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Foreword

I am pleased to write the foreword for this book, edited by Dr. Anita Singh, Dr. Sheo 
Mohan Prasad, and Dr. Rajeev Pratap Singh. They have focused this book on an 
extremely important area of active research – the effects of environmental xenobiot-
ics on plant function. Plants play an important role in the functioning of all terres-
trial and aquatic ecosystems, as well as providing a critical food source for human 
populations. Unfortunately, human activity can result in soil, air, and water con-
tamination by compounds including metals, radionuclides, pesticides, and other 
trace organic compounds, as well as newly identified contaminants such as engi-
neered nanoparticles. These contaminants are introduced to the environment through 
industrial and municipal waste discharges, agricultural activities, and mining prac-
tices. The influence of these environmental contaminants on plants can include 
uptake of the contaminants into the plant, including the edible portion of food crops, 
as well as effects on plant physiological and biochemical processes. This book high-
lights important emerging research focusing on the responses of plants to these 
xenobiotic inputs, including chapters focusing on mechanisms for plant uptake and 
accumulation of xenobiotics, regulation and degradation of xenobiotics in planta, 
and plant toxicity to xenobiotics. Additionally, this book addresses the influence of 
critical emerging practices such as the use of municipal or agricultural wastewater 
as an irrigation water source. The use of this practice will only increase as we con-
tinue to face water shortages; however, the effect of using wastewater as an irriga-
tion source water requires that we fully understand the environmental and human 
health impacts of this practice. Finally, the book presents information on alternative 
biodegradable thermoplastics, which could reduce the use of traditional plastics 
such as polystyrene and polyethylene terephthalate. I believe this book makes an 
important contribution to our understanding of the impacts of environmental con-
taminants on plants, and its focus on mechanistic studies and risk assessment will 
be of interest to researchers as well as policy makers.

Department of Civil Engineering, Shannon L. Bartelt-Hunt
University of Nebraska-Lincoln, 
Lincoln, NE, USA
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Preface

Environmental pollution is one of the major problems due to fast pace of industrial-
ization and uncontrolled exploitation of natural resources. It leads to the enhanced 
exposure of ecosystems to the substances called xenobiotics. The term xenobiotic is 
derived from the Greek words ξένoς (xenos) = foreigner, stranger and βίoς (bios, 
vios) = life. So, xenobiotics are any chemical or other substance that is not normally 
found in the ecosystems or that is present at the concentrations harmful to all bio-
logical organisms. They include organic contaminants such as pesticides, solvents, 
and petroleum products and inorganic contaminants such as heavy metals, non- 
metals, metalloids, and simple soluble salts. They affect each and every component 
of ecosystem, and the plants which are the keystone of this system also get affected 
by the presence of xenobiotics in the environment. In this volume different kinds of 
xenobiotics are discussed in detail, and their effect and how the plants cope with 
such situation are explained by different contributions through the following 
chapters.

Chapter 1. Environmental Xenobiotics and Its Effects on Natural Ecosystem: 
Environmental xenobiotic is a global issue due to several activities, and one of them 
is the release of pharmaceutical residues in surface water. Recently, the demand for 
pharmaceuticals versus population growth has placed the public at risk. In addition, 
the making of unlawful drugs has led to the discharge of harmful carcinogens into 
the water system. The release of these harmful pollutants results in numerous short- 
and long-term effects to the natural ecosystem. This chapter takes a critical look at 
the various forms of environmental xenobiotics present in our ecosystem. In subse-
quent subheadings, their classification, sources, and routes of exposure to man, ani-
mals, and plants have been discussed. Lastly environment-friendly approaches to 
prevention had been discussed in a broader view and recommendations proffered.

Chapter 2. Heavy Metal and Their Regulation in Plant System: An Overview: 
Environmental pollution due to heavy metals is a threatening issue in the present 
scenario. In the past few decades, rapid and unplanned industrialization has caused 
the contamination of land and water. Plants exposed to such disturbed environment 
experience several physiological and biochemical alterations. However, some plants 
have acclimatized to the changed situation and developed defense mechanism like 
immobilization, compartmentalization, etc., to withstand the stressed conditions. 
This chapter gives an insight to the various physiological and biochemical alterations 
and mechanisms evolved by these plants growing in contaminated environment.

http://dx.doi.org/10.1007/978-981-10-2860-1_1
http://dx.doi.org/10.1007/978-981-10-2860-1_2
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Chapter 3. Regulation of Xenobiotics in Higher Plants: Signalling and 
Detoxification: Xenobiotics are the chemical compounds that are not internally pro-
duced in plants, and their exposure is continuously increasing in plants, due to 
enhanced industrial pollutants. It can affect the growth, physiology, and other meta-
bolic changes in every organism alone and/or in combination, which varies from 
species to species. Plants already have a versatile detoxification system to combat 
these changes (phytotoxicity) arising from a wide variety of natural and synthetic 
chemicals-xenobiotics present in the environment. One of the important detoxifica-
tion mechanisms is chemical modification of xenobiotics by the covalent linkage to 
endogenous glutathione. The reactions involved in chemical modification have two 
phases: phase I (activation) reactions, which usually involve hydrolysis or oxida-
tion, and phase II (conjugation) reactions, which are involved in synthesis. The 
resulting glutathione conjugates are exported from cytosol to vacuole via ATP- 
dependent tonoplast transporter. In addition to this, agrochemicals like safeners are 
also known to protect the crop plants from herbicide damage without reducing the 
activity in target weed species by elevating the expression of xenobiotic detoxifying 
enzymes, such as glutathione-S-transferases (GSTs). So, the present chapter gives 
valuable information on the different fates of xenobiotics as well as provides better 
understanding in the field of xenobiotic action in plants.

Chapter 4. Metabolic Responses of Pesticides in Plants and Their Ameliorative 
Processes: This chapter is of great relevance to students, researchers, scientists, and 
even the general public (lacking any scientific background) at large. Large anthro-
pogenic inputs of pesticides for enhancing agricultural productivity and also for 
amelioration of vector-borne diseases have led to serious health implications to man 
and his environment. This is a comprehensive chapter which provides collective 
information of different types of pesticides, their sources, disadvantages, and toxic-
ity symptoms in target as well as non-target organisms. It also deals with uptake, 
transport, and metabolism of pesticides in plants. Simultaneously it highlights the 
detoxification mechanisms adopted by plants to protect themselves from the adverse 
effects of pesticides. Another important aspect of this chapter is its holistic approach 
in hinting towards practices which can aid us in designing efficient and cheap veg-
etative treatment systems for remediation of contaminated soil and water.

Chapter 5. Assessment of Antioxidant Potential of  Plants in Response to Heavy 
Metals: This chapter encompasses the complete comprehensive coverage on heavy 
metal occurrence, translocation, and their toxicities in plants and also the different 
mechanisms of antioxidants acting on the plant during oxidative stress. Here the 
chapter incorporates the detailed discussion on the scavenging mechanism of vari-
ous antioxidants. The chapter further includes the information on traditional anti-
oxidant like enzymatic, non-enzymatic, and secondary metabolites, and it also 
focuses on the method of assessment of antioxidant potential in in vivo and in vitro 
condition. Further, a brief attempt has also been made to provide contemporary and 
relevant collections of different studies ongoing on the antioxidant potential of 
plant.

Chapter 6. Impact of Heavy Metals on Physiological Processes of Plants: With 
Special Reference to Photosynthetic System: The present chapter highlights the 
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effect of heavy metals on photosynthetic pigments, photosynthetic apparatus, and 
light and dark reactions. It helps us to understand in detail how exposure of plants 
to heavy metals led to generation of ROS and ROS-induced lipid peroxidation 
which destroy their cell membrane and their associated organelles. This chapter also 
highlights detail mechanism of the (i) impact of heavy metals on chlorophyll bio-
synthesis and also on various enzymes involved in chlorophyll biosynthesis and (ii) 
their effect on electron transport in light reactions and how they affect various 
enzymes in dark reactions.

Chapter 7. Impact, Metabolism, and Toxicity of Heavy Metals in Plants: Heavy 
metal contamination is a serious problem worldwide. These metals are the major 
inorganic contaminants of soil, and a considerable large area of land is contami-
nated with them due to anthropogenic activities. Contamination of agricultural soil 
by heavy metals has become a critical environmental concern due to their long-term 
persistent nature and potential harmful ecological effects. Therefore, it is important 
to study about the entry of these toxic metals in food chain. In this chapter we 
describe how far heavy metals enter and transport in plants, what are the different 
strategies of plants at different levels (from binding at cell wall to synthesis of some 
proteins to bind) to overcome toxic condition, and what are the heavy metal specific 
toxic effects on plants when exposed to metal-enriched environment.

Chapter 8. Heavy Metal Accumulation Potential and Tolerance in Tree and Grass 
Species: Identification of the role of higher plants in monitoring and in remediation 
of xenobiotics is important for polluted environments. Heavy metals are most wide-
spread and one of the most toxic constituents of our environment. For selection of 
trees and grasses for monitoring and remediation purposes, it is necessary to iden-
tify plants from diverse environment and classify them based on their tolerance. 
Thus plants with higher accumulation potential have special tolerance mechanisms 
that enable them to survive and accumulate metals in higher concentrations com-
pared to other plants. Considering these points, we have tried to identify tree and 
grass species based on their metal accumulation potential and tolerance so that aca-
demicians, researchers, plant breeders, urban planners, and environmental manag-
ers can utilize these findings to improve the understanding of the topic and may use 
the information for sustainable environmental management practices.

Chapter 9. Microbial-Mediated Management of Organic Xenobiotic Pollutants 
in Agricultural Lands: Exposure of plants to organic xenobiotic pollutants leads to 
several biochemical and molecular alterations producing serious variations in plant 
physiology resulting in deformed growth and development, ultimately hampering 
the productivity. As the concentration of these xenobiotics increases, their detri-
mental effects on plants are also pronounced. Soil microorganisms play crucial role 
in the management of the detrimental effects of such organic xenobiotic pollutants. 
They act as a barrier between the plant and the xenobiotic, and with their effective 
abilities to degrade the xenobiotic, they restrict the entry of these compounds in the 
plants and hence maintain plant growth and productivity. In this context the present 
chapter proves significant as it discusses the possible mechanisms for mitigation of 
the organic xenobiotic pollution load in the agricultural fields and opens up newer 
areas of research.
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Chapter 10. Metals from Mining and Metallurgical Industries and Their 
Toxicological Impacts on Plants: Mining and metallurgical industries have been of 
great importance in the economic development of a country. However, solid wastes 
generated from such industries are characterized by elevated levels of essential and 
non-essential metals which may pose toxic effects on plants growing in and around 
the dumping sites. Minimum to maximum concentrations of twenty predominantly 
occurring metals in solid wastes from mining and metallurgical industries have been 
illustrated in this chapter. Adverse effects of metals exceeding their phytotoxic 
thresholds on growth performance and physiological and biochemical parameters of 
crop and medicinal plants have been discussed. The study also emphasizes the 
impacts of metals on plant community structure in the vicinity of industrial areas. 
The chapter suggests some future prospects in plausible and better management 
options of industrial wastes including site restoration by rehabilitation and phytore-
mediation using native and medicinal plant species.

Chapter 11. The Risk Associated with the Xenobiotics Released Through 
Wastewater Reuse: This chapter addresses the problems arising due to repeated use 
of wastewater on living system. The application of wastewater releases xenobiotic 
compounds that include heavy metal, pharmaceutical, pesticides, personal care 
products, etc. Here in this chapter, the authors have provided an overview of risk 
assessment arising from entrance of xenobiotic in the environment and also given a 
brief description of regulatory bodies involved in managing the risk.

Chapter 12. Silver Nanoparticle in Agroecosystem: Applicability on Plant and 
Risk-Benefit Assessment: In the current era, food security, life sustainability, and 
climate change are the most emerging challenges for researchers. Applicability of 
nanotechnology represents a novel step in the development and improvements in 
agricultural sectors to cope with scarcity of increasing food demand. The agricul-
tural sectors can be seen to be clearly benefiting from nanotechnology. In particular, 
silver nanoparticles are reported to show a prime role in crop protection, antimicro-
bial applications, supplementation of required nutrients, and pesticide delivery in an 
optimized and controlled way. However, the negative effects due to the excessive 
use of these nanoparticles on biological life may also not be overlooked. This chap-
ter focuses on applicability of silver nanoparticles in agricultural sector and points 
out their risk value to clearly instruct the use of these nanoparticles in a regulated 
and managed way.

Chapter 13. The Significance of Plant-Associated Microbial Rhizosphere for the 
Degradation of Xenobiotic Compounds: Presently human populations are increas-
ing day by day causing pollution of various xenobiotic compounds in the environ-
ment to degrade the soil fertility and health. These xenobiotic compounds (heavy 
metals and hydrocarbons, pesticides, persistent organic pollutants, POPs), present 
in soils and waters, create many human and animal diseases (like immunosuppres-
sion, hormone disruption, reproductive abnormalities, and cancer). Degradation of 
xenobiotic pollutants by conventional approaches based on physicochemical meth-
ods is economically and technically challenging. Rhizo-remediation and microbial 
remediation techniques based on plant roots and their associated microbes are the 
most promising, efficient, cost-effective, environment-friendly, and sustainable 
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technology. A variety of chemicals like organic acids, amino acids, and phenolic 
compounds are secreted by such plants as root exudates. These compounds play a 
significant role in communication between plant root and microbes and also are 
helpful to stimulate the remediation and the efficiency of microbes against xenobi-
otic pollutants. This book chapter heightens the degradation of xenobiotic com-
pounds with the help of rhizosphere microbes that can be associated with plants to 
enhance the plant growth and yields as well as degrade the xenobiotic compound 
into elemental form that can be taken by the plant and microbes as nutrient or car-
bon source. The application of rhizospheric microorganisms (like bacteria, fungi, 
and actinomycetes) that interact with plant roots helps in the degradation of xenobi-
otic compounds without causing any environmental problems and also provides 
efficient, economic, and sustainable green remediation technology.

Chapter 14. Biodegradable Polyhydroxyalkanoate Thermoplastics Substituting 
Xenobiotic Plastics: A Way Forward for Sustainable Environment: Plastic, a miracle 
material of modern world, is indispensible and ubiquitous. The stability, durability, 
and low cost of plastics have attributed for their wide adaptability. Durability and 
resistance to degradation are desirable features when plastics are in use. Nevertheless, 
they cause serious problems to the environment when disposed due to their xenobi-
otic nature. All these issues of xenobiotic plastics translated into the need and con-
cern for the production of biodegradable plastics/bioplastics. Amongst bioplastics, 
the completely biodegradable polyhydroxyalkanoates (PHAs) have received 
increasing research and commercial interest owing to their eco-friendly, optically 
active, elastomeric, and piezoelectric properties, renewable compounds, high degree 
of polymerization, non-toxicity, biocompatibility, hydrophobicity, and material 
properties comparable to conventional plastics. The foremost obstacle facing trium-
phant commercialization of PHA bioplastics is the high price of bacterial fermenta-
tion. Photoautotrophic hosts such as plants and cyanobacteria are being explored 
across the globe for low-cost PHA production. However, large-scale production is 
still a constraint. Presently, major attempt has been devoted to making PHA produc-
tion process cost-effectively more feasible by changing the substrate from expen-
sive to cost-effective, engineering efficient microorganisms, improving fermentation 
and separation processes, or applying mutational approaches/genetic engineering 
techniques.

So, overall this book contains all the valuable information related to the different 
kinds of xenobiotics and their impact upon plant physiology and metabolism. It will 
definitely be useful for the scientists, academicians, researchers, as well as students 
of different streams.

Allahabad, UP, India Anita Singh
Allahabad, UP, India   Sheo Mohan Prasad 
Varanasi, UP, India   Rajeev Pratap Singh 
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Abstract

Environmental contamination by xenobiotics is a worldwide phenomenon as a 
result of human activities resulting from rise in urbanization and population 
growth. There are numerous sources of xenobiotics ranging from pharmaceuti-
cals to agriculture. Recently, the demand for pharmaceuticals versus population 
growth has placed the public at risk. In addition, the making of unlawful drugs 
has led to the discharge of harmful carcinogens into the water system. The release 
of these harmful pollutants results in numerous short- and long-term effects to 
the natural ecosystem. This review takes a look at the sources of xenobiotics, 
their fate in the ecosystem and means of action with possible prevention 
methods.

Keywords
Xenobiotics • Carcinogens • Degradation

1.1  Introduction

Since the time of the Industrial Revolution, scientific and technological develop-
ments permitted humans in the over utilization of resources creating disturbance to 
the natural ecosystem (Sikandar et al. 2013). The generation of huge amount of 
toxic substances released from industrial processes caused widespread contamina-
tion of the ecosystem. The major contaminants are halogenated and nitrated hydro-
carbons (Jain et al. 2005). Several herbicides, insecticides and fertilizers used in 
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agricultural activities as well as synthetic compounds are produced from industrial 
activities, namely, pharmaceuticals, agrochemicals, dyes, solvents, halogenated 
compounds, hydraulics, fire retardants, pigments, etc. (Reineke and Knackmuss 
1988). Pharmaceutical wastes have become well known sources of prolonged envi-
ronmental contamination due to the continous use in anthropoid and veterinary 
medications. These chemicals are believed to have specific mode of action in the 
body. The chemical composition of pharmaceuticals lead to possible effects on 
aquatic flora and fauna as compared to other chemical compounds. However, phar-
maceuticals are proposed to pose only a low risk for acute toxicity in the environ-
ment. For chronic effects, the situation may be different; nevertheless, there is a 
considerable lack of information for the chronic effects and its risk of toxicity. In 
addition, there is little or no informationregarding multi generational life cycle 
effects, knowing that exposure to toxicity in many aquatic organisms happen during 
their entire life (Fent et al. 2006). Accordingly, various environmental analyses 
reported that the drug residues in surface water and treated wastewater are wide-
spread. These chemical compounds that arise from industries are xenobiotics. 
Xenobiotic compound is persistent in the environment with toxicity effect making 
them potential health hazards leading to significant impacts on the ecosystem. 
Therefore, researchers need to focus more on effects of pollution and its prevention 
techniques.

1.2  Xenobiotics: Sources and Types

Originally, the term xenobiotic comes from the Greek word xenos, which means 
foreign or strange, and ‘bios’, which means life. Xenobiotics are chemical com-
pounds exhibiting abnormal structural characteristics (Fetzner 2002). The unusual 
presence of any substance in high concentrations can also be regarded as xenobiot-
ics, for instance, the presence of antibiotic drugs in the human body which may not 
be produced by the body itself nor is a normal part of diet. At times, a natural sub-
stance can be defined as a xenobiotic if it found its way into humans or other ani-
mals. Bonjoko (2014) proposed the word ‘xenobiotic’ based on the physiological 
and biological effects of exogenous substances whether natural or synthetic (drugs, 
chemicals) on the cells, tissues or organs of the organisms.

Many xenobiotics are potientially hazardous to the organisms which are exposed 
to them in the environment. However, bioavailabilities of such substances are 
dependent upon the characteristics of the organism, the chemical, and the environ-
ment. Maenpaa (2007) reported that the toxicity of any xenobiotic is related to the 
bioaccumulated chemical residue in the organism. Xenobiotics may persevere for 
long term (months to years) in the environment. For example, the polymer structure 
of lignin, or the constituents of the cell wall of the spores of a few fungi (melanin 
polymers), may not degrade rapidly in the natural environment (Fetzner 2002). 
Similarly, in aquatic environments, hydrophobic pollutants which are eventually 
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stored in sediments become hazardous on exposure to benthic organisms. Any 
exposure to the sediments contaminated by xenobiotics possibly affects the lower 
trophic levels. It may also result in biomagnification or more serious toxic effects at 
higher trophic levels (Landrum and Robbins 1990; Lee II 1992; Streit 1992; 
Newman 1998).

New technologies to determine trace polar compounds have helped to give new 
insights on the removal of xenobiotics. In the beginning, pharmaceutical products 
were reported in treated wastewater in the USA, with the range of about 0.8–2 μg/L 
(Garrison et al. 1976). Thereafter, the UK reported 1 μg/L of clofibric acid in the 
rivers (Richardson and Bowron 1985). In 1986, Rogers (from Canada) identified the 
concentration of naproxen and ibuprofen in wastewaters. Accumulation of diclofe-
nac, a pain killer which was used by veterinarian to treat cattle, significantly reduced 
the population of Asian white-backed and Indian vultures (9 from 150 in 1997 to 
25 in 2010) nesting in Keoladeo Natural Park in North Western India. The Geological 
Survey Department (United States) reported traces of many different drugs and toi-
letries as well as steroids, insect repellants and phthalates in the water supply. Even 
though the concentrations were in traces, the effect of chronic exposure can be 
unpredictable. For example, production of bulk drugs has been recently identified as 
an important source of environmental pollution which consists of active pharmaceu-
tical elements in certain locations (Gunnarsson et al. 2009; Fick et al. 2010). Also, 
there are raising concerns worldwide on the pharmaceutical residues found in sur-
face water which can have effects on aquatic organisms. Therefore, there is a major 
challenge in developing lucid strategy for prioritizing drugs on which to focus the 
most extensive environmental research efforts for (Fick et al. 2010).

1.3  Sources of Pharmaceutical-Based Xenobiotics

There are different synthesized chemicals present in the environment which may 
have different interactions with the exposure to humans and the ecosystem. However, 
the details of these impacts are not adequately studied or understood. Among the 
different pharmaceutical substances, pharmaceutical active compounds (PhACs) 
are xenobiotic-based elements that entered the environment as the parent compound 
or as pharmacologically active metabolites (Bonjoko 2014). PhACs are considered 
as potentially toxic compounds that are largely used in agriculture and industry. 
However, for many years the researches were based on the pharmaceutical regula-
tions which were of interest by drug organizations, and less attention was paid on 
the toxicity and its environmental issues (Jones et al. 2001).

Environmental pharmaceutical persistent pollutants (EPPPs) are the components 
which are available in waterbodies all over the world. Not much literature is avail-
able about the possible negative effects and impacts of EPPP in humans and the 
environment. Bonjoko (2014) reported that EPP’s exposure may cause extinction of 
species and imbalance of sensible ecosystems (EPPS affect the reproductive 
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systems of, e.g. frogs, fish and mussels). For example, in sewage plants of pharma-
ceutical industries, large amount of antibiotics and other pharmaceutical compounds 
have been found. According to the European Union (EU), about 3000 different 
substances were found in downstream that were used in human medicine such as 
antibiotics, beta-blockers, analgesics and anti-inflammatory drugs and many others. 
Likewise, a large number of pharmaceuticals are used in veterinary medicine such 
as antibiotics and anti-inflammatory (Fent et al. 2006). Bonjoko (2014) explained 
the potential routes of entry of pharmaceutical and household care products in the 
environment. It includes:

 1. Through patient excretion
 2. Direct release into the wastewater system from manufacturing, hospitals or dis-

posed through toilets and sinks
 3. Terrestrial depositions, i.e. irrigation with treated and untreated wastewater, 

sludge application to land, leaching from solid waste landfills
 4. Non-pharmaceutical industrial sources, i.e. plastic products
 5. Agricultural wastes such as herbicides, pesticides and fertilizers
 6. Through ageing infrastructures, i.e. synthetic compounds such as analgesics and 

antihistamines which were exposed in streams and rivers
 7. Drugs associated with plant health
 8. Herbal preparations and their interaction with the environment

1.4  Fate/Biodegradation of Xenobiotic Compounds

Xenobiotics with the presence of microbes can undergo biodegradation process 
depending on the microbe’s species and the xenobiotic compounds.

Xenobiotic metabolism undergoes a biochemical modification of pharmaceutical 
substances (xenobiotics) by living organisms, which usually occurs through special-
ized enzymatic systems. Enzyme like cytochrome P450 secreted in the liver helps in 
the degradation process and thus excreted by urination, exhalation, sweating and 
defecation. Biodegradation and oxidation of a parent compound happen to form 
carbon dioxide and water. Each stages in the degradation pathway is catalysed by a 
specific enzyme produced by the degrading cell. However, degradation of some 
xenobiotics depends on its specific compound structure, which includes the required 
enzymes, for example, oxygenases. These enzymes are metabolized to provide 
energy as well as reducing equivalent for the degradation process (Bonjoko 2014). 
Figure 1.1 illustrates the possible environmental fate of a xenobiotic compound.
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1.5  Common Xenobiotic Compounds Based on Its Course 
of Action

Xenobiotics are designed to target specific metabolic and molecular pathways in 
humans and animals in the ecosystem. However, when xenobiotics are introduced 
into the environment, they may affect the same pathways in animals having identi-
cal or similar target biomolecules, organs, tissues or cells. The current ecotoxico-
logical effects of pharmaceuticals deal mainly with the acute toxicity in standardized 
tests and it is generally focused on aquatic organisms. The influence of environmen-
tal parameters such as pH on toxicity has only rarely or not yet been investigated. 
More studies have focused on acidic pharmaceuticals that may induce different tox-
icities depending on speciation at different ambient pH. Moreover, till date less 
research has been done on the effects of drug metabolites. The following are the 
common pharmaceutically based xenobiotic compounds that pose such environ-
mental concerns. Figure 1.2 illustrates the different types of pharmaceutical 
xenobiotics.

1.5.1  Analgesics and Non-steroidal Anti-inflammatory Drugs 
(NSAIDs)

The widely used non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, 
naproxen and diclofenac and some of their metabolites such as hydroxyl-ibuprofen 
and carboxy-ibuprofen are widely used and usually can be detected in surface and 

Fig. 1.1 Possible environmental fate of a xenobiotic compound
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water sewage. Gross et al. (2004) reported that NSAID levels exceed in sewage 
system to 1 μg/L, and it can exceed the concentration to 0.1 μg/L in the effluent of 
conventional sewage plants (mechanical clarification and biological treatment) in 
the USA. The deacylated which is a more active form of acetylsalicylic acid has 
detected in many municipal wastewaters at the levels up to 4.1 μg/L, 13 μg/L or 
even 59.6 μg/L. Similar to acetylsalicylic acid, acetaminophen (paracetamol) is well 
removed from STP. However, Kolpin et al. (2002) reported that up to 10 μg/L 
(median 0.11 μg/L) acetaminophen is spotted in 24 % of samples from US streams 
(Kolpin et al. 2002). Also, the analgesic codeine was detected in 7 % of samples 
(median 0.01 μg/L). Moreover, in many countries, diclofenac was frequently 
detected in the wastewater and also in lower levels of surface water.

Wiegel et al. (2004) have reported that in Norway, ibuprofen and its metabolites 
have been found in all sewage samples and in seawater at the concentrations of 
0.1–20 μg/L. Kolpin et al. (2002) detected ibuprofen in 10 % of stream water sam-
ples in high concentrations up to 1 μg/L (median 0.2 μg/L). Moreover, several other 
NSAID compounds have been detected in sewage and surface water as well as in 
drinking water samples and groundwater.

Fig. 1.2 Different types of pharmaceutical xenobiotics
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1.5.1.1  Mode of Action
NSAIDs (non-steroidal anti-inflammatory drugs) are frequently used to treat inflam-
mation and pain and to relieve fever, and sometimes they are also used for long-term 
treatment of rheumatic diseases. NSAIDs act by inhibiting factor either reversibly 
or irreversibly one isoform of the cyclooxygenase enzyme (COX-1 and COX-2), 
which catalyse the synthesis of different prostaglandins from arachidonic acid. 
COX-1 and COX-2 inhibit by classical NSAID at different degrees, whereas new 
NSAID act more selectively on COX-2, the inducible form which is responsible for 
the inflammatory reactions. Differences in binding site size are in charge for the 
selectivity of these drugs. NSAID inhibit nonspecifically.

In the kidney, prostaglandins are elaborate in maintenance of the equilibrium 
between vasoconstriction and vasodilatation of the blood vessel that supply glo-
merular filtration.

At times, after chronic NSAID treatments, renal damages or renal failure seems 
to be triggered by the lack of prostaglandins in vasodilatation-induction. Inhibition 
of both COX isoforms can cause gastric damages. In contrast, liver damages are 
apparently due to building of reactive metabolites (e.g. acyl glucuronides) rather 
than inhibition of prostaglandin synthesis (Bjorkman 1998). The mode of action of 
paracetamol is not yet fully elucidated. However, it has been found that this drug 
acts mainly by inhibiting the cyclooxygenase of the central nervous system, and it 
does not have anti-inflammatory effects, because of the lack of inhibition of periph-
eral cyclooxygenase involved in inflammatory processes. Adverse effects of 
paracetamol mainly occur when the availability of glutathione is diminished in liver 
cells which could be due to formation of hepatotoxic metabolites, primarily 
N-acetyl-p-benzoquinone.

1.5.2  Blood Lipid Regulators

The most frequently reported pharmaceutical in monitoring studies is clofibric acid 
which is an active metabolite from a widely used blood lipid regulators such as 
clofibrate, etofylline clofibrate and etofibrate. These compounds have been found in 
numerous wastewaters, surface waters and seawater and at rather high concentra-
tions in drinking water (0.07–0.27 μg/L) and groundwater (4 μg/L). Bezafibrate and 
gemfibrozil which are lipid-lowering agent have been found in maximal concentra-
tions of up to 4.6 and 0.79 μg/L, respectively, in wastewater and surface water, 
respectively (Kolpin et al. 2002). In addition, other drugs which act as metabolite of 
fenofibrate such as gemfibrozil, clofibric acid and fenofibric acid have also been 
detected in sewage up to the μg/L level and in surface water (Heberer 2002).

1.5.2.1  Mode of Action
There are basically two types of antilipidemic drugs, namely, statins and fibrates, 
which are used to decrease the concentration of cholesterol (statins and fibrates) and 
triglycerides (fibrates) in the blood plasma. These drugs have been targeted analyti-
cally more often in the aquatic environment. Statins as inhibitors of cholesterol 
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synthesis act by inhibiting the 3-hydroxymethylglutaril coenzyme A reductase 
(HMG-CoA), responsible for the limiting step in the cholesterol synthesis, namely, 
the conversion of HMG-CoA to mevalonate. Due to interactions of statins with 
mevalonate metabolism, multiple additional effects occur (anti-inflammatory, anti- 
oxidative). Studies also show that statins affect juvenile hormone synthesis in 
insects as fluvastatin completely suppressed its biosynthesis in vitro and in the man-
dibular organ of lobsters. The effects of fibrates lead to alterations in transcription 
of genes encoding for proteins controlling lipoprotein metabolism and they also 
activate the lipoprotein lipase enzyme, which is mainly responsible for the conver-
sion of very-low-density lipoprotein (VLDL) to high-density lipoproteins (HDL), 
decreasing therefore plasma triglyceride concentration.

Moreover, fibrates stimulate cellular fatty acid uptake by conversion to acetyl- 
CoA derivatives and catabolism by the beta-oxidation pathways. Hence, these pro-
cesses are combined with a reduction in fatty acid and triglyceride synthesis that 
decreases in VLDL production. Studies on animal (rat) show that hepatic damages 
can occur after chronic exposure to fibrates and which could be due to the inhibition 
of mitochondrial oxidative phosphorylation. Fibrates caused in rodents a massive 
proliferation of peroxisomes. Strong correlation between fibrate exposure and hepa-
tocarcinogenicity in rodents was found, while this was not observed in humans 
(Cajaraville et al. 2003). These findings increase the interest for ecotoxicological 
impact of this therapeutic class of drugs. Activators of PPARα genes (found in 
fishes) include different endogenously present fatty acids, leukotrienes and 
hydroxyeicosatetraenoic acids and drugs, such as fibrates.

1.5.3  Beta-Blockers

Several beta-blockers such as bisoprolol, propranolol and metoprolol were identi-
fied in wastewater showing 0.59, 2.9 and 2.2 μg/L, respectively. Also in lower con-
centration, other beta-blockers, namely, nadolol (in surface water) and betaxolol 
(0.028 μg/L in surface water), were detected (Ternes 1998). Moreover, Sacher et al. 
(2001) reported the presence of propranolol, metoprolol and bisoprolol in surface 
water and sotalol in groundwater.

1.5.3.1  Mode of Action
Beta-blockers act by competitively inhibiting beta-adrenergic receptors. They are 
employed for the treatment of high blood pressure (hypertension) and the preven-
tion of heart attacks in high-risk patients. Regular body processes like heartbeat 
regulation and oxygen supply, vasodilatation of blood vessels and bronchodilation 
are the functions of the adrenergic system. Furthermore, it is important for the 
metabolism of carbohydrates and lipids in cases of starvation. Beta-blockers could 
selectively impede one or more β-receptor types based on their needs. For instance, 
β2-blockers are employed for the treatment of hypertension preventing impending 
cardiac arrests, as this receptor subtype is not present in the heart. Beta-blocker 
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propranolol, a beta1-adrenoceptor antagonist, has the ability to stabilize cell mem-
branes, unlike metoprolol which does not have that property (Doggrell 1990). Side 
effects of these beta-blockers are mostly bronchoconstriction and disturbed periph-
eral circulations. They are supposed to pass the blood-brain barrier and to act in the 
central nervous system because of their lipophilicity (Heberer 2002). Clenbuterol or 
ractopamine that functions in mammals as β-agonist had a different reaction in rain-
bow trouts. The different structures and function of the receptors may be responsi-
ble for varied affinity with β-blockers and mechanisms triggered by these drugs.

1.5.4  Neuroactive Compounds (Antiepileptics 
and Antidepressants)

Antiepileptic carbamazepine was detected most frequently and in highest concen-
tration in wastewater (up to 6.3 μg/L) (Ternes 1998) and at lesser concentrations in 
other media (Heberer 2002). Carbamazepine was found in all effluent samples of 
the Canadian STP at concentration up to 2.3 μg/L. This substance was reported to 
be present in all samples of German river Elbe and streams (Wiegel et al. 2004), 
exceeding 1 μg/L in other surface waters (Ternes 1998; Heberer 2002) and also 
occurred in groundwater (Sacher et al. 2001). Carbamazepine was also reported at 
average levels of 20.9 ng/mg solids of STP. Diazepam was noted in 8 out of 20 treat-
ment plants in Germany at relatively low concentrations of up to 0.04 μg/L (Ternes 
1998), whereas in Belgium it was recorded at concentration up to 0.66 μg/L (van 
derVen et al. 2004). The antidepressant fluoxetine was also recorded in Canadian 
effluent samples, and in US streams, median concentrations of 0.012 μg/L were 
estimated (Kolpin et al. 2002). In addition to these, an antiepileptic drug, primidone 
(0.6 μg/L), was also identified in sewage (Heberer 2002).

1.5.4.1  Mode of Action
Antiepileptic drugs decrease the overall neuronal activity. This can be achieved 
either by blocking voltage-dependent sodium channels of excitatory neurons (e.g. 
carbamazepine) or by enhancing inhibitory effects of the GABA neurotransmitter 
by binding on an exact site in the gamma subunit of the corresponding receptor (e.g. 
diazepam, member of benzodiazepine family). The uptake of serotonin is inhibited 
by a very common antidepressant, fluoxetine. It is a neurotransmitter that has to do 
with hormonal and neuronal mechanisms, and it is vital for sexual behaviour and 
food intake. Fluoxetine, sertraline, norfluoxetine and desmethylsertraline have been 
discovered in fish sampled from the wild in the USA and therefore reflect a bioac-
cumulation potential (Brooks et al. 2005).

1.5.5  Various Other Compounds

Effluents of the sewage treatment plants and surface waters which have been con-
taminated by drugs are comprised of caffeine and cotinine (a nicotine metabolite). 
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In the USA, caffeine was found in streams at high levels of 6.0 μg/L (median 0.1 
μg/L) (Kolpin et al. 2002) which can serve as an anthropogenic marker in aquatic 
systems as a result of its ubiquity in surface water, in seawater (Wiegel et al. 2004) 
and also in groundwater. Cimetidine and ranitidine (antacids) were estimated to 
occur at concentrations of 0.58 and 0.01 μg/L, respectively, in streams in the USA 
(Kolpin et al. 2002). Iopamidol has been detected in municipal wastewater at very 
high concentrations (15 μg/L), in surface water (0.49 μg/L) and in groundwater.

The antidiabetic compound metformin was observed in 5 % of stream water 
samples with estimated levels of 0.11 μg/L (Kolpin et al. 2002). Bronchodilators 
(β2-sympathomimetics terbutaline and salbutamol) were also detected in sewage 
not exceeding 0.2 μg/L (Ternes 1998).

1.5.5.1  Mode of Action
Cimetidine and ranitidine are compounds, which act by hindering the histamine 
receptor type 2 in the gastric system, thus inhibiting the acid secretion (antacid). 
These drugs are for the treatment of gastric ulcer. Metformin is an antidiabetic 
agent, whose mechanisms of actions have not been fully studied. It has been reported 
that this drug acts by increasing the cellular use of glucose and inhibiting the gluco-
neogenesis. Metformin acts on insulin receptor by direct stimulation of the insulin 
receptor or indirectly through inhibition of tyrosine phosphatase (Holland et al. 
2004).

1.5.6  Steroidal Hormones

Steroidal hormones have been reported in wastewater and surface waters in a num-
ber of countries in Europe, Canada, the USA, Japan, Brazil, etc. A study in the USA 
showed that the average oestrogen concentration was 73 ng/L and levels of mestra-
nol were 74 ng/L (Kolpin et al. 2002). They were detectable in 16 and 10 % of the 
streams sampled. Typical wastewater effluent concentrations are 0.5 ng/L and they 
are even lower in surface water.

1.6  Effects of Xenobiotics on Ecosystem

Every year, more than 13 million deaths and 24 % of world diseases are said to be 
as a result of environmental pollutants/exposures which can be avoided. Today, 
detectable levels of pharmaceutical preparations either as parent drug or metabolite 
are present in foodstuffs and water, i.e. both rivers and seas (Bonjoko 2014). 
Medications for humans and animals have severe consequences extending far 
beyond the traditional objectives of conventional medical care. The healthcare 
industry is the major source of active pharmaceutical ingredients (API) from medi-
cations, residues of which could lead to environmental pollution.
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1.6.1  Effects on Aquatic Ecosystem

Aquatic organisms are significant biological indicators of pollution. Fent et al. 
(2006) conducted a comprehensive study on the occurrence; end result of pharma-
ceuticals in the aquatic environment, discussed potential mechanisms of action 
based on knowledge from mammalian studies and described the acute and chronic 
ecotoxicological effects on organisms. Pharmaceuticals are most often released 
back into the environment either in their original form or as metabolites. In humans, 
the main pathway is ingestion following excretion and disposal via wastewater. 
Municipal wastewater is the largest source of human pharmaceuticals. Hospital 
wastewater, wastewater from manufacturers and landfill leachates may contain sig-
nificant concentrations of pharmaceuticals. Pharmaceuticals that are nondegradable 
in the sewage treatment plant (STP) are being released into treated effluents result-
ing in the contamination of rivers, lakes, estuaries and, rarely, groundwater and 
eventually drinking water. There is also likelihood of contamination when sewage is 
applied in agriculture. In addition, drugs meant for animals enter the waterways 
during surface application for agriculture purposes and runoff and also via direct 
application in fish farming. Pharmaceuticals of environmental significance often-
times have high production volume in addition to environmental persistence and 
biological activity, especially after long-term exposure.

In recent studies, it has been observed that the increasing amounts of pharmaceu-
ticals found in surface waters worldwide have raised concerns especially with 
respect to their effects on the aquatic flora and fauna. It would therefore be a huge 
task to initiate a strategy for prioritizing drugs on which to focus the most expensive 
environmental research efforts on. Among aquatic organisms, fish most often share 
drug targets with humans. Not much is known about the long-term effect of drugs in 
aquatic organisms. Diclofenac influences the expression of genes in fish and organ 
histology when exposed to a concentration of l μg/L of this drug (Cuklev et al. 
2012). A study in India on surface water from 27 locations of the Kaveri velar and 
Tami rapani rivers in southern India revealed the presence of a number of non- 
steroidal anti-inflammatory drugs (NSAIDs): naproxen, ibuprofen, diclofenac, ace-
tylsalicylic acid and ketoprofen. This situation poses risks of direct toxicity to all 
consumers of the water (Shanmugan et al. 2013). Another case, likewise, effluents 
from a treatment plant in Hyderabad, India, was observed to be the cause of deleteri-
ous effects on water organisms. An embryo toxicity test that was carried out 
observed that as little as 0.2 % of the effluent reduced tadpole growth by 40 %; 
however, zebra fish (Danio rerio) growth was not impeded. Although the study 
focused on fish, it also increased knowledge about how aquatic vertebrates are pos-
sibly affected by effluent exposures, which substances in the effluent are causing the 
toxic effects and their threshold dilutions (Shanmugan et al. 2013).

Streams and rivers have been identified to be exposed to combinations of differ-
ent drugs. Antidiabetic and antihistamine diphenhydramines were observed to cause 
significant disruption to the biofilm community which is important to the ecosys-
tem. Biofilms are aggregates of microorganisms in which cells that are frequently 
embedded within a self-produced matrix of extracellular polymeric substances 
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(EPS) adhere to each other and or to a surface. Biofilms serve as the important food 
source for invertebrates that in turn feed larger animals like fish. The effects of 
diphenylamines on biofilm could therefore have repercussion for animals in stream 
food web such as insects and fish (Rosi-Marshall 2013). The use of antidepressants 
disrupts the aquatic equilibrium by activating early spawning in some shellfish. 
Furthermore, propranolol and fluoxetine were observed to have deleterious effects 
on zooplankton and benthic organisms (Hoffman et al. 2005). Factors such as cel-
lular recognition of specific or non-specific attachment sites, nutritional cues or the 
exposure of planktonic cells to subinhibitory concentration of antibiotics lead to the 
formation of biofilms by microbes (Hoffman et al. 2005; Karatan and Watrick 
2009). Masculinization (imposex) had been witnessed in female marine snails 
exposed to tributyltin (TBT). The dog whelk (Nucella lapillus), ‘a species of preda-
tory sea snail’, is particularly sensitive, and imposex has resulted in decline or 
extinction of local populations worldwide, including coastal areas all over Europe 
and the North Sea.

DDE (dichlorodiphenyldichloroethylene)-induced eggshell thinning in birds is 
probably the best example of reproductive impairment causing several population 
declines in a number of raptor species in Europe and North America. Gradual expo-
sure to the DDT complex (dichlorodiphenyltrichloroethane) has been linked to ovo-
testis in male western gulls. EDCs (endocrine disruptors) have negatively affected a 
variety of fish species exposed to effluents causing reproductive problems. Turtles 
have also been affected in a similar manner (Cleuvers 2003; Le Page et al. 2011). 
Triclosan (TCS) is a broad-spectrum antimicrobial compound that is contained in 
most of the cleaning products for the prevention of bacterial, fungal and mildew 
growth. Triclosan enters into water streams from domestic wastewater, leaking sew-
erage and sewage overflows. The continuous use of these antibiotics leads to the 
emergence of resistant bacteria that could diminish the usefulness of important anti-
biotics (Drury et al. 2013).

1.6.2  Effects on Animals

More commonly observed effects of EDC are impaired reproduction and develop-
ment in aquatic animals (Kid et al. 2007). A number of brain targets for EDC pres-
ent in environmentally relevant concentrations in surface waters had been identified 
from recent surveys. In mammals, field studies on Baltic grey and ringed seals and 
Wadden Sea harbour seals revealed that reproduction and immune function were 
impaired by PCBs (polychlorinated biphenyls). Other mammals in the food chain 
that have the likelihood of being affected include the polar bear, rabbit and guinea 
pig. In Florida, due to a pesticide spill, alligators were found to have inhibited geni-
tal developments. Furthermore, the oestrogenic and androgenic effects observed 
have been linked to experimental studies with alligator eggs to the DDT complex.
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1.6.3  Effects of Plants

With the growing influence of herbal drugs worldwide, botanical plants with phar-
macological properties should be cautiously handled in order not to contaminate 
crops, vegetables and surface water. A common herb which may contaminate the 
ecosystem is marijuana with the potential ability to interfere with the biological 
system of aquatic organisms. In addition, herbs like St. John’s wort were noted to 
cause modulation of cytochrome p450 and may interfere with prescribed therapeu-
tic agents (Guengerich 1997). Aristolochia plants are commonly used in traditional 
herbal preparation as health supplements and remedies for various health problems 
including weight loss, menstrual symptoms and rheumatism. In the 1990s, epide-
miological studies revealed AA exposure was associated with a high risk of nephro-
toxicity and upper urinary tract urothelial cell carcinoma (UTUC) (Grollman et al. 
2007; Debelle et al. 2008) caused by the ability of AA to bind DNA, forming DNA 
adduct (Schmeiser et al. 1998). These findings eventually resulted in the ban on 
Aristolochia-containing herbal preparations in Europe and North America since 
2001 and in Asia since 2003 (Debelle et al. 2008). Currently, AA is classified in the 
International Agency for Research on Cancer (IARC) monograph as a group 1 
human carcinogen (IARC 2012). There is the likelihood that AA may contaminate 
surface water, grain and vegetables during the processing of Aristolochia-containing 
herbs and the disposal of its waste. TP 53 mutation signature in urothelial tumours 
and the existence of aristolactam-DNA adducts in the renal cortex are defined in the 
course of research as a robust biomarker of exposure to this potent nephrotoxin and 
human carcinogen (Moriya et al. 2014).

1.6.3.1  Pesticides
Ninety percent of pesticides currently in use are synthetic, but in the past 20 years, 
there had been conscious attempts to develop safe and environmentally friendly 
pesticides. Organic or natural pesticides have received the most acclaim and certain 
have the endorsement of environmentalists. Pesticides such as fungicides, herbi-
cides and rodenticides can be very helpful in the sense that they protect man’s health 
by killing germs, animals or plants that can hurt us. On the other hand, a good num-
ber of pesticides can be injurious to human and animals. The proper disposing of 
pesticides is very vital for the protection of the environment. Biologically based 
pesticides are becoming more popular as they are safer than traditional pesticides. 
They come in the form of pheromones and microbial pesticides. To insects and 
rodents, pesticides are inherently toxic. Organophosphate and organochlorine insec-
ticides (synthetic pesticides) have been linked to a wide range of ailments from 
cancer to neurological disorders and lung irritations in humans. A diversity of pes-
ticides like mineral oil, malathion, sulphur dimethylamine and many others are used 
to control fungi and insects on wheat and cereals. Chlorinated hydrocarbons present 
in synthetic pesticides such as methoxychlor, endosulfan and captain accumulate in 
fatty tissue because it is not completely filtered from the system.
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1.6.4  Effects on Humans

The possible exposure pathway of endocrine disruptors in humans includes direct 
exposure at the workplace and via consumer products such as food, certain plastic, 
paints, detergents and cosmetics as well as indirect exposure via the environment, 
viz. air, water and soil. Apart from the drug DES (synthetic oestrogens), environ-
mental oestrogens were not proven to cause human health problems. Lead is 
regarded as being hepatotoxic, while cadmium is a well-known nephrotoxic agent. 
Health effects of pesticides are irritation to the eye, nose and throat, injury to the 
central nervous system and kidney and augmented risk of cancer. Symptoms of 
pesticide toxicity include nausea, muscular weakness, headache and dizziness, 
whereas chronic exposure to certain pesticides could result in liver, kidney, endo-
crine and nervous system damage. Exposure to elevated levels of cyclodiene pesti-
cides associated with improper use caused various symptoms, including headaches, 
dizziness, muscle twitching, weakness, tingling sensation and nausea. It is assumed 
that cyclodienes might cause long-term damage to the liver and the central nervous 
system as well as a heightened risk of cancer.

Steroid receptors for oestrogens and androgen functions of the brain and the 
cardiovascular, the skeletal and the urogenital system are regulated by these hor-
mones and can therefore be affected by EDCs. EDCs have the potential to cause 
reduced quality of semen and low sperm counts, low ejaculate volume and high 
number of abnormal spermatozoa motility. Other effects may include testicular can-
cer and malformed reproductive tissue, viz. undescended testes, small penis size, 
prostate disease and other unrecognized abnormalities of male reproductive tissues. 
Bisphenol A, a component used for plastic products, binds to the local anaesthetic 
receptor site to block the human cardiac sodium channel. There are currently puta-
tive links between EDC and some female diseases including breast and reproductive 
organ tissue cancers, fibrocystic disease of the breasts, polycystic ovarian syndrome, 
endometriosis, uterine fibroid and pelvic inflammatory diseases. Phthalates, most 
often used in cosmetics like nail polish, are reported to affect the endocrine system 
and are being investigated for a link with infertility in women. EDCs have been 
associated to impaired behaviour, mental, immune and thyroid functions in devel-
oping children. Others include precocious puberty, osteoporosis, foetal growth and 
obesity (Meeker 2012). Children are most prone to environmental contaminants 
from foodstuff to drug and plastic toys. They are similarly quite vulnerable to poi-
soning from unprescribed medications.

1.6.4.1  Autoimmune Diseases
Environmental exposures play a role in the development and/or the exacerbation of 
autoimmune diseases (Ritz 2010). Autoimmune diseases collectively afflict approx-
imately 24.5 million Americans with women disproportionally affected. 
Autoimmune diseases such as rheumatoid arthritis (RA), systemic sclerosis (SSc), 
systematic lupus erythematosis (SLE) and anti-neutrophil cytoplasmic antibody 
(ANCA)-related vasculitis, solvent exposure and the development of SSc and smok-
ing and the development of seropositive RA, and an inverse relationship between 
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ultraviolet radiation exposure and the risk of development of multiple sclerosis 
(MS) can be caused. The mechanisms by which environmental factors alter basic 
biological processes to induce autoimmune diseases continue to be examined but 
remain largely unknown. Several studies point to many mechanisms likely involved 
in environmental exposure-based autoimmunity and include a role for xenobiotics 
in the activation of Toll-like receptors (TLRs), B-cell activation, impairment of T 
helper 17 (Th 17) and T-regulatory (T-reg) cell immune function, modifications of 
self-antigens and alteration of DNA methylation profiles. Despite growing advances 
in the field, knowledge of the interactive roles of the environment and genetics in the 
autoimmune process is still lacking, and additional progress is needed on many 
fronts.

1.7  Other Forms of Environmental Pollutants

Nickel, arsenic, chromium and lead are well-known environmental toxicants. Many 
household products like insecticides, paints, cosmetics, cleaning fluids and 
nanomaterial- based items are known to contain some of these toxicants. Even 
though they may not be directly toxic, their interaction with cellular organelles 
results in cancer. Many household products (oven and drain cleaners, laundry pow-
der, floor polish, paint and pesticides) are potentially dangerous substances. Arts 
and craft supplies and gardening products can be hazardous. Many household prod-
ucts can be harmful to kids and pets and end up in the ecosystem if not properly 
disposed. Exposure via inhalation, swallowing or absorption through the skin is a 
potential killer. Recent evidence had shown that natural health products (NHPs) 
therapies are gradually more suggested by health providers, including conventional 
physicians leading to increased consumption of vitamins and many herbal agents 
worldwide. The WHO (World Health Organization) reports that the current annual 
need for medicinal plants is approximately US $14 billion, and it is estimated to 
likely increase to about $5 trillion by 2050. Cultivators of herbs for medicinal uses 
are usually ignorant of the WHO regulations, and these products may be infected 
with banned pesticides and microbial agents like fungi, heavy metals and chemical 
toxins which may cause unfavourable outcomes such as sensorineural defects, con-
genital paralysis and liver and kidney damage. In addition Wong et al. (1993) also 
reported concentration of heavy metals such as cadmium, cobalt, copper, iron, man-
ganese, nickel lead, zinc and mercury in Chinese herbal drugs. Chloramines and 
chlorine dioxides are well-known disinfection methods to eradicate harmful micro-
organisms. Chlorine reacts with organic compounds in water to form potentially 
harmful chemical by-products. These by-products include triethylin, trihalometh-
anes (THMs) and haloacetic acids (HAAs) are carcinogenic in large quantities and 
are regulated in the USA by the Environmental Protection Agency. Chloroform, 
dichloroacetic acid (DCA) and trichloroacetic acid (TCA) which are known liver 
and kidney carcinogens are by-products of chlorine disinfection found in drinking 
water. Trihalomethanes, viz. chloroform, bromo-dichloromethane, chloro- 
bromomethane and bromoform, are regulated organic contaminants in drinking 
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water. Methylation in the promoter region of the c-myc gene was reduced by the 
trihalomethanes, a process consistent with carcinogenic activities.

1.8  Conclusion

With population increase and urbanization, there is high likelihood of xenobiotic 
contamination in our food and water. Right from our daily care products to agricul-
tural uses, the existence of harmful xenobiotics has been detected. Even though 
there are a number of sewage treatment and detection methods, xenobiotics is fast 
becoming a peril to our ecosystem as over long term there is bound to be repercus-
sions. Long-term effects are autoimmune disorders, liver and kidney damage, car-
diac problems and eventually cancer as a result of prolonged consumption of these 
pollutants in food or drinks. It is therefore a great challenge to the environment 
health researchers to address this issue. Research is being carried out on antibiotic 
resistance in sewage as the current trend will lead to a worldwide disaster. The ear-
lier remedies or preventive methods are established, the better it is for the natural 
ecosystem.
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Abstract
Unplanned industrialization and improper waste disposal have resulted in the 
release of enormous quantities of inorganic toxicants like metal, metalloids, and 
radionuclides in the biosphere. Since, metals are non-biodegradable and tend to 
bioaccumulate via food chain, they pose threat to human health. Indiscriminate 
disposal of industrial waste to the environment causes adverse impact on eco-
system. Plants growing on metal-contaminated sites display several distur-
bances related to physiology and biochemical process like gaseous exchange, 
CO2 fixation, respiration, nutrient absorption, etc. These disturbances subse-
quently cause reduction in plant growth and lower biomass production. Although 
being an essential micronutrient, some heavy metals at lower concentrations are 
vital for plant growth; however, at higher concentrations they become very 
toxic. To cope up with the metal toxicity, plants have developed various mecha-
nisms like immobilization, exclusion, chelation, and compartmentization. 
Plants have distinct cellular mechanism such as chelation and vacuolar com-
partmentization of metals to withstand the metal toxicity. Phytochelatins, the 
thiol peptides, potentially chelate metals and form complexes in cytoplasm; 
subsequently these metal-thiol complexes are sequestrated into vacuole via 
ATP-binding cassette transporters (ABC transporters). In the last couple of 
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decades, the role of phytochelatin synthetase (PCS) and phytochelatins (PCs) in 
metal detoxification has been proven. In present scenario, there is a great need 
of sound and intensified research for better understanding of metal toxicity and 
its metabolism in plants to maintain our ecological harmony.

Keywords
Heavy metals • Toxicity • Contamination • Metabolism

2.1  Introduction

Accelerated industrialization and modernization throughout the world has led to the 
emergence of various luxurious facilities and goods; however, such industrialization 
and modernization also releases a considerable amount of undesirable xenobiotic or 
toxic wastes to various components of environment, i.e., soil, air, and water (Adriano 
1992; McIntyre 2003; Kumar et al. 2013). Even the most pristine environment like 
the Arctic Circle and Antarctic has not been spared by the globally transported 
xenobiotics (AMAP 2002). Although environmental pollution is a natural process, 
the human activities like improper waste management practices, landfill operations, 
mining, the use of chemical fertilizers, application of sewage sludge, etc. have 
accelerated the level, rate, and types of contamination to soil, air, and water. Further, 
application of sewage sludge and discharge of industrial effluent containing inor-
ganic chemicals like heavy metals to agricultural lands intensifies the problem of 
soil pollution. The problem of contamination turns to be more complex when the 
effluents are discharged directly because of the heterogeneity in the quality and 
quantity of discharged effluents (Srivastava et al. 1994; Kara 2005; Singh et al. 
2010).

Heavy metals (e.g., Cr, Cd, As, Fe, Ni, Pb, Hg, Zn, etc.) are an important class of 
environmental pollutants, and many of these are highly toxic in soluble forms. 
Since, heavy metals are non-biodegradable in nature and persist in soil for a long 
time, they tend to bioaccumulate in ecological food chain through uptake at primary 
producer level and subsequently via consumption at secondary and tertiary levels 
(Sakakibara et al. 2011; Bauddh and Singh 2012; Lu et al. 2014; al. 2016). Therefore, 
removal of the metals and other contaminants is an important concern and a major 
policy priority globally.

Chemically, the term heavy metal refers to any metallic element with a specific 
gravity greater than 5 (Venugopal and Luckey 1978). Heavy metals are naturally 
found in dispersed form in rock. However, industrialization and urbanization have 
increased the heavy metals in biosphere. Further, the major availability of heavy 
metals is in the soil and aquatic system, and relatively a smaller portion is available 
in the atmosphere in the form of particulate or vapors. Plants growing on land con-
taminated with heavy metals display several disturbances related to physiology and 
biochemical processes like gaseous exchange, CO2 fixation, respiration, nutrient 
absorption, etc. These disturbances subsequently cause reduction in plant growth 
and lower biomass production. The toxicity due to heavy metals in plants varies 

D. Kumar et al.



21

with several factors, viz., plant species, concentration of the metal and its chemical 
form, soil composition, and pH (Nagajyoti et al. 2010).

2.2  Impact of Heavy Metals on Plant Growth 
and Development

Like all living creature, plants are also sensitive to both deficiency and excess of 
micronutrient including trace elements. Some heavy metals are essential in nature 
as they are required for normal growth of plant. Essential heavy metals like Cu, Zn, 
Fe, Mn, Mo, and Ni play important roles in biochemical and physiological functions 
in plants (Reeves and Baker 2000). Being essential micronutrients, Cu and Zn are 
very important for normal plant growth as they either serve as a cofactor and activa-
tors of enzyme reactions or exert a catalytic property such as prosthetic group in 
metalloproteins (Mildvan 1970). These essential heavy metals are also involved in 
redox reactions, electron transfer, basic functions in nucleic acid metabolisms, and, 
as direct participant, being integral part of several enzymes. The availability of these 
essential metals in growing medium at certain concentration is very important, but 
their excess concentration leads to several toxic effects (Blaylock and Huang 2000; 
Monni et al. 2000). Due to their presence in trace in environmental matrices, these 
heavy metals are also known as trace elements (10mgKg−1 or mgL−1 of metal in 
soil/aquatic medium) or ultra-trace element (1μgKg−1 or μgL−1 of metal in soil/
aquatic medium). Besides these essential trace elements, another category of heavy 
metals, class B metals, that are considered as non-essential trace elements like Hg, 
Ag, Pb, Ni, etc. are very toxic in nature (Nieboer and Richardson 1980). In terres-
trial system, plants are stationary, and the their roots are the main contact sites for 
trace metal ions, while in aquatic system, the entire plant body is exposed, and metal 
ions are absorbed directly due to particle deposition on leaves’ surfaces.

2.2.1  Copper

Copper is considered as an essential micronutrient for plants and algae especially 
because of its crucial role in photosynthesis, CO2, and ATP synthesis (Thomas et al. 
1998; Chatterjee et al. 2006; Mahmood and Islam 2006). Copper is an important 
component of several proteins like plastocyanin of photosystem and cytochrome 
oxidase of respiratory electron transport chain (Demirevska-kepova et al. 2004). It 
is a primary electron donor in photosystem I. Copper plays a crucial role as a cofac-
tor for enzymes involved in the elimination of superoxide radicals (superoxide dis-
mutase and ascorbate oxidase) and also of oxidase and mono- and dioxyegenase 
(amine oxidases, ammonia monoxidase, ceruloplasmin, lysyl oxidase). Further, the 
toxicity due to the exposure of excess copper to plants has been well reported by 
several researchers (Moreno-Caselles et al. 2000; Singh and Tewari 2003; Keller 
et al. 2015). The presence of excess copper in soil displays cytotoxic role, induces 
stress, and causes damage to plants which leads to several deformities including 
retardation in plant growth and leaf chlorosis (Lewis et al. 2001; Adrees et al. 2015a, 
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b). Excess of copper also generates ROS causing oxidative stress by damaging mac-
romolecule disturbance in metabolic pathways (Hegedus et al. 2001; Habiba et al. 
2015). In combination with Cd, Cu has been reported for its adverse effects on seed 
germination, length of seedling, and number of lateral roots (Neelima and Reddy 
2002).

2.2.2  Cadmium

Cadmium is a non-essential heavy metal for plants. Cadmium has been ranked 7th 
among the top 20 toxins due to its great solubility in water and high toxicity (Yang 
et al. 2004). Cd has been reported as an extremely significant pollutant among the 
class of heavy metal pollutants (Das et al. 1997; Rizwan et al. 2016). Cadmium 
toxicity is easily identifiable in the form of stunt growth, chlorosis, browning of root 
tips, and finally plant death (Das et al. 1997; Wojciek and Tukiendorf 2004; 
Mohanpuria et al. 2007; Guo et al. 2008). Excess of Cd in growing soil can cause 
leaf chlorosis; however, it may be due to deficiency of iron and the interaction with 
toxic metals. Chlorosis may appear due to direct or indirect interaction with Fe pres-
ent in leaves. The presence of excess cadmium in growing medium causes suppres-
sion in uptake of iron (Haghiri 1973). Cadmium induces the inhibition of root 
Fe(III) reductase which leads to deficiency of iron, severely affecting plant photo-
synthesis (Alcantara et al. 1994). Cd-induced chlorosis may be attributed to the 
changes in Fe/Zn ratio. It has been reported that Cd also interfere with the uptake, 
transport, and use of various essential elements like Ca, Mg, P, K, etc. and water 
(Das et al. 1997; Asgher et al. 2015). Further, Cd also inhibits the nitrate reductase 
activity which reduces the absorption of nitrate and its transport from roots to shoots 
(Hernandez et al. 1996). Cadmium has also been reported for its cytotoxic effects in 
the form of swelling, vacuolization, degeneration of mitochondria, inhibition in cell 
proliferation, and a low mitotic index (Silverberg 1976; Rosas et al. 1984; Khan 
et al. 2016). The chromosomal aberrations have been also reported in onions, beans, 
peas, and barley on exposure to excess Cd (Oehlkers 1953; Von Rosen 1954; 
Degreave 1981). Rosas et al. (1984), reported that the plant exposed to Cd at con-
centration of 1.5 to 10 mgL−1 for 24 h had caused physiological and genetical dam-
ages. They also reported that Cd inhibits the cell division and alters the chromosome. 
Further, they also mentioned that the inhibition of cell proliferation, shown by low 
mitotic index, was proportional to the concentration and time of exposure (Rosas 
et al. 1984). Moreover, exposure to Cd causes decrease in nitrogen fixation and 
primary ammonia assimilation in the root nodules (Balestrasse et al. 2003).

2.2.3  Zinc

Zinc is considered as an essential micronutrient for plants because at optimal con-
centration it is essential for normal functioning of cell metabolism as well as for 
plant growth (Dhankhar et al. 2012; Broadley et al. 2007). It plays crucial role as a 
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cofactor in many physiological processes such as metabolism of several biomole-
cules, gene expression and regulation, enzyme activation, protein synthesis, and 
reproductive development (Cakmak 2000). However, accumulation of Zn in plant at 
higher concentration (>300μgg−1 in dry weight) causes physiological alteration and 
growth inhibition (Foy et al. 1978). High level of exposure of Zn in growing medium 
inhibits several plant metabolic functions, results in stunted growth, and causes 
senescence. Zn toxicity restricts the growth of roots and shoots (Choi et al. 1996; 
Fontes and cox 1998). At high concentration, it also causes chlorosis in premature 
leaves, which can extend to older leaves on prolonged high exposure. Excess of Zn 
also causes deficiency of other essential elements, viz., Mn and Cu, in shoots which 
hinders the transfer of these essential micronutrients from root to shoot. The possi-
ble reason for this hindrance of transfer of these micronutrients is the concentration 
of Fe and Mn in plant grown in Zn-rich media is greater in root than the shoot (Ebbs 
and Kochian 1997).

2.2.4  Arsenic

Arsenic (As) is a metalloid and considered as a nonessential and toxic element for 
plants (Zhao et al. 2009). Mobility and availability of As in soil depends upon its 
ionic form. As(III) is very toxic in nature but less mobile than As(V). Arsenate, i.e., 
As(V), is the most stable form found in the soil, and hence its availability for plant 
is greater than As(III). The availability and mobility of As in soil highly depends on 
soil pH. As commonly forms complexes with calcium at high pH (pH 6–8) while it 
frequently binds with iron at low pH (pH 4) (Fayiga and Ma 2006). Further, the 
presence of Fe and MnO in soil also increases the availability and mobility of As 
(Zavala and Duxbury 2008). In plants, it mainly accumulates in roots and to very 
less extent in shoots. Generally, plants uptake arsenic as As(V) and translocate it via 
the xylem along with water and minerals as As(III)-S compound (Wang et al. 2002). 
Chemically, As(V) is analog to PO4

3+ and hence competes with PO4
3+ uptake in root 

and interferes metabolic processes like ATP synthesis, oxidative phosphorylation, 
and transport across the plasma membrane through phosphate transport channels 
(Meharg and Macnair 1992; Tripathi et al. 2007; Stoeva and Bineva 2003). The 
presence of excess As in growing medium causes physiological changes, interfer-
ence with metabolic processes, growth inhibition, ultimate reduction in crop pro-
ductivity, and finally death (Miteva 2002; Stoeva et al. 2004; Anjum et al. 2016). 
Arsenic toxicity may be seen as a consequence of binding of As with sulfhydryl 
(SH) group of protein, leading to inhibition of protein activity or structural disrup-
tion, or replacing the essential element resulting in deficiency effects (Assche and 
Clijsters 1990; Delnomdedieu et al. 1994; Kumar et al. 2015). Arsenic may also 
stimulate the formation of free radicals and reactive oxygen species like O2˙−, OH ˙, 
and H2O2 which are strong oxidizing agents and cause oxidative damage to biomol-
ecules like lipids and protein and finally cell death (Dietz et al. 1999; Molassiotis 
et al. 2006; Gunes et al. 2009).
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2.2.5  Nickel

Nickel is considered as an essential element at lower concentration (0.01 to 5μgg−1) 
for plants. The uptake of Ni from growing medium takes place mainly via passive 
diffusion and active transport. Plants passively absorb the soluble Ni compounds via 
cation transport system. The chelated Ni compounds are taken and transported via 
active-transported-mediated system using transport proteins like permeases. 
Moreover, the insoluble Ni compounds are absorbed in root cells through endocyto-
sis and easily transported to shoots through the xylem via transpiration stream and 
can get accumulated in newly developed buds, fruits, and seeds. Ni is an essential 
component of several metalloenzymes such as superoxide dismutase, NiFe hydrog-
enases, methyl coenzyme M reductase, urease, acetyl Co-A synthase, carbon mon-
oxide dehydrogenase, hydrogenases, and RNase-A. Further, the high exposure of Ni 
in growing medium affects the activities of amylases, proteases, and ribonucleases 
subsequently affecting the digestion and metabolization of food reserves in germi-
nating seeds (Ahmad and Ashraf 2011). High concentration of Ni in growing 
medium causes alteration in physiological process and diverse toxicity symptoms 
such as chlorosis, necrosis, and wilting (Zornoza et al. 1999; Rao and Sresty 2000; 
Nakazawa et al. 2004). Plants growing in excess Ni medium show negative effects 
on photosynthesis, mineral nutrients, sugar transport, and water balance (Samarakoon 
and Rauser 1979; Tripathy et al. 1981; Parida et al. 2003; Sethy and Ghosh 2013). 
Decrease in uptake of water is an indicator of the increasing Ni toxicity in plants 
(Pandey and Sharma 2002; Gajewska et al. 2006). Ni toxicity has also been attrib-
uted for the impairment of nutrient balance, disturbance of lipid composition, and 
H-ATPase activity resulting in the cell membrane dysfunctions (Ros et al. 1992). 
Exposure of high level of Ni increases MDA concentration which might disturb 
membrane function and cytoplasmic ion balance, particularly K+; the most mobile 
ion across the cell membrane.

2.2.6  Chromium

Chromium (Cr) is considered as a non-essential metal for plant. Chromium has been 
well reported for its toxicity to plant growth and development (Huffman and 
Alloway 1973; Vikram et al. 2011). On high exposure (1–5 mgL−1), Cr causes chlo-
rosis and alteration in several metabolic processes, viz., growth inhibition and 
decline in the chlorophyll synthesis (Dube et al. 2003; Ahemad 2015). Some plants 
have been reported with potential to accumulate Cr without showing any symptoms 
of Cr toxicity. Chromium enters and accumulate in root cells by the symplastic 
pathway. Plants uptake chromium in its trivalent form, i.e., Cr(III) by passive mech-
anism, while uptake of Cr(VI) is inhibited by SO4

2− and Ca2+ (Zayed and Terrey 
2003). Hexavalent ions, i.e., Cr(VI), damage the root membranes due to their high 
oxidation power. Cr enters into plant roots by reduction and/or complexation with 
root exudates, which enhance the solubility and mobility via root xylem (Shanker 
et al. 2005; Bluskov et al. 2005). Although accumulation and mobilization of Cr 
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inside the storage tissue depends on its ionic form, however, it accumulates mainly 
in roots and translocated poorly to shoots (James and Barlett 1983). Like cadmium, 
Cr(VI) also reduces the uptake of many essential elements like Fe, Mg, Mn, Ca, P, 
and K resulting in many negative effects on plant growth (Gardea-Torresdey et al. 
2005; Peralta-Videa et al. 2009). Seed germination of Phaseolus vulgaris was 
reduced by 48 % on exposure of Cr(VI) at concentration of 500 ppm (Parr and 
Taylor. 1982). Reduction in seed germination was observed in seeds of Medicago 
sativa by 23 % at 40 ppm of Cr(VI) (Peralta et al. 2001). Adverse effect of Cr on 
photosynthesis has been also well documented (Assche and Clijsters 1983; Vikram 
et al. 2011). Chromium affects the photosynthesis in the form of reduction in pho-
tosynthetic pigments and inhibition in photophosphorylation, electron transport, 
and enzyme activities (Clijsters and Assche 1985; Vikram et al. 2011). Furthermore, 
it also causes disorganization of ultrastructure of chloroplasts, which are the pri-
mary site for photosynthesis (Vazques et al. 1987; Ahemad 2015).

