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Abstract Concentric-tube robots, which consist of several pre-curved tubes, can
achieve dexterous motion through axial rotation and translation of each component
tube. Aiming at equilibrium conformation modeling of externally loaded
concentric-tube robots, an equivalent conservative system is proposed to translate
the force balance problem into the minimum potential energy configuration prob-
lem of the conservative system. Then, the optimal control theory is used to derive
the differential equations for the equilibrium conformation. Finally, this model is
visually evaluated through the simulation of a loaded two-tube robot, and the effects
of the external loads on the vital parameters of the equilibrium conformation are
analyzed.

Keywords Concentric-tube continuum robots � Equilibrium conformation �
Minimum potential energy principle � Kirchhoff rod

1 Introduction

Concentric-tube robots, as a special type of continuum robots, are well-suited for
minimally invasive surgeries [1–3]. Normally, a concentric-tube robot consists of
several concentric Nitinol tubes with different curvatures. Through axial rotation
and translation of each tube, the shape of the tubes’ common backbone can be
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altered, and consequently the pose of the robot’s tip can vary within a certain range.
Owing to the small diameter and simple structure, the concentric-tube robot can
achieve dexterous motion under the narrow environment. Recent studies have
already shown several potential clinic applications for these robots [4–7].

When the concentric-tube robot is used as a medical robot, a conventional task is
to interact with the surrounding tissue. As a compliant mechanism, the robot will
undergo a deformation during the interaction. Therefore, it is significant to study the
precise equilibrium conformation of the robot subject to external loads. The general
method adopted in prior researches is to analyze each tube with Newtonian
mechanics and Kirchhoff rod theory, which is referred to as the geometrically exact
model [8]. The processes of this method are as follows. First, the shape of each tube
is described utilizing Kirchhoff rod theory; based on the linear constitutive equa-
tions, the relationship between moment and local curvature vector at arbitrary cross
section for each tube need to be derived. Then, the force and moment balance
equations for each tube are presented, and it is noteworthy that the unknown
deformed shape of the tubes should be eliminated through the derivation of these
equations. Furthermore, the equations about each tube’s spin angle should also be
deduced. Finally, by solving these equations, the equilibrium conformation can be
obtained. The geometrically exact model is widely used to analyze both the
concentric-tube robot and the cable-driven robot. Trivedi et al. [8] utilized geo-
metrically exact Kirchhoff rod theory to model the shape of cable-driven robot
under loads, and achieved high accuracy. Xu et al. [9] used four flexible rods
instead of cables to build a small continuum robot, and they also used the geo-
metrically exact model to derive the equilibrium conformation of the robot and
furthermore achieve intrinsic force sensing. The models of these two cases are
convenient to establish, since their components are under internal and external loads
at discrete positions. However, the tubes in the concentric-tube robot are interacted
continuously along the arc-length; therefore, the derivation of the geometrically
exact model for the concentric-tube robot is more complicated [10, 11].

In order to avoid the complex interaction analysis of the tubes, this paper pro-
poses an equivalent method which transform the force balance problem into the
equilibrium problem of the conservative system. Then, applying the minimum
potential energy principle of conservative system and the optimal control theory,
the differential equations which describe the equilibrium conformation can be
acquired. For clarity in deriving the equations, this paper focus on the shape
modeling of the three-tube robot subject to concentrated forces at its tip, and the
proposed method can also be used in the robot with arbitrary number of tubes
subject to distributed forces and torques.
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2 Description of the Concentric-Tube Robot

A concentric-tube robot usually comprises two or three Nitinol tubes, and achieves
3–6 degrees of freedom. These elastic tubes are assembled concentrically. Through
axial rotation and translation of each component tube, the shape of the tubes’
common backbone can be altered, and consequently the position and pose of the
robot’s tip can vary in a certain range. Nitinol is widely used in these robots due to
its outstanding elasticity [12]. Figure 1 shows a concentric-tube robot consisting of
three tubes.

