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Abstract The local optimum is widespread in topology optimization of compliant
mechanisms due to the non-convex objective function. And sometimes the result is
far always from the global optimum. A scheme composed of two steps is proposed
to avoid most of the local optimum in topology optimization of compliant mech-
anisms in this article. Unlike the traditional method which starts from a uniform
guess, the second step of the scheme starts from the upper bound of the objective
function which is the objective function of the global optimum in some cases. The
numerical example indicates that this method is useful. The theoretical upper
bounds of the objective function in two formulations are deduced. And it is pointed
out that in some cases, topology optimization of compliant mechanisms is a process
to find a rigid-body mechanism with a certain geometrical advantage. And the
geometrical advantage is depended on the boundary condition.
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1 Introduction

A compliant mechanism transmits the applied forces from specified input ports to
output ports by elastic deformation of its comprising material, fulfilling required
kinematic functions analogous to a rigid-body mechanism [1]. There are two major
design methods for compliant mechanisms: pseudo-rigid-body mechanism syn-
thesis and continuum structure optimization.

A number of techniques have been developed to design the compliant mecha-
nisms by continuum structure optimization. Simplified isotropic material with
penalization (SIMP) [2, 3] is a fundamental method and will be discuss in this
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article. Many objective function of the optimization problem are proposed. Two
formulations will be discussed. They are the mechanical advantage
(MA) formulation and the output displacement formulation. The output displace-
ment formulation includes an input spring to model the actuator’s stiffness [4]. The
output displacement is the objective function. The mechanical advantage
(MA) formulation applies constrain on the input displacement [5]. The mechanical
advantage is the objective function.

The objective function which maximizes mechanical or geometrical advantage
[6] is found to be a non-convex function [7]. And most of the topology optimization
method updates the design viable according to the sensitive analysis. Thus, the
result of the topology optimization of compliant mechanisms is usually the local
optimum but not a global one. Sometimes, the result is far always from the global
optimum. This is a serious problem. However, the researches about the local
optimum in topology optimization of compliant mechanisms are rare.

Similar researches about the local optimum aim to deal with the structural
topology optimization problem [8]. The structural topology optimization problems
are modeled using material interpolation, e.g. simplified isotropic material with
penalization, to produce almost solid-and-void designs. But the problems become
non convex due to the use of these techniques when penalty factor is bigger than 1.
The penalty continuation in structural topology optimization is used to avoid the
local optimum in many researches [9, 10]. This method increases the penalty factor
from 1 to a maximum number during topology optimization. The penalty contin-
uation is reported to be helpful in topology optimization of compliant mechanisms
[11, 12]. Instead of OC and MMA, GCMMA is proposed to update the design
variable to avoid the local optimum [13]. However, the global optimal solution
cannot always be obtained by continuation with respect to the penalization
parameter and how far is the result away from the global optimum remains
unknown. The theoretical upper bounds of the objective function in two formula-
tions are deduced in this article. And the upper bound is equal to the global
optimum when the stiffness of the spring is small.

In this article, the scheme composed of two steps is proposed to avoid most of
the local optimum and find the solution next to the global optimum in topology
optimization of compliant mechanisms. The scheme composed of two steps is
based on the following discoveries. The theoretical upper bound of the objective
function exists and is equal to the global optimum when the stiffness of the spring is
very small. And in this case, topology optimization of compliant mechanisms is a
process to find a rigid-body mechanism with a certain geometrical advantage. And
the geometrical advantage is depended on the boundary condition.

The paper is organized as follows. Section 2 discusses the theoretical upper
bounds of the objective function. Section 3 discusses the essence of topology
optimization of compliant mechanisms in some cases. Section 4 introduces the
scheme composed of two steps to avoid most of the local optimum. Section 5 is the
discussion and conclusion.
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2 The Theoretical Upper Bound of the Objective Function

The theoretical upper bound of the objective function in the output displacement
formulation is deduced here. An input spring is introduced to model the actuator’s
stiffness. The mathematical model is given as

max
0� x� 1

: Dout

s:t: : Fin � KU ¼ 0
VðxÞ�V0

ð1Þ

where Dout is the displacement of the output node. Fin is the force vector applied on
the input node. U is the displacement vector. VðxÞ is the volume factor. K is the
stiffness matrix and is given by

K ¼ KS þKin þKout ð2Þ

where KS is the sum of stiffness matrix of all continuum elements. K in is the
stiffness matrix of input spring. Kout is the stiffness matrix of output spring.