2.2.7  Lead

Lead (Pb) is a non-essential and one of the most ubiquitously distributed toxic ele-
ments in the soil. Plant gets lead mainly from soil and aerosol (Sharma and Dubey 
2005). In plants, roots have greater ability to accumulate Pb; however, its subse-
quent translocation to aerial parts is highly restricted (Lane and Martin 1977). It was 
also reported that lead could be translocated and accumulated in leaves in a 
concentration- dependent manner (Miller and Koeppe 1971). Further, the extent of 
Pb uptake by plant from aerial sources, through leaves, depends on the ability and 
specific leaf morphology (Godzik 1993). Availability of lead in soil highly depends 
on soil conditions like soil pH, particle size, and cation exchange capacity. Moreover, 
the availability and uptake of Pb is also affected by some other factors such as root 
surface area, root exudation, mycorrhization, and degree of transpiration (Davies 
1995). Absorption of Pb from soil increases with the increase in pH from 3 to 8.5, 
while at pH 5.5 to 7.5, its solubility is controlled by phosphate or carbonate ions 
(Sharma and Dubey 2005). Plants’ root absorbs the Pb through apoplastic pathway 
or via Ca2+ permeable channels (Rudakova et al. 1988; Pourrut et al. 2011). After 
uptake, it accumulates primarily in root cells, due to the blockage by the Casparian 
strips inside the endodermis. Further, lead is also trapped by the negative charges 
that exist on the roots’ cell wall (Seregin and Ivaniov 1997, 2001). At root surface, 
Pb binds to carboxyl groups of mucilage uronic acids which restrict the Pb uptake 
into the root and form an important barrier to protect root system (Morel et al. 
1986). Plant growing in Pb-contaminated medium exerts several adverse effects. 
Accumulation of lead in plants exerts several deleterious effects on morphological, 
physiological, and biochemical function of plants, either directly or indirectly. 
When Pb enters inside the cells, it causes toxicity by altering cell membrane perme-
ability, by reacting with active groups of metabolic enzymes, by replacing essential 
ions, and by complex formation with phosphate group of ADP or ATP. Lead toxicity 
causes inhibition of enzyme activities, disturbed mineral nutrition, water imbalance, 
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hormonal disturbances, inhibition of ATP production, lipid peroxidation, change in 
membrane permeability, and DNA damage by overproduction of reactive oxygen 
species (ROS) (Sharma and Dubey 2005; Pourrut et al. 2011; Sethy and Ghosh 
2013). Further, high concentration of Pb in growing medium causes inhibition of 
seed germination, root and stem elongation, and leaf expansion (Morzck and 
Funicclli 1982; Gruenhage and Jager 1985). The extent of inhibition of root elonga-
tion depends on the concentration and ionic composition of lead and pH of the 
growing medium (Gruenhage and Jager 1985).

2.2.8  Manganese

Manganese (Mn) is an essential element for plant with a key role in various physi-
ological processes particularly in photosynthesis and as an enzyme antioxidant 
cofactor. In plant cell, it exists as a cation in several complexes and can form metal-
loproteins in which Mn is tightly bound, probably to produce an appropriate protein 
conformation. Deficiency of Mn also affects the photosynthesis by affecting water- 
splitting system of photosystem II, which provides necessary electrons for photo-
synthesis (Buchanan et al. 2000). Mn deficiency occurs mostly in severely weathered 
sandy and organic soil having pH more than 6 (Alloway 2008). Mn has low phloem 
mobility, resulting in typical leaf symptoms of Mn deficiency which initially devel-
ops into premature leaves. In biological system Mn exists in many states preferably 
as II, III, and IV. In soil divalent state, i.e., Mn(II), is the most soluble form, while 
Mn(III) and Mn(IV) are very less soluble (Guest et al. 2002). The bioavailability of 
Mn in soil is influenced by soil pH and redox potential of Mn. Lower pH (<5.5) and 
increased redox potential of Mn increase the amount of soluble Mn(II) in soil 
(Kogelmann and Sharpe 2006; Watmough et al. 2007). Higher soil pH (up to 8) 
favors chemical autoxidation of Mn(II) causing the formation of MnO2, Mn2O3, 
Mn3O4, and Mn2O7 which are normally unavailable (Ducic and Polle 2007; 
Humphries et al. 2007). Moreover, high pH also causes adsorption of Mn on soil 
particles, thereby decreasing their bioavailability to plants (Fageria et al. 2002). Mn 
is transported from root to aerial parts via the transpiration stream and accumulates 
in leaves which did not re-mobilize to other aerial parts through the phloem 
(Loneragan 1988). Accumulation of high concentration of Mn in leaves causes 
reduced rate of photosynthesis (Kitao et al. 1997a, b). Mn toxicity causes necrotic 
brown spots on leaves which start from the lower leaves and progresses with the 
time toward upper leaves (Horiguchi 1988; Wu 1994). Furthermore, with the time, 
the number and size of necrotic spots increase, resulting in necrotic lesions, leaf 
browning, and finally death (Elamin and Wilcox 1986a, b). Mn toxicity has also 
been attributed for the crinkled leaf, chlorosis, and browning of the youngest leaf, 
petiole, and stem tissues (Wu 1994; Bachman and Miller 1995). Probably, 
Mn-induced iron deficiency is the possible reason for chlorosis in younger leaves 
(Horst 1988). Mn toxicity is also associated with the brown coloring and sometimes 
cracks in roots (Bot et al. 1990a, b; Foy et al. 1995). Accumulation of Mn in leaves 
inhibits synthesis of chlorophyll by blocking iron, a concerning process resulting in 
the decrease in photosynthesis (Clarimont et al. 1986).
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2.3  Heavy Metal Tolerances

Roots are the primary contact sites in terrestrial plants with exposure to metal. In 
case of aquatic plants, the whole plant body is exposed to metal present in growing 
medium. The growing medium contains essential and non-essential metals which 
on excess become toxic resulting in inhibition of growth and development and even 
death of the plant. In order to survive, plants have evolved some efficient and spe-
cific mechanisms to deal with the heavy metal stress. The adaptive mechanism 
evolved by plants to cope up with metal stress includes immobilization, plasma 
membrane exclusion, restriction of uptake and transport, synthesis of specific heavy 
metal transporters, induction of stress proteins, chelation and sequestration by spe-
cific ligands, etc. (Cobbett et al. 2000; Clemens 2006; Dalcorso et al. 2008; Hossain 
et al. 2009; Hossain and Fujita 2009; Sharma and Dietz 2009; Hossain et al. 2012a, 
b; Adrees et al. 2015a, b). Cellular mechanism for metal tolerance involves two 
basic approaches to keep low concentration of toxic metal ions in cytoplasm by 
preventing metal from being transported across the plasma membrane. It can be 
achieved either by increasing binding of metal ions to cell wall or by pumping out 
the metal from cell by active efflux pumps. Another approach is detoxification of 
toxic metal ions by inactivation via chelation or conversion of toxic metal ion into 
less toxic forms (Zhu et al. 2004).

2.3.1  Cellular Exclusion of Heavy Metals

Cellular exclusion of heavy metals is an important adaptive system for plants to 
tolerate the heavy metal toxicity. A large fraction of heavy metals are found in the 
apoplastic space in plant roots. Tice et al. (1992), defined apoplastic and symplastic 
aluminum fraction in root tips of Al-intoxicated wheat (i.e., Al-sensitive and 
Al-tolerant wheat cultivars) and reported that at equal external Al concentrations, a 
sensitive wheat cultivar had more symplastic Al than a tolerant cultivar suggesting 
exclusion mechanism. They also suggested that the distribution of Al in two culti-
vars did not support a symplastic detoxification hypothesis, but the role of cytoplas-
mic exclusion remains disturbed. The transporter proteins are potentially involved 
in the cellular exclusion of toxic metal ions from the symplastic to apoplastic space. 
Further, cytoplasmic exclusion could be accomplished through selective permeabil-
ity of plasma membrane, formation of a plant-induced pH barrier in the rhizosphere, 
immobilization of metal on the cell wall, or exudation of chelating ligands (Taylor 
1991; Tice et al. 1992).

2.3.2  Heavy Metal Complexation at Cell Wall-Plasma Membrane

When a plant cell is exposed with heavy metals, the cell wall-plasma membrane 
interface accumulates large portion of heavy metals. Iwasaki et al. (1990), reported 
that about 60 % of the total root Cu was bound to the root cell walls and plasma 
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membranes in Italian ryegrass (Lolium multiflorum) and red clover (Trifolium 
pratense L.). Exchange site present on the cell wall determines the cation exchange 
capacity (CEC). Masion and Bertsch (1997), reported that a sensitive wheat cultivar 
have low cell wall CEC concentration and show less tolerance to Al, while a tolerant 
cultivar have a high concentration of cell wall CECs and show high tolerance to Al. 
Further, the sensitive wheat cultivars showed a higher affinity for aluminum than 
tolerant cultivars which indicate that tolerance mechanism is based on the cell wall 
permeability.

2.3.3  Sequestration Within Vacuoles

Vacuole is commonly considered as the main storage cell organelle for metals in 
plant, and there is evidence that phytochelatin-metal complexes are driven into vac-
uole (Salt and Rauser 1995). There are several studies showing that the vacuole is 
the site for the accumulation of heavy metals (Ernst et al. 1992; De 2000). Once a 
plant cell is exposed to any toxic metal ions, it mechanizes various strategies to cope 
with the metal toxicity. Intracellular sequestration or vacuole compartmentalization 
is also one of them, in which toxic metals are transported either out of the cell 
sequestrated into vacuole, thereby removing it from the cytosol or other cellular 
compartments where sensitive metabolic activities take place (Clemens 2006; 
Dalcorso et al. 2010). In some hyperaccumulator plants, vacuole compartmentaliza-
tion of metal is also a part of tolerance mechanism. It has been reported that the 
hyperaccumulator plants enhance their metal tolerance by compartmentalizing most 
of the intracellular metal present in leaves into vacuole (Kramer et al. 2000). Further, 
the two proton pumps, i.e., vacuolar proton-ATPase (V-ATPase) and vacuolar 
proton- phosphatase (V-Ppase), strengthen vacuolar uptake of most solutes. The 
uptake of metal ions can be catalyzed either by channels or by transporters. To date, 
a wide range of gene families have been identified which are probably involved in 
transition of metal ions uptake into cell, vacuole sequestration, remobilization of 
metal from vacuole, xylem loading, and unloading of metals. Several metal trans-
porter proteins have been also reported, viz., zinc-regulated transporter (ZRT), iron- 
regulated transporter (IRT), ATP-binding cassette (ABC) transporters, the P-type 
metal ATPases, multidrug resistance-associated proteins (MRP), natural resistance- 
associated macrophage protein (NRAMP) family, ABC transporters of the mito-
chondria (ATM), cation diffusion facilitator (CDF) family of proteins, copper 
transporter (COPT) family proteins, yellow-stripe-like (YSL) transporter, Ca2+ cat-
ion antiporter (CAX), and pleiotropic drug resistance (PDR) transporters (Lee et al. 
2005; Kramer et al. 2007; Chiang et al. 2006; Dubey 2011; Hossain et al. 2012a, b).

2.3.4  Metal Chelation by Phytochelatins

To protect themselves from toxicity of heavy metals, chelation of metal ions with 
high-affinity ligands is one of the prevailing mechanisms of metal detoxification 
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and tolerance in plants. When a toxic metal enters in a plant cell, it may be scav-
enged by amino acids, organic acids, and tripeptide GSH or by specific metal- 
binding ligands. The two classes of peptides or metal-binding ligands are 
phytochelatins (PCs) and metallothioneins (MTs). The role of phytochelatins in 
metal detoxification and tolerance has been widely studied in plants (Zenk 1996; 
Cobbett 2000; Clemens 2001; Mishra et al. 2006). Phytochelatins are not present 
only in plant cells but have also been reported in fungi and other organism (Grill 
et al. 1987; Gekeler et al. 1988; Piechalak et al. 2002). Phytochelatins are small, 
cysteine-rich polypeptides which have potential to form complex with heavy metal 
ions via thiolate coordination. The general structure of phytochelatin is (γ-Glu- 
Cys)nX, in which X is Gly, γ-Ala, Ser, or Glu and n is the number of peptides = 
2–11. Most of the common forms of PCs have 2–4 peptides. The biosynthesis of 
phytochelatins is activated in the presence of heavy metals; however, Cd has been 
reported as the strongest inducer (Grill et al. 1987). PCs are synthesized from gluta-
thione (GSH; (γ-Glu-Cys-Gly)) and related compounds (Fig. 2.1). Their biosynthe-
sis is catalyzed by the enzyme phytochelatin synthase (γ-glutamylcysteine dipeptidyl 
transpeptidase) which gets activated in the presence of metals (Tomaszewska et al. 
1996; Vatamauniuk et al. 2000).

Metal binds to the constitutively PC synthase, thereby activating it to catalyze the 
conversion of glutathione to phytochelatin. Glutathione is the substrate of the phy-
tochelatin which is synthesized from its constituent amino acids, i.e., L-cystein and 

L-Cysteine + L-Glutamate

γ- ECS

γ- Glutamylcysteine

Glutathione

Phytochelatin

Glycine
GS

PC synthase

Cd

Fig. 2.1 Biosynthesis of phytochelatins in plants (Zenk 1996; Mejare and Bulow 2001)
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L-glutamate, in two consecutive steps. In the first step, i.e., the formation of 
γ-glutamylcysteine from L-cystein and L-glutamate is catalyzed by γ-glutamyl-cys 
synthetase (γ-ECS), while in second step glycine is added to γ-glutamylcysteine by 
glutathione synthetase (GS). The γ-glutamyl-cys synthetase is dependent on the 
availability of cysteine and feedback regulated by glutathione (Zenk 1996; Mejare 
and Bulow 2001).

Further, PCs form complexes with metal ions in cytosol and subsequently trans-
port them into vacuole and protect plant cell from the toxic effects of metals (Salt 
and Rauser 1995).

2.3.5  Metal Chelation by Metallothioneins

Metallothioneins (MTs) are cysteine-rich (more than 30 % from all amino acids), 
metal-binding, low-molecular-mass proteins (2–16 kDa) that play a crucial role in 
detoxification and metabolism of metals. MTs have a unique property of binding 
d-block metal ions through the 20 cysteinyl groups which are abundant in their 
structural constituent. MTs were first reported by Margoshes and Vallee in 1957, 
from a horse renal cortex tissue (Margoshes and Vallee 1957). Metallothioneins 
have been well reported in bacteria, fungi, and plants (Lerch 1980; Kagi 1991; 
Murphy and Taiz. 1995; Suzuki et al. 2002; Ryvolova et al. 2011). On the basis of 
cysteine residue, plant MTs have been subcategorized into three classes, i.e., Cys- 
Cys, Cys-X-Cys, and Cys-X-X-Cys motifs (in which X denotes an amino acid). The 
biosynthesis of MTs (gene-encoded polypeptides) is induced by many factors 
including cytotoxic agents, hormones, and heavy metals (Kagi 1991; Yang et al. 
2005; Zhou et al. 2006). Ahn et al. (2012) reported that there are three MT genes, 
viz., BrMT1, BrMT2, and BrMT3, in Brassica rapa which regulates the biosynthe-
sis of MTs under the several metal stress condition. Furthermore, it has also been 
reported that MTs play an essential role as a Zn donor for several essential metal-
loproteins comprising matrix metalloproteinases and zinc fingers (Ryvolova et al. 
2011).

2.4  Conclusions

Heavy metals/metalloids are important class of inorganic contaminants which enter 
into the soil and water through various natural and anthropogenic sources. Although 
some metals like Fe, Cu, Zn, Ni, etc. at required levels are essential for normal 
growth and metabolism of plants, however, their exposures at high concentration 
cause several negative impacts on the plant growth. Some metals such as As, Pb, Cr, 
Cd, etc. are non-essentials, and its contamination in growing medium causes vari-
ous negative health effects. For terrestrial plants, roots are the primary contact sites 
exposed directly to the metal contaminants while, in case of aquatic plants, the 
whole plant body is exposed to metal present in growing medium. Metal contamina-
tion in growing environment causes disturbances in the physiological and 
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biochemical processes of plants resulting in altered metabolism, growth reduction, 
lower biomass, chlorosis, necrosis, wilting, water imbalance, etc.

Heavy metals/metalloids differ in their affinity for O-, N-, and S-containing 
ligands depending on the physical and chemical properties of the heavy metals/
metalloids ions. The metal toxicity is influenced by the binding ability of metals to 
various ligands present in metal biological system such as carboxylate ion, imidaz-
ole, sulfhydryl group, and aliphatic amine. In order to survive, plants have evolved 
many efficient and specific mechanisms to cope up with the metal stress. Adaptive 
mechanisms evolved by plants to deal with metal stress are immobilization, plasma 
membrane exclusion, restriction of uptake and transport, synthesis of specific heavy 
metal transporters, induction of stress proteins, chelation and sequestration by spe-
cific ligands, etc. Increasing research about the natural variation in the potential of 
plants to accumulate, tolerate, and detoxify heavy metals provides us wealthy infor-
mation. Therefore, an extensive knowledge from various research domains will fur-
ther increase our understanding about the fundamental mechanism involved in 
hyperaccumulation which allows us to find out that plants are more suitable for 
remediation of heavy metal-contaminated environment.
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Abstract
Increased anthropogenic activities have aggravated the different chemical pollut-
ants (xenobiotics) in the environment. Xenobiotics are any chemical or other 
substance that cannot be utilized by plants for their growth and development. 
Xenobiotics alone and/or in combination can affect the growth and physiology of 
every organism, which varies species to species. It may also affect the coordi-
nated signalling pathways that alter the gene expression and regulation in higher 
plants. Therefore, plants have developed the mechanism for the mobilizations of 
xenobiotics which include three phases, i.e. transformation, conjugation and 
compartmentation. Further, plants have also evolved various detoxification pro-
cesses for these xenobiotics. Therefore, in this chapter the different fates of xeno-
biotics in plant system as well as their signalling and detoxification processes are 
discussed in detail.

Keywords
Detoxification • Fates • Signalling • Xenobiotics

3.1  Introduction

Xenobiotics (from the Greek word for foreign chemicals) can be defined as any 
chemical or other substance that cannot be utilized by plants for energy yielding 
processes and it is not normally found in the ecosystems. Plants, like other organ-
isms in the environment, are continually exposed to natural and synthetic 
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xenobiotics such as heavy metals/metalloids (i.e. lead, cadmium, arsenic, etc.), 
allelochemicals (cinnamic acid, benzoic acid, etc.), organic pollutants (trinitrotolu-
ene, phenanthrene, etc.), pesticides (atrazine, chlorpyriphos, cypermethrin, endo-
sulfan, etc.) and air pollutants (Zhang et al. 2007; Riechers et al. 2010). These 
xenobiotics may originate from both natural (fires, volcano eruptions, soil or rock 
erosion, biodegradation) and anthropogenic (air and soil pollution, herbicides) 
sources. They may also be characterized according to their environmental targets 
(air, soil and water) and biological targets (e.g. plants, fungi, mammals and inverte-
brates). Phytochemical crop protection leads to the release of xenobiotic molecules 
into the environment by volatilization, spray drift, runoff, leaching and absorption. 
Such xenobiotics cannot be used for nutrition or as a source of energy, but are nev-
ertheless taken up and accumulate. Exposure of organisms to xenobiotic materials 
is considered significantly in order to understand the environmental and toxicologi-
cal chemistry. Combinations of chemical pollution have complex biological effects 
that are difficult to predict from the effects of single contaminants (Devier et al. 
2011; Serra et al. 2013). To detoxify the xenobiotics toxicty, higher plants perform 
activation or deactivation reactions for their transformation and the rate of xenobi-
otic transformation depends upon plant species (Saari et al. 1994; Wink 1997). 
Their mode of action showed that some xenobiotics have an acute (death) or chronic 
toxicity (e.g. carcinogenesis, mutagenesis) on organisms. Consequently, plants 
must mount specific and coordinated defence mechanisms for survival under 
adverse growing conditions through a coordinated network system (Zhang et al. 
2007; Ramel et al. 2012). Plants are also capable to metabolize a diverse range of 
xenobiotics, notably organic pollutants and pesticides, using enzymes that are nor-
mally used in the synthesis and processing of endogenous natural products (Cole 
and Edwards 2000). Herbicides that are used as selective graminicides in wheat, 
such as the aryloxy phenoxy propionates and phenylureas, are more readily detoxi-
fied in the crop than in competing grass weeds (Owen 2000). Significantly, the long- 
term use of these herbicides has helped to select populations of weeds, especially 
black-grass, which have developed resistance to multiple classes of herbicides due 
to an enhanced ability to detoxify graminicides (Hall et al. 1997). Thus, in this chap-
ter we have addressed the fates of xenobiotics, their signalling and detoxification in 
higher plants.

3.2  Fate of Xenobiotic in Higher Plants

Fate of xenobiotics in plant cells are determined by the uptake, metabolism and 
compartmentation. The presence and expression of these xenobiotics in cellular sys-
tems vary with different plant species, and it is the basis for differences in rates of 
detoxification and their tolerance. In general, metabolism of an organic pollutant 
requires its penetration into a living plant cell, and this necessarily involves the pas-
sage across the plasma membrane. The majority of xenobiotics are lipophilic 
organic compounds. Uptake of xenobiotics takes place across the membrane usually 
passively along the concentration gradient. However, occasionally a specific mem-
brane protein that exists for their transport as well as some endogenous metabolite 
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may transport it. In plants, the leaves have lipophilic wax layer on their surface that 
collects the pollutants and helps in their penetration into the tissues. In the apoplas-
tic compartment, there are certain enzymes that catalyse the chemical modifications 
that can affect the uptake and subsequent metabolism of compounds. For example, 
apoplastic carboxylesterases catalyse the hydrolysis of non-ionized esters to car-
boxylic acid anions with reduced lower lipophilicity. When any organic compound 
enters to the plant cell, it can be either transported to the vacuole without any modi-
fication or metabolized, and then the final products are transported to the vacuolar 
compartments. Vacuolar compartmentation is a critical step in the detoxification of 
organic metabolites because it eliminates conjugated products from vulnerable sites 
of the cytosol. For the chemical modifications or metabolization of xenobiotics, 
higher plants involved three major phases known as Phase 1 or conversion, Phase II 
or conjugation and Phase III or compartmentation (Saari et al. 1994). In Phase I 
reaction, hydrolysis is catalysed by esterases and amidases, but the major reactions 
are oxidations catalysed by the cytochrome P-450 system which are responsible for 
the chemical modification of lipophilic xenobiotics in plants that include non-syn-
thetic processes such as reduction and oxidation. Phase II reaction involves in syn-
thetic reaction (synthesis) in which plants often add sugar moieties with aid of 
UDP-O-glucosyltransferase and UDP-N-glucosyltransferase, and the resulting glu-
cosyl derivatives are frequently acylated with malonic acid by –O– or –N– methyl-
transferases. In case of plants special importance is attributed to 
glutathione- S-transferases (GSTs) of which different isoforms with varying speci-
ficities exist, and these glutathione-S-transferases conjugate xenobiotics with 
reduced glutathione (Timmermann 1989). Although the products of Phase I reac-
tions are more water soluble than the parent xenobiotic, the primary function of this 
phase is to create reactive sites in the xenobiotic by the addition or exposure of 
functional group (e.g. hydroxyl or carboxyl) that will prepare the compound for 
conjugation reactions. In Phase III reaction, the formed xenobiotic conjugates are 
converted to secondary conjugates or insoluble bound residues and transported from 
cytosol to the vacuole or other compartments like the cell wall of plant cells for cel-
lular detoxification (Holton and Cornish 1995). A schematic representation of local-
ization of the reactions and enzymatic systems involved in xenobiotics detoxification 
in the plant cells is shown in Fig. 3.1.

The transport of xenobiotics and sequestration of their conjugates in the vacuole 
were mediated with the help of specific transporters that belong to the ATP-binding 
cassette (ABC) transporter superfamily, cytochrome P450 mixed-function oxidases 
(CYPs), family 1 glucosyltransferases and glutathione transferases (Rishi et al 
2004; Baerson et al. 2005; Zhang et al. 2007). The multidrug resistance-associated 
protein (MRP) is also responsible for the transport of conjugates across the tono-
plast in plants. Further, the exploration of genomic databases of Arabidopsis thali-
ana reveals that there are eight members of the AtMRP family. Hitherto, only three 
of these genes (AtMRP1, AtMRP2 and AtMRP3) and the proteins they encode have 
been characterized in detail. Analogous to MRP family, other ABC transporters are 
likely to play an imperative role in the distribution, compartmentation and detoxifi-
cation of organic xenobiotics (Rea et al. 1998; Davies and Coleman 2000). 
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Heterologous expression in Saccharomyces cerevisiae has shown that all above 
three proteins catalyse the transport of glutathione conjugates. AtMRP2 and 
AtMRP3 exhibit transport of malonylated chlorophyll catabolites that are produced 
during leaf senescence, and AtMRP3 confers cadmium resistance. This difference 
may reflect the capacity of plants for synthesizing and sequestering large numbers 
of secondary compounds, and this capability is useful asset for mobilization tech-
niques. Several molecules such as TNT or atrazine may bind to the cell wall poly-
mers (cellulose or lignin) whilst lipophilic molecules will partition into the lipid 
phases of the cell (membranes). Such immobilization of the xenobiotics will lower 
translocation and excessive accumulation. Comparatively, organic chemical con-
taminants’ royal demolition explosive (RDX) are readily translocated to the leaves 
in the transpiration stream and can be accumulated there in amounts, exceeding the 
safety limit, and can cause damage to the tissue.

3.3  Signalling Response to Xenobiotics

As evident, the xenobiotics are the chemicals compounds that are not internally 
produced in plants species, and their exposure is continuously increasing in plants, 
due to enhanced industrial pollutants. To cope with these xenobiotics, plants have 
evolved different tolerance mechanism and signal perceptions (Mittler et al. 2004; 

Xenobiotics (X)

Phase I
Transformation

Oxidative
Stress

Phase II

Conjugation

Toxic Xenobiotics (TX)

X-OH

X-O-R

Inactivation

Phase III

Phase III

Phase III

X-OH

X-O-R

X

Compartmentation

Fig. 3.1 A schematic representation of fate of xenobiotics in the plant cells

S. Singh et al.



43

Ramel et al. 2007, 2012). Sequential analysis of DNA arrays and gene expression 
have established the transcriptomic profile on the effects of xenobiotic in higher 
plants (Ekman et al. 2003, 2005; Unver et al. 2010; Weisman et al. 2010; Jin et al. 
2011; Peng et al. 2011). The varieties of xenobiotic treatments (trinitrotoluene, atra-
zine, glyphosate, phenanthrene, polychlorinated biphenyls, naphthalene, fenclorim) 
provide reliable information for the gene expressions in plants. The effects of xeno-
biotics in plants were confirmed by the utilization of genome-wide approaches 
showing xenobiotic-induced gene networks involving induction and repression of 
hundreds of genes, as in the case for other abiotic stress responses (Desikan et al. 
2001; Mittler et al. 2004). In the plant system, several sets of genes such as cyto-
chrome P450s, glutathione-S-transferases (GSTs), thioredoxins and peroxidases are 
induced for the detoxification and cell protection against xenobiotics toxicity 
(Ekman et al. 2003; Ramel et al. 2007; Skipsey et al. 2011). They are also able to 
provoke responses against uncountable natural products like plant hormones, 
endogenous toxic compounds, allelochemicals, reactive oxygen species (ROS), 
pathogen-associated molecular patterns, etc. A comparison of phenanthrene- 
induced responses with a panel of 27 signalling condition has been reported by 
Weisman et al. (2010), and they have shown significant positive correlations between 
phenanthrene and reactive oxygen species-induced responses (Arabidopsis thali-
ana). In addition to this, safeners are agrochemicals which are known to selectively 
protect crop plants from herbicide damage without reducing the activity in target 
weed species by elevating the expression of xenobiotic detoxifying enzymes, such 
as glutathione-S-transferases (GSTs). Herbicide safener-induced responses are pos-
itively correlated with responses of reactive electrophilic species oxylipins in 
Arabidopsis thaliana (Riechers et al. 2010; Skipsey et al. 2011) and also with 
responses of the allelochemical benzoxazolin-2(3H)-one (Baerson et al. 2005; 
Riechers et al. 2010). The above discussed correlations may be attributed to com-
mon chemical property like the electrophilic strength of these compounds whether 
exogenous or endogenous. However, it remains difficult to ascribe specific mecha-
nisms to such similarity in the patterns of transcriptomic responses. Interactions 
between transcription factors or signalling pathways may be involved (Ramel et al. 
2007; Ehlting et al. 2008; Riechers et al. 2010). Further, the ZAT12 and bZIP60 
transcription factors, which are associated with the atrazine tolerance response of 
Arabidopsis thaliana (Ramel et al. 2007), are involved against oxidative stress 
(Davletova et al. 2005; Iwata and Koizumi 2005). However, the metabolism of sig-
nalling molecules, such as phytohormones, can also be regulated by xenobiotics. 
Herbicides (Ramel et al. 2007) and herbicide safeners (Riechers et al. 2010; Skipsey 
et al. 2011) affect genes involved in oxylipin and jasmonate metabolic pathways, 
and neonicotinoid insecticides induce endogenous synthesis of salicylate (Ford 
et al. 2010). Various xenobiotics with important biochemical consequences are 
known to induce ROS production. The ROS can function as cellular second mes-
sengers that are likely to modulate many different genes and proteins, thus leading 
to a various responses (Jaspers and Kangasjarvi 2010). The ROS produced by 
membrane- bound NAD(P)H oxidases in plant cells activate the calcium channels in 
plasma membrane which leads to further rise in cytosolic calcium concentration 
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(Foreman et al. 2003; Mori and Schroeder 2004). This increased cytosolic calcium 
level activates the downstream signalling that involves MAPK pathway, and with 
ROS this pathway superficially exerts a direct and central role in induction and sta-
bilization of the MAPK cascade (Kagami et al. 2005; Doczi et al. 2007).

3.4  Detoxification Process of Xenobiotics

Plants have versatile detoxification systems to counter the phytotoxicity of the wide 
variety of natural and synthetic chemicals (xenobiotics) that are present in the envi-
ronment. The regular application of protectant for the survival of crop from 
unwanted threats leads to accumulation of xenobiotic molecules into the environ-
ment. The resulting pollution of soil and water frequently consists of mixtures of 
pesticides (fungicides, insecticides and herbicides) associated with related degrada-
tion products and adjuvants. Combinations of these xenobiotics have complex bio-
logical effects that are from the effects of a single pollutant (Devier et al. 2011; 
Serra et al. 2013). As sessile organisms, plant communities are the direct targets of 
residual agricultural pollution, whether airborne, waterborne or accumulated in 
soils. These pollutants can affect growth and development of nontarget organisms, 
with varying toxicity that depends on surrounding physicochemical factors. Such as 
triazine, herbicides can increase the toxicity of organophosphate insecticides 
(Hernández et al. 2012). The toxicity of a mixture of pesticides also involves the 
effects of derived degradation products. The broad-spectrum nonselective herbicide 
glyphosate and its main degradation product, aminomethylphosphonic acid 
(AMPA), are often found in freshwater ecosystems (Székács and Darvas 2012). 
Glyphosate affects plants by blocking the shikimate pathway of synthesis of aro-
matic amino acids (Steinrücken and Amrhein 1980). Although described as less 
toxic, AMPA has been reported to be phytotoxic for soybean (Glycine max) and 
canola (Brassica napus) through unknown mechanisms (Reddy et al. 2004; Nandula 
et al. 2007). Serra et al. (2013) have reported that combinations consisting of the 
herbicide glyphosate, the fungicide tebuconazole, the glyphosate degradation prod-
uct aminomethylphosphonic acid (AMPA) and the atrazine degradation product 
hydroxyatrazine negatively affected the growth and physiology of Arabidopsis 
thaliana. Thus, plants have evolved strategy for coping with the potentially negative 
impacts of xenobiotics on plant growth and development. This is particularly evi-
dent in the capability for metabolic detoxification of xenobiotics; plants are able to 
detoxify herbicides by complex multistep processes that exhibit extraordinary 
diversity among species (Kreuz et al. 1996). Therefore, under these conditions 
plants have evolved various detoxification mechanisms for the survival. These 
detoxification mechanisms have been discussed in this section of this chapter and 
the summary is presented in Table 3.1.
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3.4.1  Glutathione-Mediated Detoxification of Xenobiotics

One important detoxification mechanism is chemical modification of the xenobiotic 
by covalent linkage to the endogenous glutathione. The resulting glutathione conju-
gates are exported from the cytosol to the vacuole by an ATP-dependent tonoplast 
transporter. This detoxification pathway shares many features with the pathway 
used by plants for the synthesis and vacuolar deposition of secondary metabolites, 
such as anthocyanin. Glutathione (GSH) is a tripeptide having the structure Glu–
Cys–Gly, which represents the glutamate, cysteine and glycine molecules, respec-
tively. GSH is abundant in plants, typically exceeding 1 mM in the cytoplasm, and 
plays a central role in the crucial processes of detoxification and redox buffering. 
Plants also contain several GSH-dependent detoxifying enzymes, such as 
glutathione- S-transferases (GSTs), which detoxify electrophilic herbicides by cata-
lysing their conjugation with GSH (Fig. 3.2). Indeed, the enhancement of GST 
expression has become a marker for plant response to stress, although the functional 
significance of selective GST expression is only just emerging. The expression of 
specific GSTs vary markedly during plant development (cell division, senescence) 
and, after exposure to pathogens, changes in environmental conditions and chemi-
cal treatment (Marrs 1996).

Individual GST isoenzymes can selectively detoxify specific xenobiotics, with 
species differences in GST specificity and capacity determining herbicide selectiv-
ity (Cole and Edwards 2000). The glutathionylated metabolites are tagged for 

Vacuole

X

Endoplasmic 
Reticulum 

XOH

XO-gluc

X-GS
H+ZX

Cytosol

X-GS

HZGSH

UDP glucose UDP

XO-gluc
H+

Fig. 3.2 Schematic representation of xenobiotic detoxification in the plant cells. GT glucosyl-
transferase; X and Z-X are the xenobiotics (Source: Kreuz et al. 1965)
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vacuolar import by ATP-binding cassette (ABC) transporters, which selectively 
transport GSH conjugates (Ria 1999). However, the GST mainly functions by (i) 
catalyse conjugation reactions with natural products similar to those observed with 
xenobiotics, (ii) function as binding and carrier proteins for phytochemicals between 
cellular compartments and (iii) catalyse alternative GSH-dependent biotransforma-
tion reactions.

3.4.2  Sugar-Mediated Detoxification of Xenobiotics

Stress conditions such as pathogen challenge, drought, salt stress, heavy metals and 
pesticides cause accumulation of ROS, which may also be associated with soluble 
sugar accumulation that has been regarded as an adaptive response to the stress 
condition (Roitsch 1999). Although, the connections between stress and sugar accu-
mulation are difficult to understand because of these situations of stress, the corre-
sponding responses are clearly pleiotropic in terms of targets. Different classes of 
pesticides act on plants through direct induction of oxidative injury. Ashton and 
Ziegler (1987) had reported protection of Chenopodium rubrum cell suspension 
cultures by exogenous sucrose which enhanced the oxygen evolution and growth, 
thus generating less photo-oxidative damage. They also reported psbA mRNA and 
D1 protein accumulation and suggest that differential glucose/sucrose signalling 
affects the gene expression. Such carbohydrate-modulated changes of gene expres-
sion occur in a number of abiotic and biotic stress situations (Koch 1996; Rolland 
et al. 2002; Thibaud et al. 2004), and genes involved in antioxidant defence have 
been shown to be regulated by sugars and hypothesized to be under the control of a 
sugar sensor (Hauschild and von Schaewen 2003). Herbicide atrazine binds to the 
D1 protein, inhibits photosystem II (PSII) and blocks electron transfer to the plasto-
quinone pool (Zheleva et al. 1994; Rutherford and Krieger-Liszkay 2001), by pro-
duction of triplet chlorophyll and singlet oxygen. In cyanobacterial cells, singlet 
oxygen has been shown to cause direct photodamage to PS II and D1 protein 
(Nogushi 2002; Lupinkova and Komenda 2004) and prevent PS II repair by sup-
pressing elongation of D1 protein (Nishiyama et al. 2004). Furthermore, singlet 
oxygen can generate other ROS such as hydroxyl radical (Rinalducci et al. 2004) 
and superoxide radical (Ryter and Tyrrell 1998). The lethal effects of atrazine can 
be ameliorated by the exogenous treatment with sucrose and, to a lesser extent, with 
glucose that confer a very high level of atrazine tolerance to Arabidopsis seedlings 
(Sulmon et al. 2004). Similarly, sucrose treatment in broccoli enhanced the ascor-
bate content by modifications of ascorbat e biosynthesis gene expression, and these 
results were in sucrose dose-dependent manner (Nishikawa et al. 2005). Moreover, 
sugar treatment was hypothesized to act both transcriptionally and post- 
transcriptionally on the induction of cytosolic glucose-6-phosphate dehydrogenase 
(Hauschild and von Schaewen 2003). In mammalian and plant cells, increased 
glucose- 6-phosphate dehydrogenase expression has been related to resistance to 
oxidative stress (Salvemini et al. 1999; Boada et al. 2000; Debnam et al. 2004). 
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Similarly, sucrose protected atrazine-treated Arabidopsis plantlets and maintained 
the growth and oxygen evolution (Sulmon et al. 2004), thus suggesting that mecha-
nisms other than phototrophic–photoheterotrophic transitions may be involved in 
such sucrose-based protection of Arabidopsis plantlets against atrazine and singlet 
oxygen injury. Sucrose-induced attainment of defence mechanisms was shown by 
the gene expression pattern of a chloroplastic Fe-SOD and by the increase in 
glucose- 6-phosphate dehydrogenase activity. The activation of these defence mech-
anisms depends on both soluble sugar and atrazine and protected the plantlets. 
Protection by soluble sugars was concentration-dependent up to 80 mM (Sulmon 
et al. 2004). The sugar-treated plants are able to maintain PS II activity and photo-
trophic growth in the presence of atrazine up to 40 μM. Further, Ramel et al. (2009) 
reported that pretreatment of sugar improved the shoots lengths and photosynthesis 
under atrazine stress in A. thaliana. The specific correlation between pretreatment 
of sucrose and atrazine tolerance may reflect adaptive mechanisms that link sucrose 
accumulation, photosynthesis-related stress and sucrose induce stress tolerance.

3.4.3  Hormone-Mediated Detoxification of Xenobiotics

In plants, the expression of specific genes involved in the processes related to detox-
ification is responsive to xenobiotic compounds such as pesticides (Ramel et al. 
2012), suggesting that the intrinsic detoxification mechanisms of higher plants may 
be exploited to decrease pesticide residues in food produce. Brassinosteroids (BRs) 
are class of phytohormones involved in the regulation of plant growth, development 
and stress responses (Gudesblat and Russinova 2011). Previously, it has been 
reported that BRs-induced stress tolerance is associated with changes in cellular 
redox homeostasis and expression of a wide range of stress-related genes including 
those encoding P450 and GST involved in metabolism of xenobiotic compounds 
(Xia et al. 2009; Jiang et al. 2012). Ahammed et al. (2013a) have reported BRs 
induce plant tolerance against phenanthrene (PHE) and cadmium (Cd) stress. The 
foliar application of EBR (0.1 μM) to PHE- and/or Cd-stressed plants alleviated 
photosynthetic inhibition and oxidative stress by causing enhancement of the activ-
ity of the enzymes and related transcript levels of the antioxidant system, secondary 
metabolism and the xenobiotic detoxification system. Additionally, PHE and/or Cd 
residues were significantly decreased in both the leaves and roots after application 
of EBR, more specifically in PHE + Cd-stressed plants when treated with EBR, 
indicating a possible improvement in detoxification of these pollutants. These 
results suggest a potential interaction of EBR for PHE and Cd stress alleviation. 
These results advocate a positive role for EBR in reducing pollutant residues for 
food safety and also strengthening phytoremediation. Zhou et al. (2015) show that 
brassinosteroids (BRs) decreased the residues of common organophosphorus, 
organochlorine and carbamate pesticides by 30–70 % in tomato, rice, tea, broccoli, 
cucumber, strawberry and other plants when treated externally. Genome-wide 
microarray analysis showed that fungicide chlorothalonil (CHT) and BR co- 
upregulated 301 genes, including a set of detoxifying genes encoding cytochrome 
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P450, oxidoreductase, hydrolase and transferase in tomato plants. The level of BRs 
was closely related to the respiratory burst oxidase 1 (RBOH1)-encoded NADPH 
oxide-dependent H2O2 production, glutathione biosynthesis and the redox homeo-
stasis and the activity of glutathione-S-transferase (GST). Gene silencing treatments 
showed that BRs decreased pesticide residues in plants likely by promoting their 
metabolism through a signalling pathway involving BRs-induced H2O2 production 
and cellular redox change. Their study provides a novel approach for minimizing 
pesticide residues in crops by enhancing pesticide degradation through enhanced 
glutathione metabolism and glutathione-S-transferase (GST) activity via a respira-
tory burst oxidase homologue1 (RBOH1)-dependent pathway. It has been shown 
for a number of xenobiotics, especially for some pesticides, that the corresponding 
conjugates are sequestered in the vacuole (Coupland 1991). For example, the plant 
growth regulator (2,4-dichlorophenoxy) acetic acid (2,4-D) diffuses into plant cells 
(Phaseolus vulgaris), where it becomes hydroxylated in the 4-position. The hydrox-
ylation occurs via the “NIH shift” (an NIH shift is a chemical rearrangement where 
a hydrogen atom on an aromatic ring undergoes an intramolecular migration pri-
marily during a hydroxylation reaction) mechanism which involves the displace-
ment of the Cl group (Thomas et al. 1964). The 4-OH-2,5-D is then glucosylated 
and malonylated; O-(malonyl)glucosyl 4-OH-2,4-D is stored in the vacuole (Schmitt 
and Sandermann 1982; Sandermann 1987). In the soya bean, 2,4-D forms amide 
conjugates with various amino acids instead (especially glutamyl and aspartyl 
derivatives) (Mumma and Davidonis 1983). In addition, the precursor of ethylene is 
stored as 1-(malonylamino)-cyclopropane-1-carboxylic acid in the vacuole 
(Bouzayen et al. 1989). The herbicide paraquat slowly accumulates in the vacuoles 
of root cells of maize seedlings, but is also translocated to the shoot (DiTomaso 
et al. 1993).

3.4.4  Safener-Mediated Detoxification of Xenobiotics

Another interesting feature of the xenobiotic detoxification system of some mono-
cotyledonous crop species is infusibility by certain synthetic compounds collectively 
named “safeners”. Safeners are the group of chemically diverse compounds with the 
unique ability to protect grasses from herbicide injury without reducing herbicide 
activity in target weed species (Davies and Caseley 1999; Hatzios and Burgos 2004). 
Safeners protection from herbicide injury is accomplished by increasing the expres-
sion of genes encoding herbicide-metabolizing enzymes, such as the glutathione-
S-transferases (GSTs), cytochrome P450 and several others (Hatzios 1989; Farago 
et al. 1994; Riechers et al. 2005). Cloquintocet mexyl (safener) selectively increased 
O-glucosyltransferase activities against 4-nitrophenol and 2,4,5- trichlorophenol in 
wheat plant (Brazier et al. 2002). There are various classes of safeners which have 
been developed to enhance herbicide tolerance in maize (Zea mays), grain sorghum 
(Sorghum bicolor), rice (Oryza sativa) and small-grain cereals. Walton and Casida 
(1995) have characterized the safener-binding protein; along with this Scott-Craig 
et al. (1998) observed the gene expression patterns in maize seedlings. Safeners 
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induce the expression of genes involved in plant defence and detoxification, such as 
GSTs and P450s, yet they are not toxic to the target plant and confer protection from 
herbicide injury. This suggests that safeners have signalling pathway for detoxifica-
tion of endogenous toxins or xenobiotics (Riechers et al. 2005). Further, it is also 
hypothesized that safeners may utilize the oxidized lipid, i.e. oxylipins (Mosblech 
et al. 2009) and cyclopentenone-mediated signalling pathway, which later leads to 
the expression of GSTs and other proteins involved in detoxification and plant 
defence (Weber 2002; Loeffler et al. 2005; Mueller et al. 2008; Mueller and Berger 
2009). Although the safening activity toward herbicides is only reported in the cere-
als and some non-domesticated grasses (Skipsey et al. 2011; Zhang et al. 2004), the 
ability of these compounds to selectively induce xenome (xenomic response) 
enzymes also extends to most popular dicotyledonous plant, Arabidopsis thaliana 
(Edwards et al. 2005; DeRidder and Goldsbrough 2006).

3.5  Conclusion and Future Perspectives

A characteristic feature of plants and other sessile organisms is the exposure of dif-
ferent xenobiotics, which altered the growth and developments. Therefore, plants 
have evolved mechanisms for the metabolization and detoxification of these xeno-
biotics to protect themselves. Many of these xenobiotics are stored in a separate 
compartment, which is the vacuole in the case of hydrophilic compounds. The stor-
age of vacuolar defence or signal compounds is often tissue specific. Here, the vacu-
oles function as “defence or signal compartments”. It seems likely that some of 
these functions are exclusive, and not all vacuoles within one cell or within the same 
tissue must have identical properties. Other than compartmentalization, these xeno-
biotics are detoxified by different processes, i.e. glutathione, carbohydrates, hor-
mones, safeners, etc. However, the exact mechanism of these processes is still 
unknown. Thus, for better understanding in the field of xenobiotic action in plants, 
much more studies are required.
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Abstract

The major challenge faced by modern agriculture today is to overcome the 
impending serious food shortage considering the rising population even while 
battling to maintain crop yields under unfavourable environmental conditions. 
Pesticides are important chemicals recurrently applied for enhancing crop yields 
in agriculture and also for amelioration of vector-borne diseases. Rampant use of 
these chemicals has led to serious health implications to man and his environ-
ment. In developing nations (like India), 76 % of the total pesticide used is harm-
ful insecticide as against just 44 % in the developed countries. This difference in 
the pesticide usage pattern evidently affects the total cost–benefit ratio between 
these nations. It is commonly believed by the general public that ‘if little is good, 
a lot more will be better’. This unchecked and unwise use of pesticides leads to 
deposition of 95 % of pesticides in soil, water and atmosphere as well as in non-
target organisms. Consequently, pesticide residues have been found in raw as 
well as processed fruits and vegetables. Pesticides not only kill insects and weeds 
but also are toxic to a variety of other nontarget organisms like birds, fish, benefi-
cial insects and plants. Soil microflora has also been adversely affected by treat-
ment of soil with pesticides.
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Xenobiotics, such as pesticides, trigger a defence response in plants. The 
mechanism by which pesticide is perceived and the signalling is transmitted 
within plant cells still remains elusive. Various xenobiotics induce oxidative 
stress and often activate cell signalling pathways, leading to production of stress 
proteins and upregulation of antioxidants. These changes include the evolution 
of new metabolic pathways, generation/accumulation of low molecular weight 
metabolites, synthesis of special proteins, detoxification mechanisms and reduc-
tion/elevation in phytohormone levels. Comparison of metabolic pathways, 
detoxification mechanisms and variance in tolerance level of different plants to 
pesticides can aid us in designing efficient and cheap vegetative treatment sys-
tems for decontaminating soil and water containing pesticide residues. Thus, 
understanding metabolism of pesticides in plants is necessary for developing 
strategies for amelioration of their harmful effects in nontarget organisms and 
also for remediation of contaminated soil, water and atmosphere.

Keywords
Metabolic • Pesticide • Toxicity • Uptake • Translocation

4.1  Introduction

Environmental issues have aroused great concern of the general public as well as 
that of the scientific community in recent years. Many studies have been published 
related to the subject of pesticide and human health. A cursory glance over the his-
tory of pesticide use through the years in the past proves to be an eye opener. Most 
of the pesticides being used presently did not exist before World War II. Some pes-
ticides being used currently were actually developed during World War II for use in 
warfare. The organophosphate insecticides were developed as nerve gases, and the 
phenoxy herbicides (including 2,4-D) were developed to be used as a component of 
Agent Orange to defoliate large areas of jungle in the Vietnam War. However, post- 
World War II, these chemicals began to be used as pesticides in agriculture and for 
environmental spraying to eradicate mosquitoes in homes and gardens. The revolu-
tionary book, Silent Spring, authored by Rachel Carson published in 1962, first 
raised political and public awareness to the hazards posed to wildlife, humans and 
the ecosystem by the use of pesticides. “The sequel to this book was Our Stolen 
Future by Colborn et al. (1996a, b). This book documented the adverse effect of 
endocrine-disrupting chemicals on health.” Since then, there have been umpteen 
scientific studies to determine the relationship between pesticide use and human 
health hazards. The present chapter is an effort to expand upon the earlier works to 
present a collection of old and new scientific advances made in the field of biochem-
istry and xenobiotic chemicals. This chapter is substantive but not exhaustive.
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4.2  What Are Pesticides?

Pesticides are important chemicals recurrently applied in agriculture to protect crop 
plants from harmful pests like fungi, insects, mites and rodents (Freedman 1995) 
and from competition with abundant but unwanted plant species to:

 (i) Obtain a larger yield.
 (ii) Obtain crops of high quality.
 (iii) Reduce the input of labour and energy into crop production (Ayansina 2009).

They are also used to prevent diseases in livestock and to protect human beings 
from insect vector-borne diseases. The term pesticide thus includes a wide range of 
chemical compounds, viz. insecticides, fungicides, herbicides, rodenticides, mol-
luscicides, nematicides, plant growth regulators, synthetic insecticides like organo-
phosphates (OPs), carbamates, pyrethroids, herbicides and fungicides. Herbicides 
are used to control unwanted plants or ‘weeds’ in aquatic/agricultural systems to 
prevent yield losses of agronomically important crops. Organophosphate (OP) pes-
ticides are the most commonly used insecticides (Casida and Quistad 2004). They 
are widely used for agricultural and public health purposes (Infante-Rivard et al. 
1999; Kozawa et al. 2009). OPs account for approximately 50 % of the insecticides 
used globally and function primarily by inhibiting acetylcholinesterase (AChE) 
(Kamanyire and Karalliedde 2004; Ogutcu et al. 2009). In the present scenario, 
insecticides are mostly the only practical way to control the vector-borne diseases 
of humans and livestock. Pesticides are classified on the basis of:

 (i) Their origin/structure
 (ii) The pests controlled by them
 (iii) Mode/site of action (MoA)

 (i) Classification based on origin/structure of pesticides. There are two types:
 (A) Chemical pesticides
 (B) Biopesticides

 (A) Chemical pesticides have further been classified into four types on the 
basis of their origin:
 (a) Organophosphates – These are the chemical substances which are 

produced due to reaction between phosphoric acid and alcohols. 
They cause irreversible blockage of the nervous system as they 
inhibit the activity of the enzyme acetylcholinesterase. This results 
in its accumulation causing overstimulation of muscles. These 
mainly include insecticides, nerve gases, herbicides, etc.

 (b) Carbamates – They are carbamic acid esters. Their mode of action 
is like that of OPs, i.e. by inhibition of acetylcholinesterase, but 
here the bond formed for inhibition is reversible. These also 
mainly include insecticides.
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 (c) Organochlorines – These are derivatives of chlorinated hydrocar-
bons. They are endocrine-disrupting agents which affect the hor-
monal system of the body, act as duplicates of the normal hormones 
and thus cause adverse health problems. They persist in environ-
ment for a long time and accumulate in the fatty tissues of animals. 
A well-known example is DDT (dichlorodiphenyltrichloroethane).

 (d) Pyrethroids – These are potent neuro-poisons and endocrine dis-
ruptors and cause paralysis. Pyrethroids are the synthetic form of 
a natural insecticide pyrethrin, obtained from Chrysanthemum. 
These are ketoalcoholic ester derivatives of chrysanthemic and 
pyrethroic acids and are more stable in sunlight than pyrethrins. 
These insecticides are the very most popular insecticides as they 
can easily pass through the exoskeleton of the insect. Few exam-
ples of pyrethroids being currently used are deltamethrin, cyper-
methrin, etc.

 (B) Biopesticides are naturally occurring materials derived naturally from 
living organisms or their metabolites, like bacteria, fungi, plants, etc. 
These pesticides have microorganisms acting as pest controllers like 
bacteria, fungi or viruses. The strains of Bacillus thuringiensis and its 
subspecies are commonly used biopesticide. The mode of action of 
biopesticides generally is by producing a protein that binds to the lar-
val gut receptor which starves the larvae.

 (ii) Classification of pesticides based on the pests they control:

 (a) Insecticides – act especially on insects
 (b) Algicides – control/kill the growth of algae
 (c) Herbicides – control/kill weeds
 (d) Bactericides – act against bacteria
 (e) Fungicides – act against fungi.
 (f) Rodenticides – kill or prevent rodents
 (g) Larvicides – inhibit the growth of larvae
 (h) Repellents – repel pests by their taste or smell
 (i) Desiccants – act on plants by drying their tissues
 (j) Ovicides – inhibit the growth of eggs of insects and mites
 (k) Virucides – act against viruses
 (l) Molluscicides – inhibit/kill molluscs, i.e. snails usually disturbing growth 

of plants or crops
 (m) Acaricides – kill arachnids like spiders
 (n) Nematicides – kill nematodes that act as parasites of plants
 (o) Avicides – kill birds
 (p) Mothballs – are used to stop any damage to cloths by moth larvae or moulds
 (q) Lampricides – target larvae of lampreys which are jawless fish like verte-

brates in the river
 (r) Piscicides – act against fishes
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 (iii) Classification of pesticides based on MoA:

The Insecticide Resistance Action Committee (IRAC) provides the classification 
based on mode of action (MoA). Internationally recognised academic and industrial 
experts in insecticide toxicology have reviewed and approved the classification 
based on MoA by IRAC (Sparks and Nauen 2015). This classification is essential 
for the development of insecticide resistance management (IRM) strategies. 
Currently the MoA classification encompasses more than 25 different MoAs:

 1. Acetylcholinesterase (AChE) Inhibitors:
 (i) Carbamates – e.g. aldicarb, bendiocarb, carbaryl, carbofuran, carbosulfan, 

etc.
 (ii) Organophosphates – e.g. chlorpyrifos, dimethoate, fenitrothion, malathion, 

monocrotophos, etc.
 2. GABA-Gated Chloride Channel Blockers:

 (i) Cyclodiene organochlorines – e.g. chlordane, endosulfan, etc.
 (ii) Phenylpyrazoles (fiproles) – e.g. ethiprole, fipronil, etc.

 3. Sodium Channel Modulators:
 (i) Pyrethroids and pyrethrins – e.g. Allethrin, cypermethrin, pyrethrins (pyre-

thrum), α-cypermethrin, β-cypermethrin etc.
 (ii) DDT and methoxychlor

 4. Nicotinic Acetylcholine Receptor (NACHR) Competitive Modulators:
 (i) Neonicotinoids – e.g. Acetamiprid, imidacloprid, thiacloprid, etc.
 (ii) Nicotine
 (iii) Sulfoximines – e.g. Sulfoxaflor
 (iv) Butenolides – Flupyradifurone

 5. Nicotinic Acetylcholine Receptor (NACHR) Allosteric Modulators – e.g. 
spinetoram and spinosad

 6. Glutamate-Gated Chloride Channel Allosteric Modulators – e.g. abamectin, 
lepimectin, milbemectin etc.

 7. Juvenile Hormone Mimics:
 (i) Juvenile hormone analogues – e.g. hydroprene, kinoprene, and 

methoprene
 (ii) Fenoxycarb
 (iii) Pyriproxyfen

 8. Miscellaneous Non-specific (Multisite) Inhibitors:
 (i) Alkyl halides – e.g. Methyl bromide and other alkyl halides
 (ii) Chloropicrin
 (iii) Fluorides – e.g. Cryolite and sulfuryl fluoride
 (iv) Borates – e.g. Borax, boric acid, disodium octaborate, sodium borate and 

sodium metaborate
 (v) Tartaremetic
 (vi) Methyl isothiocyanate generators – e.g. Dazomet and metam

 9. Chordotonal Organ TRPV Channel Modulators:
 (i) Pyridine azomethine derivatives – e.g. pymetrozine and pyrifluquinazon
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 10. Mite Growth Inhibitors:
 (i) Clofentezine, diflovidazin and hexythiazox
 (ii) Etoxazole

 11. Microbial Disruptors of Insect Midgut Membranes:
 (i) Bacillus thuringiensis and the insecticidal proteins they produce: 
Bacillus thuringiensis var. aizawai
 Bacillus thuringiensis var. israelensis
 Bacillus thuringiensis var. kurstaki
 Bacillus thuringiensis var. tenebrionis
 (ii) Bacillus sphaericus

 12. Inhibitors of Mitochondrial ATP Synthase:
 (i) Diafenthiuron
 (ii) Organotin miticides – e.g. azocyclotin, cyhexatin and fenbutatin oxide
 (iii) Propargite
 (iv) Tetradifon

 13. Uncouplers of Oxidative Phosphorylation via Disruption of the Proton Gradient 
– e.g. chlorfenapyr, DNOC and sulfluramid

 14. Nicotinic Acetylcholine Receptor (NACHR) Channel Blockers: Nereistoxin 
analogues – e.g. bensultap, cartap hydrochloride, thiocyclam and 
thiosultap-sodium

 15. Inhibitors of Chitin Biosynthesis:
 (i) Type 0: Benzoylureas – e.g. bistrifluron, chlorfluazuron, etc.
 (ii) Type 1: Buprofezin – e.g. buprofezin

 16. Moulting Disruptor – e.g. cyromazine
 17. Ecdysone Receptor Agonists: Diacylhydrazines – e.g. chromafenozide, halofe-

nozide, methoxyfenozide and tebufenozide
 18. Octapine Receptor Agonists – e.g. Amitraz
 19. Mitochondrial Complex III Electron Transport Inhibitors:

 (i) Hydramethylnon
 (ii) Acequinocyl
 (iii) Fluacrypyrim
 (iv) Bifenazate

 20. Mitochondrial Complex I Electron Transport Inhibitors:
 (i) METI acaricides and insecticides – e.g. fenazaquin, fenpyroximate, etc.
 (ii) Rotenone

 21. Voltage-Dependent Sodium Channel Blockers:
 (i) Oxadiazines – e.g. indoxacarb
 (ii) Semicarbazones – e.g. metaflumizone

 22. Inhibitors of Acetyl CoA Carboxylase:
 (i) Tetronic and tetramic acid derivatives – e.g. spirodiclofen, spiromesifen and 

spirotetramat
 23. Mitochondrial Complex IV Electron Transport Inhibitors:

 (i) Phosphides – e.g. aluminium phosphide, calcium phosphide, phosphine 
and zinc phosphide

 (ii) Cyanides – e.g. calcium cyanide, potassium cyanide and sodium cyanide
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 24. Mitochondrial Complex II Electron Transport Inhibitors:
 (i) Beta-ketonitrile derivatives – e.g. cyenopyrafen and cyflumetofen
 (ii) Carboxanilides – e.g. pyflubumide

 25. Ryanodine Receptor Modulators:
 (i) Diamides – e.g. chlorantraniliprole, cyantraniliprole and flubendiamide

 26. Chordotonal Organ Modulators (Undefined Target Site) – e.g. Flonicamid
 27. Compounds of Unknown/Uncertain MoA:

 (i) Azadirachtin
 (ii) Benzoximate
 (iii) Bromopropylate
 (iv) Chinomethionat
 (v) Dicofol
 (vi) Lime sulphur
 (vii) Pyridalyl
 (viii) Sulphur

Although pesticides are designed to kill/inhibit organisms that damage crops or 
animals, yet, they tend to produce harmful effects on other organisms and also to 
pollute the environment. Pesticides when used in high quantities can sometimes be 
lethal. According to the estimates of the World Health Organization (WHO), there 
are about 3,000,000 pesticide poisoning cases each year, with resultant 220,000 
deaths worldwide (Jaga and Dharmani 2003, WHO 2007). The use of biopesticides, 
however, causes reduced negative effects as compared to chemical pesticides (Aktar 
et al. 2009; Chandler et al. 2011; Kumar and Singh 2015).

4.3  Sources of Pesticide Pollution

The major challenge faced by agriculturists today is to overcome the impending 
serious food shortage considering the continuously increasing population and to 
maintain the quantity and quality of crop yields even under unfavourable environ-
mental conditions. According to the ‘World Population Prospects: The 2015 
Revision’ published by the Department of Economic and Social Affairs, Population 
Division (United Nations), the world population is expected to increase by more 
than one billion within the next 15 years. It is expected to reach up to 8.5 billion in 
2030 and to increase still further to 9.7 billion in 2050 and 11.2 billion by the year 
2100. A critical question that needs to be faced is whether the present rate of increase 
in crop yield would be sufficient for feeding the world population. Food and 
Agriculture Organization (FAO) projections indicate that the average world cereal 
yield needs to be improved to 5 t ha−1 from its present 3 t ha−1 to maintain popula-
tion growth (Alexandratos and Bruinsma 2012). Consequently this has led to large- 
scale development of the agrochemical industry during the last few decades. Modern 
agriculture thus makes use of a large number of pesticides for protection against 
pests and weeds. As reported, up to 80 % of crop yields could be lost without pesti-
cides (Oerke 2006). These pesticides enter into the atmosphere and terrestrial and 
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aquatic ecosystems by spraying, drifting and leaching, as run-off or sometimes even 
by accidental spills (Van derWerf 1996). This has led to contamination of agricul-
tural produce as well as the environment in most countries, posing a serious threat 
to plant, human and animal health worldwide (Giridhar and Indira 1997; Joshi et al. 
2005). Exposure of consumers to pesticides commonly occurs via food consump-
tion (González-Rodríguez et al. 2008), causing various adverse health effects (Ló 
pez-Pérez et al. 2006). The World Health Organization (WHO) estimated that a 
maximum number of deaths due to pesticide poisoning occur in developing nations 
(Mbakaya et al. 1994; Smith 2001; Shittu et al. 2012). Here it is important to high-
light the fact that the pattern of pesticide usage in developing countries is different 
from that of the world in general. In the former case out of the total pesticide being 
used, 76 % is harmful insecticide in contrast to just 44 % used globally (Mathur 
1999). Out of the large quantities (several million tons) of pesticides applied annu-
ally, the amount of these products that reach the target organism is even less than 5 
%. The remaining approximately 95 % is deposited in soil and nontarget organisms 
and ultimately reaches the atmosphere and water (Pimental and Levitan 1986; de 
Oliveira et al. 2012; Ahemad and Khan 2010). Further, the general farmers strongly 
believe in the dictum ‘if little is good, a lot more will be better’. This consequently 
leads to application of these hazardous chemicals to fields in even greater quantities 
than required.

The large-scale use of pesticides in the recent past has adversely affected both 
the target biota and the useful nontarget organisms (Shivaramaiah and Kennedy 
2006). Thus, in addition to killing insects and weeds, pesticides can be toxic to a 
host of other organisms including birds, fish, beneficial insects, beneficial soil 
microorganisms and nontarget plants. Disasters like the endosulfan tragedy of 
Kerala (India) are a stark reminder of the direct health hazard that pesticide use 
poses to humans. As reported by Grover and Cessna (1991), most of the pesticides 
are resistant to chemical and/or photochemical degradation under typical environ-
mental conditions (Grover and Cessna 1991) so they persist in the ecosystem for a 
longer duration. Thus, the total cost–benefit ratio differs appreciably between devel-
oped and developing countries.

4.4  Disadvantages of Pesticides

Plants get exposed to pesticides intentionally or unintentionally. This causes many 
direct or indirect effects in their survival, health and reproduction bringing about a 
change in plant community attributes. The surplus amount of added pesticides is 
absorbed by the plants. This is supported by reports from González-Rodríguez et al. 
(2011) who found traces of pesticide residues in various raw and processed forms of 
fruits and vegetables. Consequently selective control of pests by applying pesticides 
in crop fields has resulted in serious contamination of the environment with greater 
loss of crop productivity (Vasileva and Ilieva 2007).

Herbicides affect photosynthetic, respiratory growth, cell/nuclear division and 
synthesis of proteins/carotenoids/lipids (Jaga and Dharmani 2003). 2,4-D is the 
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most commonly used and extensively studied herbicide (WHO 2007). Herbicides 
persist in soil after application and adversely affect the survival and metabolism of 
nontarget soil microorganisms which are beneficial for man (Ahemad et al. 2009). 
Moreover, consistent application of herbicides to soil has resulted in their accumu-
lation in soil which even exceeds the recommended field rates. This alters the archi-
tecture of plant roots and reduces the number of root sites used by Rhizobia during 
infection (Eberbach and Douglas 1991).

Organophosphate (OP) insecticides function by resulting into excessive accumu-
lation of acetylcholine (ACh) at the cholinergic receptors in the peripheral and cen-
tral nervous systems of insects (Kamanyire and Karalliedde 2004). However, reports 
confirm that toxicity occurs even at doses that do not inhibit acetylcholinesterase 
enzyme (Pope 1999; Yanai et al. 2002; Gupta 2004; Slotkin 2004, 2005). Therefore, 
other mechanisms like induction of oxidative stress leading to generation of free 
radicals and decrease in antioxidants or oxygen free radical scavenging systems 
have been implicated to explain OP toxicity (Dandapani et al. 2003; Abdollahi et al. 
2004; Altuntas et al. 2004; Sharma et al. 2005; Ambali et al. 2007, 2010). For 
example, chlorpyrifos (CPF; O,O-diethyl-O-3,5,6-trichloro-2-pyridylthiophosphate) 
is a broad-spectrum OP insecticide and is moderately toxic to mammals (Kenaga 
et al. 1965). Irrespective of this fact, in the present times, chlorpyrifos is amongst 
the most widely used OP insecticide for effective crop protection and urban pest 
control (ATSDR 1997; Steenland et al. 2000, Saulsbutry et al. 2009). Oxidative 
stress has been reported to be involved in the toxicity of this OP insecticide (Ambali 
et al. 2010).

4.5  Pesticide Toxicity in Plants

4.5.1  Visible Toxicity Symptoms

Plant communities are often subjected to target as well as nontarget exposure to 
pesticides, and they often manifest subtle but significant responses. Xenobiotic 
chemical toxicity is manifested in many ways at low and high concentrations to 
produce different forms of visible negative effects in plants. These reported symp-
toms give clear indication of the deleterious effects they have on the health of plants. 
Visible symptoms like stunting of plant, shoot distortion and reduction in leaf 
dimensions together with chlorosis are prominent under high levels of these pesti-
cide chemicals coupled with significant decline in photosynthetic pigments (Baruah 
and Mishra 1986; Yen et al. 2003; Murthy et al. 2005; Kaushik and Inderjit 2006). 
Complete death or stunted growth of nontarget plants due to pesticides has been 
observed by Norris and Freed (1966a, b, c) and Dhillion et al. (1968). Sandermann 
(1992) reported complete phenotype alteration in response to pesticides. According 
to Radwan (2012), application of clethodim to maize leaves caused yellowing of 
leaf tip and browning or drying of some leaf parts. Saraf and Sood (2002) reported 
almost complete inhibition of growth when treated with high concentration of 
monocrotophos. Similarly Mishra et al. (2008) reported that seedlings of Vigna 
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unguiculata treated with dimethoate showed significant reduction in leaf area, shoot 
and root length and fresh mass and dry mass of the root, shoot and leaf. Xenobiotics 
especially herbicides have unique affinities for their respective molecular target site 
within important plant biochemical pathways and/or physiological processes 
(Dayan et al. 2010; Zhen and Singh 2001). The insecticide dimethoate directly 
binds to various sites of photosynthetic electron transport chain causing decline in 
the photosynthetic oxygen yield of Vigna unguiculata (Mishra et al. 2008). Similarly 
studies confirm that diphenyl ethers affect electron transport activities in chloro-
plasts of higher plants like oxyfluorfen and thus inhibit photosynthesis (Moreland 
et al. 1970; Pritchard et al. 1980). Thus, decline in photosynthetic process causes 
substantial decline in accumulation of biomass in plants (Sandermann 1992; Mishra 
et al. 2008, Radwan et al. 2012). Santi and de Pietri-Tonelli (1959) showed that 
dimethoate when applied to roots is translocated to other parts of plants making the 
whole plant insecticidal to certain insects. There is abundant literature illustrating 
the toxic effects of pesticides and herbicides on target and nontarget plants. 
Nontarget trees like Abies sp. and Prunus persica and many others have shown 
toxicity symptoms such as stunted vegetative growth and fruit size reduction 
(Obrigawitch et al. 1998). Similarly field crops/grasses (like Fagopyrum esculentum 
Moench, Brassica napus, Cucumis sativus, Lens culinaris Medik., Allium cepa, 
Solanum tuberosum L., Lycopersicon esculentum (Mill.), Helianthus annuus, etc.) 
have exhibited marked reduction in seed size, delay in crop maturity and seed yield 
in response to various sulphonylurea herbicide treatments (Karthikeyan et al. 2004; 
Obrigawitch et al. 1998).

4.5.2  Indirect Toxicity Effects

Besides the above-mentioned visible toxic effects, scientists have reported various 
indirect effects caused by the imprudent usage of pesticides in nontarget plants. A 
common consequence of xenobiotic toxicity is excessive accumulation of reactive 
oxygen species (ROS). Increased production of ROS during such environmental 
stresses poses a serious threat to living cells by causing lipid peroxidation, protein 
oxidation, nucleic acid damage, inhibition of enzymes and activation of programmed 
cell death pathway which ultimately leads to death of cells (Fig. 4.1).

There is abundant literature to support such indirect toxicity symptoms of pesti-
cides on plants (Shah et al. 2001; Mittler 2002; Meriga et al. 2004; Sharma and 
Dubey 2005; Mishra et al. 2011):

 1. Geoffroy et al. (2002) reported that oxyfluorfen is capable of reducing growth 
indirectly by generating ROS, viz. singlet oxygen (1O2), superoxide radical 
(O2•ˉ), hydrogen peroxide (H2O2) and hydroxyl radicals (˙OH). Increased pro-
duction of reactive oxygen species (ROS) leads to oxidative stress (Banas´ et al. 
1993; 2000; Miteva 2005; Ivanov et al. 2005; Sergiev et al. 2006; Radwan 2012) 
which eventually might lead to chlorophyll degradation leading to chlorosis. 
Stress-induced accumulation of ROS is a major cause of loss of crop productivity 
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worldwide (Mittler 2002; Apel and Hirt 2004; Mahajan and Tuteja 2005; Tuteja 
2007; Khan and Singh 2008; Gill et al. 2011). Sergiev et al. (2006) observed that 
glyphosate application in maize plants caused oxidative stress. Reports of ele-
vated amounts of malondialdehyde (MDA) production by Feierabend and 
Winkelhüsener (1982), Dayan and Watson (2011) and Radwan (2012) also indi-
cate that pesticides either directly or indirectly destabilise the integrity of lipid 
bilayers and cause disastrous implications leading to cellular death. Enhanced 
production of ROS by chloroplasts and mitochondria limits carbon dioxide 
(CO2) fixation (Mittler et al. 2004) in pesticide-treated plants leading to overpro-
duction of superoxide radicals and H2O2 by the photosystems (Foyer and Noctor 
2005b).

 2. Toxic effects of pesticides also involve biochemical and physiological disruption 
(Fufezan et al. 2002; Liu et al. 2009; Ramel et al. 2009), as well as disruption of 
the signalling mechanism (Ramel et al. 2007, 2009; Unver et al. 2010).