3 Equivalent Conservative System for Concentric-Tube
Robots Subject to External Forces

The widely used geometrically exact model always involves the complex force
analysis of tubes. To simplify the model, this paper propose an alternative con-
servative system: a robot with an object hanging at its tip, as shown in Fig. 2; the
weight of the object is the value of the external force F, and the direction of gravity
is the direction of the external force. Since the weights of the tubes are neglected,

Outer tube Middle tube

Inner tube

Fig. 1 A concentric-tube robot consisting of three tubes

Global frame

The base of 
each tube

F
F

Zero potential 
energy plane

Gravity

z

y

(a) (b)

Fig. 2 The equivalent conservative system for the concentric-tube robot subject to an external
force. The external force is replaced with an object hanging at the robot’s tip
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the potential energy of this alternative system only includes the elastic energy of
each tube and the gravitational potential energy of the object. Note that the zero
potential energy plane passes through the origin of the global frame and it is
perpendicular to the external force F.

4 Kinematic Model of Concentric-Tube Robots

4.1 Modeling Assumptions

Since all component tubes in the robot are long and thin, the basic assumptions of
the Kirchhoff-rod theory are adopted in this paper: (1) the extension and transverse
shear deformation of the tubes are neglected; (2) the linear constitutive equations
for both bending and torsion are adopted.

In addition, for clarity in deriving the fundamental equations, the weights of
tubes and friction between them are neglected. The tubes are considered to be
strictly concentric. Experiments show that these aspects have little influence on the
equilibrium conformation model [5, 10], and most of the prior models adopt these
assumptions.

4.2 Geometric Descriptions of a Curving Tube

The undeformed curving backbone of a tube can be described by an arc-length
parameterized curve r�(s). And along this curve, the well-known Bishop frames [5]
can be defined. By the convention of the Bishop frames, the z-axes are always in the
instantaneous tangential direction of the curve, and the frames will not rotate around
their z-axis along the curve. Therefore the Bishop frame is also known as the
no-torsion frame. The Bishop frames {F*(s)} for a undeformed tube can be
described in the global frame {W} with a series of transformations g�(s), which
consist of position vectors r�(s) and rotation matrices R�(s) as

g�ðsÞ¼ R�ðsÞ r� sð Þ
0T 1

� �
ð1Þ

If the arc-length parameter s is replaced with time variable t, this can be con-
sidered as the homogeneous transformation description of rigid motion. Then
drawing on the rigid motion theory [13], a twist can be defined as

n�ðsÞ¼ v�TðsÞ x�TðsÞ� �T¼ g��1ðsÞ _g�ðsÞ� �_ ð2Þ
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where v�(s) = e3 = [0 0 1]T in this case, and x�(s), implying the curvature of the rod
(similar to the angular velocity of a rotation), is defined as the curvature vector in
the local frame. In this paper, the dot over the variable represents the derivative of
the variable with respect to arc-length s. The operator v represents the transfor-
mation R4�4 (or R3�3) to R6 (or R3), given by the following equation

0 �a3 a2 b1
a3 0 �a1 b2
�a2 a1 0 b3
0 0 0 0

0
BB@

1
CCA

_

¼ a1 a2 a3 b1 b3 b3ð ÞT ð3Þ

Also, the inverse operation is denoted by ^. The detailed discussion on the
related notations can be found in [13]. The relationship between x�(s) and R�(s) is
as follows:

x� sð Þ¼ R�TðsÞ _R�ðsÞ� �_ ð4Þ

The deformation of a pre-curved tube from its initial state to a new state cor-
responds to a variation of frames from {F*(s)} to {F(s)}, also corresponds to a
variation from g*(s) to g(s), and a variation from n*(s) to n(s) (denoted by Dn(s)).
The new frames {F(s)} do not necessarily abide by the convention of the Bishop
frames.

4.3 Kinematic Equations of Concentric-Tube Robots

The inputs of the concentric-tube robot are the translation and rotation of each
component tube at the corresponding base. Let s = ai and hi(ai) denote the trans-
lation and rotation inputs of the ith tube, also let s = bi denotes the arc-length
location of the ith tube’s tip, where i identifies the tubes from outer to inner. The
shape of the concentric-tube robot can also be described by the Bishop frames {B
(s)} along with other variables. The Bishop frame at the arc-length location s = 0, is
set as the global frame {W}. According to Sect. 3.2, {B(s)} can also be described in
the global frame {W} with position vectors r(s) and rotation matrices R(s), which
satisfy

_rðsÞ¼RðsÞe3 ð5Þ

_RðsÞ ¼ RðsÞ xx xy 0ð ÞT
� 	^

ð6Þ

where (xx, xy, 0)
T is the curvature vector of {B(s)}. Since the tubes are assembled

concentrically, the x-y components of each tube’s curvature vector in the equilib-
rium conformation are equivalent respectively if they are expressed in a common
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frame. When they are expressed in the robot’s Bishop frames, they all equals (xx,
xy)

