is
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K, (M, @ M) = (My @ M))K,,, (7.186)

This property will be used in the following derivations. Substituting Eq. (7. 178)

into (7.185) and then calculating HJwgic(W) at the stationary point W = L 4>,
we obtain

=-1,9R,+ AVT:;;; - [4,A7"] ® [R.LIAL{R,]
- %K,,,[(RXLI) o1)[(4ia™") @ (44)) + (4i4) @ (a7'4})] (1 @ (LTR)]

(7.187)
Applying (7.186) to the third term on the right-hand side of (7.187) yields
K [(RL) L] = [I, ® (RLy)|K,, (7.183)

Substituting the generalized eigen decomposition of R, = RxLlAlLfRX—&—
RxL,,AnLgRX and the fact R, = RXLlLfRX—i-RXLnLERX into (7.187), after some
proper manipulations, we get

H' = [, & RL)|I ® A][L, @
— I & (R, )][ A,)[1, ® (LR,
+ I @ (ReLy)][A, ®I][I ®
+I ® (RLy)|[ A1 @ L[, @
[Ir®<R l)][( )®A
1
I-® RL|[I @ (LR
K

() (1) (1) o 1)

r

r

L
(7.189)
L

Denote
Di=-L@A)+[4 0L - [(4, A7) @A]
- %K,,[(A%IA*) @ (44}) + (4i4) @ (4714} (7.190)
Then, it has the following EVD

D, = USU" (7.191)
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where S = diag(sy,s2,...,5,2) is a diagonal matrix whose diagonal elements are
composed by the r* eigenvalues of D and V is an r? x r> orthogonal matrix
consisting of corresponding eigenvectors.

Substituting (7.191) into (7.189), we have

H = [I,® (R.L)|(USU") [I, ® (L{R,)] + I, ® (R.L,){D2}[I, ® (L R,)]
UT(L, ® (LTR,)) ] TS 1,® (L'R,)
I1,® (LIR,) { DJ I, ® (LIR,)

(7.192)
where
D, =4, 1] —[I,® 4,] (7.193)

It is obvious that D, is a diagonal matrix. Equation (7.189) is actually the EVD
of H* whose eigenvalues are also the diagonal elements of both S and D;.

It is obvious that all the diagonal elements of D, must be negative as long as
max{A, A2, ..., Apr} <min{A,—, 51, An—r12,- -, An}. SO we only need to deter-
mine whether the eigenvalues of G are negative or not. In order to illustrate this
problem, we follow the proof procedures in [47]. Let us consider one case for
r = 2, then, we have

—24

_/12 +;Ll _ Z_T/Ll _aiviid e

D, = — e 2a (7.194)
_fllvzaﬂzlkz _ azvzilllz Sy P pa %Az y
—2,

Without loss of generality, let a; = 1 and d = 4,/ 1, then we can obtain the four
eigenvalues of the matrix G: They are given by s; = —24;, s4 = =24y,

55 = —(b - b2+4c)/2, and s3 = —(b+ \/b2+4c)/2, where b = axi; —
iz/az and

¢ = Ak [(71 +d— axd)(—1+1/d — 1/axd) — (1/2a; +a2/2)2} (7.195)

Clearly, we only need to calculate the conditions where the eigenvalue s3 is

negative, i.e., we need to solve the inequality —b + v/ b? +4c <0, where ¢<0.
After some manipulations, we have

a3 +4(1 —d)a3 + [4d — 10 +4/d)a5 — 4(1/d — )az +1 >0 (7.196)

The above equation provides the relationship between a, and d. Solving (7.196)
will give a required positive real root. For illustrative purpose, Fig. 7.6 shows the
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Fig. 7.6 Curve of the 1
relation of a, to d
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feasible domain of a, versus d, which is highlighted by the shadow. From Fig. 7.6,
we can see that there always exists the properly chosen a; so that (7.196) holds. It is
easy to verify the above conclusions hold for » > 2. So we can conclude that all
eigenvalues of H* are negative as long as the following inequality holds:

maX{/Il, /"Lz7 ceay )Lnfr} S min{/ln,r+1, /ln,r+27 ey ;Ln} (7197)

Since H* is nonpositive definite if and only if min{i;,4z,..., 4y} >
Max{Ay_r 4 1, An_rs2s- - An}. SO at the stationary point W = L, A%, Jwgic(W) has
the local maximum. Since Jwgic(W) is unbounded as W tends to infinity, this is
also the global minimum. Except W = L, A, all other stationary points result in
H™ being indefinite (having both positive and negative eigenvalues) and, thus, are
saddle points.

At the stationary point W = L,A7Q, Jeic(W) attains the global maximum
value

Fvaic(W) = (1/2) (Z aif i~ ) (7.198)

This completes the proof of Theorem 7.6.

Comparing Eq. (7.164) with Eq. (7.175), we can see that the differences of the
two information criteria are the weighted matrix and the dimension of the neural
network state matrix. If the state matrix in Eq. (7.175) is reduced to a vector and the
weighted matrix is set as A = 1, then Eq. (7.175) will be equal to Eq. (7.164).
Since we have accomplished landscape analysis of (7.175) through Theorem 7.5
and Theorem 7.6, it will be a repeated work to analyze the landscape of Eq. (7.164).
Furthermore, if we set A = I, and R, = I,,, the information criterion Jwgic(W) is
reduced to the AMEX criterion in [44], which is proposed for MCA. Therefore, the
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proposed information criterion (7.175) is a universal criterion for MCA and GED
problems.

From [44], we know that the AMEX criterion has a symmetrical construction.
By introducing the weighted matrix A, we proposed an asymmetrical criterion. Let
us denote R, =R, IRW and R,, = WTR.,W, and substitute them into

Eq. (7.178). Then, we have W = R,,(AR,,A~")"". The function of the matrix
AR, A" is to carry out an implicit Gram—Schmidt orthonormalization (GSO) on
the columns of Ry, [48]. As a result of the GSO operation, the columns of the state
matrix in the neural network will exactly correspond to the different GMCs of the
matrix pencil (Ry,R,).

(3) Multiple GMC extraction algorithm

From Theorem 7.6, we can obtain that Jwgic(W) has a global maximum and no
local ones. So the iterative algorithms like the gradient ascent search algorithm can
be used for finding the global maximum point of Jwgic(W). Given the gradient of
Jwaic (W) with respect to W in (7.176), we can get the following gradient ascent
algorithm:

Wk+1)=W(k)+n [RXW(k) (AWT(k)RxW(k)A*I)" —RyW(k)} (7.199)

If the matrices R, and R, are unknown, then Egs. (7.171)—=(7.173) can be used to
estimate them. It is well known that the matrix inverse can cause an adaptive
learning rate and improve the properties of the neural network algorithms. From this
point, we rewrite (7.199) as

Wk+1) =Wk +1 [R;IRXW(k) (AW ()R, W (k)A~") "

—W(k)] (7.200)

It is obvious that Eq. (7.200) has the same equilibrium point as Eq. (7.199).
Although the only difference between (7.200) and (7.199) is the location of the
matrix R,, this modification actually changes the learning rate into an adjustable
value by using 7R !, This modification can improve the performance of the original
gradient algorithm [44].

It should be noted that the proposed WGIC algorithm can extract the multiple
GMCs of the matrix pencil (Ry, R,) in parallel, not a basis of the generalized minor
space. This algorithm is also suitable for the cases where the generalized minor
space is only needed, since the GMCs can also be regarded as a special basis of the
generalized minor space; however, this solution is not the best way. Since the
weighted matrix A is to implement the GSO operation on the state matrix of the
neural network. So if we set A = I in (7.199), then it will become a generalized
minor space tracking algorithm. Here, it is worth noting that algorithm (7.200) has
the self-stabilizing property, proof of which can refer to Sect. 7.3.2.
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In the following, we study the global convergence property of algorithm (7.199)
by the Lyapunov function approach.

Under the conditions that x and y are two zero-mean stationary process and the
learning rate # is small enough, the discrete-time difference Eq. (7.177) can be
approximated by the following continuous-time ordinary differential equation
(ODE):

— RW(AW'RWA) " —R,W (7.201)

where t = nk. By analyzing the global convergence properties of (7.201), we will
establish the conditions for the global convergence of the batch algorithm (7.199).
In particular, we will answer the following questions:

1. Can the dynamical system be able to globally converge to the GMCs?

2. What is the domain of attraction around the stationary point attained at the
GMCs or equivalently, what is the initial condition to ensure the global
convergence?

In order to answer the above two questions, we define a function as follows:
1 1
L(W) = 5tr(WTRyW) -5t [In(WTR,WA)] (7.202)

Then, we have that L(W) is a bounded function in the region
Q= {W|0<WTRXW<OO}. According to the Lyapunov function approach, we
need to probe the first-order derivative of L(W) is nonpositive. By the chain rule of
differential matrix [49], we have

L .
d ((JV) —tr [W%,%- (Aa-'wrwa) wir, Y

dr
(e
- dr dr

Note that the dependence on ¢ in the above formula has been dropped for
convenience. From (7.203), it is easy to see that in the domain of attraction
WeQ- {W|W=L,AP}, we have dW/dt#0 and dL(W)/dt<0, then
dL(W)/dt = 0 if and only if dW/ds = 0 for W = L,A"*P. So L(W) will strictly
and monotonically decrease from any initial value of W in Q. That is to say, L(W)
is a Lyapunov function for the domain Q and W(z) will globally asymptotically
converge to the needed GMCs from any W(0) € Q.

(7.203)
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7.4.3 Simulations and Application Experiments

In this section, we provide several experiments to demonstrate the behavior and
applicability of the proposed algorithms. The first experiment mainly shows the
capability of the WGIC algorithm to extract the multiple minor components, and the
second provides one example of practical applications.

(1) The ability to extract multiple GMCs

In this experiment, we provide simulation results to show the performance of the
proposed algorithm for multiple GMC extraction of a randomly generated matrix
pencil, which are given by

0.5444 —-0.0596  0.1235  0.0197 —0.0611 —0.1309 —0.0055]
—0.0596  0.3892 —0.0583 —0.1300  0.0984  0.0138  0.1919
0.1235 —0.0583 0.5093  0.0570  0.0394  0.0582 —0.0140
R, = 0.0197 -0.1300  0.0570 03229 -0.0350  0.2035 —-0.1035
—0.0611 0.0984  0.0394 —-0.0350 0.4960 —0.0191 —0.1087
—0.1309  0.0138  0.0582  0.2035 —0.0191 0.3148  0.0212
| —0.0055  0.1919 -0.0140 -0.1035 -0.1087  0.0212  0.2819 |

(7.204)

and

0.3979  0.0633 0.0294  0.0805 —0.0199 —0.1911 —0.1447]
0.0633  0.5778 —0.0858 —0.0067  0.0971 0.0691 —0.0046
0.0294 —-0.0858  0.5221 -—0.0413  0.1534  0.1488 —0.1716
R, = 0.0805 —0.0067 —-0.0413  0.6070  0.0896 —0.1212  0.0724
—0.0199  0.0971 0.1534  0.0896  0.5633 0.1213  0.0399
—0.1911 0.0691 0.1488 —0.1212  0.1213 0.3171 0.1417
| —0.1447 —-0.0046 —0.1716  0.0724  0.0399  0.1417  0.5541

(7.205)

By using MATLAB toolboxes, we can obtain the generalized eigenvalues of
matrix pencil (Ry, Ry) are A; = 0.1021, 2, = 0.1612, /3 = 0.6464, /4 = 0.8352,
As = 1.3525, ¢ = 2.1360, 47 = 5.2276. Then, we use two different algorithms to
extract the first three GMCs of this matrix pencil, that is to say: » = 3. The two
algorithms are

Algorithm 1: sequential extracting algorithm based on the deflation technique
given by Table 7.1.

Algorithm 2: gradient algorithm based on the weighted matrix given by (7.200).

The initial parameters for the two algorithms are set as follows: for Algorithm 1,
7 =100 and 5 = 0.2, and for Algorithm 2: A = diag([3,2,1]) and 5 = 0.2. By
these settings, the two algorithms have the same learning rate. The initial state
vector or matrix is randomly generated. The simulation results are shown in
Fig. 7.7.
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Fig. 7.7 Direction cosine 1
curves of the two algorithms
for extracting the first three
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From Fig. 7.7, we can see that after about 140 iteration steps, all the direction
cosine curves have converged to one, which means that both the Algorithm 1 and
the Algorithm 2 have the ability to extract the multiple GMCs of a matrix pencil.
Notice that the Algorithm 1 is a sequential extraction algorithm, so the next
component starts after the previous one has converged. That is to say, the actual
time instant for the start of the second GMC is k = 160 instead of k¥ = 0 and that of
the third GMC is k = 320 instead of k = 0. The starting points of the last two
GMCs have been moved to the base point in this figure in order to save space. It is
shown in Fig. 7.7 that when using the Algorithm 2, the averaged convergence time
for each GMC is 80 iterations. By using this fact, we can obtain that the actual total
iterations for the convergence of three GMCs are about 240 iterations. However, the
total iteration by the Algorithm 1 is about 130, which is cheaper than that of the
Algorithm 2. Since derivation between the total iterations of the two algorithms will
increase as the extracted number of the GMCs, the Algorithm 2 is very suitable for
real applications, where multiple GMCs need fast parallel extraction.

(2) Practical applications

In this section, we provide one example of practical application to show the
effectiveness of our algorithm. An important application of the minor generalized
eigenvector is to solve data classification problem. In [50], Mangasarian and Wild
proposed a new approach called generalized eigenvalue proximal support vector
machine (GEPSVM) based on GED and provided an interesting example to illus-
trate the effectiveness of GEPSVM. In this section, we use our algorithm to classify
two data sets.

The input data vectors are generated through the following method. Firstly,
randomly take 15 points from the line y; = x; +2 and the line y, = —2x; + 5,
respectively, and then add Gaussian noises to the 30 points; finally, we can obtain
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two data sets, which are close to one of two intersecting “cross-planes” in R?. The
data points are shown in Fig. 7.8. The problem of data classification is to find two
planes such that each plane is as close as possible to one of the data sets and as far
as possible from the other data set. After some simplified calculation, the data
classification problem by GEPSVM method can be changed into a problem of
calculating the minor generalized eigenvector of two data matrices.

Figure 7.8 gives the two planes obtained by our proposed algorithms. From
Fig. 7.8, we can see that training set correctness is 100 percent, which means the
proposed algorithm has a satisfactory performance for solving data classification
problems.

7.5 Summary

In this chapter, the generalized eigen decomposition problem has been briefly
reviewed. Several well-known algorithms, e.g., generalized eigenvector extraction
algorithm based on Newton or quasi-Newton method, fast generalized eigenvector
tracking based on the power method, and generalized eigenvector extraction
algorithm based on RLS method, have been analyzed. Then, a minor generalized
eigenvector extraction algorithm proposed by us has been introduced, and its
convergence analysis has been performed via the DDT method. Finally, an infor-
mation criterion for GMCA is proposed, and a fast GMCA algorithm is derived by
using quasi-Newton method. This information criterion is extended into a weighted
one through the weighed matrix method so as to extract multiple generalized minor
components. A gradient algorithm is also derived based on this weighted infor-
mation criterion, and its convergence is analyzed by Lyapunov function approach.



References 231

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Huanqun, C., Sarkar, T. K., Dianat, S. A., & Brule, J. D. (1986). Adaptive spectral estimation

by the conjugate gradient method. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 34(2), 272-284.

Chang, C., Ding, Z., Yau, S. F., & Chan, F. H. Y. (2000). A matrix pencil approach to blind
separation of colored nonstationary signals. IEEE Transactions on Signal Processing, 48(3),
900-907.

Comon, P., & Golub, C. H. (1990). Tracking a few extreme singular values and vectors in
signal processing. Proceedings of the IEEE, 78(8), 1327-1343.

Choi, S., Choi, J., Im, H. J., & Choi, B. (2002). A novel adaptive beamforming algorithm for
antenna array CDMA systems with strong interferers. IEEE Transactions on Vehicular
Technology, 51(5), 808-816.

Morgan, D. R. (2003). Downlink adaptive array algorithms for cellular mobile communi-
cations. IEEE Transactions on Communications, 51(3), 476-488.

Bunse-Gerstner A. (1984). An algorithm for the symmetric generalized eigenvalue problem.
Linear Algebra and its Applications, 58(ARR), 43-68.

. Shougen, W., & Shugin, Z. (1991). An algorithm for Ax = ABx with symmetric and positive-

definite A and B. SIAM Journal on Matrix Analysis and Applications, 12, 654—660.
Auchmuty, G. (1991). Globally and rapidly convergent algorithms for symmetric eigenprob-
lems. SIAM Journal of Matrix Analysis and Applications, 12(4), 690-706.

Kaufman, L. (1974). The LZ-algorithm to solve the generalized eigenvalue problem. SIAM
Journal of Numerical Analysis, 11(5), 997-1024.

Martin R. S., &Wilkinson J. H. (1968). Reduction of the symmetric eigenproblem Ax = ABx
and related problems to standard form. Numerical Mathematics, 11, 99-110.

Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue
problems. SIAM Journal of Numerical Analysis, 10(2), 241-256.

Yang, J., Hu, H., & Xi, H. (2013). Weighted non-linear criterion-based adaptive generalized
eigendecomposition. IET Signal Processing, 7(4), 285-295.

Kong, X. Y., Hu, C. H., & Han, C. Z. (2012). A dual purpose principal and minor subspace
gradient flow. IEEE Transactions on Signal Processing, 60(1), 197-210.

Mathew, G., & Reddy, V. U. (1996). Aquasi-Newton adaptive algorithm for generalized
symmetric eigenvalue problem. IEEE Transactions on Signal Processing, 44(10), 2413-2422.
Mao, J., & Jain, A. K. (1995). Artificial neural networks for feature extraction and
multivariate data projection. IEEE Transactions on Neural Networks, 6(2), 296-317.
Rubner, J., & Tavan, P. (1989). A self-organizing network for principal component analysis.
Europhysics Letters, 10(7), 693-698.

Rubner, J., & Tavan, P. (1990). Development of feature detectors by self organization.
Biology Cybernetics, 62(62), 193-199.

Chatterjee, C., Roychowdhury, V. P., Ramos, J., & Zoltowski, M. D. (1997). Self-organizing
algorithms for generalized eigen-decomposition. IEEE Transactions on Neural Networks, 8
(6), 1518-1530.

Xu, D., Principe, J. C., & Wu, H. C. (1998). Generalized eigendecomposition with an on-line
local algorithm. IEEE Signal Processing Letters, 5(11), 298-301.

Diamantaras K.I., & Kung S.Y. (1996). Principal component neural networks, theory and
applications. New York: Wiley.

Rao, Y. N, Principe, J. C., Wong, T. F., & Abdi, H. (2004). Fast RLS-like algorithm for
generalized eigendecomposition and its applications. Journal of VLSI Signal Processing, 37
(2-3), 333-344.

Yang, J., Xi, H., Yang, F., & Yu, Z. (2006). RLS-based adaptive algorithms for generalized
eigen -decomposition. IEEE Transactions on Signal Processing, 54(4), 1177-1188.
Attallah, S., & Abed-Meraim, K. (2008). A fast adaptive algorithm for the generalized
symmetric eigenvalue problem. [EEE Signal Processing Letters, 15, 797-800.



232 7 Generalized Principal Component Analysis

24. Tanaka, T. (2009). Fast generalized eigenvector tracking based on the power method. /EEE
Signal Processing Letters, 16(11), 969-972.

25. Xu, L. (1993). Least mean square error reconstruction principle for self-organizing
neural-nets. Neural Networks, 6(5), 627-648.

26. Yang, J., Zhao, Y., & Xi, H. (2011). Weighted rule based adaptive algorithm for
simultaneously extracting generalized eigenvectors. IEEE Transactions on Neural Networks,
22(5), 800-806.

27. Martinez, A. M., & Zhu, M. (2005). Where are linear feature extraction methods applicable.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1934-1944.

28. Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine
classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(1), 69-74.

29. Bello, L., Cruz, W. L., & Raydan, M. (2010). Residual algorithm for large-scale positive
definite generalized eigenvalue problems. Computation Optimization and Applications, 46(2),
217-227.

30. Stone, J. V. (2002). Blind deconvolution using temporal predictability. Neurocomputing, 49
(1-4), 79-86.

31. Shahbazpanahi, S., Gershman, A. B., Luo, Z., & Wong, K. M. (2003). Robust adaptive
beamforming for general-rank signal models. IEEE Transactions on Signal Processing, 51(9),
2257-2269.

32. Ye M., Liu Y., Wu H,, & Liu Q. (2008). A few online algorithms for extracting minor
generalized eigenvectors. In International Joint Conference on Neural Networks
(pp. 1714-1720).

33. Nguyen, T. D., & Yamada, I. (2013). Adaptive normalized quasi-Newton algorithms for
extraction of generalized eigen-pairs and their convergence analysis. IEEE Transactions on
Signal Processing, 61(61), 1404-1418.

34. Moller, R., & Konies, A. (2004). Coupled principal component analysis. IEEE Transactions
on Neural Networks, 15(1), 214-222.