Fig. 4.1 Pesticides promote oxidative stress leading to cell death or procarcinogenic mutations. 
This figure schematically illustrates the complex molecular network activated by different pesti-
cides. Abbreviations used are the following: AIF, apoptosis-inducing factor; CAT, catalase; CYP, 
cytochrome P450; Cytc, cytochrome C; eNOS, endothelial nitric oxide synthase; GSH, glutathi-
one; GSSG, glutathione disulphide; iNOS, inducible nitric oxide synthase; MPTP, mitochondrial 
permeability transition pore; SODCu/Zn, copper-/zinc-type superoxide dismutase; SODMn, 
mangano- type superoxide dismutase; GPx, glutathione peroxidase; GR, glutathione reductase; 
ϪΨm, mitochondrial transmembrane potential (Source: Tebourbi et al. 2011 adapted from Mena 
et al. 2009, with modification)
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 3. Another prominent adverse indirect effect of pesticides is that they may alter the 
competitive interactions amongst species, thereby changing species dominance, 
richness and distribution, which can lead to further adverse aftereffects in the 
ecosystem (Kleijn and Snoeijing 1997). Qiu et al. 2002 reported that widespread 
use of pesticides has limited the productivity of Nostoc, which in turn has 
adversely affected the production of rice in the mountain paddy fields of China.

4.6  Uptake and Transport of Pesticides

Natural sources like water and wind can transport pesticides for long distances. 
During this transport, pesticides can undergo physical, chemical and/or biological 
alterations. Xenobiotics carried by wind can be transported to far-off places and 
finally be deposited onto terrestrial or aquatic vegetation. Transformation or biodeg-
radation of pesticides can also be done by sunlight, microbial action or plant 
enzymes. Water-transported pesticides are carried upwards in plants during transpi-
ration with the transpiration stream. From there, the volatile pesticides might then 
enter the atmosphere by evaporation from the large surface area of leaves and stems 
(Karthikeyan et al. 2004).

The fate of pesticides in a plant after its complete metabolism is a complex pro-
cess. Uptake of xenobiotics by the roots of plants and their further transport have 
been reviewed by a number of authors (Briggs et al. 1982; Briggs and Bromilow 
1983; Behrendt and Bruggemann 1993; Schroder and Collins 2002). Plants take up 
pesticides mainly through leaf surfaces, fruits and roots which are then distributed 
within the plant either from cell to cell or via the plant vascular system. The quantity 
and method by which a pesticide is absorbed and transported to different parts 
within the plant are dependent on the physical and chemical properties (such as 
hydrophilicity, pKa/b, etc.) of the pesticide. A pesticide taken up by roots from the 
soil can alternatively/simultaneously take two pathways to reach the top of the plant 
via xylem vessels:

 1. The apoplastic pathway
 2. The symplastic pathway (Karthikeyan et al. 2004)

The symplastic system of the plant includes the living plant tissue. It is that part 
of the tissue system of the plant which remains surrounded by plasmalemma and is 
interconnected by means of plasmodesmata. It provides a reactive environment by 
placing chemicals in close proximity to enzymes and other reactants. Movement 
within the conductive portion of the symplast (phloem) occurs by mass flow and 
diffusion. The apoplastic system on the contrary includes all the nonliving portions 
of the plant. The cell walls and the xylary elements form a continuous water- 
permeable column. The transport of solute for both short and long distances occurs 
through this column by mass flow and diffusion. Certain chemicals remain restricted 
either to the apoplastic or the symplastic pathways, while some others are ambimo-
bile, i.e. they can move in both domains efficiently. The balance between the 
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distribution of pesticides in the apoplastic–symplastic compartments determines the 
overall transport pattern (Karthikeyan et al. 2004). Uptake and translocation of vari-
ous xenobiotic pollutants also differ amongst plant species. Uptake may depend on 
the lipophilicity and dissociation constant of the pesticide (Schroder and Collins 
2002). Generally, less lipophilic pesticides take the apoplastic pathway, and more 
lipophilic pesticides tend to take the symplastic route (Karthikeyan et al. 2004). 
Movement of pesticides to tips of roots and shoots occurs via active transport in the 
phloem (Boersma et al. 1988). It also depends largely on species’ inherent proper-
ties of the root itself and the transport tissues involved. For example, sulphonated 
anthraquinones are more efficiently translocated and metabolised in those plant spe-
cies which produce natural anthraquinones like by Rheum and Rumex, as compared 
to that by maize or celery which are anthraquinone-nonproducing species (Aubert 
and Schwitzguebel 2004). Likewise, Cucurbita pepo L. shoots accumulate various 
hydrophobic contaminants like dioxin from soil, but many other plants including 
Cucumis sativus do not accumulate it (Campanella and Paul 2000; Campanella 
et al. 2002).

4.7  Metabolism of Pesticides in Plants

Pesticides trigger a defence response in plants. Plant responses to the xenobiotic 
stress are studied under the heads of toxicology, ecotoxicology and stress physiol-
ogy. Pesticide toxicity is known to alter various physiological functions in target as 
well as nontarget organisms. Living cells respond and adapt to environmental sig-
nals such as toxicants or stressors through multiple mechanisms that involve com-
munication pathways or signal transduction processes (Tebourbi et al. 2011). In this 
part of the chapter, we focus on the basic ways in which pesticides implicate their 
toxic effects in plants. According to Tebourbi et al. (2011), pesticides induce oxida-
tive stress in plants in the following ways.

4.7.1  Inhibition of Biochemical Pathways

Pesticides interfere with the normal biological processes of plants. Such alterations/
inhibitions of the biochemical pathways induce oxidative stress in plants. Stress- 
induced enhanced generation/accumulation of ROS by chloroplasts and mitochon-
dria limits carbon dioxide (CO2) fixation (Mittler et al. 2004) in pesticide-treated 
plants. This decline in the rate of CO2 fixation results in overproduction of superox-
ide radicals and H2O2 by the photosystems (Foyer and Noctor 2005b). Mishra et al. 
(2008) reported that the insecticide dimethoate diminishes photosynthetic oxygen 
yield due to its direct effect on various sites of photosynthetic electron transport 
chain. Similarly, diphenyl ethers like oxyfluorfen inhibit photosynthesis by affecting 
electron transport activities in chloroplasts of higher plants (Moreland et al. 1970; 
Pritchard et al. 1980). Such site-specific inhibition causes decline in photosynthetic 
processes ultimately producing substantial reduction of biomass accumulation in 
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plants. On a similar note, herbicides have unique affinities for their respective 
molecular target site within important plant biochemical pathways and/or physio-
logical processes (Dayan et al. 2010; Zhen and Singh 2001). Herbicides are also 
reported to interrupt the electron flow by interacting with the plastoquinone- binding 
site on photosystem II (Oettmeier et al. 1984; Fuerst and Norman 1991). Reports 
confirm that excess herbicides damage the metabolic and physiological processes in 
weeds as well as in crop plants (Peixoto et al. 2006; Song et al. 2008; Yin et al. 
2008; Jiang et al. 2012).

4.7.2  Induction of Reactive Oxygen Species (ROS)

Induction of oxidative stress is one of the well-known effects of pesticides (Song 
et al. 2006, 2007). Herbicides are reported to react by overproduction of free radi-
cals and oxidative stress (Banas´ et al. 1993; 2000). Scientific reports confirm that 
excessive generation/accumulation of superoxide radicals and ROS is accompanied 
by accumulation of MDA (Feierabend and Winkelhüsener 1982; Sergiev et al. 
2006) which causes severe disturbances in the physiological metabolism of plants 
leading to cell death and accelerated plant senescence (Ogweno et al. 2009; Xu 
et al. 2006; Li et al. 2004; Guo et al. 2006). The herbicide lactofen, for example, 
belongs to the diphenyl ether group (Rodrigues Almeida 1998). According to 
Matringe et al. (1989) and Witkowski and Halling (1989), tissues treated with lac-
tofen accumulate porphyrins in light (Hopf and Whitten 1978). Porphyrins in turn 
can be the cause of light-dependent peroxidation of membrane lipids which ulti-
mately leads to deleterious herbicidal effects in the form of membrane disruptions 
(Orr and Hess 1982; Ferreira et al. 2010). As shown in Fig. 4.1, oxidative stress 
arises if ROS production overrides the detoxification systems. This can happen 
either when there is excessive generation/accumulation of ROS or when the antioxi-
dative system of the plant is compromised, ultimately leading to the oxidation of 
lipids, proteins and nucleic acids (Ryter et al. 2007; Franco et al. 2009, 2010; 
Tebourbi et al. 2011). Oxidative stress induced by xenobiotics often generates 
numerous secondary entities which act as signalling molecules, such as 1O2 (Wagner 
et al. 2004) or H2O2 (Levine et al. 1994; Desikan et al. 1998; Wang et al. 2010), and 
numerous forms of denatured or modified proteins and nucleic acids (Teixeira et al. 
2007; Xie et al. 2010). These molecules activate cell signalling pathways, produc-
tion of stress proteins and upregulation of antioxidants. Such changes include pro-
cesses like evolution of new metabolic pathways, accumulation of low molecular 
weight metabolites, synthesis of special proteins, changes in phytohormone levels 
and activation of detoxification mechanisms.

4.7.3  Intrinsic Reduction/Oxidation Cycling Properties

In the redox cycle, the parent chemical compound in the xenobiotic pesticide/
herbicide is firstly reduced by the enzyme NADPH-dependent reductase (such as 
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NADPH–cytochrome P450 reductase) to yield a pesticide radical. This radical 
donates its unshared electron to O2, yielding superoxide radical (O2•-), and the par-
ent compound in turn can undergo another cycle. Therefore, in one cycle, two 
potentially harmful events occur: a reductant is oxidised and an oxyradical is pro-
duced. For example, bipyridylium herbicides become highly reactive free radicals 
on accepting electrons from PSI. These unstable free radicals undergo autoxidation 
back to the parent ion. Thus, there is rapid cycling between the parent herbicide ion 
and its reactive radical and the high flow rate of electrons in PSI. This ultimately is 
responsible for rapid dehydration of vegetative tissues treated with such inhibitors 
(Hess 2000).

The mechanism by which pesticide is perceived and the signalling is transmitted 
within plant cells still remains elusive. However, efforts are on to demystify various 
mechanisms involved in pesticide toxicity with the application of recent technolo-
gies. For example, the herbicide dinoterb has multifaceted mechanism of action 
which involves inhibition of photosynthesis, uncoupling of oxidative phosphoryla-
tion and interference with respiratory oxygen consumption (Belbachir et al. 1980). 
The mechanism of action of another herbicide monosodium methanearsonate 
(MSMA) still remains elusive (Dayan and Watson 2011). Senseman (2007) 
explained that MSMA causes cell membrane destruction. Earlier studies on MSMA 
by Sachs and Michael (1971) proposed that the possible mechanism of action of 
MSMA for inhibition could be that it uncouples mitochondrial oxidative phosphor-
ylation. Wauchope (1983) reported that MSMA inhibits photosynthesis and respira-
tion, while Ellis and Camper (1995) suggested that the inhibitory action of MSMA 
could be attributed to the fact that it forms complexes with sulfhydryl-containing 
enzymes. Another totally different mechanism of pesticide toxicity as suggested 
by Luscombe et al. (1995) is that decline in shoot growth due to the pesticide 
isoxaflutole can be explained on the basis of inhibition in the activity of 
4- hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme needed for meriste-
matic tissue in plant. Similarly, the commonly used herbicide glyphosate inhibits 
biosynthesis of phenylalanine, tyrosine and tryptophan because it interferes with the 
shikimate pathway (Cole 1985) which ultimately slows down protein synthesis 
(Jaworski 1972).

4.8  Plant Defence Systems

Xenobiotic chemicals like pesticides, herbicides, insecticides, etc. being widely 
used in modern agriculture are foreign chemicals for plants. They have contami-
nated almost every part of our environment. Rampant and irrational use of pesti-
cides in rural, urban and agricultural areas has contributed greatly to the problem. 
As a result pesticide residues are found everywhere in soil, air as well as surface and 
groundwater across the countries. Pesticide contamination poses significant risks to 
the environment and nontarget organisms ranging from beneficial soil microorgan-
isms to insects, plants, fish and birds. Against the common belief, even herbicides 
can be especially problematic for the environment because they are used in large 
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volumes (Aktar et al. 2009). Plants being immobile cannot escape such environ-
mental stresses. As a result they are subjected to various biotic/abiotic environmen-
tal stresses concomitantly. Thus, plants possess intrinsic defence methods to protect 
them from the adverse effects of small quantities of foreign compounds. There are 
numerous receptors which sense the presence of foreign compounds in the cell and 
induce a cascade of events intended to lead to neutralisation and excretion of these 
compounds (Tebourbi et al. 2011). However, in many cases the metabolism of xeno-
biotic substances can give rise to metabolites that are even more toxic or can lead to 
the formation of ROS that can harm the cell further. If plants do not develop a posi-
tive detoxification mechanism, they will ultimately die or have other unfavourable 
effects such as stunted growth. The ability of higher plants to scavenge the toxic 
effects of ROS is a very important determinant of their tolerance to stresses 
(Gangwar et al. 2014). The fate of pesticides is dependent on:

 (i) Pesticide characteristics (hydrophilicity, pKa/b, Kow, etc.)
 (ii) Abiotic environmental conditions (temperature, moisture, soil pH, etc.)
 (iii) Microbial community or plant species or both

It might be assumed that metabolism of xenobiotics in plants is mainly confined 
to root and leaf tissues and occurs scarcely during transportation in the plant vascu-
lar system (Verkleij et al. 2009). Plants possess antioxidative enzymes which scav-
enge ROS and avoid oxidative damage (Kanazawa et al. 2000). These antioxidant 
enzymes thus act as critical weapons to maintain optimum health and well-being of 
plant cells. Plants have mechanisms to degrade or sequestrate most commercial 
pesticides. There is abundant literature pertaining to plant metabolism of pesticides 
in target species (Sandermann 1992; Korte et al. 2000; Roberts 2000; Hall et al. 
2001). Oxidative stress occurs when the balance between the accumulated/gener-
ated ROS of a plant and its antioxidant capacity is disturbed. The antioxidant system 
comprises of two types of antioxidants (i.e. enzymatic and nonenzymatic). There 
are several enzymatic antioxidants like superoxide dismutase (SOD), catalase 
(CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), gluta-
thione reductase (GR) and glutathione-S-transferase (GST). Similarly, nonenzy-
matic antioxidants such as ascorbate and glutathione are effectively involved in the 
scavenging of ROS in plants (Gondim et al. 2012; Thounaojam et al. 2012). 
Sandermann (1994) compared the enzymatic cascade responsible for detoxifying, 
breaking down and finally storing the xenobiotics with a ‘green liver’ in analogy to 
human hepatic metabolism (Fig. 4.2).

4.8.1  Phases of Metabolism of Pesticides

According to Jakoby and Ziegler (1990) and Coleman et al. (1997), the detoxifica-
tion process of pesticides in plants can be divided into three phases (Fig. 4.3).
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4.8.1.1  Phase I Metabolism
Phase I Metabolism – also known as transformation phase. Phase I reactions can 
reduce or modify the phytotoxicity of xenobiotic chemicals and can predispose the 
molecules to Phase II reactions. It involves oxidation, reduction, hydrolysis, hydrox-
ylation, epoxidation, N-dealkylation, O-dealkylation, desulphurization, dehaloge-
nation, dehydrohalogenation and dehydrogenation reactions (Casida and Lykken 
1969; Coleman et al. 1997; Doran 2005; Yuan et al. 2007) to transform the pesticide 
to produce a more water-soluble and usually a less toxic product than the parent 
(Karthikeyan et al. 2004). These reactions are primarily catalysed by cytochrome 
P450 enzymes to generate functional groups in the pesticide structure using differ-
ent transformation mechanisms (Mougin et al. 2001). A detailed review of the role 
of plant hydrolytic enzymes in pesticide hydrolysis reactions has been done by 
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Fig. 4.2 Cascade of enzymes responsible for detoxification, breakdown and final storage of 
organic xenobiotics (Source: Verkleij et al. (2009) modified after Schroder and Collins 2002). After 
uptake into the cell, xenobiotics (e.g. a classical diphenyl ether herbicide) are attacked by Phase II 
enzymes, like the glutathione-S-transferases (GST) or glycosyltransferases (GT). The product con-
jugates (R-SG) are either sequestered in the vacuole by tonoplast ATPases (Theodoulou 2000; 
Schroder et al. 2001; Grzam et al. 2007) or there are alternative pathways to leave them in the 
cytosol or translocate them into the apoplast (Ohkama-Ohtsu et al. 2007). Cleavage of 
GS-conjugates in vacuoles may occur by a sequence of carboxypeptidase (CP) and dipeptidase 
(DP) reactions (Wolf et al. 1996) or by γ-glutamyltranspeptidase (Grzam et al. 2007). Normal plant 
metabolism proceeds towards the formation of S-glucosides, sulphonates or related compounds, to 
finally yield bound terminal metabolites with the cell wall
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Hoagland and Zablotowicz (2001). Several enzymes, viz. cytochrome P450,  
aryl- acylamidases, amidases, reductases, esterases, monooxygenases, peroxidases 
(POX), lipases and proteases, participate in pesticide detoxification and degradation 
(Hall et al. 2001; Zablotowicz et al. 2001). These enzymes are localised in mem-
brane fractions of plant cells, cytochrome P450 and monooxygenases in the apo-
plast and POX in the cytosol (Werck- Reichhart et al. 2000; Morant et al. 2003; 
Passardi et al. 2005).

4.8.1.2  Phase II Metabolism
Phase II Metabolism – also known as conjugation phase. Conjugation reactions are 
anabolic processes. These reactions produce compounds which have higher molec-
ular weight together with highly reduced biological activity and mobility and 
increased water solubility. Phase II involves conjugation of a pesticide/pesticide 
metabolite to a natural plant constituent like glucose, amino acid, malonic acid or 
glutathione. This produces an increase in the water solubility and reduction in toxic-
ity compared with the parent pesticide. Detoxification in Phase II is performed by 
enzymes like glutathione and glucosyl transferases. Glutathione conjugation is an 
important Phase II transformation in plants (Hatzios 2001). Glutathione in the pres-
ence of GST can react with a wide range of substrates like epoxides, aryl and alkyl 
halides and other electrophilic compounds. Cole and Edwards (2000) published a 
summary of their research on several agrochemicals metabolised in plants by 

Fig. 4.3 Main phases of the process of detoxification of xenobiotics in plants (Source: Katerova 
and Miteva (2010) with modifications from Schroder (2001))
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glutathione conjugation. The products of Phase II metabolism are either slightly or 
non- phytotoxic and can easily be stored in cellular organelles (Korte et al. 2000; 
Sandermann 1992).

4.8.1.3  Phase III Metabolism
Phase III Metabolism – also known as storage phase. This phase converts Phase II 
metabolites into nontoxic secondary conjugates (Hatzios 1991). Reactions of Phase 
III further decrease the water solubility of toxic pesticides and concomitantly reduce 
their reactivity and toxicity. Theodolou (2000) recently subdivided this last phase 
into two independent phases:

 (a) The first confined to transport and storage in the vacuole.
 (b) The second one related to cell wall binding or excretion or copolymerisation 

with lignin. This results in the formation of non-extractable or bound residue. 
Sandermann et al. (2001) has reported significant incorporation of pesticide 
into bound residues. Alternatively, the conjugate in this phase is transferred 
through active transport by a glutathione pump into the plant cell vacuole.

According to Karthikeyan et al. (2004), the development of detoxification mech-
anism of pesticides depends on three factors:

 1. Type of pesticide together with its present concentration
 2. Prevailing environmental conditions
 3. Characteristics of the exposed/treated plant

Enhanced ROS production during stress poses threat to cells. However, it is 
reported that ROS also act as signals for induction of stress response together with 
defence pathways (Karpinski et al. 1999; Desikan et al. 2001; Knight and Knight 
2001; Mittler 2002). Since ROS act as secondary messengers, thus, their level must 
be tightly regulated by the antioxidative defence system which comprises of both 
enzymatic and nonenzymatic antioxidants. Under abiotic/biotic stresses, the bal-
ance between ROS production and scavenging may get disturbed, and then ROS are 
generated in excess causing cell death (Apel and Hirt 2004; Mittler et al. 2004; 
Dietz 2003; Gechev and Hille 2005).

4.8.2  Enzymatic Antioxidants

There are several enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate 
peroxidase, APX; dehydroascorbate reductase, DHAR; glutathione-S-transferase, 
GST; and glutathione reductase, GR) and nonenzymatic (ascorbate, AsA, and glu-
tathione, GSH) antioxidants which are effectively involved in ROS scavenging in 
plants (Chen et al. 2010a, b; Elbaz et al. 2010; Gondim et al. 2012; Thounaojam 
et al. 2012). The above-mentioned antioxidants directly or indirectly participate 
in scavenging of different ROS and thus help in protecting organisms from 
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oxidative stress. The importance of enzymatic and nonenzymatic antioxidants in 
preventing oxidative stress in plants is based on the fact that the level of one or more 
antioxidants increases under stress; this is generally related to increased stress 
tolerance as shown in Fig. 4.4.

4.8.2.1  Superoxide Dismutase (SOD; EC 1.15.1.1)
Superoxide dismutase (SOD) is considered to be the first line of defence against 
ROS. Superoxide radical (SOR; O2˙ˉ) produced in the photosynthetic and respira-
tory chain is very reactive. As shown in Fig. 4.4, it dismutates into comparatively 
less damaging H2O2, and this dismutation is done by the enzyme SOD (Karpinska 
et al. 2001). SOR are negatively charged and cannot cross the plasma membrane. 
Thus, they are effectively trapped within the compartments where they are gener-
ated. SOD acts as the key enzyme to scavenge O2˙ˉ and provide protection against 
the toxic effects of oxidative stress (Myouga et al. 2008).

4.8.2.2  Catalase (CAT; EC 1.11.1.6)
Catalase (CAT) is a heme-containing enzyme and is one of the most potent catalysts 
known (Salin 1988). It is found in the peroxisome. CAT catalyses the conversion of 
H2O2 to water and molecular oxygen (Fig. 4.4).

4.8.2.3  Ascorbate Peroxidase (APX; EC 1.11.1.11)
Ascorbate peroxidase (APX) also scavenges H2O2 and is indispensable for the pro-
tection of chloroplasts and other cell constituents from damage by H2O2 and 
hydroxyl radicals (˙OH). APX uses ascorbate (AsA) as its specific electron donor 
(Fig. 4.4) to reduce H2O2 to water with simultaneous production of 

Fig. 4.4 Schematic drawing showing the role of antioxidants in scavenging of reactive oxygen 
species (Source: Gangwar et al. 2014)
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monodehydroascorbate (MDHA). MDHA spontaneously disproportionates into 
AsA and dehydroascorbate (DHA).

4.8.2.4  Dehydroascorbate Reductase (DHAR; EC 1.8.5.1)
DHAR is located in the chloroplast (Hossain and Asada 1984) and cytosol (Arrigoni 
et al. 1981) of higher plants. It plays an important role in the ascorbate–glutathione 
recycling reaction in higher plants. DHAR uses glutathione (GSH) to reduce dehy-
droascorbate (DHA) and thereby regenerates reduced ascorbate (AsA) as shown in 
Fig. 4.4. Ascorbate is oxidised to DHA by means of successive reversible single- 
electron transfers producing MDHA (monodehydroascorbate) as a free radical 
intermediate. MDHA spontaneously disproportionates to DHA (Ishikawa et al. 
1998) because MDHA radicals have a relatively short lifetime. DHA is then reduced 
to AsA by DHAR in a reaction requiring reduced GSH. DHAR converts reduced 
glutathione into oxidised glutathione (GSSG), liberating protons that are incorpo-
rated into the recycling reaction of AsA (Washko et al. 1992).

4.8.2.5  Glutathione Reductase (GR; EC 1.6.4.2)
Ascorbate–glutathione cycle also known as Asada-Halliwell pathway plays a very 
important role in the mitigation of ROS. Glutathione reductase (GR) is one of the 
important enzymes of the ascorbate–glutathione cycle. The enzyme GR is a mem-
ber of the flavoenzyme family. As shown in Fig. 4.4, it catalyses conversion of 
oxidised glutathione (GSSG) into its reduced form (GSH), and in turn NADP+ gets 
converted to NADPH (Rendon et al. 1995). It provides GSH and thus maintains the 
level of GSH in plant cells for scavenging of ROS by the other enzymes. Thus, GR 
is involved in defence against oxidative stress in higher plants.

4.8.2.6  Glutathione-S-Transferases (GSTs; EC 2.5.1.18)
Glutathione-S-transferases (GSTs) play a key role in cellular detoxification metabo-
lism in different organisms (Tsuchida and Sato 1992; Hayes and Wolf 1988). They 
catalyse the electrophilic addition of the reduced form of the glutathione (GSH; 
γ-glutamylcysteine–glycine) to a variety of hydrophobic compounds (Rushmore 
and Pickett 1993; Mannervik and Danielson 1988). The resulting glutathione- S- 
conjugates are less reactive and more polar than the metabolised xenobiotic chemi-
cals. Plants have to store the soluble glutathione-S-conjugates in the vacuole, 
because of the lack of excretion pathways (Sandermann 1992). GSTs constitute a 
family of multifunctional enzymes which provide a general enzymatic system of 
metabolic detoxification in higher plant cells. Plant GSTs metabolise xenobiotics 
and natural compounds by GSH conjugation. Detoxification by GSH conjugation is 
a well-documented, highly effective system in higher plants which metabolises vari-
ous herbicides such as triazines, thiocarbamates and chloroacetanilides (Leavitt and 
Penner 1979; Ezra and Stephenson 1985). Following the above-mentioned scheme 
of three-phase detoxification of pesticides, GST can be regarded as Phase II enzyme. 
Plant GSTs not only inactivate toxic compounds through conjugation but also play 
an important role in the plant defence system. Stress-inducing agents induce plant 

4 Metabolic Responses of Pesticides in Plants and Their Ameliorative Processes



78

GST gene expression (Thenaken et al. 1995; Ulmasov et al. 1995) through forma-
tion of ROS (Levine et al. 1994). The increased GST level in turn protects cellular 
components. The first reports of herbicide resistance in weeds have been attributed 
to GSTs (Jensen et al. 1977). Anderson and Gronwald (1991) reported that GSTs 
are associated with nontarget-site herbicide resistance in the resistant biotype of 
Abutilon theophrasti. They illustrated that increased glutathione conjugation with 
atrazine correlated with amplified GST activity, which was responsible for herbi-
cide resistance in the weed. Moreover, Marcacci et al. (2006) showed that conjuga-
tion to GSH is a major metabolic pathway that detoxifies atrazine in Chrysopogon 
zizanioides Nash, which is species resistant to this herbicide. GST-mediated herbicide 
resistance can target multiple herbicides also (Hatton et al. 1999; Cummins et al. 
1999; Cocker et al. 2001; Letouze and Gasquez 2003; Katerova and Miteva 2010).

4.8.3  Nonenzymatic Antioxidants

4.8.3.1  Ascorbate
Ascorbate (AsA) and glutathione (GSH) are small molecular weight compounds. 
They detoxify ROS and other such toxic ROS-generated metabolites and thus pro-
tect cells from oxidative stress and its incurred damage. This protective action is 
materialised either directly by scavenging or indirectly through activation of defence 
mechanisms. Vitamin C (AsA) and GSH are present in very large quantities in 
majority of plant cells in millimolar concentrations of 10–300 mM and 0.1–25 mM, 
respectively (Noctor and Foyer 1998; Smirnoff 2000; Noctor et al. 2002; Ruiz and 
Blumwald 2002; Mou et al. 2003; Ball et al. 2004; Freeman et al. 2004; Gomez 
et al. 2004; Shao et al. 2008). Hence, they are capable of dealing with very high 
fluxes of H2O2 and other ROS generated/accumulated to maintain the redox homeo-
stasis (Noctor et al. 2002; Latowski et al. 2010).

H2O2 scavenging is accomplished by catalases, various peroxidases (POX) and 
the ascorbate–glutathione pathway, also known as the Asada-Halliwell cycle, which 
is catalysed by a set of four enzymes (Willekens et al. 1997; Wojtaszek 1997; 
Kingston-Smith and Foyer 2000; Asada 2006; Almagro et al. 2009; Cosio and 
Durand 2009). Firstly, H2O2 is scavenged via the oxidation of ascorbate by ascor-
bate peroxidase (APX). This enzyme is involved in the oxidation of AsA to mono-
dehydroascorbate (MDHA), which can be converted back to AsA via 
monodehydroascorbate reductase (MDHAR). MDHA is further rapidly converted 
to dehydroascorbate (DHA), which is converted back to AsA by the action of 
DHAR. DHAR utilises glutathione, which is regenerated by glutathione reductase 
(GR) from its oxidised form, i.e. glutathione disulphide (GSSG) (Latowski et al. 
2010). The ascorbate–glutathione cycle functions in chloroplasts, mitochondria, 
peroxisomes, cytosol and apoplast (Smirnoff 2000; Mittler 2002, Pignocchi and 
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Foyer 2003; Asada 2006). AsA and GSH are responsible for maintaining cellular 
redox homeostasis and concomitantly involved in redox signalling. The total level 
of AsA and GSH in the cell and the ratio between their reduced and oxidised forms 
play an important role in activating various defence mechanisms. The important 
roles of AsA and GSH for tolerance towards environmental stresses have been 
emphasised in investigations involving mutants and transgenic plant lines by alter-
ing the levels of these antioxidants (Pastori et al. 2003; Ball et al. 2004).

4.8.3.2  Glutathione
According to Noctor et al. (2000), GSH is present in almost all living cells where it 
participates in numerous biochemical reactions. In higher plants, GSH plays an 
important role within the cell system. It participates in the ascorbate–glutathione 
cycle, maintains the sulfhydryl groups of cysteine in a reduced form, stores reduced 
sulphur and also acts as a substrate for GST (Noctor et al. 2000).

Glutathione (GSH) is directly involved in detoxification of xenobiotics. It also 
acts as an antioxidant against oxidative stress, provoked from herbicides like atra-
zine, paraquat, etc. The detoxification of xenobiotics occurs via conjugation of GSH 
with the hazardous chemical molecule. This might either involve the enzyme GST 
or GSH might accomplish detoxification spontaneously via the three phases 
explained above: activation (preparation), conjugation and metabolism of conju-
gates (Fig. 4.5). GSH directly detoxifies ROS like H2O2, singlet oxygen, superoxide 
radical and hydroxyl radical. The process of restoration of GSH from GSSG is 
important because accumulation of GSSG inhibits protein synthesis during transla-
tion. For example, strong oxidative stress following paraquat treatment led to GR 
inhibition as well (Ananievaa et al. 2004). GSH also protects cells against unfavour-
able effects of stress through the activation of different defence mechanisms because 
of its involvement in redox signalling (Foyer et al. 1997; Apel and Hirt 2004; Foyer 
and Noctor 2005a; Szalai et al. 2009). Culture plants with enhanced levels of GSH 
have been reported to show greater resistance to similar herbicides (Katerova and 
Miteva 2010). Millimolar concentrations of GSH in metabolically active tissues act 
as a redox buffer, blocking protein cysteine groups and ROS (Foyer and Noctor 
2005). Glutathione possesses a central cysteine so it undergoes reversible oxidation 
and reduction. It can exist either in the reduced form (GSH) or in oxidised glutathi-
one disulphide (GSSG) form. Glutathione redox potential depends on the total glu-
tathione concentration and the degree of oxidation (Meyer and Hell 2005) as shown 
in Fig. 4.6. Changes in GSH redox state are responsible for the protective and regu-
latory roles of GSH. A high GSH/GSSG ratio is maintained either by increased 
GSH synthesis or by GSSG reduction. High GSH/GSSG ratio is necessary for effi-
cient protection against ROS accumulation induced by abiotic stress (Szalai et al. 
2009). GSH/GSSG ratio can be used for monitoring stress-induced damage (Kranner 
et al. 2006). Nemat Alla et al. (2008) reported that in Zea mays, enhanced tolerance 
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Fig. 4.5 Functions of glutathione in plants. GPX guaiacol peroxidase, APX ascorbate peroxidase, 
GSH glutathione (Source: Katerova and Miteva 2010)
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to herbicides is related to increased levels of GSH and the enzymes GSTs, 
γ-glutamylcysteine synthetase, GSH synthetase and GR.

4.8.4  Amelioration of Toxic Effects of Pesticides in Plants

4.8.4.1  Exogenous Application of Plant Growth Hormones
The plant growth hormone – salicylic acid (SA) – can regulate the adaptive responses 
of plants to many abiotic stresses (Ding et al. 2002; Yang et al. 2003; Zhou et al. 
2009). The role of SA in regulating the antioxidant status and ROS production in 
plants subjected to biotic/abiotic stresses is well established (Kawano 2003). 
Exogenous application of SA can influence the antioxidant capacity of plant cells 
by inhibiting or activating the enzymatic antioxidant system (Ananievaa et al. 2004; 
Apel and Hirt 2004). Popova et al. (2004) reported that SA is involved in plant 
response to herbicide stress. Pretreatment of plants with SA in barley before para-
quat application protected the plants against paraquat-induced damage due to 
changes in the antioxidant enzyme activities (Popova et al. 2002). Cui et al. (2010) 
reported SA-regulated amelioration of napropamide-induced oxidative stress in 
Brassica napus by decreasing ROS production and oxidative damage to the plasma 
membrane. It prevents herbicides from entering the cells and consequently the cell 
membrane integrity is improved. Similarly, Radwan (2012) reported SA-induced 
alleviation of oxidative stress caused by clethodim in maize (Zea mays L.).

Brassinosteroids (BRs) are steroidal compounds occurring ubiquitously in 
almost every part of the plant, such as pollen, flower buds, fruits, seeds, vascular 
cambium, leaves, shoots and roots. They are required for normal development of 
plants. BRs have also been reported to be effective in reducing damage caused by 
pesticides (Bajguz and Hayat 2009). BR treatment-induced alleviation of the dam-
age in rice from treatment of simazine, butachlor or pretilachlor has been confirmed 
(Sasse 2003). Xia et al. (2009) studied the phytotoxic effect of nine pesticides – 
three herbicides, three fungicides and three insecticides – on cucumber leaves. They 
reported that 24 epibrassinolide (24-epiBL) increased the resistance of plants to 
pesticides probably by enhancing CO2 assimilation. According to Sharma et al. 
(2013), exogenous application of 24-epiBL enhanced the tolerance of Pusa 
Basmati-1 seedlings to stress generated by the insecticide imidacloprid via a step-
wise regulation mechanism by:

 (i) Enhancing the activity of antioxidative enzymes like SOD, APX, CAT, GR and 
MDHAR

 (ii) Upregulating the expression of genes like Cu/Zn–SOD, Fe–SOD, Mn–SOD, 
APX, CAT and GR

 (iii) Decreasing lipid peroxidation

4.8.4.2  Exogenous Application of Free Radicals
Nitric oxide (NO) is a free radical and a highly reactive molecule. The protective 
role of NO against oxidative stress is well documented (Beligni and Lamattina 
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1999a; Hsu and Kao 2004). It scavenges other reactive intermediates and terminates 
chain-propagated reactions (Kopyra and Gwózdz 2003). It is reported to counteract 
oxidative stress in two different ways. It can either directly scavenge ROS (Laspina 
et al. 2005) or can also act as a signalling molecule in a cascade of events leading to 
gene expression changes (Lamattina et al. 2003; Laspina et al. 2005). There are 
many reports which emphasise that NO counteracts the toxic effects of diquat- or 
paraquat-induced ROS generation in Solanum tuberosum (Beligni and Lamattina 
1999b) and Oryza sativa L. (Hung et al. 2002). Ferreira et al. (2010) also reported 
that NO reduces oxidative stress generated by lactofen in Glycine max L. Merril.

4.8.4.3  Use of Safeners
Safeners are also known as antagonists/crop protectants/herbicide antidotes. They 
provide selective protection to crop plants from herbicide-induced injury without 
protecting weeds. Many safeners are structurally similar to the herbicides that they 
antagonise. Safeners promote herbicide metabolism in crop plants. Some safeners 
protect crop plants like corn, sorghum and rice against damage from soil-applied 
thiocarbamate and chloracetanilide herbicides in either of the two ways:

 (i) By increasing the levels of glutathione
 (ii) By stimulating the activity of glutathione-dependent enzymes such as GST

In Phase II reactions, glutathione conjugates with the herbicide to reduce its 
toxicity. This mechanism provides greater and selective protection to crops, while 
weeds still remain susceptible. Herbicide safeners regulate the expression of genes 
associated with herbicide metabolism to ultimately improve crop tolerance to herbi-
cides (Riechers et al. 2010). With this mode of action, safeners provide a relatively 
inexpensive and flexible method of improving herbicide selectivity without incur-
ring any significant ecological risks.

Soil-Applied Safeners
These safeners are applied with the seed prior to planting or applied to the soil or 
crop together with the herbicides. They protect large-seeded grass crops (corn, sor-
ghum, rice) against pre-emergence applications of thiocarbamate and chloracetani-
lide herbicides. Most evidences suggest that they protect crops by stimulating 
enzymes which are responsible for metabolising the herbicide. They do not affect 
herbicide absorption/translocation/site of action. For example, they increase the 
level of glutathione conjugation of chloracetanilide and thiocarbamate herbicides 
by inducing the enzyme GST (DeRidder et al. 2002). As a result they may also 
increase the level of glutathione in the plant tissue.

Foliar-Applied Safeners
These safeners protect grass crops by enhancing cytochrome P450 monooxygenase 
and glucosyltransferase activity from aryloxyphenoxypropionate, sulphonylurea or 
imidazolinone herbicide injury. An example is the safener called fenchlorazoleethyl 
used to protect grass crops (i.e. wheat, rye, barley) from fenoxypropethyl injury. 
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This class of herbicides generally controls grasses only. The crop species (i.e. wheat, 
rye, barley) possess elevated levels of glutathione as compared to the grassy weeds. 
The safener fenchlorazoleethyl causes further enhancement in glutathione levels in 
the crop species, ultimately protecting them from herbicide damage.

4.9  Conclusion and Future Prospects

Environmental stresses, such as xenobiotics, drought, heavy metals, temperature, 
salts, etc., are major factors that limit agricultural productivity. Since the last few 
decades, endless efforts have been made to minimise agricultural losses to satisfy 
the ever-increasing demand of food. This has led to an unwise use of xenobiotic 
chemicals like pesticides and herbicides by agriculturists and scientists to develop 
strategies to enhance the quantity and quality of food production under extremely 
adverse conditions. In recent years, numerous studies illustrate the harmful effects 
of rampant use of these chemicals on nontarget organisms (plants and animals), soil 
microflora and aquatic and terrestrial ecosystems on the whole. Moreover, these 
harmful chemicals undergo biomagnification as they pass down the food chain. As 
a result pesticide residues have been traced in raw and fresh fruits, vegetables, fish, 
etc. leading to many reported cases of poisoning. These undesired consequences 
have urged scientists to understand metabolic responses of pesticides to plants. 
Furthermore, efforts are also being made to unveil different molecular mechanisms 
related to pesticide toxicity. Scientists have successfully designed few new and 
innovative approaches to ameliorate these pesticide toxicity symptoms, and efforts 
are still on in this direction. So far, there are some excellent studies that support the 
exogenous application of plant hormones like salicylic acid and brassinosteroids in 
alleviating xenobiotic toxicity in plants. Comparison of metabolic pathways, detox-
ification mechanisms, and tolerance of various plants to pesticides may even help us 
in the future to design vegetative decontamination systems for treating pesticide- 
contaminated soil and water. Thus, understanding pesticide metabolism in plants is 
necessary for developing strategies for amelioration of the harmful effects of pesti-
cides in nontarget plants and also for remediation of contaminated soil, water and 
atmosphere. In plants, the up-/downregulation of the expression of specific genes 
involved in processes related to detoxification may even be exploited to decrease 
pesticide residues in food produce. Although there has been much progress, yet, 
many components of the complex xenobiotic-sensing and signalling network still 
remain to be identified. Therefore, there is a need to develop an intra- and interdis-
ciplinary approach for elucidation of physiological, biochemical and biotechnologi-
cal strategies against pesticide stress to increase plant yield and crop productivity 
for the world’s ever-increasing population.
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Abstract

Heavy metals (HMs) are consequential environmental contaminant, and their pro-
digious bioaccumulation in the surroundings has become an enigma for all living 
organisms including plants. Heavy metal has the potential to react with various 
indispensable cellular components like DNA, protein, and enzymes and in turn 
induce several stress responses in plants like oxidative stress which is the root cause 
for the progression of cell death in the plant. Stress responses inflicted by oxidative 
stress include severe morphological, metabolic, and physiological amendments in 
plants like DNA strand breakage, defragmentation of proteins, and damage of pho-
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tosynthetic pigment, which may stimulate cell death. In reaction, plants have a 
range of mechanisms to minimize the heavy metal toxicity. Plants are endowed with 
antioxidant defense mechanism, which can be divided into two groups such as 
enzymatic antioxidants and nonenzymatic antioxidants, for instance, SOD, CAT, 
APX, GPX, GR and AsA, GSH, carotenoids, alkaloids, tocopherols, proline, and 
phenolic compounds, respectively, that together act as the scavengers for free radi-
cals to mitigate the damaging impacts of heavy metal agglomeration in the cells. 
These antioxidant potentials could be assessed by  different in vivo and in vitro 
methods such as hydrogen atom transfer and electron transfer through which we can 
evaluate the ROS detrimental action of antioxidant enzymes. Therefore, the present 
chapter attempts to provide the contemporary knowledge regarding the metal-influ-
enced antioxidant status in plants and also provides the precise pathway that should 
follow for the future research in the area of antioxidant potentials.

Keywords
Antioxidant • Oxidative stress • Heavy metal • Detoxification

5.1  Introduction

Being restricted in distribution, plants are inevitably exposed to several environmental 
factors (abiotic and biotic), which constitute their macro- and microenvironment. Any 
digression in these factors from the optimum level is harmful and eventually leads to 
stress in plants (Kumar et al. 2008; Parvaiz and Satyawati 2008; Sharma et al. 2016). 
Momentous abiotic factors such as heavy metals (HMs) are imperative environmental 
pollutants, and their toxicity is a problem for environmental grounds (Nagajyoti et al. 
2010). Industry and mining have escort to a relocation of heavy metals, which further 
resulted in a soil and water pollution. Heavy metals that occur in nature are mainly in 
two forms: essential and nonessential. Crucial HMs, like copper, iron, zinc, or nickel, 
are micronutrients, causing toxicity when present at higher concentrations, while non-
essential heavy metals, like lead, cadmium, and mercury, are not recognized to have 
any physiological functions (Nowicka et al. 2016). Increased amount of metals in 
available soil fractions led an increased bioaccumulation in various parts of the plants 
(Kabata-Pendias 2004), which potentially induces several functional disorders at mul-
tiple level in plants, possibly from the oxidative action of metals (Sun et al. 2007; 
Shamsi et al. 2008; Kafel et al. 2010). Plants are often susceptible both to the shortage 
and to the glut accessibility of some HM ions as the increased accumulation of several 
vital HMs induced plausible changes in the plant (Nagajyoti et al. 2010). Zn, Cu, and 
Pb are acknowledged as prooxidants, and responsible for the production of the ROS at 
the higher concentration (Ferrat et al. 2003; Fatima and Ahmad 2005; Drążkiewicz 
et al. 2004; Caregnato et al. 2008). However, as a consequence of higher net production 
of reactive oxygen species, there occurs a photooxidative disintegration of DNA, pro-
teins, and lipids that eventually causes cell fatality in plants (Tripathy and Oelmüller 
2012). In view of the fact that the stimulation of oxidative stress is a significant process 
of HM lethality (Nagajyoti et al. 2010; Yadav 2010) likewise, the ability to detoxify 
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ROS is also a significant factor for excessive concentration of metal tolerance. That is 
why to ensure continued existence, plants have developed proficient antioxidant mech-
anism that possesses two arms: (i) enzymatic components such as superoxide dis-
mutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase 
(GPX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and 
dehydroascorbate reductase (DHAR) and (ii) nonenzymatic antioxidants such as 
ascorbic acid (AA), reduced glutathione, α-tocopherol, carotenoids, flavonoids, and 
the osmolyte proline (Das and Roychoudhury 2014). Chromanols and prenylquinones 
(isoprenoid antioxidants) are thought to involve in response to heavy metal-stimulated 
stress (Nowicka et al. 2016). This antioxidant system marks the essentiality of ROS 
detoxification for the cellular existence (Gill et al. 2011; Das and Roychoudhury 2014). 
Plants are the source of dietary antioxidants; approximately all plants possess antioxi-
dant prospects in retort to generated stress (Krishnaiah et al. 2011; Kasote et al. 2015). 
The secondary metabolites also participate significantly in therapeutic properties of 
plants (Abeysinghe et al. 2014). Gill and Tuteja (2010) in their article propounded that 
the antioxidant resistance mechanism works in recital to manage the rush of uncon-
trolled oxidation and defend plant cells from oxidative damage through the escaping of 
free radical. Thus, the efficacy of its antioxidant defenses is very decisive for a plant’s 
resistance to metals (Kafel et al. 2010).

5.2  Occurrence, Accumulation, and Transport of Heavy 
Metals (HMs)

HMs are characterized as metals with the atomic mass over 20 and the density 
higher than 5 g⋅cm−3 (Emamverdian et al. 2015). Heavy metals are regarded as trace 
elements because of their trace concentration (less than 10 ppm) in the plant (Kabata 
and Pendias 2001; Tchounwou et al. 2012). Most of the HMs are positively charged, 
nondegradable, and persistent in the environment (Eshagberi 2012). Naturally HMs 
are present abundantly into the outermost layer of the earth (Tchounwou et al. 
2012). High degree of HM pollution can be observed in the surroundings (Hajar 
et al. 2014) and these heavy metals cause toxicity even at very low concentration 
(Lenntech Water Treatment and Air Purification 2014; Nagajyoti et al. 2010). 
Different anthropogenic activities such as industrial, agricultural, domestic medical, 
and technological uses have led to their extensive allocation in the environment 
(Tchounwou et al. 2012). HMs include lead (Pb), cadmium (Cd), nickel (Ni), cobalt 
(Co), iron (Fe), zinc (Zn), chromium (Cr), iron (Fe), arsenic (As), silver (Ag), and 
the platinum group elements (Nagajyoti et al. 2010), among which Cd, Cr, Cu, Hg, 
Pb, and Zn are the major toxic elements present in the environment (Lasat 2000; 
Tangahu et al. 2011). These contaminations occur through the weathering of rock, 
volcanic eruptions, and many anthropogenic activities (He et al. 2005). 
Anthropogenic sources of HMs are the differential industrial activities such as waste 
from metal processing refineries; contamination from the nuclear power stations; 
coal and petroleum combustion power plants; wood preservation; waste from the 
plastic, paper, and textile manufacturing plants; microelectronics; and high-tension 
electrical lines (Arruti et al. 2010; Tchounwou et al. 2012).
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Many varieties of plants successfully absorb hazardous contaminants like Pb, 
Cd, Cr, As, and an assortment of radionuclides from soils, as they enter into the food 
web and show progressive bioaccumulation at successive trophic levels. The acces-
sibility of metals is an active process in soil that depends on precise combinations 
of chemical, biological, and environmental constraints (Peijnenburg and Jager 
2003; Hajar et al. 2014). Absorption, movement, and transportation of these metals 
within the plant tissue are largely reliant on plant species, type of concentrations, 
and also the oxidation state of HMs (Tangahu et al. 2011). The pH, reduction capa-
bility, and soil organic matters (SOM) influence the HMs to exist in ionic form for 
easy availability to the plant (Fritioff and Greger 2003). The plant performs as 
“hyperaccumulators” as well as “excluders.” Accumulators continue to be present 
in spite of concerted pollutants in the shoots. The excluders confined pollutant 
uptake (Sinha et al. 2007). Basic HM tolerance is present in all plant species. Thus, 
they scamper a compound organization, including absorption, transportation, and 
chelation; these imperative metals are concerned firmly in homeostasis of essential 
metal micronutrients. The traits of these HM elements separate the plant kingdom 
into two categories: hyperaccumulating and non-accumulating plants (Viehweger 
2014). “Hyperaccumulator” plants could thrive in toxic environments, require little 
maintenance, and produce high biomass, whereas non-accumulating plants (typi-
cally have a shoot-to-root ratio considerably less than one) can accumulate toxic ion 
at higher concentration approximately thousands ppm level (Salido et al. 2003; 
Singh et al. 2015). Hyperaccumulator plants can accommodate heavy metals 1000 
times more than excluder plants (Tangahu et al. 2011). Different types of transport 
mechanism such as intrinsic protein, proton pumps, and co- and antitransporters 
implicated in ion uptake and transportation, after absorption transportation of these 
ions into shoots, are desirable (Fernández et al. 2015). Different types of heavy 
metal transporters such as IRT1, ZnT1, heavy metal ATPase-HMA2, and HMA4 are 
able to transport Zn, Cu, Cd, Pb, Ni, and Fe (Viehweger 2014). Contaminants are 
translocate from the root to shoot in the plant by two regulatory mechanism that is 
evaporation and transpiration (Tangahu et al. 2011).

5.3  Heavy Metal-Induced Oxidative Stress and Antioxidant 
Potential of Plant System

There are two sorts of metals that reside in the earth’s crust that correspond as an 
imperative micronutrients for plant development such as iron, manganese, zinc, 
copper, magnesium, molybdenum, and nickel and nonessential elements such as 
cadmium, antimony, chromium, lead, arsenic, selenium, and mercury. Plants entail 
them in petite quantities for their growth, metabolism, and development, though the 
concentration of essential and inessential metals is a significant aspect in the plant 
development and growth, but their surplus concentration can restrict the plant 
growth (Zengin and Munzuroglu 2005; Emamverdian et al. 2015; Tripathi et al. 
2016). All plant species, either sensitive or tolerant, could tolerate a minimal amount 
of metal stress. Heavy metals, irrespective of their redox-associated mode of action, 
are capable of disturbing antioxidant equilibrium in plant cells, inducing ROS, and 
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directly reacting with functioning cellular macromolecules and organelles. Likewise, 
substitution of these crucial cations with the toxic HMs can disturb the equilibrium 
between cations and enzymatic cofactors (Tangahu et al. 2011). Some redox-active 
HMs like iron, copper, and chromium can exist in various oxidative states which 
could produce reactive oxygen species through the Fenton-type reactions and 
Haber–Weiss cycling, whereas non-redox metals like cadmium, lead, and mercury 
produce ROS indirectly, mostly by causing depletion of glutathione and through 
distracting the ETC (electron transport chain) (Pinto et al. 2003; Yadav 2010; 
Nowicka et al. 2016). However, non-oxido-reducing metals such as zinc and lead 
induced indirectly oxidative stress as a result of toxicity to metabolic pathways and 
membrane-coupled ETC (Verma and Dubey 2003; Caregnato et al. 2008). The gen-
eration of ROS is a usual process in HM stress treatment. Reactive oxygen species 
like O2

-●, H2O2, and OH● are usually produced due to stress; further they bear strong 
oxidizing activities that can react with different biomolecules (Fig. 5.1).

Plants in contact with several HM ions move the poise of free radical metabolism 
toward an accommodation of hydrogen peroxide (Mithöfer et al. 2004). Elevated 
free radical concentrations exert an inhibitory impact on cell molecules like DNA, 
proteins, and lipids, for instance, nonenzymatic lipid peroxidation, consequently 
escort to the accommodation of oxidative burst in various cell sites (Schrader and 
Fahimi 2006). Hg2+ ions restrain the functions of antioxidative enzymes particularly 
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of glutathione reductase and also elevate an ephemeral depletion of GSH 
(Schützendübel and Polle 2002; Mithöfer et al. 2004). Weihong et al. (2009) through 
the experiment, studied the effect of HMs like Cd and Zn on plant Vetiveria zizani-
oides and illustrated that Cd and Zn was found involved in plant growth inhibition. 
The level of antioxidants became enhanced such as SOD, POD and CAT, MDA and 
proline whereas GSH content and water-soluble proteins decreased as the level of 
Zn and Cd increased to a toxic level. Plants occupy various innate and extrinsic 
defense policies for tolerance or detoxification whenever confronted with the stress-
ful circumstance, which occurred through the higher concentrations of HMs 
(Viehweger 2014; Emamverdian et al. 2015). To study the oxidative stress and anti-
oxidant response under Cu toxicity on nodules of white lupin and soybean plant 
Sánchez-Pardo (2012) did an investigation and revealed that Cu in excess concen-
tration cause severe damages in ultrastructures due to emerged oxidative stress in 
the White lupin nodules, such damages were reported as the breakage of peribacte-
roidal membrane with rising numbers of vesicles in the cytosol. While in the nod-
ules of soybean damage appeared in the form of degradation of bacteroidal 
membrane, and precipitation in vacuoles cells. Although white lupin was proved as 
more sensitive to Cu stress, the antioxidative effect (total thiol content and APX 
activity) was found less effective in white lupin than soybean.

5.4  Delineating the Complete Outline of Free Radical 
Production in Plants

The source of production of reactive oxygen species in plants is mainly the chloro-
plast, mitochondria, peroxisomes and over and above ER, cell membrane, cell wall, 
and the apoplast (Das and Roychoudhury 2014). ROS generated in these cell organ-
elles due to stress induced signalling and enzymes like peroxidase, amine oxidase 
and NADPH oxidase present in cell walls and plasma membrane (Tripathy and 
Oelmüller 2012). Reactive oxygen species are very fatal which induce a broad 
injury to protein, DNA, and lipids and disturb the normal cellular pathways (Apel 
and Hirt 2004).

Furthermore, Gill and Tuteja (2010) have demonstrated that generally the pro-
duction of ROS in plant tissue occurs mainly in photosystem I and photosystem II 
of the chloroplast and plasma membrane and also in complex I (ubiquinone) and 
complex III of the mitochondrial ETC. In a regular physiological activity of the 
plant, the electron moves from PSI and PSII of the chloroplasts, mitochondrial 
membrane, ETC, and peroxisome (Kasote et al. 2015). These negative ions (electron) 
react with molecular oxygen and form superoxide radical (O2

−●) (Fig. 5.1; Table 
5.1). The superoxide radical is subsequently converted to hydroperoxyl radical 
(HO2

●) and finally to H2O2 (Zhao et al. 2005; Kasote et al. 2015). The ROS com-
prise of highly reactive free radicals (containing unpaired electrons) like O2

−● 
(superoxide radical) and OH• (hydroxyl radical), the most highly reactive and toxic 
form of oxygen, and non-radicals (has no unpaired electrons) like H2O2 (hydrogen 
peroxide) and 1O2 (singlet oxygen) (Gill and Tuteja 2010). Environmental 
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fluctuations such as increased salt concentration, low water availability, and ele-
vated HM concentration result in closure of stomata which further leads to inade-
quate intracellular carbon dioxide level and induced ROS formation which induce 
rigorous injury in the photosystem (Das and Roychoudhury 2014).

5.5  Why Does All Plant Possess Antioxidant Potential?

Metals cause phytotoxicity when it is transported to the plant from the earth’s crust. 
The most prominent consequence of HMs in plant cells is on the growth productiv-
ity (Kumar et al. 2013). HM stress declines the capability of the plant to assimilate 
carbon and elevate the photosynthetic electron flow toward oxygen from which the 
formation of O2

−●, H2O2, and OH• radical increases (Gill and Tuteja 2010). As men-
tioned above, in plants, ROS are constantly generated chiefly in chloroplasts, mito-
chondria, and peroxisomes. Therefore, generation and elimination of reactive 
oxygen species should be regulated by the antioxidative defense system in restricted 
manner (Apel and Hirt 2004), but in the stress condition, the production of ROS 
elevates and destructs the whole cell metabolism (Sharma et al. 2012). These 
destructive properties of ROS generate the complex range of nonenzymatic and 
enzymatic detoxification device in plants (Apel and Hirt 2004). Antioxidants are 
reducing agents which restrain the oxidation of other molecules, because oxidation 
reactions generate free radicals which create cell damage (Sies 1997; Bansal and 
Kaushal 2014). Plants generate antioxidants like glutathione and ascorbic acid (AA) 
in the chloroplast, stroma, and cytosol with the help of NADPH (Alscher et al. 
1997). These antioxidants interact with numerous cellular molecules and affect the 
growth productivity and development of the plant by interfering in cell division and 
cell elongation (Foyer and Noctor 2005). These antioxidants also influence gene 
expression to elevate the defense mechanism in the plant cell. The key reason for the 
stimulation of these antioxidant mechanisms might be the genetic structure of plants 
which have innate capacity to produce phytochemicals to execute their continuous 
physiological task (Kasote et al. 2015). Plants produce secondary metabolites which 
also illuminate the reactive oxygen species because these metabolites play a signifi-
cant role in adjustment of plants against environmental fluctuations (Baier and Dietz 
2005). ROS can cause many disorders in the cell by affecting many physiological 
reactions (Ragavendran et al. 2012). Stress damages the cell by increasing the pro-
duction of ROS (Rahman 2007). So for the inhibition of these reactive species, 
detoxification system evolves such as enzymatic and nonenzymatic antioxidant. 
These systems include catalase, peroxidase, SOD, ascorbic acid tocopherol, GSH, 
etc. (Prakash and Sharma 2014; Gout et al. 2001) (Fig. 5.1). SOD enzyme scav-
enges the superoxide radical and forms hydrogen peroxide which is also highly 
toxic for the cell (Kusvuran 2012). SOD destroys superoxide anion by converting it 
to peroxide (Cannon et al. 1987). Catalase breaks the H2O2 into H2O and oxygen 
(Mittler 2002). Polyphenol oxidase is an antioxidant enzyme which scavenges H2O2 
in chloroplasts and plays a significant function in lignin biosynthesis (Mittler 2002). 
Ascorbic oxidase regulates the reduced glutathione and NADPH. Vitamin C is a 
water-soluble antioxidant which scavenges the peroxy radicals (Sies 2007).
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5.6  Enzymatic Antioxidant

5.6.1  Superoxide Dismutase (SOD)

SOD is considered as the essential defensive antioxidant against oxygen free radi-
cals. SOD is a metalloenzyme which converts superoxide anion (O2

−●) to H2O2. 
SOD has been present in all aerobes that work against toxic oxygen species which 
are usually produced as the by-products of many biological oxidation reactions 
(Imlay 2008). Begović et al. (2016)) reported increased concentration of SOD in 
duckweed (Lemna minor) in retort to toxicity of cobalt. SOD is localized in mito-
chondria, chloroplast, cytosol, and peroxisomes (Mittler 2002), and the amount of 
SOD escalates in accordance with the level of stress condition. Superoxide is the 
initial product of the monovalent reduction of oxygen and also the first free radical 
in the plant cell. SOD catalyzes the dismutation reaction by metal ion like Cu, Mn, 
and Fe at the active site. Based on metal ion, superoxide dismutase is categorized 
mainly in three isozymes: Mn-SOD, Fe-SOD, and Cu/Zn-SOD (Mittler 2002). The 
effect of the Cr toxicity on SOD transcription has been demonstrated on the green 
gram and black gram resulted in a substantial elevation in the production of ROS due 
to reduced SOD synthesis (Karuppanapandian et al. 2006; Karuppanapandian and 
Manoharan 2008).

5.6.2  Catalase

Catalase is the foremost discovered and characterized enzyme, which possesses 
antioxidant activity, and it is a Fe-containing enzyme present in diverse organisms, 
including prokaryotes (Zamocky et al. 2008). It consists of polypeptides of 50–70 
kDa which are arranged in tetramers and each monomer encloses a heme prosthetic 
group (Regelsberger et al. 2002). It catalyzes the dismutation reaction of H2O2 into 
H2O and O2. Catalase obliterates the H2O2 generate in peroxisome by β-oxidation of 
fatty acids, photorespiration, and purine catabolism (Mittler 2002; Vellosillo et al. 
2010) and prevents the diffusion of H2O2 from cytosol (Lopez‐Huertas et al. 2000). 
There is elevated level of catalase in a bean (Vicia faba) for the destruction of ROS 
produced due to lead toxicity (Shahid et al. 2014). However during stress condition 
like salinity, drought, and HMs, the enzyme production is found to be reduced 
(Karuppanapandian et al. 2006; Karuppanapandian and Manoharan 2008) which 
limits the plant’s tolerance to environmental stress. Li et al. (2013) conducted their 
experiment on Triticum aestivum (wheat plant) with mercury (Hg)-contaminated 
soil and found the increased intense activity of catalase (CAT) antioxidant enzyme 
in a wheat plant grown in a highly polluted soil.

5.6.3  Ascorbate Peroxidase and Guaiacol Peroxidase

Ascorbate peroxidase (APX) is a heme peroxidase present in higher eukaryotes 
(Takeda et al. 1998). In chloroplast and cytosol, the level of H2O2 is illuminated by 
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the APX. It uses ascorbic acid for the breakdown of H2O2 and yields water and 
monodehydroascorbate (Asada 2000). APX isoforms are classified on the basis of 
subcellular localization, such as chloroplasts, mitochondria, peroxisome, and cyto-
sol (Caverzan et al. 2012). APX activity frequently increases with the function of 
other enzymes, like CAT, SOD, and GSH reductase (Shigeoka et al. 2002). Sharma 
et al. (2016) reported in their article about the significant increase in ascorbate per-
oxidase (APX) activity with chromium (Cr)-stressed Oryza sativa (rice) seedling 
under the influence of EBL (epibrassinolide).

Guaiacol peroxidase (GPX) is a significant member of peroxidase enzyme. 
GPXs are usually acknowledged as “stress enzymes” and found in the cellular cyto-
plasm and apoplasm (Sharma et al. 2012). GPX is reported to involve in many 
processes such as growth of plants and its development. It also takes part in ROS 
scavenging. GPX is an iron-enclosing protein and oxidizes certain substrates at the 
expenditure of H2O2. It relieves the cell from excess peroxide which generates in 
stress condition (Sharma et al. 2012). GPX deteriorate indole-3-acetic acid and also 
play a significant part in the biosynthesis of lignin (Karuppanapandian et al. 2011). 
GPX scavenges H2O2 produced due to stress from the cytosol, vacuole, and cell wall 
and in the extracellular space (Koji et al. 2009). The study reported on Arabidopsis 
thaliana seedlings exposed to lethal lead (Pb) level represented the increased activ-
ity of GPX antioxidant enzyme (Phang et al. 2011). The study on Avicennia marina 
(gray mangrove) relevant to glutathione antioxidant system for the evaluation of 
HM stress showed the incensement of GPX activity in a dose-dependent fashion in 
response to accumulated leaf metals (Zn, Cu, or Pb) (Caregnato et al. 2008). 
Similarly, in another study on Vicia faba plant showed the increased activity of APX 
and GPX in relation to lead stress (Shahid et al. 2014).

5.6.4  Monodehydroascorbate Reductase (MDHAR) 
and Dehydroascorbate Reductase (DHAR)

MDHAR is a FAD enzyme and important constituent of the glutathione–ascorbate 
cycle which is the major antioxidant system of plant tissue (Yoon et al. 2004). 
MDHAR catalyzes the ascorbate production through the MDA radical. Ascorbate is 
used to detoxify H2O2 via APX (Mittler 2002). MDHAR regenerate the ascorbate 
with the help of NAD(P)H. The monodehydroascorbate reductase functionality has 
been seen in many cell organelles such as chloroplast, cytosol, mitochondria, gly-
oxysomes, and peroxisomes (Leterrier et al. 2005).

DHAR is assessed as a chloroplast enzyme and contains thiol group. It plays an 
active role in the protection against oxidative stress (Noctor and Foyer 1998). 
DHAR also catalyzes the revival of ascorbic acid. Ascorbate regenerates from the 
DHA by the thiol enzyme DHAR, but the MDHAR produce more ascorbate than 
DHAR (Asada 2006; Minkov et al. 1999). DHAR overproduction in tobacco and 
Arabidopsis had been shown under environmental stress (Chen and Gallie 2006; 
Eltayeb et al. 2007). An investigation on Raphanus sativus (radish) to cadmium (Cd) 
treatment showed increased concentration of antioxidant enzyme MDHAR and 
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DHAR via the activation of ascorbate–glutathione cycle for the removal of H2O2 
(Vitória et al. 2001).

5.6.5  Glutathione Reductase (GR)

Glutathione reductase is a flavoprotein present in all organisms (Romero-Puertas 
et al. 2006). Glutathione reductase (GR) is also recognized as glutathione disulfide 
reductase (GSR) (Kotapati et al. 2014). Glutathione reductase is a homodimeric and 
oxidoreductase enzyme which is NADPH dependent. It is an imperative enzyme of 
the ASH–GSH cycle which scavenges hydrogen peroxide with the united exploit of 
some antioxidant enzymes such as ascorbate peroxidase, monodehydroascorbate 
reductase, dehydroascorbate reductase GSH, and ascorbic acid (Noctor and Foyer 
1998; Gutteridge and Halliwell 2000). It plays an essential function in scavenging 
of ROS by catalyzing reduction of glutathione disulfide to the sulfhydryl form GSH 
(Zitka et al. 2012). GR is localized mainly in chloroplasts and also little quantity of 
GR has been found in mitochondria and cytosol (Ding et al. 2012). Agrawal and 
Mishra (2009) reported increased concentration of glutathione reductase in Pisum 
sativum under cadmium stress.

5.7  Nonenzymatic Antioxidant

5.7.1  Ascorbic Acid

Ascorbic acid (AA) is the plentiful, influential, and water-soluble antioxidant pres-
ent in chloroplast and all cell organelles including the cell wall. Ascorbic acid takes 
active role in plant growth and development in stress condition (Sharma et al. 2012). 
Ascorbate also works as a cofactor for some hydroxylase enzymes like prolyl 
hydroxylase (Kuiper and Vissers 2013). AA acts to avoid or minimize the harmful 
effect caused by ROS in plants (Smirnoff 2005; Ahmad et al. 2000). Hg-stimulated 
oxidative burst in saltbush (Atriplex codonocarpa) is found to be decreased by 
ascorbate (Lomonte et al. 2010). It destroys the several forms of ROS including 
singlet oxygen, superoxide, and hydroxyl radicals (Padh 1990) and shields the 
membranes from oxidative damage. Ascorbic acid also maintains α-tocopherol in 
the reduced state (Traber and Stevens 2011) and indirectly scavenges H2O2 through 
the AsA peroxidase (Chugh et al. 2011). The study on Phaseolus vulgaris (bean) 
seedling with heavy metal (Pb, Cu, Cd, and Hg) showed the significant increase in 
ascorbic acid content in primary leaves after 10 days of metal exposure (Zengin and 
Munzuroglu 2005).
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5.7.2  Tocopherols

α-Tocopherol is a lipophilic antioxidant and generates only by photosynthetic 
organism. Tocopherol has a chromanol head group attached to the phytyl tail (Wang 
and Quinn 2000). Tocopherols are proficient denominator of free radicals (Kiffin 
et al. 2006). Tocopherols are crucial component of biological membrane and act as 
antioxidant in higher plants (Kiffin et al. 2006). They protect the chlorophyll mem-
brane by physical quenching and it also undergoes reaction with oxygen (O2) in 
chloroplast and shielding the photosynthetic pigment (Igamberdiev et al. 2004). The 
study conducted on Arabidopsis thaliana plant in the existence of Cd and Cu shows 
marked increase in α-tocopherol (Collin et al. 2008).

5.7.3  Glutathione (GSH)

Glutathione is a thiol tripeptide, a low molecular weight enzyme which presents in 
cytosol, ER, mitochondria, peroxisomes, vacuoles, and apoplast (Das and 
Roychoudhury 2014). GSH is the most significant endogenous antioxidant enzyme 
which is active in the neutralization of ROS directly and also maintains the exoge-
nous antioxidants like ascorbate and tocopherol in their reduced forms (Ahmad 
et al. 2012). GSH has a high reductive capacity due to nucleophilic character 
(Halliwell 2006). GSH scavenges H2O2, OH•, and O2

•− and prevents the reduction of 
different biomolecules. GSH also act as an imperative function in the regeneration 
of ascorbic acid (Ahmad et al. 2012). Glutathione occurs in the cell in two states: 
reduced and oxidized, the reduced form is GSH and oxidized form is GSSG. As 
reported in an article, conducted on Pisum sativum plant, glutathione (GSH) is 
found to be increased under cadmium (Cd) stress (Metwally et al. 2005).

5.8  Secondary Metabolites

Plants generate an ample of secondary metabolites such as flavonoids, phenolic 
acids, alkaloids, etc. (Hartmann et al. 1995). These secondary metabolites have no 
contribution in the photosynthetic mechanism, substrate oxidation, solute transpor-
tation, translocation, nutrient absorption, and differentiation (Mazid et al. 2011), but 
these metabolites play a significant function in ROS disintegration (Fini et al. 2011). 
These secondary metabolites are also important for plants to survive under stress 
condition. Their liberation differs from plant to plant and species to species on 
exposure to stress (Korkina 2007). These metabolites are formed by basic pathways 
like glycolysis or shikimic acid pathways (Kasote et al. 2015). Phenolics have 
shown the most prominent antioxidant functionality between all secondary metabo-
lites (Kasote et al. 2015)
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5.8.1  Secondary Metabolites as Antioxidant

Plant metabolites are chiefly differentiated into primary and secondary forms. 
Primary metabolites are those compounds which produced through primary metab-
olism, like sugars, amino acids, fatty acids, etc. Primary metabolites are indispens-
able for cell maintenance (Kliebenstein and Osbourn 2012), whereas secondary 
metabolites are requisite for the normal cell growth and development. Secondary 
metabolites also take part in the defense system of the plant (Korkina 2007). 
Secondary metabolites constantly remain in the plant cell. Secondary metabolites 
also occur in passive and active forms. In passive form, metabolites already exist in 
tissue, while active forms of secondary metabolites are generated in response to 
stress (Korkina 2007), and these metabolites are synthesized by basic pathways like 
glycolysis or shikimic acid pathways (Aharoni et al. 2005).

These secondary metabolites may also be of two types: one is nitrogen contain-
ing such as alkaloids containing terpenoid indole alkaloids, tropane alkaloids, and 
purine alkaloids (Ziegler and Facchini 2008) and the other is nitrogen deficient like 
terpenoids and phenolics (Kasote et al. 2015). Phenolics have shown the most 
prominent antioxidant reactivity between all secondary metabolites.

5.8.2  Phenolics

Plant phenolics are chiefly categorized into different groups, such as phenolic acids, 
flavonoids, lignins, stilbenes, and tannins (Myburgh 2014). Phenolic compounds 
usually have more than one aromatic ring with hydroxyl groups. The antioxidant 
capability of phenolics elevated with increase in hydroxyl group numbers and its 
conjugation with the side chain of aromatic rings (Flora 2009). Between all these 
phenolics, flavonoids are the chief active plant’s secondary metabolite and act as an 
antioxidant under stress condition (Hernández et al. 2009). Posmyk et al. (2009) 
have observed increased level of phenolic compound in red cabbage seedling 
exposed to copper. Flavonoids occur broadly within the plant tissue and are usually 
found in leaves, floral parts, and pollens. Flavonoids generally concentrate in the 
plant vacuole as glycosides. Flavonoids act as a secondary ROS scavenger and get 
activated on the loss of photosynthetic system, because of the more excitation 
energy (Fini et al. 2011). Flavonoids perform as an ROS scavenger in the plant tis-
sue by neutralizing the free radicals before they injured the cell (Løvdal et al. 2010).