T, which is denoted by xxy(s). The frames {Fi(s)} for each tube differ from the
robot’s Bishop frames {B(s)} by a rotation around the local z-axes; that is

RiðsÞ ¼ RðsÞRz hiðsÞð Þ ¼ R
cos hiðsÞ sin hiðsÞ 0
sin hiðsÞ cos hiðsÞ 0

0 0 1

2
4

3
5 ð7Þ

where R(s) and Ri(s) are rotation matrices of {B(s)} and {Fi(s)} with respect to
{W}, hi(s) is the rotation angle from x-axes of {B(s)} to x-axes of {Fi(s)}, and hi(ai)
is the aforementioned input angle of the ith tube at its base. Figure 3 shows the
relationship of {Fi

*(s)}, {Fi(s)} and {B(s)}.
Based on the above analysis, the x-y components of the ith tube’s curvature

vector can be expressed as

xi;xyðsÞ ¼ Rz hiðsÞð ÞjTxyxxyðsÞ ð8Þ

where

Rz hiðsÞð Þjxy¼
cos hiðsÞ � sin hiðsÞ
sin hiðsÞ cos hiðsÞ


 �
ð9Þ

xi;xyðsÞ ¼ xi;xðsÞ xi;yðsÞð ÞT2 R2 ð10Þ

Besides, according to Eqs. (4) and (7), the third component of the ith tube’s
curvature vector (xi,z(s)) is equal to _hiðsÞ. Define h(s) = (h1, h2, h3)

T, and
xz(s) = (x1,z, x2,z, x3,z)

T, then we have

_hðsÞ¼xzðsÞ ð11Þ

The model of the concentric-tube robot should also include the linear constitu-
tive relationship of Nitinol, which can be described in potential energy form as

EiðsÞ ¼
Z

1
2

xi � x�
i

� �TKiðsÞ xi � x�
i

� �
ds ð12Þ
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Fig. 3 The tubes’ initial
states and equilibrium states.
In the equilibrium
conformation, both tubes are
bended and twisted
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where xi
* and xi are the curvature vectors of the initial shape and the deformed

shape respectively, and stiffness matrix Ki(s) can be expressed as

KiðsÞ¼
Ki;xyðsÞ 0 0

0 Ki;xyðsÞ 0
0 0 Ki;zðsÞ

2
4

3
5 ð13Þ

and Ki,xy(s) is the bending stiffness of the ith tube in its x and y directions, and Ki,

z(s) is the torsional stiffness of the ith tube.
Normally, the lengths of the tubes in a robot are not equal. The outer tube is the

shortest while the inner tube is the longest. For convenience, virtual tubes are added
to the tips and the bases of the outer and the middle tubes, so that the tubes are fully
overlapped over [a3, b3]. The virtual tubes at the bases are designated with infinite
bending and torsional rigidity, and the virtual tubes at the tips are designated with
zero bending and torsional rigidity. In this way, this fully overlapped model is
equivalent to the original model.

5 Equilibrium Conformation of Concentric-Tube Robots

The static equilibrium configuration of a conservative system should conform to the
minimum potential energy principle, which states that the total potential energy
function is stationary at the static equilibrium configuration [11]. Therefore, the first
variation of the potential energy function at the static equilibrium configuration
should be zero. This problem can be solved utilizing the optimal control theory.
According to the aforementioned alternative system, the total potential energy
function is as follows:

J ¼ �FTrðb3Þþ
Zb3
a3

X3
i¼1

1
2

xi � x�
i

� �TKiðsÞ xi � x�
i

� �
ds ð14Þ

The first part of the function J represents the gravitational potential energy of the
object, and the integral term represents the bending and torsional energy along the
arc-length of all tubes. Substituting (8) into (14) can eliminate xi in the potential
energy, and yields

J ¼ �FTrðb3Þþ
Zb3
a3

1
2

X3
i¼1

Ki;z
_hi � x�

i;z

� 	2
þKi;xy Rz hið ÞjTxyxxy � x�

i;xy

��� ���2
 �
ds

ð15Þ
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where symbol |�| denotes the module of the vector, xi,xy
* 2 R2 is the x-y components

of xi
*, xi,z

* 2 R is the third component of xi
*. For convenience, the term of grav-

itational potential energy is denoted by u(r), and the integrand term is denoted by
Lagrangian function L.