35. Nguyen, T. D., Takahashi, N., & Yamada, 1. (2013). An adaptive extraction of generalized
eigensubspace by using exact nested orthogonal complement structure. Multidimensional
System and Signal Processing, 24(3), 457-483.

36. Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal
Processing, 43(1), 95-107.

37. Davila, C. E. (2000). Efficient, high performance, subspace tracking for time-domain data.
IEEE Transactions on Signal Processing, 48(12), 3307-3315.

38. Yang, J., Yang, F., & Xi, H. S. (2007). Robust adaptive modified Newton algorithm for
generalized eigendecomposition and its application. EURASIP Journal on Advances in Signal
Processing, 2007(2), 1-10.

39. Cirrincione, G., Cirrincione, M., Hérault, J., & Van Huffel, S. (2002). The MCA EXIN
neuron for the minor component analysis. IEEE Transactions on Neural Networks, 13(1),
160-187.

40. Peng, D., & Zhang, Y. (2006). Convergence analysis of a deterministic discrete time system
of feng’s MCA learning algorithm. IEEE Transactions on Signal Processing, 54(9),
3626-3632.

41. Peng, D., Zhang, Y., & Luo, W. (2007). Convergence analysis of a simple minor component
analysis algorithm. Neural Networks, 20(7), 842-850.

42. Peng, D., Zhang, Y., & Yong, X. (2008). On the discrete time dynamics of a self-stabilizing
MCA learning algorithm. Mathematical and Computer Modeling, 47(9-10), 903-916.

43. Lv, J., Zhang, Y., & Tan, K. K. (2006). Convergence analysis of Xu’s LMSER learning
algorithm via deterministic discrete time system method. Neurocomputing, 70(1), 362-372.

44. Ouyang, S., Bao, Z., Liao, G., & Ching, P. C. (2001). Adaptive minor component extraction
with modular structure. IEEE Transactions on Signal Processing, 49(9), 2127-2137.

45. Miao, Y., & Hua, Y. (1998). Fast subspace tracking and neural network learning by a novel
information criterion. IEEE Transactions on Signal Processing, 46(7), 1967-1979.



References 233

46.

47.

48.

49.

50.

51.

52.

53.

54.

Kong, X. Y., An, Q. S., Ma, H. G., Han, C. Z., & Zhang, Q. (2012). Convergence analysis of
deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA.
Neural Networks, 36(8), 64-72.

Ouyang, S., & Bao, Z. (2001). Fast principal component extraction by a weighted information
criterion. /EEE Transactions on Signal Processing, 50(8), 1994-2002.

Oja, E. (1992). Principal components, minor components and linear neural networks. Neural
Networks, 5(6), 927-935.

Magnus, J. R., & Neudecker, H. (1991). Matrix differential calculus with applications in
statistics and econometrics. New York: Wiley.

Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine
classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(1), 69-74.

Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural-network
node. IEEE Transactions on Neural Networks, 13(6), 1342—1352.

Parlett, B. N. (1998). The symmetric eigenvalue problem. Philadelphia: SIAM.

Zhang, Y., Ye, M., Lv, J., & Tan, K. K. (2005). Convergence analysis of a deterministic
discrete time system of Oja’s PCA learning algorithm. [EEE Transactions on Neural
Networks, 16(6), 1318-1328.

Moller, R. (2004). A self-stabilizing learning rule for minor component analysis. International
Journal of Neural Systems, 14(1), 1-8.



Chapter 8
Coupled Principal Component Analysis

8.1 Introduction

Among neural network-based PCA or MCA algorithms, most previously reviewed
do not consider eigenvalue estimates in the update equations of the weights, except
an attempt to control the learning rate based on the eigenvalue estimates [1]. In [2],
Moller provided a framework for a special class of learning rules where eigen-
vectors and eigenvalues are simultaneously estimated in coupled update equations,
and has proved that coupled learning algorithms are solutions for the speed stability
problem that plagues most noncoupled learning algorithms. The convergence speed
of a system depends on the eigenvalues of its Jacobian, which vary with the
eigenvalues of the covariance matrix in noncoupled PCA/MCA algorithms [2].
Moller showed that, in noncoupled PCA algorithms, the eigen motion in all
directions mainly depends on the principal eigenvalue of the covariance matrix [2].
Numerical stability and fast convergence of algorithms can only be achieved by
guessing this eigenvalue in advance [2]. In particular for chains of principal
component analyzers which simultaneously estimate the first few principal eigen-
vectors [3], choosing the right learning rates for all stages may be difficult. The
problem is even more severe for MCA algorithms. MCA algorithms exhibit a wide
range of convergence speeds in different eigen directions, since the eigenvalues of
the Jacobian cover approximately the same range as the eigenvalues of the
covariance matrix. Using small enough learning rates to still guarantee the stability
of the numerical procedure, noncoupled MCA algorithms may converge very
slowly [2].

In [2], Moller derived a coupled learning rule by applying Newton’s method to a
common information criterion. A Newton descent yields learning rules with
approximately equal convergence speeds in all eigen directions of the system.
Moreover, all eigenvalues of the Jacobian of such a system are approximately.
Thus, the dependence on the eigenvalues of the covariance matrix can be eliminated
[2]. Moller showed that with respect to averaged differential equations, this
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approach solves the speed stability problem for both PCA and MCA rules.
However, these differential equations can only be turned into the aforementioned
online rules for the PCA but not for the MCA case, leaving the more severe MCA
stability problem still unresolved [2]. Interestingly, unlike most existing adaptive
algorithms, the coupled learning rule for the HEP effectively utilizes the latest
estimate of the eigenvalue to update the estimate of the eigenvector [4]. Numerical
examples in [2] showed that this algorithm achieves fast and stable convergence for
both low-dimensional data and high-dimensional data. Unfortunately, there has
been no report about any explicit convergence analysis for the coupled learning
rule. Thus, the condition for the convergence to the desired eigen pair is not clear;
e.g., the region within which the initial estimate of the eigen pair must be chosen to
guarantee the convergence to the desired eigen pair has not yet been known [4].

Recently, Tuan Duong Nguyen et al. proposed novel algorithms in [4] for given
explicit knowledge of the matrix pencil (R,, R,). These algorithms for estimating
the generalized eigen pair associated with the largest/smallest generalized eigen-
value are designed (i) based on a new characterization of the generalized eigen pair
as a stationary point of a certain function and (ii) by combining a normalization step
and quasi-Newton step at each update. Moreover, the rigorous convergence analysis
of the algorithms was established by the DDT approach. For adaptive implemen-
tation of the algorithms, Tuan Duong Nguyen et al. proposed to use the expo-
nentially weighted sample covariance matrices and the Sherman—Morrison—
Woodbury matrix-inversion lemma.

The aim of this chapter was to develop some coupled PCA or coupled gener-
alized PCA algorithms. First, on the basis of a special information criterion in [5],
we propose a coupled dynamical system by modifying Newton’s method in this
chapter. Based on the coupled system and some approximation, we derive two
CMCA algorithms and two CPCA algorithms; thus, two unified coupled algorithms
are obtained [6]. Then, we propose a coupled generalized system in this chapter,
which is obtained by using the Newton’s method and a novel generalized infor-
mation criterion. Based on this coupled generalized system, we obtain two coupled
algorithms with normalization steps for minor/principal generalized eigen pair
extraction. The technique of multiple generalized eigen pair extraction is also
introduced in this chapter. The convergence of algorithms is justified by DDT
system.

In this chapter, we will review and discuss the existing coupled PCA or coupled
generalized PCA algorithms. Two coupled algorithms proposed by us will be
analyzed in detail. The remainder of this chapter is organized as follows. An
overview of the existing coupled PCA or coupled generalized PCA algorithms is
presented in Sect. 8.2. An unified and coupled self-stabilizing algorithm for minor
and principal eigen pair extraction algorithms are discussed in Sect. 8.3. An
adaptive generalized eigen pair extraction algorithms and their convergence anal-
ysis via DDT method are presented in Sect. 8.4, followed by summary in Sect. 8.5.
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8.2 Review of Coupled Principal Component Analysis

8.2.1 Moller’s Coupled PCA Algorithm

Learning rules for principal component analysis are often derived by optimizing
some information criterion, e.g., by maximizing the variance of the projected data
or by minimizing the reconstruction error [2, 7]. In [2], Moller proposed the fol-
lowing information criterion as the starting point of his analysis

p=wCwi™ —wTw41In .. (8.1)

where w denotes an n-dimensional weight vector, i.e., the estimate of the eigen-
vector, / is the eigenvalue estimate, and C = E{xx"} is the n x n covariance matrix
of the data. From (8.1), by using the gradient method and the Newton descent,
Moller derived a coupled system of differential equations for the PCA case

1
w=Cwl ' —wwTCwi ™' — ok (1—w'w), (8.2)

A=wlCw —wTwa, (8.3)
and another for MCA case

1
w=C'wit+wwTCwi ' — ok (1+3w'w), (8.4)

L=wlCw —wTwi. (8.5)

For the stability of the above algorithms, see [2]. It has been shown that for the
above coupled PCA system, if we assume /4; < 4y, the system converges with
approximately equal speeds in all its eigen directions, and this speed is widely
independent of the eigenvalues A; of the covariance matrix. And for the above
coupled MCA system, if we assume ; < 4;, then the convergence speed is again
about equal in all eigen directions and independent of the eigenvalues of C.

By informally approximating C = xxT, the averaged differential equations of
(8.2) and (8.3) can be turned into an online learning rule:

1
W=7y (x —wy) — Tk (1—wtw)|, (8.6)

A=p(% —wlwl). (8.7)

According to the stochastic approximation theory, the resulting stochastic differ-
ential equation has the same convergence goal as the deterministic averaged equation
if certain conditions are fulfilled, the most important of which is that a learning rate
decreases to zero over time. The online rules (8.6) and (8.7) can be understood as a
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learning rule for the weight vector w of a linear neuron which computes its output
y from the scalar product of weight vector and input vector y = w'x.

In [2], the analysis of the temporal derivative of the (squared) weight vector
length in (8.6) has shown that the weight vector length may in general be fluctuating.
By further approximating wTw = 1 (which is fulfilled in the vicinity of the stationary
points) in the averaged systems (8.2) and (8.3), the following system can be derived

w=Cw. ' —wwTCwi™, (8.8)
J=wrCw — . (8.9)

This learning rule system is known as ALA [1]. The eigenvalues of the system’s
Jacobian are still approximately equal and widely independent of the eigenvalues of
the covariance matrix. The corresponding online system is given by

W =yyA " (x — wy), (8.10)
i=y(*—1). (8.11)

It is obvious that ALA can be interpreted as an instance of Oja’s PCA rule.

From (8.4) and (8.5), it has been shown that having a Jacobian with eigenvalues
that are equal and widely independent of the eigenvalues of the covariance matrix
appears to be a solution for the speed stability problem. However, when attempting
to turn this system into an online rule, a problem is encountered when replacing the
inverse covariance matrix C”' by a quantity including the input vector x. An
averaged equation linearly depending on C takes the form w =f(C,w) =
f(E{xx"},w)= E{f(xx,w)}. In an online rule, the expectation of the gradient is
approximated by slowly following w = yf(xxT,w) for subsequent observations of
x. This transition is obviously not possible if the equation contains C'. Thus, there
is no online version for the MCA systems (8.4) and (8.5). Despite using the
ALA-style normalization, the convergence speed in different eigen directions still
depends on the entire range of eigenvalues of the covariance matrix. So the speed
stability problem still exists.

8.2.2 Nguyen’s Coupled Generalized Eigen pairs Extraction
Algorithm

In [8], Nguyen proposed a generalized principal component analysis algorithm and
its differential equation form is given as:

w=R_'Rw—wRww. (8.12)
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Let W = [wy, wy,..., wyl, in which w, w,,..., wy are the generalized eigen-
vectors of matrix pencil (R, R,). The Jacobian in the stationary point is given as:

o )
ST o = BBy — 2l = 20w 1wy R (8.13)

J(wy) =

Solving for the eigenvectors of J can be simplified to the solving for the

eigenvector of its similar diagonally matrix J* = P~'JP, since J and J have the

same eigenvectors and eigenvalues, and the eigenvalues of diagonal matrix J* are

easy to be obtained. Considering W’RW =1, let P=W. Then we have
P '=W"R,. Thus, it holds that

T (wi) = WHR.(R'Ry — 2uI — 2w w{R,)W
HAy (8.14)

=A— I =2, W/'Rw (W/Rw)) e

Since W/Rw, = e, = [1, 0,..., 01", (8.14) will be reduced to
J(wi) = A — I —2)eel. (8.15)
The eigenvalues o determined from det (J* — o) = 0 are given as:
o =24, oj=4—Ai, j=2,...,N. (8.16)

Since the stability requires « <0 and thus 4; > 4;, j = 2,3, ..., n, it can be seen
that only principal eigenvector—eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers, which can still testify that (8.12) is a
generalized PCA algorithm. In the practical signal processing applications, it
always holds that 2, > /;, j = 2,3,...,n. Thus, o; = —4,, i.e., the eigen motion in
all directions in algorithm (8.12) depends on the principal eigenvalue of the
covariance matrix. Thus, this algorithm has the speed stability problem.

In [4], an adaptive normalized quasi-Newton algorithm for generalized eigen
pair extraction was proposed and its convergence analysis was conducted. This
algorithm is a coupled generalized eigen pair extraction algorithm, which can be
interpreted as natural combinations of the normalization step and quasi-Newton
steps for finding the stationary points of the function

Ew,2) =wlRwi™ " —wRw +1nJ, (8.17)

which is a generalization of the information criterion introduced in [2] for the
HEP. The stationary point of ¢ is defined as a zero of

[0}4 -1
5= 2Rwi~ — 2R.w
aw | — Y x . .
(%) <wHRywi2+/11> (8.18)
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Hence, from
R,w = /R,W
{ 7o (8.19)

it can be seen that (w, ) € CN x R is a stationary point of &, which implies that a
stationary point (w, /) of ¢ is a generalized eigen pair of the matrix pencil (R, R,).
To avoid these computational difficulties encountered in Newton’s method, Nguyen

proposed to use approximations of H~!(w,]) in the vicinity of two stationary
points of their special interest

_ X ~ X 1/1 H R—l i
1 ~ f-! L Sww . w
H wA)~H, w1 = 2 ( W) 0 ), (8.20)
for (w, 2) = (vy, Av), and
_ ~_ LR —3wwl  —wi
! ~H;' =" 2 .
H (w,A)~H, (w,A) 2( i 0 >, (8.21)

for (w, 1) = (v1, 41). By applying Newton’s strategy for finding the stationary point
of ¢ using the gradient (8.18) and the approximations (8.20) and (8.21), a learning
rule for estimating the generalized eigen pair associated with the largest generalized
eigenvalue was obtained as:

w(k+1) =w(k) +n {R'Ryw(k) 2" (k)

u - 1 u (8.22)
—w(k)Ryw(k) w(k)2™ (k) = 5w(k)[1 —w (k)Rxw(k)]}7

Mk+1) = A(k) +p; [w (k+ D)Ryw(k+ 1) — w” (k+ D)Rew(k + 1)A(k)], (8.23)

and a learning rule for estimating the generalized eigen pair associated with the
smallest generalized eigenvalue was obtained as:

w (k1) = w (k) + no{ Ry Row (k)2 (k) -+ w (K)Ryw () w ()2~ (K)
(8.24)
- %w (k) [143w" (k)Rew (k)] }

Mk+1) = A(k) +p, [w! (k+ DRyw(k+ 1) — w” (k+ DRuw(k + 1)A(k)], (8.25)

where 1, 7,,%,,7, > 0 are the step sizes, and [w(k), A(k)] is the estimate at time
k of the generalized eigen pair associated with the largest/smallest generalized
eigenvalue. By introducing the normalization step in the above learning rules at

each update, using the exponentially weighted sample covariance matrices IAiy and
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R, which are updated recursively, and using the Sherman—Morrison—Woodbury
matrix-inversion lemma, Nguyen’s coupled generalized eigen pair extraction
algorithm was obtained as follows.

Adaptive coupled generalized PCA algorithm:

Wk = wlk = 1) s (R (wlk = 1)

(8.26)
—w! (k — DR, (k)w(k — V)w(k — 1)),

_ w(k)
w(k) ”W(k)HEx(k) ) (8.27)
J(k) = (1 =y)A(k = 1)+ y,w! ()R, (k)w(k), (8.28)

and adaptive coupled generalized MCA algorithm:
W(k) = w(k = 1)+ 1, (@, (O R (kw (k= 1)2(k — 1) 529
(= DRy(k) wlk = Dw(k — 1) (k= 1) = 2w(k — 1)), '

_ w(k)
RN 0 (830)
Mk) = (1= y2)A(k — 1)+ v,w! (k) Ry (k)w (k), (8.31)

where |[u|p = VuTR.u is defined as the R,-norm, Q. =R;"', @, = R, which

are updated recursively as follows:

~

Ry(k+1) = PRy (k) +y(k+ )y" (k+1), (8.32)

R.(k+1) = aRy(k) +x(k+ )x" (k+1), (8.33)

O (B)x(k+ Dx"(k+1)0, (k))
o+ xt(k+1)0,(k)x(k+1) )

0.(k+ 1=} (0.0 (8.34)

Q, (k+ D= <Qy(k) b Lyt UQy(k)) , (8.35)

B B4y (k+1)Qy(k)y(k+ 1)

where o, § € (0, 1) are the forgetting factors.

Different from the analysis of Mdller’s coupled algorithm, the convergence
analysis of Nguyen algorithm in [4] was not conducted via the eigenvalue of
Jacobian matrix. Nguyen established rigorous analysis of the DDT systems
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showing that, for a step size within a certain range, the algorithm converges to the
orthogonal projection of the initial estimate onto the generalized eigen-subspace
associated with the largest/smallest generalized eigenvalue.

Next, we analyze the convergence of Nguyen’s algorithm via the eigenvalues of
Jacobian matrix.

By ignoring the normalization step (8.27), the differential equation form of
GPCA algorithms (8.26) and (8.28) can be written as:

w=2""(R,'Ryw — w'Rww), (8.36)
L=wlRw — ). (8.37)
The Jacobian matrix at the stationary point (wy, 4;) is given as:

LWT ow
ow B2
Jwi, 21) = 9) o)

)

w0 (w, ) (8.38)
[ A'RI'Ry T 2w WiR, 0
- 2/,wHR, -1/
Let
W 0
P= <0T 1). (8.39)
Then, it can be easily seen that
H
pl— (WoTRx ‘1’) (8.40)

Solving for the eigenvectors of J can then be simplified to the solving for the
eigenvector of its similar diagonally matrix J~ = P~'JP. Then it holds that

1 H
, A A—I—2ee 0
* M) = ! ! . 8.41
yom a) = (AR 0 (8.41)
The eigenvalues o determined from det (J* — o) = 0 are
Aj )
0(1:—2, OLN+1:—1, ozj:;——l,]:2,...,N. (842)
s}
Since the stability requires o <0 and thus 4; <1y, j = 2,3,...,n, it can be seen

that only principal eigenvector—eigenvalue pairs are stable stationary points, and all
other stationary points are saddles or repellers. If we further assume that 4, > 4,
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then o j~ —1,j=2,3,...,n. That s to say, the eigen motion in all directions in the
algorithm do not depend on the generalized eigenvalue of the covariance matrix of
input signal. Thus, this algorithm does not have the speed stability problem. Similar
analysis can be applied to the GMCA algorithms (8.29) and (8.31).

8.2.3 Coupled Singular Value Decomposition
of a Cross-Covariance Matrix

In [9], a coupled online learning rule for the singular value decomposition (SVD) of
a cross-covariance matrix was derived. In coupled SVD rules, the singular value is
estimated alongside the singular vectors, and the effective learning rates for the
singular vector rules are influenced by the singular value estimates [9]. In addition,
a first-order approximation of Gram—Schmidt orthonormalization as decorrelation
method for the estimation of multiple singular vectors and singular values was used.
It has been shown that the coupled learning rules converge faster than Hebbian
learning rules and that the first-order approximation of Gram—Schmidt orthonor-
malization produces more precise estimates and better orthonormality than the
standard deflation method [9].

The neural network and its learning algorithm for the singular value decompo-
sition of a cross-covariance matrix will be discussed in Chap. 9, in which the
coupled online learning rules for the SVD of a cross-covariance matrix will be
analyzed in detail.