Flavonoids are also capable to modify peroxidation reaction by altering the lipid 
packing arrangement (Sharma et al. 2012). They stabilize membranes by diminish-
ing membrane fluidity. Most of the plant root exudates elevate the amount of phe-
nolics on exposure to heavy metals (Winkel-Shirley 2002). Many flavonoid 
biosynthetic genes are activated under stress conditions. In many stress conditions 
like wounding, drought, metal toxicity, and nutrient deficiency, it has been seen that 
flavonoid concentration increases in response to these stresses (Winkel-Shirley 
2002). Anthocyanins, a derivative of flavonoids, gather in the vacuoles and possess 
an antioxidative capability (Kähkönen and Heinonen 2003), but its location 
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prevents them to contact directly with ROS generation sites. However, its level is 
found to be increased under Cd stress (Mobin and Khan 2007). Keilig and Ludwig-
Müller (2009) propounded in their article about the potential role of flavonoids with 
response to cadmium (Cd) in tolerant Arabidopsis thaliana seedling.

5.8.3  Terpenoids

Terpenoids are a huge class of secondary metabolites containing more than 40,0000 
different compounds (Aharoni et al. 2005), ranging in structure from linear to poly-
cyclic. Terpenoids are organic compounds derived from the isoprene unit which 
also have an antioxidative role in plants (Grassmann et al. 2002). Based on the dif-
ferent compositions, it is classified into monoterpenes, diterpenes, triterpenes, and 
tetraterpenes (Rabi and Bishayee 2009). Monoterpenes, sesquiterpenes, and diter-
penes are acquired remarkable antioxidant activity in different in vitro analyses 
(Baratta et al. 1998). Tetraterpenes possess strong antioxidant activity within both 
in vivo and in vitro studies (Palozza and Krinsky 1992; Kasote et al. 2015).

5.8.4  Alkaloids

Alkaloids are nitrogen-containing most plentiful secondary metabolites present at 
10–15 % concentration, in nearly all plant tissues (Schardl et al. 2006). Alkaloids 
are heterocyclic compounds containing negatively charged nitrogen due to which it 
possesses antioxidant properties. Caffeine obtained from the Thea sinensis leaves 
and Coffea arabica also shows antioxidant activity. Alkaloids are frequently accom-
modated in the plant tissue in response to several stresses (Ali and Alqurainy 2006). 
Several alkaloids have been established as effective inhibitors of 1O2 such as indole 
alkaloids like strychnine and brucine that have a basic nitrogen atom in a rigid, 
cage-like conformation. These alkaloids are physical quenchers and not smashed 
chemically by the course of quenching. Thus, in principle, they could destroy sin-
glet oxygen. Srivastava and Srivastava (2010) reported in his article about the 
increased alkaloid content in the root of Catharanthus roseus in response to cad-
mium and nickel stress.

5.8.5  Carotenoids

Carotenoids are lipid-soluble molecules and beta carotene is the main precursor of 
vitamin A. Carotenoids defend the plant from oxidative stress (Britton et al. 2009). 
Carotenoids are present in photosynthetic organisms as a light-harvesting pigment, 
expanding the light spectrum range, which utilize in the photosynthetic mechanism. 
Carotenoids also quench the 1O2 within the photosynthetic machinery (Li et al. 
2012). They absorb light in the region from 450 to 570 nm and pass the confined 
energy to chlorophyll pigment and also serve as an antioxidant scavenging 
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superoxide anion produced by quenching of the triplet state of the chlorophyll mol-
ecules (Young and Lowe 2001). Andrianos et al. (2016) described the increased 
concentration of carotenoids in Solanum tuberosum and Daucus carota cultivated in 
a greenhouse and irrigated with a water solution including different concentrations 
of chromium and nickel.

5.9  In Vitro and In Vivo Strategies for ROS and Plant 
Antioxidant Potential Measurement

There is a rising curiosity among the scientific world and ingenuities with regard to 
the measurement of ROS and antioxidant prospective in plant tissue. In plant tissue, 
reactive oxygen species detect mainly with the help of histochemical method. 
Because of their highly reactive nature and extremely short lifetimes, the studies of 
free radical generation in plants are very difficult. The quantitative biochemical 
analysis does not make available exact information for the localization of reactive 
oxygen species in plants (Cheeseman 2006). The histochemical localization of ROS 
provides the opportunity to identify the specific sites of their in situ production that 
greatly helps to detect the distribution and accommodation of reactive oxygen spe-
cies in the cell. Histochemical revealing of ROS is mainly done by the use of 
3,3ʹ-diaminobenzidine (DAB) and nitro blue tetrazolium (NBT) stain (Kuźniak 
et al. 2014). ROS detection could also be done by the use of fluorescent probes 
which is the simplest, greatest, and accessible method. Dihydroethidium (DHE), 
MitoSOX Red, and 5-(and 6)-chloromethyl-2,7-dichlorodihydrofluorescein diace-
tate (CM-H2DCFDA) are used to measure superoxide anion and hydrogen peroxide 
production in the cell (Fryer et al. 2003), while for the evaluation of antioxidant, a 
credible number of methods are available through which an easy evaluation could 
be carried for the measuring of reactive oxygen species scavenging activity. 
Approximately 19 in vitro and 10 in vivo methods are applied for the measurement 
of antioxidant ability (Alam et al. 2013).

There are copious in vitro assays that are available to fully elucidate the antioxi-
dant behavior of plants conversely, and every method has its own margins concern-
ing its applicability. In vitro methods are usually used to confirm the antioxidant 
ability of the plant particularly on the basis of certain reaction like reduction, 
quenching, or metal chelation, and on that basis they are further classified as pri-
mary and secondary antioxidants (Kasote et al. 2015) (Fig. 5.2; Table 5.2).

The primary antioxidant works by donating a proton, whereas secondary metab-
olites work by binding of metal ion which is able to catalyze oxidative reactions and 
UV absorbance and impeding hydroperoxide activities (Kasote et al. 2015). The 
efficiency of antioxidant mechanism mainly depends on bond dissociation energy 
and ionization potential (Karadag et al. 2009). Based on the inactivation mechanism 
involved, a basic classification of antioxidant assays falls under two categories:

 (i) Hydrogen atom transfer (HAT)-based assays
 (ii) Electron transfer (ET)-based assays
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The HAT-based methods are used to determine the potential of an antioxidant to 
destroy the ROS and in the formation of stable compound. Antioxidant potential 
evaluation primarily depends on the competition kinetics. HAT assay reaction is fast 
and completed in minutes and the reactions are pH dependent.

HAT-based assays include oxygen radical absorbance capacity (ORAC) method, 
lipid peroxidation inhibition capacity (LPIC) assay, total radical trapping antioxi-
dant parameter (TRAP), inhibited oxygen uptake (IOC), crocin bleaching nitric 
oxide radical inhibition activity, hydroxyl radical scavenging activity by p-NDA 
(p-butrisidunethyl aniline), scavenging of H2O2 radicals, ABTS radical scavenging 
method, and scavenging of superoxide radical formation by alkaline (SASA) 
(Badarinath et al. 2010).

ET-based methods calculate the potential of an antioxidant. The color of oxidant 
gets changed on the reduction (Fig. 5.2). The extent of color change is intercon-
nected to the concentration of antioxidants in the sample. Electron transfer reactions 
are usually slow and require longer times to attain a final point, so antioxidant 
potential calculations are mainly based on percent decline in the product rather than 
kinetics. ET reactions depend upon the pH (Prior et al. 2005) (Table 5.2).

ET-based assay includes Trolox equivalent antioxidant capacity (TEAC) decol-
orization, ferric reducing antioxidant power (FRAP), DPPH free radical scavenging 
assay, copper (II) reduction capacity total phenols by Folin–Ciocalteu, and 

Fig. 5.2 Theoretical model illustrating the most probable strategy adopted by plant against anti-
oxidant potential measurement. Model representing the overall strategies adopted for the measure-
ment of antioxidant potentials that generally falls under two categories: in vitro assessment method 
(hydrogen atom transfer (HAT)-based assays and electron transfer (ET)-based assays) and in vivo 
assessment method
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N,N- dimethyl- p-phenylenediamine (DMPD) assay (Badarinath et al. 2010), 
whereas in the in vivo assay, plants’ antioxidant potential is usually examined on the 
basis of the reactivity of endogenous antioxidant enzymes or oxidative biomarkers 
prior and subsequent stimulation of oxidative stress (Kasote et al. 2015). In these 
techniques the action of antioxidant enzyme like superoxide dismutase, catalase, 
GPX, and GR is directly estimated. While several other techniques are made by the 
evaluation of oxidative damage biomarkers and definite yield formed by the interac-
tion of ROS and biologically significant macromolecules like DNA, lipids, and 
protein-like DNA, damage is determined by evaluating the 8-hydroxydeoxyguano-
sine (Kasote et al. 2015) (Table 5.2).

5.10  Conclusion and Future Outlook

The planet’s inhabitants are burgeoning exponentially and stretching the earth’s lim-
ited resources; as the population is increasing, food consumption follows the same 
upward trend (FAO 2009). Based on the UN report (2015), the world population 
reached 7.3 billion as of mid-2015, whereas the Indian population reached 1.3 bil-
lion (World Population Prospects: The 2015 Revision. New York: United Nations. 
2015). Population detonation by diverse human activities upshot the quantity of 

Table 5.2 Assessment of antioxidant potential in plants

In vitro assay Methods References

β-carotene or crocin bleaching assay HAT Ordoudi and Tsimidou  
(2006)

ORAC (oxygen radical absorbance capacity) HAT Haytowitz and Bhagwat  
(2010)

IOU (inhibited oxygen uptake) HAT Filippenko et al. (2009)

LPIC (lipid peroxidation inhibiting capacity) assay HAT Shalaby and Shanab  
(2013)

TRAP (total radical trapping antioxidant parameter) HAT Sies (2007)

Copper reduction assay ET Campos et al. (2009)

FRAP (ferric reducing antioxidant power) assay ET Ou et al. (2002)

Total phenolic content assay  
by Folin–Ciocalteu reagent

ET Ainsworth and Gillespie  
(2007)

TEAC (Trolox equivalent antioxidant capacity) ET Gliszczyńska-Świgło  
(2006)

DMPD (N,N-dimethyl-p-phenylenediamine) assay ET Çekiç et al. (2015)

ABTS [(2,2’-azinobis-(3-ethylbenzothiazolin-6-  
sulfonic acid)] assay

HAT and  
ET

Johnston et al. (2006)

DPPH (2,2-diphenyl-1-picrylhydrazyl) assay HAT and  
ET

Ozgen et al. (2006)

SASA (scavenging of superoxide radical formation  
by alkaline)

HAT Badarinath et al. (2010)
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waste production and pollution is on the rise. The environmental collision of various 
activities affects abiotic and biotic factors, such as water quality, soil and sediment 
quality, air quality, noise, and vibration generated beyond the permissible limits and 
various types of waste generated. Among them, heavy metal pollution is the major 
pollution. Besides natural source, anthropogenic activities such as flawed disposal 
of waste from different industries (nanoparticles manufacturing factories, smelters, 
power plants, electroplating, and mines), conflagration by-product, and automobile 
discharges are the major sources of HM pollution. HMs in limited quantity are sig-
nificant for the healthy growth of plants, but their accumulation in productive soil in 
excess leads to phytotoxicity which declines the physical and biochemical activi-
ties, germination and growth retardation, structural breakage, and reduced yield.

In these contexts, plants produce and accommodate numerous enzymatic and 
nonenzymatic antioxidants like AA, glutathione, and phenolics. In response to 
heavy metal stress, plants trigger increased ROS level through the Fenton-type reac-
tions and Haber–Weiss cycling. These ROS species scavenge by the erection of 
enzymes and nonenzymatic antioxidants. Significant scientific information has 
been gathered in the form of plant redox biology and the antioxidant resistance 
device possessed by it. Therefore, it becomes a prerequisite to delineate the differ-
ent activities that are generating heavy metal saddle on the environment. However, 
this chapter, though, covers largely the discernible detrimental impacts induced by 
HMs in plants with the integrated response adopted by plants toward metal stress, 
particularly in the form of antioxidant ability and also assessment strategies adopted 
toward the measurement of antioxidant ability; further research is still required for 
cultivating plant species with improved antioxidant potentials that could be able to 
feed the ever-growing world population. Furthermore, there is a need to produce 
such transgenic plant varieties or genetically modified (GM) plants that have the 
potential to resist against the weed, pest, diseases, soil salinity, and also heavy 
metal-induced phytotoxicity.
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Abstract
Heavy metal pollution is one of the major environmental problems which is 
caused by unchecked and uncontrolled discharge of hazardous chemicals con-
sisting of heavy metals. Heavy metals affect agricultural land and plant’s produc-
tivity by affecting its most vital process, i.e., photosynthesis. Exposure of plants 
to heavy metals leads to generation of ROS, and few heavy metals are directly 
involved in electron transport. It also leads to lipid peroxidation destroying 
plant’s cell membrane and its associated organelles. Chlorophyll biosynthesis is 
affected by heavy metals as it substitutes Mg ion from chlorophyll. Few heavy 
metals also affect enzyme involved in chlorophyll biosynthesis as well as disturb 
electron transport in light reactions and affect various enzymes in dark reactions. 
This detailed information helps us to understand the mechanism linked with the 
impact of heavy metals on physiological responses affecting plant biomass and 
productivity which is of concern for agriculture. Therefore, the present chapter 
consists of whole information regarding the impact of heavy metals on photosyn-
thetic pigments, photosynthetic apparatus, and light and dark reactions.
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6.1  Introduction

Urbanization and industrialization have led to several disturbances in the environ-
ment and among them heavy metal pollution is one of the serious problems. Heavy 
metal applies to the group of metal and metalloids with the specific density greater 
than 5 g cm−3 or greater than water (Michalak 2006). Heavy metals include lead 
(Pb), cadmium (Cd), nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn), chromium (Cr), 
iron (Fe), arsenic (As), silver (Ag), and the platinum group elements. Sources of 
heavy metals are metalliferous mining and smelting, use of chemicals in agricul-
tural practices, waste disposal, and discharge of metals (Michalak 2006; Lin and 
Mark 2012). There are different sources of heavy metals in the environment such as 
natural, agricultural, industrial, domestic effluent, atmospheric, and other sources. 
Natural sources of heavy metals include heavy metals originated within the Earth’s 
crust through weathering process. The composition and concentration of heavy 
metals mainly depended on the rock type and environmental conditions which acti-
vated the weathering process. The geologic plant materials normally have high con-
centrations of Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, and Pb. While igneous rocks 
such as olivine, augite, and hornblende are rich in Mn, Co, Ni, Cu, and Zn (Pandey 
et al. 2014), sedimentary rocks have highest concentrations of Cr, Mn, Co, Ni, Cu, 
Zn, Cd, Sn, Hg, and Pb (Canon et al. 1998). Eruption of volcanoes along with toxic 
gases also emits high levels of Al, Zn, Mn, Pb, Ni, Cu, and Hg (Barghiani et al. 
1987).

In Sahara region, wind dust has high levels of Fe and lesser concentrations of 
Mn, Zn, Cr, Ni, and Pb (Pacyna 1986). While the long-range transport of dust, par-
ticularly from the Sahara, has received considerable recent attention, factors such as 
marine aerosols and forest fires are responsible for transport of some heavy metals 
in the environment. In agriculture, sources of heavy metals are the use of inorganic 
and organic fertilizers, and apart from fertilizers, liming, sewage sludge, irrigation 
waters, and pesticides are also other sources of heavy metals in the agricultural 
soils. Fungicides, inorganic fertilizers, and phosphates have variable levels of Cd, 
Cr, Ni, Pb, and Zn depending on their sources. Normally, the levels of heavy metals 
in agricultural soil are very small, but constant use of phosphate fertilizer may lead 
to high accumulation of some metals (Atafar et al. 2010). Industrial sources of 
heavy metals include mining operation which emits different heavy metals depend-
ing on the type of mining, like As, Cd, Fe, etc., and lead to the enrichment of the soil 
around the coalfield directly or indirectly (Pandey et al. 2014). The utilization of Hg 
in gold mining and the mobilization of significantly high amounts of Hg led to the 
significant source of Hg in the environment (Lacerda 1997). Heavy metals affect 
crop, animals, and human health via food chain (Dziubanek et al. 2015; Augustsson 
et al. 2015).

It is reported that heavy metals unfavorably affect about 12 % of the world agri-
cultural land and crop productivity (Dziubanek et al. 2015). Heavy metal initiates 
different responses in plants which ranged from physiological, biochemical to crop 
yield (Dubey 2011; Villiers et al. 2011). Variation in heavy metal toxicity depends 
on plant species, specific metal, concentration, chemical form and soil composition, 
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and pH, as many heavy metals are considered to be essential for plant growth like 
Cu and Zn which either serve as cofactor and activators of enzyme reactions, e.g., 
in forming enzymes/substrate metal complex (Lin and Mark 2012), or exert a cata-
lytic property such as prosthetic group in metalloproteins. Essential trace metal 
nutrients take part in redox reactions, electron transfer, and structural functions in 
nucleic acid metabolism. Heavy metals influence the function of photosynthetic 
apparatus at various level of organization. Heavy metals posses direct effect on 
plants by affecting PS II and PS I and indirect effect on photosynthesis, growth, and 
yield. Cd, Hg, and As are phytotoxic to metal-sensitive enzymes, resulting in growth 
inhibition and death of organisms.

The present review focuses on impact of heavy metals on physiological pro-
cesses of plant from its uptake, ROS formation, and its effect on photosynthetic 
pigments, photosynthetic apparatus, and photosynthetic reactions.

6.2  Heavy Metals Induced ROS Generation

The toxicity of heavy metals is interpreted in many ways after accumulation in plant 
cells. Heavy metals can be divided into two groups: redox active (Fe, Cu, Cr, Co) 
and redox inactive (Cd, Zn, Ni, Al, etc.). The redox-active heavy metals such as Fe, 
Cu, and Cd are directly involved in the redox reaction in cells and result in the for-
mation of O2

•− and subsequently in H2O2 and •OH production via the Haber-Weiss 
and Fenton reactions (Schutzendubel and Polle 2002). Exposure of plants to redox- 
inactive heavy metals also results in oxidative stress through indirect mechanisms 
such as interaction with the antioxidant defense system, disruption of the electron 
transport chain, and induction of lipid peroxidation. Źróbek et al. (2009) showed 
induction of ROS in Nicotiana tabacum L. in Cd and Zn treatment. Weckx and 
Clijsters (1997) detected increased levels of H2O2 in zinc-stressed bean leaves.

Heavy metals like Fe, Cu, Zn, Cd, Hg, and Pb are involved in the direct or indi-
rect generation of free radicals and ROS in the following ways: (1) direct transfer of 
electrons in single-electron reactions, (2) disturbance of metabolic pathways results 
in an increase in the rate of free radicals and ROS formation, (3) inactivation and 
downregulation of enzymes of the antioxidative defense system, and (4) depletion 
of low molecular weight antioxidants.

Heavy metals are also involved in chemical reactions, biochemical pathways, 
and physiological processes which generate and release free radicals in plants 
(Fraustro da Silva and Williams 1991). Within biological systems, oxygen-, sulfur-, 
nitrogen-, and carbon-centered radicals generate ROS such as hydroxyl, lipoxy, 
thiyl, phenyl, and nitroxide radicals which occur as a result of radical chain reac-
tions and direct electron transfer (Kalyanaram 1996). Among the most prominent 
and most damaging highly reactive oxygen-centered radicals are superoxide radical 
anions, hydroxyl radicals, and lipoxy radicals.

Plants exposed to heavy metal stress also show alteration in the lipid composition 
of thylakoid membranes. Lipid peroxidation process involves the peroxidative deg-
radation of polyunsaturated fatty acids of membrane lipids and thus brings about 
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membrane deterioration (De Vos et al. 1993). Lipid peroxidation capacity gets 
enhanced markedly in Cd2+-treated wheat seedlings compared to control seedlings 
suggesting that Cd2+ induced the alteration in the structural composition of the 
membrane. According to Skórzńska et al. (1998), enhanced activity of galactolipase 
in Cd2+-treated plants was recorded which led to an increased release of fatty acids 
due to degradation of galactolipids (MGDG). Somashekaraiah et al. (1992) have 
reported the importance of lipoxygenase in induction of the lipid peroxidation 
(through the production of free radicals from deoxygenation of membrane lipids 
and unsaturated fatty acids) in Cd2+-treated plants. In plants exposed to heavy met-
als, chlorophyll bleaching occurs along with malondialdehyde (MDA) production 
(Somashekaraiah et al. 1992). Hence, heavy metal stress-induced lipid peroxidation 
also leads to the reduction in the photosynthetic oxygen evolution (Alia et al. 1997). 
Within the plant cell, plasma membranes are the primary target of heavy metal- 
induced ROS (Emamuerdian et al. 2015). The phenomenon of lipid peroxidation is 
most common in polyunsaturated fatty acids and involves three distinct stages: (i) 
initiation, (ii) progression, and (iii) termination. Under normal conditions, lipid per-
oxidation in green tissues is generally initiated by O2

•− by-product of light capture 
in photosystem II (Pandey et al. 2009). Heavy metals are known to inhibit PS II and 
thus increase O2

•− production in leaves which led to increased lipid peroxidation 
(Farmer and Mueller 2013). In an aerobic environment, oxygen reacts with the fatty 
acids, thereby creating another unstable peroxyl-fatty acid radical. Once initiated, 
ROS groups are capable to continue the peroxidation chain reaction by receiving a 
hydrogen atom from neighboring polyunsaturated fatty acids (Karuppanapandian 
et al. 2011). The resulting lipid hydroperoxide is a highly unstable molecule and 
decays into several reactive species such as lipid epoxides, aldehydes (malonylalde-
hydes), lipid alkoxyl radicals, alkanes, and alcohols (Bhattacharjee 2012). Lipid 
peroxidation led to increased membrane leakiness, decreased membrane fluidity, 
and damage to membrane proteins. Recent studies reported that heavy metal toxic-
ity to different physiological processes occurs via ROS-induced lipid peroxidation 
and even by-products of lipid peroxidation like acrolein, linolenic acid −13- ketot-
riene, and 12-oxo-phytodienoic acid may strongly affect PS II and photosynthetic 
rate (Farmer and Mueller 2013; Shahid et al. 2014).

6.3  Effect of Heavy Metals on Photosynthetic Pigments

Chlorophylls (Chl) and carotenoids are important photosynthetic pigments and play 
a prime role in photosynthesis where solar energy converts to chemical energy. 
Particularly, heavy metal affects the biosynthesis of photosynthetic pigments. 
Chlorosis and retardation of plant growth are frequently observed in metal-polluted 
environments that indicate an impairment of photosynthetic pigment biosynthetic 
pathways, hence affecting plastid development, photosynthetic efficiency, and 
general metabolism. Heavy metal also reduces accumulation of photosynthetic 
pigments.
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6.3.1  Biosynthesis of Chlorophyll and Heavy Metals

Chlorophyll plays a fundamental role in the process of photosynthesis because of its 
ability to absorb light. In the branch of the pathway leading to the protochlorophyl-
lide (Pchilde) synthesis, Mg is incorporated into protoporphyrin IX by Mg-chelatase 
(Fig. 6.1). The Mg porphyrin IX is methylated ester which is followed by the forma-
tion of the isocyclic ring characteristic to Chl-related pigment. Under heavy metal 
stress, chlorosis is the most common symptom. Metals interfere with pigment and 
influence the Chl content in plants as Mg2+ in chlorophyll is substituted by Cu2+, 
Zn2+, Cd2+, Hg2+, Pb2+, or Ni2+ (Kupper et al. 1996) (Table 6.1).

There is a direct proportional relationship between metal toxicity and the rate of 
Mg substitution in chlorophyll ring, and the magnitude of this toxic effect could be 
ordered as Hg2+, Cu2+, Cd2+ > Zn2+ > Ni2+ > Pb2+ (Kupper et al. 1996). Magnesium 
insertion into protoporphyrin IX is a specific reaction for Chl biosynthesis which is 
catalyzed by Mg-chelatase, and the inhibition of this reaction is caused by Cd2+ in 
cyanobacteria (Anacystis nidulans) which lead to accumulation of protoporphyrino-
gen IX which delayed Chl biosynthesis. Higher Cd2+ concentration caused cell 
growth retardation and prevention of protoporphyrinogen IX transformation 
(Csatorday et al. 1984). On the other hand, Mn2+ inhibited Chl biosynthesis and 
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Fig. 6.1 Effect of heavy metals on chlorophyll biosynthesis (Modified: Kurdziel and Strazalka 
1999)
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enhanced the accumulation of protoporphyrin IX and Mg-protoporphyrin IX mono-
ethyl ester in green leaves of etiolated barley.

ALA (δ-aminolevulinic acid) is the first common precursor of all tetrapyrroles. 
Cadmium inhibited the synthesis of ALA in etiolated bean seedlings (Padmaja et al. 
1990) mainly due to the interaction of Cd2+ with active thiol groups in ALA syn-
thase. The conversion of ALA to porphobilinogen is catalyzed by ALA dehydratase 
(ALAD, porphobilinogen synthase). ALAD is a regulatory enzyme in Chl biosyn-
thesis and is a metal-sensitive enzyme which requires Mg2+ or Zn2+ for its activity. 
The toxic effect of Hg, Se, and Pb on the activity of ALAD was demonstrated in 
mung bean and bajra, and the result showed an increase in ALAD activity up to the 
fourth day, and later on it decreased both in metal-treated plants compared to con-
trol (Prasad and Prasad 1987). The possible mechanism of ALAD inhibition was 
suggested to be the interaction of the heavy metals with SH groups of the enzyme at 
its active sites.

Heavy metals cause ultrastructural changes in the chloroplast of plants growing 
in a heavy metal-contaminated areas. Another possible target of heavy metals is 
thylakoid in chloroplast membrane. Wheat plants grown in copper-contaminated 
soils showed reduced number of chloroplasts, starch, grains, plastoglobuli per 

Table 6.1 Effects of heavy metals on different processes of photosynthesis

Heavy metals Effects

Cd 1. Reduction in chlorophyll content and Chl a/Chl b ratio

2. Inhibits chlorophyll formation

3. Decreased Rubisco activity

4. Inhibits both PS I and PS II

5. Increased lipoxygenase activity

Pb 1. Changes lipid composition of thylakoid membranes

2. Influences PS I and PS II

Ni 1. Reduces chlorophyll concentration

2. Affects both PS I and PS II

3. Alters organization of oxygen-evolving complex

Cu 1. Disturbs architecture of thylakoid membranes and alter overall chloroplast 
ultrastructure

2. Inhibits photosynthetic electron transport of both PS I and PS II

3. Inhibit RuBP carboxylase activity

Mn 1. Inhibits chlorophyll biosynthesis

2. Decreases chlorophyll a and b levels

3. Reduces net photosynthesis rate

Zn 1. Decrease total chlorophyll content and chla/chl b ratio

2. Inhibits CO2 assimilation

3. Interferes activity of oxygen-evolving complex (OEC)

Fe 1. Impairs photosynthetic electron transport

2. Induces oxidative stress

(Modified from Prasad and Strzalka 1999)
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chloroplast, surface area of chloroplasts, volume fraction of internal membrane 
system, and starch grains (Eleftheriou and Karataglis 1989). Cu modified the mor-
phology and structure of primary leaves and their chloroplast ultrastructure in runner 
beans (Phaseolus coccineus L.) (Maksymiec et al. 1995). In radish cotyledons, Cd2+ 
induced changes in the composition and structure of the light-harvesting Chl a/b 
protein complex II (Krupa et al. 1988). Ahmed and Tajmir-Riahi (1993) observed 
the interaction of Cd2+, Hg2+, and Pb2+ with the light-harvesting proteins (LHC II) in 
spinach thylakoid membranes using Fourier transform infrared (FTIR) spectros-
copy. The structural damage to the structure of chloroplast was found highest for 
Hg+, lower for Cd2+, and lowest for Pb2+ (Ouzounidou 1997).

It was also shown that the inhibition of the photosynthetic electron transport was 
caused mainly by changes in the structure and composition of the thylakoid mem-
branes as observed in Cu-sensitive spinach (Spinacia oleracea L. cv. Matador) 
which preceded the loss of photochemical activity of PS I and PS II. Cu was also 
shown to cause slower Chl incorporation into PS I and PS II in greening barley 
seedlings (Capsi et al. 1999).

6.4  Role of Heavy Metals on Light Reactions and Dark 
Reactions

Photosynthesis mainly consists of light and dark reactions. Light reaction depends 
on the interplay of the photosystems which are linked by common intermediates. 
Photosystem I (PS I) responds to light with wavelengths shorter than 700 nm, and 
PS II responds to the wavelength shorter than 680 nm. Electrons flow first through 
photosystem II, then through cytochrome bf, a membrane-bound complex, and then 
to PS I. The electrons are derived from splitting of water where two molecules of 
H2O are oxidized to generate a molecule of O2 and four electrons sent through this 
electron transport chain, and the electrons end up by reducing NADP+ to 
NADPH. These processes generate a proton gradient across the thylakoid mem-
brane that drives the formation of ATP (Siedlecka and Baszynski 1993).

6.4.1  Impact of Heavy Metals on Photosystem I (PS I)

PS I is a membrane-bound protein complex which catalyzes the oxidation of plasto-
cyanin and reduction of ferredoxin under light conditions. A site of Cd2+ toxicity 
was found on the reducing side of PS I (Fig. 6.2). Siedlecka and Baszynski (1993) 
compared electron transport activities (DCIP-MV and DCIP-NADP+) in isolated 
chloroplast of 21-day-old maize, and results showed that site of Cd2+ inhibition is 
between primary electron acceptor and NADP+. Cd2+ treatment led to Fe deficiency 
indicating that the light phase of photosynthesis was affected in the treated plants 
due to Cd-induced Fe deficiency. Ferredoxin was found to be the place of Hg2+ and 
Cu2+ action (Ŝeršeň and Kráľová 2013) (Table 6.1). Cu2+ interrupted the electron 
transport from ferredoxin to NADP+ in Chlorella vulgaris (Šeršeň et al. 1996). 
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Mercury induced the process of P700 oxidation in darkness, but it did not inhibit the 
electron transport around PS I (Šeršeň et al. 1996). Mercury interacted with the 
donor side of PS I and with plastocyanin (Myśliwa-Kurdziel et al. 2013). Lead 
inhibited PS I activity in isolated bundle sheath and mesophyll chloroplasts of maize 
(Wong and Govindjee 1976).

6.4.2  Impact of Heavy Metal on Photosystem II (PS II)

PS II is a multisubunit pigment-protein complex with the enzymatic activity of 
light-dependent water-oxidizing plastoquinone reductase, leading to the release of 
electrons, protons, and molecular oxygen, and most of the heavy metals inhibit PS 
II activity (Fodor 2013). The majority of studies dealing with the effect of heavy 
metals on the light phase of photosynthesis are devoted to reactions related to PS 
II. PS II is located in the grana or appressed lamellae. This multi-protein complex 
consists of at least 25 different subunits (Aro et al. 1993). The photosynthetic elec-
tron transport at the level of PS II both at oxidizing (donor) and reducing (acceptor) 
sides is effectively inhibited by different heavy metals. Heavy metals may impair 
the functions of PS II directly via the plastoquinone pool or indirectly via feedback 
regulation by inhibition of the photosynthetic carbon reduction cycle enzymes and 
changes in ATP level.

Zinc is reported to interact with the donor side of PS II (Prasad and Strzalka 
1999). The oxygen-evolving complex (OEC), located on the luminal side of the 
thylakoids which donates electron from water to the PS II reaction center, was 
reported to be the primary target of heavy metal toxicity. The primary effect is the 
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inhibition of photosynthetic O2 evolution, reduction of NADP, and photophosphory-
lation. Secondary effects include delayed Chl degradation, a decreased Chl a/Chl b 
ratio, and changes in nitrogen metabolism (Prasad and Strzalka 1999). In studies 
with Nicotiana plumbaginifolia, it was found that Fe excess decreased photosyn-
thetic rate by 40 % due to the reduction of PS II activity and an increase in thylakoid 
energization (Kampfenkel et al. 1995). Iron due to its participation in oxidation- 
reduction reactions within the cells is believed to generate oxidative stress in plants 
when taken in excess, thereby leading to increased activities of antioxidative 
enzymes. Fe toxicity also induces photorespiration (Keunen et al. 2011).

Zinc affects water-oxidizing complex due to the local competition between Zn2+ 
and Mn2+ on the water splitting of PS II and substitution of Mn2+ by Zn2+ (Dasgupta 
et al. 2008). Under Zn2+ toxicity, alteration of the inner structure and composition of 
the thylakoid membrane occurred led to the decline in photochemical activities 
(Dasgupta et al. 2008). In rice plants, a significant inhibition in Hill reaction activity 
was noticed under Zn toxicity and also on the quantum yield of PS II. Pb toxicity 
also influences both PS II and PS I activity. Rashid et al. (1994) showed that Pb 
competes for binding sites near the calcium and chloride binding in the water- 
oxidizing complex. Studies have shown that loss of the extrinsic polypeptides of 17 
and 24 kDa in lead treated PS II sub-membrane fraction.

Cd toxicity binds both sites of donor and acceptor sides of PS II (Sigfridsson 
et al. 2004). On the donor side, the presence of Cd2+ toxicity led to inhibition of 
photosynthetic oxygen-evolving center by exchange of Cd with high-affinity 
Ca2+ cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center 
(Faller et al. 2005), which results in inhibition of photosynthetic oxygen evolution. 
Cd also inhibits electron transfer from redox-active tyrosine residues D1-161 
(Wang et al. 2009).

6.4.3  Impact of Heavy Metals on Dark Reactions

Photosynthesis is very important to plant physiological reactions, and heavy metals 
inhibit not only light reactions, but dark reactions are also affected (Gill et al. 2011) 
and reported in many plants (Table 6.2). The first step of enzymes catalyzing carbon 
metabolism in both C3 and C4 photosynthesis is Rubisco and phosphoenol-pyruvate 
carboxylase (PEPC), and they are the most sensitive targets of heavy metal stress. 
Heavy metal toxicity in plants has been attributed to the binding of these metal ions 
to enzymes resulting in the alteration of their catalytic functions (Clijsters and Van 
Assche 1985). Decreased activity of key enzymes of CO2 fixation (RuBPcase, PEP- 
carboxylase) has been observed in various crops under heavy metal treatments 
(Sheoran et al. 1990). Decreased Ribulose Bisphosphate carboxylase/oxygenase 
(RUBPCase) activity has been observed under Zn2+ treatment (Van Assche and 
Clijsters 1983). Metal substitution might be the possible reason for this effect (Table 
6.1). Uptake of heavy metals induces metal substitution in the metalloproteins, 
impairing enzyme activity substitution of Zn2+ and Mn2+ by Cd2+ toxicity for car-
bonic anhydrase (Ernst 1980). In vitro substitution of Mg2+ by Mn2+ or Co2+ and Ni2+ 
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decreased the RuBPcase/oxygenase activity ratio. The changed ratio showed an 
increased CO2 compensation and accumulation of glycolate. A detailed study in 
pigeon pea has shown that the activity of various enzymes of Calvin cycle, namely, 
RuBPcase, 3-PGA kinase, NAD and NADP-glyceraldehyde phosphate dehydroge-
nases, aldolases, and fructose-1,6-bisphosphatase, gets reduced only by 10–40 %. 
Cd2+ drastically affects the enzyme functioning related to carbon metabolism. The 
activity of ADPG pyrophosphorylase was most sensitive to this treatment. Levels of 
various Calvin cycle intermediates, namely, 3-phosphoglyceric acid (PGA), DHAP 
(dihydroxyacetone phosphate), fructose-1,6-biphosphate, fructose-6-phosphate, 
ribulose-1,5-bisphosphate, and glyceraldehyde 6-phosphate, were reduced under 

Table 6.2 Effect of heavy metals toxicity on photosynthetic pigments, light reactions, and gas 
exchange parameters in different plants

Heavy 
metal Plant Parameters

Percent 
decrease References

Cd Pea Chl a 50.6 Hattab et al. (2009)

Chl b 51.89

Carotenoids 45.53

Cd Pea Ps 16.7 Januškaitienė (2010)

Barley 12.8

Cd2+ Mustard cv. 
Varuna

Ps 39 Gill et al. (2011)

gs 41

CA 40

Total chl 46.6

Zn Phaseolus Ps 39 Vassilev et al. (2011)

gs 31

Chl a 52

Chl b 41

Carotenoids 31

Zn Rice Total chl 32.9 Song et al. (2014)

Chl a/Chl b 17.4

Ps 49.9

gs 64.7

Ci 32.1

Cd Bermuda grass Total chl 14.8 Xie et al. (2014)

Hg Maize O2 evolution 82 Srinivasulu and 
Murthy (2015)Electron transport activity PS II 71

Ni Maize O2 evolution 77 Srinivasulu and 
Murthy (2015)Electron transport activity PS II 78

Hg Turf grass Ps 59.6 Guo et al. (2015)

gs 62.5

Ps photosynthetic rate, gs stomatal conductance, chl a cholorophyll a, chl b chlorophyll b, Total chl 
total chlorophyll, Ci intercellular CO2, CA carbonic anhydrase
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heavy metal stress, and reductions ranged from 31 to 80 % (Mourato et al. 2015). 
Phosphoglyceric acid kinase (PGK) and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) enzymes are inhibited by Cu and Cd treatment in cucumber cotyle-
dons (Burzynski and Zurek 2007). Metals additionally decreased the potential 
activity of PGK which suggests that they can influence not only the activity of this 
protein. The negative effect of Cd on PGK and GAPDH was observed by Sheoran 
et al. (1990) and Stirborova et al. (1986) in the pigeon pea and maize leaves. 
However, reductions recorded in various enzymes and metabolites could not clearly 
explain the main reason of reduction in photosynthesis at the whole plant level.

6.5  Conclusions

Heavy metals influence the functions of photosynthetic apparatus. Heavy metals 
interact directly with the photosynthetic apparatus at various levels of organization 
and architecture affecting chlorophyll synthesis, the organization of chlorophyll by 
interfering with the organization of pigment-protein complexes that are essential for 
optimal function of PS II. Magnesium insertion during chlorophyll biosynthesis is 
substituted by Cu, Zn, Hg, Pb, and Ni. Most of the heavy metals react with thiol 
groups or influence enzymes involved in oxidation-reduction reactions by modulat-
ing its donor site. Heavy metals also affect the enzymes involved in Calvin cycle. 
So, overall high concentration of metal can hinder the photosynthetic pathways that 
consequently lead to reduction in the productivity of the plants.

Acknowledgments The authors are thankful to the Head of the Department of Botany for all the 
laboratory facilities and to the Department of Science and Technology, New Delhi, and Council of 
Scientific and Industrial Research, New Delhi, for providing financial support to the work. Richa 
Rai is grateful to the Department of Science and Technology, New Delhi, for awarding Fast Track 
Young Scientist.

References

Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metal ions Cd2+, Hg2+ and Pb2+ with light- 
harvesting proteins of chloroplast thylakoid membranes. An FITR spectroscopic study. J Inorg 
Biochem 50:235–243

Alia P, Saradhi P, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes 
against free radical-induced photodamage. J Photochem Photobiol B: Biol 38:253–257

Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosynthesis II. Inactivation, protein 
damage and turn-over. Biochim Biophys Acta 11443:113–134

Atafar Z, Mesdaqhinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoqhaddam M, Mahvi AH 
(2010) Effect of fertilizer application on soil heavy metal. Environ Monit Assess 160:83–89

Augustsson AL, Uddh-Söderberg TE, Hogmalm KJ, Filipsson ME (2015) Metal uptake by home 
grown vegetables – the relative importance in human health risk assessment sat contaminated 
sites. Environ Res 138:181–190

Barghiani C, Gloffre D, Bargali R (1987) Mercury content in Pinus Sp of the Mt. Etna volcanic 
area. In: Lindberg JE, Hutchinson TC (eds) Heavy metals in the environment, vol 2, New 
Orleans.51

6 Impact of Heavy Metals on Physiological Processes of Plants: With Special…



138

Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 
2012:1–22

Burzynski M, Zurek A (2007) Effects of copper and cadmium on photosynthesis in cucumber coty-
ledons. Photosynthetica 45:239–244

Canon HL, Connally GG, Epstein JB, Parker JG, Thornton I, Wixson G (1998) Rocks: geological 
sources of most trace elements. In: Report to the workshop at south scas plantation Captiva 
Island, FL, US. Geochem Environ 3:17–31

Capsi V, Droppa M, Horváth G, Malkin S, Marder JB, Raskin VI (1999) The effect of copper on 
chlorophyll organization during greening of barley leaves. Photosynth Res 62:165–174

Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 
7:31–40

Csatorday K, Gombos Z, Szalontai C (1984) Mn2+ and Co2+ toxicity in chlorophyll biosynthesis. 
Proc Natl Acad Sci U S A 81:476–478

Dasgupta J, Ananyev GM, Dismukes DC (2008) Photoassembly of the water-oxidizing complex in 
photosystem II. Coord Chem Rev 252:347–360

De Vos CHR, Ten Bookum W, Vooijs R, Schat H, De Kok IJ (1993) Effect of copper on fatty acid 
composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucu-
balus. Plant Physiol Biochem 31:151–158

Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: 
Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca 
Raton, pp 177–203

Dziubanek G, Piekut A, Rusin M, Baranowska R, Hajok I (2015) Contamination of food crops 
grown on soils with elevated heavy metals content. Ecotoxicol Environ Safe 118:183–189

Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the 
Environment Part I. Wiley, New York, pp 639–653

Eleftheriou EP, Karataglis S (1989) Ultrastructural and morphological characteristics of cultivated 
wheat growing on copper polluted fields. Bot Acta 102:134–140

Emamuerdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress ad some mechanisms 
of plant response. Sci World, 756120

Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoac-
tivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophy 
Acta Bioenerg 1706:158–164

Farmer EE, Mueller MJ (2013) ROS-Mediated lipid peroxidation and RES-activated signaling. 
Annu Rev Plant Biol 64:429–450

Fodor F (2013) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, 
Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants, 
Springer- Verlag

Fraustro da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon, 
Oxford, p 114

Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five indian mustard 
(Brassica juncea L.) cultivars An evaluation of the role of antioxidant machinery. Plant Signal 
Behav 6:293–300

Guo YC, Liu YY, Wang RY, Wang S, Lu XP, Wang B (2015) Effect of mercury stress on photosyn-
thetic characteristics of two kinds of warm season turf grass. Int J Environ Monit Anal 
3:293–297

Hattab S, Dridi B, Chouba L, Kheder MB, Bousetta H (2009) Photosynthesis and growth responses 
of pea Pisum sativum L. under heavy metals stress. J Environ Sci 21:1552–1556

Januškaitienė I (2010) Impact of low concentration of cadmium on photosynthesis and growth of 
pea and barley. Environ Res Eng Manag 3:24–29

Kalyanaram B (1996) Thiol radicals in biological systems: significant or trivial? Biochem Soc 
Symp 61:55–63

Kampfenkel K, Montagu MV, Inze D (1995) Effects of iron excess on Nicotiana plumbaginifolia 
plants (Implications to oxidative stress). Plant Physiol 107:725–735

R. Rai et al.



139

Karuppanapandian T, Moon J, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in 
plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 
5:709–725

Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress 
and plant mitochondria. Int J Mol Sci 12:6894–6918

Krupa Z, Skorzynska E, Maksymiec W, Baszynski T (1988) Effect of cadmium treatment on the 
photosynthetic apparatus and its photochemical activities in greening radish seedlings. 
Photosynthetica 21:156–164

Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlo-
rophylls using the example of water plants. J Exp Bot 47:259–266

Kurdziel BM, Strazalka K (1999) Influence of metals on biosynthesis of photosynthetic pigments 
In: Prasad MNV, Strazalka M (eds) Physiology and biochemistry of metal toxicity and toler-
ance in plants, Springer, pp 201–228

Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 
97:209–221

Lin YF, Mark GMA (2012) The molecular mechanism of zinc and cadmium stress response in 
plants. Cell Mol Life Sci 69:3187–3206

Maksymiec W, Bednara J, Baszynski T (1995) Responses of runner bean plants to excess copper 
as a function of plant growth stages: lffects on morphology and structure of primary leaves and 
their chloroplast ultrastructure. Photosynthetica 31:427–435

Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under 
heavy metal stress. Pol J Environ Stud 15:523–530

Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals 
in plants of the genus Brassica. Int J Mol Sci 16:17975–17998

Myśliwa-Kurdziel B, Prasad MNV, Strzalke K (2013) Photosynthesis in heavy metals stressed 
plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. 
Springer, Berlin

Ouzounidou G (1997) Sites of copper in the photosynthetic apparatus of maize leaves: kinetic 
analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissi-
pation as monitored by photoacoustic signals. Aust J Plant Physiol 24:81–90

Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: 
emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and 
principal component analysis. Atmos Pollut Res 5:79–86

Pandey N, Pathak GC, PAndey DK, Pandey R (2009) Heavy metals Co, Ni, Cu, Zn and Cd pro-
duce oxidative damage and evoke differential antioxidant responses in spinach. Bra J Plant 
Physiol 21:103–111

Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu 
JO, Davidson CI (eds) Toxic metals in the atmosphere, Chap 2. Wiley, New York

Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus 
vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–405

Prasad DDK, Prasad ARK (1987) Altered delta-aminolevulinic acid metabolism by lead and mer-
cury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249

Prasad MNV, Strzalka K (1999) Impact of heavy metals on photosynthesis. In: Prasad MNV J, 
Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, 
Berlin, pp 117–138

Rashid A, Camin EL, Ekramoddoulah AKM (1994) Molecular mechanism of action of Pb2+ and 
Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350:296–298

Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxida-
tive stress and protection by mycorrhization. J Exp Bot 53:1351–1365

Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinat-
ing seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll 
degradation. Physiol Plant 5:85–89

6 Impact of Heavy Metals on Physiological Processes of Plants: With Special…



140

Shahid M, Powrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy metals induced 
reactive oxygen species: phytotoxicity and physicochemical changes in plant. Rev Environ 
Contam Toxicol 232:1–44

Siedlecka A, Baszynski T (1993) Inhibition of electron flow around photosystem I in chloroplasts 
of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

Šeršeň F, Kráľová K, Blahová M (1996) Photosynthesis of chlorella vulgaris as affected by 
4-chloro-2- methylphenoxyacetato)copper(II) complex. Biol Plant 38(1):71–75

Šeršeň F, Kráľová K (2013) Photosynthesis EPR spectroscopy — a valuable tool to study photo-
synthesizing organisms exposed to abiotic stresses. In: Dubinsky Z (ed) Photosynthesis, Intech, 
pp 247–283

Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the 
enzymes of photosynthetic carbon reduction cycle in pigeon pea. Photosynth Res 23:345–351

Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with 
photosystem II. Biochim Biophys Acta 1659:19–31

Skórzńska -Polit E, Tukendorf A, Selstam E, Baszynski T (1998) Calcium modifies Cd effect on 
runner bean plants. Environ Exp Bot 40:275–286

Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression 
of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9(11):e113782

Srinivasulu P, Murthy SDS (2015) Action of selected heavy metals on photosynthetic electron 
transport activities of maize thylakoid membranes. Int J Plant Anim Environ Sci 5:90–93

Stirborova M, Doubravorva M, Leblova S (1986) A comparative study of the effect of heavy metal 
ions on ribulose 1-5- bisphosphate carboxylase and phosphenol pyruvate carboxylase. Biochem 
Physiol Pflanz 181:373–379

Van-Assche F, Clijsters H (1983) Multiple effects of heavy metal toxicity on photosynthesis. In: 
Marcelle R, Clijsters H, Van Pouckem (eds) Effects of stress on photosynthesis, Martinus- 
Nijhoff, The Hague, pp 371–382

Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosyn-
thetic performance of young bean plants. J Phytol 3:58–62

Villiers F, Ducruix C, Hugouvieux V (2011) Investigating the plant response to cadmium exposure 
by proteomic and metabolomic approaches. Proteomics 11:1650–1663

Wang H, Zhao SC, Liu RL, Zhou W, Jin JY (2009) Changes of photosynthetic activities of maize 
(Zea mays L.) seedlings in response to cadmium stress. Photosynthetica 47:72–78

Weckx JEJ, Clijsters H (1997) Zn phytotoxicity induces oxidative stress in primary leaves of 
Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

Wong D, Govindjee (1976) Effects of lead ions on photosystem I in isolated chloroplasts: studies 
on the reaction centre P700. Photosynthetica 10:241–254

Xie Y, Hu L, Du Z, Sun X, Amombo E (2014) Effects of cadmium exposure on growth and meta-
bolic profile of bermudagrass [Cynodon dactylon (L.) Pers.]. PLoS ONE 9 e115279. 
doi:10.1371/journal.pone.0115279

Źróbek AS, Asard H, Górska KK, Górecki RJ (2009) Cadmium and zinc mediated oxidative burst 
in tobacco BY-2 cell suspension cultures. Acta Physiol Plant 31:43–49

R. Rai et al.



141© Springer Nature Singapore Pte Ltd. 2016
A. Singh et al. (eds.), Plant Responses to Xenobiotics, 
DOI 10.1007/978-981-10-2860-1_7

A. Kumar (*) 
Laboratory of Plant Physiology and Biochemistry, Department of Botany,  
University of Rajasthan, Jaipur 302004, Rajasthan, India
e-mail: rathoreanilk@yahoo.com 

N.C. Aery 
Laboratory of Geobotany and Biogeochemistry, Department of Botany,  
Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India

7Impact, Metabolism, and Toxicity 
of Heavy Metals in Plants

Anil Kumar and N.C. Aery

Abstract
Plants are sessile organisms, and in order to survive they have to combat with the 
surrounding environment. Due to the numerous anthropogenic activities, an 
excessive level of different heavy metals accumulates in the soil system. The 
uptake of eminent concentration of these metals is toxic for the living organisms 
existing in that region. The troubling impact of heavy metals on plants is associ-
ated with the deformed growth and development, ionic imbalance, reduced pho-
tosynthetic rate, degradation of photosynthetic pigments and chloroplast, 
alteration in elemental composition, and disturbed plant water relation. The 
influence of metal ion is more complex by interaction between different ions 
because a high level of one metal ion may interfere with the uptake and transport 
of others and disturb the nutritional composition of plants and induce toxic 
symptoms. Several mechanisms have been evolved by the plants to sustain suit-
able physiological concentrations of metal ions and to minimize exposure of 
cellular processes to toxic heavy metals. Plants exposed to toxic concentrations 
of heavy metals attempt to prevent entry of these metal ions in roots as well as 
translocation from root to aerial parts by restricting metal ions to the apoplastic 
region, binding them to the cell wall, extracellular chelation with root exudates, 
or by reducing long-distance transport. Once metals enter in the cell, several stor-
age and detoxification strategies including metal transport, chelation, and seques-
tration into the vacuole take place to diminish the toxic effects. The entry and 
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transport of heavy metal in plants, strategies of plants to overcome the lethal 
consequences, and the specific toxic effects of heavy metals on plants when 
exposed to metal-enriched environment are emphasized in this chapter.

Keywords
Heavy metals • Uptake • Accumulation • Detoxification • Toxicity • Plants

7.1  Introduction

The group of metals and metalloids with atomic density higher than 4 g/cm3 or 5 
times or more, greater than water, have been called heavy metals (Hawkes 1997). 
However, the toxic properties are more relevant to the chemical properties of the 
heavy metals as compared to the density. Heavy metal includes lead (Pb), cadmium 
(Cd), nickel (Ni), cobalt (Co), zinc (Zn), chromium (Cr), iron (Fe), arsenic (As), 
silver (Ag), etc.

Heavy metals are mostly found in dispersed form in rock formations. These met-
als are present mainly in soil as well as aquatic ecosystems and also present in rela-
tively low proportion as particulates or vapors in atmosphere. Heavy metals which 
are usually confined in the Earth’s crust and are benign to living organisms have 
been significantly exploited and discharged into the biosphere in the last few 
decades.

Nieboer and Richardson (1980) proposed a classification of metals to avoid the 
use of the term “heavy metal.” They have classified the elements in three classes on 
the basis of equilibrium constant that describes the formation of metal ion/ligand 
complexes. These are:

 (i) Class A elements which show preferences for ligands containing oxygen
 (ii) Class B elements which show preferences for ligands with nitrogen or sulfur
 (iii) Borderline elements of intermediate character between Class A and B

Heavy metals such as Hg, Cd, Pb, and Ni are highly toxic to different organisms 
and come under Class B elements (Nieboer and Richardson 1980). Some of these 
heavy metals are able to persist in the environment for a long duration. However, 
these metals are difficult to metabolize, but they are bioaccumulative and accumu-
late in the ecological food chain through uptake at primary producer level and trans-
fer to different trophic levels.

Hossain et al. (2012) classified the heavy metals into two groups: (i) redox active 
(Fe, Cu, Cr, Co) and (ii) redox inactive (Cd, Zn, Ni, Al, etc.). The redox-active 
heavy metals are directly involved in the redox reactions of cells whereas redox 
inactive heavy metals indirectly induce oxidative stress by interacting with the anti-
oxidant defense system, disrupting the electron transport chain or induction of lipid 
peroxidation (Dietz et al. 1999; Schützendübel and Polle 2002; Kumar and Aery 
2011; Hossain et al. 2012).
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Heavy metal contamination is a severe problem worldwide. These metals are the 
major inorganic contaminants of soil, and a considerable large area of land is con-
taminated with them due to anthropogenic activities like extensive application of 
fertilizers and pesticides, sludge or municipal composts, emissions from municipal 
waste incinerators, vehicle exhaust, residues of metalliferous mines and smelting 
industries, etc. (Garbisu and Alkorta 2003; Halim et al. 2003). Contamination of 
agricultural soil by heavy metals has become a critical environmental concern due 
to their long-term persistent nature and potential harmful ecological effects.

There is a very complex mechanism used by plants to metabolize heavy metals. 
A complex network of uptake, transport, compartmentalization, chelation, and 
sequestration processes are found in the plants to maintain the concentrations of 
essential metal ions in cytosol within a narrow physiological range and minimize 
the damage caused by nonessential metal ions (O’Halloran and Cullota 2000; 
Clemens 2001).

7.2  Impact of Heavy Metals on Plants

Plants are stationary, and roots of a plant are the main contact site for heavy metal 
ions. Due to this contact, plants absorb heavy metals mainly by roots and also by the 
leaf surfaces due to deposition of particles containing these metals. Those plants 
which are grown in aquatic systems face more toxic influence as in this type of 
plants whole plant body is exposed to toxic ions.

Some heavy metals (Fe, Cu, Mo, and Zn) are considered as essential elements for 
plants. Involvement in the redox reactions and being an integral part of enzymes are 
two key functions of essential heavy metals in cells. Heavy metals like Cu, Mo, Zn, 
etc. serve as cofactor and activator of different enzyme reactions and play a vital 
role in enzymes/substrate metal complex formation (Mildvan 1970) or show a cata-
lytic property as prosthetic group in metalloenzymes take part in electron transport 
and structural functions in nucleic acid metabolism (Nagajyoti et al. 2010).

The heavy metal toxicity causes serious threats to living organisms because these 
metals are persistent and present for a long period in the environment (Gisbert et al. 
2003). Heavy metals such as Cd, Hg, and Pb are strong inhibitors of metal-sensitive 
enzymes, and exposure to these metals results in growth inhibition and even death 
of organisms. However, heavy metal toxicity in plants depends upon plant species, 
specific metal, chemical form and soil composition, soil pH, and concentration in 
tissues.

In some instances, low concentrations of toxic metals have been observed to be 
promoting the growth parameters such as length, dry weight, nodule number, and 
weight of plants (Sarkar and Aery 1988; Matsumoto et al. 1976; Marschner 2012). 
This phenomenon is known as hormesis (Cedergreen et al. 2007; Poschenrieder 
et al. 2013).

For metals such as Cu, Zn, Fe, and Mo which plays an essential role in plant 
growth, adverse effects have been recorded at high concentrations as compared to 
metals (Pb, Cd, Hg, As) which do not play an essential role in plant growth; harmful 
effects have been recorded at very low concentrations in the growth medium. 
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Essential heavy metals improve the plant growth at low concentrations in the substrate. 
However, at higher concentrations of these metals, reductions in plant growth have 
been reported (Hagemeyer 1999; Kumar and Aery 2010; Kumar and Aery 2012b).

Heavy metals directly or indirectly affect the growth and development of plants 
(Fig. 7.1). The direct effects include decline in physiological and biological activi-
ties, inhibition of cytoplasmic enzymes, and damage of cellular structure and func-
tions of plants by causing oxidative stress (Assche and Clijsters 1990; Aery 1998, 
2012). In indirect manner, these heavy metals replace the essential nutrients at cat-
ion exchange site of plants (Taiz and Zeiger 2002). The adverse effect of heavy 
metals on the growth and activities of soil microbes may also indirectly affect the 
plant growth (Kumar 2013).

The mechanism of heavy metal toxicity in plants is summarized in Fig. 7.1. 
Metal toxicity is attributed to three most important reasons:

 (i) Direct interaction with proteins due to high affinities for thiol, histidyl, and 
carboxyl groups, directing the metals to target structural, catalytic, and trans-
port sites of the cell;

Displacement of
essential metals
from enzymes 

Production of
Reactive Oxygen

Species 

Oxidative
stress 

Disrupted
Proteins

Membrane damage Metabolic disturbance

DAMAGE

HEAVY METALS

Nutrient loss

High
affinity for
proteins

Inactive
enzymes 

Fig. 7.1 Summary of heavy metal-induced toxicity mechanism in plants
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 (ii) Induce generation of reactive oxygen species (ROS) that alters the antioxidant 
defense system and results in oxidative stress;

 (iii) Displacement of essential metal ions from the binding sites, causing functions 
to collapse (Sharma and Dietz 2009).

The interference of heavy metals with ionic homeostasis and enzyme activity 
affects physiological processes involving single organ (like nutrient uptake by roots) 
followed by several processes such as germination, photosynthesis, respiration, 
plant water balance, metabolism, and reproduction. Indeed, visible symptoms of 
heavy metal toxicity include chlorosis, necrosis, senescence, wilting, stunted 
growth, low biomass production, limited numbers of seeds, and eventually death. 
The plants growing under heavy metal stress have to expend more energy for their 
survival, which otherwise would have been available for their other process. This 
deficiency of the required amount of energy may result in the overall decrease in the 
plant’s growth in such hostile metal-stressed environment (Aery and Sarkar 1991). 
Toxic effects of some heavy metals are given in Table 7.1.

7.3  Metabolism of Heavy Metals

Heavy metals, especially nonessential heavy metals, at higher accumulation gener-
ate an unease situation to the functioning of plant cells. As the heavy metal enters in 
the plant system, several different types of strategies are employed by the plants to 
combat the situation. Response of plants to heavy metal depends mainly on effi-
ciency of metal uptake, translocation, and sequestration of heavy metal in special-
ized tissues or in trichomes and organelles such as vacuoles. Several studies have 

Table 7.1 Toxic effect of some heavy metals in plants

Heavy 
metal Toxic effect References

Cd Growth retardation, stunted root, chlorosis of 
leaves, and red-brown coloration of leaf margins or 
veins

Aery and Sarkar (2012a, b) 
and Baszyński (2014)

Hg Stunted growth, reduced root development, 
inhibition of photosynthesis and respiration, 
reduced chlorophyll synthesis, low exchange of 
gases

Patra and Sharma (2000)

Pb Destruction of plasma membrane, disturbance of 
electron transfer reactions, reduced elasticity and 
plasticity of cell wall

Zimdahl (1976), Lane et al. 
(1978), and Woźny (1998)

Cr Wilting of top, root injury, chlorosis, reduced 
biomass production

Baszyński (1981) and 
Mukhopadhyay and Aery 
(2000)

Al Reduced root development, disruption of 
microtubules and microfilament, low chlorophyll 
synthesis, reduced rate of photosynthesis

Foy (1988) and Rana and Aery 
(1999)
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been carried out to understand the mechanism of metabolic processes in plants at an 
elevated metal concentration. The possible mechanisms undertaken by plants in 
response to heavy metals include exclusion, inclusion and accumulation of heavy 
metals, binding to the cell wall, reduced transport across the plasma membrane, 
active efflux, compartmentalization, and chelation (Prasad 1995; Aery 1998, 2012; 
Raskin and Ensley 2000; Hall 2002).

7.3.1  Uptake and Accumulation

Plants are able to solubilize and take up different nutrients from the soil by produc-
ing chelating agents and changing in pH and redox reactions. They also have highly 
specific mechanisms for translocation and accumulation of different nutrients. 
These mechanisms also accomplish the uptake and translocation of heavy metals, 
whose physical and chemical properties are similar to those of essential elements 
(Salisbury and Ross 1978; Tangahu et al. 2011).

The uptake of elements by a plant is much affected by a number of factors, viz., 
the organ of plant, age of plant organ, health of plant, the pH of the soil, depth of 
root system, temperature, oxygen partial pressure, carbohydrate level, respiration 
rate, interaction between elements, presence of microorganisms, etc. (Aery and 
Tyagi 1988). It has been reported that administration of glucose or citric acid signifi-
cantly improved the extractable Cu concentration in soil (Chen et al. 2006).

The uptake of heavy metals by plants depends upon its availability in the sub-
strate. Those heavy metals which are present as soluble component in the soil solu-
tion or easily solubilized by root exudates are available for plants (Chibuike and 
Obiora 2014). It has been reported that the plants liberate organic acids such as 
malic acid from radicle apex on exposure to heavy metals (Delhaize and Ryan 1995; 
Larsen et al. 1998). These organic acids inhibit metal uptake by forming a complex 
with the metal at the rhizosphere. Citrate-inhibited Al uptake and tolerance in sev-
eral plant species is an example of this mechanism (de la Fuente et al. 1997; Pineros 
and Kochian 2001; Papernik et al. 2001).

Once a heavy metal is bioavailable to the plant, the entry of metal ions into the 
plant is either through the symplastic or through the apoplastic process and depends 
on the type of heavy metal. The entry of heavy metal ions in plant cells is an energy- 
dependent process and completed by the help of some specific ion carriers or chan-
nels (Bubb and Lester 1991).

Generally plants adopt an avoidance strategy to avoid excess entry of heavy 
metal and prevent the toxic effects of heavy metals. The maximum fraction of heavy 
metals is accumulated in peripheral regions of roots such as the root hairs, epidermis 
and endodermal cell layers, and some parts in the cortex and excluded from the 
vascular cylinder (Kumar and Aery 2011; Hajiboland and Poschenrieder 2015). The 
entry of heavy metals in plants is restricted either by precipitating or by making 
complex in the root environment. Plants are able to precipitate heavy metals by 
changing the pH of the rhizosphere or by excreting anions such as phosphate 
(Hossain et al. 2012). The surface of the root is able to bind many heavy metals dur-
ing the process of adsorption. These heavy metals (Cd, Ni, Pb, Sr) rapidly concen-
trate into root tissues of plants (Salt et al. 1995, 1999).
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There are some proteins of plasma membrane which participate in ion uptake 
and translocation. These are (1) proton pumps (ATPases that require energy and 
generate electrochemical gradients), (2) transporters (co and anti) (use the electro-
chemical gradients generated by ATPases to drive the active uptake of ions), and (3) 
channels (proteins that facilitate the transport of ions into the cell). These proteins 
are liable to take up a range of ions, but the interaction of other ionic species influ-
ences the uptake of heavy metals. After uptake by roots, these metal ions are trans-
located to the shoot. The forms in which metal ions are translocated from the roots 
to the shoots are not well studied.

Nonessential metal ions enter in plant cells via the uptake system of essential 
ions. It is reported for wheat that protein LCT1, when expressed heterologously in 
Saccharomyces cerevisiae, renders yeast cells Cd2+ hypersensitive because of 
LCT1-mediated Ca2+ influx (Clemens et al. 1998). It shows that Cd2+ ions enter in 
the yeast cells using protein for Ca2+ influx. In transgenic Brassica juncea, overpro-
duction of either γ-glutamylcysteine synthetase or glutathione synthetase leads to 
improved accumulation and tolerance of different metals such as Cd, Cr, and As 
(Reisinger et al. 2008). Overproduction of ferritin by genetic alteration leads to 
increased uptake of Fe, Cd, Mn, and Zn (Sappin-Didier et al. 2005). This may be 
due to Fe deficiency at high pH, which stimulates metal uptake and translocation in 
shoots by an increase in ferric reductase and H+-ATPase activities in the roots 
(Revathi and Venugopal 2013).

In addition to uptake from the soil, elemental Hg can be absorbed through leaves. 
Total mercury content of corn and wheat plants exposed to Hg vapors reflects total 
Hg concentrations in the air rather than the soil (Niu et al. 2011). The exact mecha-
nism of metal uptake from leaves is not known, but likely involves gas exchange 
through the stomata.

Baker (1981) suggested that plants could be classified into three categories (Fig. 
7.2). These are
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 1. Excluders: those plants which grow in metal-contaminated soil and maintain the 
shoot concentration at low level up to a critical soil value, and above which rela-
tively unrestricted root-to-shoot transport is found.

 2. Accumulators: those plants which accumulate metals in the above-ground part at 
low as well as high soil levels.

 3. Indicators: In this type of plants, the uptake and transport of metals to the shoot 
are regulated so that internal concentration reflects external levels.

7.3.1.1  Hyperaccumulation
Hyperaccumulation is the process by which plants accumulate metals more than 
0.1–1 % of the dry weight. This term was coined by Baker and Brooks (1989) to 
define plants that contain higher than 1000 mg g−1 of nickel in leaves. According to 
Baker et al. (2000), plants that accumulate more than 100 mg Cd kg−1 (0.01 %) or 
more than 500 mg Cr kg1 (0.05 %) in dry leaf tissue can be considered as 
hyperaccumulators.

A hyperaccumulator plant can accumulate and tolerate high levels of heavy met-
als. Some plant species have the capacity to grow in the soil, contaminated with 
heavy metals and have the ability to accumulate elevated amount of heavy metals as 
an ecological adaptation in metalliferous soil (Maywald and Weighl 1997).

The hyperaccumulator plants have an unusual capability to absorb metals from 
the soil even under low and high metal concentrations in the substrate and accumu-
late them in the shoots (Ma et al. 2001; Yang et al. 2002). More than 400 plant spe-
cies have been reported so far that hyperaccumulate metals (Baker et al. 2000; 
McIntyre 2003).

The major processes involved in hyperaccumulation of metals in plants include 
bioactivation of metals in the rhizosphere through root-microbe interaction, 
enhanced activity of metal transporter proteins in the cell membranes, detoxification 
of metals by limiting to the apoplasts, chelation of metals in the cytoplasm by dif-
ferent ligands, and sequestration of metals into the vacuole by transporters present 
on tonoplasts (Lombi et al. 2002; Yang et al. 2005).

Ferns have been studied for their ability to accumulate As in the fronds. The 
Chinese brake fern (Pteris vittata) is able to take up As (V), reduce it to As (III), trans-
locate it through the xylem with water and minerals as an As (III)-S compound, and 
store it as As (III) in the fronds (Ma et al. 2001). Tripathi et al. (2007) reported that the 
plants take up and mobilize this As (V) through the phosphate transport channels.

Generally plants absorb heavy metals with respect to concentration of metals 
present in the substrate. Tiagi and Aery (1986) observed that some plants such as 
Talinum portulacifolium, Tephrosia villosa, Rhus mysorensis, and Bouchea marru-
bifolia accumulate Cu in their leaves at very high concentrations (394, 288, 244, and 
147 μg g−1 on dry weight basis, respectively). Moreover, Tephrosia villosa has very 
high biological absorption coefficient (concentration of the element in plant tissue 
divided by the concentration of same element in substrate) value. However, at very 
high concentration, plants limit to accumulate the element. On attainment of the 
threshold value, a gradual decrease in Cu contents of Rhus mysorensis and Talinum 
portulacifolium is reported with any further increase in the Cu content of the soil 
(Tiagi and Aery 1986).
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7.3.2  Transport of Heavy Metals

Once a heavy metal is taken up by plants from the soil, it is then transported to the 
aerial part. Non-hyperaccumulator plants retain most of the heavy metal taken up 
from the soil in root cells, detoxify them by chelation in the cytoplasm or sequestrat-
ing them into vacuoles, whereas hyperaccumulator plants rapidly and efficiently 
translocate these elements to the shoot via the xylem (Monferrán and Wunderlin 
2013). The transport of heavy metal depends upon the availability of heavy metal 
for xylem loading, which derives from a reduced sequestration and efflux of the 
vacuoles, possibly due to specific features of root cell tonoplast (Lasat et al. 2000).

There are four classes of membrane transporters that have been implicated in 
transport of heavy metals in different organisms and could serve such role in plants. 
These are heavy metal ATPases, the natural resistance-associated macrophage pro-
tein (Nramp) family, members of the cation diffusion facilitator (CDF) family, and 
the ZIP family (Williams et al. 2000; Guerinot 2000; Williams and Hall 2000).

Heavy metal ATPases (also known as P1B-type ATPases) operate heavy metal 
transport and play an important role in metal homeostasis and tolerance (Axelsen 
and Palmgren 1998). It belongs to P-type ATPase superfamily and uses energy from 
ATP hydrolysis to efflux various metal cations across the plasma membrane 
(Axelsen and Palmgren 2001). Heavy metal ATPases are internal transporters, 
responsible for the loading of Cd and Zn into the xylem from the nearby tissues, and 
act as an efflux pump. These transporters are able to transfer monovalent as well as 
divalent cation and are more selective than the transporters involved in metal uptake 
(HMA2, HMA3, and HMA4) (Baxter et al. 2003; Krämer et al. 2007). It has been 
reported in Arabidopsis thaliana that AtHMA3 transporter contributes in sequestra-
tion of several heavy metals such as Cd, Pb, Co, and Zn (Morel et al. 2009; Manara 
2012).

Nramp transporters (AtNRAMP3 and AtNRAMP4) are present on the tonoplast 
and help in the transportation of Fe from the vacuole (Thomine et al. 2003; Lanquar 
et al. 2005). Further, it has been reported that Cd sensitivity in plants increases on 
overexpression of AtNRAMP3 (Thomine et al. 2000).

Metal tolerance proteins (MTPs) are metal efflux transporters in plants that 
belong to the CDF transporter family involved in transport of divalent metal cations 
such as Zn, Cd, Co, Fe, Ni, and Mn and help in transportation from the cytoplasm 
to the vacuole (Nies 1992; Krämer et al. 2007; Montanini et al. 2007; Manara 2012).

The ZIP family transporters are well known for uptake of divalent metal. It con-
sists of eight transmembrane domains and a histidine-rich domain believed to 
involve in specific metal binding (Guerinot 2000; Nishida et al. 2008). IRT1 was the 
first reported transporter of the ZIP family in root cells of Arabidopsis thaliana. It 
plays an important role in Fe2+ uptake from the soil (Vert et al. 2002) and also trans-
port of Mn2+, Zn2+, and Cd2+ (Korshunova et al. 1999). AtZIP4 proteins are involved 
in Zn transport and also help in Cd uptake from soil into the root cells and Cd trans-
port from root to aerial parts (Krämer et al. 2007).
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The multidrug and toxin efflux (MATE) is a family of small organic molecule 
transporters that are active in heavy metal translocation in hyperaccumulator plants. 
The FDR3 protein, which is localized at root pericycle plasma membranes, usually 
operates the xylem influx of citrate, which is a ligand for Fe homeostasis and trans-
port (Durrett et al. 2007). Furthermore, FDR3, a gene encoding a member of this 
family, is constitutively overexpressed in the roots of Thlaspi caerulescens and 
Arabidopsis halleri (Talke et al. 2006; van de Mortel et al. 2006).