The function J can be interpreted as the cost function of a control system with
arc-length parameter s interpreted as time parameter t. Then we have its state vector
and control vector as follows

xðsÞ¼ rðsÞ;RðsÞ; hðsÞð Þ 2 R3 � R3�3 � R3 ð16Þ

uðsÞ¼ xxyðsÞ;xzðsÞ
� � 2 R2 � R3 ð17Þ

and its state equations as (5), (6) and (11).
Therefore, drawing on the optimal control theory [14], the Hamiltonian function

can be defined as:

Hðx; u; k; sÞ ¼ 1
2

Xn
i¼1

Ki;z xi;z � x�
i;z

� 	2
 �

þ 1
2

Xn
i¼1

Ki;xy Rz hið Þ��Txyxxy � x�
i;xy

��� ���2
 �
þ kTr Rez þ tr kTRR

xx

xy

0

2
64

3
75
^0

B@
1
CAþ kThxz

ð18Þ

where k ¼ ðkTr ; kTR; kTh ÞT 2 R3 � R3�3 � R3 is the Lagrange multiplier. The com-
ponent multipliers kr

T, kR
T, kh

T can be considered as the generalized forces on the
generalized coordinates r, R and h respectively.

Obviously, this optimal control problem has the Bolza-type cost function, and it
is under no terminal constraints. According to the fundamental optimal control
theory [14], the first order necessary conditions for stationarity along entire tra-
jectory include the canonical equations, the extreme conditions and the boundary
conditions, as follows:

_kr ¼ � @H
@r ¼ 0 0 0ð Þ; _kR ¼ � @H

@R ¼ �ezkTr �
xx

xy

0

2
4

3
5
^

kTR;

_kh ¼ � @H
@h ¼

K1;xy x
�
1;xy

T Rd;1xxy

K2;xyx
�
2;xy

T Rd;2xxy

K3;xyx
�
3;xy

T Rd;3x
T
xy

0
B@

1
CA

T

8>>>>>>><
>>>>>>>:

ð19Þ
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@H
@xxy

¼Pn
i¼1

Ki;xy xxy � Rz hið Þx�
i;xy

� 	T
þ kTRR

� �
23� kTRR
� �

32
� kTRR
� �

13 þ kTRR
� �

31

 !T

¼ 0;

@H
@xz

¼
K1;z x1;z � x�

1;z

� 	
K2;z x2;z � x�

2;z

� 	
K3;z x3;z � x�

3;z

� 	
0
BBB@

1
CCCA

T

þ kTh ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

rða3Þ ¼ 0 0 a3ð ÞT ; Rða3Þ ¼ I; hða3Þ ¼ hbase;
krðb3Þ ¼ @u

@rðb3Þ ¼ �F; kRðb3Þ ¼ @u
@Rðb3Þ ¼ 0; khðb3Þ ¼ @u

@hðb3Þ ¼ 0

(
ð21Þ

where

Rd;i¼ � sin hi cos hi
� cos hi � sin hi

� �
ð22Þ

(A)ij denotes the ith row and jth Column element of matrix A, I denotes the
3 � 3 identical matrix, hbase = {h1(a3), h2(a3), h3(a3)}

T is a column vector consists
of the rotation angles of all tubes at the base.

In the above discussion, the admissible trajectories for the optimal control
problem are assumed to be continuous and to have continuous first derivatives; that
is, the trajectories are smooth. However, for concentric-tube robots, the trajectories
are usually discontinuous at several discrete points owing to the following facts:
(1) the precurvature of each tube is usually piecewise-constant along the full
arc-length; e.g., a typical tube comprising a straight portion and a constant curvature
portion; (2) owing to the aforementioned virtual tubes, the bending stiffness and
torsional stiffness are also piecewise-constant along the full arc-length. These two
kinds of points are shown in Fig. 4. They are both referred to as corner points.

Therefore, the admissible trajectories should satisfy the additional necessary
conditions, as follows [14]:

Initial state of outer tube

Initial state of inner tube

Corner points
The basis of tubes

Fig. 4 The corner points in a
robot. The two corner points
in the middle are emerged
because of the pre-curvature
mutation of the tubes. The
first and the last corner points
are emerged since the tubes
are not fully overlapped
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@L
@ _x

��
s�j
¼ @L

@ _x

��
sþj

L� _xT @L
@ _x

� ���
s�j
¼ L� _xT @L

@ _x

� ���
sþj

8<
: ð23Þ

where j is the number of the corner points, sj is the arc-length location of corner
point j. They are determined by the inputs of each tube.