8.3 Unified and Coupled Algorithm for Minor
and Principal Eigen Pair Extraction

Coupled algorithm can mitigate the speed stability problem which exists in most
noncoupled algorithms. Though unified algorithm and coupled algorithm have
these advantages over single purpose algorithm and noncoupled algorithm,
respectively, there are only few of unified algorithms, and coupled algorithms have
been proposed. Moreover, to the best of the authors’ knowledge, there are no both
unified and coupled algorithms which have been proposed. In this chapter, based on
a novel information criterion, we propose two self-stabilizing algorithms which are
both unified and coupled. In the derivation of our algorithms, it is easier to obtain
the results compared with traditional methods, because there is no need to calculate
the inverse Hessian matrix. Experiment results show that the proposed algorithms
perform better than existing coupled algorithms and unified algorithms.
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8.3.1 Couple Dynamical System

The derivation of neural network learning rules often starts with an information
criterion, e.g., by maximization of the variance of the projected data or by mini-
mization of the reconstruction error [7]. However, as stated in [10], the freedom of
choosing an information criterion is greater if Newton’s method is applied because
the criterion just has to have stationary points in the desired solutions. Thus in [2],
Moller proposed a special criterion. Based on this criterion and by using Newton’s
method, Moller derived some CPCA learning rules and a CMCA learning rule.
Based on another criterion, Hou [5] derived the same CPCA and CMCA learning
rules as that of Moller’s, and Appendix 2 of [5] showed that it is easier and clearer
to approximate the inverse of the Hessian.

To start the analysis, we use the same information criterion as Hou’s, which is

p=wCw—wwi+ti (8.43)

where C = E{xxT} € R"" is the covariance matrix of the n-dimensional input data
sequence x, w € ! and A € R denotes the estimation of eigenvector (weight
vector) and eigenvalue of C, respectively.

It is found that

Op ,

— =2 -2 44
o Cw Aw (8.44)
O _ 1

Thus, the stationary points (w, 1) of (8.43) are defined by

9 =0, o =0. (8.46)
oW 52 O .7y
Then, we can obtain
Cw = w, (8.47)
wiw =1 (8.48)

from which we can also conclude that wTCw = . Thus, the criterion (8.43) fulfills
the aforementioned requirement: The stationary points include all associated
eigenvectors and eigenvalues of C. The Hessian of the criterion is given as:
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*p Pp ,
. 4 m C—-—iA —w
H(w,)) = (gyp 302§’~> = 2( W0 ) (8.49)
oiow 9,2

Based on the Newton’s method, the equation used by Moller and Hou to derive
the differential equations can be written as:

Based on different information criteria, both Moller and Hou tried to find the

inverse of their Hessian H~!(w, /). Although the inverse Hessian of Moller and
Hou is different, they finally obtained the same CPCA and CMCA rules [5]. Here
we propose to derive the differential equation with another technical, which is

H(w,i)(j) (é_‘ﬁ) (8.51)

In this case, there is no need to calculate the inverse Hessian. Substituting (8.44),
(8.45), and (8.49) into (8.51), it yields

(S )G -(F) v
Then we can get

(C =MW —wi=—(C—)w (8.53)
Tw — 1. (8.54)

2wt =w

In the vicinity of the stationary point (wi,4;), by approximating
waw, A A < 4 (2<j<n), and after some manipulations (see Appendix A
in [6]), we get a coupled dynamical system as

. ClwwTw 1)
W=——g—" =W
2wTC™'w

. owlw+1 1 .
=" (chlw - A). (8.56)

(8.55)
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8.3.2 The Unified and Coupled Learning Algorithms

8.3.2.1 Coupled MCA Algorithms

The differential equations can be turned into the online form by informally
approximating C = x(k)xT(k), where x(k) is a data vector drawn from the distri-
bution. That is, the expression of the rules in online form can be approximated by
slowly following w(k + 1) = fix(k)x"(k); w(k)) for subsequent observations of
x. Moller has pointed out [2] that this transition is infeasible if the equation contains
C™', because it is hard to replace the inverse matrix C~' by an expression con-
taining the input vector x. However, this problem can be solved in another way [11,
12], in which Cclis updated as

k+1 C'(k)x(k+ 1)x"(k+1)C ' (k) (8.57)
k k+xT(k+1)C (k) xT(k+1) '

Cl(k+1)= C (k) —

where C~!(k) starts with C~'(0) =1 and converges to C~' as k — 0o.Then, the
CMCA system (8.55)—(8.56) has the online form as:

T (k)w(k) + 1] Q(k)w(k) w(k)} (8.58)

W(k+1) :w(k)+7(k){ ZWT(k) Q(k)w(k)

T
k1) = 20 + 90 (k)wz(k) 1 [WT i Ql( AT )v(k)] (8.59)
kil Q) x(k+1)xT(k+ 1) (k)
Qk+1) === {Q(k)_k+xT(k+l)Q(k)xT(k+l)] (8.60)

where 0 <o <1 denotes the forgetting factor and y(k) is the learning rate. If all
training samples come from a stationary process, we choose o = 1. Q(k) = C~!(k)
starts with Q(0) = I. Here, we refer to the rule (8.55)-(8.56) and its online form
(8.58)—(8.60) as “fMCA,” where f means fast. In the rest of this section, the online
form (which is used in the implementation) and the differential matrix form (which
is used in the convergence analysis) of a rule have the same name, and we will not
emphasize this again. If we further approximate w'w ~ 1 (which fulfills in the
vicinity of the stationary points) in (8.55)—(8.56), we can obtain ¢ simplified CMCA
system

C'w
W=——+——w 8.61
2wTC'w ( )
1

—_— 8.62
chflw ( )

N
Il
NS
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and the online form is given as:

w(k+1) = w(k)—i—y(k){%—w(k)} (8.63)
k4 1) = A(K) +7(6) {m— i(k)} (8.64)

where Q(k) is updated by (8.60). In the following, we will refer to this algorithm as
“aMCA,” where a means adaptive.

8.3.2.2 Coupled PCA Algorithms

It is known that in unified rules, MCA rules can be derived from PCA rules by
changing the sign or using the inverse of the covariance matrix, and vice versa.
Here we propose to derive unified algorithms by deriving CPCA rules from CMCA
rules. Suppose that the covariance matrix C has an eigen pair (w, /); then it holds
that [13] Cw = /w and C~'w = /"'w, which means that the minor eigen pair of
C is also the principal eigen pair of the inverse matrix C~!, and vice versa.
Therefore, by replacing C~! with C in fMCA and aMCA rules, respectively, we
obtain two modified rules to extract the principal eigen pair of C, which is also the
minor eigen pair of C~'. The modified rules are given as:

. Cw(wTw+1)
p=rWwwry

wicw " (8.63)
T
1
F=PE L WTew - ) (8.66)
and
Cw
J=wlCw — . (8.68)

Since the covariance matrix C is usually unknown in advance, we use its esti-

~

mate at time k by C (k) suggested in [11], which is

_ k
Clht1) =
(k1) =037

C(k)+ k_i%x(k—i— DxT(k+1) (8.69)
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where C (k) starts with C(0) = x(0)xT(0) (or I). Actually, (8.57) is obtained from

(8.69) by using the SM-formula. Then, the online form of (8.65)-(8.66) and (8.67)—

(8.68) is given as:

WwT (k) € (k)w(k) + 1} C(kyw(k)
2wT (k) C (k)w (k)

wk+1) =w(k)+y(k) —w(k) (8.70)

wl(k)w(k) +1

Ak +1) = A(k) + (k) [wT(k)E(k)w(k) - z(k)} (8.71)

2
and
w(k+1) :w(k)—l—y(k){%—w(k)} (8.72)
Mk +1) = 2(k) + (k) [WT(k) C (k) w(k) — ;L(k)} (8.73)

respectively. Here we rename this algorithm deduced from fMCA and aMCA as
“fPCA” and “aPCA,” respectively. Finally, we obtain two unified and coupled
algorithms. The first one is fMCA + fGPCA, and the second one is
aMCA + aPCA. These two unified algorithms are capable of both PCA and MCA
by using the original or inverse of covariance matrix.

8.3.2.3 Multiple Eigen Pairs Estimation

In some engineering practice, it is required to estimate the eigen-subspace or
multiple eigen pairs. As introduced in [4], by using the nested orthogonal com-
plement structure of the eigen-subspace, the problem of estimating the p(<n)-
dimensional principal/minor subspace can be reduced to multiple principal/minor
eigenvectors estimation. The following shows how to estimate there maining p — 1
principal/minor eigen pairs.

For the CMCA case, consider the following equations:

61' = 61',1 +1’]/1j,1Wj,1W]T_1, ] = 2, Y 2 (874)

where C | = C and n is larger than the largest eigenvalue of c ,and (wj_y, A1) is

the (j — 1)th minor eigen pair of C that has been extracted. It is found that
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~

Ciwg = (CJ 1+’MJ )wq
C1+nZA, ,w Wy
r=1

N =1 (8.73)
=Ciwy+1 Z )urw,.wqu

r=1
B alwq+niqwq:(1+n)ﬂvqwq forg=1,...,j—1
E’lwq:)v,jwq forg=j,...,p .

Suppose that matrix c 1 has eigenvectors wj,w,,...,w, corresponding to
eigenvalues (0<) 01 <0< - - <a,, and then matrix C; has eigenvectors
Wj,...,Wn, Wi,...,wj_1 corresponding to eigenvalues (0<)g;<--- <0,
<(14+n)oy<--- <(1+n)oj_1. In this case, ¢; is the smallest eigenvalue of C;.
Based on the SM-formula, we have

Q_,‘ = ijl = (Cj +17/1j71Wj71WjT_1)71
7]/11-716'71 Wi 1WT C7_11
L+nhjaw] C Swi (8.76)

n4j-10;_ 1Wj IW/ 191
14»1/’/1 IQ] 1Wj-1

-1
crl -

=01~ s J =2,

Thus, by replacing @ with Q; in (8.58)~(8.59) or (8.63)~(8.64), they can be used
to estimate the jth minor eigen pair (w;, 4;) of C.
For the CPCA case, consider the following equations

Cj:Cj,I —)j,le,lwﬁl, ]:2,,[7 (877)

where (w;_, 4j—1) is the (j — 1)th principal eigen pair that has been extracted. It is
found that

Ciwg = (Cjoy — A_wiiwl_ )W,

j—1
~ . T
- E ww, )Wy
j
E Jow,wiw,

R (8.78)
Cw

0 forg=1,...,j—1

Ciw,=dgw, forqg=j,...p
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Suppose that the matrix C | has eigenvectors w,w,,...,w, corresponding to
eigenvalues g > 0, > -+ > g,( > 0), and then the matrix C ; has eigenvectors
Wiy ...,Wn,Wyi,...,wj_y corresponding to eigenvalues g¢; > --- >0, >
61 ="---=6;_1(=0). In this case, o; is the largest eigenvalue of C;. Thus, by
replacing C with 61- in (8.70)—(8.71) or (8.72)—(8.73), they can be used to estimate

the jth principal eigen pair (w;, 4;) of C.

8.3.3 Analysis of Convergence and Self-stabilizing Property

The major work of convergence analysis of coupled rules is to find the eigenvalues
of the Jacobian

owT 0L

J(wl,zl)<agg‘ g_) (8.79)

of the differential equations for a stationary point (wy, 4;). For fMCA rule, after
some manipulations (see Appendix B in [6]), we get

—1 D T
C )VI 1 wiw, 0 ) (880)

i =
Jaca(wi, 21) ( 20w 1
The Jacobian can be simplified by an orthogonal transformation with

U= <0V_‘T’ ‘;) (8.81)

The transformed Jacobian J* = UTJU has the same eigenvalues as J. In the

_ . . ) . =T .
vicinity of a stationary point (wy, 4;), we approximate W w = e; and obtain

. oy (AT —T—eel 0
Jcawi, A1) = ( Ty ! 1) (8.82)
The eigenvalues o of J* are determined as det(J* — o) = 0, which are
/’L A <</:j
T —— aj:f—l '~ —1,j=2,...n. (8.83)
J

Since stability requires « <0 and thus 4; <4;, j=2,...,n, we find that only
minor eigen pairs are stable stationary points, while all others are saddles or
repellers. What’s more, if we further assume A; < 4;, all eigenvalues are o =~ —1.
Hence, the system converges with approximately equal speed in all its eigen



8.3 Unified and Coupled Algorithm for Minor and Principal ... 251

directions, and this speed is widely independent of the eigenvalues /; of the
covariance matrix [2]. That is to say, the speed stability problem does not exist in
fMCA algorithm.

Similarly, for aMCA rule, we analyze the stability by finding the eigenvalues of

/_1_1)4 o 26’18T 0
. ) = 1 84
JaMCA(wl’ 1) ( _Zﬂnle’lr _1 (88 )
which are
A .
o ==2, 01 =—1, s=——1,j=2,...,n (8.85)
2

)

The situation of aMCA 1is similar to that of fMCA, and the only difference is that
the first eigenvalue of Jacobian is oy = —1 for fMCA and o; = —2 for aMCA.
Thus, the convergence speed of fMCA and aMCA is almost the same.

Similarly, the transformed Jacobian functions of fPCA and aPCA are given as:

Ay —TI—eel 0
: M) = 1 8.86
Jipca(Wi, 21) < 2irel . (8.86)
and
J* (W ] ) _ /_1_1/11 —I— 2818]r 0 (8 87)
apCATTL 2 2/s€] -1 '
respectively. And the eigenvalues of (8.86) and (8.87) are given as:
i fon>> 2
m:%H:—szf—NZ-mszmm—l (8.88)
i In <
m:—z%H:—L%:f—liﬂmj:me—l (8.89)

respectively. We can see that only principal eigen pairs are stable stationary points,
while all others are saddles or repellers. We can further assume 4; > 4; and thus
oj ~ —1 (j # 1) for fPCA and aPCA.

The analysis of the self-stabilizing property of the proposed algorithms is
omitted here. For details, see [6].
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8.3.4 Simulation Experiments

In this section, we provide several experiments to illustrate the performance of the
proposed algorithms in comparison with some well-known coupled algorithms and
unified algorithms. Experiments 1 and 2 mainly show the stability of proposed
CMCA and CPCA algorithms in comparison with existing CMCA and CPCA
algorithms, respectively. In experiment 3, the self-stabilizing property of the pro-
posed algorithm is shown. In experiment 4, we compare the performance of aMCA
and aPCA with that of two unified algorithms. Experiments 5 and 6 illustrate some
examples of practical applications.

In experiments 1-4, all algorithms are used to extract the minor or principal
component from a high-dimensional input data sequence, which is generated from
x = B - y(t), where each column of B € %3 is Gaussian with variance 1/30, and
y(t) € ®3%! is Gaussian and randomly generated.

In all experiments, to measure the estimation accuracy, we compute the norm of
eigenvector estimation (weight vector) ||w(k)|| and the projection [(k)] of the
weight vector onto the true eigenvector at each step:

_ Wi kw|

V) = @l

where w is the true minor (for MCA) or principal (for PCA) eigenvector with unit
length.

Unless otherwise stated, we set the initial conditions of experiments 1—4 as
follows: (1) The weight vector is initialized with a random vector (unit length).
(2) The learning rate y(k) starts at (0) = 10~2 and decays exponentially toward
zero with a final value y (kmax) = 107%. (3) We set o = 1 (if used), and A (0) =
0.001 for all cMCA and cPCA algorithms.

In experiments 1 and 2, k. = 20,000 training steps are executed for all algo-
rithms. In order to test the stability of the proposed algorithms, after 10,000 training
steps, we drastically change the input signals; thus, the eigen information changed
suddenly. All algorithms start to extract the new eigen pair since k£ = 10001. The
learning rate for nMCA is 10 times smaller than that for the others. Then, 20 times
of Monte Carlo simulation are executed for all experiments.

Figure 8.1 shows the time course of the projection of minor weight vector. We
can see that in all rules except mMCA the projection converges toward unity; thus,
these weight vectors align with the true eigenvector. The convergence speed of
mMCA is lower than that of the others and the projection of mMCA cannot
converge toward unity within 10,000 steps. We can also find that the convergence
speed of fMCA and aMCA rules is similar, and higher than that of the others. We
can also find that, at time step k = 10,001, where the input signals changed sud-
denly, all algorithms start to extract the new eigen pair. Figure 8.2 shows the time
course of weight vector length. We can find that the vector length of nMCA
converges to a nonunit length. The convergence speed and the stability of fMCA
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and aMCA are higher and better than that of the others. It can be seen that the
convergence speed of aMCA is a bit higher than that of fMCA.

Figure 8.3 shows the time course of the minor eigenvalue estimation. We can
see that mMCA cannot extract the minor eigenvalue as effective as the other
algorithms after the input signals changed. From Figs. 8.1 to 8.3, we can conclude
that the performance of fMCA and aMCA is better than that of the other cMCA
algorithms. Moreover, nMCA contains C and C~' simultaneously in the equations,
and we can prove that mMCA also has the speed stability problem though it is a
coupled rule. These may be the reason why our algorithms perform better than
nMCA and mCMA.

In experiment 2, we compare the performance of fPCA and aPCA with that of
ALA and nPCA. The time course of the projection and the eigenvector length of
principal weight vector are shown in Figs. 8.4 and 8.5, and the principal eigenvalue
estimation is shown in Fig. 8.6, respectively. In Fig. 8.5, the curves for fPCA and
aPCA are shown in a subfigure because of its small amplitude. We can see that the
convergence speed of fPCA and aPCA is similar to that of nPCA and ALA, but
fPCA and aPCA have less fluctuations over time compared with nPCA and ALA.
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This is actually because that in fPCA and aPCA the covariance matrix C is updated
by (8.69) while in nPCA and ALAC that is updated by C(k) = x(k) xT(k).
Experiment 3 is used to test the self-stabilizing property of the proposed algo-
rithms. Figure 8.7 shows the time course of weight vector length estimation of
fMCA, aMCA, fPCA, and aPCA which are initialized with nonunit length. We can
find that all algorithms converge to unit length rapidly, which shows the
self-stabilizing property of eigenvector estimates. The self-stabilizing property of
eigenvalue estimates is shown in Figs. 8.3 and 8.6. From the results of experiments
1-3, we can see that the performance off MCA and fPCA is similar to that of aMCA
and aPCA, respectively. Thus in experiment 4, we only compare the performance of
aMCA and aPCA with that of two unified algorithms which were proposed in
recent years, i.e., (1) kMCA + kPCA [14], where k means this algorithm was

13 : .
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Fig. 8.8 Projection of weight vector onto the true principal/minor eigenvector

proposed by Kong;(2) pMCA + pPCA [15],

where p means this algorithm was

proposed by Peng. The time course of the projection of weight vector onto the true
principal/minor eigenvector and the weight vector length is shown in Figs. 8.8 and
8.9, respectively. In Fig. 8.9, the first 1000 steps of aMCA and kMCA are shown in
a subfigure. We can see that the proposed algorithms perform better the existing

unified algorithms.
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In summary, we propose a novel method to derive neural network algorithms
based on a special information criterion. We firstly obtain two CMCA algorithms
based on the modified Newton’s method. Then, two CPCA rules are obtained from
the CMCA rules. In this case, two unified and coupled algorithms are obtained,
which are capable of both PCA and MCA and can also mitigate the speed-stability
problem. The proposed algorithms converge faster and are more stable than existing
algorithms. Moreover, all of the proposed algorithms are self-stabilized.

8.4 Adaptive Coupled Generalized Eigen Pairs Extraction
Algorithms

In [4], based on Moller’s work, Nguyen developed two well-performed quasi-
Newton-type algorithms to extract generalized eigen pairs. Actually, Nguyen’s
algorithms are the generalization of Moller’s coupled learning algorithms. But with
DDT approach, Nguyen also reported the explicit convergence analysis for their
learning rules, i.e., the region within which the initial estimate of the eigen pair
must be chosen to guarantee the convergence to the desired eigen pair. However, as
stated in [4], the GMCA algorithm proposed in [4] may lose robustness when the
smallest eigenvalue of the matrix pencil is far less than 1.

Motivated by the efficacy of the coupled learning rules in [2] and [4] for the HEP
and GHEP, we will introduce novel coupled algorithms proposed by us to estimate
the generalized eigen pair information in this section. Based on a novel generalized
information criterion, we have obtained an adaptive GMCA algorithm, as well as an
adaptive GPCA algorithm by modifying the GMCA algorithm. It is worth noting
that the procedure of obtaining the algorithms in this section is easier than the
existing methods, for that it does not need to calculate the inverse of the Hessian
matrix when deriving the new algorithms. It can be seen that our algorithms do not
involve the reciprocal of the estimated eigenvalue in equations. Thus, they are
numerically more robust than Nguyen’s algorithms even when the smallest eigen-
value of the matrix pencil is far less than 1. Compared with Nguyen’s algorithms, it
is much easier to choose step size for online implementation of the algorithms.

8.4.1 A Coupled Generalized System for GMCA and GPCA

A. Generalized information criterion and coupled generalized system

Generally speaking, neural network model-based algorithms are often derived by
optimizing some cost function or information criterion [2, 16]. As pointed out in
[17], any criterion may be used if the maximum or minimum (possibly under a
constraint) coincides with the desired principal or minor directions or subspace. In
[2], Moller pointed out that the freedom of choosing an information criterion is



258 8 Coupled Principal Component Analysis

greater if Newton’s method is applied. In that case, it suffices to find a criterion of
which the stationary points coincide with the desired solutions. Moller first pro-
posed a special criterion which involves both eigenvector and eigenvalue estimates
[2]. Based on Moller’s work, Nguyen [4] first proposed to derive novel generalized
eigen pair extraction algorithms by finding the stationary points of a generalized
information criterion which is actually the generalization of Moller’s information
criterion.