Heavy metal transporter proteins of plants can be classified as metal uptake pro-
teins and metal efflux proteins. The metal uptake proteins are responsible for the 
transportation of essential heavy metals into the cytoplasm and, in the absence of 
these essential heavy metals or due to the competition between ions, also able to 
transport toxic heavy metals. The metal efflux proteins are proteins involved in 
detoxification, which can efflux excess and toxic heavy metals from the cytoplasm 
or transfer these metals into the vacuole (Jin et al. 2010).

The translocation of heavy metals is mainly dependent upon the metal-chelate 
complex. Generally heavy metals are chelated to organic acids such as histidine 
(Krämer et al. 1996), nicotianamine, citrate, and malate or oxalate (Senden et al. 
1995). Application of citric acid stimulates the transportation of Cd from the roots 
to the shoots by converting the metal into a more easily transported form and 
decreases its toxicity in radish (Chen et al. 2003). It has been reported that histidine 
acts as a ligand and responsible for the long-distance (root to shoot) transport of Ni 
in Ni hyperaccumulator plants such as Alyssum lesbiacum and Thlaspi caerulescens 
(Krämer et al. 1996; Morel et al. 2009).

Citrate is transported into the xylem by FRD3 transporter, a member of the 
MATE family. FRD3 protein is essential for efficient iron translocation by vascular 
system (Durrett et al. 2007). Citrate is also involved in Zn translocation as FRD3 is 
much higher expressed in roots of T. caerulescens (Monferrán and Wunderlin 2013) 
than those of A. thaliana (van de Mortel et al. 2006). Some divalent metal ions like 
Fe, Zn, Ni, Cd, and Cu are also chelated and transported in plants by nicotianamine 
(Ling et al. 1999; Pich et al. 2001; Takahashi et al. 2003).

Rapid and efficient transport of heavy metals from root to aerial parts of hyperac-
cumulator plants depends on improved xylem loading of these metals by a constitu-
tive overexpression of gene coding for transport systems common to 
non-hyperaccumulators. The genes encoding bivalent cation transporters belonging 
to heavy metal transporting ATPases are overexpressed in the roots and shoots of 
Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri (Papoyan 
and Kochian 2004; Talke et al. 2006; Hanikenne et al. 2008). Further, the overex-
pression of HMA4 gene supports Cd and Zn efflux from the root symplasm into the 
xylem vessels. In fact, the increased expression of HMA4 enhances the expression 
of genes belonging to the ZIP family, implicated in heavy metal uptake (Monferrán 
and Wunderlin 2013). This suggests that the root-to-shoot translocation acts as a 
driving force of the hyperaccumulation, by creating a permanent metal deficiency in 
roots (Hanikenne et al. 2008).

The movement of As from root to shoot is controlled by the external As concen-
tration (Singh and Ma 2006). The higher arsenic translocation of As to the shoot in 
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hyperaccumulator Pteris vittata, as compared with non-hyperaccumulator ferns, 
occurs mainly as arsenite, which accounts for over 90 % of the As in the xylem sap 
(Su et al. 2008). This is because in the root of hyperaccumulator ferns, most of 
arsenate (AsV) is quickly reduced to arsenite (AsIII) by the activity of glutathione- 
dependent arsenate reductase (Duan et al. 2005).

7.4  Role of Cell Wall

The cell wall of the root is in direct contact with heavy metals present in the soil, 
and adsorption of these metals on the cell wall is a key step in the activity of metal 
ions on the surface of the cell membrane as well as on other organelles. Heavy met-
als primarily get accumulated in the root apoplast and then translocated to other 
tissues. Plant cell wall is rich in compounds able to bind divalent and trivalent metal 
cations. Polysaccharides play an essential role in binding of heavy metals in the cell 
wall, although other components such as proteins and amino acids are also able to 
bind metal ions. The pectin matrix of the cell wall has some negatively charged 
carboxylic groups in the apoplast and is responsible for binding of metal ions. These 
compounds bound the maximum fraction of heavy metals entered in the plant sys-
tem and result in the altered structural and mechanical properties of the cell wall 
that also led to a reduction in the mechanical extensibility of the cell wall essential 
for normal cell expansion in the root elongation zone (Kochian et al. 2005; Aery 
2012). Absorption of metal ions on the cell wall reduces the movement of water as 
well as solutes through the apoplasm which results in the decreased acquisition of 
nutrients by the root.

Low-methylesterified pectin level in the cell wall of different plant species such 
as Funaria hygrometrica, Populus tremula, and Lemna trisulca is known to increase 
under heavy metal stress (KrzesBowska et al. 2013). The absorption of heavy met-
als at the cell wall represents a protective action over these metal-susceptible cel-
lular organelles like ribosome, mitochondria, etc. (Aery and Sarkar 1988).

It has been reported that a large proportion of heavy metals taken up by the plants 
accumulates at the cell wall. Hg2+ from the soil is readily taken up and accumulates 
in root systems with up to 80 % bound to the cell wall (Wang and Greger 2004). 
About 40–50 % of Al binds to the cell wall without any differentiation among leaves 
and roots of different ages (Hajiboland and Poschenrieder 2015). Furthermore, 
heavy metal fixed to the cell wall can be removed as a complex using citric acid 
(Varga et al. 1997).

7.5  Heavy Metal Efflux Through Plasma Membrane

The plasma membrane plays a crucial role in plants to reduce the accumulation of 
heavy metals into the cell by active efflux pumping of these metals outside the cell. 
In some instances it has been observed that ion exclusion and reduced accumulation 
play a sole protective mechanism in plants under heavy metal stress. Active efflux 
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system is the most common mechanism used to reduce the accumulation of heavy 
metals in cells. This mechanism is reported in bacteria (Silver 1996) and animals 
(Palmiter and Findley 1995). However, there are only few evidences indicating the 
plasma membrane efflux transporters in plants. The presence of MTP1 transporter 
in plasma membrane suggests that it can also operate in Zn and Ni efflux from the 
cytoplasm to the cell wall (Kim et al. 2004). Compartmental flux analysis using 65Zn 
suggested that Deschampsia cespitosa is capable of actively pumping Zn across the 
plasma membrane into the external medium (Brookes et al. 1981). It has also been 
reported that Cd in the environment of plants stimulates H+-coupled and Mg ATP- 
driven efflux of Cd across the cell membrane (Migocka et al. 2011).

7.6  Vacuolar Compartmentalization/Sequestration

Vacuole is considered as the most important storage place of heavy metals in plant 
cells, and vacuolar compartmentalization of heavy metals is quite effective in con-
trolling the distribution and concentration of metal ions. This organelle “captures 
and detains” the metal ions into a restricted location so that other parts of the cell 
have no access to those hazardous metal ions. Vacuolar compartmentalization 
depends on two vacuolar pumps (V-ATPase and V-PPase) and a set of transporter 
proteins of tonoplast and primary ATP-dependent pumps (Sharma et al. 2016). It 
has been reported that the vacuole is the site for the accumulation of many heavy 
metals such as Zn and Cd (Ernst et al. 1992; De 2000). Non-hyperaccumulator 
plants largely sequester toxic heavy metals in the vacuoles of root cells, whereas 
hyperaccumulators usually sequester them in vacuoles of leaf cells using efficient 
long-distance translocation (Sharma et al. 2016).

The role of vacuole in Cd detoxification and tolerance is well studied (Salt et al. 
1995). Root-selective expression of AtCAX4 and AtCAX2 (calcium exchangers) 
plays a role in plant (Nicotiana tabacum L.) tolerance possibly due to the vacuolar 
Cd sequestration (Korenkov et al. 2007). The toxicity of Cd in plants induces the 
synthesis of phytochelatins. Interaction between phytochelatins and Cd forms a 
Cd-PC complex molecule, which is subsequently transferred to the vacuole by a 
Cd/H antiport and an ATP-dependent PC transporter (Dräger et al. 2004; Hammond 
et al. 2006). Apart from the Cd-PC accumulation, the best evidence for the role of 
vacuolar accumulation of heavy metal is of Zn (Hall 2002). Guo et al. (2012) 
reported that heavy metal chelation by thiols and vacuolar compartmentalization 
increased tolerance and accumulation of Cd and As in transgenic Arabidopsis thali-
ana. The meristematic cells of Festuca rubra roots show increased vacuolation on 
exposure with Zn, while uptake analysis using Zn65 with barley leaves suggests that 
rapid compartmentalization of Zn into the vacuole is a key mechanism to deal with 
elevated concentrations of Zn in plants (Davies et al. 1995; Brune et al. 1994). 
However, Cd, Zn, and Mo accumulate mainly in the vacuole in barley leaves, but Ni 
primarily accumulates in the cytosol (Brune et al. 1995).

Hyperaccumulators have great efficiency to detoxify and sequester heavy metals. 
This feature allows heavy metals to concentrate in huge amounts in their body 
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without suffering any phytotoxic effect. These plants evolved their own mechanism 
to protect themselves from heavy metal stress. The detoxifying mechanisms found 
in hyperaccumulators include heavy metal complexation by ligands and/or in their 
removal from metabolically active cytoplasm by moving them into inactive com-
partments, mainly the vacuole and cell wall.

7.7  Chelation

Chelation of heavy metals is the main strategy adopted by plants to detoxify and 
tolerate high concentrations of heavy metals. When a ligand binds to a heavy metal 
ion through donor atoms, chelation occurs. Ligands are substances that interact with 
the electronic orbitals of the central metal ion and form secondary valence bonds 
resulting in a complex molecule. Overproduction of metal chelating molecules like 
organic acids, phytochelatins, metallothioneins (MTs), phytosiderophores, and fer-
ritin or overexpression of genes coding metal transporter proteins enhances toler-
ance and accumulation of heavy metals in plants.

Upon exposure to heavy metals, plants often synthesize various metabolites that 
accumulate in millimolar range, mainly specific amino acids such as proline and 
histidine and the amines spermine, spermidine, putrescine, nicotianamine, and 
mugineic acids (Sharma and Dietz 2006).

The process of chelation starts, as the heavy metals approaches to the rhizo-
sphere. It occurs both outside the plant body and within the plant cell. Extracellular 
chelation of heavy metals occurs by different organic acids present in roots exudate, 
whereas inside the plant cell, different organic acids, amino acids, and peptides are 
responsible for intracellular heavy metal chelation.

Metal-binding proteins and peptides are preferentially metal specific so that only 
toxic metals (e.g., Cd, Hg, Pb, and Cr) are sequestered excluding essential metals 
such as Zn, Cu, etc. (Ryu et al. 2003). Metal-peptide complex is often transported to 
the plant vacuole to prevent interaction with other components of cellular 
metabolism.

On the basis of their origin, chelators can be classified as natural and synthetic 
chelators. Among natural chelators, phytochelatins and metallothionein are widely 
studied. Metallothioneins and phytochelatins are the best-characterized S-containing 
metal-binding ligands that contribute to heavy metal homeostasis, detoxification, 
and/or tolerance by reducing the metal ion concentrations (Verkleij et al. 2003; Aery 
2012). Plants produce a number of ligands including organic acids like citric acid 
and malic acid, phytin, amino acids, and S-containing compounds which form com-
plexes with heavy metals (Rauser 1999). These ligands have a major role as detoxi-
fying factors and are used in preventing the persistence of heavy metals as free ions 
in the cytoplasm and their entrapment in vacuoles where the metal-organic acid 
chelates are primarily located. Citrate is the chief ligand of Ni in leaves of Thlaspi 
goesingense (Krämer et al. 2000), while citrate and acetate are reported to bind Cd 
in leaves of Solanum nigrum (Sun et al. 2006). Moreover, a large proportion of Zn 
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in Arabidopsis halleri and Cd in Thlaspi caerulescens is complexed with malate 
(Salt et al. 1999; Sarret et al. 2002).

Enhancement in the release of the phytosiderophore 2′-deoxymugineic acid  
(a chelating agent of Cd) from the roots under Fe deficiency conditions is reported 
in Zea mays on exposure to Cd. It has been reported that a fraction of Cd is accumu-
lated in root cell vacuoles by phytochelatins in wheat (Cobbett 2000; Stolt et al. 
2003).

The major detoxification strategy in Se hyperaccumulator plants is to protect 
from selenoamino acids, mainly selenocysteine (Se- Cys), derived from selenate 
assimilation in leaf chloroplasts (Sors et al. 2009). It has been shown that Al induced 
the release of organic anions such as malate, oxalate, or citrate, which chelate Al3+ 
in the rhizosphere and present its entry into the root of a number of plant species 
(wheat, maize, buckwheat, rye, taro, snap bean) (Ma et al. 2001).

Metallothioneins are classified into three types:

Type I metallothioneins are the polypeptides related to mammals that consist of 61 
amino acids and lack aromatic amino acids or histidines.

Type II MTs are from Candida albicans, a yeast, or cyanobacteria (Winge et al. 
1985); a similar chelator belonging to this class is Saccharomyces cerevisiae 
metallothioneins, contributing to high copper tolerance in plants (Kagi 1991).

Type III MTs are typical polypeptides composed of γ-glutamylcysteinyl units. 
Phytochelatins belong to the Third Type metallothioneins.

Genes responsible for production of metallothioneins have been isolated from 
some plant species including maize, soybean, rice, wheat, tobacco, and rapeseed. 
Type I MT genes are expressed mainly in the roots, whereas type II MT genes are 
expressed mainly in the leaves (Nedkorska and Atanassov 1995). According to Kagi 
(1991), heavy metals such as Cd, Zn, Hg, Ag, and Pb induce the production of 
metallothionein especially in animal and plant species. Cd is a best activator of 
metallothionein production, followed by other metals like Ag, Bi, Pb, Zn, Cu, Hg, 
and Au (Krämer et al. 1996). Cd accumulation increased significantly in tobacco 
plants having the transgene coding for the polyhistidine cluster combined with yeast 
metallothionein (Macek et al. 2002). Introduction of a metallothionein gene in 
tobacco also enhances the tolerance to some heavy metals such as Cd, Zn, and Ni 
(de Borne et al. 1998; Pavlı́ková et al. 2004).

Phytochelatins are the well-known heavy metal chelators in plants, especially in 
the context of Cd tolerance (Cobbett 2000). These are a family of metal-binding 
peptides with the general structure (γ-Glu-Cys)nGly (n = 2–11) (Cobbett and 
Goldsbrough 2002). Phytochelatins are glutathione-derived peptides synthesized in 
the cytosol and are reported in a variety of plant species including monocots, dicots, 
gymnosperms, and algae (Gekeler et al. 1989). Plants exposed to Cd stress had 
2.7–3 times more total phytochelatins rather than the plants of same lines grown 
without Cd (Guo et al. 2012). Phytochelatins form PC-metal(loid) complexes that 
are transported into vacuoles and thus help in removal of toxic metals from the 
cytosol (Clemens 2006).
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Proline functions as an osmolyte, radical scavenger, electron sink, and stabilizer 
of macromolecules and a component of the cell wall (Matysik et al. 2002). It is a 
widely studied molecule in context of plant responses to abiotic stresses such as 
water deficit (Paleg and Aspinall 1981), salinity (Ashraf and Harris 2004), low tem-
perature (Naidu et al. 1991), high temperature (Kuznetsov and Shevyakova 1997), 
and high concentration of heavy metal (Panchal and Aery 2008; Kumar and Aery 
2011, 2012a; Aery 2012). An increase in the level of proline may provide protection 
by chelating the metals in the cytoplasm and maintaining the water balance which 
is often disturbed by heavy metals (Xu et al. 2009; Kumar 2013). Panchal and Aery 
(2008) observed increased proline contents in plants grown in manganese waste. 
Kumar and Aery (2012) and Jayakumar et al. (2010) have also observed the ele-
vated accumulation of proline in plants with the application of tungsten, manga-
nese, and cobalt.

Polyamines are low-molecular-weight aliphatic polycations, highly charged and 
universally present in all organisms. They are cations due to protonation at cytoplas-
mic pH, i.e., putrescine2+, spermidine3+, and spermine4+ (Sharma and Dietz 2006). It 
has been reported that tobacco BY-2 cells exposed to 0.05 mM CdCl2 produced a 
distinct accumulation of total polyamines (Kuthanová et al. 2004). Choudhary and 
Singh (2000) have also reported accumulation of polyamines in mung bean seed-
lings treated with 0.1–1.5 mM CdCl2. A specific mechanism of action of polyamines 
in plants under heavy metal stress is yet unknown. However, there is a strong pos-
sibility that polyamines can efficiently stabilize and guard the membrane systems of 
plants against the toxic effects of metallic ions specially the redox-active metals 
(Sharma and Dietz 2006).

Beyond the above-mentioned natural chelators, some synthetic chelators are also 
known. Ethylenediaminetetraacetate (EDTA) has been practiced more intensively 
among synthetic chelators (Blaylock et al. 1997; Huang et al. 1997; Grcman et al. 
2001). EDTA binds to heavy metal ions and makes them uncharged. An uncharged 
ion is of high mobility and much easier to pass through plasma membrane. 
Application of EDTA improved the uptake of Pb in Brassica juncea (L.) Czern, 
1000–10,000 times greater than control plants (Blaylock et al. 1997). In some cases 
ethylenediamine disuccinate (EDDS) (a structural isomer of EDTA) has recently 
been used to enhance metal uptake through phytoextraction (Grcman et al. 2003; 
Luo et al. 2005).

7.8  Some Toxic Heavy Metals

7.8.1  Cadmium

The average Cd content in the Earth’s crust and soil is 0.1 and 0.41 mg kg−1, respec-
tively. Cd is mainly used in battery production (Ni–Cd and Ag–Cd). It is also used 
as pigments (yellow), for coatings, and as stabilizers at relatively high amount. Due 
to some unique physical and chemical properties, Cd is also added to alloys and 
used as stabilizer for various plastics.
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Generally Cd is considered as one of the most toxic heavy metal that adversely 
affects all biological processes of living organisms including human beings, ani-
mals, and plants. Although it is considered to be a nonessential element for plants, 
it is efficiently absorbed by the root and leaves of plants. Cd2+ ions present in the 
mobile fraction of the soil are apparently taken up by the root of plants mainly via 
transporters of essential metals (Fe2+, Zn2+, and Mn2+) and probably by Ca2+ chan-
nels (Lay and Levina 2014). There are evidences that a considerable portion of Cd 
is taken up passively by roots, but it is also absorbed actively (Smeyers-Verbeke 
et al. 1978).

Though Cd is widely reported as a toxic metal for plants, a general toxic concen-
tration is not established. Kloke et al. (1984) reported the toxic concentrations of Cd 
to be 5–10 mg kg−1, whereas Macnicol and Beckett (1985) estimated 10–20 mg Cd 
kg−1 as critical concentration of Cd for plants.

Elevated accumulation of Cd affects cell biology (viability, proliferation), cell 
structure (microtubules) (Fusconi et al. 2007), and physiology (photosynthesis, dis-
turbs transpiration, reduces water transport, alters the permeability of cell mem-
branes, and disturbs stomatal conductance and electron transport systems) (Seregin 
and Ivanov 2001; Prasad 2005). Cd exerts an inhibitory effect on seed germination 
of fenugreek (Aery and Sarkar 1990).

Huang et al. (1974) observed a decrement in the nodule weight and activity of 
enzyme nitrogenase in soybean under high concentration of Cd and Pb. Toxicity 
symptoms induced by the higher accumulation of Cd in plants are growth retarda-
tion, stunted root, chlorosis of leaves, and red-brown coloration of leaf margins or 
veins (Aery and Sarkar 2012a, b). It has been reported that Cd concentration above 
5 μg g−1 decreases growth parameters such as root-shoot length, dry weight, leaf 
area, seed number, seed weight, as well as nodule number and nodule weight of 
soybean at seedling, vegetative, flowering, and fruiting stage (Aery and Sarkar 
1991). Inhibition of growth by Cd is accompanied by the responses like suppression 
of chlorophyll synthesis and recurvature of the embryo (Imai and Siegel 1973).

The toxicity of Cd in plants mainly lies in its tendency to disturbing the activity 
of different enzymes, resulting from substitution of other metal ions (like Zn2+, 
Cu2+, and Ca2+) and its affinity to biological structures containing –SH groups such 
as proteins, enzymes, and nucleic acids (Jacobson and Turner 1980; Stohs and 
Bagchi 1995).

The response of plants to Cd present in growth media depends on the age of 
plants and time of Cd exposure. Sensitivity to Cd increases with the aging in plants 
and is more related to functioning of the photosynthetic apparatus than to growth 
parameters. Cd significantly reduced the photochemical activities of chloroplasts at 
50–75 μM L−1 concentrations in nutrient media (Tukendorf and Baszynki 1991). 
The amount of chlorophyll has been known to be a function of the Cd concentration 
in plant tissues and proposed as an indicator of the upper critical Cd level in plants 
(Burton et al. 1986). Aery (1994) studied Cd-Zn-induced chlorosis in soybean. 
Lower concentrations of Zn (10 μg g−1) as well as Cd (5 μg g−1) increase the con-
tents of chlorophyll “a” and chlorophyll “b.” Beyond the above-mentioned concen-
tration of Zn and Cd, a decrement in chlorophyll “a” and “b” and intraveinal 
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chlorosis were reported. Cunningham et al. (1975) and Baszyński (2014) also 
reported inhibition of the synthesis of anthocyanin and chlorophyll pigments in 
plants treated with Cd. Excess of Cd may affect cell acidosis, due to an imbalance 
in H+ production associated with changes in anaplerotic reactions (Nocito et al. 
2008). Cd is also reported as an efficient and specific inhibitor of the biological 
reduction of NO2

− to NO (McKenney and Vriesacker 1985).
Mutagenic activity and degradation of DNA (Bertin and Averbeck 2006) and 

cytological abnormalities (Wang et al. 2016) have been reported under Cd stress. 
The elevated concentration of Cd has an inhibitory impact on the Calvin’s cycle by 
disrupting the function of key enzyme, especially ribulose, diphosphate, and car-
boxyhydrazine (Kabata-Pendias 2011). Elevated concentrations of Cd in the rooting 
medium of barley resulted in an increase in shoot thionein mRNA (Krämer et al. 
1999). Cd is also known to inhibit the DNA-mediated transformation in microor-
ganisms and interfere with symbiotic relationship of microorganisms and plants, as 
well as increases predisposition of plants to fungal invasion (Kabata-Pendias 2011).

Metal toxicity may result from competition between Cd and ferrous ions at the 
enzyme site (Aery 1994). Cd can interact with the uptake and biochemical functions 
of several other elements. These interactions take place at different stages of absorp-
tion, partitioning, as well as on the biological functions of essential elements.

The interactions between Cd and Zn are commonly observed, and both depress-
ing and enhancing effects have been reported (McKenna et al. 1993; Hart et al. 
2002; Aery and Rana 2007). It is known that Zn antagonistically affects the uptake 
of Cd. When the Cd/Zn ratio in plant tissues is limited to 1, the Cd content is 
restricted to below 5 mg kg−1, thus below its phytotoxic level (Chaney and Hornick 
1978). According to Nan et al. (2002), Cd-Zn interaction is synergistic under field 
condition, and increasing the concentration of both metals in soils resulted in 
increased accumulation in plants. Turner (1973) observed that the effect of Cd on 
Zn accumulation in leaves depends on plant species, i.e., synergistic effect on some 
plant species (e.g., lettuce) and antagonistic effect on others. McKenna et al. (1993) 
observed a synergistic effect of Cd application on Zn accumulation in the leaves of 
lettuce at low as well as high Zn treatments.

Aery (1994) found that leaf iron contents decreased with increase in the leaf Cd 
concentration. Cd-Fe interactions are related to disturbances in the photosynthetic 
apparatus. Only a moderate excess of Fe has a detoxificatory influence on Cd-treated 
plants, although a higher dose is toxic. Cd uptake can also be modified by Fe nutri-
tion (Lombi et al. 2002). At low Fe supply, Cd can be transferred from the soil solu-
tion into the roots by Fe transporters of the IRT1 family (Nakanishi et al. 2006).

Ca2+ ions are able to replace Cd2+ in carrier mechanisms, and thus Cd absorption 
by plants may be inhibited by an excess of Ca cations. Ca in substrate affects the 
uptake of Cd because Cd competes with Ca for Ca channels (Wojas et al. 2007). 
Low Ca in substrate enhances the uptake of Cd and Pb and thus induces the toxicity 
in many plant species (Suzuki 2005; Wojas et al. 2007). The antagonistic interac-
tions between Cd and Se are also observed in certain plants. Seleno-urea forms a 
complex with Cd2+ of limited solubility, which might decrease the availability of Cd 
ions (Feroci et al. 2005). Phosphorus affects the uptake of Cd in the roots of plants. 
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Both increased and decreased contents of Cd under phosphate treatment are known. 
An antagonistic impact of Cd on the P absorption by plants is significant for plant 
growth and agricultural practices. The P uptake by plants can be reduced up to 40 % 
by Cd application (Kabata-Pendias 2011).

It is well known that a higher concentration of essential cations such as Zn2+ and 
Ca2+ plays a protective role against Cd2+ toxicity (Antonovics et al. 1971). The 
absorption of Zn and Cu by plants is influenced in the presence of Cd and Pb in the 
soil (Luo and Rimmer 1995). Interactions of Cd with several essential elements 
(e.g., Mg and K) have been reported and may be related with an impaired effect of 
Cd on the plasma membrane, which disturbs the uptake and transport of these ele-
ments within different organs.

The concentration of Cl and S in the shoot of alfalfa increased by the addition of 
heavy metals in the soil (Peralta-Videa et al. 2002). This may be due to the complex-
ation of Cl and S to the heavy metals, which results in their common translocation 
with the metals in the plant (McLaughlin et al. 1998).

Wu et al. (2003) studied the interactions of Cd and uptake and translocation of 
Zn, Cu, Mn, and Fe in different barley genotypes. Cd addition to the substrate not 
only decreased Zn concentrations in tissues but also inhibited the translocation from 
root to aerial parts, leading to high root/shoot Zn ratio. Cadmium addition also 
reduced the accumulation of Mn, Cu, and Fe in different plant parts. Significant 
negative correlation between Zn, Cu, and Mn contents and Cd contents in different 
plant parts suggests the possibility of increasing the accumulation of Cd in barley by 
administration of these elements on the Cd-polluted soils (Wu et al. 2003).

However, it has also been known that an increase in the concentration of Cd in 
the substrate results in an improved uptake and translocation of Mn in lettuce. This 
is in contrast to the response of the other essential micronutrients (Fe, Cu, and Zn). 
Further, an increase in the concentration of Mn in the chloroplasts suggests relations 
between Cd and Mn at the chloroplast (Ramos et al. 2002).

Li et al. (2016) reported that the concentrations of different nutrients in the tis-
sues of Welsh onion are influenced by Cd and varied by the type of element and 
plant tissue. The concentrations of the nutrient in the roots decreased at the 1 mg Cd 
kg−1 level, although significant differences were only reported for P, Ca, Mg, Fe, Cu, 
and Mn in some tissues. At Cd concentration of 2.5 mg kg−1, the contents of K and 
Zn increased significantly in all tissues. The concentrations of Ca, Mg, and Fe were 
similarly influenced by Cd treatment. Except for Fe in the pseudostems, the concen-
trations of nutrients decreased under low Cd treatment (1 mg kg−1), but increased 
under 2.5–5 mg kg−1. A significant increase in Ca and Fe contents in roots and 
leaves, and Mg in leaves at 5 mg kg−1 of Cd, has been reported (Li et al. 2016).

7.8.2  Mercury

The average content of mercury (Hg) in the Earth’s crust is 0.07 mg kg−1; whereas in 
soils of different groups all over the world, it ranges between 0.58 and 1.8 mg kg−1, 
and the worldwide mean content is estimated as 1.1 mg kg−1 (Kabata-Pendias 2011).
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Mercury is mainly used in chlor-alkali production, vinyl chloride monomer pro-
duction, gold mining, batteries, measuring instruments, florescent lamps, wood 
impregnation, paints, pesticides, control instruments, and electrical lightings pro-
duction. Due to its vast usage, this metal is accumulated at different sites, and as in 
now it is considered as global pollutant.

The uptake of Hg by plants is directly dependent on its concentration in the soil. 
As the concentrations of Hg increased in soil, an increase in the Hg content of plants 
was reported. However, a maximum fraction of Hg is found in roots, but leaves and 
grains also accumulated a significant fraction of Hg (Hogg et al. 1978; Lipsey 1975; 
Sorterberg 1980). Hg is not only absorbed by plants from the soil, but it is also 
absorbed from Hg vapor gradually released from soils.

Israr et al. (2006) reported that Sesbania drummondii accumulates high concen-
trations of Hg. The accumulation of Hg was 998 and 41,403 mg kg−1 in shoots and 
roots, respectively, at a nutrient solution concentration of 100 mg L−1. It has also 
been studied that transgenic Arabidopsis thaliana with the genes for mercuric ion 
reductase (reduce toxic Hg2+ to the relatively inert Hg0) exhibits resistance to high 
Hg concentrations (McGrath 1998).

Toxic effects of Hg in plants were reported at a low concentration even at 1 μg 
L−1 Hg concentration in the nutrient solution (Mhathre and Chaphekar 1984). Kloke 
et al. (1984) observed retarded growth of plants at Hg content ranging from 0.5 to 
1 mg kg−1, whereas Macnicol and Beckett (1985) established the critical level of Hg 
toxicity from 1 to 8 mg kg−1.

The most common symptoms of Hg toxicity are stunted growth, reduced root 
development, and inhibition of photosynthetic processes. It is also responsible for 
failure of various metabolic processes like photosynthesis, chlorophyll synthesis, 
exchange of gases, and respiration. The higher accumulation of Hg in the root inhib-
its K+ uptake by plants. However, it is also observed that lower Hg concentrations 
stimulate uptake of K+ (Hendrix and Higinbotham 1974).

The toxicity of volatilized elemental Hg is known to be the most serious for 
plants. Hg vapor induces senescence-related processes by increasing ethylene pro-
duction, and the most active toxicant is elemental Hg, not its ionic form. Further, 
young plants are more sensitive to Hg-saturated air than mature plants (Siegel et al. 
1984).

Hg has strong affinity to amino acids of several proteins and enzymes. Its bind-
ing nature to sulfhydryl groups is apparently the key reaction in disrupting metabo-
lism of plants (McNear et al. 2012). Yathavakilla and Ceruso (2007) observed an 
association of Hg with Se in high-molecular-weight molecules in soybean root. 
Further, in several cases enhanced activity of antioxidative enzymes is reported on 
application of Hg in growth media (Israr and Sahi 2006; Zhou et al. 2008).

7.8.3  Lead

The average lead (Pb) content in the Earth’s crust is estimated as 15 mg kg−1. In the 
terrestrial environment, two types of Pb are known, i.e., primary and secondary. 
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Primary Pb is of geogenic origin and incorporated into minerals at the time of their 
formation, whereas secondary Pb is of radiogenic origin from the decay of U and 
Th. The largest use of Pb is in production of lead acid batteries. It is also used in 
solders, alloys, cables, and chemicals.

Among the total soil Pb, the amount of available Pb to plants is unknown. In 
some cases, only about 0.005–0.13 % of Pb in the soil solution is available to plants 
(Davies 1995), whereas on the other hand, only 0.003–0.005 % of the total Pb in 
soils is available to plants (Wilson and Cline 1966). The uptake of Pb, however, var-
ies significantly over the concentration ranges and with different forms of Pb pres-
ent in the soil.

Along with many other nonessential elements, Pb is taken up by plants. All 
plants are able to absorb Pb from soil and transport it to different parts (Aery and 
Jagetiya 1997). In addition, seasonal variation of Pb accumulation in plants (like 
Acacia leucophloea, Azadirachta indica, Cassia siamea, etc.) growing on the tail-
ings dam region of Zawar Mines (India) is also reported (Singh and Aery 1993).

The toxicity of organic Pb not only exceeds by far the toxicity of its inorganic 
forms but the effects caused by both types of agents also differ in quality (Roderer 
1984). This difference is presumably due to various physical and chemical proper-
ties of organic and inorganic Pb compounds. Although even a very low Pb concen-
tration may inhibit vital plant processes, Pb poisoning has seldom been observed in 
plants growing under field conditions. This is perhaps due to a relatively low Pb 
concentration in the soil and/or low Pb availability even under contaminated soil 
(Zimdahl 1976).

Pb accumulates in various parts of cells and affects their structures. The most 
deteriorating effect of Pb is the destruction of the plasma membrane which subse-
quently disturbs the permeability for water and leads to impaired plant growth 
(Woźny 1998). Reports have described the inhibitory effects of low Pb levels on 
plant metabolism (Aery and Jagetiya 1997; Patra et al. 2004; Sharma and Dubey 
2005). Owing to the interactions of Pb with other elements and with many environ-
mental factors, it has not been simple to establish toxic Pb concentrations to vital 
plant processes. There are several reports on toxic effects of Pb on the fundamental 
biological processes such as photosynthesis, respiration, mitosis, and water absorp-
tion; however, the toxic symptoms in plants are not very specific (Koeppe 1981; 
Sharma and Dubey 2005; Islam et al. 2008).

Subcellular effects of Pb on plant tissues are associated to the inhibition of respi-
ration and photosynthesis due to the disturbance of the electron transfer reactions. 
These reactions are inhibited by Pb concentrations as low as 1 mg kg−1 in mitochon-
dria of corn (Zimdahl 1976). Photosynthesis processes in sunflower leaves were 
also reduced by half at a Pb concentration of about 1 μM g−1 (Carlson et al. 1975).

According to Lane et al. (1978), Pb becomes strongly bound to cell walls and 
that pectic acid is most active in the Pb sorption. Thus, Pb has a marked influence 
on the elasticity and plasticity of cell wall, resulting in an increase in tissue wall 
rigidity.

Pb interferes with the uptake of some other ions such as Zn and Cd. It stimulates 
the uptake of Cd by plant root. This stimulatory effect may be due to a secondary 
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effect of the disturbance of transmembrane ion transport. An antagonistic relation is 
also known between Pb and Zn. Zn-Pb adversely affects the translocation of each 
element from root to shoot. Pb can mimic the physiological behavior of Ca; there-
fore, interference of Pb with Ca is of metabolic importance, and thus Pb inhibits the 
activity of some enzymes. Cd and Pb inhibit the accumulation Zn and Mn in the root 
and shoot of plants (Motesharezadeh and Savaghebi 2012). Recently, it has been 
reported that S application decreases the accumulation of Pb in straw and grains of 
rice. This may be due to the development of Fe plaque formation, decrement in Pb 
availability, and increased contents of reduced glutathione in rice leaves (Yang 
et al. 2016).

7.8.4  Chromium

Chromium (Cr) is the seventh most abundant element on the earth and 21st in the 
Earth’s crust, with an average concentration of 100 mg kg−1. It is mainly used for 
stainless steel, pigments, metal finishing, wood preservatives, chemicals, and chro-
mate plating. Cr is commonly used in the production of green tints for paints, var-
nishes, glazes, inks, and paper. Leather tanning also utilizes substantial amounts of 
Cr compounds. The main source of Cr pollution in the environment is dyestuffs and 
leather tanning when wastes are released directly into waste streams, either in liquid 
or solid form. Sewage treatment plants from industrial as well as residential sources 
also discharge a considerable quantity of Cr.

Chromium is not considered as an essential element for the plants. It is slightly 
available and not easily translocated in different parts of the plants and mainly con-
centrated in roots, apparently because of the tendency of Cr to bind to the cell wall 
(Zayed et al. 1998). The most available form of chromium to plants is Cr6+. It is a 
very unstable form under normal soil conditions, and its availability depends on soil 
properties especially on soil texture and soil pH. However, Cr3+ and some anions 
(e.g., CrO4

2−) are also available to plants.
Cr is taken up by plant roots (through sulfate channels) predominantly in the 

form of highly soluble [CrO4]2− (Lay and Levina 2014). A very low Cr content 
(1–2 mg kg−1) inhibits the growth of plants (Kloke et al. 1984). The elevated Cr 
content in soil is known to be responsible for the poor growth of forest trees 
(Wedepohl 1974).

Symptoms of Cr toxicity appear as wilting of tops and root injury, chlorosis in 
young leaves, chlorotic bands on cereals, and brownish-red leaves. Increased levels 
of Cr in the nutrient solution (up to 104 μM) disorganize the fine structure of chlo-
roplasts and the chloroplast membranes of Lemna minor (Baszyński et al. 1981). 
There is evidence that Cr6+ is transformed into Cr3+ form in plant cells which readily 
interacts with DNA and protein compounds (Zayed and Terry 2003).

An increased level of Cr6+ in nutrient solution decreased CO2 assimilation of 
Lolium perenne leaves (Vernay et al. 2007). Chatterjee and Chatterjee (2000) 
reported that a higher application of Cr to plants leads to decrease in protein con-
tents by disrupting N metabolism. Cr-induced competition in assimilation and 
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translocation of mineral elements indirectly affect water status and plant growth 
(Vernay et al. 2007). In some instances improved activities of antioxidative enzymes 
such as superoxide dismutase and peroxidase also are reported in the plants grown 
in Cr-treated soil (Dong et al. 2007).

The toxicity of Cr is also related to readily available forms of chromate ion. 
Cr2O7 addition to bush bean at the 0.0001 N concentration level decreased plant 
growth by about 25 %, and Cr uptake of 2.2 mg kg−1 but at the same level Cr2(SO4)3 
did not affect the plant growth and Cr content was 1.3 mg kg−1 (Wallace et al. 1977).

The phytotoxic concentrations of Cr in shoots of barley seedlings were reported 
to be 18–24 mg kg−1 in tobacco, 4–8 mg kg−1 in corn, and 10–100 mg kg−1 in barley 
(Davis et al. 1978; Gough et al. 1979; Kitagishi and Yamane 1981). The toxic level 
of Cr reported by Macnicol and Beckett (1985) is much broader and ranges from 1 
to 10 mg kg−1. At the same dose (750 mg kg−1 soil) of Cr6+ and Cr3+, an increased 
uptake of Cr and reduced oat yield were observed; however, harmful effects were 
significantly greater in the case of Cr6+ addition (McGrath 1982). Similarly, 
Mukhopadhyay and Aery (2000) reported that toxic effects of Cr(VI) on seed ger-
mination, seedling growth, and fresh and dry weight of wheat were higher than 
Cr(III).

Moreira et al. (2005) explained that the reduced uptake of essential nutrients in 
Cr-treated plants is due to the inhibition of the activity of the plasma membrane- 
localized proton-ATPase pump. The decrease in proton-ATPase activity causes a 
decrease in proton extrusion. This results in a decreased transport of the root cell 
membranes and reduces the uptake of elements (Fernandes et al. 2002).

In some cases, synergistic interactions between Cr and some essential nutrients 
(Ca, Mg, Fe, Mn, Cu) have also been observed (Dong et al. 2007; Vernay et al. 
2007). Excess Cr exposure of plants leads to substantial changes in elemental con-
tents of roots as well as leaves that may cause ions deficiency with visible symptoms 
and could be detrimental to plants (Vernay et al. 2007). Turner and Rust (1971) 
studied the initial symptoms of Cr toxicity with the addition of low Cr application 
(0.5 mg kg−1 Cr to the nutrient culture and 60 mg kg−1 to the soil culture). These Cr 
additions resulted in decreased concentrations of almost all major nutrients in shoots 
and K, P, Fe, and Mg in roots.

Cr is competitive for P and Fe on surface root sites, in binding and transport 
(Chatterjee and Chatterjee 2000). Schiavon et al. (2008) reported a significant 
decrease of the S uptake by plants under Cr stress. Chromium causes severe decrease 
in Ca contents in the plants (Marschner 1999). Mn deficiency in Brassica oleracea 
and Vigna radiata has been reported in response to Cr stress (Chatterjee and 
Chatterjee 2000; Sinha et al. 2006).

7.8.5  Aluminum

Aluminum (Al) is the third most abundant element in the Earth’s crust, occurring at 
about 8 %. It has some versatile properties that allow us to use it in different indus-
trial sectors like metallurgical, packaging, transportation, electrical, and chemical 
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productions. Different compounds of Al are also used in paper manufacturing, sugar 
refining, water purification, wood preservation, leather tanning, and waterproofing 
textiles.

Aluminum is present in soil as insoluble aluminosilicates and oxides. It is easily 
absorbed by roots and translocated within the plant at the initial stages of plant 
growth, but then sharply declines with advancing maturity. The absorption of Al is 
affected by the concentration of other elements (P and Ca) in the rhizosphere.

Al in soil can inhibit growth of plants at a level as low as 1 ppm (Foy 1974). A 
decrement in growth and biomass of wheat is also reported at low Al (3 μg g−1) in 
soil (Rana and Aery 2000). The earliest symptoms of Al toxicity appear on the root 
tip, which turns brown. The damage is limited to actively growing tissues of the root 
tip (Fleming and Foy 1968).

Root growth inhibition on the exposure to Al has been widely used as a measure-
ment of Al toxicity (Foy 1988). Inhibition of root growth is the initial symptom of 
Al toxicity in plants (Ryan et al. 1993; Sivaguru et al. 1999; Kollmeier et al. 2000). 
More specifically the distal part of the transition zone of root apex is very sensitive 
to Al toxicity (Sivaguru and Horst 1998). This widespread damage in the structure 
of root results in reduced and damaged root system and limited water as well as 
mineral elements uptake (Jones and Kochian 1995; Barcelo and Poschenrieder 
2002) which subsequently results in deformed growth.

Al can enter in the cytosol within a short time after the exposure (Vazquez et al. 
1999). A maximum part of Al enters in the plants and reacts with apoplastic binding 
sites; a small fraction enters the symplasm to interact with symplastic binding sites. 
Disrupted organization of microtubules and microfilaments in root cells are also 
reported on Al exposure (Blancaflor et al. 1998; Frantzios et al. 2000, 2001; Alessa 
and Oliveira 2001; Schwarzerová et al. 2002; Sivaguru et al. 2003).

Al interferes with a large range of physical and cellular processes. It causes mor-
phological damage as well as decreases in chlorophyll contents and rate of photo-
synthesis (Rana and Aery 1999). Decrement in chlorophyll “a” and “b” and total 
chlorophyll under different treatments of AlCl3, Al2(SO4)3, and Al(NO3)3 is also 
reported (Rana and Aery 1999). A drastic reduction in chlorophyll contents of 
wheat is reported with increasing concentration of Al in soil (Rana and Aery 2000).

Al exposure induces the peroxidative damage of membrane lipids by producing 
ROS (Cakmak and Horst 1991). However, lipid peroxidation is enhanced after a 
long exposure to Al. Thus, lipid peroxidation does not appear to be a primary mech-
anism of Al toxicity (Horst et al. 1992; Yamamoto et al. 2001). Al-induced ROS 
generation and associated mitochondrial dysfunction could play a more general role 
in Al inhibition of root growth (Yamamoto et al. 2002). It has also been reported that 
plants synthesize phenolic compounds under Al stress (Rana and Aery 1999) to 
neutralize ROS in order to survive and prevent molecular damage (Dicko et al. 
2006).

Prolonged exposures of Al cause structural abnormalities within the nucleus, 
detrimentally affecting DNA composition, chromatin structure, and cell division 
(Matsumoto 1991; Silva et al. 2000). Al can also inhibit the activity of the enzyme 
phospholipase C of the phosphoinositide pathway related to Ca2+ signaling 
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(Jones and Kochian 1995, 1997). The Al-induced disruption of ion fluxes could 
directly lead to changes in cytosolic ion activities (e.g., Ca2+ homeostasis) as well as 
signaling pathways (e.g., inhibition of Ca2+-dependent enzymes such as phospholi-
pase C) which would ultimately reflect in any of the physiological and morphologi-
cal changes (Ramos-Díaz et al. 2007).

Exposure of plants to Al induces the synthesis of callose (b-l,3-glucan) on plasma 
membrane. Callose accumulation disturbs intercellular transport through plasmo-
desmatal connections and resulted in cellular damage (Sivaguru et al. 2000). A sig-
nificant fraction of Al in root is associated with the apoplastic region, predominantly 
in cell walls of the root periphery (Vazquez et al. 1999). Among the different com-
ponents of the cell wall, pectins have been known to be a critical site for Al action 
(Blamey et al. 1993). This results in displacement of other cations (e.g., Ca2+) 
required for cell wall stability (Schmohl and Horst 2000; Tabuchi and Matsumoto 
2001). Consequently, aluminum alters the structural and mechanical properties of 
the cell wall by strong and rapid binding, making it highly rigid, leading to reduc-
tion in the mechanical extensibility of the cell wall.

Aluminum is known to affect the uptake, transport, and functions of other nutri-
ents like Ca, Mg, P, and K (Foy et al. 1978), and reduced nutrient uptake leads to 
nutrient deficiencies. Application of Al to plants can block the uptake of many cat-
ions such as Ca2+, Mg2+, K+, and NH4+ by interacting directly with several different 
channel proteins (Rengel and Elliott 1992; Ryan and Kochian 1993; Gassmann and 
Schroeder 1994; Pineros and Kochian 2001; Pineros and Tester 1995).

7.8.6  Silver

The concentration of silver (Ag) in the Earth’s crust and soil averages around 0.06 
and 0.13 mg/kg, respectively. It is mainly used in photographic industries and also 
useful in other sectors like batteries, coins, jewelry, silverware, catalysts, and elec-
tronics brazing and soldering.

Silver toxicity depends on the concentration of active free silver ions (Ag+), 
therefore, mainly found in the aqueous stage. Several processes in medium and 
water characteristics reduce silver toxicity by preventing the formation of free Ag+ 
or avoiding binding of Ag+ to the reactive surfaces of organisms (Ratte 1999).

The toxic effects of Ag on plants grown on soil have not been reported for a long 
period of time. Wallace et al. (1977) reported that about 5 mg kg−1 Ag in the shoots 
and about 1500 mg kg−1 in the roots of bush beans greatly reduced yields without 
showing any toxicity symptoms. Ozoliniya (1986) reported that Ag at a very low 
concentration (10 μg L−1) in the nutrient medium stimulated the growth of roots of 
grass. He speculated that some cations (e.g., Ag, Co, and Cu) can indirectly change 
cell metabolism and subsequently result in a higher growth rate of cells. Hendrix 
and Higinbotham (1974) observed that Ag substitutes K+ sites in membranes and 
inhibits the absorption of other cations by the roots. Recently, Krizkova et al. (2008) 
observed that high concentrations of Ag (up to 1 μM/L) significantly decrease 
growth and protein contents, whereas they increase the activity of enzyme urease in 
sunflower.
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7.9  Conclusion

Heavy metal contamination of soil is a global issue as these metals are the chief 
group of inorganic pollutants. The problem is of more concern because anthropo-
genic activities are continuously increasing the levels of these contaminants in agri-
cultural soils. It is evident from the previous reports that heavy metals impose 
several toxic effects on the plant and adversely affect the growth as well as develop-
ment of plants. However, various cellular, physiological, and molecular strategies 
are adopted by plants to tolerate heavy metal stress. There are some key components 
like metal transporters, hyperaccumulation, organic compounds, phytochelatins, 
and metallothionein proteins that help plant to thrive under heavy metal stress con-
dition. In order to perceive further, the heavy metal toxicity on plants and their 
potential to uptake the metal, it is essential to explore more research toward this 
area.
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Abstract
Heavy metals (HM) are nondegradable, persistent, and toxic elements. Heavy 
metal contamination is a global concern and a major health hazard throughout 
the world. However, plants have evolved different mechanisms to combat these 
stresses and even have potential to accumulate them in large quantity. Natural 
flora has differential ability to metal tolerance with some plants showing induced 
tolerance at metal-enriched medium, whereas others find it difficult to sustain. 
Bioaccumulation potential of trees and grasses will be assessed based on peer- 
reviewed publications. Plants will be classified based on their accumulation 
potential of different heavy metals. Metal accumulation ability in plants and 
sources of heavy metals will be assessed for different regions of the world. 
Anthropogenic input of heavy metals from different sources significantly affects 
the biogeochemical cycling. Heavy metal depositions considerably affect the 
plant response. Heavy metal tolerance, uptake, and accumulation in different 
parts of the plant and possible metal-chelating compounds and their role in metal 
chelation in trees and grasses will be discussed. Morphological, physiological, 
biochemical, and molecular biomarkers of heavy metal tolerance or sensitivity 
among the trees and grasses will be correlated with bioaccumulation potential 
and heavy metal tolerance. This article will provide a broad overview of higher 
plant abilities and tolerance capabilities in heavy metal accumulation.
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8.1  Introduction

Heavy metals (HM) are ubiquitous in our environment and are persistent in nature. 
Plants have the potential to accumulate these metals and can even concentrate them 
in large quantities, several fold higher than in their natural environment (Verbruggen 
et al. 2009). Xenobiotic compounds in the environment are transformed and accu-
mulated in plants based on their physiological status and surrounding environment. 
Plants that are capable of accumulating these compounds in large quantities are 
highly valuable for biomonitoring purpose as well as for removing these compounds 
from contaminated soil. Plants have unique ability to accumulate one or more met-
als, but no records are available for a plant which can accumulate all the metals. 
This necessitates the identification of plants which can accumulate multi-metal 
combinations.

Most of the HM contamination in the environment is from historical contamina-
tions in soil naturally or from disturbances caused by mining activities (Madejón 
et al. 2002; Conesa et al. 2006; Jozefczak et al. 2012; Bech et al. 2012). Due to an 
increase in anthropogenic activity, normal metal cycling has been altered. 
Anthropogenic metal contaminations are mostly from industrial emissions, traffic 
emissions, waste burning, industrial dumping, agricultural practices, burning of fos-
sil fuel, and sewage discharge (Table 8.1) (El-Hasan et al. 2002; Kummer et al. 
2009). Apart from metal contamination in soil, deposition through air pollution in 
urban environment has become a huge problem in major cities of the world. With 
increase in number of automobiles throughout the world, urban centers are now fac-
ing excessive metal contaminations in ambient air (de Vives et al. 2006; Fujiwara 
et al. 2011; Tomaševića et al. 2011).

The use of plant species for biomonitoring of different types of pollutants is well 
known (Tomasevic et al. 2004; Cucu-Man and Steinnes 2013; Mukherjee and 
Agrawal 2016). Since industrial revolution, lichens and mosses have been exten-
sively utilized for biomonitoring of HM. But in recent times due to their absence in 
harsh summer climate, lack of availability in large quantity, and higher sensitivity to 
air pollutants, trees and grasses are extensively used for assessing metal accumula-
tion potential for phytoremediation and as a specific indicator of metal pollution 
(Krämer 2010; Aničič et al. 2011). Both evergreen and deciduous trees, perennial 
grasses, forbs, and legumes have been extensively studied for bioaccumulation 
mechanism to identify suitable indicator both in the natural environment as well as 
in artificial conditions (Hall 2002; Krämer 2010; Zeng et al. 2011; Bech et al. 2012; 
Ribeiro de Souza et al. 2012; Thapa et al. 2012).

Metal uptake in plant is regulated by several internal factors such as root and 
stem anatomy, xylem loading, cellular detoxification mechanism, physiological 
condition of plant, and external factors such as soil pH, soil texture, topography, 
nearby pollution sources, dry and wet deposition, and land use pattern (de Vives 
et al. 2006; Verbruggen et al. 2009; Ugolini et al. 2013).

Metals are present in earth crust and some of them are important for plants such 
as zinc (Zn), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), 
molybdenum (Mo), selenium (Se), and boron (B) for proper growth and develop-
ment. But higher concentrations of any of the metals are toxic to plants, whereas 
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metals or metalloids like arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd) 
are toxic to plants even at low concentrations, and functions of these metals or met-
alloids are yet to be identified in plants (Buendía-González et al. 2010; Krämer 
2010; Zeng et al. 2011). The metal accumulation potential under different environ-
mental conditions may vary for different plant species, which is directly correlated 
with plant’s ability to accumulate or exclude HM. Plants response to metals, and 
their accumulation depends upon metal concentrations in soil, location of metal 
accumulation in plant parts, changes in antioxidative defense response, presence of 
different chelator molecules, metal homeostasis, and change in gene expression 
(Hall 2002; Cobbett and Goldsbrough 2002; Sun et al. 2007; Chao et al. 2010; Zeng 
et al. 2011; Ribeiro de Souza et al. 2012; Manara 2012; Li et al. 2015).

Table 8.1 Different sources of heavy metals and metalloids

Metal/ 
metalloids Sources References

Pb Gasoline, automobile emissions, abrasion of tire 
treads, brake linings, mining and Pb ore smelting, 
fertilizers, pesticides, and pigments

Yu et al. (2007), Kummer 
et al. (2009) and de Souza 
et al. (2012)

Cu Traffic exhaust, tires, and brake wear Fujiwara et al. (2011)

Zn Traffic exhaust, tire and brake wear, fossil fuel 
combustion, lubricating motor oil, and tires

Fujiwara et al. (2011)

Cd Abrasion of tire treads and brake linings Kummer et al. (2009)

Ni Abrasion of tire treads and brake linings, fossil 
fuel combustion, power plant, industry dumping 
areas, and automobile part corrosion

Kummer et al. (2009) and 
El-Hasan et al. (2002)

Bi Nonferrous metallurgy of copper Cucu-Man and Steinnes 
(2013)

In Copper metallurgy Nriagu and Pacyna (1988)

As Copper metallurgy, power plant Nriagu and Pacyna (1988) 
and Cucu-Man and 
Steinnes (2013)

Sn Combustion of liquid fuels, coal burning, 
nonferrous metallurgy of Cu–Ni, and waste 
combustion

Nriagu and Pacyna (1988)

V Power plant Cucu-Man and Steinnes 
(2013)

Cr Power plant, industry dumping areas, and 
automobile part corrosion

Cucu-Man and Steinnes 
(2013)

Co Traffic emissions, motor vehicle tire wheel El-Hasan et al. (2002)

Mn Industrial dumping areas and automobile part 
corrosion, auto workshops, electroplating 
industries, gasoline combustion

El-Hasan et al. (2002) and 
Shi et al. (2012)

Fe Automobile El-Hasan et al. (2002)

Ag Photographic processing effluents, sewage sludge, 
biocide

Hajar et al. (2014)

Ba Internal combustion engines

Sb Abrasion of vehicle brake linings, mining and 
smelting activities, electronic device

Klumpp et al. (2009) and 
Bech et al. (2012)
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In this article, we have tried to summarize potential accumulators of HM belong-
ing to different plant groups. Trees and grasses have been the major focus of our 
study as they have wide evolutionary adaptation and are present in several different 
environments ranging from arid, coastal, forest, urban region and throughout the 
world. We have also tried to understand the metal accumulation in different plant 
parts as leaf, bark, and wood in the case of tree species, and for grasses metal accu-
mulation in shoot and roots has been characterized. Metal tolerance in hyperaccu-
mulator plants as well as in other metal-tolerant species was screened for identifying 
different metal-chelating compounds and their role in metal tolerance. Morphological, 
biochemical, anatomical, physiological, and molecular mechanisms in HM-tolerant 
plants were assessed and compared with sensitive plants to identify the specific 
responses of plants with HM stress tolerance and bioaccumulation.

8.2  Heavy Metal Bioaccumulation in Tree Species

Trees are perennial, long-living plants having a large surface area compared to other 
groups of plants. Because of their large size and longer persistence, they have 
unique adaptability and large accumulation potential to environmental xenobiotics. 
Much to their advantage, trees have large canopy area and extensive root and shoot 
system to accumulate and store a significant amount of xenobiotics (Fig. 8.1). 
Compared to other life forms, accumulation potential of tree species for heavy met-
als is less studied. It is mostly due to its long period of growth and slow growing 
rates compared to grasses and crop plants. Here we have tried to identify heavy 
metal accumulation potential in different parts of tree with major focus on leaf and 
bark in different regions of the world.

8.2.1  Leaf

Metal concentrations exhibit significant variations between different species in dif-
ferent regions of the world. Major factor controlling metal accumulation in foliage 
is direct atmospheric wet and dry depositions, atmospheric dust, local soil contami-
nation, bioavailability of metal in soil, soil texture, soil pH, land use type, bioaccu-
mulation potential, local flora, and transfer of metal within the plant (Cicek and 
Koparal 2004; Tomasevic et al. 2004; Tomaševića et al. 2011; Norouzi et al. 2015). 
For assessment of atmospheric heavy metal pollution at Belgrade, Serbia, two tree 
species, horse chestnut (Aesculus hippocastanum) and linden (Tilia sp.) leaves, 
were evaluated for their bioaccumulation potential to 9 HM in heavy traffic areas, 
park, and botanical garden. Authors found that levels of HM were above the refer-
ence standard for plants in most of the leaf samples with higher accumulation of Cu 
(110.2 mg/g DW), Pb (20.3 mg/g DW), and Cd (4.9 mg/g DW) in horse chestnut 
compared to linden (Table 8.2). Several-fold higher accumulations of HM were also 
noticed in this study at mature stage compared to the beginning of the vegetation 
period (Tomasevic et al. 2004). Significant degree of variations in HM content in 
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leaves were observed in four different tree species (Acer platanoides, Aesculus hip-
pocastanum, Betula pendula, and Tilia cordata) when compared among each other 
in Belgrade, Serbia. Pb, Cr, Mn, Al, Cd, and Fe were higher in A. platanoides, 
whereas Ba, Ni, and Zn were higher in B. pendula and T. cordata showed higher 
accumulation of Cu and Sr (Tomaševića et al. 2011). When plants are exposed to 
similar sources of HM under similar environmental conditions, accumulation pat-
terns are still governed by individual species characteristics. Higher metal accumu-
lation potential of trees around point source was extensively studied to identify trees 
that can accumulate metals and also reduce air pollution (Table 8.2). In one such 
study around thermal power plant in Kütahya Province, Turkey, Cicek and Koparal 
(2004) estimated metal accumulation potential in leaves of Salix alba L., Populus 
tremula L., Robinia pseudoacacia L., Quercus infectoria L., and Pinus nigra around 
10 km radius of the thermal power plant. They found significant accumulation of 
Cd, Cr, Cu, and Pb in all the selected plants with gradual decrease in accumulation, 
with increasing distance from power plant. Santos-Jallath et al. (2012) observed 
significant amount of As accumulation in leaves of Nicotiana glauca (91.94 mg/kg) 
and in Tecoma stans (9.22 mg/kg), whereas values were lower in Prosopis sp. (6.94 
mg/kg) and Casuarina sp. (3.95 mg/kg) around tailings dams at Queretaro, Mexico.

Sawidis et al. (2011) compared bioaccumulation of Cr, Cu, Fe, and Pb in leaf 
samples of Platanus orientalis L. and Pinus nigra Arn. around three European cities 
(Salzburg, Belgrade, and Thessaloniki) and found an increase in bioaccumulation of 
all the studied metals in leaf of plants grown at polluted areas in comparison to 

Fig. 8.1 Schematic diagram of possible HM bioaccumulation parts in plant and their role in 
phytoremediation
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control. Leaf elemental composition data from eight urban sites in Naples, Italy, by 
Alfani et al. (1996) in Quercus ilex suggested accumulation of metals in leaf was 
both contributed by metal uptake from soil and from air pollution. Aksoy and Ozturk 
(1997) reported significant correlation between metal accumulation in leaf with soil 
surface metal in Nerium oleander L. (Oleander) at different urban, suburban, and 
rural areas of Antalya City, Turkey. The results also showed increase in metal accu-
mulation with urbanization and found Pb to be a major source of HM pollution in 
the city.

Celik et al. (2005) assessed leaves of Robinia pseudoacacia L for heavy metal 
contamination in Denizli City, Turkey, and found higher accumulation of Pb, Cu, 
Fe, Zn, Mn, and Cd in samples collected from industrial sites followed by samples 
collected from road traffic. Breaulmann et al. (2002) assessed HM content in two 
tropical tree species Dryobalanops lanceolata and Macaranga spp. in Lambir Hills 
National Park and found Macaranga spp. have better bioaccumulation capacity for 
Al, B, Ca, Cr, Fe, K, Mn, P, Pb, Ti, and V than D. lanceolata. Parraga-Aguado et al. 
(2014) found higher accumulation of Mn and Zn in leaves of Pinus halepensis and 
Tetraclinis articulata around mine tailings in the Cartagena-La Union Mining 
District, Spain.

8.2.2  Bark and Wood

A critical factor which determines heavy metal uptake and bioaccumulation in bark 
is deposition in outer surface and translocation from root. Bark is a permanent fea-
ture mostly, whereas leaf sheds or falls after aging.

Fujiwara et al. (2011) in urban area of Buenos Aires, Argentina, found bark of 
green ash trees (Fraxinus pennsylvanica) as a suitable biomonitor for trace metal in 
ambient air compared to road dust. In this study, HM accumulation in tree bark 
helped in identifying different sources of contamination at monitoring sites. 
Enrichment factor for Cu, Pb, and Zn showed similar trend in bark and metal con-
tent in PM10 (particles < 10 μm in aerodynamic diameter), indicating the usefulness 
of this plant. F. pennsylvanica showed higher accumulation of Al and Fe and least 
for Cr and Ni in bark, indicating its differential potential for metal accumulation 
with different pollution sources. Similar experiment for air quality biomonitoring 
by using cypress tree (Cupressus sempervirens L.) bark samples was conducted in 
Amman City, Jordan, by El-Hasan et al. (2002). They found higher accumulation of 
metals in industrial and heavy traffic areas compared to residential and background 
sites. Cypress tree showed maximum accumulation of Zn (442–11 μg/kg) followed 
by Pb (445–22.6 μg/kg), Mn (56–4 μg/kg), and Cu (82.7–1.5 μg/kg) and least accu-
mulation of Co (0.49–0.011 μg/kg) and Cd (0.83–0.069 μg/kg).

Epiphytic moss H. cupressiforme and oak tree bark (Quercus spp.) were com-
pared for their metal accumulation by Cucu-Man and Steinnes (2013) at different 
sites in Eastern Romania and found similar magnitude of metal accumulation in 
both moss and tree bark and concluded that oak tree bark can be utilized as a suit-
able biomonitor in the absence of mosses. Oak tree bark showed higher accumula-
tion of Zn (5–208 μg/kg), Pb (2.3–560 μg/kg), and Cr (1.1–31.3 μg/kg), whereas 
lower accumulation of Bi (0.007–0.19 μg/kg), Tl (0.013–0.32 μg/kg), and In 
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(0.0004–0.01 μg/kg). In different land use patterns as rural, industrial urban, and 
coastal in northwestern Portugal, Pacheco et al. (2002) compared olive tree (Olea 
europaea Linn.) bark metal accumulation with lichen (Parmelia spp.) and observed 
a strong correlation between metal accumulation in both species and suggested that 
bark samples can be utilized successfully in the absence of lichens as lichens are 
now mostly restricted or absent in urban environment with increase in air 
pollution.

Sawidis et al. (2011) compared bioaccumulation of Cr, Cu, Fe, and Pb in leaf and 
bark samples of Platanus orientalis L. and Pinus nigra Arn. around three European 
cities (Salzburg, Belgrade, and Thessaloniki) and found bark as a more suitable 
bioindicator compared to leaf. Between the trees, P. nigra showed better accumula-
tion than P. orientalis (Table 8.3). In another study, Guéguen et al. (2011) estimated 
HM in tree bark in industrial zones of Strasbourg (France) and Kehl (Germany) and 
found higher accumulation around industrial and traffic sites. Compared to rural 
environment, maximum enrichment was observed around steel plant for Pb (148 
ppm) followed by Cr (86.5 ppm), Ni (18.4 ppm), Sn (5.7 ppm), Cd (2 ppm), and Co 
(2 ppm) and least in As (1.7 ppm), whereas higher enrichment in Cd (2.86 ppm) and 
Mo (8.6 ppm) was found around waste incinerators.

Accumulation characteristics are also varied in different genotypes of the same 
plant as Mleczek et al. (2009) observed differences in HM accumulations of differ-
ent metals on 12 different genotypes of willow (Salix purpurea) growing in the 
Potasze Forest Division Salicarium, Poland. Authors also found effect of height 
from where materials were collected on metal accumulation. Among the different 
genotypes, S. purpurea var. angustifolia Kerner showed maximum accumulation, 
whereas minimum accumulation was found for S. purpurea “Utilissima.”

Time series analysis of HM in wood samples of Caesalpinia peltophoroides 
(“Sibipiruna”) from 1971 to 2003 in Piracicaba City, Brazil, showed usefulness of 
this species as bioindicator of metal pollution (de Vives et al. 2006). The authors 
also found a significant decreasing pattern of HM content for Pb and Fe. Ranges of 
HM from 1971 to 2003 were < 0.39–10.39 μg/g for Ti, < 0.15–69.47 μg/g for Fe, 
18.17–59.42 μg/g for Ba, and 9.89–46.54 μg/g for Pb. Pb specifically showed a 
negative trend toward the bark from the center (de Vives et al. 2006) (Table 8.3).

Beramendi-Orosco et al. (2013) analyzed HM in tree-ring sequences of Prosopis 
juliflora around different urban sites at different distances from a previously active 
Cu smelter facility at San Luis Potosi, Mexico, and found maximum accumulation 
of Zn (up to 120 mg/kg) followed by Cu (up to 9.6 mg/kg) and Pb (up to 1.4 mg/kg) 
with enrichment factor up to 26, 8.6, and 1.4, respectively, for Zn, Cu, and Pb com-
pared to background site. They found increasing trend in metal concentration with 
time for Zn at residential site, whereas Cu accumulation response was similar to Cu 
production. The results clearly highlight the usefulness of tree-ring measurement 
for the assessment of long-term HM monitoring around different land use patterns.

Seedling response of the three tree species (Mimosa caesalpiniaefolia, Erythrina 
speciosa, and Schizolobium parahyba) to Pb treatment showed no changes in seed 
germination, but among the three species, M. caesalpiniaefolia was more resistant to 
Pb treatment. Both E. speciosa and S. parahyba showed linear increase in Pb bioac-
cumulation in shoot with Pb concentrations in soil, whereas increase in bioaccumula-
tion in root was similar for all three species (Table 8.3) (Ribeiro de Souza et al. 2012).
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8.3  Metal Accumulation in Grasses

Grasses though have lower biomass compared to tree and a lower life span and have 
tremendous potential to accumulate high concentration of metals in root, stem, and 
leaves. Most of the hyperaccumulators reported are from grass families (Table 8.4).

Madejón et al. (2002), in the spill-affected soils of the Guadiamar floodplain in 
SW Spain, recorded significant bioaccumulation of HM in Bermuda grass (Cynodon 
dactylon) and wild sorghum (Sorghum halepense). All metals were higher in the 
aboveground parts of the plants in sludge cover soil; average Fe concentrations were 
up to 4180 and 2446 mg/kg in Cynodon and Sorghum, respectively. Both grasses 
showed significant accumulation of As and Pb in sludge cover soil compared to 
control soil, which was 96 and 109 times higher for As and 95 and 76 times for Pb, 
respectively, in Cynodon and Sorghum. For Zn accumulation, there were no obvious 
differences between the two plants (Madejón et al. 2002). Onder et al. (2007) 
reported significant correlations between soil and grass for Pb (0.44), Cu (0.70), V 
(0.55), and Ni (0.68) at eight different sites in Konya City, Turkey, and found local 
traffic along with sugar factory and chrome-magnesite factory as the major sources 
of HM pollution in the city, with grasses showing higher accumulation capacity for 
the most of the metals. Similar observations were also made by Fakayode and 
Onianwa (2002) around Ikeja Industrial Estate, Lagos, Nigeria, for Guinea grass 
(Panicum maximum) where strong significant correlations were observed between 
soil and grass contents of Cd (0.83), Ni (0.90), Mn (0.94), and Pb (0.73). Around 
Ikeja Industrial Estate, Lagos, Nigeria, Panicum maximum showed higher accumu-
lation factor (representing the ratio of average concentrations of a metal at the pol-
luted site to that of control site) for Cd (34.1) followed by Ni (23.4), Cr (23), and 
Mn (12.3), whereas lower values were obtained for Zn (7.2), Cu (8.7), and Pb (9.8) 
(Table 8.5).

Mine soils are one of the major sources of metals around the world. Wei et al. 
(2015) characterized bioaccumulation pattern at the Xikuangshan Sb mine, China, 
where soil concentrations for Sb and As were ranged from 229 to 1472 mg/kg and 
36.8 to 464 mg/kg, respectively. General trend of both Sb and As accumulation in 
grasses showed maximum concentrations in roots followed by stems and the least in 
leaves. As these metals have no known function in plants, their accumulation has 
been mostly restricted to root and stem, although leaves of Fagopyrum dibotrys 
showed maximum As accumulation (217 mg/kg) in this study. In leaves and stem, 
Sb was mostly accumulated in the form of SbIII than SbV; the proportion of SbIII was 
31–85 % compared to 0.6–35 % of SbV in stem in the most cases. As also showed 
similar pattern with much higher levels of AsIII in stem and leaves compared to AsV, 
but an opposite trend was observed in the case of root.

Bech et al. (2012) studied metal accumulation potential in eight herbaceous spe-
cies (Agrostis capillaris L., Echium vulgare L., Verbascum sp., Sonchus asper 
L. Hill, Veronica persica Poiret, Barbarea verna (Mill) Asch., Poa annua L., 
Erodium cicutarium L.), growing around a former Sb mine in the Ribes Valley in 
NE Spain. Among plants, A. capillaris L. at low pH site showed higher As (888 
μg/g), Sb (402 μg/g), and Pb (765 μg/g) accumulation in root, whereas S. asper at 
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high pH site showed higher Pb (997 μg/g) accumulation in root. Other species did 
not show significant metal accumulation for most of the metals (Table 8.5).