The norm of the input force vector Fink k can be divided into two parts and can
be given as

Fink k ¼ Fink þFins ð3Þ

where Fink is applied to the input spring and is given as

Fink ¼ KinDin ð4Þ

where Kin is the stiffness of input spring. Din is the displacement of the input node.
Fins is applied to the compliant mechanisms. Compliant mechanisms store the
energy when they are deformed. Thus, the input energy is bigger than the output
energy.

FinsDin �FoutDout ð5Þ

g is introduced as the energy transport efficiency and is given by

g ¼ FoutDout

FinsDin
ð6Þ

r is defined as the geometrical advantage and is given by

r ¼ Dout

Din
ð7Þ
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Then, the objective function can be deduced by a combination of Eq. 1–7

Dout ¼ Fin

Kin

r
þ Koutr

g

ð8Þ

when

r ¼
ffiffiffiffiffiffiffiffiffi
gKin

Kout

r
ð9Þ

The objective function is maximized. If the Young’s modulus of the material is
large while the stiffness of input and output spring is small, the compliant mech-
anism is close to the rigid-body mechanism and the energy transport efficiency g is
close to 1. The objective function reaches the theoretical upper bound and is given
as

Dout ¼ Fin

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KinKout

p ð10Þ

The theoretical upper bound of the objective function in the output displacement
formulation is deduced. In this case, the topology optimization of compliant
mechanisms is a process to find a rigid-body mechanism with a certain geometrical
advantage. And the geometrical advantage is depended on the stiffness of input
spring and output spring as given in Eq. 9.

If there is no relationship between the energy transport efficiency and the geo-
metrical advantage, then the objective function is maximized when the energy
transport efficiency is equal to 1. This deduction is corresponded to the theory in
other researches [14, 15].

In the MA formulation, constrain on the input displacement is applied. The
mathematical model is given as

max
0� x� 1

: MAðxÞ ¼ Foutk k
Fink k ¼ KoutDout

Fink k
s:t: : Fin � KU ¼ 0

VðxÞ�V0

Din �Dmax

ð11Þ

where Dmax is the upper bound of the input displacement. K is the stiffness matrix
and is given by

K ¼ KS þKout ð12Þ
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the output displacement can be deduced as

Dout ¼ min
gFin

rKout
; rDmax

� �
ð13Þ

and the objective function is given by

MA ¼ min
g
r
;
Kout

Fin
rDmax

� �
ð14Þ

If g � 1, MA will reach the maximum value when the geometrical advantage

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fin

DmaxKout

r
ð15Þ

The maximum value, which is the theoretical upper bound of the objective
function, is given by

MA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DmaxKout

Fin

s
ð16Þ

The theoretical upper bound of the objective function in the MA formulation is
deduced above. In this case, the topology optimization of compliant mechanisms is
a process to find a rigid-body mechanism with a certain geometrical advantage. And
the geometrical advantage is depended on Eq. (15).

3 The Essence of Topology Optimization of Compliant
Mechanisms

When the Young’s modulus of the material is large and the stiffness of input and
output spring is small, topology optimization of compliant mechanisms is a process
to find a rigid-body mechanism with a certain geometrical advantage. And the
geometrical advantage is depended on the boundary condition.

A numerical example is illustrated. It is an inverter design problem. The
boundary condition is showed as Fig. 1. Term E is the Young’s modulus of the
material.l is the Poisson ratio. t is the thickness and V0 is the volume factor.

The design domain is discretized. The 105 line MATLAB code [4] is used to
solve this problem. And the result of this problem is showed in Fig. 2.
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The objective function of the result is 0.04996 mm. And the result is in
accordance with Eq. (10) because

Dout ¼ Fin

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KinKout

p ¼ 0:05mm ð17Þ

A check of the geometrical advantage r in this problem is done for further
validation. The geometrical advantage r should be equal to 1 when the objective
function is maximized in this problem according to Eq. (9). A rigid-body mecha-
nism is extracted from Fig. 2 and is showed in Fig. 3.

The geometrical advantage r from the kinematic analysis is given by

r ¼
_Dout

_Din

¼ 0:9804 � 1 ð18Þ

The result is nearly the same as that in Eq. (9).

Fig. 1 The boundary condition of the inverter design problem

Fig. 2 The result of the
inverter design problem
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This numerical example indicates that in some cases the essence of topology
optimization of compliant mechanisms is a process to find a rigid-body mechanism
with a certain geometrical advantage. And the geometrical advantage is depended
on the boundary condition. This phenomenon occurs when the Young’s modulus of
the material is large and the stiffness of input and output spring is small.