In this section, for a given matrix pencil (R, R,), we propose a generalized
information criterion based on the criteria introduced in [2] and [4] as

pw,2) = wiRw — W Row + /. (8.90)
We can see that
&\ (2Rw—22R.w (8.91)
% “\ —wiRw+1 ) :

Thus, the stationary points (w, A) are defined by

WHRw =1 (8.92)

{Ryw = JR,w
from which we can conclude that w#R,w = Jw!R,w = /. These imply that a
stationary point (w, A) of (8.90) is a generalized eigen pair of the matrix pencil (R,,
R,). The Hessian of the criterion is given as:

o O R,— /R, —R.w
H(W,/l) = 0217 02[7' =2 7WHR 0 . (893)
o7ow 92 *

After applying the Newton’s method, the equation used to obtain the system can

be written as:
W 9
(}1) =-H '(w,)) (é_ag) (8.94)

where w and A are the derivatives of w and /. with respect to time #, respectively.
Based on the above equation, Nguyen [4] obtained their algorithms by finding the
inverse matrix of the Hessian H ' (w, 1). Premultiplying both sides of the above
equation by H(w, 1), it yields

H(w,z)@) :-(%). (8.95)
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In this section, all our later algorithms are built on this newly proposed
Eq. (8.95). Substituting (8.91) and (8.93) into (8.95), we get

(B B)(5) = (TRE ) e
From (8.96), we can get
(R, — \R )W — Rewl. = —(R, — AR )w (8.97)
—2wH R = wiR W — 1. (8.98)
Premultiplying both sides of (8.97) by (R, — JR,)”" gives the following:
W= (R, — /R;) 'Rewi —w. (8.99)

Substituting (8.99) into (8.98), we have

—_2whR, ((Ry —JR:) 'Rew). — w) — wHRow — 1. (8.100)
Thus,
. HR. 1
= wARWEL (8.101)
2wHR,(Ry — ARy)” R.w
Substituting (8.101) into (8.99), we get
-1
_ (Ry —R:) Rew W'Rww +1) . (8.102)

2wHR, (R, — /R,)"'R.w

By approximating w”R,w = 1 in the vicinity of the stationary point (w1, ), we
get a coupled generalized system as:

(R, — JR.)'Row

= - —w, (8.103)
wHR,(Ry — ARy)” Ryw

. 1
L=
wHR (R, — /R;) 'R,w

— (8.104)

B. Coupled generalized systems for GMCA and GPCA

Let A be a diagonal matrix containing all generalized eigenvalues of the matrix
pencil (R, Ry), i.e., A =diag{4y,...,An}. Let V = [vy,...,vy], where v, ..., vy
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are the generalized eigenvectors associated with the generalized eigenvalues
2, ... 2n. It holds that VAR,V =1, VHR,V = A. Hence, R, = (V?)"'V~! and
R, = (VIY'AV~!, and

(Ry — IR,) ™ = V(A —1)~'VH, (8.105)

If we consider w = v, and 1~ A; < 4j(2<j<N) in the vicinity of the sta-
tionary point (wy,4;), then we have 4; — A~ 4;. In that case, VARw ~ e, =
[1,0,...,0]" and

A— = diag{il — )\.7 .. .,lN — i}
~ diag{1 — A, A2, .., An} (8.106)
=A—Jeel,

where diag{-} is the diagonal function. Substituting (8.106) into (8.105), we get the
following:

(Ry — IR,) ™ = V(A —1)~'vH
~ (V) (A= et V]!
Ry — (V") leref v (8.107)

-1

~ R, - A(V”)*l(vHRxw)(v”Rxw)”v—‘}
= [Ry — A(Row)(Rew)"]

It can be seen that

[Ry — /ll(val)(val)H}vl (8 108)

= Ryvl — ()lexvl)(v{]val) = O

Since Ryv; = 41Ryv; and vPR.v; =1. This means that matrix R, —

A(Rew)(Rew)™ has an eigenvalue 0 associated with eigenvector v,. This is to say,

the matrix R, — A(R,w)(Rew)" is rank-deficient and hence cannot be inverted if

(w, 1) = (v1,41). To address this issue, we add a penalty factor ¢ ~ 1 in (8.107),
and then it yields the following:

(Ry — /Ry) ™ ~ [Ry — ei(Row) (Rew)"] !

| eRRww!R.R! (8.109)
. ,
Y 1—ewlRR'Row
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The last step of (8.109) is obtained by using the SM-formula (Sherman—
Morrison formula) [13]. Substituting (8.107) into (8.103), we get the following:

1, #R'RwwR.R
. (Ry + 1—e/wHR R Rew Rcw
W= —w. (8.110)

. —1 H -1
H -1 {,)Ry R.wwiR.R,
WiRy (Ry T R R Row ) KW

Multiplying the numerator and denominator of (8.110) by 1 — eiw® R:R; R.w
simultaneously, and after some manipulations, we get

) R;lew
W= RR R " (8.111)
X y X

Similarly, substituting (8.107) into (8.104), we can get

1

/’L =
wHRny"Rxw

ex. (8.112)

It can be seen that the penalty factor ¢ is not necessarily needed in the equations.
Or in other words, we can approximate ¢ = 1 in future equations. Thus, we get the
following:

1
= wHRxR;lew A (8.113)

Thus, (8.111) and (8.113) are the coupled systems for the GMCA case.

It is known that the ith principal generalized eigenvector v; of the matrix pencil
(Ry, R,) is also the ith minor generalized eigenvector of the matrix pencil (R, R)).
Hence, the problem of extracting principal generalized subspace of the inversed
matrix pencil (Ry, R,) is equivalent to that of extracting minor generalized subspace
of the matrix pencil (R, R,), and vice versa [4]. Therefore, by swapping R, and
Ry, R.' and R, in (8.111) and (8.113), we obtain a modified system

R.'R
e L (8.114)
wiR,R_"R,w
2=wiRR'Rw — ), (8.115)

to extract the minor eigen pair of matrix pencil (R,, R,) as well as the principal
eigen pair of matrix pencil (R,, R,).

As was pointed out in [4], by using the nested orthogonal complement structure
of the generalized eigen-subspace, the problem of estimating the p ( <N)-dimen-
sional minor/principal generalized subspace can be reduced to multiple GHEPs of
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estimating the generalized eigen pairs associated with the smallest/largest gener-
alized eigenvalues of certain matrix pencils. In the following, we will show how to
estimate the remaining p — 1 minor/principal eigen pairs. In the GMCA case,
consider the following equations:

R, =R; |+ PRijleijlRy» (8.116)

R 'R.w._ wl RR !
R =R - YT (8.117)
1 + pwjflRij_lewj,l

where j=2,...,p, p>Ay /21, Ri =R, and w;_; =v;_; is the (j — 1)th minor
generalized eigenvector extracted. It holds that
j—1
Ry, = (Ry+p Zizl ReviviRy)v,
j—1
=Ry, +p Zi:l Ry Ry,
) j—1
= AqRxv, + ply Z]i:l Ry Ry,

(14+p)igRvy forg=1,....j—1
ARV, forg=j,...N

(8.118)

Thus, the matrix pencil (R;, R,) has eigenvalues ;< --- <Ay <(1+p)
<+ <(1+p)ij1 associated with eigenvectors  vj,...,vy,Vi...Vj_|.
Equation (8.117) is obtained from (8.116) based on the SM-formula. That is to say,
by replacing R, with R; and Ry’1 with Rj’1 in (8.111) and (8.113), we can estimate
the jth minor generalized eigen pair (v}, 4;).

In the GPCA case, consider the following equation

R, =R, | —Row;_w _|R,, (8.119)

where Ry =R, and w;_; =vy_j is the (j — 1)th principal generalized eigen-
vector extracted. By replacing R, with R; in (8.114) and (8.115), we can estimate
the jth principal generalized eigen pair (Vy_j41, An—j+1)-

8.4.2 Adaptive Implementation of Coupled Generalized
Systems

In engineering practice, the matrices R, and R, are the covariance matrices of
random input sequences {y(k)},., and {x(k)},.,. respectively. Thus, the matrix
pencil (R, R,) is usually unknown in advance, and even slowly changing over time
if the signal is nonstationary. In that case, the matrices R, and R, are variables and
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thus need to be estimated with online approach. In this section, we propose to
update R, and R, with:

Ry(k+1) = PR, (k) +y(k+ )y" (k+1), (8.120)

~

Ro(k+1) = aR, (k) +x(k+ Dx (k +1). (8.121)

By using the MS-formula, Q, (k) = E;l(k) and Q. (k) = ﬁ;l (k) can be updated
as:

1 0, (k)y(k+ 1)y (k+1)0, (k)
Qy(kJr 1)*3 (Qy(k) - ac+yH(k+ 1)Qy(k)y(k+ 1) ) (8-122)
1 Q. (k)x(k + 1)x" (k + 1)Q, (k)
Ok )=, (Qx(k) o (k+ 1O, (k)x(k+1) ) (8.123)
It is known that
Jlim kR (k) =R, (8.124)
lim lﬁx(k) =R, (8.125)

k—00
when o =f =1. By replacing R, Rx,Ry and R;l in (8.111)—(8.115) with
IAQy(k), R.(k), Q,(k) and Q. (k), respectively, we can easily obtain the online
GMCA algorithm with normalized step as:

] B Q,(k+ DRe(k+ 1w (k) -
P = Rk + D@y k4 DR+ D () 0P
(8.126)
wk+1)
wlk+1) = Lo (8.127)
Ak+1) =7, l (1 —)Ak), (8.128)

wH (k)R (k-l—l)Qy(k-i-l) «(k+ w(k)

and the online GPCA algorithm with normalized step as:
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0.(k+ DR, (k+ Dwk) )

wkED =n SR (k- 10, (k+ DRy (k+ w(k) T =nwlk), (8.129)
w(k—+1)

w(k+1) = [P (8.130)

Ak +1) = p,w! (k) Ry (k+ 1)@, (k+ )R, (k+ Dw (k) + (1 — 7,) A(k), (8.131)

where 71, #2, 71, 72€ (0, 1] are the step sizes.

In the rest of this section, for convenience, we refer to the GPCA and GMCA
algorithms proposed in [4] as nGPCA and nGMCA for short, respectively, where
n means that these algorithms were proposed by Nguyen. Similarly, we refer to the
algorithm in (8.126)—(8.128) as f{GMCA and the algorithm in (8.129)—(8.131) as
fGPCA for short.

At the end of this section, we discuss the computational complexity of our

algorithms. Taking fGMCA as an example, the computation of R (k) and 0, (k)

requires SN* + O(N) multiplications. Moreover, by using (8.121), we have the
following:

Ry (k+ 1)w(k)
- %ﬁx(k)—i—ﬂ%x(k-&-l)xfl(k*-l) w(k) (8.132)
— %ﬁx(k)w(k) + ﬁx(lﬂ— 1) [x" (k+ 1)w(k)],
where
Re(bw(t) - PO (5.13)

Since R, (k)w(k) has been computed at the previous step when calculating the
R, -norm of w(k), the update of I/éx(k + 1)w (k) requires only O(N) multiplications.
Thus, the updates of w(k) and A(k) in {GMCA requires 2N? + O(N) multiplications.
Hence, fGMCA requires a total of 7N* +O(N) multiplications at each iteration. In a
similar way, we can see that fGPCA also requires a total of 7N>+ O
(N) multiplications at each iteration. Thus, the computational complexity of both
fGMCA and fGPCA is less than that of nGMCA and nGPCA (i.e., 10N? + O(N)).
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8.4.3 Convergence Analysis

The convergence of neural network learning algorithms is a difficult topic for direct
study and analysis, and as pointed out [18], from the application point of view.
The DDT method is more reasonable for studying the convergence of algorithms
than traditional method. Using the DDT approach, Nguyen first reported the explicit
convergence analysis of coupled generalized eigen pair extraction algorithms [4]. In
this section, we will also analyze the convergence of our algorithms with the DDT
approach on the basis of [4].
The DDT system of f{GMCA is given as:

N —w Qyﬁxw(k) —w
B+ 1) = w(k) 41, Ty (k)], (8.134)
wik+1) =ﬁ (8.135)
Ak+1) = A(K)+7, wH(k)ieleyTexw(k) —i(k)] . (8.136)

which is referred to as DDT System 1.
And the DDT system of fGPCA is given as:

~ o Qxl/éyw(k) _
wk+1)=wk)+n, [w”(k)finxlA{yw(k) w(k)} ) (8.137)
o ow(k+1)
wk+1) = N OIS (8.138)
A+ 1) = Ak) + 72w (k) RyQ Ryw (k) — A(K)]. (8.139)

which is referred to as DDT System 2.

Similar to [4], we also denote by ||u||p = Vu?Ru the R-norm of a vector u,
where R € C¥*N andu € CV, PR(u) € V is the R-orthogonal projection of u onto
a subspace V € CV; ie., P§(u) is the unique vector satisfying |ju — P§(u)||, =
min,ey||lu — v||, V;, is the generalized eigen-subspace associated with the ith
smallest generalized eigenvalue /;, ie., V, = {v ecV Ry = )L,-va}
(i=1,2,...,N). (Note that V;, = V, if Z; = J; for some i # j), VZp . is the R-
orthogonal complement subspace of V for any subspace V C CV, i.e.,
Vig. ={uecC | <u,y>g=viRu=0, weVl

<R >
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Next, we will present two theorems to show the convergence of our algorithms.
In the following, two cases will be considered. In Case 1, 4; = A, = --- = Ay and in
Case 2, 11 < An.

Theorem 8.1 (Convergence analysis of fGMCA) Suppose that the sequence
w(k), A(k)];, is generated by DDT System 1 with any 1,7, € (0, 1], any initial
R -normalized vector w(0) ¢ (V;l)in -, and any A0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k > 0, which is also a generalized eigenvector
associated with the generalized eigenvalue 1., of the matrix pencil (R, R,), and

klim Ak) = Ay. For Case 2, it holds that
—00

lim w (k) = M, (8.140)
o Ol
lim 7 (k) = Ay, (8.141)

Proof Case 1:
Since A; = A, = -+ = Ayensures V,;, = CV, we can verify that for all k > 0 that
w(k) =w(0) # 0, which is also a generalized eigenvector associated with the

generalized eigenvalue A, of matrix pencil (R, R,). Moreover, from (8.128) we
have A(k + 1) = (1 — yAk) + 14, for all k& > 0. Hence

AMk+1) = (1 —=9)ak) +714 =
(1_)’)k+1 (0) +7141 [1+(1_V1)+"'+(1_V1)k]
(1_7’1)](+l 0) + 41 [1_(1_“/1)“]]

— J (1= 1 A0) = 4]

(8.142)

Since y, € (0, 1], we can verify that klim A(k) = A4.
Case 2: Suppose that the generalized eigenvalues of the matrix pencil (R, R,)
have been ordered as A =---=2<A 1< - <Jy (1<r<N). Since

{v1,v2,...,vy} is an R,-orthonormal basis of CV, w(k) in DDT System 1 can be
written uniquely as:

k)= zi(k)vi, k=0,1,... (8.143)
i=1
where z;(k) = (W(k),vi)p = v Rew(k), i =1,2,...,N.
First, we will prove by mathematical induction that for all £k > 0, w(k) is well
defined, R,-normalized, i.e.,
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w(k)"Rw(k) = ZN: (k) =1, (8.144)

and w(k) & (V,)ig,)» 2. [2100), 22(K),...., 2(k)] # 0. Note that w(0) & (V1) g, i
R.-normalized. Assume that w(k) is well defined, R,-normalized, and w(k) &
(Vi,)i, for some k > 0. By letting w (k+ 1) = >_Y, Z(k + 1)v;, from (8.134) and
(8.143), we have the following:

Zi(k+1) = Zi(k){l +m

1
)»in(k)RxR;lew(k) - 1] } (8.145)

Since matrix pencil (R,c7 Rny’ le) has the same eigen pairs as (Ry, Rx), and w
(k) is R,-normalized, it follows that
wh (k)R w (k) 1

_ <y, 8.146
'S wH (KRR, Row (k) wH ()RR, Row(k) — (8.146)

which is a generalization of the Rayleigh—Ritz ratio [19]. For i = 1,..., r, (8.146)
and (8.145) guarantee that

1
1+ 1
W ()RR Row (k)

1 1
— - —1]>1
AW ()RR, Row (k)

(8.147)

=1+n

i

and [z;(k + 1), zo(k + 1), ..., z(k + 1)] # 0. These imply that w (k+ 1) # 0 and
w(k+1) =S z(k+1)v; is well defined, R,-normalized, and w(k+1) ¢
(Vil)tm’ where

zZi(k+1)

Therefore, w(k) is well defined, R,-normalized, and w(k) & (Vil)fo) for all
k> 0.
Second, we will prove (8.125). Note that w(0) & (V, )<LRx> implies the existence

of some me {1,..., r} satisfying z,,(0) # 0, where 4, = --- = 4,, = -+ = 1. From
(8.145) and (8.148), we have z,,(k + 1)/7,,(0) > O for all £ > 0. By using (8.145)
and (8.148), we can see that for i = 1,..., r, it holds that
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zi(k+1) Zik+1) [wk+1)||g,

an(k+1) Wk +1)llg, Zn(k+1)

S
_ Zi(k) . 1 + 7]1 |:},in(k>RxR;1Rxw(k) 1:| (8149)
m(k T R R
Zm(k) I +n meﬁ(k)RxR;leW(k) 1}
_autk) o w(0)
Zm(k) Zm(O) .

On the other hand, by using (8.145) and (8.148), we have for all k¥ > 0 and
i=r+1, ..., N that

(k+ D) Zk+1) Wk 1),
lzm(k+ D> IWE+1)|g, Zm(k+1)

- 2
1
L+mn (i,wH(k)Rny’lR,w(k) - 1) _ |z (k)|

1 2
1+ n (—).,,IWH(k)RxR;]Rxw(k) — 1) |Zm(k)|

B 1 1 2 2
|- W 001 |zi(K)|
- G- = DwH (k)RR 'Rew (k) + | [zu(k)[ V) |zm ()
(8.150)
where
11 ’
yk)=|1- 2R . (8.151)

(= 1)wh (ORR; Row(k) + -

Foralli =r+ 1, ..., N, together with #; € (0, 1] and 1/4,—1/4; > 0, Eq. (8.146)
guarantees that

1— Tl B /»_z <1-— 41 Ari1
1 -1 L 1 1 1

m

and
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1_1 L1

1— n A >1— W
(ﬁ - l)wH(k)Rny"Rxw(k) + L (n—ll - 1)wH (KRR, Row(k) + L
1 _ 1
=1 A My >0
11 1 1
o T (Z - m)
(8.153)
From (8.152) and (8.153), we can verify that
O<y(k)<1,i=r+1,...,N, (8.154)

for all &k > 0. Denote ,.x = max{y(k)]k > 0}. Clearly 0 < .x < 1. From
(8.150), we have the following:

(k+ 1)
|Z(—+)|2§wmax
|zm (k + 1)

(k) _
|2 (K )I2 -

Since w(k) is R,-normalized, |zm(k)|2 < 1 forall k > 0, it follows from (8.155)
that

) 2
e

XN: |Zi(k)|2§ ZN: |Zi(k)|2 <

2
i=r i=r Zm
T =1 |zm(K)] (8.156)
|2:(0)[*
_lﬁmdxz — 0ask — oo,
i=r+1 |Zm )|
which along with (8.144) implies that
lim Z|z, )= 1. (8.157)

Note that z,,,(k)/z,,(0) > O for all k > 0. Then, from (8.149) and (8.157) we have
the following:

z(0)

—1 ’ZJ(O)

lim Z,'(k) =

k—00

L= 1,2, (8.158)

Based on (8.156) and (8.158), (8.140) can be obtained as follows:

lim w(k)zzr: a© Py [w (0)]
R R E T LA

(8.159)

R.
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Finally, we will prove (8.141). From (8.159), we can see that

1
lim —
k=oo wH (k)RR " Rxw (k)

= (8.160)

That is, for any small positive 0, there exists a K > 0 satisfying

1
wH (k)RR ' R.w (k)

Al—0< <A+, (8161)

for all k£ > K. It follows from (8.128) that

2K > (L= )k = 1) 710 = 0) > -+ > (1= 30 AK) + 7, (h = 0)
1=+ (=) ] = =) 9 - 0)
x U= (=90 K] = (= 0)+ (1= AK) — a4+ ),
(8.162)

and

A0 < (1= )ik = 1) 49, (1 +8) < -+ < (1= K 4(K) 47, (s +0)
X [l (L =p)+ -+ (1= Vl)kiKil} = (1 =) *2(K) + (21 +9)
x 1= (1= = (i +0)+ (1 =) ¥ 2(K) = 21 — 0],
(8.163)
for all £k > K. Since 7y, € (0, 1], it is easy to verify from (8.162) and (8.163) that
This completes the proof.