For biomonitoring of heavy metals in ambient air at 100 sites in 11 cities from 
2000 to 2002, Klumpp et al. (2009) used Italian ryegrass (Lolium multiflorum Lam.) 
and found relationships between metal accumulation and pollution sources around 

Table 8.4 HM and their known or potential hyperaccumulators with their respective plant 
families

Metal/metalloids Hyperaccumulator plant Family References

Cd Arabidopsis halleri Brassicaceae Krämer (2010)

Noccaea caerulescens Brassicaceae Krämer (2010)

Arabis paniculata Brassicaceae Zeng et al. (2011)

Sedum alfredii Crassulaceae Liu et al. (2008)

Thlaspi caerulescens Brassicaceae Liu et al. (2008)

Prosopis laevigata Fabaceae Buendía-González 
et al. (2010)

Bidens pilosa L. Asteraceae Sun et al. (2009)

Solanum nigrum L. Solanaceae Sun et al. (2007)

Zn Arabis paniculata Brassicaceae Zeng et al. (2011)

Noccaea caerulescens Brassicaceae Krämer (2010)

Arabidopsis halleri Brassicaceae Krämer (2010)

Sedum alfredii Hance Crassulaceae Krämer (2010)

Potentilla griffithii Rosaceae Chao et al. (2010)

Hu et al. (2009)

Ni Cardamine resedifolia Brassicaceae Krämer (2010)

Alyssum lesbiacum Brassicaceae Adamidis et al. (2014)

Bornmuellera sp. Brassicaceae Krämer (2010)

Cochlearia sp. Brassicaceae Krämer (2010)

Peltaria emarginata Brassicaceae Krämer (2010)

Streptanthus 
polygaloides

Brassicaceae Krämer (2010)

Berkheya coddii Rossler Asteraceae Moradi et al. (2009)

As Isatis capadocica Brassicaceae Krämer (2010)

Hesperis persica Brassicaceae Krämer (2010)

Se Stanleya pinnata Brassicaceae Krämer (2010)

Cr Leersia hexandra Poaceae Zhang et al. (2007)

Spartina argentinensis Poaceae Redondo-Gomez et al. 
(2011)

Prosopis laevigata Fabaceae Buendía-González 
et al. (2010)

Fe Imperata cylindrica Poaceae Fuente et al. (2016)

Cr Leersia hexandra Poaceae Zhang et al. (2007)

Se Astragalus selenium Fabaceae DeTar et al. (2015)

Cu Commelina communis Commelinaceae Wang et al. (2004)
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different sites and cities. Higher bioaccumulation was observed for Fe and Zn and 
the least for Cd, as authors concluded that Cd concentrations are on decline in most 
of the cities in Europe. For assessing the bioindicator of urban air pollution in 
Wrocław Metropolitan Area, Poland, Polechonska et al. (2013) utilized Polygonum 
aviculare on 79 different sites with varying pollution levels. They found higher 
accumulation of Fe, Cd, Cu, Pb, Ni, and Zn that was mainly attributed to higher 
vehicular pollution. Bioaccumulation factor (ratio of metal concentrations of root to 
shoot) was higher for Cd (0.6) and Zn (0.5) and the least for Mn (0.05) and Fe 
(0.04), whereas translocation factor was higher for Mn (2.5) followed by Cu (1.2), 
Fe (1.2), and Zn (1.2) and lesser for Pb (0.6), Cd (0.7), and Ni (0.8) indicating that 
nonessential metals were mostly remained in roots and their transfer to aboveg-
round parts was restricted, which helped in proper growth and functioning of plant. 
It also implicates the usefulness of this plant as HM bioindicator or for remediation 
of contaminated soil.

Hyperaccumulator Commelina communis leaves accumulated Cu up to 1046 and 
1119 μg/g DW with exposure of 8 days with 1 mM Cu treatment and after 6 days 
with 10 mM Cu treatment, respectively, whereas nonaccumulator species died after 
6 days of treatment (Table 8.5) (Wang et al. 2004).

8.4  Heavy Metal Accumulation in Different Plant Parts

8.4.1  Root

Plants have evolve complex mechanisms to combat HM stress. The primary site for 
absorption of HM in plant is root. Different plant species have adapted differentially 
as some plants accumulate excessive amount of metals in root tissues which prevent 
transfer of HM to aboveground parts and result in proper growth and physiology of 
plants, whereas in other group of plants, HM after absorption through root are trans-
ferred to shoot and either remain in stem or transported and stored in leaf tissue. The 
difference in the pattern of accumulation is complex and may depend upon the dif-
ferent mechanisms that developed under different sets of conditions and plants’ own 
evolutionary history. Plants can prevent absorption of metals by avoidance mecha-
nism or can accumulate and store them in separate compartments to combat their 
negative effects in the cell (Cseh 2002).

It has been shown that nonessential or toxic metals are mostly accumulated in 
roots and plants prevent their translocation to aboveground parts as Polechonska 
et al. (2013) reported higher accumulation of Cd, Ni, and Pb in roots of Polygonum 
aviculare exposed to urban and highway environments in Poland. Different plants 
have different abilities to tolerate high metal concentrations even in hyperaccumula-
tors as Zhang et al. (2007) observed in chromium hyperaccumulator Leersia hexan-
dra Swartz that in comparison to control the root growth was normal up to Cr 
concentration below 20 mg/L, but at a higher concentration of 60 mg/L, a significant 
reduction of 58.5 % was observed in the root biomass. In roots of this Cr hyperac-
cumulator, Cr concentrations were up to 18,656 mg/kg in root. In Ni 
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hyperaccumulator, A. lesbiacum showed interpopulation variation in root length 
with Ni treatment (Adamidis et al. 2014).

Among ten species studied growing in the tailings dams, only two plants, Opuntia 
lasiacantha (12.54 mg/kg) and Cenchrus ciliaris (4.63 mg/kg), showed higher 
accumulation of As in root than aboveground parts (Santos-Jallath et al. 2012). 
Other plants in this study like Maurandya antirrhiniflora and Prosopis sp. showed 
higher accumulation of Pb (103.41 mg/kg) and Cu (44.51 mg/kg), respectively, in 
root. Apart from Zn, all other metals showed higher accumulation in root compared 
to leaf in Cenchrus ciliaris.

Buendía-González et al. (2010) in Cr hyperaccumulator Prosopis laevigata also 
reported reduction in root elongation with increase in concentrations of Cd (II) and 
Cr (VI). The increase in concentration of Cd from 0.3 to 2.2 mM and Cr from 0.5 to 
3.4 mM resulted in reduction of root elongation by 78.9–93.1 % and 46.8–61.5 %, 
respectively, in P. laevigata. Accumulation of Cd and Cr in roots of this plant was 
up to 21,437 and 8090 mg/kg of dry weight at 0.65 mM Cd treatment and 3.4 mM 
Cr treatment, respectively. Root biomass of in S. nigrum was reduced by up to 52 % 
with Cd treatments in soil (Sun et al. 2007). In S. nigrum, the Cd accumulation was 
more in leaf compared to root, whereas in S. melongena root tissue showed higher 
Cd levels than leaf. The behaviors of these two plants based on metal accumulation 
were due to differential antioxidative capacity of plants to cope up with enhanced 
metal tolerance (Sun et al. 2007). In zinc and cadmium hyperaccumulator plant, 
Potentilla griffithii roots showed Zn and Cd accumulation of 14,060 and 9098 mg/
kg of DW, respectively, at 160 and 40 mg/L treatments of Zn and Cd, although 
maximum accumulation of Zn was found in petiole (19,600 mg/kg of DW). In roots, 
Zn was mostly accumulated in xylem parenchyma cells and epidermal cells, 
whereas, for Cd, maximum accumulation was observed around rhizodermal cell, 
cortex cell, and in central cylinder (Hu et al. 2009). Study also concluded that main 
storage of Zn and Cd in roots was around the cell wall.

Compared to control plant, mean root biomass of Se hyperaccumulator A. race-
mosus was decreased by 27 % with Mo treatment of 16 mg/L, whereas in A. bisul-
catus root biomass was increased by 77 % at the same concentration but decreased 
at higher concentrations of Mo of 32 and 48 mg/L by 30 and 50 %, respectively 
(DeTar et al. 2015). In non-Se accumulator, A. drummondii and A. convallarius both 
showed reduction in mean root biomass by 35, 80, and 77 % and 30, 18, and 59 %, 
respectively, when treated with Mo concentration of 16, 32, and 48 mg/L (DeTar 
et al. 2015). In Fe hyperaccumulator Imperata cylindrica, Fuente et al. (2016) 
recorded higher Fe accumulation in root and rhizome compared to leaf tissue. They 
mostly accumulated in the apoplastic region in the form of iron oxide biominerals 
(Fuente et al. 2016).

Ribeiro de Souza et al. (2012) tested seedling response of three leguminous 
woody species, Mimosa caesalpiniaefolia, Erythrina speciosa, and Schizolobium 
parahyba, to Pb treatment in a greenhouse pot experiment and found higher accu-
mulation of Pb in root (85–90 %) compared to shoot, but no changes in root DW 
were observed at higher Pb concentration in any of the three tested plants. Only S. 
parahyba showed an elevation of 37 % in root mycorrhizal colonization at highest 
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Pb concentration. Authors also found decrease in nitrogenase enzyme activity in 
root nodules of E. speciosa with an increase in Pb treatment. Results clearly indi-
cated that higher accumulation in root tissue acts as a resistant mechanism to cope 
up with high Pb levels in soil.

Metals are mostly accumulated in different oxidation states, which is directly 
related to their transport mechanism and level of toxicity. In perennial herbs, As was 
mostly accumulated in the form of AsV in roots of the majority of herbs, whereas 
AsIII was less in most cases around Xikuangshan Sb mine, China (Wei et al. 2015). 
High level of Sb was accumulated in roots of Fagopyrum dibotrys (D. Don), Rumex 
patientia, and Oplismenus undulatifolius (A) Bea around Xikuangshan Sb mine, 
China, indicating that selected plants were lacking the ability to transfer Sb to 
aboveground parts (Wei et al. 2015). Bech et al. (2012) reported higher Pb accumu-
lation in Sonchus asper L. Hill (997 μg/g DW), Agrostis capillaris L. (765 μg/g 
DW), Poa annua L. (306 μg/g DW), Veronica persica Poiret (141 μg/g DW), and 
Echium vulgare L.(77 μg/g DW) growing around a former Sb mine in the Ribes 
Valley in NE Spain. Among other plants, Agrostis capillaris L. showed maximum 
accumulation of Sb (402 μg/g DW) and As (888 μg/g DW) in root. Cr hyperaccu-
mulator, Spartina argentinensis, when treated with Cr6+ from 0 to 20 mmol/L, 
showed a linear increase in Cr concentration in root with treatment (r = 0.94, P < 
0.01) (Redondo-Gomez et al. 2011).

8.4.2  Shoot

Metal uptake via root system from soil is either stored in roots or subsequently 
transported to the aboveground parts through the xylem. The ability of plants to 
transport and store excess metals in aboveground parts depends upon effective metal 
transport system, vacuolar compartmentalization, antioxidative defense response, 
and physiological status of the plant (Krämer 2010).

Leersia hexandra Swartz, a chromium hyperaccumulator plant, showed mean Cr 
concentration of 237 mg/kg in stem, which was very low compared to leaf, but 
mean ratio of Cr concentration in stems to that in pond water was very high and was 
up to 297.41 times with a maximum value of 517.86, although in nutrient solution 
culture, stem showed maximum Cr accumulation of 2976 mg/kg (Zhang et al. 
2007). This plant clearly showed higher transfer rate of Cr from stem to leaf tissue. 
When this plant was artificially grown on liquid culture with treatment of Cr, the 
shoot biomass decreased linearly with increase in Cr (III) concentrations in the 
medium. Compared to Cr (III), Cr (VI) showed marked effect on stem DW with a 
reduction of 50.4 % with respect to the control. Sun et al. (2007) reported 32–49 % 
decrease in stem biomass in Solanum nigrum with increasing Cd treatment in soil, 
whereas in Cd hyperaccumulator plant Bidens pilosa L, at soil Cd level of 8 mg/kg, 
stems accumulated Cd up to 110.5 mg /kg of DW.

Ribeiro de Souza et al. (2012) studied seedling response of tree species on accu-
mulation and translocation of Pb and found linear increase in Pb accumulation with 
Pb concentrations in soil in E. speciosa and S. parahyba. In M. caesalpiniaefolia, 
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Pb accumulation was maximum in stem, as this plant showed better tolerance to Pb 
and higher translocation of Pb from root to shoot. Results also revealed that under 
low Pb concentrations in soil, accumulation of Pb was higher in stem compared to 
root, but in soil with high Pb concentrations, reverse pattern was observed with 
higher Pb content in root than in stem. Indigenous plants growing around the 
Xikuangshan Sb mine, China, showed higher proportion of SbIII in the stems (31–85 
%), compared to SbV (0.6–35 %). Similar trend was also observed for As, which 
indicates that the same metals in different oxidation states have different transport 
mechanisms and accumulation (Wei et al. 2015). Polechonska et al. (2013) reported 
differential behavior of metal accumulation pattern in shoots, as Cu, Fe, Zn, and Mn 
concentrations were all higher in shoots, whereas Cd, Ni, and Pb concentrations 
were significantly higher in root of Polygonum aviculare growing under an urban 
environment.

In most of the heavy metal hyperaccumulators, shoot-root ratios of metal con-
centrations are generally above 1 as these plants mostly accumulate higher metal in 
aboveground parts due to high metal absorption rate by roots, limited storage in 
root, higher rates of metal translocation to stem, metal detoxification, and chelation 
in leaf and stem (Krämer 2010). In Arabis paniculata Franch, a Zn/Cd hyperaccu-
mulator, levels of Zn and Cd were 14,716 and 2383 mg/kg, respectively, at treat-
ment of 2000 μM Zn and 250 μM Cd (Zeng et al. 2011). In Ni hyperaccumulator, 
Alyssum lesbiacum, a clear significant relationship was observed between Ni accu-
mulation and Ni tolerance (Adamidis et al. 2014). In Cr hyperaccumulator plant, 
Prosopis laevigata seedlings when grown on culture media having 0.65 mM Cd (II) 
and 3.4 mM Cr (VI) showed a marked accumulation of 8176 and of 5461 mg/kg 
DW of Cd and Cr, respectively, in shoots, although there was a strong reduction in 
shoot size with percent reduction of 28.37, 44.68, 56.03, and 75.46 exposed to Cd 
(II) concentrations of 0.3, 0.65, 1.3, and 2.2 mM (Buendía-González et al. 2010). 
But when exposed to 0.5, 1.0, 2.0, and 3.4 mM Cr (VI) concentrations, shoot size 
reduction was comparatively less with values of 3.55, 15.60, 22.70, and 34.04 %, 
respectively. The results highlighted that Cd (II) was more toxic compared to Cr 
(VI) in this experiment (Buendía-González et al. 2010).

An interesting result was observed in Bidens pilosa L. by Sun et al. (2009) that 
when Cd concentrations were lower (8 and 16 mg/kg) in soil, the plant tends to 
increase shoot dry mass by 3.7 and 9.8 %, respectively, compared with control, sug-
gesting that lower Cd level can induce shoot growth, but at higher concentrations 
above 50 mg/kg in soil, a negative trend was observed.

In zinc hyperaccumulator, Sedum alfredii Hance, when grown in hydroponic 
growth in 500 M Zn(NO3)2 solution, Zn accumulation in shoot was approximately 
14.5 times higher after 8 days treatment with maximum Zn accumulation of 14749.7 
mg/kg compared to nonhyperaccumulator ecotype which showed only 4.2 times 
increase with maximum Zn accumulation of 454.6 mg/kg. Se hyperaccumulator 
Astragalus racemosus showed decrease in mean shoot biomass by 43 % (p < 0.05) 
with 16 mg/L Mo, but at higher Mo concentration of 32 or 48 mg/L of Mo, no sig-
nificant changes were observed compared to the control, but in another hyperaccu-
mulator, Astragalus bisulcatus, shoot biomass was increased by 16 % (NS), 17 % 
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(NS), and 38 % (p < 0.05) with increasing Mo concentration from 16, 32, and 48 
mg/L, respectively. On the other hand, both nonaccumulator Astragalus drummon-
dii and Astragalus convallarius showed 44 % (p < 0.05), 60 % (p < 0.05), and 56 % 
(p < 0.05) and no effect, 40 % (NS), and 55 % (p < 0.05) reduction in mean shoot 
biomass, respectively, with 16, 32, and 48 mg/L of Mo treatment (DeTar et al. 
2015). Shoot Mo did not show any relationship with Se hyperaccumulation, with 
concentrations ranging from 1000 to 3000 mg/kg DW among four selected plants 
with the highest accumulation in nonaccumulator A. drummondii (DeTar et al. 
2015). Hu et al. (2009) studied distribution of zinc and cadmium in hyperaccumula-
tor Potentilla griffithii and found positive relationship between bioaccumulation in 
shoot with concentrations of Zn and Cu in nutrient solution. Maximum concentra-
tion of Cd and Zn in shoot was 1670 and 16,900 mg/kg DW at 20 and 160 mg/L Cd 
and Zn treatment, respectively. Further, higher concentrations of Cd (40 mg/L) did 
not result in significant accumulation of Cd in shoot of P. griffithii.

In seedling response of tree species to Pb treatment experiment, Ribeiro de Souza 
et al. (2012) found linear increase in Pb accumulation in shoots with an increase of 
Pb content in soil, but in M. caesalpiniaefolia shoots, Pb concentrations were only 
increased in stems. Different herbaceous plant species around a former Sb mine in 
NE Spain showed limited accumulation of most metal in shoot apart from P. annua, 
E. vulgare, S. asper, and B. verna, where average shoot concentrations for As and 
Sb ranged between 5.5 and 23 mg/kg and 1.21 and 4.9 mg/kg, respectively (Bech 
et al. 2012).

8.5  Metal-Chelating Compounds and Their Role in Metal 
Chelation

There are several metal-chelating or metal-stabilizing compounds, present in nature, 
having potential to bind with metals and immobilize them inside the cell shown in 
Fig. 8.2 (Cobbett and Goldsbrough 2002; Hall 2002; Li et al. 2015; Prasad 2004). 
They all have specific ability to bind with metal based on their special structure and 
symmetry and from metal-bound complexes (Prasad 2004). Their concentrations in 
the cell depend largely upon the amount or quantity of metals in surrounding envi-
ronment. Not all plants are reported to have similar types of compound, and their 
expressions solely depend upon the availability of metal, specific cellular location, 
and specific plant tissue; they may act on same metal or different groups of metals. 
HM inside cells can react with different cellular component or produce oxidative 
stress inside the cell, to combat HM-generated stress as several different chelators 
have been identified in plants that can bind and neutralize them for proper cellular 
metabolism and plant growth.
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8.5.1  Metallothioneins

(MTs): MTs are metal-binding, cysteine-rich polypeptide with several types based 
on structure and sequence of amino acids, spacers between two cysteines, and 
sequence of amino acids in C- and N-terminal unit of MTs (Cobbett and Goldsbrough 
2002; Li et al. 2015). They have been reported from different groups of plants and 
animals, although less reports are available in other organisms. MTs are primarily 
known for their role in metal detoxification by chelation, homeostasis of essential 
metals, and scavenging of ROS as well as in other cellular metabolism as a part of 
the regulation of other enzymes, transcription factors, and stress-related proteins 
(Table 8.6) (Cobbett and Goldsbrough 2002; Li et al. 2015). The activity of MT is 
due to the presence of cysteine sulfhydryl groups in MT as they act as metal binders 
through mercaptide bonds (Cobbett and Goldsbrough 2002). Only few metals have 

Fig. 8.2 Different pathways for intracellular and extracellular HM response and tolerance mecha-
nisms in plant
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been so far known to bind with MT like Cu, Cd, and Zn (Hall 2002). Different MTs 
as MT1-4 are reported in different groups of organisms and their induction depends 
upon specific HM (Cobbett and Goldsbrough 2002; Hall 2002; Verbruggen et al. 
2009).

8.5.2  Phytochelatins

(PCs): Compared to MTs, PCs are more abundant in plants and made up of a 2–11 
repeating units of the γ-glutamate–cysteine dipeptide with a terminal glycine, syn-
thesized from precursor glutathione by an enzyme phytochelatin synthase (Cobbett 
and Goldsbrough 2002; Hall 2002; Prasad 2004). Different PCs are derived from 
common structure with modification in terminal glycine amino acid, where it is 
replaced by other amino acids such as alanine, serine, and glycine (Cobbett and 
Goldsbrough 2002; Prasad 2004). Apart from its role in HM chelation, it is also 
important in scavenging of ROS and transferring of essential metals in the cell and 
spatially in metal homeostasis. Prasad (2004) identified several PC activators such 
as Cd, Cu, Hg, Ni, Zn, Sn, Sb, Ag, and AsO4

3− (Table 8.6). PCs levels are well regu-
lated in the cell and their concentrations are regulated with an increase in metal 
uptake. After binding with metal, PC metal complexes are stored inside vacuoles 
and further immobilized. Interactions and fate of PCs with HM are less known and 
most of the research has focused on PCs mechanism with Cd tolerance. Apart from 
Cd, not much is known about interactions of PCs with other HM in higher plants.

8.5.3  Proline

Proline is a multifunctional amino acid which plays role as an osmolyte, a metal 
chelator, an antioxidant, maintenance of NAD(P+)/NAD(P)H ratio, and a signaling 
molecule (Hayat et al. 2012; Sharmila and Saradhi 2002). Most of the study revealed 
that proline helps in HM tolerance by chelation, by inducing formation of phyto-
chelatins and scavenging of ROS generated due to metal accumulation (Hayat et al. 
2012; Sun et al. 2007). Among metals, it has been shown that Co, Cd, Zn, and Pb 
can induce proline formation (Hayat et al. 2012; Sharmila and Saradhi 2002). Sun 
et al. (2007) observed an increase in proline accumulation at the rate of 131–184 % 
in leaf tissue of S. nigrum due to Cd treatment and concluded that the accumulation 
of free proline might be responsible for tolerance mechanism in this plant against 
Cd stress.

8.5.4  Histidine

Histidine is an amino acid which has also been reported to have high metal-binding 
potential specifically for Ni (Hall 2002; Krämer 2010). Krämer et al. (1996) in their 
Ni exposure experiment compared A. lesbiacum (Ni hyperaccumulator) with A. 
montanum (nonhyperaccumulator) with high concentration of Ni in hydroponic cul-
ture, found a 36-fold increase in histidine concentration in the xylem sap of Ni 
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hyperaccumulator, and confirmed the role of histidine as a Ni chelator by transfer-
ring Ni accumulated in root to stem. Similar observations were also made in other 
Ni hyperaccumulators such as A. murale and A. bertolonii. Linear increase in histi-
dine concentrations in the xylem sap was also found in the case of Co in the same 
plant; therefore, a similar type of metals can be chelated by histidine (Table 8.6) 
(Krämer et al. 1996). The chelation is the major mechanism by which histidine 
responds to Ni, as 97 % of histidine was found in the form of Ni–histidine complex 
in A. lesbiacum (Krämer et al. 1996).

Table 8.6 Common HM chelators with their specific activity and metal binder

Metal chelators Structure Activity
Binding 
metal References

Metallothioneins 
(MTs)

Cysteine-rich 
proteins

Heavy metal 
detoxification and 
protecting against 
intracellular 
oxidative 
damages, ROS 
scavenging

Cd2+, 
Zn2+, and 
Cu2+ 
tolerance

Li et al. (2015) 
and Cobbett 
and 
Goldsbrough 
(2002)

Phytochelatins (PCs) Cysteine-rich 
peptides

Metal 
detoxification, 
metal ion 
homeostasis

Cd, Pb, 
Ag, Hg, 
Cu, Zn

Cobbett and 
Goldsbrough 
(2002) and 
Manara (2012)

Proline Imino acid Metal chelator Co, Cd, 
Zn, Pb

Hayat et al. 
(2012)

Histidine Amino acid Metal chelator Ni, Zn, 
Cd

Krämer (2010)

Nicotianamine S-adenosyl-L- 
methionine

Metal chelator, 
transport, metal 
homeostasis

Fe, Cu Krämer (2010)

Malate Organic acids Metal chelator Cd, Zn Manara (2012)

Citrate Organic acids Metal chelator Cd, Fe, 
Ni

Manara (2012) 
and 
Verbruggen 
et al. (2009)

Glutathione γ-glutamyl 
cysteinylglycine 
tripeptide

Metal chelator, 
substrate for PCs, 
antioxidant

Zn, Co, 
Ni

Verbruggen 
et al. (2009), 
Yadav (2010) 
and Jozefczak 
et al. (2012)

Cysteine Amino acid Metal chelator, 
substrate for GSH

Cd, Zn, 
Cu

Jozefczak 
et al. (2012)

Ferritins Multimeric proteins Scavenge Fe Fe Manara (2012)

Phytate (myo-inositol 
hexakisphosphate)

Phosphate 
monomer

Metal chelator Mn, Zn, 
Fe

Manara (2012)

HSPs Protein Molecular 
chaperones

Hall (2002)
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8.5.5  Nicotianamine

(NA): NA is a nonprotein amino acid formed by the precursor S-adenosylmethionine 
by enzyme nicotianamine synthase (Kim et al. 2005). NA has been reported to be 
present in a wide variety of plants and known for its role in metal homeostasis and 
chelation, but its role as a Ni chelator is extensive (Kim et al. 2005; Krämer 2010). 
Pianelli et al. (2005) expressed nicotianamine synthase cDNA (TcNAS1) in 
Arabidopsis thaliana isolated from metal hyperaccumulator Thlaspi caerulescens 
and found 100 times more accumulation of NA compared to the wild-type plant, 
and as a result higher Ni accumulation and tolerance were observed in this plant 
when grown in high Ni-contaminated soil. The authors also found higher accumula-
tion of Ni (2.5 mg/g of DW) in leaves of a NA over accumulating transgenic lines 
of A. thaliana. When barley nicotianamine synthase gene was constitutively overex-
press in transgenic Arabidopsis and tobacco plants, an elevated metal tolerance 
response was observed with an increase in NA content in these plants (Kim et al. 
2005). These results further confirm the role of NA in metal tolerance and homeo-
stasis, although only limited information is available about its behavior with other 
metals and how NA binds with metals and regulates their transfer with in plant.

8.5.6  Glutathione

(GSH): GSH is a tripeptide made up of three amino acids glutamate, cysteine, and 
glycine and synthesized by enzymes γ-glutamylcysteine synthetase (GSH1) and 
glutathione synthetase (GSH2) (Jozefczak et al. 2012; Verbruggen et al. 2009). 
GSH is well known for its function in antioxidative defense, metal homeostasis, and 
signal transduction (Jozefczak et al. 2012; Yadav 2010). GSH directly binds to 
metal by formation of mercaptide bond and forms GSH–metal complex; at the same 
time, it also acts as a precursor of PCs (Jozefczak et al. 2012; Yadav 2010). Many 
studies have highlighted an increase in GSH concentrations with an increase in 
metal stress (Krämer 2010; Verbruggen et al. 2009). GSH role as an antioxidant and 
as a metal chelator makes it an important constituent of the cell against HM stress 
tolerance in different plant groups (Jozefczak et al. 2012).

8.5.7  Cysteine

(Cys): Cys is an amino acid with thiol side chain, which gives it the potential to bind 
metals which makes it as a potent HM chelator (Jozefczak et al. 2012; Zagorchev 
et al. 2013). Kumar et al. (2002) found an increase in free cysteine concentrations in 
Cassia siamea Lamk in fly ash containing soil rich in HM.
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8.5.8  Organic Acids

Organic acids such as malate, oxalate, and citrate have the potential to chelate HM 
and transport HM organic acid-bound complexes to different parts of the plant tis-
sue (Manara 2012). They have been known for their role in transfer of metal ions in 
plants. Citrate mostly binds with Fe for its transport (Pierre and Gautier-Luneau 
2000), but most of the organic chelators have shown to bind with Ni, Cd, and Zn 
(Manara 2012; Verbruggen et al. 2009).

8.5.9  Phytate

Phosphate group of phytic acid has the ability to bind with metal cations and chelate 
them (Bohn et al. 2008). High concentrations of phytate is generally present in seed 
as a source of phosphate. Phytate is made up of Myo-inositol hexakisphosphate hav-
ing central inositol ring attached to six phosphate group which binds metal cations 
(Bohn et al. 2008; Manara 2012). Phytate can bind with several metal cations such 
as Ca2+, Cu2+, Fe3+, Zn2+, Ni2+, Co2+, and Mn2+ (Bohn et al. 2008).

8.5.10  Other HM Chelators

Apart from chelators mentioned above, several other chelating compounds have 
been identified such as O-acetylserine, heat shock proteins (HSPs), and mugineic 
acid (Table 8.6). They have been reported as metal chelators in some plant species, 
and their mechanisms of action and roles in specific metal tolerance are yet to be 
identified.

8.6  Morphological, Physiological, Biochemical, 
and Molecular Biomarkers of Heavy Metal Tolerance

Plants are versatile organism which can adapt in versatile environmental conditions 
and maintain their proper growth and development. HM tolerance of higher plants 
is mostly regulated by maintaining normal cellular metabolism and physiology. 
Most of the studies related to HM stress have identified different biochemical 
responses for maintaining cellular redox potential, scavenging ROS, metal chela-
tion, enhancement in stress-related protein, and induction in stress-related meta-
bolic pathways (Krämer 2010). HM stress is counteracted by overexpression of 
numerous stress-related proteins, induction of antioxidative pathways, and activa-
tion of various signaling proteins related to stress regulations (Fig. 8.2) (Thapa et al. 
2012). Most of the hyperaccumulator studies have shown higher metal accumula-
tion by making several physiological adjustments such as restricting metal accumu-
lation in root, changing uptake rate of metals from soil, increasing concentrations of 
antioxidant in leaf, enhancing metal uptake in the cellular level by changing 
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permeability of metal transporter, and enhancing the xylem loading (Fig. 8.3) 
(Krämer 2010). Exclusion and avoidance of HM in plants are the result of mecha-
nisms such as reduction in metal uptake, sequestration of HM in higher concentra-
tions at specific part of the plant, increase in concentrations of metal chelators, and 
activation of stress-related signaling pathways (Fig. 8.3) (Thapa et al. 2012). Several 
plant hormones like jasmonic acid, salicylic acid, abscisic acid, and ethylene have 
been known to be induced by HM stress response (Thapa et al. 2012).

Zeng et al. (2011) analyzed different expressions of proteins in Zn/Cd hyperac-
cumulator A. paniculata Franch by exposing plants to low and high doses of both 
Cd and Zn and identified 17 out of 19 Zn-responsive and 16 out of 18 Cd-responsive 
proteins. Proteins expressed due to Zn stress in the plant were mostly related to 
energy metabolism, photosynthesis, and auxin biosynthesis and those required for 
metabolism of normal growth and for protein misfolding correction.

Fig. 8.3 Schematic diagram showing HM uptake by root, their transport to aboveground parts via 
xylem loading, and sequestration in vacuoles with different membrane transporters, transport pro-
teins, and various intracellular and extracellular chelators of HM. (CAX cation exchangers; CaCA 
Ca2+/cation antiporter; CDF cation diffusion facilitators; HM heavy metals; HMAs heavy metal 
transporting ATPases; M-NA metal-nicotianamine; YSL yellow strip 1-like proteins; ZIP zinc- 
regulated transporter, iron-regulated transporter proteins; MATE multidrug and toxic compound 
extrusion; CTR copper transporter; NRAMP natural resistance-associated macrophage proteins; 
MRP multidrug resistance-associated proteins; FRD ferric reductase defective; MTP metal trans-
porter proteins; MHX magnesium proton exchangers; ZAT zinc transporter of Arabidopsis 
Thaliana)
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Specific proteins in shoot associated with Zn stress were upregulated belonging 
to oxygen-evolving enhancer protein 1–2 (PSBO) involved in photosynthesis, ATB2 
involved in energy metabolism, 3-isopropylmalate dehydrogenase (IMDH) involved 
in amino acid metabolism, meprin and TRAF homology domain-containing protein 
and luminal-binding protein 1 precursor both involved in protein metabolism, 
nitrilase 2 involved in auxin biosynthesis, ribulose bisphosphate carboxylase 
(RuBisCO) involved in carbon fixation, phosphoserine aminotransferase involved 
in amino acid metabolism, and glutamine synthetase involved in nitrogen metabo-
lism, serine/threonine–protein phosphatase PP1 isozyme 2 involved in signaling 
(Zeng et al. 2011). Proteins which were specifically expressed due to Zn stress are 
cytochrome P450 76A1 involved in xenobiotic defense, protein disulfide isomerase 
2 precursor and U-box domain-containing protein 16 involved in protein metabo-
lism, mitogen-activated protein kinase 2 involved in cell signaling, and F-box pro-
tein PP2-A15 involved in cellular transportation (Zeng et al. 2011).

Specific proteins in shoot associated with Cd stress were upregulated belonging 
to ribulose-5-phosphate 3-epimerase involved in photosynthesis, superoxide dis-
mutase, glutathione transferase and ascorbate peroxidase all involved in antioxida-
tive defense, 25.3 kDa vesicle transport protein involved in protein transport, 
pentatricopeptide repeat-containing protein involved in RNA processing, and treha-
lose-6-phosphate synthase 3 involved in carbohydrate metabolism.

Specific proteins in shoot associated with Cd stress which was downregulated is 
RuBisCO, whereas specifically expressed proteins are cytochrome P450 76A1 
involved in xenobiotic defense, mitochondrial ribosomal protein S3 involved in cell 
development, protein thylakoid formation 1 involved in cell signaling, G2/mitotic- 
specific cyclin S13-6 involved in cell cycle, and nucleoside diphosphate kinase 1 
involved in energy metabolism (Zeng et al. 2011).

Level of malondialdehyde (MDA) is a good indicator of metal tolerance in 
plants; with an increase in stress, higher MDA levels are observed due to membrane 
damage by both generation of ROS and direct effect of metals on membrane integ-
rity. Sun et al. (2007) found a 2.3–2.6-fold higher MDA content in leaves of non-
metal-tolerant S. melongena compared to the metal-resistant S. nigrum, whereas in 
Bidens pilosa, MDA content showed marked elevation only after Cd concentrations 
in soil were 50 and 100 mg/kg, respectively, compared with the control (Sun et al. 
2009). Treatments from 1 μM to 10 mM of Cu in hydroponic culture resulted in 
77–126 % and 77–114 % increase in MDA concentrations in hyperaccumulator and 
nonaccumulator species of Commelina communis, respectively (Wang et al. 2004). 
Pb contents in soil negatively affect plants by increasing foliar MDA content in S. 
parahyba seedling, but in M. caesalpiniaefolia and E. speciosa seedling, no signifi-
cant variations were observed in MDA content with Pb treatment (Ribeiro de Souza 
et al. 2012).

Photosynthetic pigments are also good markers of metal stress as Sun et al. 
(2007) reported a negative relationship between total chlorophyll content and Cd 
concentration in the soils. In Bidens pilosa L, Sun et al. (2009) also found a negative 
trend in total chlorophyll content and Cd concentrations in soil; decreases in chlo-
rophyll content were 22.2 % and 23.3 % with respect to control at Cd level of 50 and 
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100 mg/kg, respectively. After 15 days of treatment with Cr (VI) in cordgrass, 
Spartina argentinensis, all pigments such as Chla a (r = −0.95), Chl b (r = −0.96), 
and carotenoids (r = −0.97) showed negative significant correlation with increasing 
Cr concentrations with percent reduction of 68, 58, and 47 %, respectively, with 
respect to the control (Redondo-Gómez et al. 2011). Pb content in soil negatively 
affects chl a and total carotenoid content in leaves of S. parahyba seedling and total 
chlorophyll and chl b content in E. speciosa (Ribeiro de Souza et al. 2012).

Several antioxidative enzymes are involved in metal stress tolerance. Cd treat-
ment significantly changed enzymatic activities with increase in SOD in root, POD 
in leaf, and CAT in both leaves and root in S. nigrum compared to S. melongena. 
This higher induction of antioxidative enzymes led to more tolerance to Cd in S. 
nigrum compared to S. melongena. S. nigrum also showed two-fold higher PCs 
compared to control (Sun et al. 2007). Different plant parts also showed variations 
in the activities of antioxidative enzymes under Cd stress. SOD activity was lower 
in the roots of both S. nigrum and S. melongena compared to leaves (Sun et al. 
2007).

POD activity increased by 1.33-, 3.33-, and 6.33-fold with Cd levels of 32, 50, 
and 100 mg/kg, respectively, compared to control in Bidens pilosa, but SOD activity 
was found to increase by 58.7 % only at 100 mg/kg soil Cd concentration (Sun et al. 
2009). SOD activity increased linearly in Commelina communis plant with increas-
ing Cu treatment from 1 μM to10 mM. There were increases of 160 % and 197 % in 
SOD activity in Cu hyperaccumulator and nonaccumulator C. communis, respec-
tively. In the same experiment, Cu hyperaccumulator plant did not show any change 
in guaiacol peroxidase (GPX) activity, whereas a significant correlation was (with r 
= 0.74–0.96) observed between GPX activity and Cu treatment in the nonaccumula-
tor plant. GPX activity was also higher in nonaccumulator compared to hyperac-
cumulator plant.

These results indicate that responses of plants to metal stress depend upon sev-
eral antioxidants in cell, and the overall tolerance response is an outcome of com-
bined interactions of different antioxidants (Wang et al. 2004).

Concentrations of soluble protein increase with treatment of Cu in both Cu 
hyperaccumulator and nonaccumulator of Commelina communis, although the 
treatment effect was more marked in nonaccumulator (Wang et al. 2004). Increase 
in foliar ammonia and nitrate content was shown to be influenced by soil Pb concen-
trations of 250 and 500 mg/kg in seedling of E. speciosa, whereas in M. caesalpini-
aefolia and S. parahyba, foliar nitrate content decreased at 250 and 500 mg/kg of Pb 
concentrations (Ribeiro de Souza et al. 2012).

Gene expression study in both Zn hyperaccumulator and nonhyperaccumulator 
ecotype of S. alfredii revealed higher gene expression in hyperaccumulator com-
pared to nonhyperaccumulator in ten tested genes (Chao et al. 2010). They also 
reported 22 gene fragments that were modified by Zn in hyperaccumulator, among 
them 73.6 % were known in database and matched with known proteins. The identi-
fied proteins in the study are RuBisCO subunit-binding protein beta subunit precur-
sor, n-protein ligases, cystatin, cationic amino acid transporter, 60S ribosomal 
protein L21, ubiquitin protein ligase, and nitrate reductase 1 (Chao et al. 2010).
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In Potentilla griffithii at lower concentration of metals, major storage of metals 
occurred in leaf epidermal and bundle sheath of vein in leaves, but at higher concen-
trations, metals were transferred to mesophyll cells. In Zn and Cd treatment of 160 
mg/L and 20 mg/L, respectively, accumulation was predominantly in the vacuoles 
of epidermal and vascular bundle sheath cells, but at higher concentration of Cd (40 
mg/L), accumulation was also observed in vacuoles of mesophyll cells (Fig. 8.3). In 
the root with similar treatment of Zn and Cd showed deposition of Zn on the walls 
of epidermis, endodermis, and xylem parenchyma, while Cd deposited on wall of 
epidermis, cortex, endodermis, and parenchyma of vascular cylinder (Hu et al. 
2009). In Fe hyperaccumulator, Imperata cylindrica, Fe was mostly present in inter-
cellular space, cells of the xylem and phloem, and in epidermal cell in roots, rhi-
zomes, and leaves (Fuente et al. 2016). Moradi et al. (2009) compared root responses 
between Ni hyperaccumulator plant Berkheya coddii Rossler and nonaccumulator 
plant Cicer arietinum L. to soil Ni heterogeneity. Obvious changes in root morphol-
ogy of B. coddii were observed as increasing in root thickness, lower biomass, 
reduction in number of fine roots, and reduction in branching were marked, whereas 
in C. arietinum reduction in root biomass was prominent.

Significant negative correlation was observed between values of Fv/Fm (r = 
−0.99), quantum efficiency of PSII (r = −0.96), net photosynthetic rate (r = −0.93), 
stomatal conductance (r = −0.93), and water use efficiency (r = −0.90) with increas-
ing Cr6+ treatments after 9 days of treatment in cordgrass, Spartina argentinensis 
(Redondo-Gómez et al. 2011). High Pb concentrations in soil did not affect mycor-
rhizal association with native arbuscular mycorrhiza fungi in all studied tree seed-
ling, but nitrogenase activity in root nodules of E. speciosa was negatively affected 
(Ribeiro de Souza et al. 2012).

8.7  Conclusions

Significant variations were found in HM bioaccumulation potential in different 
groups of plants. Compared to grasses, trees showed limited accumulation of HM in 
leaf, bark, and wood, although due to the larger surface area, higher biomass, and 
longer life span, they can accumulate very high concentrations of metals. Leaf, 
bark, and wood samples showed great variations in accumulation for overall metal 
or for individual metal; therefore, their role in biomonitoring is of great importance 
especially in urban environments, where other groups of plants are lacking. Most of 
the studies highlighted the usefulness of tree species in the identification of different 
metal sources. Grasses showed differential accumulation dependent upon species 
and growth conditions. Most of the hyperaccumulator plants belong to grass fami-
lies and have huge capabilities to accumulate HM in high concentrations. Metal 
accumulation in both roots and shoots showed species-specific responses with some 
plants accumulating higher HM in aboveground parts, while others favoring more 
accumulation in belowground parts. Increase in concentrations of antioxidants and 
metal chelators, alteration in physiology, anatomical modifications, changes in gene 
expression, alteration in specific proteins, and several other mechanisms were 
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identified for metal tolerance in higher plants. Identification of multi-metal-tolerant 
species and their mechanisms of tolerance under interactive action of different met-
als should be attempted in future studies. Such studies would help in identifying 
suitable species for growing in heavy metal-contaminated sites for phytoremedia-
tion as well as for environmental monitoring.
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Abstract
Contamination of agricultural soil by organic xenobiotic compounds is becoming 
a serious problem in most of the developed and developing countries. Chemicals 
foreign to an organism or chemicals not natural to an ecosystem are considered as 
xenobiotic for an organism, and upon exposure they impose toxicity threats to the 
organism. The term is mainly used in the context of pollutants such as chemical 
fertilizers, pesticides, dyes, dioxins, polychlorinated biphenyls (PCBs), and poly-
cyclic aromatic hydrocarbons (PAHs) and their side effect on the biota. High con-
centrations of these xenobiotics create a biological imbalance in soil leading to 
surface and groundwater pollution. Inside plants they block the functional groups 
of biologically important molecules like enzymes, transport system of nutrient 
ions, polynucleotides, etc. The degradation of these organic xenobiotic pollutants 
in nature is a serious challenge and microorganisms have been observed to play a 
vital role in their degradation. They transform hazardous organic xenobiotic com-
pound into harmless or less hazardous form, generally carbon dioxide, water, 
methane, and nitrogen. The different groups of microbes produce different types of 
enzymes and organic acids that act on recalcitrant compounds and degrade them to 
simpler forms. As a consequence of biodegradation of xenobiotic compounds, 
microorganisms are helpful to overcome environmental pollution and considered 
as eco-friendly. This chapter tries to elaborate some of the mechanisms employed 
by the microorganisms to carry out the  xenobiotic degradation and remediation 
process along with different genera of microbes involved in the process.
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9.1  Introduction

Agriculture plays a transcendent role in the world’s economy both in developed and 
developing countries. In developing countries like India, agriculture is a primary 
contributor to gross domestic product (GDP). In most of the Asian, African, and 
South American countries, the populations are heavily dependent on agriculture. 
Besides this, over two-thirds of the world populations living below poverty line are 
directly or indirectly dependent on agriculture (Baloch and Haseeb 1996). With an 
accelerating growth in population, industrialization, and urbanization, the agricul-
tural lands are decreasing accordingly. This unavoided condition compels human to 
produce more and more food grains. Therefore humans have developed several 
improved agronomic practices and agronomic chemicals such as fertilizers and pes-
ticides of chemical origin (Iovdijova and Bencko 2010; Azaizeh et al. 2011; Agrawal 
and Shahi 2015). The use of these xenobiotic chemicals in the form of fertilizers and 
pesticides has beneficial effects, on the one hand, and on the other hand, they impose 
serious environmental problems.

A xenobiotic is a broad term alluding to any chemical which is foreign to an 
organism, or a chemical which is not a natural component of the ecosystem or 
organisms exposed to it. Xenobiotic broadly refers to the synthetic chemical com-
pounds which are unnatural and come through foreign sources in our environment 
such as pesticides, chemical fertilizers, refrigerants, solvents, and other organic and 
inorganic compounds (Baloch and Haseeb 1996; Iovdijova and Bencko 2010; Park 
et al. 2014; Agrawal and Shahi 2015). Xenobiotic compounds are chemicals made 
by humans that are present in the environment at unnaturally high concentrations. 
An organic chemical compound that is normal to one organism may act as a xeno-
biotic to another. The substances which are present in very high concentration than 
usual also come under xenobiotic category. However, the term is mainly used in the 
context of pollutants such as chemical fertilizers, pesticides, dyes, dioxins, poly-
chlorinated biphenyls (PCBs), and polyaromatic hydrocarbons and their side effects 
on the biota (Park et al. 2014; Agrawal and Shahi 2015; Chandra and Singh 2015).

Although both organic and inorganic chemical compounds come under xenobi-
otics, it has been supposed that organic xenobiotics are mainly responsible for 
chemical-induced toxicity in agricultural land as well as in human population. 
According to Park et al. (2014), approximately 90 % of group I agents (classified by 
International Agency for Research on Cancer) are derived from organic xenobiotics, 
which are carcinogenic in nature. Thus xenobiotic compound can also be referred to 
organic chemical compounds, which are strange and unnatural and mimic natural 
biochemicals which are essential for life. Xenobiotic compounds may not be recog-
nized by biochemical processes in plants and microorganisms and are thus resistant 
to degradation (Iovdijova and Bencko 2010).
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9.2  Xenobiotics: The Stubborn Compounds

There are two types of xenobiotic compounds; they are either biodegradable or 
nondegradable that is recalcitrant in nature. Biodegradable xenobiotic compounds 
are those that are broken down to harmless forms by the activity of microbes or 
other reactions, while recalcitrant compounds are resistant to any degradation pro-
cess. The recalcitrant xenobiotic compounds can be classified into various groups 
like alkyl benzyl sulfonates, halocarbons, oil mixtures, polychlorinated biphenyls, 
synthetic polymers, polychlorinated hydrocarbons, pesticides, etc., on the basis of 
their physicochemical characteristics which decide its stability in soil environment, 
its biological availability, and how it will be revamped from the point of application 
to the environment of soil and the organisms it contains (Chandra and Singh 2015). 
The probable health hazards of a xenobiotic compound are attributed to its tenacity 
in the environment as well as its lethality. They tend to concentrate in the environ-
ment which leads their bioaccumulation and biomagnification. Agricultural soil 
contamination by xenobiotic organic compounds is a severe complication in most 
industrialized countries, leading to an intense contamination of soil worldwide. The 
contamination of soil by xenobiotic organic compounds such as chlordane, dioxins, 
aldrin, lindane, dichlorodiphenyltrichloroethane (DDT), parathion, disulfoton, 
paraquat, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 
(PAHs), etc., creates a serious problem in most of the developed countries (Solouki 
et al. 2011). For example, PAHs released throughout the world as industrial by-
products of coal processing, asphalt production, fossil fuel combustion, and wood 
preservation into the environment can efficiently accumulate in rice straw used as 
cattle feed, which can finally be conveyed to human beings through the food chain. 
The anaerobic and reducing soil environment at the time of rice growth season in 
paddy soils is similar to that of a wetland system, thus admitting PAHs to be effi-
ciently dispersed in soil-plant-water systems (Su and Zhu 2007; Azaizeh et al. 
2011). The same happens to various other persistent xenobiotic pollutants. There 
are several human activities which add xenobiotic pollutant deposition in soils 
including industrial activities and combustion of fuel, and the most important con-
tribution is the use of pesticides and chemical fertilizers for high-production agri-
cultural lands (Alkorta and Garbisu 2001; Azaizeh et al. 2011). Pesticides including 
insecticides, herbicides, fungicides, bactericides, algaecides, etc., are chemical 
compounds used for protection of crops and to control pest, but they are apparently 
the most extensively dispersed contaminants in our environment after the green 
revolution, because millions of tons of pesticides are generated and spread out each 
year globally (Schwitzguébel et al. 2011). The physicochemical characteristics are 
one of the main reasons of the persistence of these organic xenobiotic pollutants in 
the soil environment as well as in the biosphere. The xenobiotics possess several 
physical and chemical properties like absorption, adsorption, reactivity, volatility, 
water solubility, degradation by microbes, etc., which decide their persistence in the 
environment (Varsha et al. 2012; Ferradji et al. 2014). Copious persistent organic 
pollutants (POPs) such as aldrin, DDT, dieldrin, dinoseb salts, HCH, heptachlor, 
chlordane, mercury, arsenic compounds, etc., are perceived as a possible health 
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hazard due to their inborn chemical stability, potential and intense toxicity, recalci-
trance, and carcinogenicity. The transformed products also pose growing concerns 
because they may be present in soil at higher levels than the parent pesticide itself 
(Baloch and Haseeb 1996; Patel et al. 2012; Agrawal and Shahi 2015). In some 
cases these products are more toxic and more mobile, representing a greater risk to 
the environment than parent molecules (Schwitzguébel et al. 2011). Microorganisms 
are generally deliberated to be the perfect signal of soil contamination due to their 
affectionate association with the environment of soil and by occupying large surface 
area. Commonly, microorganisms are very susceptible to lower concentrations of 
pollutants and expeditiously react to soil disruption. The soil-disturbing condition 
may result in the altered activity and diversity of microorganisms which lead to a 
reduction in soil quality (Schröter-Kermani et al. 2006; Chandra and Singh 2015).

Microorganism mediates conversion of pollutants into nonhazardous or less haz-
ardous forms through a process termed as biodegradation (Agrawal and Shahi 
2015). Microorganisms are considered as nature’s recyclers, transforming  hazardous 
organic xenobiotic compounds to harmless compounds, generally carbon dioxide, 
water, methane, and nitrogen compounds (Jain et al. 2005; Azaizeh et al. 2011). 
Numerous works done by researchers reported the suitable use of various organisms 
like bacteria, mycorrhizal fungi, algae, and actinomycetes for effective biodegrada-
tion of pollutants (Vidali 2001; Leung 2004; Agarwal et al. 2009; Agrawal and 
Shahi 2015). Most organisms, particularly bacteria, are known for their detoxifying 
capabilities. They mineralize, convert, or debilitate the contaminants (Tropel and 
Van Der Meer 2004).

9.2.1  Major Xenobiotics and Their Sources in Agricultural Land

Major organic xenobiotic compounds causing environmental pollution and persis-
tent in the environment include PCBs (polychlorinated biphenyls), PAHs (polycy-
clic aromatic hydrocarbons), trinitrotoluene, trichloroethylene, nitroglycerine, etc. 
(Eapen et al. 2007; Agarwal et al. 2009; Fatta-Kassinos et al. 2011). Some of the 
representative xenobiotic compounds found commonly in soil are depicted in 
Fig. 9.1.

Aromatic compounds enter into the soil environment through numerous sources 
which include the use of detergents, pesticides, drugs, dyes, etc., posing dangerous 
threats to living organisms. Release of several PAHs through industrial processes 
seems to be one of the major carcinogenic agents persisting in the soil (Visioli 2015; 
Hernández-Castellanos et al. 2013). Different species of microbes including bacte-
ria, fungi, yeast, and algae can act on these xenobiotic compounds and degrade 
them. Compounds which are degraded by bacteria include benzene, toluene, xylene, 
ethylbenzene, etc. Benzene is one of the persistent organic xenobiotics with the 
presence of a thermodynamically stable ring in its structure (Dıaz and Prieto 2000; 
Chandra and Singh 2015). Groups like methyl, chloro, nitro, amino, and sulfonyl in 
benzene ring cause recalcitrancy of these compounds. Phenol is one of the wide-
spread chemical pollutants which are persistent in the environment due to its 
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Fig. 9.1 Some of the common xenobiotic compounds found in the soil of agricultural lands
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Fig. 9.1 (continued)

toxicity even at low concentration. It enters the environment from the chemical and 
pharma industrial effluents. It affects the environment in several ways including 
ozone depletion, reducing visibility and adding acidic air to the atmosphere. Hence 
phenol degradation is necessary to reduce all these effects. The contamination of the 
agricultural soil with PAHs creates a serious threat of introduction of these xenobi-
otics into the human food chain. These PAHs get entry into the humans mainly by 
inhalation of particulates carrying PAHs, alimentary consumption of contaminated 
food products, and direct association with polluted soils (Fatta- Kassinos et al. 2011; 
Hernández-Castellanos et al. 2013; Visioli 2015; Agarwal et al. 2009).

Other persistent organic xenobiotics such as PCBs are the compounds which are 
chiefly used in transformer oil, dielectric fluid in condensers, heat exchange medium, 
hydraulic fluid, plasticizers, etc. PCBs have been revealed in most ecosystems and 
particularly in soils and sediments of industrial areas. Such pervasive presence is 
elucidated by their high chemical stability and low water solubility, which contrib-
ute to their persistence in the environment. They enter the food chain and cause 
several harmful effects on different organisms. A number of plants have been shown 
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to acquire PCBs, such as Cucurbita pepo grown in PCB-contaminated soil which 
has been shown to bioaccumulate Aroclors 1254 and 1260 through root uptake and 
translocation (Iovdijova and Bencko 2010; Åslund et al. 2008). In spite of being 
banned, today also the PCBs are released into the environment. These PCBs are 
added to the environment from various waste sites and from offensive dumping of 
PCB wastes, such as old transformer fluids, and disposal of PCB-containing prod-
ucts into landfills, which are not designed to hold harmful wastes (Fatta-Kassinos 
et al. 2011; Agrawal and Shahi 2015).

9.2.2  Consequences of Xenobiotics on Agricultural Land

Among all of the organic xenobiotic compounds, pesticides had a unique position 
and have been purposely supplemented to the environment for controlling the pest 
and weeds to improve agricultural production (Baloch and Haseeb 1996). Among the 
chemicals used for the above purpose, most of them are not selective but are com-
monly harmful to many nontarget organisms habitating the environment including 
plants, animals, and microorganisms, in addition to human. Xenobiotic pesticides 
such as chlordane, DDT, aldrin, etc., when sprayed or applied to the crop fields get 
mixed with the soil components whether living or nonliving (Fig. 9.2). The pesticides 
which are not bound to the soil components get run off over the soil or leached 
through the soil, resulting in contamination of groundwater, rivers, and reservoirs, or 
they will be vaporized causing the contamination of the atmosphere (Fig. 9.2). The 
phenomenon of progressive increase in the concentration of a xenobiotic compound, 
when the substance is passed through the food chain from one trophic level to 
another, is called as biomagnification or bioaccumulation. For example, the insecti-
cide DDT is absorbed constantly by plants and microorganism. When these plants 
and microbes are eaten by birds and fishes, this pesticide enters in the food chain and, 
because of its recalcitrant nature, gets accumulated and transferred from one trophic 
level to another. Thus, DDT may discover its access into assorted animals, in addi-
tion to human (Solouki et al. 2011; Agrawal and Shahi 2015). Instead of organochlo-
rine pesticides, some of the other groups of pesticides such as organophosphorous, 
carbamates, etc., are also reported for their harmful effects on biota. Some  herbicides, 
used for controlling weed, are becoming more common than the other pesticides. 
They are extremely toxic for plant and animals, although most of the herbicides are 
highly selective and show moderate toxicity to mammals. One of the most common 
herbicide paraquats (bipyridium compound) is also creating a major threat to the 
environment. Paraquat compound is water soluble but nonselective herbicide. After 
application, it takes electrons from the photosynthetic process of plants and also 
produces hydrogen peroxide, superoxide radical, and other free radicals which are 
highly toxic to energy relocation and other necessary cellular processes and incur-
sion to cell membrane (Baloch and Haseeb 1996; Iovdijova and Bencko 2010; 
Chandra and Singh 2015).

Pesticide application is one of the most important sources of pollution in agricul-
tural land. The soil contaminated with pesticides and other POP applications results 
into their direct uptake by plants and movement from roots to shoots. The pesticides 
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move from the roots by translocation and get accumulated in the leaves and fruits. 
These crops when consumed by cattle or humans or other wildlife cause a massive 
increase in the concentrations of these chemicals through biomagnifications 
(Langenbach 2013; Chandra and Singh 2015). Large amounts of fertilizers are con-
tinuously added to soils in intensive farming systems to fulfill satisfactory nitrogen, 
phosphorus, and potassium for the growth of plants. The compounds applied to pro-
vide these elements contain trace amounts of heavy metals as contaminants which 
may considerably increase their concentration in the soil after continued fertilizer 
application. The concentration of the metals in agricultural soils may be significantly 
increased also by the use of pesticides, use of sewage sludge, addition of micronutri-
ent, aerial emission, and farm slurries (Azaizeh et al. 2011).

The high concentration of trace heavy metals affects soil microorganism and 
microbial arbitrated soil processes such as litter decomposition, enzyme activities, 
nitrogen mineralization, and biogeochemical cycle of carbon, nitrogen, etc. Soil 
respiration, a common signal of soil microbial activity, is also very susceptible to 
high concentration of heavy metals like cadmium, arsenic, and mercury (Arora et al. 
2009; Chien et al. 2014). On the basis of fertilization effect, the changes in a com-
plex of soil microorganisms were classified into four types. The first one is zone of 
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homeostasis under which the fertilizer concentration range is in between 0 and 100 
Kg ha−1 which does not change the complex of soil microorganisms. The second 
type is zone of stress and the concentration range is 100–10,000 Kg ha−1 which 
provides considerable changes in a complex of soil microbes. These changes occur 
on those microbes which are involved in some soil processes. The third one is zone 
of resistance and its concentration range is above 10,000 Kg ha−1 which contributes 
to considerable qualitative changes in the composition of active soil microbes. The 
last one is zone of repression and the concentration range is much more than 10,000 
Kg ha−1 in which microorganism’s growth and development are strongly affected 
(Zvyagintsev 1990; Agrawal and Shahi 2015).

High doses of nitrogenous fertilizers create biological imbalance in soil which 
expressed a sharp increase in the amount of denitrifying and humus-decomposing 
bacteria by 10–11 times and cellulose-decomposing bacteria by 1.5 times and 
decrease in free-living nitrogen-fixing bacteria by more than 8 times (Jain et al. 
2005). It was also found that influence of fertilization up to 960 Kg ha−1 of N, K2O, 
and P2O5, disturbed urease, protease, and catalase activity of soil (Ferradji et al. 
2014).

In plants through root uptake, these xenobiotics go to cellular level. The toxic 
metals block the functional groups of biologically important molecules, like 
enzymes; transport system of nutrient ions, polynucleotides; etc. Displacing the 
essential metal ions inactivates the essential enzymes, disrupting the integrity of cell 
and organelle membrane (Ross 1994; Baloch and Haseeb 1996; Agrawal and Shahi 
2015).

9.3  Role of Microbes in Biodegradation of Xenobiotics

Half of the biomass of our planet is represented by microorganisms especially bac-
teria, and these bacteria are very helpful in degradation of xenobiotic organic pollut-
ants (Curtis and Reinhard 1994). The environment is continuously disturbed by 
human activity through introduction of several xenobiotic chemicals in the bio-
sphere. Increased industrialization in association with expeditious urbanization and 
modern agricultural practices has accelerated the levels of pollutants in the agricul-
tural environment, with an ensuing harmful impact on human health. These xenobi-
otic pollutants not only harm crop plants and degrade fertility of agricultural soil, 
but they also harm soil microorganisms which reside in this soil. Cleaning up of the 
toxic organic xenobiotic compounds from agricultural environment is a compelling 
problem, which warrants versatile accesses for attaining suitable solutions. 
Microorganisms have potential to degrade xenobiotic pollutants by their unique 
metabolic pathways because they exploit toxic compounds as their new carbon 
source, and by this way, they detoxify toxic xenobiotic compounds (Copley 2000). 
Due to the biodegradation of xenobiotic compounds, microorganisms are helpful to 
overcome environmental pollution and considered as eco-friendly (Agrawal and 
Shahi 2015). Due to its low cost, in comparison to physical and chemical methods, 
biodegradation is considered as a viable solution for the degradation of organic 
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xenobiotic pollutants (Baloch and Haseeb 1996; Eapen et al. 2007; Park et al. 2014; 
Agrawal and Shahi 2015). Biodegradation or biological degradation is defined as a 
phenomenon of biological transformation of organic compounds by living organ-
isms, chiefly the microorganisms. It mainly involves the conversion of complex 
organic molecules to simpler and mostly nontoxic forms. The use of microorgan-
isms including bacteria, fungi, algae, etc., has been given much attention for clean-
ing up of xenobiotic pollutant in the past few years (Eapen et al. 2007; Chandra and 
Singh 2015). The microorganisms act like scavengers during the bioremediation 
process. The whole bioremediation process can be divided into three categories, i.e., 
mineralization, biotransformation, and co-metabolism. By passing through these 
three processes, the complex organic xenobiotic compounds are broken down into 
simpler inorganic compounds. The typical products of biodegradation are carbon 
dioxide, water, and ammonia. Sometimes a group of microorganisms known as con-
sortium can together also be used to degrade organic xenobiotic compounds wholly 
or partially. The different groups of microbes produce different types of enzymes 
and organic acids that act on recalcitrant compounds and degrade them to simpler 
forms. These smaller-size compounds are again taken up by other microbes and 
degraded completely (Agrawal and Shahi 2015; Monica et al. 2012). Microbes have 
also been found useful for the biodegradation of some of the toxic organic pollut-
ants which are highly recalcitrant in nature (Tripathi 2012).

There are chiefly two methods by which microbes degrade xenobiotic com-
pounds: one is aerobic biodegradation and the other is anaerobic biodegradation. 
The bacteria carrying out aerobic biodegradation of xenobiotic compounds belong 
to the genera Pseudomonas, Bacillus, Micrococcus, Gordonia, Pandoraea, 
Moraxella, Escherichia, Rhodococcus, and Sphingobium, while the bacteria which 
bring about anaerobic biodegradation are from genera Desulfovibrio, 
Desulfotomaculum, Methanospirillum, Pelotomaculum, Methanosaeta, 
Syntrophobacter, etc. (Chowdhury et al. 2008; Varsha et al. 2012). Pseudomonas 
species have been most widely studied among all the above microbes because of 
their dominant nature in debasing divergent types of xenobiotic compounds includ-
ing polycyclic aromatic compounds to a wide range of fertilizer and pesticides (Cao 
et al. 2009). Pseudomonas fluorescence SM1 strain showed a very good potential of 
remediation of some heavy metals and phenolics from heavily polluted sites (Wasi 
et al. 2013).

9.3.1  Microbial-Associated Degradation Pathway(s) 
for Xenobiotic Compounds

Remediation with the help of microbes is one of the effective methods for removal 
of organic xenobiotic pollutants, as it is less expensive and can selectively achieve 
complete destruction of organic pollutants (Alexander 1977; Cookson Jr. 1995). 
Generally, the biodegradation process depends upon the pollutant oxidation state. 
The xenobiotic compound can be either acceptor of electron or its donor. In case of 
bacterial respiration, the very common electron acceptor is oxygen (Cao et al. 
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2009). Microbes degrade xenobiotic compound by two processes, i.e., aerobic bio-
degradation and anaerobic biodegradation. Carbon dioxide is the final product after 
biodegradation of xenobiotic compound in aerobic condition, while in the absence 
of oxygen, anaerobic condition occurs and methane is produced as the degradation 
product.

9.3.1.1  Aerobic Biodegradation Pathway
By aerobic biodegradation some of the xenobiotics like chlorinated aliphatic com-
pounds, toluene, petroleum, benzene, phenol, pyrene, naphthalene, chloroanilines, 
fluorine, dichlorobenzene, pentachlorophenol, etc., are degraded. Bacteria have the 
potential to grow on these chemicals and by producing enzymes degrade toxic 
xenobiotic compounds into nontoxic compounds (Cao et al. 2009; Agrawal and 
Shahi 2015; Shimao 2001).

 

Xenobioticcompound O
Microbesand their

enzymes CO+  → +2 2 HH O biomass residue s2 + + ( )
 

The aerobic biodegradation of organic xenobiotic is completed in three stages. 
Mineralization is the first stage of aerobic biodegradation in which biodegradable 
compounds are broken into inorganic compounds such as carbon dioxide, water, 
methane, and nitrogen. The mineralization process gets completed when all the bio-
degradable biomass is consumed and all the carbon is converted into carbon diox-
ide. Biotransformation is the next stage in which the organic chemicals only go 
through small structural alterations. Co-metabolism is the third stage in which the 
primary substrate induces the production of an enzyme which alters the molecular 
structure of another compound. During co-metabolism the organisms do not get 
benefitted; they only help in minor modification of compound. There are several 
microbial enzymes which play a significant role in biodegradation of organic xeno-
biotic pollutants under aerobic condition. The oxidoreductase is one of them. These 
enzymes cleave chemical bonds and shift the electrons from donor to acceptor. 
During this chemical reaction, harmful pollutants are converted to harmless com-
pound. These enzymes mainly detoxify toxic xenobiotics such as anilinic and phe-
nolic compounds into humic substances by polymerization or copolymerization 
(Park et al. 2014; Agrawal and Shahi 2015). The oxidation reaction has an enor-
mous significance in enzymatic reaction of aerobic biodegradation and is governed 
by enzyme oxygenases. Oxygenase enzyme helps in the metabolization of organic 
pollutants by increasing their reactivity and water solubility and breaking the ring 
(Arora et al. 2009; Agrawal and Shahi 2015).

9.3.1.2  Anaerobic Biodegradation Pathway
Some organic xenobiotic pollutants are not deteriorated by the aerobic biodegrada-
tion process. The reason behind this is the recalcitrant nature of these compounds. 
Due to increasing halogenations as well as substitution of sulfur and nitro groups on 
the aromatic ring, the electrophilicity of the molecule is increased, which makes 
these compounds withstand the electrophilic intrusion by oxygenases under aerobic 

9 Microbial-Mediated Management of Organic Xenobiotic Pollutants...



222

condition. Due to this reason, these compounds are highly recalcitrant and persis-
tent in nature. Chlorinated dioxins, polychlorinated biphenyls (PCBs), and some 
pesticides like DDT, aldrin, chlordane, etc., are that kind of compounds which are 
not easily degraded and persist in the environment.

 
Xenobioticcompounds

Microbesand their
enzymes CO CH → +2 44 2+ + + ( )H O biomass residue s  

For achieving reduction of highly persistent halogenated xenobiotics from the envi-
ronment, anaerobic bacteria play a very significant role. They perform reductive 
dehalogenation by anaerobic respiration and reduce the degree of chlorination and 
make the product more accessible for mineralization by bacteria under aerobic con-
dition. Reductive dehalogenation is the initial process of degradation of organic 
pollutants during anaerobic degradation. Under this process organic substrate acts 
as electron donors. By accepting electrons organic xenobiotics allow the anaerobic 
bacteria to transfer electrons to these compounds (Liu et al. 2014a; Jayasekara et al. 
2005). Some organic xenobiotic compounds are listed in Table 9.1 with the respec-
tive bacterial species responsible for their biodegradation and the sites of isolation 
of these bacterial isolates.

Bioremediation of chlorinated aromatic compounds is also reported by several 
researchers under anaerobic condition (Kazumi et al. 1995; Vargas et al. 2000; 
Ferradji et al. 2014). Microbes adopt various paths simultaneously for the degrada-
tion of chlorine atoms leading to the formation of phenol and finally convert it into 
carbon dioxide and methane (Agrawal and Shahi 2015).

During anaerobic condition a microbial enzyme dehalogenase plays a very sig-
nificant role in the remediation of chlorinated pollutant (Copley 2000; Agrawal and 
Shahi 2015). A very good example for this process has been reported by Magnuson 
et al. (1998). They reported the partial purification of two reductive dehalogenase 
enzymes from the bacterium Dehalococcoides ethenogenes and both are membrane 
proteins. The first enzyme perchloroethylene-reductive dehalogenase shows the 
ability to reduce perchloroethylene (PCE) and convert PCE to trichloroethene 
(TCE), while the other enzyme TCE-reductive dehalogenase has the potential to 
reduce TCE and convert TCE to trans-dichlorothene, cis-dichloroethene, 
1,1- dichloroethane, and vinyl chloride.

In case of organophosphate pesticide bioremediation, microbial enzyme phos-
photriesterases (PTEs) have an important role. They hydrolyze and detoxify the 
pesticides which are organophosphoric in nature. These degrade the toxicity of 
organic phosphate by decreasing its ability to inactivate acetylcholine esterase 
(Singh and Walker 2006; Theriot and Grunden 2011).

A study carried out by Zeinali et al. (2007) reported about a thermophilic bacte-
rium, Nocardia otitidiscaviarum TSH1, which has the capability of hydrocarbon 
degradation. They found this bacterial strain was able to grow on PAHs, phenol, and 
straight-chain aliphatic hydrocarbons and used these compounds as their sole source 
of carbon and energy. Due to having extremely lipophilic cell surfaces, this bacterial 
strain was better suited for direct uptake of highly hydrophobic hydrocarbons. This 
strain was also investigated for the production of biosurfactants. Another study by 
Zaidi et al. (2006) reported that the plant Brassica juncea growing in Ni-contaminated 
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soil showed low toxicity indication when inoculated with bacterium Bacillus subti-
lis SJ-101, because this rhizobacterium has the capability to share the load of Ni 
metal by accumulation and also enhance the biomass formation of the plant.

9.4  Conclusions

The most pressing need of countries with their rapidly ever-increasing population is 
to produce more food, fiber, and industrial raw material, simultaneously maintain-
ing productivity of natural resources. The present trend of increasing food produc-
tions is due to tremendous use of agrochemicals including different types of 
chemical fertilizers and variety of pesticides. In return, by using these agrochemi-
cals, the farmers get one-time increased production and depletion of soil fertility for 
future generation. Xenobiotics reach the soil surface as a result of intended or unin-
tended use; its higher concentration affects soil microbial number and microbial- 
mediated soil processes such as biogeochemical cycles, nitrogen mineralization, 
enzyme activities, litter decomposition, etc. The decomposition rate of organic mat-
ter is also reduced by high level of trace metals in soils (Baloch and Haseeb 1996; 
Jain et al. 2005; Azaizeh et al. 2011; Ferradji et al. 2014; Agrawal and Shahi 2015). 
Numerous sites with hazardous waste have been created worldwide as a result of 
accumulation of xenobiotics in cultivable soils over the years. The remedial strate-
gies used to clean up sites contaminated by these xenobiotic compounds using vari-
ous physical and chemical measures are not cost effective or adequate enough. This 
has speeded up the search for newer methods involving biological organisms or 
methods for degradation and removal of such pollutants. The pressing need for 
cleanup of sites contaminated with the xenobiotics has led to the discovery of a 
diverse range of microorganisms having capabilities to utilize these xenobiotics as 
substrates. These microbes have the property to either mineralize these xenobiotics 
or convert them into harmless products, and by doing so, they clean up the contami-
nated or polluted environment. Investigation and elucidation of the range of micro-
bial diversity are vital for developing effective and environment friendly “green” 
technologies (Lin et al. 2014; Chandra and Singh 2015). To intersect and understand 
the interactions between a microbe and a xenobiotic, various cross-disciplinary 
studies will be required to benefit the environment. Such interdisciplinary approaches 
will be effective enough in unmasking the environmental processes and will lead to 
finding of diverse microbial populations for efficient and effective removal of xeno-
biotics from contaminated environment.
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Abstract
The growth of population, increasing urbanization and rising standards of human 
have contributed to increase in both quantity and variety of solid wastes gener-
ated by agricultural, domestic and industrial activities. Industrial wastes contrib-
uted more than 85 % of solid waste generation globally. Metals are the major 
component of almost all the industrial activities but their mining, extraction, 
purification and various manufacturing processes generate mining and metallur-
gical wastes having enormous environmental and health impacts. This chapter 
aims to describe the metals in solid wastes from mining and metallurgical indus-
tries and their toxicological impacts on plant community. Industrial wastes are 
composed of a wide range of essential macro- and micronutrients such as Na, K, 
Ca, Mg, Mn, Fe, Cu, Zn, Ni, Co, and Mo which are required by plants for their 
growth and development. But the concentrations of micronutrients in plants 
when they exceed certain thresholds may interfere with plant metabolic activities 
leading to the reduction in their productivity. Similarly, non-essential metals and 
metalloids such as Cd, Pb, As, Al, Bi, Cr, Hg, Ti and Si at elevated concentrations 
in plants cause phytotoxic effects and lead to food chain contamination. These 
wastes are generated in huge quantities and discarded without any proper pre-
treatment; therefore, chances of contamination of environmental components are 
obvious. This chapter also suggests the possible and better management oppor-
tunities including site restoration by rehabilitation and phytoremediation of 
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metal-contaminated sites using native and medicinal plant species to reduce food 
chain contamination and an ultimate risk to human health.