4 The Scheme Composed of Two Steps to Avoid Most
of the Local Optimum

Now that the upper bound of the objective function is deduced, evaluating the
problem of the local optimum becomes an easier task. A method is proposed to find
the solution next to the global optimum in topology optimization of compliant
mechanisms.

This scheme is composed of two steps. The first step is to find a rigid-body
mechanism with a certain geometrical advantage r. The geometrical advantage is
given by Eqs. (9) or (15). In order to find the rigid-body mechanisms by topology
optimization, the Young’s modulus is magnified and the stiffness of output spring is
reduced. The second step is topology optimization of compliant mechanisms. The
Young’s modulus and the stiffness of output spring the same as the original
problem, but the initial guess is the result of the first step instead of the uniform
density. The flow chart is showed in Fig. 4.

An example is used for illustration. The boundary condition of the inverter
design problem is showed in Fig. 5. The objective function is the output dis-
placement. And the result of the 105 line MATLB code is showed in Fig. 6. This
result is used for comparison.

When the proposed scheme is used, the first step is to find a rigid-body mech-
anism. The best geometrical advantage is equal to 20 in this problem according to
Eq. (9). The Young’s modulus is magnified 1000 time and the stiffness of the

Fig. 3 Kinematic sketch of the rigid-body mechanism(upper half)
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output spring is set to be 625 N/m. Then, the program starts until the geometrical
advantage reaches 20 as showed in Fig. 7a. The rough rigid-body mechanism
design problem is finished. In order to get a reasonable result, the stiffness of the

Fig. 4 The flow chart of the
scheme composed of two
steps
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output spring is then set to be the same as the original problem. Then, a fine
rigid-body mechanism whose geometrical advantage is next to 20 is got. The
rigid-body mechanisms is showed in Fig. 7b. That is the first step. The second step
is to find a compliant mechanism from the rigid-body mechanism. The Young’s
modulus is set to be 2.09e11 Pa. The final result is showed in Fig. 7c.

Comparison between the traditional method starts from the uniform guess and
the proposed method in this article is showed in Table 1 and discussed below.

The traditional 105 line MATLAB code finds the result that the output dis-
placement is 0.408 mm. The proposed method finds the result that the output
displacement is 0.832 mm. There are great differences between these two results
and both of them are local optimum. The upper bound of the output displacement is

Fig. 5 The boundary condition of the inverter design problem

Fig. 6 The result of the 105
line MATLB code, the output
displacement is 0.408 mm
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1 mm in this problem. However, it is not the result of global optimum because the
soft material always stores energy and makes the energy transport efficiency g lower
than 1.

5 Discussion and Conclusion

In output displacement formulation, the objective function is a function of two
variable in Eq. (8). They are energy transport efficiency and the geometrical
advantage. If the energy transport efficiency is close to 1, the output displacement is
depended on the geometrical advantage. In this case, topology optimization of
compliant mechanisms is a process to find a rigid-body mechanism with a certain
geometrical advantage. And the objective function reaches the upper bound. Similar
phenomenon occurs in MA formulation. The existence of the output spring and
input spring is important. The problem will become ill-condition if one of their
stiffness is zero. Because there won’t be a certain geometrical advantage which
maximizes the output displacement as given in Eq. (9).

In future research, the analysis of the other objective function, e.g. efficiency
formulation [16], Characteristic Stiffness (CS) Formulation [17] and Artificial I/O
Spring Formulation [18], should be done. The quantity relation between the stiff-
ness of spring and the Young’s modulus when a rigid body mechanism is design
should be pointed out.

Fig. 7 a The geometrical advantage is 19.19. b The reasonable rigid-body mechanism. The
objective function is equal to 1.00 mm and is next to the upper bound 1 mm in Eq. (10). (c) The
result of the topology optimization of inverter, the output displacement is 0.832 mm. And the
geometrical advantage is 12.8864

Table 1 Comparison between the traditional method and the scheme composed of two steps

Objective function The traditional
method

Scheme in this
article

Upper
bound

Output displacement
(mm)

0.408 0.832 1
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In conclusion, three discoveries are discussed in this article. First, the theoretical
upper bounds of the objective function in two formulations are deduced. Second, it
is pointed out that in some cases, topology optimization of compliant mechanisms
is a process to find a rigid-body mechanism with a certain geometrical advantage.
And the geometrical advantage is depended on the boundary condition. Third,
based on the above discoveries, a method is proposed to find the solution next to the
global optimum in topology optimization of compliant mechanisms. The numerical
example indicates that this method is useful.
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