Theorem 8.2 (Convergence analysis of fGPCA) Suppose that the sequence
w(k), A(k)];—, is generated by DDT System 2 with any 1,7, € (0, 1], any initial
Ry-normalized vector w(0) ¢ (V;,N)iRX -, and any (0) > 0. Then for Case 1, it
holds that w(k) = w(0) for all k > 0, which is also a generalized eigenvector
associated with the generalized eigenvalue /i of the matrix pencil (R, R,), and
khjgc (k) = An. For Case 2, it holds that

A )
ler&w( )= \/%W, (8.164)

R,




8.4 Adaptive Coupled Generalized Eigen Pairs Extraction Algorithms 271

klin@l() Ak) = An. (8.165)

The proof of Theorem 8.2 is similar to that of Theorem 8.1. A minor difference is

that we need to calculate the R,-norm of w(k) at each step. Another minor difference

is that in (8.146), it holds that matrix pencil (RyR, 'Ry, R,) has the same eigen pairs

s (R,, R,) and w(k) is well defined, Ry-normalized, and w (k) & (VXN)<LRX> for all
k> 0. Therefore,

H -1
n< w" (k)RyR " Ryw(k)

=T WHORw(K) wi (k)RR Ryw (k) < 2. (8.166)

Particularly, if 4; and A, are distinct (4 </ < </L,N we have VA1 =
span{V1}. P [w (0)] = {w (0), Vi)g, V1. and HP’&;, O], = ©), Vi)
Moreover, if Jy_; and Ay are distinct (4; < --- < Ay_ <),N), we have V,, =
span{Viv}, PV, w(0)] = 09(0), Vi, Vi and. || o (0)] = |00 0), Vi |
Hence, the following corollaries hold.

Corollary 8.1 Suppose that Ay </, < --- < Ay. Then the sequence [w (k), 2(k)];—,
generated by DDT System 1 with any 3,7, € (0,1], any initial R.-normalized
vector w (0) ¢ (V;,l)ém, and any A(0) > 0 satisfies

(w(0), Vi)p V1

lim w(k) = ITORANE (8.167)
lim (k) = 4. (8.168)

Corollary 8.2 Suppose that 1< - - <Ay_1<Ay. Then the sequence
w(k), A(k)];~, generated by DDT System 2 with any 1,7, € (0, 1], any initial R,-

normalized vector w (0) ¢ (VAN)J(R‘V>’ and any A(0) > 0 satisfies

lim w(k) = L W), Vil V (8.169)

Jim In ‘<w(o), VN>RA’ ’

lim A(k) = Jy. (8.170)

k—00

8.4.4 Numerical Examples

In this section, we present two numerical examples to evaluate the performance of
our algorithms (fGMCA and fGPCA). The first estimates the principal and minor
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generalized eigenvectors from two random vector processes, which are generated
by two sinusoids with additive noise. The second illustrates performance of our
algorithms for the BSS problem. Besides nGMCA and nGPCA, we also compare
with the following algorithms, which were proposed in the recent ten years:

(1) Gradient-based: adaptive version of ([4], Alg. 2) with negative (for GPCA)
and positive (for GMCA) step sizes;

(2) Power-like: fast generalized eigenvector tracking [20] based on the power
method;

(3) R-GEVE: reduced-rank generalized eigenvector extraction algorithm [21];

(4) Newton-type: adaptive version of Alg. I proposed in [22].

A. Experiment 1

In this experiment, the input samples are generated by:
y(n) = \/Esin(0.627m+01)+g1(n), (8.171)

x(n) = V2sin(0.467n + 0,) + V2 sin(0.747n + 03) + ¢, (n), (8.172)

where 0; (i = 1, 2, 3) are the initial phases, which follow uniform distributions
within [0, 27], and {;(n) and (,(n) are zero-mean white noises with variance
62 =02=0.1
1 =0y =YL
The input vectors {y(k)} and {x(k)} are arranged in blocks of size N = 8, i.e., y
k) = [y(k),..., y(k = N+D]" and x(k) = [x(k),..., x(k = N + D]*, k > N. Define
the N x N matrix pencil (Ry, R,) with the (p, ¢) entry (p, ¢ = 1.2,...,N) of R, and
R, given by

[I_Qy]pq: c0s[0.627 (p — )] + 8,407, (8.173)
[Ry],,= c0s[0.467 (p — q)] +c0s[0.747 (p — q)] + 0pg03- (8.174)
For comparison, the direction cosine DC(k) is used to measure the accuracy of

direction estimate. We also measure the numerical stability of all algorithms by the
sample standard deviation of the direction cosine:

SSD(k) = ﬁi [DC;(k) — DC(K)]?, (8.175)
=

where DCj(k) is the direction cosine of the jth independent run j = 1, 2,..., L) and
DC(k) is the average over L = 100 independent runs.

In this example, we conduct two simulations. In the first simulation, we use
fGMCA, nGMCA, and the other aforementioned algorithms to extract the minor
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Fig. 8.10 Example 1: Direction cosine of the principal/minor generalized eigenvector. a First
simulation. b Second simulation

generalized eigenvector of matrix pencil (R,, R,). Note that in gradient-based
algorithm a positive step size is used, and the other algorithms are applied to
estimate the principal generalized eigenvector of matrix pencil (R,, R,) which is
also the minor generalized eigenvector of (R,, R,). In the second simulation, we use
fGPCA, nGPCA, and the other algorithms to extract the principal generalized
eigenvector of matrix pencil (R,, R,). Note that in gradient-based algorithm a
negative step size is used. The sets of parameters used in simulations refer to [4],
[22]. All algorithms have been initialized with R,(0) = ﬁy(O) =0,(0)=0,(0) =
Iy (if used) and w(0) = e;, where e; stands for the first columns of Iy.

The experimental results are shown in Figs. 8.10 to 8.12 and Table 8.1.

Figures 8.10 and 8.11 depict the time course of direction cosine for generalized
eigenvector estimation and sample standard deviation of the direction cosine. The
results of minor and principal generalized eigenvalues estimation of all generalized
eigen-pair extraction algorithms are shown in Fig. 8.12. We find that f{GM(P)CA
converge faster than nGMCA and nGPCA at the beginning steps, respectively, and

(a) 1) T .
i i 0.14 s Pewer-like
£ Power-li | Newlon-type
025 Gradient-based 0.42 24 Al |
L[
s b o R-GEVE < 4, g Grmmr:bm
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g I o R-GEVE
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o 015 | o000 9500 10000 e e
4 'kl Gradienl-based 4 8 ooe| = 1GPCA |
Bl i AGMCA | @ NGPCA |
2 1 j- NGMCA  pewton-type Gradient-based i 004 Newton-t Gradient-based | |
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Y Ao & o — .
) 9 == BN L
IGMCA 1GPCA
-0.02 -
2000 4000 6000 8000 10000 (] 2000 4000 6000 8000 10000
lteration Number(k) Iteration Number(k)

Fig. 8.11 Example 1: Sample standard deviation of the direction cosine. a First simulation.
b Second simulation
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Fig. 8.12 Example 1: (a)
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Table 8.1 Computational Algorithm | fGM(P)CA | nGM(P)CA | Gradient-based
complexity of all algorithms - > > >
Complexity | 7N+ O(N) 10N” + O(N) | 10N~ + O(N)
Algorithm | Power-like R-GEVE Newton-type
Complexity | 13N> + O(N) | 6N* + O(N) | 4N* + O(N)

fGMCA and fGPCA have similar estimation accuracy as nGMCA and nGPCA,
respectively. Figure 8.12 shows that all generalized eigen-pair extraction algorithms
can extract the principal or minor generalized eigenvalue efficiently.

The computational complexities of all aforementioned algorithms are shown in
Table 8.1. We find that Newton-type has the lowest computational complexity but
the worst estimation accuracy and standard deviation. The Power-like has the
highest computational complexity compared with the other algorithms. The nGM
(P)CA and gradient-based algorithms have same computational complexity. The
computational complexities of R-GEVE and the proposed algorithms are similar,
which are lower than that of nGM(P)CA and gradient-based algorithms.

B. Experiment 2

We perform this experiment to show the performance of our algorithm for the BSS
problem. Consider a linear BSS model [23]:
x(n) = As(n) +e(n), (8.176)

where x(n) is a r-dimensional vector of the observed signals at time k, s(n) is a /-
dimensional vector of the unknown source signals, A € R denotes the unknown
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mixing matrix, and e(n) is an unknown noise vector. In general, BSS problem is
that of finding a separating matrix W such that the r-dimensional output signal
vector y = W'x contains components that are as independent as possible. In this
experiment, we compare the proposed algorithms with nGMCA and nGPCA
algorithms, as well as batch-processing generalized eigenvalue decomposition
method (EVD method in MATLAB software). We use the method given in [20, 22]
to formulate the matrix pencil by applying FIR filtering. z(n), the output of FIR
filter, is given as

m

z(n)=> t(x(n—1) (8.177)

t=0

where 1(r) are the coefficients of the FIR filter. Let R, = Elx(k)x"(k)] and
R, = E[z(k)z"(k)]. It was shown in [20] that the separating matrix W can be found
by extracting the generalized eigenvectors of matrix pencil (R_, R,). Hence, the BSS
problem can be formulated as finding the generalized eigenvectors associated with
the two sample sequences x(k) and z(k). Therefore, we can directly apply our
algorithm to solve the BSS problem.

In the simulation, four benchmark signals are extracted from the file ABio7.mat
provided by ICALAB [23], as shown in Fig. 8.13. We use the mixing matrix

27914 —0.1780 —-0.4945 0.3013
1.3225 —1.7841 —-0.3669 0.4460
A= 0.0714 —1.9163 0.4802 —0.3701 |’ (8.178)

—1.7396 0.1302  0.9249 —0.4007

which was randomly generated. e[n] is a zero-mean white noise vector with
covariance 10°I. Figure 8.14 shows the mixed signals. We use a simple FIR filter
with coefficients 7 = [1, — 1]T.

Fig. 8.13 Four original 2=
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Suppose that the matrix pencil (R,, R,) has four eigenvectors wy, w,, w3, wy
associated with four eigenvalues 0, <0, <03 <o4. Thus, B = [w|,w,, w3, ws]. We
use f{GPCA, nGPCA, and all other algorithms to extract the two principal gener-
alized eigenvectors (w3 and wy). To extract the two minor generalized eigenvectors
(w; and w,), we use {GMCA, nGMCA, and gradient-based algorithms to extract the
minor generalized eigenvectors of matrix pencil (R,, R,) and other algorithms to
extract the principal generalized eigenvectors of matrix pencil (R,, R;). All
parameters and initial values are the same as in Example 1.

Similar to Example 1, a total of L = 100 independent runs are evaluated in this
example. The separating matrix B is calculated as B = (1 /L) Z].Lzl B;, where B; is
the separating matrix extracted from the jth independent run (j = 1, 2,..., L).

Figures 8.15 to 8.16 show the recovered signals by EVD and our method,
respectively. Signals separated by other algorithms are similar to Figs. 8.15 and
8.16, which are not shown in these two figures. Table 8.2 shows the absolute values
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Fig. 8.16 Signals separated 2 ~ A A N A e A
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Table 8.2 Absolute values Method Source 1 | Source 2 | Source 3 | Source 4
of correlation coefficients

between sources and EVD 1.0000 0.9998 0.9997 0.9989
recovered signals fGM(P)CA 1.0000 0.9997 0.9992 0.9987
nGM(P)CA 1.0000 0.9996 0.9994 0.9987
Gradient-based | 0.9983 0.9811 0.9989 0.9983
Power method | 0.9998 0.9995 0.9991 0.9980
R-GEVE 0.9999 0.9995 0.9993 0.9988

of correlation coefficients between the sources and the recovered signals. The
simulation results demonstrate that all methods can solve the BSS problem effec-
tively, and our algorithms and the algorithms proposed in [4] can separate the
signals more accurately than other algorithms. Moreover, the advantage of neural
network model-based algorithms over EVD method for the BSS problem is that
they are recursive algorithms and therefore can be implemented online, whereas
EVD is a batch-processing method and therefore needs intensive computation.

In this section, we have derived a coupled dynamic system for GHEP based on a
novel generalized information criterion. Compared with the existing work, the
proposed approach is easier to obtain for that it does not need to calculate the
inverse of the Hessian. Based on the dynamic system, a coupled GMCA algorithm
(fGMCA) and a coupled GPCA algorithm (fGPCA) have been obtained. The
convergence speed of fGMCA and fGPCA is similar to that of Nguyen’s
well-performed algorithms (nGMCA and nGPCA), but the computational com-
plexity is less than that of Nguyen. Experiment results show that our algorithms
have better numerical stability and can extract the generalized eigenvectors more
accurately than the other algorithms.
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8.5 Summary

In this chapter, the speed stability problem that plagues most noncoupled learning
algorithms has been discussed and the coupled learning algorithms that are a
solution for the speed stability problem have been analyzed. Moller’s coupled PCA
algorithm, Nguyen’s coupled generalized eigen pair extraction algorithm, coupled
singular value decomposition of a cross-covariance matrix, etc., have been
reviewed. Then, unified and coupled algorithms for minor and principal eigen pair
extraction proposed by us have been introduced, and their convergence has been
analyzed. Finally, a fast and adaptive coupled generalized eigen pair extraction
algorithm proposed by us has been analyzed in detail, and their convergence
analysis has been proved via the DDT method.
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Chapter 9
Singular Feature Extraction
and Its Neural Networks

9.1 Introduction

From the preceding chapters, we have seen that in the wake of the important
initiative work by Oja and Sanger, many neural network learning algorithms for
PCA have been developed. However, the related field of neural networks that
perform SVD, in contrast, has received relatively little attention. This is somewhat
surprising since SVD is a crucial ingredient of regression and approximation
methods, data compression, and other signal processing applications [1].

In this chapter, our goal is to discuss and analyze the SVD of a rectangular
matrix or cross-correlation matrix and the neural network-based algorithms for
SVD. It is well known that many signal processing tasks can be efficiently tackled
by using SVD of a rectangular matrix or cross-correlation matrix [2]. Several
iterative methods for SVD have been proposed by the use of purely matrix algebra
[3-6], and these algorithms of updating SVD for tracking subspace can obtain the
exact or approximate SVD of a cross-correlation matrix [2]. Recently, in order to
get online algorithms, some sample-based rules have been proposed which can
avoid the computation of the cross-covariance matrix and instead directly work on
the data samples [2, 7-13]. This is advantageous especially for high-dimensional
data where the cross-covariance matrices would consume a large amount of
memory and their updates are computationally expensive in general [1]. A detailed
discussion regarding the model and rationale can be found in [1, 12].

In [12], Diamantaras et al. proposed the cross-correlation neural network
(CNN) models that can be directly used for extracting the cross-correlation features
between two high-dimensional data streams. However, the CNN models are
sometimes divergent for some initial states [14]. In [15], Sanger proposed double
generalized Hebbian algorithm (DGHA) for SVD, which was derived from a
twofold optimization problem. It adapts the left singular vector estimate by the
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generalized Hebbian algorithm, i.e., a PCA neural network, whereas it adapts the
right singular vector estimate by the Widrow—Hoff learning rule. In [16], the
cross-correlation asymmetric PCA (APCA) network was proposed and it consists of
two sets of neurons that are laterally hierarchically connected. The APCA networks
can be used to extract the singular values of the cross-correlation matrix of two
stochastic signal vectors, or to implement the SVD of a general matrix. In [17-19],
the so-called trace algorithm, “Riccati” algorithm, and their online algorithms were
proposed. It should be noted that for one-unit case, the “trace” and “Riccati”
algorithms coincide with the cross-coupled Hebbian rule [1]. The algorithm pro-
posed by Helmke—Moore [20] resembles the “trace” algorithm, and if the weights
are chosen mutually different, the system converges to the exact SVD of
cross-correlation matrix up to permutations of the principal singular vectors [1]. In
order to improve the convergence speed of the CNN models, Feng et al. proposed a
novel CNN model [2, 13] in which the learning rate is independent of the singular
value distribution of the cross-correlation matrix, and its state matrix maintains
orthonormality if the initial state matrix is orthonormal. In order to resolve the
speed stability problem that plagues most noncoupled learning algorithms, Kaiser
et al. proposed a coupled online learning algorithms for the SVD of a
cross-covariance matrix [1], which is called coupled SVD algorithms. In the cou-
pled SVD rules, the singular value is estimated alongside the singular vectors, and
the effective learning rates for the singular vector rules are influenced by the sin-
gular value estimates. In [21], we proposed a novel information criterion for
principal singular subspace (PSS) tracking and derived a corresponding PSS gra-
dient flow based on the information criterion. The proposed gradient flow has fast
convergence speed, good suitability for data matrix close to singular, and excellent
self-stabilizing property. Moreover, in [22], based on Kaiser’s work, we proposed a
novel information criterion and derive a fast and coupled algorithm from this
criterion and using Newton’s method, which can extract the principal singular
triplet (PST) of a cross-correlation matrix between two high-dimensional data
streams and can solve the speed stability problem that plagues most noncoupled
learning rules.

In this chapter, we will review and discuss the existing singular feature
extraction neural networks and their corresponding learning algorithms. Two sin-
gular feature extraction and corresponding neural-based algorithms proposed by us
will be analyzed in detail. The remainder of this chapter is organized as follows. An
overview of the singular feature extraction neural network-based algorithms is
presented in Sect. 9.2. A novel information criterion for PSS tracking, its corre-
sponding PSS gradient flow, convergence, and self-stabilizing property are dis-
cussed in Sect. 9.3. A novel coupled neural-based algorithm to extract the PST of a
cross-correlation matrix between two high-dimensional data streams is presented in
Sect. 9.4, followed by summary in Sect. 9.5.
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9.2 Review of Cross-Correlation Feature Method

In this section, we will review SVD learning rules in the literature. In the following,
let A denote an m X n real matrix with its SVD given by Kaiser et al. [1]

A=TSV' +T,5,V,, (9.1)

where U = @y, 0, ... uy] € F"M denotes the matrix composed of the left prin-
cipal singular vectors, S = diag(61,02,...,0m) € RM*M denotes the matrix with the
principal singular values on its diagonal, and V = [v{,¥,,...,vy] € R denotes
the matrix composed of the right principal singular vectors. These matrices are
referred to as the principal portion of the SVD. Furthermore, U, = [y o1, 80112,
.. .,ﬁp} S %mx(p—M)’ gz = diag(&MH, OM42y .- 5'[,) S %(p_M)X(p_M), and Vz =
Pyt Pm+2,.- 7)) € < (P=M) correspond to the minor portion of the SVD. Thus,
A = USV'" is the best rank-M approximation of A, where M < p = min{m, n}. Left
and right singular vectors are normal, i.e., |itj|| = Hin =1,Vj and mutually
orthogonal. Thus, UU=V'V=1I, and U;Uz = V;Vz = I,_y. Moreover, we
assume that the singular values are ordered and mutually different with respect to
their absolute values such that |G| > - |oy| > |Gy41|> -+ > |6p|. In the fol-
lowing, all considerations (e.g., concerning fixed points) depend on the principal
portion of the SVD only.

In the following, the input samples are denoted as x; € R", and the output
samples are denoted as y, € . The data are assumed to be centered, so their
covariance matrices become Cy = E[xxT] and C, = E[yy"], respectively. Moreover,

the cross-covariance matrix is defined as A = E[yxT]. The vectors # and v denote
the state vectors of the ODEs.

9.2.1 Cross-Correlation Neural Networks Model
and Deflation Method

In [12], the cross-coupled Hebbian rule and the APCA networks were proposed,
which were used to extract the singular values of the cross-correlation matrix of two
stochastic signal vectors or to implement the SVD of a general matrix. The
cross-correlation APCA network consists of two sets of neurons that are laterally
hierarchically connected, whose topology is shown in Fig. 9.1.

The vectors x and y are, respectively, the n;-dimensional and n,-dimensional
input signals. The n; x m matrix W = [wy,..., w,] and the n, X m matrix
W = [w,...,w,] are the feedforward weights, and the n, x m matrices U =
[ui,..., u,,] and U= [#y,...,u,] are the lateral connection weights, where u; =
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X1 a b Yi
X2 Y2
dm bm
Xy = - Yn,
w u U w
Fig. 9.1 Architecture of the cross-correlation APCA network
T _ _ _\T . . .
Wiy vs Up) > Wi = (W1jy .-y Upi) > and m <min{n;,ny}. This model is used to

perform the SVD of Cyy = Efxy1].
The network has the following relations: a = W'x and b = WTy, where a =

(ai,.. .,ozm)T and b = (by, .. .,bm)T. In [12], the following cross-correlation cost
function was used

Eapca(w, %) = Ela; (k)b (k)] wTCqyw

AR She L (9.2)
[[wl[[[w]] [[wl[[[w]

Maximizing the correlation, the solution is known to be (w,w) = (puy, pv;),
where p and p are any nonzero scalars; namely, the optimal weights are the prin-
cipal left and right singular vectors of Cy,. It is obvious that ||[w|*= p?, ||w|*= 12,
and maxJapca = Jmax = 01. In [12], the following cross-coupled Hebbian rule

wi(k+1) = w, (k) + lx(k) —w, (k)ai (k)]b1 (k), (9-3)
wi(k+1) = wi (k) + Bly(k) — wi(k)b1(k)]a (k) (9-4)

was proposed. By using the stochastic approximation theory and the Lyapunov
method, it has been proved that for Algorithms (9.3) and (9.4), if
01> 0,>03> -+ >0,>0,q =min{m,n}, then with probability 1, w(k) — *u,
and w(k) — +v; as k — oo.