Keywords
Mining • Metallurgy • Xenobiotics • Metals • Plants

10.1  Introduction

Xenobiotics in residues from agricultural, domestic and industrial sectors are sig-
nificant environmental pollutants and are the major concerns for safeguarding the 
human and ecological health of various ecosystems. Common examples of organic 
xenobiotics are soap, detergents, disinfectants, herbicides, insecticides, vinegar, 
spices, fats, oils, etc., whereas inorganic xenobiotics include inorganic fertilizers, 
acidic and basic compounds and metals (Tyus 2012). Metals such as zinc, copper, 
iron, magnesium, nickel, manganese, molybdenum, etc. are essential for living 
organism but when present in higher concentration than usual, cause toxic effects 
(Hodson 2012). Toxic metals include cadmium, lead, chromium and mercury, which 
are foreign to biological systems are referred as xenobiotic metals (Solenkova et al. 
2014). Metals are of significant importance because of their widespread application 
in manufacturing and infrastructure developments going on throughout the world 
leading to increased waste generation, and, hence, the metallic wastes from mining 
and metallurgical industries may pose significant threats to plant species and 
ecosystems.

Rapid industrialization and urbanization have resulted in an enormous increase 
in solid wastes due to a variety of activities. Out of ≈ 12 billion tonnes of solid 
wastes generated during 2002, 11 billion tonnes were contributed by industrial 
wastes (Yoshizawa et al. 2004). As per the statistics on waste generation in 
India given by Pappu et al. (2007), the highest proportion of annual solid waste 
was contributed by the agricultural sector (147.5 MT) followed by thermal power 
plants (in terms of coal combustion residues) (112 MT), mining and metallurgical 
industries (99 MT) and municipal solid wastes (48 MT) (Fig. 10.1). Mining and 
metallurgical industries are of considerable importance in providing great diversity 
of minerals for industrial and household activities, thus contributing the major pro-
portion of the world’s economy.

10.2  Mining Industries

Mining is a process where extraction of materials from the ground takes place in 
order to recover metalliferous (bauxite, lead, zinc, copper, etc.) and non- metalliferous 
(sand, stone, kaolinite, phosphate, limestone, rock salt, slate and sulphur) ores and 
fuel (coal and oil). Mining process can be categorized into surface, underground and 
in situ mining.
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10.2.1  Surface Mining

Mining of mineral deposits from either at or close to the earth’s surface involves 
removing surface vegetation, topsoil and layers of bedrock in order to reach buried 
mineral deposits.

10.2.2  Underground Mining

Underground mining consists of digging tunnels or shafts into the earth to reach 
buried ore deposits. Ores for processing and waste rock for disposal are brought to 
the surface through the tunnels and shafts.

10.2.3  In Situ Mining

In situ mining is a method of extracting minerals from an orebody that is left in 
place rather than being broken up and removed. The process involves a series of 
wells that are drilled into the orebody, and solvents are injected through certain 
wells and withdrawn through others. In situ mining is an advanced technique, pro-
viding an alternative with less environmental impact than conventional surface and 
underground mining.

During the process of mining, large quantities of solid wastes are generated and 
are categorized as rock wastes, overburden, sludge, tailings and spoils (Fig. 10.2). 
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Fig. 10.1 Solid waste generation in India from mining and metallurgical industries (Modified 
from Pappu et al. 2007)
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Mining industries that contribute a major proportion of the gross domestic product 
(GDP) of the world are bauxite, coal, copper, diamond, gold, iron ore, natural gas, 
nickel, oil shale, opal, petroleum, rare earth elements, silver, uranium, zinc and lead.

10.3  Metallurgical Industries

A metallurgical industry involves mechanical, physical and chemical methods of 
producing a pure form of metals or alloys from ores. There are mainly three types 
of metallurgical operations, namely, pyrometallurgical process, where smelting, 
refining and roasting of extracted ores are performed; hydrometallurgical operation, 
where production of phosphoric acid by phosphate digestion takes place and elec-
trometallurgical process which is an electrolytic process of metal refining. Waste 
materials generated from metallurgical industries are slags, tailings, red mud, sludge 
and filter residues (Fig. 10.3).

Fig. 10.2 Schematic representation of the main steps and waste generation during mining

Fig. 10.3 Schematic representation of metallurgical operations and waste generation

M. Gautam et al.



235

This chapter particularly aims to describe the metals and metalloids in solid 
wastes from mining and metallurgical industries and their toxic impacts on plant 
community structure. Information on better management options including phy-
toremediation, reclaimation of polluted sites and potential reuse of these wastes are 
also discussed.

10.4  Characterization and Estimation of Metal Contents 
in Solid Wastes Generated from Mining 
and Metallurgical Industries

The wastes are characterized, in terms of chemical and mineralogical compositions. 
Chemical composition is determined by digesting the material in appropriate acids 
and analysing by atomic absorption spectroscopy (AAS) and inductively coupled 
plasma and mass spectroscopy (ICP-MS). Other methods of analysis include poten-
tiometric titration, conductometric titration and colorimetric methods using a spec-
trophotometer (Willard et al. 1988). Mineralogical compositions of the wastes can 
be determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), 
microprobe, image analyser (IA), proton-induced X-ray analyser (PIXE), energy- 
dispersive X-ray analyser (EDX), secondary ion mass spectrometer (SIMS), laser 
ionization mass spectrometer (LIMS), infrared analysis (IRA) and cathode lumines-
cence (Rao 2011).

Waste materials generated from mining and metallurgical processings (slags, 
tailings, overburden, rocks, filter residues, sludge and red mud) are heterogeneous 
geologic materials, which have been deposited in surrounding areas without any 
proper pretreatments. Physico-chemical properties of these wastes depend upon the 
mineralogy, geochemistry, particle size of mine materials, moisture content, type of 
processes used in extraction, purification and refining of materials (Hassinger 1997). 
Generated wastes are composed of a wide range of particle size fractions varying 
from coarse mine wastes to slimes (Ritcey 1989). These wastes generally have 
extreme pH values (acidic to alkaline), reduced concentrations of essential plant 
nutrients (nitrogen (N), phosphorous (P), potassium (K) and other micronutrients), 
low organic matter, extremely low microbial activities, high cation exchange capac-
ity, poor water holding capacity, high bulk density and elevated levels of heavy 
metals (Conesa and Faz 2011).

Metals are an important component in industrial wastes that are dispersed in soil, 
surface and groundwater leading to environmental risks to adjoining areas (Santos- 
Jallath et al. 2012; Wójcik et al. 2014). Based on previous studies, concentrations of 
selected metals such as sodium (Na), potassium (K), calcium (Ca), manganese 
(Mn), magnesium (Mg), iron (Fe), cobalt (Co), cadmium (Cd), nickel (Ni), copper 
(Cu), zinc (Zn), arsenic (As), lead (Pb), chromium (Cr), mercury (Hg), aluminium 
(Al), molybdenum (Mo), bismuth (Bi), titanium (Ti) and silica (Si) in mining (met-
alliferous, non-metalliferous and fuel) and metallurgical wastes are presented in 
Table 10.1, which shows a wide range of their concentrations in discharged wastes 
resulting in contamination of not only soil at dumping site but also affecting nearby 
areas. Essential macro- and micronutrients such as Na, K, Ca, Mg, Fe, Zn, Mn, Co, 
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Cu, Ni and Mo are important for plant growth and development, but their concentra-
tions in either agricultural soil or plants beyond certain limit may cause toxic effects 
on physico-chemical and biological properties of soil and plant’s performance 
growing on heavily contaminated soil.

10.5  Toxic Impacts of Metals on Crop and Medicinal Plants

Contamination of agricultural lands with heavy metals in the vicinity of industries 
has become a major environmental concern. Such toxic elements are considered as 
soil pollutants due to their acute and (or) chronic toxicity to plants. Metal pollution 

Table 10.1 Range of selected metal concentrations present in solid waste dump from mining and 
metallurgical industries

Metals
Metalliferous 
mining (ppm)

Non-metalliferous 
mining (ppm)

Fuel mining 
(ppm)

Metallurgical 
industries (ppm)

Na <0.50–3480.0(1,9) 0.50–30.00(10) 1.40–2.50(17) 0.3–121.80(19,24)

K 21.90–57.40(1) 7.90–36.50(11,10) 3.30–12.70(17) 0.5–91.0(19,18)

Ca 0.60–4548.0(1,3) 31.70–552.60(12,10) 2.0–36.90(17) 11.00–541.0(38,21)

Mg 2.79–6030.0(2,9) 0.70–29.40(10,11) 2.60–9.40(17) 0–380.0(24,22)

Mn 0.20–7111.0(1,3) 0.70(10) 0–993.0(17,16) 0.30–4000.0(20,28)

Fe 38.40–
37,7671.0(1,4)

1.10–77.30(10,12) 26.50–
50,691.0(17,16)

0.4–474.80(36,24)

Co 13.05–371.0(5,4) ≈79.0(10) 15.0–75.37(17) 2.30–6150.0(29,35)

Ni 73.50–1548.0(6,4) 16.0–243.0(13) 8.05–107.0(15,17) 0.70–2150.0(21,34)

Cu 0.30–2595.0(1,5) 28.10–99,999.0(11,12) 5.50–101.0(14,17) 0.50–41,900.0(19,33)

Zn 0.10–21,007.50(1,7) 46.0–14,1000.0(10,12) 6.60–213.11(14) 0.04–95,940.0(22,31)

Ti 3.90–12.40(1) ≈0.50(10) 4.10–19.60(17) 1.30–171.30(19,25)

Pb 0.20–5220.20(1,4) 111.0–1533.0(12) 0.90–38.40(14,16) 0.17–14,7700.0(23,30)

Cd 0.05–1811.66(6,3) 48.20–823.50(11,12) 0–11.50(14,15) 0.01–2402.0(28,32)

Bi <0.05–0.40(1) – – ≈21.40(37)

As 0.20–80,000.0(2,9) 3.70–290.0(12) 0–81.50(14,17) 0.02–86,000.0(27,29)

Al 91.40–12,594.0(1,5) 1.60–122.10(10) 62.30–278.70(17) 10.00–810.0(26,36)

Si 23.00–646.70(8,1) 5.70–698.80(10) 83.30–444.0(17) 26.00–3016.0(36,18)

Cr 200.0–3073.0(4) 0.70–352.0(10,11) 9.67–164.0(15,17) 1.0–3000.0(38)

Hg 0.01–18.30(2,3) – 0.10–0.22(17) 2.63–9300.0(29)

Superscript numbers are citation of references where first and second number represents minimum 
and maximum concentrations of metals, respectively
1Filippi et al. (2015), 2Rola et al. (2015), 3Mathiyazhagan et al. (2015), 4Nawab et al. 2015a, 
5Gutiérrez-Gutiérrez et al. (2015), 6Cele and Maboeta (2016), 7Bacchetta et al. (2015), 8Mohanty 
et al. (2010), 9Palumbo-Roe et al. (2007), 10Hamzah et al. (2011), 11Jellali et al. (2010), 12Boulet 
and Larocque (1998), 13Singh and Hendry (2013),14Gholizadeh et al. (2015), 15Juwarkar and 
Jambhulkar (2008), 16Pandey et al. (2016), 17Qureshi et al. (2016), 18Remon et al. (2005), 19Lopez 
et al. (1997), 20Shen and Forssberg (2003), 21Huaiwei and Xin (2011), 22Costa et al. 2016, 23Liu 
et al. (2007), 24Liu et al. (2009), 25Samal et al. (2015), 26Sarkar and Mazumder (2015), 27Ene and 
Pantelică (2011), 28Leonard (1978), 29Guo et al. (2014), 30Cabala and Teper (2007), 31Niemeyer 
et al. (2010), 32Douay et al. (2009), 33Kříbek et al. (2010), 34Adamo et al. (2002), 35Narendrula et al. 
(2012), 36Galindo et al. (2015), 37Li et al. (2014) and 38Jacobs and Testa 2005
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becomes a persistent problem, as, once released into the environment where organ-
isms may get affected because metals are not destroyed, but they only transform from 
one oxidation state or organic complex to another or are gradually move into differ-
ent components of the biosphere (Marques et al. 2009). Surface runoff and leaching 
from waste dumps pollute the groundwater (Baba and Tayfur 2011), while the dust 
spread by wind settles on agricultural crops from where they enter the food chain 
when consumed (Salomons 1995). Like other living organisms, plants are often sen-
sitive both to deficiency and excess availability of some essential micronutrients. 
Higher concentrations of essential micronutrients are strongly toxic to the metabolic 
activities of plants (Fig. 10.4). Several researches have been conducted to assess the 
toxic effects of elevated metal concentrations on plants (Reeves and Baker 2000). 
Here, the potential implications of some metals on plants are discussed in detail:

10.5.1  Sodium

Sodium is an essential nutrient for the growth of plants, and it plays an important 
role in maintaining the turgor pressure inside plant cells (Jennings 1976), but its 
excessive concentrations produce toxic effects on older leaves, cause premature leaf 

Fig. 10.4 Toxicological impacts of elevated concentrations of metals on plants
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senescence and reduce total photosynthetic leaf area (Munns 2002). Na salts are the 
major cause of salinity in soil that is a major challenge in many agricultural regions 
in the world (Pitman and Läuchli 2002). In heavily polluted sites, Na salts precipi-
tate on leaves as water evaporates which in turn may result its higher concentration 
in plants (Bailey et al. 1999). Phytotoxic symptoms due to higher Na accumulation 
in plants are leaf burn, scorch and dead tissues which first appear on the outer edges 
of leaves and then move progressively inward between the veins towards the leaf 
centre with increase in severity (Table 10.2).

High Na concentration may alter normal growth and physiology of plants. 
Significant reductions in shoot length, leaf area and dry weight of brinjal (Solanum 
melongena) were recorded beyond 10 mmol L−1 NaCl concentration, whereas maxi-
mum yield reduction (88.0 %) was observed above 150 mmol L−1 NaCl concentra-
tion (Chartzoulakis and Loupassaki 1997). Similarly, leaf area development of 
cotton (Gossypium hirsutum) and bean (Phaseolus vulgaris) was strongly inhibited 
under Na stress, and such reduction in leaf area altered the photosynthesis and 
growth of these plants (Brugnoli and Lauteri 1991). Plant height and leaf elongation 
in tomato (Lycopersicon esculentum) also showed reductions with increase in NaCl 
in the nutrient solution (Montesano and Van Iersel 2007). In Capsicum annuum, 
plant height and total leaf area were reduced by 49.0 and 82.0 %, respectively, under 
NaCl concentrations above 50 mmol L−1 (Chartzoulakis and Klapaki 2000). High 
levels of NaCl in soil are reported to decrease the number of flowers and stem qual-
ity of Gerbera jamesonii (De Kreij and Van Os 1989) and Rosa hybrida (De Kreij 
and Van Den Berg 1990). Lee and Van Iersel (2008) found that Chrysanthemum sp. 
receiving 9 gL−1 NaCl showed reduction in shoot dry weight (76.0 %), stomatal 
conductance (90.0 %) and chlorophyll content (from 42.3 to 29.2 SPAD units), and 
a 4-day delayed flowering was also observed compared to the control plants. 
Montesano and Van Iersel (2007) also found significant reductions in leaf photosyn-
thesis and chlorophyll content at NaCl concentrations above 4.1 gL−1. Increased Na+ 
uptake also interferes with uptake of K+ in plants, thus causing K+ deficiency 
(Montesano and Van Iersel 2007).

10.5.2  Potassium

Potassium is also an important macronutrient required for plant physiological and 
metabolic processes. The most important role of K in plants is to activate several 
enzymes participating in plant metabolism (Evans and Sorger 1966). Most plants 
require K in the range of 50–100 mM for their normal functioning (Epstein 1980). 
Due to either K deficiency or excessive uptake, plants show necrosis, chlorosis and 
leaf curling as visible symptoms (Table 10.2).

Critical concentrations of K for L. esculentum, Helianthus annuus and Zea mays 
have been found to be 1.0, 2.2 and 1.3 ppm, respectively, which means that K helps 
to increase their biomass that may reach up to 90 %, but above this concentration, 
no further increase in biomass takes place (Besford and Maw 1975; Spear et al. 
1978; Tyner and Webb 1946). Excessive K uptake may reduce plant’s ability to 
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Table 10.2 Phytotoxic threshold levels and visible symptoms of injuries in crop and medicinal 
plants under elevated levels of selected metals

Metals

Phytotoxic 
thresholda 
(ppm) Phytotoxic symptoms References

Na NT Interveinal chlorosis on young leaf, 
leaves scorching and flecking and 
reduced plant growth

Arizona cooperative 
extension (1998)

K NT Necrosis and chlorosis along leaf 
margins, curling of leaf

Arizona cooperative 
extension (1998)

Ca NT Necrosis between veins and chlorosis 
along leaf margins extending between 
veins in Christmas pattern with curling 
of leaf margins and puckering effects

Chang et al. (2004), 
Wissemeier 1993 and 
Arizona Cooperative 
Extension (ACE) (1998)

Mg NT Necrosis at the tip and margins of leaves 
forming a hooklike structure at leaf tip 
and reduction in plant growth

Brooks (1987) and 
Arizona cooperative 
extension (1998)

Mn NT Marginal chlorosis and necrosis on 
leaves, petioles and stems, leaf bronzing, 
shortening of internodes, crinkling in 
youngest leaf; browning of root tips and 
root cracking under severe Mn exposure

Kitano et al. (1997), Wu 
(1994), Horiguchi (1988) 
and Foy et al. (1978)

Fe 10–20 Dark-green, brown or purple foliage, 
brown spots on leaves, necrotic spots 
and chlorotic stippling, cupping of 
leaves, bronze speckle, stunted plant 
growth, weak stem and delayed 
flowering

Albano et al. (1996) and 
Broschat and Moore 
(2004)

Cu 20–100 Chlorotic and necrotic spots, yellow and 
purple coloration on the lower side of 
mid rib, plant growth retardation and 
inhibition of root elongation

Neelima and Reddy 
(2002) and Mahmood and 
Islam (2006)

Zn 100–400 Chlorosis in the younger leaves, which 
can extend to older leaves after 
prolonged exposure, purplish-red 
coloration on leaves and growth stunting

Prasad et al. 1999 and 
Romero-Puertas et al. 
(2004)

Ni 10–100 Necrosis, uniform interveinal chlorosis 
and yellowish-white discoloration on 
older leaves; reduction in root growth 
and leaf area

Gajewska et al. (2006) and 
Ishtiaq and Mahmood 
(2012)

Co NT Red-brown discoloration first in the 
veins and later in petioles and stems, 
premature leaf closure; reduction in 
plant growth

Li et al. (2009) and 
Chatterjee and Chatterjee 
(2000)

Mo NT Chlorosis, marginal leaf scorch, 
abscission, yellowing and browning of 
leaves; reduced tillering

Osman (2012)

(continued)
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uptake P from soils as observed by Karlen et al. (1987) in the case of maize/corn (Z. 
mays). Rodrigues et al. (2016) showed that accumulation of K in Jatropha curcas 
shoot showed a strong correlation with increase in stomatal conductance and tran-
spiration that ultimately cause reductions in water use efficiency and Na+ content 
under high relative humidity (80.0 %). The study also showed that the supply of K+ 
in growing medium strongly restricted Na+ uptake and transport to the shoot because 
of a strong competitive interaction between K+ and Na+ ions in the growth medium.

10.5.3  Calcium

Calcium is an essential macronutrient which plays a significant role in preserving 
the structural and functional integrity of cell membranes, stabilizes cell wall struc-
tures, regulates ion transport as well as controls cell wall enzymatic activities 
(Marschner 1995). But excessive Ca uptake by plants may produce phytotoxic 

Table 10.2 (continued)

Metals

Phytotoxic 
thresholda 
(ppm) Phytotoxic symptoms References

Al NT Chlorosis, dark-green leaves, purpling 
of abaxial leaf surface, petiole and stem, 
yellowing and death of leaf tips, curling 
or rolling of young leaves; stunted 
growth and delayed plant maturity

Foy et al. (1978) and 
Singh (2005)

Cd 5–30 Chlorosis, necrosis, brown stunted roots 
and leaf margin, reddish veins and 
petioles, curled leaves, leaf rolls and 
purple coloration of whole plant; growth 
inhibition

Nawab et al. (2015b) and 
Mohanpuria et al. (2007)

Pb 30–300 Chlorosis, dark-green leaves, adverse 
effect on growth, inhibits seed 
germination, leaf expansion, root and 
stem elongation

Sharma and Dubey (2005) 
and Reddy et al. (2005)

As 5–20 Red-brown necrotic spots on older 
leaves, yellow browning of roots; 
growth reduction

Meharg and Macnair 
(1992)

Cr 5–30 Chlorosis in young leaves resulting in 
wilting

Panda and Choudhury 
(2005) and Dube et al. 
(2004)

Ti NT Stunted growth of plants Singh (2005)

Bi NT Necrosis on foliage; inhibition of radicle 
growth.

Dayan et al. (1999) and 
Galindo et al. (1999)

Hg 1–3 Chlorosis; reduced seedling, root and 
shoot growth

Patra and Sharma (2000) 
and Gao et al. (2010)

Si NT Yellow streaked and brittle leaves; 
stunted plant growth

Côté-Beaulieu et al. 
(2009)

aAlloway and Ayres (1997); NT no phytotoxic threshold levels have been established
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effects such as necrosis, chlorosis, leaf curling and puckering (Table 10.2). Studies 
indicate that higher Ca accumulation in tomato leads to the development of yellow-
ish flecks or gold spots around the calyx and on fruit due to formation of calcium 
oxalate crystals (De Kreij et al. 1992). Through a hydroponic experiment, Nichols 
and Beardsell (1981) also showed that increase in levels of Ca induced necrotic 
spots on leaves and caused reduction in the growth of Grevillea sp.

Addition of CaSO4 (gypsum) to the soil plays a significant role in reducing heavy 
metal toxicity (Illera et al. 2004), but more than 25.0 % gypsum may cause signifi-
cant reduction in yield of crop plants due to imbalanced K/Ca and Mg/Ca ratios 
(Van Alphen and de los Ríos Romero F 1971). Hernando et al. (1965) also reported 
that higher Ca accumulation caused poor growth of corn at 80.0 % soil moisture in 
the field, whereas wheat (Triticum aestivum) growth is reduced when gypsum con-
tent in soil was 25.0 %. Bureau and Roederer (1960) also suggested that crop culti-
vation in the soil of Tunisia with 30.0 % gypsum content may cause toxic effects on 
plant growth and development. Smith and Robertson (1962) observed that wheat 
grown in soil with higher gypsum input showed wilting during spring time due to 
reduced uptake of soil moisture by plants. Explants of Chrysanthemum morifolium, 
a medicinal plant treated with different levels of Ca that showed variable callogen-
esis and callus growth, were negatively affected by high levels of Ca due to inhibi-
tion of enzyme activities, magnesium uptake and protein synthesis (Borgatto et al. 
2002).

10.5.4  Magnesium

Magnesium is another nutrient essential for plant growth and development. It is a 
component of chlorophyll and also plays an important role in plant respiration and 
energy metabolism, but becomes toxic when available in excess. In serpentine soil 
(soil which is derived from ultramafic rock, have high pH and are rich in Cr, Co, Ni, 
Fe and Mg, but deficient in macronutrients such as N, P, K and Ca), Mg phytotoxic-
ity is the most common cause of “serpentine syndrome”, resulting in reduction of 
plant’s growth and development due to high Mg/Ca ratio (Brooks 1987). Certain 
visible toxic symptoms caused by Mg phytotoxicity are presented in Table 10.2. Oat 
(Avena sativa) plant in serpentine soil is more susceptible to Mg toxicity, which is 
caused by lowering of Ca uptake in plants due to their antagonistic behaviour.

Even though it is an essential component of chlorophyll, elevated levels of Mg 
may impair photosynthesis by inhibiting K+ transport from cytosol to stroma and 
possibly interfere with Mg homeostasis within the chloroplast (Shaul 2002). Wu 
et al. (1991) showed that although Mg is very important for tea plants, but its higher 
concentration may adversely affect the growth and development of plants by alter-
ing their metabolic processes. Tea (UPASI-9) plant receiving above 5000 ppm of 
Mg supplement in soil showed coppery colour development on the leaf surface, and 
plant death occurred under long-term exposure (Venkatesan and Jayaganesh 2010). 
Increased concentration of Mg2+ in cytosol blocked K+ channel across the mem-
brane of chloroplasts, thereby inhibiting H+ ion removal from chloroplasts stroma, 
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resulting in its acidification which cause oxidative damage to plant cells (Wu et al. 
1991). Wilkinson and Ohki (1988) reported that accumulation of Mg in plants 
reduced total chlorophyll and carotenoids contents by altering pigment synthetic 
pathway. Amino acid contents in plant showed a significant decline under its ele-
vated doses above 1000 ppm due to hindered amino acid transport pathway (Ma 
et al. 2005).

10.5.5  Manganese

Manganese is an essential micronutrient for plant’s growth and development but can 
be detrimental if available in excessive amounts in soil. There is no regulatory limit 
for Mn in agricultural soil, whereas for crop and medicinal plants, permissible lim-
its are 500 ppm (FAO/WHO 2001) and 200 ppm (WHO 1998), respectively. Clark 
(1982) reported that excessive Mn in growth medium may interfere with the absorp-
tion, translocation and utilization of other minerals (Ca, Mg, Fe and P) by a plant 
which may lead to Mn toxicity (Table 10.2). Common phytotoxic symptoms are 
chlorosis (marginal and interveinal), necrotic brown spots as observed on leaves of 
Brassica sp., Lactuca sativa, H. vulgäre, G. hirsutum and Tagetes erecta (Bachman 
and Miller 1995; Albano et al. 1996; Führs et al. 2008). Kang and Fox (1980) 
reported loss of apical dominance and enhanced formation of auxiliary shoots 
(witches’ broom) in Vigna unguiculata as symptoms of Mn toxicity.

Maksimović et al. (2012) reported that Mn at 100 μM concentration caused sig-
nificant reduction in root and shoot biomass of cucumber (Cucumis sativus) as com-
pared to 0.5 μM dose of Mn in the growth medium. Similarly, marked reductions in 
the dry weight of plant and leaf area were observed in Oryza sativa, Lolium perenne 
and Populus sp. at 583, 150 and 1000 μM of Mn concentrations, respectively (Lidon 
and Teixeira 2000; Lei et al. 2007; Mora et al. 2009). Excess Mn in plant tissues 
may produce errors during the mitochondrial replication by inducing mitochondrial 
mutations and inhibiting total protein synthesis (Foy et al. 1978). In cotton, Mn 
toxicity has been associated with increase in the activities of indoleacetic acid oxi-
dase, peroxidase and polyphenol oxidase and reduced catalase, ascorbic acid oxi-
dase and glutathione oxidase activities with lower ATP content and respiration rate 
(Morgan et al. 1976). Furthermore, in rice (O. sativa) seedlings under Mn stress, 
superoxide radical was increased preferentially in roots, while H2O2 content was 
found to be increased in shoots.

10.5.6  Iron

Iron is an essential nutrient for all plants with significant biological role in chloro-
phyll biosynthesis and photosynthesis; also it is the most limiting nutrient for plant 
growth primarily due to low solubility of oxidized ferric form in aerobic environ-
ment (Guerinot and Yi 1994). No standard maximum allowable limit for Fe in soil 
has been recommended because of its abundance in mineral soil; however, the 
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expression of Fe toxicity symptoms in leaf tissues may occur under flooded condi-
tions due to reduction of the Fe3+ to Fe2+ (Becker and Asch 2005). Fe is an integral 
component of many enzymes and proteins including heme and iron sulphur proteins 
(Marschner 1995). For crop and medicinal plants, permissible limits of Fe are 425.5 
ppm (FAO/WHO 2001) and 20 ppm (WHO 1998), respectively. Iron phytotoxicity 
occurs only when it reaches beyond a threshold level which is characterized by 
preliminary symptoms such as necrosis, chlorotic stippling, cupping of leaves, 
bronze speckle, stunted growth, weak stem and delayed flowering (Table 10.2).

Iron content in medicinal plants consumed in UAE ranged between 26.96 and 
1046.25 mg kg−1 (Abou-Arab and Abou Donia 2000). High iron levels often cause 
Mn deficiency in plants because of their competitive behaviour. In wheat, root- and 
shoot dry weights were found to decrease at 100 ppm Fe concentration in soil 
(Fageria and Rabelo 1987). Inhibitory effects of elevated Fe concentration on root 
elongation and photosynthetic pigments in Sinapis alba were reported (Fargašová 
2001). Kampfenkel et al. (1995) observed brown spots on the leaf surface of 
Nicotiana plumbaginifolia and 40.0 % reduction in photosynthetic rate due to foliar 
accumulation of Fe. Iron toxicity in soybean (Glycine max) caused reduction in 
photosynthesis rate and yield due to increase in oxidative stress and ascorbate per-
oxidase activity (Sinha et al. 1997). Excess Fe leads to free radical production which 
alters the cellular structure irreversibly and damages membranes, DNA and protein 
structures (de Dorlodot et al. 2005).

10.5.7  Cobalt

Cobalt is a transition element, essential for several enzymes and coenzymes partici-
pating in plant metabolism. The maximum allowable range for Co in agricultural 
soil is 20–50 ppm (Kabata-Pendias and Sadurski 2004), whereas, for crop plants, 
permissible limit is 50 ppm (FAO/WHO 2001). For medicinal plants, no permissi-
ble limit has been specified. Cobalt affects the growth and metabolism of plants by 
different degrees depending upon its concentration and form in the soil. Toxic 
effects of Co on morphology include leaf fall, inhibition of greening, discoloured 
veins, premature leaf closure and reduced shoot weight. The supranormal doses of 
Co in plants have relatively high toxic effects which are mostly reflected in growth 
inhibition of plants accompanied by chlorosis of young leaves and other disorders 
(Table 10.2).

Phytotoxicity study of Co on crop plants such as barley (Hordeum vulgare), oil-
seed rape (B. napus) and tomato has shown reductions in shoot growth and biomass 
(Li et al. 2009). The higher foliar concentration of Co leads to lowering of essential 
mineral nutrients and photosynthesis rate and disturbance in the structural integrity 
of chloroplasts. High Co concentration (500 ppm) was found to reduce germination 
percentage and seedling growth of T. aestivum with 97.0 and 83.0 % reductions in 
root and shoot length, respectively (Gang et al. 2013). Chatterjee and Chatterjee 
(2000) reported that excess Co in cauliflower (Brassica oleracea) restricted the 
foliar uptake of Fe, P, S, Mn, Zn and Cu, altered the biosynthesis of chlorophyll and 
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protein and reduced the catalase activity. Water potential and transpiration rate in 
cauliflower were increased significantly, while diffusive resistance and relative 
water content increased upon exposure to excess Co (Chatterjee and Chatterjee 
2000). Palit et al. (1994) observed that Co affects photosystem (PS-II) by inhibiting 
either the reaction centre or components of PS-II. Moreover, in C4 and CAM plants, 
Co hindered the fixation of CO2 by inhibiting the activities of photosynthetic 
enzymes. Cobalt acts as a preprophase poison and thus retards the process of karyo-
kinesis and cytokinesis, and higher concentrations of Co may hamper RNA synthe-
sis and decrease DNA and RNA contents probably by modifying the activities of 
endo- and exonucleases (Palit et al. 1994).

10.5.8  Nickel

Nickel is an essential micronutrient required for plant normal functioning, but due 
to industrial activities, extent of soil contamination with Ni is so high that in some 
areas it is causing serious damages to agricultural crops (Frank et al. 1982). For 
agricultural soil, maximum allowable range of Ni is 20–60 ppm (Kabata-Pendias 
and Sadurski 2004), whereas for crop and medicinal plants, permissible limits are 
67 ppm (FAO/WHO 2001) and 1.5 ppm (WHO 2005), respectively. Necrosis, chlo-
rosis, inhibition of seed germination, reduced root and shoot growth, poorly devel-
oped branches, deformed plant parts and abnormal flowering are the common 
symptoms when foliar Ni concentration exceeds its phytotoxic threshold level 
(Table 10.2).

Ahmad et al. (2011) reported significant reductions in plant biomass, achene 
yield and foliar concentrations of essential nutrients (Mn, Zn, Cu and Fe) in sun-
flower (H. annuus), under high Ni concentration. Excessive Ni accumulation in crop 
and medicinal plants are reported to inhibit photosynthesis and transpiration rates 
(Sheoran et al. 1990). Progressive impairment of photosynthetic machinery coupled 
with oxidative damages in Amaranthus paniculatus was observed with increasing 
Ni treatment in the solution (Pietrini et al. 2015). Nickel concentration ranging from 
0.01 to 10 ppm dry weight is considered essential for plant metabolism, regulation 
of lipid content and as an important constituent of enzymes such as urease, hydrog-
enase, superoxide dismutase (SOD) and glyoxalases (Küpper and Kroneck 2007). 
Gajewska et al. (2006) found significant reductions in wheat growth and proline 
accumulation along with significant decline in SOD and CAT activities at 200 μM 
Ni concentration. Molas (1998) reported significant decreases in number and size of 
chloroplasts, grana, thylakoids and plasto globuli in leaves of B. oleracea grown in 
soil containing NiSO4.7H2O (10–20 g m−3).

10.5.9  Copper

It is an essential trace element for all lower as well as higher plants with several 
roles in metabolic processes (Narula et al. 2005), but its increased concentration 
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may produce toxic effects on plants (Mittler et al. 2004). The maximum allowable 
range of Cu for agricultural soil is 60–150 ppm (Kabata‐Pendias and Sadurski 
2004), whereas permissible limits for crop and medicinal plants are 73.30 ppm 
(FAO/WHO 2001) and 10 ppm (WHO 2005), respectively. Chlorosis, necrosis, 
purple coloration of midrib and reduction in plant growth are common symptoms 
observed due to Cu phytotoxicity (Table 10.2).

Excessive accumulation of Cu in roots caused root system damage (Atanassova 
and Zapryanova 2009), photosynthetic inhibition and plasma membrane permeabil-
ity damage (Narula et al. 2005). Khatun et al. (2008) reported reductions in plant 
growth parameters, biomass and pigment contents in Withania somnifera above 10 
μM of CuSO4.5H20 solution, whereas significant decreases in root and shoot bio-
mass were observed in Z. mays treated with 10 μM of Cu. In Solanum nigrum, rela-
tive fresh weight, number of leaves, root and shoot lengths were reduced with 
increase in CuSO4 level from 50 to 200 μM (Al-Khateeb and Al-Qwasemeh 2014). 
In barley leaves, Cu inhibited pigment synthesis and retarded chlorophyll integra-
tion into photosystems (Caspi et al. 1999). The reduction in pigment contents was 
attributed to the interaction of Cu to –SH group of enzymes during chlorophyll 
biosynthesis (Nyitrai et al. 2003). High level of Cu interferes with protein forma-
tion, photosynthetic processes and enzyme activities and alters plasma membrane 
permeability (Al-Khateeb and Al-Qwasemeh 2014). Ouzounidou et al. (1997) 
reported that Cu affects the ultrastructure of meristematic cells, altering the ribo-
somal RNA precursor biosynthesis and thus reducing the wheat growth.

10.5.10  Zinc

It is an important constituent of metalloenzyme and acts as a cofactor for several 
enzymes including anhydrases, dehydrogenases, oxidases and peroxidases (Hewitt 
1983). It also plays an important role in regulating the nitrogen metabolism, cell 
multiplication, auxin synthesis and photosynthesis (Doncheva et al. 2001). The 
maximum allowable range of Zn for agricultural soil is 100–300 ppm (Kabata- 
Pendias and Sadurski 2004), whereas for crop and medicinal plants, permissible 
limits are 99.40 ppm (FAO/WHO 2001) and 50 ppm (WHO 1998), respectively. 
General symptoms of Zn phytotoxicity when its concentration exceeds the thresh-
old level are chlorosis, necrosis, wilting, purplish colour patches, stunting of shoot, 
curling and rolling of young leaves and death of leaf tips (Table 10.2).

Zn toxicity is reported to cause nutrient (Fe, Mn and Cu) deficiencies in shoot 
due to hindered transference of these nutrients from root to shoot of geranium (Lee 
et al. 1996). Zinc accumulates to a greater extent in roots than in shoot and hence 
interferes with root growth and elongation and thereby limits plant’s uptake of water 
and nutrients (Disante et al. 2010). White et al. (1979) reported a 50.0 % reduction 
in soybean biomass at 450 ppm Zn concentration, whereas 620–860 ppm of Zn 
caused ≈ 20 % reduction in foliar biomass of trifoliate leaves. Disintegration of cell 
organelles, disruption of membranes, condensation of chromatin material and 
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increase in number of nucleoli were major events observed in pigeon pea (Cajanus 
cajan) during Zn toxicity (Sresty and Rao 1999).

10.5.11  Titanium

Although titanium is present in the soil in relatively higher concentrations, majority 
of Ti is poorly available for plants, due to the insoluble nature of the form of miner-
als (TiO2 or FeTiO3) in water (Dumon and Ernst 1988). Lower concentration of Ti 
might participate in plant metabolism as a redox catalyst and has a significant bio-
logical role in plant functioning, but at higher concentrations, deleterious effects on 
plant performances such as reduction in growth, yield and nutrient uptake of Zn, Mg 
and Fe, alteration in normal physiological functioning and chromosomal aberration 
with observed phytotoxic symptoms are reported (Geilmann 1920) (Table 10.2).

Burke et al. (2015) reported no negative effects of TiO2 at low concentrations, but 
had strong negative effects on plant growth such as reduced root growth and elonga-
tion under elevated Ti concentration in crop and medicinal plants (Boonyanitipong 
et al. 2011). Phytotoxic effects on oat biomass at the concentration of 18 ppm Ti in 
nutrient solution were observed by Kužel et al. (2003). Yield in terms of grain 
weight in barley was reduced under foliar spray of 18 ppm Ti solution (Tlustoš et al 
2005). The length of the petiole of strawberries was reduced, and hardness of fruits 
was increased under increasing applications of Ti (50, 100 or 150 mg kg−1) (Choi 
et al. 2015). Feizi et al (2012) found reductions in plant growth and leaf carbon 
content in soybean plants under TiO2 treatments. Also, the hydraulic conductivity of 
cell wall and diameter of root cell wall pores were reduced from 6.6 to 3.0 nm. 
Ghosh et al. (2010) found negative effects of Ti on plant growth, cell elongation and 
transpiration. Pakrashi et al. (2014) showed that TiO2 nanoparticle is capable of 
inducing genotoxicity in plants even at a low concentration (12.5 μg mL−1) due to 
internalization of particles, resulting in oxidative stress due to ROS generation 
which can damage cell structures and DNA. A dose-dependent decrease in the 
mitotic index (69 to 21) and increase in chromosomal aberrations, DNA damage 
and ROS generation were observed in onion (Allium cepa) root tips treated with Ti 
nanoparticles at four different concentrations (12.5, 25, 50, 100 μg mL−1) (Pakrashi 
et al. 2014).

10.5.12  Lead

Lead is one of the most abundant toxic elements in soil with the half-life of 740–
5900 years (Iimura et al. 1977). Its allowable range in agricultural soil is 20–300 
ppm (Kabata‐Pendias and Sadurski 2004), whereas permissible limits for crop and 
medicinal plants are 0.3 ppm (FAO/WHO 2001) and 10 ppm (WHO 1998), respec-
tively. General symptoms due to Pb toxicity in plants are chlorosis, necrosis, inhibi-
tion of root growth, blackening of root system and underdeveloped shoot (Table 
10.2).
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Increase in treatments of Pb from 0 to 3 mM in aqueous solution is known to 
reduced seed germination and biomass in T. aestivum, with 50.0 % reduction in their 
values at 3 mM of Pb (Lamhamdi et al. 2011). Inhibition of seedling growth under 
high Pb levels was reported in rice (Mishra and Choudhuri 1999), maize (Małkowski 
et al. 2002) and medicinal plants (Street et al. 2007). In Sinapis arvensis, Pb at 1500 
μM reduced seed germination and plant biomass by 10.23 and 23.0 %, respectively, 
whereas Pb treatments beyond 400 μM showed more than 50.0 % reduction in bio-
mass as well as water content of B. juncea (Zaier et al. 2010). Lead accumulation 
beyond its permissible level caused inhibition of leaf expansion, root and stem elon-
gation in A. cepa (Gruenhage and Jager 1985) and H. vulgare (Juwarkar and Sinde 
1986). Low amount of Pb (0.005 ppm) has also been reported to cause significant 
reduction in the growth of lettuce (L. sativa) and carrot (Daucus carota) roots, pri-
marily due to Pb-induced simulation of indol-3 acetic acid (IAA) oxidation (Barker 
1972). Toxicity due to Pb alters photosynthetic and enzymatic activities, water bal-
ance and mineral uptake by the plant, which affects their normal physiological func-
tioning (Sharma and Dubey 2005). A high Pb level in soil induced abnormal plant 
morphology such as irregular radial thickening in pea (Pisum sativum) roots, cell 
walls of the endodermis and lignification of the cortical parenchyma (Paivoke 
1983). High Pb concentrations inhibited the activities of enzymes at cellular level 
by reacting with their sulfhydryl groups and induced oxidative stress by increasing 
the production of ROS in plants (Reddy et al. 2005).

10.5.13  Cadmium

Ranked seventh amongst top toxins affecting environment and living beings, Cd is 
of major environmental concern to agriculture system in the vicinity of industries 
because of its longer residence period (>1000 years) in soil (Nazar et al. 2012). 
Although Cd is a non-essential metal for medicinal and crop plants, it is an extremely 
significant pollutant due to its high toxicity and large solubility in water, resulting in 
an easy uptake by plants when grown in soil either supplemented or contaminated 
with Cd. For uncontaminated or agricultural soil, allowable range of Cd is 1–5 ppm 
(Kabata-Pendias and Sadurski 2004), whereas for crop and medicinal plants, per-
missible limits are 0.2 ppm (FAO/WHO 2001) and 0.3 ppm (WHO 2005), respec-
tively. Cadmium, beyond its phytotoxic thresholds for crop and medicinal plants 
cause chlorosis, growth inhibition, leaf rolls and stunting, browning of root tips, 
biomass reduction and finally death which are the main and easily visible symptoms 
of Cd toxicity when grown in soil containing high levels of Cd (Table 10.2).

Accumulation of Cd in edible plants may cause several physiological, biochemi-
cal and structural changes (Feng et al. 2010). In Rhazya stricta, a traditional medi-
cine used in treatment of diabetes mellitus, skin infections and stomach disorders, 
total concentration of Cd was found 9.63 ppm which caused chlorosis and growth 
reduction of the plant (Nawab et al. 2015b). In C. sativus, Cd at 5 M concentration 
or higher induced Fe(II) deficiency by inhibiting root Fe(III) reductase, which 
affects photosynthesis (Alcantara et al. 1994). Cd caused alteration in uptake and 
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transport of essential nutrients by plants either by affecting the availability of miner-
als from the soil or by reducing the soil microbial population (Moreno et al. 1999). 
Cd toxicity can affect the plasma membrane permeability thereby altering water 
balance and stomatal opening in mung bean (Hossain et al. 2010). Fodor et al. 
(1995) observed reduced ATPase activity in roots of wheat and sunflower and altered 
membrane functionality inducing lipid peroxidation at higher Cd levels. Cd accu-
mulation at 200 μM reduced nitrogen fixation and primary ammonia assimilation in 
nodules of soybean plants (Chikile et al. 2013), while 100 mM Cd uptake by mus-
tard and soybean plants inhibited nitrate reductase activity (Balestrasse et al. 2003).

10.5.14  Bismuth

Bismuth exists in number of oxidation states but its trivalent forms (bismuth, bis-
muthinite and bismite) are most stable, abundant and rarely occur alone (Das et al. 
2006). Very little is known about the phytotoxic effects of Bi on crop and medicinal 
plants due to less information on biocoordination chemistry of Bi(III) with proteins, 
enzymes and cell membranes. Galindo et al. (1999) observed an inhibition of radi-
cal growth due to heterocyclic Bi compounds with necrotic effects on foliage of 
lettuce and cucumber. Similar effects were observed on Sorghum bicolor by 
Rimando et al. (1998). Seed germination was inhibited by 50 % in lettuce at 16.1, 
34.0 and 49.7 µΜ  of different Bi compounds, whereas it was 4.6, 7.5 and 12.4 µΜ  
in Trifolium pratense. Cespedes et al. (2003) reported an inhibition of hypocotyl 
growth of L. sativa and T. pratense beyond 15 µΜ  of Bi treatment. Nagata (2015) 
showed higher germination rate, total dry weight and root length of Arabidopsis 
thaliana under low concentration of Bi; however, these parameters reduced signifi-
cantly above 1.0 µΜ  Bi concentrations.

10.5.15  Arsenic

Arsenic is the most toxic metalloid widely distributed in environment as As(III) and 
As(V) which are ubiquitous and toxic to many life forms (Tripathi et al. 2007). The 
range of maximum allowable concentration of As for agricultural soil is 15–20 ppm 
(Kabata‐Pendias and Sadurski 2004), whereas for crop and medicinal plants, per-
missible limits are 1.0 ppm (WHO 1992) and 5.0 ppm (WHO 1998), respectively. 
Growth reduction, interveinal necrosis and chlorosis have been reported as easily 
visible symptoms due to As phytotoxicity (Table 10.2).

Plants exposed to As undergo severe stress such as growth inhibition, improper 
physiological functioning and finally leading to death (Stoeva et al. 2005). It is an 
analogue of phosphate (P) and transported across the plasmalemma through phos-
phate transport systems (Smith et al. 2010). Liu et al. (2005) reported a significant 
decline in seed germination, biomass production and grain yield with an increase in 
As concentrations (0–16 mgL−1) in growing medium for six varieties of T. aestivum. 
The straight head disease is a physiological disorder of O. sativa due to As toxicity 
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characterized by sterile florets/spikelets leading to reduced grain yield (Smith et al. 
2010). Mazumdar et al. (2015) showed significant reductions in shoot length (34.6 
%), shoot biomass (27.0 %) and essential oil yield (0.08 %) in Ocimum basilicum 
under As stress. Arsenic accumulation in plants caused chloroplast membrane dam-
age, reduced stomatal conductance and interfered with water and essential nutrient 
uptake by plant leading to improper functioning of photosynthetic process (Stoeva 
and Bineva 2003) and altered plant metabolic activities (Mokgalaka-Matlala et al. 
2008). Elevated levels of As in plants thus cause considerable cellular damage 
through lipid peroxidation and protein and deoxyribonucleic acid damage (Pitzschke 
et al. 2006). In thylakoids, As may create a condition where energy level exceeds 
the amounts that can be dissipated by metabolic pathways of chloroplasts; as a 
result the electron transport system in the thylakoid membranes is impeded, and 
toxic symptoms develop (Stoeva et al. 2003).

10.5.16  Aluminium

Aluminium is a metalloid contributing about 7.0 % of the earth’s crust and exists in 
non-reactive state and produces no toxic effects on plants. However, in acidic envi-
ronment, Al turns to soluble forms and readily uptake by plants thus producing 
phytotoxic effects with certain visible symptoms such as chlorosis, yellowing, curl-
ing or rolling of young leaves and stunted growth (Table 10.2). Aluminium toxicity 
has been considered as a main limiting factor in crop production due to inhibition of 
root growth and metabolic alteration in plant cells (Inostroza-Blancheteau et al. 
2012). Significant reductions in fresh weights of cotyledons, hypocotyl and radicles 
were observed in J. curcas at 2 and 3 mM of Al treatments (Ou-yang et al. 2014). It 
alters morphology of root cells, resulting in thick, stunted, brittle and poorly devel-
oped root system thereby affecting nutrient and water uptake (Matsumoto 2000). 
Net photosynthetic rate, transpiration rate and stomatal conductance reduced sig-
nificantly under Al stress which could be attributed to significant reductions in 
length, width and area of stomata in leaves of Scutellaria baicalensis (YaMin et al. 
2011). Greatest cell damage and ROS generation were found in the distal transition 
zone in roots of Z. mays and S. bicolor (Sivaguru et al. 2013). Based on previous 
report, cell wall is considered a major site of Al accumulation with 85–90 % of total 
Al accumulation roots of H. vulgare (Zhu et al. 2013). Higher hemicellulose content 
was found in wheat on exposure to 10 μM Al for 6 h (Tabuchi and Matsumoto 
2001). Aluminium ions possess higher affinity (560-folds) for phosphatidylcholine 
by replacing Ca2+resulting in inhibition of H+-ATPase activity, alteration of mem-
brane fluidity and phospholipid packing (Ahn et al. 2001). Binding of Al to nuclear 
materials results in their condensation and inhibition of cell division, nuclear aber-
ration and micronuclear and binuclear cells in H. vulgare (Zhang 1995).

10 Metals from Mining and Metallurgical Industries and Their Toxicological…



250

10.5.17  Molybdenum

Molybdenum is a transition element, which exists in several oxidation states rang-
ing from zero to VI. Mo(VI) form is most commonly found in agricultural soils and 
is essential for growth of plants (Bergeaux 1976). The maximum allowable range of 
Mo for agricultural soil is 4–10 ppm (Kabata-Pendias and Sadurski 2004), whereas 
no permissible limits are specified for crop and medicinal plants. Importance of Mo 
in growth and development of higher plants was first shown by Arnon and Stout 
(1939). Though required only in small amounts, it has a large role within the plant 
system. Molybdenum itself is not biologically active but is rather predominantly 
found to be an integral part of an organic pterin complex called the molybdenum 
cofactor (MoCo) (Mendel and Hansch 2002). Brenchley (1948) reported that 
heavier dressing of molybdate in soil suppressed the growth of plants with an 
appearance of golden colour toxic symptoms due to molybdenum poisoning. Mo 
toxicity leads to marginal leaf scorch, abscission, yellowing and browning of leaves 
and depressed tillering (Table 10.2).

For barley and oats, toxic effects of Mo were observed when it reached 135 and 
200 ppm, respectively (Davis et al. 1978; Hunter and Vergnano 1953). Significant 
reductions in maize seedling growth (Kovács et al. 2015) and grain yield of wheat 
and barley (Gupta 1971) were observed in soil containing excessive levels of Mo. 
Foliar application of 40 g Mo ha−1 at 25 days after plant emergence resulted in 
higher reduction in acetylene and nitrate reductase activities in bean (Vieira et al. 
1998).

10.5.18  Chromium

This is one of the most common contaminant in soil, water and sediments mainly 
due to industrial activities. Amongst its different valance states, Cr (III) and Cr (VI) 
are most stable and common in terrestrial environment (Kimbrough et al. 1999). In 
agricultural soil, 20–500 ppm is a maximum allowable range of Cr (Kabata-Pendias 
and Sadurski 2004), whereas permissible limits set by WHO are 2.3 and 1.5 ppm for 
crop (FAO/WHO 2001) and medicinal plants (WHO 1998), respectively. It is a non- 
essential element which produces toxic effects on plant’s growth and development 
as its concentrations reaches beyond the phytotoxic threshold. Phytotoxic effects of 
Cr are characterized by reduced plant growth and chlorosis in young leaves fol-
lowed by wilting.

Seed germination is a first physiological process affected by Cr (Peralta et al. 
2001). Reductions of 51.1 and 57 % in seed germination of Hibiscus esculentus 
(Amin et al. 2013) and sugarcane (Saccharum officinarum) bud germination (Jain 
et al. 2000) were observed under 100 and 80 ppm Cr treatments, respectively. 
Similarly, seed germination and total plant biomass in different cultivars of T. aes-
tivum showed significant reductions with increase in concentrations of Cr from 0 to 
125 ppm (Datta et al. 2011). Reduced seed germination under Cr stress could be 
ascribed to inhibition of amylases and enhancement in protease activities (Zeid 
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2001). Elevated Cr accumulation by Vetiveria zizanoides caused reductions in root 
length, biomass and essential oil yield (Prasad et al. 2014). Chromium stress affects 
photosynthesis in terms of CO2 fixation, electron transport, photophosphorylation 
and enzyme activities (Clijsters and Van Assche 1985). Higher Cr exposure to 
plants may disrupt the defence mechanism by inactivating enzymatic and non-
enzymatic antioxidants (Gwóźdź et al. 1997). Chromium stress alters normal plant 
metabolism by altering pigment’s production such as chlorophyll and anthocyanin 
(Boonyapookana et al. 2002), elevating production of glutathione and ascorbic acid 
(Shanker et al. 2005) and by altering metabolic pool to channelize the production 
of new metabolites, which either exhibit resistance or tolerance to Cr stress 
(Schmfger 2001).

10.5.19  Mercury

Mercury is a rare element, ubiquitously distributed in the environment in trace 
amounts in two ionic forms Hg2+ and Hg+ amongst which Hg2+ is highly water- 
soluble and strongly phytotoxic (Goldwater 1971). In agricultural soil, maximum 
allowable range of Hg is 0.5–5 ppm (Kabata-Pendias and Sadurski 2004), whereas 
for crop and medicinal plants, its permissible limits are 0.3 (FAO/WHO 2001) and 
0.2 ppm (WHO 1998), respectively. Above permissible limit, it produces toxic 
effects on human health through crop and medicinal plants leading to contamination 
of food chain and causing disease such as “Minamata”. Concentrations of Hg 
beyond its phytotoxic levels can induce visible injuries such as chlorosis and reduc-
tion in growth and yield (Table 10.2).

Seed germination of bean showed a significant reduction when exposed to 
2-methoxy ethyl mercuric chloride and mercurous chloride (Semu et al 1985). Use 
of mercury-based pesticide treatments in agricultural fields caused damaging effects 
on wheat crops characterized by hypertrophy of roots and coleoptile of seedlings, 
inhibition of cell division in the apical meristem of plumule and extreme cell enlarge-
ment of existing cells (Purdy 1956). These adverse effects of Hg on seed germina-
tion and growth could be attributed to Hg interference with –SH system in living 
cells (Sass 1937). Exposure of green gram (Vigna radiata) to Hg caused reductions 
in its biomass by 95.0 % with significant inhibition of α- amylase activity (Varshney 
1990). Godbold (1991) reported significant reductions in K, Mg and Mn contents in 
root due to Hg induced Fe and Ca accumulation. Substitution of Hg in central atom 
of chlorophyll is a damaging mechanism thus affecting light and dark photosynthe-
sis (Krupa and Baszymski 1995). An elevated level of Hg uptake by plants can bind 
to water channel proteins, thus inducing leaf stomatal closure and physical obstruc-
tion in water flow. Also, anatomical distortion in root and stem structures was 
observed at 2.0 mM HgCl2 treatment to T. aestivum (Zhang and Tyerman 1999). 
Setia et al. (1994) reported reductions in cell sizes, cell wall thickness and number 
of vascular bundles in plants. Vijay et al. (1988) showed marked inhibitions in 
amino-transferase and β-amylase activities in H. vulgare at 50 ppm Hg treatment. 
Similarly, Mahajan and Dua (1993) showed a significant inhibition in 
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endo- β-1-3-glucanase activity in Brassica campestris due to Hg toxicity. Somatic 
mutation, inhibition in spindle formation during cell division and chromosomal 
aberration were observed in monocot as well as dicot plants under Hg stress (De 
Flora et al. 1994). A high level of Hg interferes with mitochondrial activity and 
induced oxidative stress by triggering ROS generation which led to disruption of 
biomembrane lipids and cellular metabolism in cucumber seedlings (Cargnelutti 
et al. 2006).

10.5.20  Silicon

Silicon is the second most abundant element after oxygen both on the surface of the 
earth’s crust and in soils in the form of silicic acid at concentrations normally rang-
ing from 0.1 to 0.6 mM (Epstein 1999). Although, Si is not recognized as an essen-
tial element for plant but its beneficial effects on the growth, development, yield and 
disease resistance in many crop plants such as maize, rice and some cyperaceous 
plants have been observed within certain limits (Liang et al. 2005; Ma and Yamaji 
2006).

Like all the metals we discussed above, silica compounds when present in excess 
start interfering with the plant’s normal development and defence mechanisms. 
Côté-Beaulieu et al. (2009) observed yellow streaks on foliage and brittle leaves of 
wheat treated with monomethyl and dimethyl silicic acid followed by a stunted 
growth after 10 days of treatments (Table 10.2). Dimethyl silicic acid at 0.1 mM 
concentration was found sufficient to reduce growth and development of wheat 
plant (Côté-Beaulieu et al. 2009). Reduction in length of third and second leaves of 
rice and wheat plants, respectively, was observed at 20 mM of silicic acid which 
could be due to the formation of polymer and then changes to gel at higher concen-
tration of Si resulting in later period of Si deficiency (Hossain et al. 2002). It has 
been reported that Si promotes cell wall extensibility in the growing zone and 
decreased the cell wall extensibility in the basal zone of isolated stellar tissues in the 
roots of S. bicolor, implying that Si plays a significant role in enhancing root elon-
gation and protecting the stele by hardening the cell wall of the stele and endoder-
mal tissues (Hattori et al. 2003). Similar observation was made in roots of rice plant 
by Hossain et al. (2002).

10.6  Alteration in Plant Community Structure in Response 
to Metals from Mining and Metallurgical Industries

During mining and metallurgical activities, significant land areas are degraded, and 
existing habitats are replaced by solid wastes such as tailings, slags, red mud and 
sludge that contain several metals. Soil is the main terrestrial sink for such toxic and 
persistent industrial pollutants, and it cause alteration in the vegetation structure and 
physico-chemical properties of the soil (Adriano 2001). These activities are directly 
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responsible for destruction of vegetation cover and deterioration of soil quality 
(Conesa et al. 2011).

Major visible symptoms of environmental stress due to industrial activities are 
changes in vegetation structure which also variably or invariably alters animal com-
munities and threatens the natural biodiversity in the area. Hence, research on 
changes in vegetation pattern, structure of plant communities and their dynamics are 
useful in assessing the degree of environmental contamination and degradation. 
Dutta and Agrawal (2003) observed the plant growth performance, biomass accumu-
lation and net primary productivity (NPP) of some exotic species on wasteland of 
coal mining area and observed significant biochemical responses in Eucalyptus 
hybrid and Acacia auriculiformis, whereas toxic components of mine spoils absorbed 
through the roots of Cassia siamea resulted in its reduced above-ground biomass. 
Impact of mining on plant communities in the district of Villa de la Paz was studied 
by Espinosa-Reyes et al. (2014) where they observed that the plants in the proximity 
of 0.3 km from mining industry were characterized by lower diversity with species 
richness of 13 compared to the reference site (10 km from mining industry). The 
most polluted sites were dominated by plant species such as Parthenium incanum, 
Larrea tridentata, Zaluzania triloba, Jatropha dioica, Dyssodia acerosa, Zinnia ace-
rosa and Bahia absinthifolia (Espinosa-Reyes et al. 2014). Pandey et al. (2014) 
showed the effects of coal mining activities on plant community structure where 
minimum numbers of herbaceous species (19) were found in both Raniganj and 
Jharia coalfields compared to the reference site (Central Institute of Mining and Fuel 
Research (CIMFR)). Both the coalfields were dominated by Alternanthera parony-
chioides and Cynodon dactylon, whereas Achyranthes aspera, Convolvulus sp., 
Dichanthium sp., Eclipta alba and Solanum sp. were the most sensitive species pres-
ent only at reference site and completely vanished from coal mining areas. Eragrostis 
cynosuroides and Setaria glauca were identified as polluphilic species only found at 
coal fields. Pandey et al. (2014) also observed a significant reduction in numbers of 
woody species in coal fields, while Butea monosperma, Ficus benghalensis, Ficus 
religiosa and Psidium guajava were dominant species. Moreover, canonical corre-
spondence analysis of the study revealed that main drivers of herbaceous community 
structure in mining affected areas were soil total organic carbon and nitrogen, 
whereas woody layer community was influenced mainly by soil sulphate and phos-
phorus contents. The changes in species diversity indicated an increase in proportion 
of resistant herbs and grasses in response to altered soil characteristics due to mining 
activities (Pandey et al. 2014). Morrey et al. (1988) performed an analysis of vegeta-
tion composition in relation to physico-chemical variation in soil near metalliferous 
mining industry and found that soil pH was a main driving component in determin-
ing the species distribution affecting 51.0 % of floristic variation, whereas 43.8, 19.7 
and 44.6 % of floristic variations were influenced by soil concentrations of 
 phytoavailable Zn, Ca and Pb, respectively.

Koptsik et al. (2003) reported reductions in number, height, diameter at breast 
height and crown density of living trees, whereas number of standing dead increased 
with decrease in distance from Zn-Cu smelter in the Kola Peninsula, Russia. 
Moreover, reductions in the number of plant species from 13 to 5 per 100 m2, plant 
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cover from 100 to 20 % and total plant biomass from 1.0 to 0.15 kg m−2 were found 
at highly contaminated sites near to Zn-Cu smelter compared to reference site. 
Narayan et al. (1994) assessed the vegetation characteristics at different distances 
from HINDALCO Industries Ltd., Renukoot, an important aluminium smelter in 
India. It was found that important value index (IVI) of sensitive species such as 
Achyranthes aspera, Cassia tora and Eclipta alba decreased and those of tolerant 
species such as Alternanthera sp., Cynodon sp., Cyprus sp. and Sida sp. increased 
with decrease in distance from the industry. Species richness and Shannon-Wiener 
index though increased, while concentration of dominance reduced on moving from 
1 to 11 km from the industrial premise. A quadrat study of vegetation cover was 
carried out by Remon et al. (2005) at solid waste dumps from the iron and steel 
industry at Firminy, Loire, France. It was found that 30 plant species belonging to 
11 families were present, and most of these species were perennial forbs and grasses 
from family Asteraceae and Poaceae. Despite of the taxonomic diversity at that site, 
the vegetation cover was not uniform, and, inside each quadrant, the covered ground 
surface, the number of taxons and the type of dominant species were highly variable 
(Remon et al. 2005).

10.7  Risk of Food Chain Contamination

Soil contamination by anthropogenic activities results in multiparametric conse-
quences on the quality of living beings. Disposal of residues from these industries 
has resulted in contamination of surrounding areas thus converting them into land 
not suitable for agricultural practice. The productivity of crop and medicinal plants 
growing in contaminated agricultural soil or cultivation of these plants in soil 
amended with industrial wastes can be reduced due to elevated metal uptake 
(Alloway et al. 1990; Pruvot et al. 2006). Solid waste dumps which are naturally 
invaded by endemic species pose a potential threat of transfer of toxic metals into 
food chain through the accumulation of metals in above-ground plant parts. Amongst 
plants with special reference to high added values are medicinal plants which are 
commonly consumed in countries like Greece and some Mediterranean regions 
which are collected from contaminated sites (Pullaiah 2006). This raises a question 
of how safe it is for consumption of crop and medicinal plants collected from such 
contaminated areas (Fig. 10.5). Cultivation of edible plants mainly crop and vegeta-
bles for human or livestock consumption on contaminated sites can potentially lead 
to uptake, accumulation and biomagnification of toxic metals such as Cd, Pb, Hg, 
As, Cr, etc. with a resultant risk to human and animal health leading to serious sys-
temic health issues (Gautam et al. 2016; Sharma and Agrawal 2005).

Zhuang et al. (2009) reported that in Asia’s staple crop “rice”, cultivated in the 
vicinity of Dabaoshan Mine, it contained many folds higher Pb (8-folds) and Cd 
(6.5-folds) concentrations in comparison to their maximum permissible limit (MPL) 
as per national safety standard for milled rice (NPSF 2002). Similarly, in corn grains 
grown in the vicinity of Pb-Zn mine, Liaoning, concentrations of Cd and Pb were 
found 1.5 and 2 times higher than their MPL, respectively (Gu et al. 2005). 
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Concentration of Cd was assessed in leafy vegetables grown in a village near 
Dabaoshan Mine where it was found 2.5 times higher than its MPL in spinach and 
3.8 times of MPL  in carrot (Zhuang et al. 2009; Hernandez et al. 2003). Ok et al. 
(2011) reported 0.90 ppm of Cd accumulation in rice grain, grown in metal- 
contaminated paddy field in the vicinity of an abandoned metal mine in South 
Korea. Bose and Bhattacharyya (2012) found significantly higher concentration of 
Zn, an essential micronutrient in wheat grain grown in JNU and Chattarpur soil 
amended with industrial waste. In Bulgaria, large areas of agricultural land in the 
vicinity of Zn-Cu smelter (0.8–3 km) are contaminated with heavy metals resulting 
in contamination of medicinal plants with several times higher concentrations of 
Cd, Pb and Zn than their allowable limits. Also, essential oil yields from sage, basil, 
dill, cham, coriander, lemon balm and hyssop plants were increased with increase in 
distance from the source (Zheljazkov et al. 2008). Similarly, Angelova et al. (2006) 
showed that concentrations of Pb, Cu, Zn and Cd in root, stem and leaves were 
manyfolds higher in Mentha piperita, Salvia officinalis and Salvia sclera grown at 
0.1 km from non-ferrous metal industry near Plovdiv, Bulgaria, compared to refer-
ence site (15 km from the industrial premise). Linalool content in volatile oil of 
sweet basil was found to reduce under concentrations of Cr (10 and 20 ppm), Cd (25 
and 50 ppm), Pb (25 and 50 ppm) and Ni (25 and 50 ppm) compared to 

Fig. 10.5 Risk of food chain contamination through plants grown either on industrial waste 
dumps or meta contaminated soil
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uncontaminated soil (Prasad et al. 2011). Affholder et al. (2013) also assessed the 
effects of heavy metals on Rosmarinus officinalis growing in the vicinity of the 
former metallurgical industry (1851–1952) compared to the reference site (a subur-
ban area) and found that of the total volatile compounds, more than 50.0 % of com-
pounds in essential oil were reduced significantly in plants grown at contaminated 
site. On contrary to this, 15 compounds including alpha pinene, camphene, myr-
cene, limonene, etc. were increased in plants at contaminated soil.

It is clear from the studies that metal accumulation not only cause quantitative 
and qualitative changes in yield of economically important plants but also affect 
their nutritional qualities. Edible parts from crop plants grown in the vicinity of 
industry often contain toxic levels of potentially toxic metals, whereas in case of 
medicinal plants, essential oil yield and composition were found less or unaffected 
by metal contaminants (Zheljazkov et al. 2008).

10.8  Technological Innovations in Management of Mining 
and Metallurgical Solid Wastes

In recent years, almost every country is facing the challenge of managing the huge 
quantity of wastes generated from mining and metallurgical industries because of 
their accumulation and suitable storage space constraints. Therefore, the wastes are 
usually dumped on land, either in wet or dry forms without proper pretreatments 
which occupy larger land areas leading to various environmental problems within 
and surrounding areas. Disposal of such a huge quantity of waste poses a big chal-
lenge because of lack of their cost-effective management practices. Several techno-
logical innovations on the applications of mining and metallurgical wastes have 
been suggested such as manufacture of ceramics, building materials, pigments, 
paints, adsorbents and catalysts (Pappu et al. 2007; Wang et al. 2008).

Mining wastes such as Fe, Cu, Zn and Al tailings, coal washeries and overburden 
wastes are used as raw materials in the recovery of expensive minerals and manu-
facture of construction materials for embankments of roadways, railways, rivers, 
dams, bricks, tiles, lightweight aggregates and fuel (Skarżyńska1995). The Pb-Zn 
tailings from upper Mississippi Valley mining district were used to prepare foamed 
building blocks, concrete beams and tiles, dense silicate bricks and aerated concrete 
(Hansen et al. 1968). Dean et al. (1986) also reported the utilization of Cu mill tail-
ings for making building bricks. In the USA, Canada and Britain, mine wastes are 
used in manufacturing glasses and ceramics (Jacobi 1975). In India also, mine 
wastes are utilized in manufacture of glasses (IBM 2002; Kumar 2000). Metallurgical 
wastes such as slags, red mud and galvanizing residues are used in making cement, 
bricks, tiles, ceramics, blocks, paints and boards (Skarżyńska 1995). Slags from 
non-ferrous metal industries are used in improving the strength, morphology and 
abrasion resistance of cement, whereas ferroalloy industrial wastes are used in mak-
ing high-strength and lightweight concrete (Bhattacharya et al. 2004). Gorai and 
Jana (2003) reported the use of Cu slags in preparing tiles, mine backfill and granu-
lar materials. Similarly, red mud from aluminium industries has been utilized as a 
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substitute for ordinary clay for producing bricks, polymer, composites, wood sub-
stitute products, ceramic glazes and in metal recovery (Sglavo et al. 2000; Saxena 
and Mishra 2004).

The engineered techniques in management of industrial wastes are although 
advanced and highly efficient but are still at their initial stages of development. 
Particularly in developing countries like India, these technologies do not offer a 
cost-effective option at the moment. Conventional mechanical or physico-chemical 
treatments such as excavation, soil washing, solidification/stabilization, electroki-
netic remediation and soil incineration also suffer from limitations like cost ineffec-
tive, require intensive labour, cause irreversible soil disturbances, etc. Therefore, 
rehabilitation of industrial waste dumps by revegetation is an environmentally 
benign process to safeguard the environment.