In conclusion, the equilibrium conformation model of the robot comprises the
differential Eqs. (19)–(20), boundary conditions (21) and corner point conditions
(23) with respect to shape parameter set {r(s), R(s), h(s)}. Normally, this various
point boundary value problem (BVP) cannot be solved analytically. The common
numerical methods for it include shooting method and difference method [15]. For a
number of inputs, several corresponding configurations may emerge [16, 17]. The
robot will take the configuration which is near its last configuration. Therefore we
can take the parameters of its last configuration as the initial guess for the shooting
processes. In addition, the stability of the configurations can be assessed utilizing
methods in Ref. [17] in order to avoid snapping.

6 Numerical Examples

In this section, an intuitional two-tube robot is selected to demonstrate the effects of
the external forces on the robot. Each tube’s initial backbone shape is a section of a
circle, and they are fully overlapped during the simulation. The processes of solving
differential equations are implemented in Matlab using shooting method. It is
assumed that both tubes not only have the same initial backbone shape and
arc-length, but also have the same bending stiffness (Ki,xy) and torsional stiffness
(Ki,z). The values of related parameters are listed in Table 1.

Figure 5 shows the equilibrium conformation under different loads when the
outer and inner tubes were rotated to angles of −30° and 30° respectively. The
unloaded equilibrium conformation lies on yz-plane, which agrees with the instinct.
When the external force is applied to the robot’s tip in y-direction, the updated
equilibrium conformation still lies on yz-plane, as Fig. 5 shows. This is similar to
the bending of a single cantilevered rod. Under the tip force of 5 N, the robot’s tip
is deflected from its initial position by about 30 mm.

Table 1 Parameters of the
robot

Parameters Values

Total arc-length (mm) 84

Pre-curvature (mm−1) 1/60

Curvature vector of the tubes’ initial shape (1/60, 0, 0)

Bending stiffness (Nm2) 0.0202

Torsional stiffness (Nm2) 0.0156
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The rotation angles h1(s) and h2(s) of both tubes, which cannot be observed from
the conformation figure, are also changed under loads. Figure 6 shows how the
rotation angles vary along the whole arc-length in the loaded robot. At the common
base of both tubes, the rotation angles of them are input angles. From the base to the
tip, the outer tube twist about the local −z-axes, while the inner tube twist about the
local z-axes; therefore, the angle between {F1(s)} and {F2(s)} is decreasing. Also,
the tip force in the +y-direction, which tend to “straighten” the robot, will slowdown
this trend, while the tip force in the −y-direction will accelerate this trend.

If this robot is under +x-direction tip forces, the rotation angles of both tubes
along the whole arc-length are shown in Fig. 7. The rotation angles of both tubes
are no longer symmetrical with respect to the line h(s) = 0. The load accelerates the
increasing trend of the inner tube’s rotation angle, and slowdowns even reverses the
decreasing trend of the outer tube’s rotation angle. Furthermore, In contrast with y-

-5 N
5 N 10 N

y

z

Unloaded equilibrium 
conformation 

The base

x

Initial shape of 
outer tube

Global frame {W} 

Initial shape of 
inner tube

x y

z

50

0
-50

0
50 50

0

-50

100

Fig. 5 The equilibrium
conformation of the robot
subject to different tip loads
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0 20 40 60 80 100

Fig. 6 The rotation angles of
both tubes along the whole
arc-length for the robot under
y-direction tip forces
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direction tip forces, the effects of x-direction tip forces on the rotation angles are
much larger, since the torque generated by x-direction tip forces are much larger.

7 Conclusions

This paper proposes an equivalent conservative system for the concentric-tube robot
under loads, and utilizes the minimum potential energy principle and the optimal
control theory to derive the equations of equilibrium conformation. Through
numerical simulation, the effects of external forces on the robot’s tip are analyzed,
and the results show that the externally loaded concentric-tube robot will bend like
a single cantilevered rod. The tip forces which tend to “straighten” the robot (i.e. in
the +y-direction) will slightly exaggerate the angle between the tubes’ local frames
at the tip, while the forces in the x-direction will affect the rotation angles of both
tubes significantly. This model will facilitate the motion planning of the
concentric-tube robot while it is performing an interactive task.
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