After the principal singular component (PSC) has been extracted, a deflation
transformation is introduced to nullify the principal singular value so as to make the
next singular value principal. Thus, C, in the criterion (9.2) can be replaced by one
of the following three transformed forms so as to extract the (i + 1)th PSC:

citt) =cOr—va)), (9.5)
C4) = (1 - unl)cy. 96)
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CitD — (1 —uu)CO (I —voT), (9.7)

Xy y 1

fori=1,2, ... ,m — 1, where Cfcy = Cy,. The deflation can be achieved by the
transformation on the data:

X—X,y<—y— ViV,'Tya (98)
X =X — U x,y —y, (9.9)
XX —uulx,y —y—vyly. (9.10)

Assuming that the previous j — 1 have already been extracted, and using a
deflation transformation, the two sets of neurons are trained with the cross-coupled
Hebbian learning rules, which are given by Diamantaras and Kung [12]

w;(k+1) = w;(k) + Blx (k) — w;(k)a;(k)]bj(k), (9.11)
Wik + 1) = w;(k) + Bly(k) — w;(k)b;(k)]a;(k), (9.12)
for j=1, ... , m, where f is the learning rate selected as a small constant or

according to the Robbins—Monro conditions, where

=4 =Y wa, a=wix, i=1,...j, (9.13)
-1
bi=bj— > dbi, bi=wly, i=1,..,j, (9.14)

u;=wiw, dy=ww,i=1..j—1 (9.15)

The set of lateral connections among the units is called the lateral othogonal-
iztion network, and U and U are upper triangular matrices. By premultiplying
(9.11) by miT and (9.12) by WI-T, a local algorithm, called the lateral orthogonal-
ization rule, for calculating u; and #;;, has been derived as follows:

u(k+ 1) = (k) + Blai(k) — u;(k)a; (k)]bj(k), (9.16)

i (k+ 1) = 11 (k) + Blbi (k) — 1 (k)b; (k)] aj (k). (9-17)
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The initial values can be selected as u;(0) = w](0)w;(0) and u;(0) =
wI(0)w;(0). However, this initial condition is not critical to the convergence of the
algorithm [12]. It has been proved that w; and w; converge to the ith left and right
principal singular vectors of C,,, respectively, and g; converges to its corresponding
criterion Eapca, as t — ©0. That is, the algorithm extracts the first m principal
singular values in the descending order and their corresponding left and right
singular vectors. Like the APEX, the APCA algorithm can incrementally add nodes

without retraining the learned nodes.

9.2.2 Parallel SVD Learning Algorithms on Double Stiefel
Manifold

In this section, we will introduce several parallel SVD learning algorithms, which
allow to simultaneously compute the SVD vectors. The considered neural algo-
rithms were developed in [18, 20] and have been analyzed in [17]. These algorithms
are utilized to train in an unsupervised way a three-layer neural network with the
classical “buttery” topology [17-19]. The first layer has connection matrix A, the
second one has connection matrix B, and the middle (hidden) layer provides net-
work’s output. It has been shown that when proper initial conditions are chosen, the
associated learning trajectories lie on the double Stiefel manifold [17].

In this section, the following matrix set is useful for analysis purpose:

St(m,n,K) & {X € K™"X*X =1,} with m— 1,n—1 €N; K €® or C. When
m = n, the  manifold coincides  with  the  orthogonal  group

O(m,K) déf{X € K"™"X*X =1,,}. Here, the product O(m,K) x O(n,K) is

referred to as double orthogonal group and the product St(m,p,K) x St(n,p,K) as
double Stiefel manifold.

Denote as Z € C"™*" the matrix whose SVD is to be computed and as
r<min{m,n} the rank of Z, the singular value decomposition can be written as
Z = UDV*, where U € ™™ and V € R"*" are orthogonal matrices and D is a
pseudo-diagonal matrix whose elements are all zeros except for the first r diagonal
entries, termed as singular values.

Denote as A(z) € R™*P the network connection matrix-stream that should learn
p left singular vectors and as B(t) € R*"*? the estimator for p right singular vectors
of the SVD of matrix Z € R"™*", with p <r <min{m,n}. For simplicity, parallel
SVD learning algorithms in [17-19] are described in terms of their ordinary dif-
ferential equations.

The algorithm WH2 [17] can be written as (also called as the “trace” algorithm):

A =72B - AB"Z"A, A(0) = A,, (9.18)
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B =72"A - BA"ZB, B(0) = B,. (9.19)

Equations (9.18) and (9.19) have been derived by extending Brockett’s work on
isospectral flow systems [23] from single to double orthogonal group. The initial
state Ao, Bo can be freely chosen. In particular, one can consider the following
choice: Ag € St(m,p,R) and By € St(n,p,R), for instance Ay =1,, and
By=1,,.

Then, for the algorithm WH2, it has been proved that: (1) If the initial states of
the WH2 system belong to the Stiefel manifold, then the whole dynamics is double
Stiefel manifold. (2) The steady states of WH2 learning system can be written as
A =U,K and B = VK, where K is arbitrary in O(p, R) and U, and V, denote the
submatrices whose columns are p right and left singular vectors of matrix Z,
respectively [17].

Obviously, the WH2 algorithm does not actually compute the true SVD, but a
SVD subspace of dimension p.

The WH3 learning system was derived as an extension of the well-known Oja’s
subspace rule. The algorithm WH3 can be written as [17]:

A=ZB - A(A"ZB +B"Z"A), A(0) =A,, (9.20)
B=72"A - B(A"ZB+B"Z'A), B(0) = B,. (9.21)

For the algorithm WH3, it has been proved that under the hypotheses A¢/v/2 €
St(m,p,R) and By/v2 € St(n,p,R), the learning equation WH3 can keep
A(t)/v/2 and B(t)/+/2 within the Stiefel manifold.

The WH4 learning system can be written as (also called as the “Riccati”
algorithm)

: 1
A=17B - EA(ATZB +B"Z'A), A(0) = A,, (9.22)

: 1
B=27"A— EB(ATZB +B"Z'A), B(0) = B,. (9.23)

For the algorithm WH4, it has been proved that under the hypotheses Ay €
St(m,p,R) and By € St(n,p,R), the learning equations WH4 can keep A(¢) and
B(t) within the Stiefel manifold.

The structure of the stationary points of the WH3-WH4 algorithms is similar to
the structure of the equilibria of the WH2 system. It has been proved that the steady
states of WH3 and WH4 learning systems can be written as A = U,K and
B = V,K, where K is arbitrary in O(p,R) and U, and V,, denote the submatrices
whose columns are p right and left singular vectors of the matrix Z, respectively
[17].
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The HM dynamics [20] arising from the maximization of a specific metric
(criterion) ®@y: O(m, C) x O(n,C) — R is defined as:

Dy (A, B) L 2Retr(WA"ZB), (9.24)

where W € R is a weighting matrix, Z € C"*", and m > n. The dynamic sys-
tem, derived as a Riemannian gradient flow on O(m, C) x O(n, C), can be written
as [17]

A =A(W'B*Z'A — A"ZBW), A(0) = A,, (9.25)
B =B(WA*ZB — B'Z'AW*), B(0) = B,. (9.26)

It has been proved that A(z) € O(m,C) and B(t) € O(n,C). In the particular
case that W = —I,, ,, and the involved quantities are real-valued, the above system
is equivalent to WH2 when p = n. Obviously, the Weingessel-Hornik SVD
learning equations can be regarded as special cases of the Helmke—Moore system.

9.2.3 Double Generalized Hebbian Algorithm (DGHA)
Jor SVD

In [15], Sanger presented two iterative algorithms for finding the SVD of a matrix
P given only samples of the inputs # and outputs y. The first algorithm is the double
generalized Hebbian algorithm (DGHA), and it is described by the following two
coupled difference equations:

AG = y(zy" — LT[zz"]G), (9.27)
AN' = y(zu" — LT[zz"|NT), (9.28)

where LT[-] is an operator that makes the diagonal elements of its matrix argument
zeros, y =Pu, z=Gy, and y is a learning rate constant. Obviously, in
single-component case, Eq. (9.27) is derived from the objective function

max

JE . = (gTCyg)/||g||2, and its fixed points are g* = g,[l]. Equation (9.28) is

derived from the objective function J7;

=1E {||x - ngTy||2} , and its fixed points is

n* = gy 'ny[1], where ||g*|| = 1 and ||n*|| = &7

Equation (9.27) is the Generalized Hebbian Algorithm which finds the eigen-
vectors of the autocorrelation matrix of its inputs y. For random uncorrelated inputs
u, the autocorrelation of y is E[yy’] = L” §? L. So Eq. (9.27) will cause G to
converge to the matrix L composed of left singular vectors. Equation (9.28) is
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related to the Widrow—Hoff LMS rule for approximating u” from z, but it enforces
orthogonality of the columns of N. Equations (9.27) and (9.28) together cause N to
converge to R*S™', so that the combination NG = R"S™'L is an approximation to
the plant inverse.

It has been proved that if y = Pu, z = Gy, and E[uu"] = I, then Egs. (9.27) and
(9.28) converge to the left and right singular vectors of P [15].

The second algorithm is the Orthogonal Asymmetric Encoder (OAE) which is
described by

AG = y(zy" — LT[2"]G), (9.29)
ANT = y(Gy — LT[GG"|zu"), (9.30)

where z = NTu. Obviously, for single-component case, Eqs. (9.29) and (9.30) are

derived from the objective function J,;, = 1 E [|| y — gnTtz} , and their fixed points

are g* = pg, and n* = p~'G,#,, where p # 0 is an arbitrary constant [1].

It has been proved that Eqgs. (9.29) and (9.30) converge to the left and right
singular vectors of P.

9.2.4 Cross-Associative Neural Network for SVD(CANN)

In [2], Feng et al. proposed a novel CNN model to improve the convergence speed
of the CNN models, in which the learning rate is independent of the singular value
distribution of the cross-correlation matrix, and its state matrix maintains
orthonormality if the initial state matrix is orthonormal. Later, based on [2], Feng
et al. also proposed a novel CNN model for finding the PSS of the cross-correlation
matrix between two high-dimensional data streams and introduced a novel non-
quadratic criterion (NQC) for searching the optimum weights of two linear neural
network (LNN). An adaptive algorithm based on the NQC for tracking the PSS of
the cross-correlation matrix between two high-dimensional vector sequences was
developed, and the NQC algorithm provides fast online learning of the optimum
weights for two LNNs.

In order to improve the cost surface for the PSS and the convergence of gradient
searching, a novel NQC for the PSS was presented in [2]. Given U € RM*" and
V € RY*" in the domain {(U,V)|U"CV > 0}, the following framework for PSS
was proposed:

min Jnoc (U,v)

] (9.31)
Inge(U, V) = —tr[In(UTCV)] + Etr[UTU +VTy).
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The landscape of NQC is depicted by the following two theorems.

Theorem 9.1 (U,V) is a stationary point of Jnoc(U,V) in the domain
{(U,v)|U"CV > 0} if and only if U=L, and V=R,, where L, € R™*" and R, €
RNX" consist of the left and right singular vectors of C, respectively. Note that
(U,V)=(L,,R,) shows a stationary set of Jnoc(U, V). And for the definition of
“= see [2].

Theorem 9.2 In the domain {(U,V)|[U'CV >0}, Jnqc(U,V) has a global
minimum that is achieved if and only if U=L; and V=R;. And the global minimum

is Jngc(U, V) =Y.' Ina; — r. All the other stationary points (U, V)(#(Ls,Ry))
are saddle (unstable) points of Jnoc (U, V). In fact (U, V)=(L,,R;) shows a global
minimizer set of Jnoc(U, V), where L and Ry are the left and right singular vector
matrix associated with signal, respectively.

One can apply the gradient descent searching to the unconstrained minimization
of Jnoc(U, V). In [2], a batch algorithm and a recursive algorithm were derived.

Given the gradient of Jnoc(U, V) with respect to U and V, the following gra-
dient descent rule can be used for updating U(k) and V(k):

Uk) = (1= Uk — 1) +nC(k)V (k) x (U (K)C(k)V (k)" (9.32)
V(k) = (1 =)V (k= 1) +nC (U (k) x (V' (K)C"(k)U(K))™", (9.33)
C(k) = aC(k — 1) +x(k)y" (k), (9.34)

where 0 <7 <1 denotes the learning rate, and 0 <o < 1 is the forgetting factor. This
batch implementation, however, is mainly suitable for the adaptive singular sub-
space estimation and tracking, where the cross-correlation matrix C(k) is explicitly
involved in computations [2]. For online learning of neural networks, it is expected
that the network should learn the PSS directly from the input data sequences x
(k) and y(k) [2].

Following the projection approximation method of [24], the recursive imple-
mentation of the NQC algorithm was derived in [2], and the algorithm can be
summarized as follows:

Initializations:

P(0) = el (¢ is a very large positive number)
(0) =0, and V(0) =0
) = a random M X r matrix with very small Frobenius norm

U
U(o
V(0) = a random N X r matrix with very small Frobenius norm
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Update:
g(k) = U" (k — 1)x(k)
h(k) = V' (k — 1)y(k)
g(k) = P(k — 1)g(k)
h(k) = P*(k — 1)h(k)
70 = G

P(k) = o ' [P(k — 1) — y(k)g(k)h" (k)] (9.35)

V() = V(k = 1)+7() [y®) = V(R0 |&" (k)
U(k) = (1 = Uk = 1)+ 0 K)
VK) = (1 =mV(k—1)+1V (k).

The above update equation yields an online learning algorithm for two linear
neural networks. U” (k) and V' (k) denote the weight matrices of these linear neural
networks. In [2], the convergence of batch algorithm was proved via the Lyapunov
theory.

In [2], it has been proved that the iterative algorithm for computing U (k)U (k)
and VT (k)V (k) can be written as

{UT(k)U(k) =(1=2n)Uk - DUk —1)+2nl, (9.36)
VIK)V (k) = (1 —2n)VT(k — 1)V (k— 1) +24l,’ '

where an appropriate learning rate is 0 <# <0.5. Since (9.36) is linear, the learning
rate can be selected as a fixed constant close to 0.5. For example, # = 0.49. That is,
the learning rate can be selected as a constant independent of the singular value
distribution of the underlying matrix, which evidently increases the convergence
speed of the CNN.

9.2.5 Coupled SVD of a Cross-Covariance Matrix

It is known that there exists the speed stability problem in most noncoupled learning
algorithms. In order to resolve the speed stability problem that plagues most non-
coupled learning algorithms, Kaiser et al. proposed a coupled online coupled
learning algorithms for the SVD of a cross-covariance matrix [1]. In this algorithm,
the singular value is estimated alongside the singular vectors, and the effective
learning rates for the singular vector rules are influenced by the singular value
estimates.
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9.2.5.1 Single-Component Learning Rules

In [1], Kaiser et al. proposed an information criterion, which is designed in a way
that its stationary points coincide with the singular triplets of the general rectangular
matrix A. However, since the stationary points correspond to the saddle points,
Newton’s method was applied to derive a learning rule to turn even saddle points
into attractors which guarantees the stability of the resulting learning rules.

The information criterion is

1 1
p=o0c 'uTAv — EuTu - EvTv +1Ino. (9.37)

From the gradient of (9.37), it is clear that the stationary points of (9.37) are the
singular triplets of A, and |lu|| = ||v|| = 1 for these points. Since the Hessian of
(9.37) is indefinite for all stationary points, the first principal singular triplet is only
a saddle point of (9.37), and hence, gradient-based methods would not converge to
this solution. Here, Newton’s method has been applied to derive a learning rule
which converges toward the principal singular triplet. In [1], the derived individual
component equations are as follows:

i=0"(Av —uu"Av) + L (u"u — )u
v=0"'ATu —wTATu)+ L (v — 1)y (9.38)
¢ =uAv —fo(uu+v'y).

By using a linear stability analysis which is based on the ED of the stability
matrix, i.e., the system’s Jacobian, evaluated at an equilibrium point, i.e., the kth
principal singular triplet (#y, vk, 6x), it has been proved that only the first principal
singular triplet is stable [1]. Moreover, it has been proved that the system converges
with approximately equal speed in all its eigen directions and is widely independent
of o.

If one further approximates #'u =~ 1 and v'v ~ 1 in (9.38), then the approxi-
mated system can be obtained

i=oc""(Av — uu"Av)
v=0"(A"u —w'ATu) (9.39)
G=u'Av — 0.

It can be easily shown that the approximated system has the same equilibria as
the original system. The convergence properties are widely unchanged; i.e., the first
principal singular triplet is the only stable equilibrium, all eigenvalues are widely
independent of the singular values, and the convergence speed is approximately the
same in all its eigen directions [1].
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Ignoring the factor ¢! in (9.39) yields the cross-coupled Hebbian rule in its
averaged form

i = (Av — uu"Av)

. 9.40

{ v=(A"u —w'ATu). (9:40)

By analyzing the stability of these ODEs, it has been shown that their conver-
gence speed strongly depends on the singular values of A.

It is worth noting that for the online learning rule, the learning rates have to be
selected. In the cross-coupled Hebbian rule, the convergence speed depends on the
principal singular value of A, which leads to a problem in the selection of the
learning rate. Thus, there exists a typical speed stability dilemma. Obviously, the
influence of the singular value estimate (9.39) on the equations of the singular
vector estimates potentially improves the convergence properties.

A stochastic online algorithm can be derived from the ODEs (5.39) by formally
replacing A by y.xT and introducing a small learning rate 7, that decrease to zero as
t — o0. The stochastic online algorithm is as follows:

Ui = U +Vt‘7;_l v, — ntul)ét
Vitel =V + "/;G;I(xt — Ny, (9.41)
o1 =0 +7,(n,& — 01).

where the auxiliary variables &, = v,Tx, and 5, = utTyl have been introduced. If the
estimate of ¢, and the factor a,‘l in (9.41) are omitted, the learning rule (9.41)
coincides with the cross-coupled Hebbian rule:

U1 =u; +'yt(yt - ntuf)ét (9 42)
_ 1, .
Vig1 =Vt 0,0, X — vy,

where the singular value estimate is not required in these learning rules.

9.2.5.2 Multiple Component Learning Rules

For the estimation of multiple principal singular triplets, the above single singular
component analyzer has to be combined using some decorrelation method. These
methods can be interpreted as descendents of the Gram—Schmidt orthonormaliza-
tion method. In [1], four methods were introduced, i.e., full Gram—Schmidt
orthonormalization method, first-order Gram—Schmidt approximation, the deflation,
and double deflation. Applying the Gram—Schmidt method would lead to perfectly
orthonormal left and right singular vectors. However, the complexity of this method
is in the order of mM? for the left and nM? for the right singular vectors. First-order
approximation of Gram—Schmidt orthonormalization reduces the computational
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effort to the order of mM and nM. Deflation methods have the same order of
complexity but approximately halving the number of computation steps.

Here, we take multiple component learning of the coupled SVD rule using
first-order approximation of Gram—Schmidt orthonormalization as an example. The
algorithms can be summarized as follow:

k k—1
b=ty o,:‘<y—z17,u_,-> 5k—nkza;1¢ju,], 043)
j=1 j=1

i k k—1
I ( : znjvj> oS o,.lf,-v,,.] O m
I = =1

1 J
oy = ok + (s — %), (9.45)

where &, = vzx, e = u{y. The weight vector of the next time step is either the
same as this intermediate vector, i.e.,

u;{, = ﬁk, VZ = f’k, (946)
or a normalized version:
iy Vi
u = — v = . (9.47)
T el

For k = 1, these rules coincide with the coupled SVD rule. For other estimation
rules of multiple principal singular triplets, see [1].

9.3 An Effective Neural Learning Algorithm
for Extracting Cross-Correlation Feature

In this section, a novel information criterion for PSS tracking will be proposed and
a corresponding PSS gradient flow will be derived based on the information cri-
terion. The global asymptotic stability and self-stabilizing property of the PSS
gradient flow will be analyzed.

In particular, for a matrix close to singular, it does not converge and the columns
of state matrix do not orthogonalize. For a matrix close to singular, the algorithm in
[2] can converge. However, it has slower convergence speed, and there appears to
be residual deviations from the orthogonality for its columns of state matrix.
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The objective of this section is to obtain more effective learning algorithm for
extracting cross-correlation feature between two high-dimensional data streams.
Firstly, we propose a novel information criterion (NIC) formulation. Secondly,
based on it, we derive a PSS tracking gradient flow. Then, the landscape of the
information criterion formulation, self-stabilizing property, and the global asymp-
totical convergence of the PSS gradient flow will be analyzed in detail. Finally,
simulation experiments are carried to testify the effectiveness of algorithms.

9.3.1 Preliminaries

9.3.1.1 Definitions and Properties

Definition 9.1 Given an r x r matrix B, then its EVD is represented as

B = ®¥d ! where ® denotes an r x r matrix formed by all its eigenvectors, and
Y = diag(4y,...,4,) > 0 is a diagonal matrix formed by all its eigenvalues.

Property 9.1 The trace of a matrix B can be computed by tr(B) = Y _._, ;.

Property 9.2 If A is an m X n matrix and B is an n X m matrix, then it holds that
tr(AB) = tr(BA).

Property 9.3 Let U and V € RV be two different matrices satisfying span
(l~] ) = span (‘N/) for r <N, then there always exists an r X r rank-full matrix B such
that U = VB.

Property 9.4 Given two different matrices U = [y, .. .,0,] and V = [p1,...,V,]
€ RN if N > r and rank (I7T1~/) = r, then span(U) = span (V).

Property 9.5 Known P,, A and }, then there is AP, = P,Z, where P, isan N X r
permutation matrix in which each column has exactly one nonzero element equal to
1 and each row has, at most, one nonzero element (N > r), A isa N x N diagonal
matrix given by diag(4i, ..., An), Ji is an integer such that the permutation matrix
P, has exactly the nonzero entry equal to 1 in row J; and column i, and

Z = diag(}vw], “oey /ljr)
About the details of these property and definition mentioned above, we can see

[2, 21, 25].
9.3.1.2 Some Formulations Relative to PSS
Consider an M-dimensional sequence x(¢) and an N-dimensional sequence y(#) with

the sample size k large enough. Without loss of generality, let M > N. If x(¢) and
y(¢) are jointly stationary, their cross-correlation matrix [2, 26] can be estimated by
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C(k) =

| =

k
> _x(yTG) € R, (9.48)

And if x(¢) and y(z) are jointly nonstationary and slowly time-varying, then their
cross-correlation matrix can be estimated by

k
Clk) =Y o Tx(jy"(j) € R, (9.49)
j=1

where 0 <a < 1 denotes the forgetting factor which makes the past data samples less
weighted than the most recent ones. The exact value for o depends on specific
applications. Generally speaking, for slowly time-varying system, o is chosen close
to one, whereas for fast time-varying system, o should be chosen close to zero
[2, 26].

Let 0;,1; and r;,i = 1,...,N denote the singular values, the corresponding left
and right singular vectors of C, respectively. We shall arrange the orthonormal
singular vectors Iy,lp,...,ly and ry,r,,...,ry such that the associated singular
values are in nonincreasing order, i.e., 6y >0d, > --- > gy > 0. Note that since
these left singular vectors Iy 1,ly 12, .. .,I) are associated with the null subspace
of C, we shall not consider them. Let A = diag(o1,...,0y), L=[l,...,ly], and
R =[r,...,ry]. Then, the SVD of C is described by C = SV  ol#T = LAR".
Usually, all I;,1,...,l, and ry,r,,...,r. are called the PSC, and L, = [I,,...,1,]
and R,; = [ry,...,r,] are called the left and right singular vector matrices associated
with the signal, respectively. The associated principal singular values can construct
a diagonal matrix A = diag(oy, ..., ), where r denotes the number of the PSCs.
An efficient estimation can be achieved by Akaike information criterion [27] based
on the distribution of the singular values. In some applications [28, 29], we are
required only to find a PSS spanned by /;,...,I. or ry,...,r,, given by L,Q, or
R,,Q,, where Q,,Q, is r x r orthogonal matrices.

Consider the following two linear transformations:

u(k) = U'x(k) € R, (9.50)
v(k) = VTy(k) € R, (9.51)
where U € RM*" and V € RV*" denote the optimal weight matrices whose columns

span the same space as L,, and R, respectively; u(k) and v(k) are the
low-dimensional representation of x(r) and y(k), respectively. If U = L, and
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V = R,,, then u(k) and v(k) are PCs of x(r) and y (k). In [2], the relation between the
PSC and PSS is given. For the convenience of analysis, one definition of the matrix

equivalency U = VP was provided in [2], where U and V € RV*" are matrices, and
P is a r X r permutation matrix. Another definition of the matrix equivalency U =

@ was also provided in [2], where U and V € R¥*" are two column-orthonormal
matrices, and Q is ar X r orthonormal matrix. For detail, see [2]. In this part, we only
consider those points (U, V)(=(L,s, R,)) satisfying ||U|| # 0 and ||V|| # 0.

9.3.2 Novel Information Criterion Formulation for PSS

In this part, we will propose a NIC, based on which we can derive a PSS tracking
algorithm.

9.3.2.1 Novel Information Criterion Formulation for PSS

Given U € RM*" and V € R¥*" in the domain {(U,V)||U||z# 0, ||V||z# 0}, we
present a nonquadratic criterion (NQC) for PSS as follows:

min Inae(U, V)

Inac(, V) = ~w{ @YYl V1) |+ Julll - UTOP) 4 Jufll - VIVE).
(9.52)

It is worth noting that this criterion is referred as novel because it is different
from all existing PSS criteria [2, 9, 10, 12, 13], etc., or all existing PSA criteria [24,
30], etc.

From (5), we can see that Jxoc (U, V) has a lower bound and approaches infinity
from the above as tr(UTU) — oo or (and) tr(VTV) — co. Obviously, the gradient
searching algorithm can be derived based on the above NQC, which will be dis-
cussed in the latter section.

If U and V are expanded by the left and right singular vector bases into

U=L"U V=RV, (9.53)
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respectively, then we can find the NQC for the expanded coefficient matrices
min Jnoc (U, V)
vy

Inae(@. V) = —ul (Tmany(||0] |V )} Sut - 00y + Jullr - VIV,

’ Fll - lr 2 2 ’

(9.54)

where U and V € RV*" are two expanded coefficient matrices. Obviously, (9.54)

represents an equivalent form of (9.52). The landscape of this novel criterion is

depicted by the following two theorems. Since the matrix differential will be used
extensively, interested readers can refer to [31] for more detail.

9.3.2.2 Landscape of Nonquadratic Criterion

The landscape of (9.52) is depicted by the following two theorems.

Theorem 9.3 (U,V) is a stationary point of Jnoc(U,V) in the domain
{(UW)||U]|p# 0, ||V||# 0} if and only if U=L, and V=R,, where L, € RM*"
and R, € RV*" consist of the r left and right singular vectors of C, respectively.
Note that (U, V)=(L,,R,) shows a stationary set of Jxoc(U, V).
It can be seen that Theorem 9.3 is equivalent to the following Corollary 9.1. So
we will only provide the proof of Corollary 9.1.
Corollary 9.1 (U,V) is a stationary point of jNQC(l~J V) in the domain
{(67 ‘7)|HI~JH # 0, H‘N/H # 0} if and only if U=P, and V=P,, where P, € RN*"
F F
is a permutation matrix and consists of r eigenvectors of A, respectively.

Proof The gradient of ]NQC(TJ , V) for PSS tracking with respect to U and V exists
and is given by

Situet@.9)=~{a¥([o]| ) - an [v]) '} -

-U'y),
(9.55)

Vidnge(T, V) = ~{ ATV V) V@ av) vy Y v viv)
(9.56)

where VE and VE denote 6JNQC / AU and 8JNQC / ov, respectively.
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Given a point in (P,Q,,P,Q,) in (U, V)=(P,,P,), then we have

VEjNQC(PrQIaPrQ2) = —{AP,0,(|P,Q,P.Q,|)"

— P.Q,(Q/P{AP,Q,)(|P,Q, ||IP.Q, )"}
—P,Q,\[I - Q[P'P,Q,] = —{AP,Q, — AP,Q,} = 0.
(9.57)

Similarly, we can get the following equation:
VeInac(PrQy, Pr@y) = 0. (9.58)
Conversely, ]NQC(I~J , ‘N/) for PSS tracking at a stationary point should satisfy
VEJNQC(INJ, V) =0 and v;jNQC(fJ, V) = 0, which yields

s@nan (o] |7]) = as((ol¥)) vou-ow v

e~ ~in~n3\ ! SO T TRTIURTINS e
V(UTAV)<HUHHVH ) - ATV(HUHHVH) FVI-VTV].  (9.60)
Premultiplying both sides of (9.59) and (9.60) by UT and V7, respectively, we
have
U'v =1, (9.61)
viv =1,, (9.62)

which implies that the columns of U and V € RV are column-orthonormal at a
stationary point of jNQc(fJ , V) for PSS tracking.

From (9.61), we have
rank(UTAU) = r. (9.63)
Moreover, premultiplying both sizes of (9.60) by U", we have
rank(f]Tf/(ﬁTAf/)(Hf]HHf/’3)I) - rank{ﬁuTv(HaHHvH)" LU~ vm} —

(9.64)
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From (9.64), it follows that
rank(UTV(UTAV)) = rank(UTA™V) = rank(UTV) = r. (9.65)

From Property (2.4) and (9.65), we have

span(U) = span(V) = span(AU) = span(AV). (9.66)
From Property (2.3), it follows that
U=V0,ic U=V. (9.67)

Substituting (9.67) into (9.59) and from uu' = VVT, we have

AV = VV' AV, (9.68)
~ T _Top . .
Let V=[v,,...,vy] , where v;(i=1,...,N) is a row vector, and take B =

=T = . . .- . . .
V AV thatis a r X r symmetric positive definite matrix. Then, an alternative form
of (9.68) is:

G,l;,:l;lB(lzl,27,N) (969)

Obviously, (9.69) is the EVD of B. Since B is a r X r symmetric positive definite
matrix, it has only r nonzero orthonormal left eigenvectors, i.e., V has only
r nonzero orthonormal row vectors. Moreover, all the » nonzero row vectors in v
form an orthonormal matrix, which shows that V can always be represented as

V =P,0,, (9.70)
ie.,
V=P,. (9.71)
Similarly, we can get
U=P,. (9.72)

Since in the domain {(U, V)|UTAV > 0},

rank(UTAV) = rank(QfIA’fAf',Qz) =r. (9.73)


http://dx.doi.org/10.1007/978-981-10-2915-8_2
http://dx.doi.org/10.1007/978-981-10-2915-8_2

9.3 An Effective Neural Learning Algorithm for Extracting ... 301

From Property (2.5), we have
rank(i’IAIv’,) = rank(i’?i’,i) =r, (9.74)

where the r x r diagonal matrix A is similar to 4 in Property (9.5).
This means that

rank(PTP,) = r, (9.75)

or equivalently

o~

P.=P,. (9.76)
Thus, (9.71) and (9.72) can always be rewritten as
(U, V)=(P,,P,). (9.77)

This completes the proof.

Clearly, (U, V)=(P,,P,) shows a stationary set of Jxoc(U, V).

Theorem (9.3) establishes a property for all stationary points of Jnoc (U, V). The
next theorem further distinguishes the global minimizer set obtained by spanning
the PSS from the other stationary points that are saddle (unstable) points.

Theorem 9.4 In the domain {(U,V)|||U||p# 0,||V||z# 0}, Jnoc(U,V) has a
global minimum that is achieved if and only if U=L,; and V=R,,;. And the global
minimum is Jnoc(U,V) = =Y i, 0;. All the other stationary points (U, V) #
(Lps, Rys) are saddle (unstable) points of Jnoc(U, V).

In fact, (U, V)=(L,;,R,s) shows a global minimizer set of Jnoc(U, V).

It can also be seen that Theorem 9.4 is equivalent to the following Corollary 9.2.
So we will only provide the proof of Corollary 9.2.

Corollary 9.2 In the domain {(U, 17)|H(~JHF7£ 0, H‘7HF7E 0}, Jnoc(U, V) has a

0
is a r x r identity matrix. And the global minimum is Jnoc(U, V) = — Sr_, a1. All
the other stationary points (U, V)(# (P,P)) are saddle (unstable) points of
Inge(U, V).

global minimum that is achieved if and only if U=P and V=P, where P= (I, ) U,

Proof Since ]NQC(t/ , ‘N/) for PSS tracking is bounded from below and unbounded
from above as tr(U"U) — oo and/or tr(VTV) — oo, the global minimum can only
be achieved by a stationary point of Jygc(U, V). By computing JInoc (U, V) for


http://dx.doi.org/10.1007/978-981-10-2915-8_2

302 9 Singular Feature Extraction and Its Neural Networks

PSS tracking in the stationary point set for the domain {(U,V)|UTU # 0,
VTV +£ 0}, we can directly verify that a global minimum of ]NQC(IN] , V) for PSS
tracking is achieved if and only if

(U, V) € (PQ,,PQ,). (9.78)

By substituting (9.78) into (9.54) for PSS and performing some algebraic
manipulations, we can get the global minimum of ]NQC(U , V) for PSS tracking as

.NINQc(i], ‘7) = — Zi:l g;. (979)

Moreover, we can determine a stationary point of jNQc(f] , ‘N/) for PSS tracking
as saddle (unstable) in such a way that within an infinitesimal neighborhood near

the stationary point, there is a point (U’, V') such that its value Jnoc (U, V') for PSS
tracking is less than Jxoc (U, V) for PSS tracking.

Let P, # P. Then, there, at least, exists a nonzero element in the row vectors
from 7 + 1 to N for P,. Since P and P, are two permutation matrices, from Property
9.5, there exist certainly two diagonal matrices 4 and A such that P AP =P P A
and PTAP, = PTP,A. This yields

P'AP =14, (9.80)
PTAP. = 4. (9.81)
Thus, it holds that
t(P' AP) Za,, (9.82)
tr(PTAP,) Zal. (9.83)
If o:(i=1,...,r) are rearranged in a nonincreasing order, i.e.,

Ji
G1>6,> -+ > &y, then there exist 0, >6;(i=2,...,r) and o; > &, for P, # P.
This means that

tr(P' AP) > tr(PTAP,). (9.84)
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Since

Inoc(P,y,P,0s) = —u{ (QTPTAP,0:) (P, |P,0:) '}
b u{l— @TPIP,0))} + ull - (@1PIP,0,)} (O89)
— —u{(P4P,)},
Tnac(PQ), PQ,) = —tr{(QTP" APQ:)(IP.Q\lIIP.Q:1l) ' |
b3l — QIP'PQ)} + Jull — (QIPPQ)}  (936)
= —u{(P'AP)}.
Thus, we have
Ixoc(PrQ) > Inoc(PQ), (9.87)
which means that the set {(P,Q,, P,@,)|P, # P} is not a global minimizer set.

Since P, # P, we can always select a column P;(1 <i<r) from P = [Py, ..., P,]
such that

PP, =0, (9.88)

otherwise, P,=P. Moreover, we can always select a column P, j(1<j<r) from
P.=[P,,...,P.,] such that

T p _
PIP=0. (9.89)

Otherwise P,=P. Let P; have nonzero element only in row j; and P,; have
nonzero entry only in row ]j Obviously, Ji <]A'j and a5 > 0j; otherwise, P,=P.
Define an orthonormal matrix as B = [P.1,...,(P,;+&P;)/V1+&, ... P,,],
where ¢ is a positive infinitesimal. Since P,; and P; have one nonzero entry, it
follows that

AB = [O-flprvl’ e (O'}jprﬁi + O'jﬁﬁi)/\/ 1+ 82’ e 0}-’_Pr’r}. (990)
Combining (9.88), (9.89), and (9.90), we have

B'AB = diaglo; ,..., (0}, +&0;) /(1 +%),..., 0 ]. (9.91)
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Since P, is an N X r permutation matrix, we have

Pl AP, = diag;, ,...,0;,...,0;]. (9.92)
Then, it follows that
B'AB — PIAP, = diag[o; ,.., (0, +¢05) /(1 +&°),..., ;] — diaglo; ..., 03, 75 ]
= d1ag[0, .. .,07 (_O-jj + 6},)82/(1 +82)7 O7 .. ,0}
(9.93)

Since a; <, B"AB — P" AP, is a nonzero positive semi-definite matrix. Thus,

we have

- - ! .
Inoc(BQy,BQ,) = 7tr{ (QITBTABQZ) (HB,.Q1 HF||B,Q2HF) 1} 4 Etr{l _ (QITBTBQI)} + Etr{l _ (Q%-BTBQZ)}
= —tr{BTAB} <Jxqc(P,Q,,P,Q,) = —tr{PTAP,}.

This means that {(P,Q,,P,Q,)|P, # P} is a saddle (unstable) point set.

This completes the proof.

It can be easily shown that (U, V)=(P,P) denotes a global minimizer set of
Inoc(U, V).

9.3.2.3 Remarks and Comparisons

In the following, we make some remarks on the novel NQC (9.52).

Remark 9.1 From Theorems 9.3 and 9.4, it is obvious that the minimum of
Jnoe (U, V) for PSS automatically orthonormalizes the columns of U and V, and at
the minimizer of Jnqc(U,V) for PSS, U and V only produce an arbitrary
orthonormal basis of the PSS but not the multiple PSCs. However, uu' = L,,SL;S

and VVT = R,,XR;V are two orthogonal projection on the PSS and can be uniquely
determined.

Remark 9.2 Jnoc(U, V) for PSS has a global minimizer set and no local ones.
Thus, the iterative algorithms, like the gradient descent search algorithm for finding
the global minimum, are guaranteed to globally converge to the desired PSS for a
proper initialization of U and V in the domain £2. The presence of the saddle points
does not cause any problem of convergence because they are avoided through
random perturbations of U and V in practice.
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9.3.3 Adaptive Learning Algorithm and Performance
Analysis

9.3.3.1 Adaptive Learning Algorithm

At time instant k, we have x(1),x(2),...,x(k) and y(1),y(2),...,y(k) available and
are interested in estimating U(k) and V(k). Our objective is to establish a fast
adaptive algorithm for calculating recursively an estimate of the PSS at time instant
k from the known estimate at k-1 and the newly observed samples x(k) and y(k).
We will apply the gradient descent searching to minimize Jnoc (U, V).

Given the gradient of Jnoc(U, V) with respect to U and V, we have the fol-
lowing gradient descent rule for updating U(k) and V(k):

U(k+1) = Ulk) + t{CR)V(E) ([T )|V &))"
—Uk)(UR) CEVE) TR FIVER)) Y+ pURT = UK UK)],
(9.94)

V(k+1) = V(k)+u{CER) UK UKV K"
— VER)(UE) CERVE) UK NVEIZF) "} +rVER)II - V(K V),
(9.95)

where 0 <p<1 denotes the learning step size. In Egs. (9.94) and (9.95), if we
replace C by x(k)yT(k), we can obtain a nonlinear stochastic learning rule:

Uk+1) = Uk) + p{x (k)y" (k) V) (UK || £V (k) ][ 2) "
— U(k)(U" (R)x (k)" (K)V KD (NUR) IV K| p) ™} + uU (R) I = UT () U (K)],
(9.96)

V(k+1) = V(k) + u{ (x(k)y" (k) U@ (|UK)[| |V (k)] )~
— V) U (Rx (k)" (R)VE) ORIV K3} + uV (R = VI (k)V (K]
(9.97)

Equations (9.96) and (9.97) constitute our PSS tracking algorithm for extracting
cross-correlation features between two high-dimensional data streams. Our algo-
rithm has a computational complexity of (1+ 3r)MN +3(M +N)r* flops per
update, which is at the same order as that of algorithms in [2]. The operations
involved in (9.96) and (9.97) are simple matrix addition, multiplication, and
inverse, which are easy for systolic array implementation [26].
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9.3.3.2 Convergence Analysis

We now study the convergence property of the gradient rule (9.96) and (9.97). If
x(¢) and y(¢) are two jointly stationary processes and the learning rate u is small
enough, then the discrete-time difference in Eqs. (9.96) and (9.97) approximates the
following continuous-time ODE [32, 33]

d‘;f” = L {COVO(IUOIAV,)

—UOOO COVO)YNUOIIVOl) "} + U@ - U@ U@),
(9.98)

YO tcwrvwumvel,)
~VOWECOVONTG VO™ + 1V O - VO V(D)
(9.99)

By analyzing the global convergence of (9.98) and (9.99), we can establish the
condition for the global convergence of (9.98) and (9.99). Next, we study the
convergence of (9.98) and (9.99) via the Lyapunov function theory.

Obviously, we can see that Jnoc(U, V) is a Lyapunov function for the ODE
(9.98) and (9.99). To show this, let us define a region Q = {(U,V)|/noc
(U,V)<oo} ={(U,V)|0<||U||p<ocand 0<|V|p<oco}. Within this region,
Jnoe(U, V) is continuous and has a continuous first-order derivative.

Theorem 9.5 Given the ODE (9.98), (9.99) and (U(0),V(0)) € Q, then
(U(), V(1)) for tracking PSS converges to a point in the set (U, V)=(L,,, R,) with
probability 1 as t — 0.

Proof For PSS tracking algorithm, the energy function associated with (9.98) and
(9.99) can be given as follows:

EW, V) =~ e[ @ V) [0l VI "+ el - Um0
| (9.100)
+ o u{ll - Vv

Clearly, we can see that when ||U||z— oo and/or ||V||z— o0,E(U,V) — 0.
Thus, it can be seen that G. = {U,V;E(U,V)<c} is bounded for each c¢. The
gradient of E(U, V) with respect to U, V is given by

VeE(U,V) = ~{CEVEIURIVE)) ™

— U (UER) CEVE)NUE[FIVEI )Y = UK - UK U®),
(9.101)
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VvE(U,V) = ~{CK) UK (UK ||V
— V)UK CEVE)(UR| V@IS = VR = V(K V(K).
(9.102)

Clearly, Egs. (9.98) and (9.99) for PSS tracking are equivalent to the following
equation:

% = —VyE(U,V) and % = —VyE(U,V). (9.103)

Differentiating E(U, V) along the solution of (9.98) and (9.99) for PSS tracking
algorithm yields

dE(U,V) dU” avT
— 2 | — VyE - .VyvE
dr tr( T U,V)+ a w.v)

dUT dU  dvT av
= —tr| — — + — ). 104
tr( & d T w dt) (9.104)

This means that E(U,V) is a Lyapunov function, and (dU(¢)/df) — 0 and
(dV(#)/dt) — 0, ie., VyE(U(t),V(t)) — 0 and VyE(U(t),V(¢)) — 0 as t — occ.
Thus, (U(z), V() globally converges to a stationary point of E(U, V). Moreover,
E(U, V) achieves its unique global minimum in set {(L,;Q;, R,,Q,)}. Since all the
other stationary points of E(U,V) are saddle and also unstable, we can see that
(U(r),V(r)) converges to a point in set {(L,Q;,R,:0,)} with probability I,
as t — oQ.

This completes the proof.

9.3.3.3 Self-Stability Property Analysis

Next, we will study the self-stability property of (9.96) and (9.97).

Theorem 9.6 If the learning factor p is small enough and the input vector x(k) and
y(k) are bounded, then ||U(k)||p and |V (k)| in learning algorithm (9.96) and
(9.97) for tracking the PSS approach to \/¥, respectively.

Proof Since the learning factor u is small enough and the input vector is bounded,
we have

UG+ 1|7 = t[UT (k+ 1)U (k+1)] = c{UT(K)U (k) + 2uU" () U (k)[I — UT(k)U(k)]}

= w[UT(k)U(k)] = 2p- w[(UT (U (K))* = UT (k) U (k).
(9.105)
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Note that in the previous equation, the second-order terms associated with the
learning factor have been neglected.
It holds that

T T 2 T
e+ 0l — TSI 2 0) —E T
ul(U" (kU (K)?
w0V ()
- .('I{qu”l},

tr{ @YD"}

—_

=1 1] =1 (e )

1 2 2
):1*2.‘4'(%*1):1*2#‘(“{‘1’}71)
tw{® DY} {¥}
s 2 >1 for Y, O<Y G >1 for |UK)|,<v7
:1_2”'(21’;”;_1): =1 for L=1,(i=12...r) =¢ =1 for [[UK)|,=r
= <1 for YL, 2> Y006 <1 for U, > V7

(9.106)

where M = U(k)"U(k) is a rxr matrix, and its EVD is represented as
M=oYd .

The self-stabilizing property of ||V (k)| in Algorithms (9.96) and (9.97) for
tracking the PSS can be proved similarly.

This completes the proof.

Remark 9.3 In (9.98) and (9.99), if UT(k)U(k) =1 and VT (k)V (k) = I hold, we
can obtain Egs. (9.19) and (9.20) in [12], respectively. So we can see that the
algorithm in [12] is a special case of our algorithm for PSS tracking, or we can
regard our algorithm for PSS tracking as an extension of the algorithm in [12].

9.3.4 Computer Simulations

In this section, we will provide several interesting experiments to illustrate the
performance of our PSS algorithms. Generate randomly a 9-dimensional Gaussian
white sequence y(k), and x(k) = Ay(k), where A is an ill-conditioned matrix:

A = [ug, .. .,us]diag(10,10,10,1072,1073,1073,1077, 1077, 1077) [y, . . ., vs]",
(9.107)
and u; and v; (i=0,...,8) are the ith components of 11-dimensional and
9-dimensional orthogonal discrete cosine basis functions, respectively. In order to

measure the convergence speed and precision of learning algorithm, we compute
the norm of a state matrix at the kth update:

p(U(k)) = [UK)[r and p(V(K)) = [[V(K)]F, (9.108)
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and the direction cosine at the kth update:

U (k) - Lys| /UK - |[Lys || LPSS

[VT(k) - Rys|/|IV(K)| - ||R,s||  RPSS. (9.109)

Direction Cosine(k) = {

Also, we use the following index parameter:

dist(U(k)) = ||UT()U(k) — I.||, and dist(V(k)) = ||V (k)V (k) — L],
(9.110)

which measures the deviation of a state matrix from the orthogonality. Clearly, if
direction cosine(k) converges to 1, then state matrices U (k) (orV (k)) must approach
the direction of the left PSS (or right PSS). If dist(U(k)) (or dist(V (k)) converges to
zero, then it means that U(k) (orV(k)) is an orthonormal basis of the left PSS (or
right PSS).

In theory, the cross-correlation matrix A given by (9.107) has nine nonzero
singular values among which the totally distinct three singular values 10, 10>, and
1077 have multiplicity 3. The data matrix is ill conditioned, since its condition
number is 10® [2]. The PSS spanned by the first 5 singular components will be
tracked. The sample size is 1000, i.e., x(1),...,x(1000), and y(1),...,y(1000).

Here, we will compare performance of our algorithm for PSS tracking with that
of the recursive implementation algorithm in [2] and the algorithm in [12].
Figure 9.2a, b are the simulation result for our algorithm and the algorithm in [2].
Figure 9.3a,b are the simulation result for our algorithm and the algorithm in [12].

In order to further compare the performance of our PSS tracking algorithm and
the algorithm in [12], another experiment is conducted. Here, the vector data
sequence are generated by x(k) = B - y(k), where B is given by:

B = [u, . ..,ug) - randn(9,9) - [vo, .. .,vs]", (9.111)

where u; and v;i=0,...,8) are the ith components of 11-dimensional and
9-dimensional orthogonal discrete cosine basis functions, respectively. In this
simulation, we let y, € R°*! be Gaussian, spatially and temporally white and
randomly generated. Here, a PSS with dimension 5 is tracked. Figure 9.4a, b shows
the simulation results for our algorithm and the algorithm in [12] with the initial
weight modulus value normalized to ||Uyl|| = ||Vo| = V/5 = 2.236, where the
learning factors of our PSS tracking algorithm and the algorithm in [12] are 0.03
and 0.01, respectively.

From Fig. 9.2, we can see that our algorithm for PSS tracking and the recursive
implementation algorithm in [2] both can converge to an orthonormal basis of the
PSS of the cross-correlation matrix between two high-dimensional data streams.
However, it is obvious that our algorithm for PSS tracking has faster convergence
speed and higher solution precision. In Fig. 9.3, the norm of the state matrix and the
parameter dist(U(k)) (or dist(V(k)) for algorithm in [12] do not converge. In
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Fig. 9.4, although the three parameters of the algorithm in [12] can converge, their
convergence speed is much slower than that of our PSS tracking algorithm. From
Figs. 9.2, 9.3, and 9.4, it is obvious that our algorithm for PSS tracking outperforms
other congener algorithms.
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In this section, a novel information criterion for PSS tracking has been intro-
duced, and based on it, a PSS gradient flow has been derived. The averaging
equation of the algorithm for PSS tracking exhibits a single global minimum that is
achieved if and only if its state matrix spans the PSS of the cross-correlation matrix
between two high-dimensional vector sequences. Simulations have shown that the
PSS tracking gradient flow can make the corresponding state matrix tend to
column-orthonormal basis of the PSS and have also shown that the PSS tracking
flow has fast convergence speed and can work satisfactorily.

9.4 Coupled Cross-Correlation Neural Network
Algorithm for Principal Singular Triplet Extraction
of a Cross-Covariance Matrix

In this section, we propose a novel coupled neural network learning algorithm to
extract the principal singular triplet (PST) of a cross-correlation matrix between two
high-dimensional data streams. We firstly introduce a novel information criterion
(NIC), in which the stationary points are singular triplet of the cross-correlation
matrix. Then, based on Newton’s method, we obtain a coupled system of ordinary
differential equations (ODEs) from the NIC. The ODEs have the same equilibria as
the gradient of NIC; however, only the first PST of the system is stable (which is
also the desired solution), and all others are (unstable) saddle points. Based on the
system, we finally obtain a fast and stable algorithm for PST extraction. The
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proposed algorithm can solve the speed stability problem that plagues most non-
coupled learning rules. Moreover, the proposed algorithm can also be used to
extract multiple PSTs effectively by using sequential method.

9.4.1 A Novel Information Criterion and a Coupled System

We know that gradient-based algorithms can be derived by maximizing the vari-
ance of the projected data or minimizing the reconstruction error based on an
information criterion. Thus, it is required that the stationary points of the infor-
mation criterion must be attractors. However, the gradient-based method is not
suitable for the NIC since the first PST of the NIC is a saddle point. Different from
the gradient method, Newton’s method has the beneficial property that it turns even
saddle points into attractors, which guarantees the stability of the resulting learning
rules [34]. In this case, the learning rule can be derived using an information
criterion which is subject to neither minimization nor maximization [1]. Moreover,
Newton’s method has higher convergence speed than gradient method. In this
section, a coupled system is derived from an NIC based on Newton’s method.
The NIC is defined as

1 1
p=u"Av — EJuTu - EavTv +o (9.112)

The gradient of (9.112) is determined through

ap\" [op\" op '
=||= = ,= A1
vp (8u> ’<8v> ’80] (9.113)
which has the components
g—Z:Avf(m (9.114)
9 1
5—A u— gy (9.115)
o _ 1 g I ¢
%——Eu M—EV V+1 (9116)

It is clear that the stationary points of (9.112) are also the singular triplets of A,
and we can also conclude that uTAv = ¢ and u"u = vy = 1.
In Newton descent, the gradient is premultiplied by the inverse Hessian. The

Hessian H = VV'p of (9.112) is
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—ol,, A —u
H=| A" oI, —v |, (9.117)
—u —v 0

where I,, and I, are identity matrices of dimension m and n, respectively. In the
following, we determine an approximation for the inverse Hessian in the vicinity of
the PST.

Newton’s method requires the inverse of the Hessian (9.117) in the vicinity of
the stationary point, here the PST. The inversion of the Hessian is simplified by a
similarity transformation, using the orthogonal matrix

U Omn 0m
of o' 1

Here, U = [y, ..., i,) and V = [, ...,V,] are matrices which contain all left
and right singular vectors in their columns, respectively. For the computation of the
transformed matrix H* = TTHT, we exploit AU = VET and AV = U S, where S
is an x n matrix whose first N diagonal elements are the singular values arranged in
decreasing order, and all remaining elements of § are zero. Moreover, in the vicinity
of the stationary point (#,v{,3;), we can approximate wWu~e, and Vv ~ ¢,,
where e, and e, are unit vectors of the specified dimensions with a 1 as the first
element. We obtain

—al, S —e,
- 5 o, e |. (9.119)
—el  —el 0

Next, by approximating ¢ ~ &, and by assuming |6|> |5;],Vj = 2,..., M, the
expression § can be approximated as § = 6o~'S ~ ge,e!. In this case, (9.119)
yields

—ol,, cgenel —e,

H* = | cge,el —al, —e, |. (9.120)
-l —e 0

As introduced in [35], suppose that an invertible matrix of size (j+ 1) x (j+ 1)
is of the form

R, r;
R, = ( 7 ]> 9.121
J+ rj p; ( )
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where r; is a vector of size j and p; is a real number. If R; is invertible and Rj’l is

known, then Rj-lll can be determined from

R0 1 (b b;

R =/ ’>+—<” ’) (9.122)
+1 T T )

, ( of o) B\ s 1

where b; = —R;lrj and fi; = p; —|—robj. Here, it is obvious that r; = [e,Tn,eﬂT, p=
0 and
—ol,, ceyel

R; = (aenei ol ) (9.123)

Based on the method introduced in [36, 37], we obtain

R'fl — _GIm Jemez 71: _0_71 (Im - emei)_l emeg(ln - eneg)_l .
J Uene};, —ol, ene;rn(lm - eme;rn)_l (In - ene};)_l
(9.124)

It was found that I,, — eme,Tn and I, — enez are singular, and thus, we add a
penalty term ¢ ~ 1 to (9.124), and then, it yields

R ol I, — seme;)fl eqel (I, — senez)fl
! eqe, (I, — cepel) ! I, — se,m})fl

" (9.125)
o (Im +neqer  (1+ n)eme3>
(1+n)eqe, I, +nee;
where n = ¢/(1 — ¢). Thus,

bj=—R;'r;=—2(1+n)c '[e),e]", (9.126)
B; = p;+rbj=4(1+n)o". (9.127)

Substituting (9.125) to (9.127) into (9.122), it yields
(H) ™' =R, (9.128)
From the inverse transformation H~' = TH* 'TT and by approximating

_1

re) = 10(1—¢) =0, we get
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—o (I, — uul) 0,., —lu
H '~ 0,, —o NI, —w)) —1v (9.129)
—%uT —1,T 0

where we have approximated the unknown singular vectors by #; ~ u and v| ~ v,
and 0,,, is a zero matrix of size m X n, and 0,,, denotes its transpose.
The Newton’s method for SVD is defined as

. dp
u u
v|=-H'Vp=—-H"'|2 (9.130)
’ z

By applying the gradient of p in (9.114)—(9.115) and the inverse Hessian (9.129)
to (9.130), we have a system of ODEs

1 3 1
i=0c"'Av — o 'uu"Av — —u+ “uu'u — —w'y, (9.131)
2" g 4
: —14T —1, T 1l 3 r 1 1
V=0 Au—oc vu Av——v+-wv——vuu, (9.132)
2% 4
: T L1 T
G=u Av—ia(u u+tv). (9.133)

It is straightforward to show that this system of ODEs has the same equilibria as
the gradient of p. However, only the first PST is stable (See Sect. 9.4.2).

9.4.2 Online Implementation and Stability Analysis

A stochastic online algorithm can be derived from the ODEs in (9.131)—(9.133) by
formally replacing A with x(k)y(k)T and by introducing a small learning rate 7,
where k denotes the discrete-time step. Under certain conditions, the online algo-
rithm has the same convergence goal as the ODEs. We introduce the auxiliary
variable ¢(k) = u"(k)x(k) and ¢(k) = v (k)y(k) and then obtain the update equa-
tions from (9.131) to (9.133):

u(k+1) = u(k) +p{o (k)" c(k) (k) — E(kpu(k)] — S u(k) + Zuk)u (k)u(k)

— JuT (R},
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b(k-+1) = 5(0)+ 7 { a0 D) — SO0 3900+ S0 (0 — (0T Ry .

(9.135)
olk+1) = o(k) + y{é(k)g(k) - %a(k) " (k)u (k) +vT(k)v(k)]}. (9.136)

Stability is a crucial property of the learning rules, as it guarantees convergence.
The stability of proposed algorithm can be proven by analyzing the Jacobian of the
averaged learning rule in (9.131)—(9.133), evaluated at the gth singular triplet, i.e.,
(#ty,v4,0,). A learning rule is stable if its Jacobian is negative definite. Jacobian of
the original ODE system (9.131)—(9.133) is

—L,+ sy G,'A—3uy; 0,
J(ig, vy, 04) = a—;lAT — vy I+ 3v,) 0, (9.137)
or 0 1
The Jacobian (9.137) has M — 1 eigenvalue pairs o; = 6;/6, — 1, 0m4; =
—6i/G,— 1,Vi# q and i # 1. A double eigenvalues o, = oy 4, = —0.5, and all
other eigenvalues o, =—1. Since a stable equilibrium requires
|6,-|/’(_rq| <1,Vi # g, and consequently ’6',,| > |64], Vi # g, which is only provided
by choosing g = 1, i.e., the first PST (u;,v1, ). Moreover, if || > |6j|,Vj #1,
all eigenvalues (except oy = ap; 41 = —0.5) are o; = —1, so the system converges
with approximately equal speed in almost all of its eigen directions and is widely
independent of the singular values.

9.4.3 Simulation Experiments

9.4.3.1 Experiment 1

In this experiment, we will conduct a simulation to test the ability of PST extraction
of proposed algorithm and also compare its performance with that of some other
algorithms, i.e., the coupled algorithm [1] and two noncoupled algorithms [2, 21].
Same as in Sect. 9.3.4, here, the vector data sequence is generated by
x(k) = A - y(k), where A is given by A = [uy,...,us] - randn(9,9) - [vo, . .., vs]",
where u; and v;(i=0,...,.8) are the ith components of 1l-dimensiaonl and
9-dimensional orthogonal discrete cosine basis functions, respectively. In this
simulation, we let y, € R°*! be Gaussian, spatially and temporally white and
randomly generated. In order to measure the convergence speed and precision of
learning algorithms, we compute the direction cosine between the state vectors, i.e.,
u(k) and v(k), and the true principal singular vector, i.e., #; and ¥, at the kth update:
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uT . ﬁl
DC(u(k)) = W (9.138)
DC((k)) = M (9.139)

Clearly, if direction cosines (9.138) and (9.139) converge to 1, then state vectors
u(k) and v(k) must approach the direction of the true left and right singular vectors,
respectively. For coupled algorithms, we define the left and right singular error at
the kth update:

er(k) = ||o(k) ' ATu(k) —v(k)|| (9.140)
ex(k) = ||o(k) "' Av(k) — u(k)|| (9.141)

If these two singular errors converge to 0, then the singular value estimate o (k)
must approach the true singular value as k — oo. In this experiment, the learning
rate is chosen as y = 0.02 for all rules. The initial values u#(0) and v(0) are set to be
orthogonal to #; and v,. Experiment results are shown in Figs. 9.5, 9.6, and 9.7.

From Fig. 9.5a, b, it is observed that all algorithms can effectively extract both of
the left and right principal singular vectors of a cross-correlation matrix between
two data streams. The coupled algorithms have higher convergence speed than
Feng’s algorithm. Compared with Kong’s algorithm, the coupled algorithms have
similar convergence speed in the whole process but higher convergence speed in the
beginning steps. In Fig. 9.6a, b, we find that all left and right state vectors of all
algorithms converge to a unit length, and coupled algorithms have higher con-
vergence speed than noncoupled algorithms. What is more, the principal singular
value of the cross-correlation matrix can also be estimated in coupled algorithms,
which is actually an advantage of coupled algorithms over noncoupled algorithms.
This is very helpful in some engineering applications when singular value esti-
mation is required. Figures 9.7a, b verified the efficiency of principal singular value
estimation of coupled algorithms.
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9.4.3.2 Experiment 2

Next, we will use the proposed algorithm to extract multiple principal singular
components, i.e., the first 3 PSTs of a cross-covariance matrix, in this experiment. The
initial conditions are set to be the same as that in Experiment 1. The method of
multiple component extractions is a sequential method, which was introduced in [13]:

Al (k) = A(k) (9.142)
Ai(k) = Aii(k = 1) —wi_g (k)u;_y (k) Ay (k)viy (k) v, (k)
il T (9.143)
= A (k) - Z“j(k)“, (k)AL (k)v;(k)v; (k)
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where A (k) can be updated as

A(k) = ]%IA(k - 1)+ %x(k)yT(k) (9.144)

By replacing A with A;(k) instead of £(k)c(k) in (9.131)—(9.133) at each step,
then the ith triplet (u;,v;, 0;) can be estimated. In this experiment, we set a = 1.

Figure 9.8 shows the direction cosine between the first 3 (left and right) principal
singular vectors and the true (left and right) singular vectors, and their norms of first
3 (left and right) principal singular vectors. Figure 9.9 shows the first 3 principal
singular value estimation. Figure 9.10 shows that the left and right principal sin-
gular estimation errors. Figures 9.8, 9.9, and 9.10 verify the ability of multiple
component analysis of proposed algorithm.
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Left singular value estimate error

Right singular value estimate error
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Fig. 9.10 Left and right principal singular estimation errors

In this section, a novel CSVD algorithm is presented by finding the stable
stationary point of an NIC via Newton’s method. The proposed algorithm can solve
the speed stability problem and thus perform much better than noncoupled algo-
rithms. CSVD algorithms can track the left and right singular vectors and singular
value simultaneously, which is very helpful in some engineering applications.
Experiment results show that the proposed algorithm performs well.

9.5 Summary

In this chapter, we have reviewed SVD learning algorithms in the literature. These
algorithms include single-component learning rules and symmetrical learning rules.
The former extract the first principal singular left and right singular vectors and can
be extended to multiple component rules using sequential decorrelation methods
such as Gram—Schmidt or deflation. And the latter update multiple vectors simul-
taneously or extract the principal singular subspace. Several well-known neural
network-based SVD algorithms, e.g., cross-coupled Hebbian rule, DGHA rule,
linear approximation APCA rule, “trace” algorithm, “Riccati” algorithm, CANN
rule, and coupled SVD algorithm, have been analyzed briefly. Then, an information
criterion for singular feature extraction and corresponding neural-based algorithms
proposed by us have been analyzed in details. Finally, a novel coupled neural-based
algorithm is introduced to extract the principal singular triplet (PST) of a
cross-correlation matrix between two high-dimensional data streams. The algorithm
can solve the speed stability problem that plagues most noncoupled learning rules.
Moreover, the algorithm can also be used to extract multiple PSTs effectively by
using sequential method.
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