The approach of ecological restoration is the most accepted and cost-effective 
way to restore the ecological integrity of disturbed land due to mining and metal-
lurgical activities. The goal of restoration is usually to develop a long-term sustain-
able management of residual dumps in industrial areas. It includes the management 
of all types of physical, chemical and biological disturbances in soils such as soil 
pH, fertility, microbial community and various soil nutrient cycles. Revegetation 
and reclamation of waste dumps are extremely difficult, due to physical or chemical 
limitations to plant growth and presence of potentially toxic concentrations of heavy 
metals in the spoil (Conesa et al. 2011). Such constraints can be resolved by adding 
suitable soil amenders such as sawdust, wood residues, sewage sludge and animal 
manures, as these amendments stimulate the microbial activities and add up nutri-
ents (N, P, K) and organic carbon to the soil thereby reducing the phytotoxic effects 
of metals (Juwarkar and Jambhulkar 2008). Suitable soil amenders or microbial 
assisted revegetation minimizes the damages and helps in recovering the waste 
dumps by stabilization through development of extensive root systems. Once veg-
etation gets established on waste dumps, it improves soil organic matter and nutrient 
status, lower soil bulk density, moderate soil pH and enhances nutrient bioavailabil-
ity in soil (Conesa et al. 2007; Mendez and Maier 2008). For revegetation, it is 
necessary to choose drought-resistant, metal-tolerant, fast-growing plants with 
dense canopies and root systems (Mendez and Maier 2008). Dutta and Agrawal 
(2002) suggested that indigenous plants should be preferred over exotic species for 
reclamation of the coal mine spoil dumps because indigenous plants easily fit into a 
fully functional ecosystem and adopt climatically also. Annual grasses are consid-
ered as a nurse crop for an early vegetation purpose offering superior tolerance to 
drought, low soil nutrients and other climatic stresses. Roots of grasses are fibrous 
that can slow erosion, and their soil-forming tendencies eventually produce a layer 
of organic soil, stabilize soil, conserve soil moisture and enable them to compete 
with weedy species. The initial vegetation cover must be allowed for the develop-
ment of diverse self-sustaining plant communities (Singh et al. 2002; Xiuzhen et al. 
2004).

Revegetation is a widely used technique for stabilization of dumps (Singh 1996) 
and maintaining ecological equilibrium of mining and metallurgical areas (Jørgensen 
1994). Restoration or reclamation of industrial dumps coupled with 
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phytoremediation triggers the stabilization of dumps with further reduced risk of 
environmental contamination (Salt et al. 1998). Juwarkar and Jambhulkar (2008) 
attempted a phytoremediation of coal mine spoil dumps by using effluent treated 
plant sludge, organic amendments and biofertilizer (Rhizobium sp., Azotobacter sp. 
and VAM spores) inoculation along with suitable plant species, to improve the 
physico- chemical properties of coal mine spoil and to reduce the metal toxicity in 
spoil. Microbial inoculation with organic amendments helped in reducing the con-
centrations of heavy metals such as chromium, zinc, copper, iron, manganese, lead, 
nickel and cadmium by 41.0, 43.0, 37.0, 37.0, 34.0, 39.0, 37.0 and 40 %, respec-
tively. For the process of phytoremediation, it is preferable to use the plants which 
are metallophytes, pseudometallophytes and hyperaccumulators (Meagher 2000) as 
these plants have evolved biological mechanism to resist, tolerate and thrive in met-
alliferous soils. They are an optimal choice for restoration of mining and metallurgi-
cal closure for rehabilitation of metal-contaminated sites and underpinning for the 
development of environmental technologies such as phytoremediation of metals and 
making the substrate favourable for the flourishment of sensitive plant species 
(Adams and Lamoureux 2005).

Despite of the fact of human health risk, several researchers recommended many 
edible crops for phytoremediation purposes (Gupta et al. 2013). But utilization of 
crop plants for phytoremediation does not seem to be an intelligent option because 
heavy metals may enter into food chain through consumption by humans and ani-
mals (Vamerali et al. 2010). Contrary to this, many aromatic plants are not being 
consumed directly by humans and animals and hence can be grown for the produc-
tion of essential oil, in case oils can strictly qualify the safety limits for toxic con-
taminants as have been shown in some studies (Lal et al. 2013; Zheljazkov et al. 
2008). Gupta et al. (2013) also suggested the use of aromatic plants rather than 
non-aromatic edible crops for cultivation in metal-polluted land as a sustainable and 
environmental-friendly technique.

10.9  Conclusion

Mining and metallurgical industries are crucial for development of any country; 
however, wastes generated from these industries pose a threat to human and biologi-
cal welfare. It is evident from several reports that extreme physico-chemical and 
biological properties and excessive amounts of metals affect adversely to native as 
well as exotic plant species including crop and medicinal plants. Both plant essen-
tial and non-essential metals when exceeding their phytotoxic threshold interfere 
with several metabolic processes, causing toxicity to the plants as exhibited by 
reduced growth, chlorosis, impaired photosynthesis and finally plant death. As 
industrial development continues, sustainable and environmental-friendly ways to 
manage these wastes remain a big challenge, but restoration of such polluted sites 
by rehabilitation and phytoremediation using native and medicinal plants could be 
a sustainable and environmental viable option for better management of these 
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wastes. Such studies, however, need to be designed cautiously with utmost care to 
prevent any further contamination of food chain or environment.
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Abstract

Irrigation of our crop fields is indispensable to get sufficient crop yield, and 
increasing trend of reusing wastewater for agricultural practices has provided an 
answer of water scarcity. The wastewater is recycled and then used for drinking 
and agricultural practices, but concerns have been raised regarding the quality of 
water being used. The major concern is the presence of xenobiotics in recycled 
water that affects the crops’ yield qualitatively as well as quantitatively and in 
turn affects human beings. Risk factors due to the presence of xenobiotics can 
have long-term effects on soil, thereby affecting plants and human health. 
Therefore, assessing the risk and thereafter managing the risk are very 
necessary.
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11.1  Introduction

Today’s world is facing serious challenge of water scarcity due to substantial shrink-
age in rainwater, overexploitation of water resources for domestic and industrial 
purposes and human population burst. The component of drinking water used both 
for human beings and livestock is much less than those used in domestic and indus-
trial purposes. Newer lifestyle has also threatened and destroyed our traditional 
water resources. Heavy emission of CO2 throughout the globe probably has changed 
the climate, now being experienced in change in weather pattern in almost every 
part of the world. Wet months are becoming dry year after year. The groundwater 
level has fallen up to its lowest level as in some parts of Peninsular India, like 
Vidarbha, Marathwada and Telangana and its plains, like Bundelkhand (SNDRP 
2016). Persisting drought and hence the decrease in groundwater level has raised 
concerns about the very existence of mankind. In these circumstances too, agricul-
ture and livestock rearing cannot be given up as these have been the part and parcel 
of human civilization since time immemorial. Agricultural practices and livestock 
rearing do need water. Therefore, it becomes imperative to reuse and recycle the 
water once used in households and industries.

After heavy urbanization and industrialization in cities, plenty of water is dis-
charged in our water bodies from our households after domestic and industrial 
usage. These raise two important issues: first, huge amount of water is flown use-
lessly when the whole world is facing one of the most severe water crises of the 
history, so this water must be reused after adequate treatment processes and, second 
constraint is the presence of pollutants in industrial and domestic wastewater, like 
heavy metals, pesticides and toxic substances raising the concerns if reused without 
adequate treatment processes. Ingestion of this wastewater via one or other methods 
may cause severe diseases in human beings. These pollutants are often referred as 
xenobiotics (Greek word, xenobiotic = stranger to life) when they get entry into the 
bodies of living beings. Therefore, adequate treatment of industrial and domestic 
wastewater is indispensable to secure the existence of mankind on the earth. Now, 
the governments have seriously started to combat the situations of water scarcity 
throughout the world. Further, lax in treatment procedure again raises concerns 
among environmentalists and biologists to think again. So, with prevailing water 
purifying technologies, only secondary, tertiary or even more times treated effluent 
water can be utilized for irrigation and drinking purposes to combat the water scar-
city situations.

A xenobiotic substance is defined as an unnatural foreign chemical found within 
an organism, generally not expected to be present within that organism at significant 
concentrations for longer periods. Since the basic unit of life is the cell and the basic 
life processes of all the cells, their physiology and biochemistry are the same, xeno-
biotics are understood as substances foreign to the whole biological system, i.e. 
artificial substances which did not exist in nature before their artificial synthesis. 
They may be synthetic organochlorines such as pesticides, organic chemicals such as 
polyaromatic hydrocarbons (PAHs), coal and crude oil. Antibiotics, anti- inflammatory 
drugs, beta-blockers, cancer therapeutics, contraceptives, lipid regulator agents and 

P.K. Srivastava et al.



275

supplementary hormones fall under pharmaceutical classes, most commonly 
detected in the treated effluents worldwide (Gebhardt and Schröder 2007). There 
are some narcotic substances, viz. amphetamines, cannabinoids, cocaine, opiates 
etc. that have recently been identified in wastewater. They are hardly removed or 
transformed in wastewater effluents (Petrovic et al. 2009). Different inorganic spe-
cies, viz., chlorides and bromides of sodium, potassium and calcium as well as trace 
heavy metals have their own benefits and threats when they come into the contact of 
plants with the irrigation water. Some other chemicals show similar effects but at 
relatively higher concentrations. They are present in domestic wastewaters and 
include some plasticizers, pesticides and degradation products of some detergents. 
These groups of synthetic organic compounds are often called as xenobiotics and 
are produced from our households, pharmaceutical industries and hospitals and 
other industries. Another recent and important class of trace organic contaminants 
in wastewater is the endocrine-disrupting compounds (EDCs) (Liu et al. 2009). 
Natural and synthetic steroidal hormones have also been shown to induce biological 
effects even at parts per trillion concentrations. These EDCs and steroidal hormones 
are not adequately removed by conventional water treatment processes.

In addition to man-made chemicals, natural compounds could also become xeno-
biotics if they are taken up by another organism and have potent biological proper-
ties and special medicinal properties or a given organism is at risk of exposure to 
that natural compounds; for instance, the uptake of fish hormones by humans.

Any xenobiotic substance may enter into the environment in two main ways: 
direct and indirect. Manufacturers of the xenobiotics directly discharge concerned 
xenobiotic substances. Indirect discharge takes place after the biologically intended 
effects and is passed to the environment either in their complete or a modified state. 
However, with the increasing regulations by regulating agencies, direct discharge 
has become the practice of the past. There are also several other direct and indirect 
sources of xenobiotic substance into the environment that affect the living system 
(Fig. 11.1). One common indirect source of xenobiotic substance is their discharge 
in large pits before being pumped and applied to fields as fertilizers where many of 
them are washed away by rainfall to aquatic environments. Often the xenobiotic 
substances that are present in landfills are found in their original, most chemically 
active states.

Xenobiotics produce many biological effects so they are analyzed for risk fac-
tors, such as ecotoxicity, persistence in the environment or toxicity to humans. 
Xenobiotics may be grouped under heavy metals, antibiotics, carcinogens, drugs, 
environmental pollutants, food additives, hydrocarbons and pesticides and are sys-
tematically analyzed for associated risk factors.

11.2  Heavy Metals as Xenobiotics

Metal contaminants include Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Se and Zn. Other less 
common metallic contaminants include Al, Co, Cs, Mn, Mo, Sr and U. Living 
organisms do require varying amounts of some heavy metals like Co, Cu, Fe, Mn, 
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Mo and Zn. But these metals too become toxic at their higher concentrations (Singh 
et al. 2016). Though heavy metals are essential constituents of the earth’s crust, 
heavy metal contamination of soil and water resources has become an environmen-
tal concern. This takes place due to indiscriminate human activities and industrial 
wastes altering geochemical cycles and biochemical balances. Heavy metals are 
nonbiodegradable and persist in the environment for indefinite period (Yang et al. 
2005; Singh et al. 2016). Untreated wastewater is commonly used for irrigation 
purposes in developing countries. Many times, heavy metal polluted waters are 
inadvertently mixed with ordinary irrigation water due to failure of treatment plants 
or excessive load of wastewater in them (Singh et al. 2009). Long-term use of such 
water for irrigation results in the accumulation of heavy metals in soils (Marshall 
et al. 2007) and thus changes the quality of the soil (Singh et al. 2009).

Heavy metals are known to cause harmful effects on many biochemical and 
physiological processes of plants such as photosynthesis, mineral nutrition and 
water uptake (Singh et al. 2013; Singh et al. 2016). The uptake of heavy metals by 
plants not only reduces their growth and biomass accumulation but also poses risk 
to human health and animals as heavy metals find entry into the food chain via pri-
mary producers (Bharwana et al. 2013). Besides these direct deleterious effects, 
heavy metals may also adversely affect plants indirectly by the production of exces-
sive reactive oxygen species (ROS) (Singh et al. 2016). Excess ROS may damage 
biomolecules of cells like proteins, lipids and nucleic acids. Thus, heavy metals 
cause adverse impacts on flora from the molecular to the whole-plant level. Plants 
have evolved several detoxification mechanisms to minimize the damaging effects 
of heavy metals based on chelation, subcellular compartmentalization and a well- 
off antioxidative system (Salt et al. 1998).
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Prolonged exposure to heavy metals such as As, Cd, Cu, Pb, Ni and Zn can cause 
adverse health effects in humans (McLaughlin et al. 1999; Singh et al. 2015). Pb 
and Hg also fall under toxic heavy metals. Their accumulation in the animal tissues 
can cause serious problems (Tchounwou et al. 2012). These metals primarily come 
from the industrial effluents and runoff from the soil to rivers and other water bodies 
and then to human food sources (Tchounwou et al. 2012). These toxins can be intro-
duced into the human and animal bodies by consumption of foods and beverages 
and by skin exposure. Heavy metals disturb metabolic functions of animals in two 
ways: they may accumulate in vital organs, such as heart, liver, brain, kidney, bone 
etc. and upset their functions or they may displace various nutritional minerals from 
their original sites and hinder their biological functions.

The effects of various heavy metals on plants and human health have been enu-
merated in Table 11.1.

Table 11.1 Some xenobiotics and their effects on human and plants

Xenobiotics Sources Human ailments Effects on plants

Heavy 
metals
As Rock weathering, 

smelting, thermal 
power plants, fuel 
burning

Skin, lung, bladder and 
kidney cancer, thickening 
and pigmentation of the skin, 
blackfoot disease in Taiwan

Inhibits plant growth 
by slowing or arresting 
expansion and biomass 
accumulation as well 
as affects plant 
reproductive capacity 
through losses in 
fertility, yield and fruit 
production (Garg and 
Singla 2011)

Cd Zinc production, waste 
batteries, e-wastes, 
paint sludge, 
incinerations and fuel 
combustion, phosphate 
-ore implication and 
bio-industrial manure, 
artificial phosphate 
fertilizers

Short-term exposure causes 
diarrhea, stomach pains and 
vomiting; long-term 
exposure causes bone 
fracture (itai-itai or 
ouch-ouch disease), 
infertility, damage to the 
central nervous and immune 
system, psychological 
disorders, DNA damage and 
cancer development, 
accumulates in the kidneys 
and damages filtering 
mechanisms

Inhibits the 
biosynthesis of 
chlorophyll (Qian 
et al. 2009) and 
imparts deleterious 
effects on stomatal 
opening, transpiration 
and respiration 
processes (Sandalio 
et al. 2001) and 
decreases the 
photosynthetic rate 
(Durand et al. 2010) 
and hence declines the 
crop productivity

(continued)
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Table 11.1 (continued)

Xenobiotics Sources Human ailments Effects on plants

Cr Mining, industrial 
coolants, chromium 
salt manufacturing, 
leather tanning

Respiratory tract irritant 
results in airway irritation, 
airway obstruction and lung, 
nasal or sinus cancer

Inhibits seed 
germination, disturbs 
pigment concentration 
and water uptake, 
causes nutrient 
imbalance (Panda and 
Choudhury 2005), 
changes ultrastructure, 
particularly 
vacuolation of root 
cell (Panda 2007) and 
induces oxidative 
stress

Cu Mining, electroplating, 
smelting operations

Kidney failure and death 
occur with as little as 1 g of 
copper sulfate. Symptoms of 
copper overdose include 
nausea, vomiting, bloody 
diarrhea, fever, stomach 
pain, low blood pressure, 
anemia and heart problems

Interferes with the 
biosynthesis of 
photosynthetic 
machinery, modifies 
the pigments and 
protein composition 
and interacts with ions 
like Mn, Ca and Cl 
that are necessary for 
proper functioning of 
oxygen-evolving 
complex (Yruela 
2005)

Hg Batteries, chemical 
industries, chlor-alkali 
plants, thermal power 
plants, electrical 
appliances, fluorescent 
lamps, hospital 
wastes, damaged 
thermometers, 
barometers, 
sphygmomanometers, 
organic mercury 
(primarily methyl 
mercury) produced by 
specific bacterial 
organisms etc.

Inorganic form is not very 
harmful and may damage the 
kidney in certain cases; 
organic mercury (primarily 
methyl mercury) ingested by 
fish bioaccumulates there 
and later in human tissues

Changes the 
permeability of cell 
membrane, reacts with 
the sulfhydryl (SH) 
groups and phosphate 
groups, also replaces 
essential ions and 
disrupts functions of 
proteins (Patra and 
Sharma 2000 and 
Patra et al. 2004)

(continued)
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Table 11.1 (continued)

Xenobiotics Sources Human ailments Effects on plants

Ni Smelting operations, 
thermal power plants, 
battery industry

Higher chances of 
development of lung cancer, 
nose cancer, laryngeal cancer 
and prostate cancer, sickness 
and dizziness after exposure 
to nickel gas, lung embolism, 
respiratory failure, birth 
defects, asthma and chronic 
bronchitis, allergic reactions 
such as skin rashes, mainly 
from jewelry, heart disorders

Inhibits mitotic 
activities (Madhava 
Rao and Sresty 2000), 
reductions in plant 
growth (Molas 2002) 
and adverse effects on 
fruit yield and quality 
(Gajewska et al. 2006)

Pb Lead-acid batteries, 
paints, e-wastes, 
smelting, coal-based 
thermal power plants, 
ceramics, bangle 
industry

Pb(II) salts and organic lead 
are most harmful, toxic to a 
wide variety of organs in 
human to low-level exposure 
of lead, nervous system 
(changes I neurotransmitter 
levels), metabolism 
(impairment of vitamin D 
metabolism), reproductive 
system (irregular estrus (heat 
cycle in female dogs) and 
decreased sexual hormone 
level), immune system 
(impaired lymphocyte 
function and impaired 
antibody formation)

Distortion of 
chloroplast 
ultrastructure, 
obstructed electron 
transport, inhibition of 
Calvin cycle enzymes, 
impaired uptake of 
essential elements, 
such as Mg and Fe and 
induced deficiency of 
CO2 resulting from 
stomatal closure 
(Pourrut et al. 2011)

Zn Smelting, 
electroplating

Excessive supplemental zinc 
increases the risk prostate 
cancer. Large doses of zinc 
can lower blood sugar in 
people with diabetes. Zinc 
use has been linked to 
shorter survival time in 
people with HIV/AIDs

Zn reduces yield and 
causes stunted growth 
which is due to the fall 
in photosynthetic 
performance, thereby 
affecting the 
photochemical 
reactions and also 
carbonic anhydrase 
activity, biosynthesis 
of chlorophyll and cell 
membrane integrity 
(Tsonev and Lidon 
2012)

(continued)
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Xenobiotics Sources Human ailments Effects on plants

Pesticides
Herbicides Commonly used in 

agricultural fields to 
control the broadleaf 
weeds and annual 
grasses. However, 
indiscriminate use and 
continuous irrigation 
practices with 
non-recycled water 
have been reported to 
be the major source

Causes cancer, reproductive 
or developmental effects, or 
endocrine system effects

Negative impact on 
photosynthesis as 
revealed by a 
reduction in foliar 
chlorophyll and 
carotenoid contents, 
gas exchanges, and 
alteration in plastid 
structure 
Accumulation of 
soluble sugar and 
starch was observed in 
all organs (Saladin and 
Clement 2003)
Affects the activities 
of nitrate reductase 
(NR) and nitrite 
reductase (NiR) and 
greatly inhibits 
glutamine synthetase 
(GS) and glutamate 
synthase (GOGAT). 
Accumulation of total 
N, protein, and amino 
acid (Nemat Alla et al. 
2007)

Agent Orange, a mixture  
of the herbicides 2,4-D  
and 2,4,5-T that was 
contaminated with 
2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), causes birth 
defects, cancers, liver disease 
and other illness

Inhibits the C4 
photosynthetic 
enzymes like PEPC, 
MDH, PPDK, and 
Rubisco ((Nemat Alla 
et al. 2007)
Inhibits important 
physiological 
(photosynthesis and 
nitrogen metabolism) 
processes (Prasad et al. 
2015)

Table 11.1 (continued)

(continued)
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Xenobiotics Sources Human ailments Effects on plants

Insecticide Organochlorine insecticides 
can cause a loss of sensation 
around the mouth, 
hypersensitivity to light, 
sound and touch, dizziness, 
tremors, nausea, vomiting, 
nervousness and confusion

Significant decrease 
under higher 
concentration in Chl a 
and b, total Chl, 
carotenoids and Chl/
Car ratio, 
photosynthetic oxygen 
yield, photofixation of 
carbon (14CO2), 
photosynthetic 
electron transport 
activities and 
photorespiration 
(Mishra et al. 2008)

Organochlorine insecticide, 
in Hopewell, Virginia, 
developed a variety of 
neurological symptoms, the 
most prominent of which 
became known as the 
‘Kepone shakes’; 
Organophosphate and 
carbamate exposure causes 
signs and symptoms of 
excess acetylcholine, such as 
increased salivation and 
perspiration, narrowing of 
the pupils, nausea, diarrhea, 
decrease in blood pressure, 
muscle weakness and fatigue
During prohibition, people 
consumed a homemade 
alcoholic drink made of 
Jamaican ginger that was 
contaminated with the 
organophosphate triorthocresyl 
phosphate (TOCP). More than 
20,000 people were affected 
by a condition called ‘Ginger 
Jake paralysis’. Pyrethroids 
can cause hyperexcitation, 
aggressiveness, 
uncoordination, whole-body 
tremors and seizures (Lah 
2011)

Human 
and 
veterinary 
drugs

Drugs are persistent or 
are metabolized only 
partially in the body. 
The unchanged 
substances as well as 
their metabolites are 
then excreted with 
urine and feces and 
enter wastewater 
treatment plants 
(WWTPs) by the way 
of sewage

Prescribed doses do not pose 
negative effect on human, 
but doses higher than those 
might cause severity

Blocks the biosynthesis 
of carotenoids, reduces 
plant height, shoot and 
root dry weight as well 
as affects Ca, Mg, K 
and N contents 
(Batchelder 1982) and 
inhibits glutathione 
S-transferase activity 
(Farkas et al. 2007) as 
well as phosphatase 
activity (Liu et al. 
2009)

Table 11.1 (continued)
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11.3  Sources of Heavy Metal Pollution

Sources of heavy metals in the environment are natural and anthropogenic, such as 
weathering of rocks, industrial effluents, organic wastes, sludge or municipal com-
post, pesticides, fertilizer transport, emissions from municipal waste incinerate and 
power generation and exudates, residues from metalliferous mines and smelting 
industries. Industrial effluents and sewerage are the sources of metallic pollution in 
the hydrosphere. Disposal of municipal wastes are considered as one of the major 
sources of heavy metal pollution to the soil. Disposal of metal-rich materials results 
in the formation of metalliferous mine spoils and metalliferous tailings that cause 
heavy metal contamination. Heavy metals can be carried to distant places if they are 
in gaseous or particulate form. Further, some agricultural practices, such as excess 
use of pesticides and fertilizers have contributed to increased concentrations of 
heavy metal in the soil.

11.3.1  Pesticides as Xenobiotics

Organisms like insects, weeds, microorganisms (microfungi, bacteria), rodents, 
nematodes, unwanted plants, and others that cause economic loss or damage to the 
physical well-being of humans as well as other organisms are known as pests.

Natural formulations or artificially synthesized chemicals used to control, eradi-
cate or kill these pests are known as pesticides. Pesticides are often used in agrarian 
practices to protect crop plants from weeds, diseases and depredations from insects, 
fungi, mites and rodents. Pesticides are the only toxic chemicals deliberately 
released into the environment in large amounts. The use of pesticides became indis-
pensable and an integral part of modern agriculture as food security for increasing 
population is also necessary. The use of pesticides cannot be ruled out in our agri-
cultural fields because of steady but continuous rise in population and lesser avail-
ability of agricultural fields. Pesticides that are used in agriculture are transported to 
water bodies through runoff, drift and leaching, pollute them and increase the risk 
of exposure to nontarget organisms (Chen et al. 2007). Thus, soil and water pollu-
tions due to pesticides have become a common concern among environmentalists. 
Some of the pesticides (organochlorines, e.g. DDT) are biomagnified in the terres-
trial ecosystems, so they were banned worldwide according to the international trea-
ties and conventions (Kutz et al. 1991). Some prominent pesticides which are 
frequently used in these days by the farmers include 2,4-D, aldrin, atrazine, buta-
chlor, carbaryl, carbofuran, chlordane, chlorpyrifos, cypermethrin, DDT, dieldrin, 
dimethoate, endosulfan, glyphosate, heptachlor, lindane, malathion, monocroto-
phos, parathion, permethrin, phorate, triazophos, trifluralin etc. Most of the pesti-
cides are nondegradable and accumulate in the environment.

The excessive use of pesticides has a serious impact on many beneficial microor-
ganisms resulting in greater loss in crop productivity. Since most of the pesticides 
are nonbiodegradable, they have long residence time in water and soil and thus may 
enter and magnify at various trophic levels (Yadav 2010). Their prospects to cause 
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adverse impacts on human and cattle health have been the subject of risk assessment 
studies and have led to the development of increasingly stringent regulations for the 
risk assessment of novel formulations and to control the use of existing compounds 
(Galloway and Handy 2003).

The organophosphorus pesticides were introduced in the 1970s as replacements 
of the persistent organochlorines after the tendency of DDT and its metabolites to 
accumulate in ecosystems and to cause health hazards, particularly in top predators 
(Murphy 1986). The increased use of organophosphorus pesticides is originally 
seen as a lesser threat to the environment, but over the time organophosphorus pes-
ticides have become a serious environmental concern due to their high acute toxicity 
despite their low persistence. There are some 200 organophosphorus pesticides used 
in agriculture, forests, gardens, home and industrial sites to control the pests.

Organophosphorus pesticides are ubiquitous in the environment and are highly 
toxic to animals like fish, amphibians, rats etc. They inhibit acetylcholinesterase 
(AChE) enzyme of animals by binding it, resulting in neurological dysfunction and 
normal nerve impulse is checked. When AChE is inhibited, then neurons overexcite 
and respiratory control is lost due to asphyxiation. Oxidative desulfuration is neces-
sary to achieve the greatest cholinesterase-inhibiting potencies of organophos-
phates. Oxidative desulfuration is mediated by mixed-function oxidases (MFO) 
which increase the toxicity of the pesticide concerned. Organophosphates are spe-
cific to a target animal; similarly animals are also specific to organophosphates, as 
many organophosphates do not kill a particular pest even if their highest concentra-
tions are used while few of them can kill those particular pests at their recom-
mended doses.

Many studies prove that oxon derivatives of organophosphates are significantly 
more toxic, sometimes up to 3000 times than their respective parental forms. In 
addition of being metabolized internally in liver cells, bacteria and other microor-
ganisms can convert pesticides into sulfons or oxons (Hill 2003), thereby making 
them available in the environment (Schomburg et al. 1991; Domagalski 1996; 
Whitehead et al. 2005). A wide range of harmful environmental effects are linked to 
organophosphorus pesticides, including toxicity to domestic animals, freshwater 
fish, other aquatic organisms, birds, beneficial insects, plants and soil organisms etc. 
It has been shown to bioaccumulate in fish and synergistically reacts with other 
chemicals.

Pesticides may also generate ROS via their toxic effects on photosynthesis. Any 
adverse effect of pesticide may severely affect metabolic functions and overall 
growth performance of plants and other microflora, including cyanobacteria. Some 
of the chlorophyll biosynthetic enzymes are hindered and thereby ROS are gener-
ated which in turn damage macromolecules such as lipids, proteins and nucleic acids 
(Sheeba et al. 2011; Srivastava et al. 2012). There are several studies which show 
the worst effect of pesticides on growth and photosynthesis, nitrogen metabolism 
and amino acid metabolism in higher plants (Srivastava et al. 2012). Hormesis is a 
dose-dependent phenomenon of a toxicant, characterized by low-dose stimulation 
and high-dose inhibition (Calabrese and Baldwin 2003). Hormesis is seen up to 40% 
of toxicological experiments (Calabrese and Baldwin 2001).Calabrese and Baldwin 
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(2003) have carried out the dose range finding studies under the National Toxicology 
Program and suggested five doses of such types for each toxicant. However, the 
study was done on animals. They argued that the enhanced efficiency in the utiliza-
tion of consumed nutrients was the primary cause of low-dose stimulation. 
Hammouda (1999) observed in his experiment with Anabaena doliolum that the 
sheathless heterocystous cyanobacterium was initially able to utilize low concentra-
tions of carbofuran (a carbamate pesticide), whereas higher concentrations and the 
subsequent formation of hydrolytic breakdown products were toxic. Growth inhibi-
tion reached more than 50% when treated with 80 and 100 μg ml−1 of the insecti-
cide. Lower concentrations of Bavistin (a fungicide) were observed to support the 
growth of Tolypothrix scytonemoides having maximum protein and pigment con-
tents (Rajendran et al. 2007). The effects of pesticides on plants and human health 
have been enumerated in Table 11.1.

11.3.2  Pharmaceuticals

Pharmaceuticals are very frequently used for the treatment and prevention of dis-
eases and epidemics in human beings and livestock. Pharmaceuticals have benefi-
cial biological effects, but many pharmaceuticals are often discharged as such in 
water bodies due to lax in regulatory frameworks. They may exert unwanted bio-
logical effects there. Sometimes, they are not considered to be potentially harmful 
due to inadequate experience with environmental issues. Pharmaceuticals include 
antibiotics, analgesics and anti-inflammatory drugs, anticonvulsant drugs, beta- 
blockers, blood lipid regulators, hormones, chemicals used for disinfection and 
endocrine-disrupting compounds, X-ray contrast media, cytostatic drugs (chemo-
therapy), oral contraceptives and veterinary pharmaceuticals (Kot-Wasik et al. 
2007). Specifically, drugs such as antibiotics are considered as xenobiotics in 
humans. As the name suggests, ‘antibiotics’ are chemicals that are produced natu-
rally or semisynthetically in response to the organisms and possess antibacterial 
activity. Antibiotics are designed to affect mainly microorganisms and bacteria. 
Therefore, this makes them potentially hazardous to other such organisms found in 
the environment. Since the launch of penicillin in 1928, hundreds of other antibiot-
ics have come for the treatments and other purposes in human beings and livestock. 
Antibiotics themselves fall into several categories: anthelmintic, anti-infective, anti-
bacterial, antimicrobial, antiparasitic, antiseptic etc. One estimate says that a total of 
about 1–2 lakh tons year−1 of approximately 3000 pharmacologically active com-
pounds are used worldwide (Kumar et al. 2012). Generally, microorganisms like 
bacteria and microalgae are at more risks for antibiotics as the lethal doses are 2–3 
orders lesser than those for higher trophic levels (Wollenberger et al. 2000).

After the antibiotics are administered, they may undergo conjugation with sugars 
present in the liver. After excretion, microbes can rapidly degrade the conjugated 
sugars and compounds become bioactive again (Renner 2002). Additionally, antibi-
otics are often poorly adsorbed in the bodies of humans and animals and most of 
them are excreted in unchanged bioactive forms through feces and urine into the 
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drainage system (Kim and Aga 2007; Du and Liu 2012). These compounds reach 
aquatic and agricultural fields without adequate treatment of sewage system by the 
existing wastewater treatment methods. Thus, irrigation water may contain number 
of pharmaceuticals with different concentrations (Du and Liu 2012; Grassi et al. 
2013). Physical and chemical properties of pharmaceuticals like water solubility, 
dissociation constant sorption-desorption process, stability and binding with the soil 
and the partitioning coefficients at various pH values can affect the mobility of anti-
biotics in the soil environment. Further, mobility of pharmaceuticals along the soil 
column is negatively proportional to the availability of organic matter in the soil 
(Chefetz et al. 2008). Therefore, pharmaceuticals are transported to groundwater 
after intensive irrigation. Thus, most rivers, lakes, and coastal waters along popu-
lated sites are often polluted with pharmaceuticals and their degradation products. 
Their traces can be detected in groundwater in populated areas (Daneshvar et al. 
2012; Matamoros et al. 2012). When such water is used for crop irrigation, along 
with land application of manure, these compounds are introduced into arable lands 
and crops (Fatta-Kassinos et al. 2011). In addition to these, land application of com-
posted animal dung without any treatment as a supplement to fertilizer is often a 
common practice in many countries, like India (Kumar et al. 2012), which is the 
source of pharmaceuticals in the environment.

There are apprehensions to the rise of new bacterial strains resistant to antibiotics 
after frequent and indiscriminate usage of antibiotics. Low concentrations (ng L−1 
to μg L−1 order) but continuous presence of pharmacologically active compounds 
and their degradation products in ground and surface waters make bacterial popula-
tions resistant against multiple antibiotics resulting in potential risk to human 
(Harris et al. 2012; Grassi et al. 2013). Resistance can also be acquired through hori-
zontal gene transfer via conjugation, transformation and transduction; and resis-
tance can be attained in other bacteria as well (Fatta-Kassinos et al. 2011). Bacterial 
populations exposed to antibiotics in the gut of animals were found to be five times 
more likely to be resistant to any given antibiotic-resistant microbial populations. 
Recently, Goss et al. (2013) reviewed the use of organic amendments and concluded 
that humans are at the greatest risk because of their exposure to pathogens having 
multiple resistances. As a result, human beings and animals are presently facing 
‘post-antibiotic era’. Organizations like the World Health Organization (WHO) are 
of the view to use antibiotics for limited purposes and banning them as growth- 
promoting additives (Kumar et al. 2012).

Pharmaceuticals affect plant growth and yields (Jjemba 2002; Fatta-Kassinos 
et al. 2011; Goss et al. 2013). Accumulation of pharmacologically active com-
pounds and their metabolites in agroecosystems can result in crop toxicity and soil 
microorganisms, particularly bacteria may get infected (Du and Liu 2012). Bacterial 
exposure to antibiotics may decrease their biodegradation capacity (Richardson 
2012) affecting the plant development indirectly due to nutrient scarcity (Cooper 
et al. 2008). Some studies have also shown that the presence of low level of pharma-
ceuticals in arable soils can induce toxic or other kinds of effects on terrestrial and 
aquatic organisms (Jjemba 2002; Fatta-Kassinos et al. 2011; Kumar et al. 2012). 
Phytotoxicity of pharmaceuticals depends on their physicochemical properties, soil 
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types, soil organic matter content, soil pH and prevailing climatic conditions. 
Studies have also proved that pharmaceutical phytotoxicity may vary with the plant 
species.

Antibiotics may be accumulated by roots and stems of certain plant species 
(Migliore et al. 1995). The accumulation of antibiotics in crops and vegetables 
poses great risks to human beings and livestock (Du and Liu 2012). When pharma-
ceutical residues enter into primary producers of the ecosystem, they travel through-
out the food chain and reach animals and humans (Fatta-Kassinos et al. 2011).

Several workers like Batchelder (1981), Kong et al. (2007), Farkas et al. (2009), 
Migliore et al. (1995, 1996, 1998, 2003), Shenker et al. (2011), Liu et al. (2009) and 
Xie et al. (2010) worked with multiple antibiotics, e.g. tetracyclines, sulfonamides, 
oxytetracycline, sulfadimethoxine, enrofloxacin and carbamazepine on several 
plants like Phaseolus vulgaris, Medicago sativa, Panicum miliaceum, Pisum sati-
vum, Zea mays, Hordeum distichum, Amaranthus retroflexus, Plantago major, 
Rumex acetosella, Cucumis sativus, Lactuca sativa, Raphanus sativus, Oryza 
sativa, Cichorium endivia and Triticum aestivum and concluded that these antibiot-
ics posed inhibitory effects on these plants in one or other ways on their different 
morphological and cytological parameters – growth and development of roots and 
shoot, biomass production of the plants, the number/length of leaves, seed germina-
tion, cell mitotic division, the frequency of micronucleus, chromosomal aberration 
and sister chromatid exchange.

Folic acid is involved in the synthesis of purines, precursors of cytokinins and 
abscisic acid. Sulfadimethoxine competes with folic acid and gets accumulated 
(Migliore et al. 1998). Many times antibiotics like chlortetracycline and enrofloxa-
cin showed hormesis effects, i.e. low-dose stimulation. The effects of human and 
veterinary drugs on plants and human health have been enumerated in Table 11.1.

11.4  Treatment of Wastewater Is Necessary

Wastewater reuse has become today’s global demand because human population 
has reached over 7 billion. Conventional markers of pollution in drinking water 
have been the biological oxygen demand (BOD), chemical oxygen demand (COD), 
pH, total suspended solids, heavy metals and microbiological load (i.e. viruses, bac-
teria and protozoa). Inorganic elements are often found in salt form and often diffi-
cult to be removed during most processes of wastewater treatment. They are often 
highly water-soluble and are not susceptible to biological degradation. But, as the 
human life became easier for living after several inventions in the field of science 
and technology, the level and variety of pollutants of water bodies increased sub-
stantially, providing possibilities to reassess water qualities on several newer param-
eters for safer reuse of wastewater. Therefore, proper quantification of heavy metals, 
pesticides, pharmaceutical metabolites and other substances like potential endocrine- 
disrupting compounds (EDCs), illicit drugs and personal care products must be 
done. Without quantification of pollutants and their proper removal, reuse of waste-
water for agricultural purposes poses serious threat to plants and hence human 
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health and total environment (Novoa-Muñoz et al. 2008). Pathogens and microor-
ganisms in water sources have been the major concerns of medical professionals, 
environmentalists and policy makers; and there is little or no worry about other 
deadly inorganic compound chemicals, heavy metals, xenobiotics, pesticides, inor-
ganic compounds, persistent organic substances like EDCs, pharmaceuticals, drug 
metabolites, transformation products etc., which do persist even after conventional 
treatment of municipal wastewater. Several studies have warned that recently 
included nanoparticles of several metals are hazardous enough to plants directly and 
indirectly by affecting beneficial microbes that function in element cycling, pollut-
ant degradation and plant growth (Gajjar et al. 2009).

Adequate treatment of wastewater is necessary, and only then the treated waste-
water can be reused for irrigation and drinking purposes. When the pollutants are 
insoluble and do not make homogeneous phase with water then after covering some 
distances, impurities automatically silt down. Further, tributaries of rivers discharge 
huge amount of water in their main rivers; therefore, the level of pollution becomes 
substantially down. This is a natural method of water treatment/purification. But, in 
the modern world, the level of pollution became much high, the variety of pollutants 
became much diverse, the way and free flow of river water have not remained 
unchecked, and this natural method cannot be relied upon. Almost every city in 
India has its own water treatment plants, where domestic and industrial wastewater 
is treated before their discharge into water bodies. But there are so many industrial 
units in India which discharge their water without treatment process. There is no 
stringent regulatory framework in India that could check them. In this situation the 
National Green Tribunal and Supreme Court like apex institutions have intervened 
and ordered to close down such units which openly discharge heavy polluted water 
in rivers like Yamuna and Ganga.

Presently, treatment processes for urban wastewater are niggling and often fail to 
remove contaminants completely, and thus our terrestrial and aquatic environment 
are getting polluted through disposal and petty reuse applications. Inorganic ele-
ments are very difficult to be removed by advanced oxidation processes since they 
are highly water-soluble and cannot be effectively treated by membrane processes. 
In this way, the knowledge gaps in order to assess the impact of wastewater reuse 
for irrigation and drinking purposes must be filled and must be shared with our 
policy makers who can formulate adequate legislations for the regulatory purposes. 
Technological sophistication is needed vis-à-vis analytical chemistry, chromato-
graphic methods etc., for adequate treatment processes enabling identification and 
quantification along with separation of a number of organic xenobiotic compounds 
in treated wastewater. Technological improvements made us capable to reuse the 
severely polluted industrial/sewage wastewater even for drinking purposes, as 
recently seen in New Delhi, India’s national capital and one of the most populated 
cities and worst polluted cities in the world. The treated wastewater may be an 
attractive and promising source of irrigation water in many states of India conflict-
ing over river water distribution issues.
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11.5  Regulations to Improve the Water Quality

There is an urgent need of newer and flexible regulatory mechanism in the age of 
industrial and technological improvements which produce and discharge newer 
chemicals day by day. Substances fall under xenobiotic category must undergo 
extensive risk evaluation, such as toxicity to humans, ecotoxicity or persistence in 
the environment, before they are registered for sale. There are several institutional 
bodies in India, like the Ministry of Water Resources, Water Quality Assessment 
Authority, Central Ground Water Board, Central Pollution Control Board, Ministry 
of Environment and Forests, Centre for Science and Environment, State Pollution 
Control Boards, Central Water Commission etc. for risk evaluation that assess and 
quantify the level of pollutants in water with the help of other scientific bodies. 
These bodies have laboratories that are purely dedicated to testing of water quality, 
for instance, Central Water Commission (CWC) has been assigned for analyzing 
water samples that are collected from different sites under observation and thereaf-
ter, for analyzing in a three-tier laboratory system. The I-level labs are situated on 
major rivers and analyze seven water quality parameters, while II-level labs have 
been established in selected divisional offices of CWC and analyze 25 parameters 
related to water quality and III-level labs have been provided with the capability of 
analyzing about 41 parameters of water quality with special emphasis on analyses 
of heavy metals, toxic compounds and pesticides. Similar to CWC, Central Ground 
Water Board (CGWB) also monitors water quality, but it is specialized for testing 
groundwater and generating documentation work for chemical constituents of water 
on regional scale. Apart from this, CGWB also operates observations for wells and 
water constituents and analyzes water quality of deeper aquifer by tentative drilling 
operations, and these collected samples are then tested in laboratories for the qual-
ity. After the preparation of documents, these bodies share their data with the gov-
ernment and the Central Parliament formulates laws and legislations like ‘The Water 
(Prevention and Control of Pollution) Act, 1974’; ‘The Water (Prevention and 
Control of Pollution) Rules, 1975’; ‘The Water (Prevention and Control of Pollution) 
Cess Act, 1977’; ‘The Water (Prevention and Control of Pollution) Cess Rules, 
1978’; and ‘The Environment (Protection) Act, 1986’. However, many times these 
institutions work in uncoordinated manner resulting in doubtful data. Furthermore, 
pharmaceuticals and personal care products (PPCPs) and other recently detected 
compounds have not yet been the area of interest, both for treatment plants and 
workers studying in these areas.

The Ministry of Forest and Environment in India exercises its ecological impact 
assessment to test the sustainability and viability from ecological point of view. The 
Ministry of Forest and Environment in India monitors the formulation and imple-
mentation of programs and policies for preventing and abating entry of different 
kinds of pollutants in rivers and water bodies. It also monitors risks to the terrestrial 
ecosystem as untreated, partially treated or adequately treated wastewater ultimately 
goes to soil. However, in general, in context to the soil, environmental risks due to 
heavy metals have been sufficiently studied, but studies are very scarce for other 
substances.
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11.6  Conclusion

Xenobiotics have to be removed for the wastewater reclamation to assure existing 
per capita use of water and its reuse for the environment and plant, animal, and 
human health protection. Newer contaminants are introduced day by day in our 
ecosystem with the technical innovations, but at the same time, technical, regulatory 
and economic constraints related to water treatment process do not remove xenobi-
otics adequately leading to various human and animal health hazards. Governments 
have to step in to synchronize the risk evaluation data provided by different moni-
toring agencies and only then to formulate legislation regarding adequate removal 
of xenobiotics from wastewater and to reuse it, not only for irrigation purpose but 
also for drinking purpose too.
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12Silver Nanoparticle in Agroecosystem: 
Applicability on Plant and Risk-Benefit 
Assessment  

Rima Kumari and D.P. Singh

Abstract
Engineered nanomaterials are the major components among the broad range of 
xenobiotic particles. Nowadays scientists have gained higher attention on envi-
ronmental nanomaterial exposures to elucidate its effects on natural ecosystem. 
Most of the studies on nanoparticles are concerned with silver nanoparticle, 
exhibited wide applications in various fields, i.e., in agricultural field, in biotech-
nology and bioengineering, in textile industries, in wastewater treatment plants, 
as well as in cosmetic products. Silver nanoparticle plays a significant role in 
smart and modern agriculture due to its antimicrobial and pesticidal activity. 
Along with positive aspects, the possible toxic effects of silver nanoparticle on 
human and other living organism as well as on environment must not be over-
looked. Exposure to silver nanoparticle could exhibit an adverse effect on human 
cells, causing argyria, liver and kidney damage, respiratory problems, eye irrita-
tion, heart problem, etc. The interaction of nanosilver particles (AgNPs) to the 
plant – soil system – may influence the toxicity in ecologically important bacte-
ria soil biota and other living organisms. So detailed risk-benefit assessment is 
required to predict the environmental effect of nanosized silver particles (AgNPs) 
in the foreseeable future.

This particular research review highlighted the insight of nanosilver to assess 
its applicability on agricultural practices and to understand its possible risk 
impacts. In this chapter, both two issues, i.e., applicability and risk assessment 
related to the use of nanosilver in modern agriculture, are studied: (i) silver 
nanoparticle as antimicrobial, antifungal, pesticidal, and nanofertilizer effect on 
plants and (ii) in water treatment plant and (iii) risk assessment of the vast use of 
silver nanoparticle and their entry into the environment on biological life.
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12.1  Introduction

Nanotechnology is the promising field of interdisciplinary sciences in the past few 
decades. The products of nanotechnology, nanoparticles (particles in size range 
1–100 nm) due to its small size, have very high bioactivity. Nanoparticles are rap-
idly gaining interest by researchers because of its varied technological applications 
in industrial, medicinal, and agricultural fields. From the past decades, among the 
different kinds of nanomaterial, the nanosilver is extensively applied in the field of 
bioscience and biomedicine as biological tagging, biomarker, biomedical diagnos-
tics purpose, antimicrobial application, and pharmaceuticals, in minimizing envi-
ronmental pollution-related problems, targeted release of therapeutic drugs, and 
biosafety control, in treatment of cancer cells, as biosensor, and in material science 
(Salata 2004). It is estimated that of all the nanoparticles, silver nanoparticles 
(AgNPs) have approached the high demand of marketing and commercialization, 
ranging from disinfecting medical devices and pest resistance purpose to wastewa-
ter treatment plants. Its diverse properties like catalysis, good conductivity, chemi-
cal stability, and magnetic and optical polarizability electrical conductivity make 
these materials superior and indispensible (Abbasi et al. 2016).

Agriculture is the major resource for livelihood in most of the developing coun-
tries. The explosive growth of world population demands on agricultural productiv-
ity. Nanotechnology in the field of agriculture focuses currently on involvement of 
silver nanoparticles with unique properties to boost crop productivity. Silver 
nanoparticles are the most studied and utilized nanoparticles in the field of agricul-
tural research to improve the efficiency, yield, and sustainability of agricultural 
crops. It has long been known to have strong pesticidal, antifungal, antiviral, and 
bactericidal effects (Chen and Schluesener 2008). Due to its broad spectrum of 
antimicrobial activities, silver nanoparticles have the prospect to increase food qual-
ity, global food production, plant protection, detection and regulation of plant dis-
eases, monitoring of plant growth, and pest control for “sustainable agricultural 
development” (Kim et al. 2012; Khan and Rizvi 2014). Silver nanoparticles are 
highly stable and very well dispersive in aqueous solution. It is being used as foliar 
spray to stop fungi, molds, rot, and several other plant diseases (Singh et al. 2015). 
Moreover, silver nanoparticles are also used as an excellent plant-growth stimulator. 
It provides novel tool for the management of diseases, rapid disease detection, and 
minimizing nutrient losses in fertilization through an optimized nutrient manage-
ment (Pérez-de-Luque and Rubiales 2009). Apart from multiple beneficiary aspects 
of silver nanoparticle for sustainable growth of plant, there are few possible risks 
associated with these silver nanoparticles. Silver nanoparticles in agricultural soil 
affect many bacterial communities which are beneficial/harmful for plant and 
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environment (Panyala et al. 2008). The extensive use of nanosilver can lead to 
development of resistance among pathogens and induced a serious threat to micro-
bial diversity (Faunce and Watal 2010). Silver nanoparticle induced dose-dependent 
toxicity response that will be differing from each microorganism. Yang et al. (2014) 
have reported the toxic response of silver nanoparticles on some nitrifying bacterial 
species which play an important role in nitrification, and this sensitivity depends on 
the size of nanoparticles. Gavanji et al. (2012) reported the destructive effect of 
silver nanoparticles on beneficial Fungi Trichoderma viride and T. harzianum. 
These fungi act as biocontrol and growth-promoting agents for many crop plants 
due to their antagonistic properties against plant pathogens. Based on these reports, 
it is essential that the usage of silver nanoparticles should be in a good management 
in environment in optimized and regulated way because microorganisms play a very 
significant role in environment and any changes/damage in their growth can cause 
many problems for environment and biological life. This review article provides an 
overview of the risk-benefit assessments of most demanded and highly used silver 
nanoparticle in agricultural application (diagrammatically represented in Fig. 12.1).

12.2  Applicability of Silver Nanoparticles as Different Tools

Agricultural production is reduced worldwide every year due to various plant dis-
eases which passes major challenges for agronomists to control these plant diseases. 
Conventionally, pesticide applications release approx. of ~2 × 106 metric tons of 
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Fig. 12.1 Applicability of silver nanoparticles in agriculture: risk-benefit assessment on biologi-
cal system
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chemical-based pesticides worldwide, 90 % of which are dispersed to the air during 
application and as runoff and affected both the environmental hazards and applica-
tion costs to the farmer (Stephenson 2003). Consistent long-term use of synthetic 
pesticides also has risk of developing resistance in pathogen, reduces soil biodiver-
sity, and diminishes nitrogen fixation, increase bioaccumulation of pesticides. In the 
past decades, several studies have been carried out to develop harmless pest manage-
ment that pose fewer environmental hazards and have focused to overcome the lack 
of ongoing demands of synthetic pesticide. Nanotechnological applicability in crop 
disease protection offers a great promise in the management of insects and patho-
gens. Silver nanoparticle is very effective against phytopathogens with low toxicity 
and leads to broad range of applicability in pesticidal activity. It is efficiently used for 
site-targeted delivery of important agrochemical products and for diagnosis purpose 
tools in case of prior detection of plant diseases (Chowdappa and Shivakumar 2013).

12.2.1  As Microbicides

Silver nanoparticles act as strong antimicrobial agent due to strong inhibitory effects 
against various bacterial organisms (Clement and Jarrett 1994). Nanosilver exhibits 
high level of toxicity to the microorganism and lower toxicity to the mammalian 
cells. It was observed that the microbe-killing effects of silver nanoparticles were 
size dependent (Raza et al. 2017). Silver nanoparticles, mainly in the size, which 
ranged from 1 to 10 nm, attach to the surface of cell membrane and drastically dis-
turb its proper function like respiration and permeability (Morones et al. 2005). 
Applicability of silver nanoparticles against various microorganisms, i.e., 
Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella 
typhi, Syphilis typhus, Escherichia coli, and Vibrio cholera, has been well investi-
gated by several researchers (Rai et al. 2009; Zhou et al. 2012; Rajeshkumar and 
Malarkodi 2014; Franci et al. 2015).

12.2.2  As Fungicides

Silver nanoparticles are also responsible to develop eco-friendly fungicides because 
of its strong fungal-killing properties, used at targeting area of pathogen and inhibit-
ing their metabolic processes (Park et al. 2006). The negative effect of nanosilver 
against 18 different commercially harmful fungi was reported by Kim et al. (2012), 
and they found dose-specific inhibition effect of nanosilver on these fungi. The 
applicability of nanosilver for its antifungal activity was also reported against 
Sclerotinia minor, Rhizoctonia solani, and Sclerotinia sclerotiorum by Min et al. 
(2009). Jo et al. (2009) also investigated antifungal potency of silver nanoparticles 
against two plant-pathogenic fungi, Magnaporthe grisea and Bipolaris sorokiniana. 
The in vitro and in vivo efficacy of silver nanoparticles against powdery mildew was 
reported by Lamsal et al. (2011). They showed strong inhibitory effect of nanosilver 
on fungal hyphae and conidial germination with minimal effect on cucumbers and 
pumpkins.

R. Kumari and D.P. Singh



297

12.2.3  As Insecticides

Advance researches also highlighted the wide application of nanosilver particles for 
insecticidal application to kill the mosquitoes and flies. Nanosilver particles pos-
sessed excellent antilice and mosquito larvicidal activity, having vital application in 
community health improvement. There are tremendous researches investigating the 
efficacies of plant-synthesized AgNPs as mosquito larvicidal agent against different 
species of mosquitoes, i.e., Culex quinquefasciatus, Heteroscodra maculata, 
Rhipicephalus microplus, and Anopheles subpictus, and suggesting that biologically 
produced silver nanoparticles showed the strong larvicidal activity against mosquito 
larvae and it can be used as an ideal eco-friendly approach for their control 
(Marimuthu et al. 2011; Suman et al. 2013; Mondal et al. 2014). Jayaseelan et al. 
(2011) studied on the pediculicidal and larvicidal activity of synthesized silver 
nanoparticles (from leaf extract of Tinospora cordifolia) against the head louse 
Pediculus humanus and larvae of Anopheles subpictus and Culex quinquefasciatus 
and showed maximum mortality. Rouhani et al. (2012) evaluated the insecticidal 
activity of silver nanoparticles against the Aphis nerii. Soni and Prakash (2015) 
have described the larvicidal and pupicidal properties of biologically produced sil-
ver nanoparticles (from fungal strain of Aspergillus niger) against the mosquito 
larvae of Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi.

12.2.4  Mechanistic Study of Anti-pathogenic Action of Silver 
Nanoparticles

Silver nanoparticle exhibits the inhibitory effects against microorganisms at differ-
ent levels: (i) penetration of cell wall, (ii) turning of DNA into condensed form and 
losses their replication ability, and (iii) induced inactivation of bacterial protein by 
binding of its thiol group with Ag+ ion (Clement and Jarrett 1994). It has been sug-
gested that Ag+ ion strongly interacts with thiol group of vital enzymes and inacti-
vates them. By inactivating respiratory chain enzymes and proteins responsible for 
RNA and DNA replication, it causes bacterial cell death (Samuel and Guggenbichler 
2004; Elchiguerra et al. 2005). Oxidative stress by excessive generation of reactive 
oxygen species (ROS) may be considered to be another mechanism by which the 
cells die. Silver nanoparticles act in catalysis and may catalyze reactions using oxy-
gen (O2) directing as oxidizing agent, which results into excessive ROS generation 
(Stohs and Bagchi 1995). Carlson et al. (2008) studied the mechanistic study of 
silver nanoparticles on eukaryotic cells and suggest that this could inhibit the anti-
oxidant defense by minimizing the ratio of reduced glutathione (GSH) and oxidized 
glutathione (GSSG) and subsequently results to oxidative stress in the cell. Besides 
this, in prokaryotic cells silver ions induce generation of ROS by directly abrupting 
the superoxide dismutases and/or respiratory chain enzymes via intercalation with 
thiol groups. An overview of mechanism behind anti-pathogenic action of silver 
nanoparticle has been shown in Fig. 12.2.
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12.2.5  Nanosilver Encapsulation for Controlled and Target 
Delivery of Agrochemicals: Nutrient Management

The wide use of anti-pathogenic agrochemicals in agriculture field has emphasized 
interests in scientists to clearly understand about their effects on nontarget pests 
upon interaction with these pesticides. Silver nanoparticles are very stable and bio-
degradable and it also displays slow release of agrochemicals. So it can be used for 
formation of nanocapsules for slow and optimized delivery of agrochemicals, pesti-
cides, and fertilizers in agricultural practices (Chowdappa and Gowda 2013). 
Nanoencapsulated agrochemicals are designed to posses the desired properties 
including effective optimum concentration, time-controlled release, enhanced activ-
ity on target site, and least toxic effects (Tsuji 2001). It helps in slow release of 
agrochemical in controlled way to the particular host through dissolution, biodegra-
dation, diffusion, and osmotic pressure with specific pH. Nanotagged agrochemi-
cals reduce the damage to nontarget plant tissues and minimize risk of nonspecific 
chemical contamination in the surrounding environment (González-Melendi et al. 
2008; Rai and Ingle 2012).

Combinations of inorganic fertilizer mainly supply three nutrients: nitrogen (N), 
potassium (K), and phosphorus (P) to various crops at different growing conditions. 

Fig. 12.2 Mechanism behind anti-pathogenic action of silver nanoparticles
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To cope with increasing demands and limited supply of nutrient resources, such as 
phosphorus and potassium, more effective strategies are required to increase the 
yield and productivity of the agricultural crops. This brings out the idea of develop-
ing encapsulated fertilizers, in which NPK fertilizers are entrapped within nanosil-
ver to optimize nutrient management. Fertilizer encapsulated by the nanoparticles 
may deliver nutrient more efficiently, allowing their slower and controlled release in 
the soil. So on, application of these nanobased slow-release fertilizers is an impor-
tant aspect for the release of required amount of nutrients into the soil. It increases 
the efficiency of nutrient uptake in an optimized way, thus preventing nutrient loss 
as well as minimizing soil and water pollution. Therefore, nanoencapsulated fertil-
izers are relatively novel aspect, with potential commercial applications.

12.2.6  Role of Silver Nanoparticles in Wastewater Treatment 
and Water Purification

Nanoparticles can be effectively used for water purification because of their high 
surface area to volume ratio, its reactivity, strong functionalized approach, size- 
specific properties and higher affinity for various soil and waterborne contaminants, 
etc. Nanostructured membranes and filters have improved permeability, good flux 
rates, increased durability, reliability in purification, and reusability and thus are 
energy saving and cost-effective. In recent time, most of the products of water puri-
fication and disinfection systems use membranes impregnated with nanoscale silver 
particles. Silver nanoparticles have high efficiency of UV light photocatalysis. This 
characteristic helps in disinfecting/killing microbes during purification of drinking 
water (Dhakras 2011).

There are various studies in which experiments or proposed models concerning 
the behavior of silver nanoparticles in purification of drinking water and wastewater 
are reported (Kaegi et al. 2011; Fabrega et al. 2011; Quang et al. 2013; Gehrke et al. 
2015). According to the report of Mpenyana-Monyatsi et al. (2012), combined 
cation- resin silver nanoparticle is an excellent and cheaper filter which can be used 
to remove most of the possible contaminants from drinking water and groundwater 
bodies.

12.2.7  Applicability of Nanosilver Particles in Pesticide 
Mineralization

Water pollution is a major and serious environmental problem in India. Due to 
heavy loads of pesticides in soil, its runoff from soil to groundwater is one of the 
major causes of drinking water contamination. Chemical-based pesticides are resis-
tant to biodegradation and having carcinogenic effects on human health even at low 
levels. Traditional techniques of removal of pesticide (i.e., surface adsorption, pho-
tocatalysis, membrane separation, and biodegradation) are less effective, have long 
time consumption, and are expensive. As an alternative, nanosilver particles can be 
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applied for the degradation of pesticides to overcome these problems. In modern 
nanotechnological research, applicability of nanosilver particles in pesticide miner-
alization is well reported. Nair and Pradeep (2003) demonstrated the halocarbon 
mineralization and catalytic destruction by means of silver and gold nanoparticles. 
The study reveals that halocarbon pollutants (methyl dichloride, methyl trichloride, 
carbon tetrachloride, and chlorofluorocarbons (CFCs) undergo catalytic destruction 
and mineralization with silver and gold nanoparticles in solution forming amor-
phous carbon and metal halides as reaction by-products. Results indicated that 
nanoparticle mediated complete destruction of halocarbon pollutants within 2 h and 
reaction occurred efficiently even at room temperature. Manimegalai et al. (2011) 
reported the applicability of silver nanoparticle for removal of pesticide “chlorpyri-
fos” and “malathion” from water. These nanoparticles have been shown to com-
pletely remove the pesticides as it actively anchored the pesticide to its inert surfaces. 
Silver nanoparticles are also efficiently used for removal of “endosulfan” from con-
taminated water bodies. Endosulfan adsorbs on the surface of nanoparticle and gets 
separated and precipitates out from the water.

12.2.8  Nanosilver as Biosolid for Agricultural Purpose

Industrial effluents containing nanosilver are drain out into wastewater bodies. Due 
to the small size of silver nanoparticle, these particles are unable to filter out during 
wastewater treatment, and these effluents are concentrated down as sewage sludge, 
which is subsequently dried and can be applied as a fertilizer “biosolids.” Biosolids 
are the processed or refined sewage sludge effluents from wastewater treatment 
plants. Colman et al. (2013) used silver nanoparticles containing biowaste products 
as a fertilizer and/or additive nutrient supplement in soil of agricultural lands to 
improve its fertility. But in recent work its detrimental effect has also been shown. 
In such biosolids, Ag is predominantly present as Ag2S form, and sulfidation of Ag 
potentially alters the properties of AgNPs including their surface charge and result-
ing to release Ag+ ion which may exhibit toxicity to environment and biological life 
(Reinsch et al. 2012).

12.3  Toxicological Concern of Nanosilver Particles

Along with several beneficial aspects, nanosilver particles (AgNPs) are also an 
emerging environmental contaminant due to its wide application. With the tremen-
dous uses of nanosilver (AgNPs)-based products, it is expected that it gets accumu-
lated into the environment (Blaser et al. 2008). With the tremendous applicability of 
nanosilver particle (AgNP) as well as their possible release in the environment, 
there is an urgent need to critically discuss on potential health and environmental 
hazards of AgNPs, especially their impacts on biological systems that may help to 
facilitate the applicability of safer nanosilver products in the future. The potential 
risk of silver nanoparticles (AgNPs) toward human health is by means of its entry 
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into human body via inhalation exposure route. Characterization of nanoparticle, 
i.e., size and surface, physicochemical properties, its crystalline nature, and the 
potential of release of silver ion are considered to be important factors in determin-
ing its toxicological effect on the environment. Strong oxidative potential of AgNP, 
surface area, and the release of ionic silver to surrounding environments trigger 
multiple negative effects on the structures and functions of cells, which finally 
induce cytotoxicity, genotoxicity, immunological responses, and even cell death. 
Water ecosystems are especially prone to exposure. Along with this, changes in 
microbial sensitivity to nanosilver particles are also the critical aspect of ecosystem 
risk.

12.3.1  Nanosilver Toxicity Response on Human Being

Tremendous use of nanoparticle-based product in world market leads to major 
global challenges about risk of its overexposure in human body (Asharani et al. 
2010). On the basis of laboratory-based researches, silver nanoparticles are toxic to 
several cell lines, such as fibroblast, monocytes, liver cells, and germ line cells caus-
ing apoptosis, necrosis, and ROS generations that induced toxicity in the liver, kid-
ney, and spleen, as main target organs. It also induces chronic respiratory problem 
in lungs, impairment and dysfunction of brain cells, and immunotoxicity via affect-
ing olfactory mucosal cells and olfactory nerves. In recent studies, Kim and Shin 
(2014) reported on damaging effect of silver nanomaterials on human blood cells 
such as hemorheological, cell deformability and aggregation and coagulation of 
blood cells. Asharani et al. (2010)) reported that even small dose of silver nanopar-
ticles have the potency to affect cytotoxicity and genotoxicity parameters of human 
being. Also, they suggested that the applications of nanosilver particles should be 
minimized because of its toxicity to normal cells.

12.3.2  Nanosilver Toxicity Effect on Soil Microorganism

There are number of researches exists in the sector of nanosilver toxicity, to show 
the detrimental impacts of nanosilver on eco-friendly soil microorganism (Silver 
and Phung 1996; Hänsch and Emmerling 2010). When nanoparticles are applied as 
a fertilizer on agricultural land, then it shows lethal effects to the soil microorgan-
isms above the safe limit (Schlich et al. 2013). Nanosilver toxicity response on soil 
may alter ecosystem productivity and biogeochemistry by disturbing the soil 
microbes as they play the active role in management and recycling of nutrients in 
the ecosystem and optimizing fertility of soil, ecosystem sustainability. Plants also 
depend on soil bacteria and fungi for absorption of mineral and nutrients from the 
soil. Therefore, excess concentration of nanosilver affects the plants, whose growth 
is dependent on soil-dwelling microorganisms.
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12.3.3  Nanosilver Toxicity Response on Plants

Nanosilver also induced the strong toxic effect on plant metabolism, i.e., growth 
traits, biochemical and physiological aspects, as well as genotoxic and cytotoxic 
effects due to silver-induced oxidative stress. Silver ion (Ag+) from nanosilver par-
ticles is responsible for detrimental effects on plant metabolism (Stampoulis et al. 
2009). The release of Ag+ from nanosilver particles has been shown to restrict the 
activation of ethylene, plant hormones, and inhibit mitochondrial function (Knee 
1992). In the past, various researchers evidenced that silver nanoparticle induced 
inhibitory effects in higher plants by inhibiting seed germination, root elongation, 
growth and metabolic processes (Yin et al. 2011; Hawthorne et al. 2012; Vannini 
et al. 2013). As reported, AgNPs strongly reduced the growth of the annual grass 
species (Lolium multiflorum) (Yin et al. 2011). El-Temsah and Joner (2012) showed 
the toxicity response of AgNP in plant species Lolium perenne, Hordeum vulgare, 
and Linum usitatissimum at 10 mg AgNP L−1 concentration. Kumari et al. (2009) 
reported the cytotoxic effect of nanosilver (AgNP) on Allium cepa cells demonstrat-
ing its lethal effect on chromosomal structure such as sticking and clumping of 
chromosomes, chromosomal breakage, and disturbance in metaphase stage of cell 
cycle as well as disintegration of cellular integrity. The observed effects of genotox-
icity and cytotoxicity were significantly correlated with generation of superoxide 
radicals resulting in peroxidative damage of lipid membrane in these plant cells.

12.4  Conclusion

The benefits of nanosilver application in agro-practices as well as harmful aspects 
due to excessive utilization and accumulation in on soil, plant, and human life. 
Present review provides a short overview on applicability of silver nanoparticles in 
agricultural practices in various aspects along with related risk with overexposure of 
silver nanoparticles in environment and biological life. Nanosilver particles (AgNPs) 
have great attention in agricultural practices such as in crop protection and minimi-
zation of crop loss by acting as pesticides. Silver nanoparticles may also be used in 
genetic engineering of plant and need further advance researches. For example, tar-
geted delivery of pest resistance genes are introduced in sensitive plants for devel-
oping resistant varieties, which will minimize expenses on agrochemicals required 
for disease control. In recent decades, advance researches are being carried out by 
using silver nanoparticle-based biosensors for detection and forecasting of pest and 
pathogens in agricultural crops. As silver (Ag) is the best conductor among metals 
and so Ag nanoparticles may facilitate more efficient electron transfer in biosensor. 
But apart from multiple positive aspects of silver nanoparticle for renovation and 
modern development of agricultural aspects, it’s also noteworthy that detrimental 
effect of their overexposure due to silver (Ag+) toxicity on environment and biologi-
cal life cannot be overlooked.
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Abstract
Currently, remediation of xenobiotic compounds (heavy metals and hydrocar-
bons, pesticides, persistent organic pollutants (POPs) in the soil and water has 
become a major problem. Xenobiotic compounds in the soil exert alternations in 
the functionality of ecologically and agronomically important soil microflora. 
These chemicals get accumulated in lipid tissues of higher organisms and cause 
many problems to the human health (like immunosuppression, hormone disrup-
tion, reproductive abnormalities and cancer). Remediation of xenobiotic pollut-
ants by the conventional approaches based on physicochemical methods is 
economically and technically challenging. But bioremediation techniques based 
on plant roots and their associated microbes are the most promising, efficient, 
cost-effective and sustainable technology. A variety of chemicals like organic 
acids, amino acids and phenolic compounds are secreted by such plants as root 
exudates. These compounds play a significant role in the interaction between 
plant root and microbes and also are helpful to stimulate the survival rate and the 
efficiency of microbes against xenobiotic pollutants. In this chapter, we describe 
how plant root-associated microbes help in the remediation of xenobiotic com-
pounds and the impact of xenobiotic compounds on microbial community as 
well as their application feasibility on the basis of these attributes.
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13.1  Introduction

Xenobiotics are artificially synthesized chemical compounds that are foreign to the 
biotic system. The major sources of xenobiotic compounds are (i) chemical, petro-
chemical and pharmaceutical industries that generate huge amounts of xenobiotic 
and synthetic polymers; (ii) pulp and paper bleaching (chlorinated organic com-
pound); (iii) mining, which releases heavy metals into abiotic and biotic cycles (N2 
cycle, carbon cycle, phosphorus cycle, etc.); and (iv) chemical-based agricultural 
practices (like usage of pesticide and chemical fertilizer) (Thakur 2006). According 
to Esteve-Nunez et al. (2001), these organic compounds are not easily degenerated 
by microbial enzymes in soil and water, so they are accumulated in the environmen-
tal system. Having unnatural structural feature, they are resistant against biodegrada-
tion or undergo incomplete degradation or biotransformation. Remediation of 
xenobiotic pollutant by conventional approaches based on physicochemical methods 
(land filling, recycling, pyrolysis and incineration) is economically and technically 
challenging. But bioremediation techniques based on plant root and their associated 
microbes for the removal of pollutants are the most promising, efficient and cost-
effective and sustainable technology (Verma et al. 2014). Plant-associated microbes, 
for example, endophytic bacteria (which occur naturally inside the plant) and rhizo-
spheric bacteria (near the roots of plant), play an important role in the bioremediation 
of xenobiotic compounds (Verma et al. 2016) (Table 13.1). The rhizosphere region of 
plants play a significant role for making communication between plant roots and 
microbes to help in nutient translocation from soil to plants. Some organic com-
pounds such as ions, free oxygen, enzymes, mucilage phenolic compound, sugar, 
amino acid and protein are secreted by the plants that play important role in the 
interaction of plant roots with microbe. It also boosts up the microbial activity against 
xenobiotic pollutants. On the basis of root-microbe interaction mechanism, the rhi-
zosphere system plays a unique role for the remediation of contaminated soils. This 
type of remediation is called as rhizoremediation; in this process, rhizosphere micro-
organisms degrade the xenobiotic compounds in nontoxic organic compounds in the 
soil with the help of plant rhizosphere system; however, in this method, plants do not 
uptake degradable products resulting from remediation of xenobiotic compounds; 
they only provide a suitable habitat for rhizosphere microorganisms that proliferate 
and increase the survival rate of microbes in the contaminated soils.

13.2  The Fate of Xenobiotics in Soil

When a xenobiotic enters into the soil, it may be subjected to two basic processes 
(Cheng 1990).

13.2.1  Transfer Processes

When xenobiotic compounds enter into the environment, they are accumulated in 
the system without altering their structure through transfer process such as 
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adsorption, retention by crops, runoff movements in dissolved or sorbed state, dif-
fusion and vapour-phase diffusion, and sorption and desorption to soil colloid sur-
faces. During this process, sorption and desorption mechanisms are responsible for 
the interactions at interfaces between organic and inorganic soil colloids and xeno-
biotic. The abiotic soil components involved in the interaction with xenobiotic are 
pure and dirty clays, humic substances and humic-clay associations. The established 
interactions between organic and inorganic soil colloids and xenobiotic may affect 
the movement of xenobiotic, their availability for plant or microbial uptake, their 
transformation by abiotic or biotic agents and their influence on soil processes 
(Gianfreda and Rao 2008).

13.2.2  Degradation Processes

These processes include alteration of the chemical structure of the organic chemi-
cals. It occurs through chemical, biological and photochemical transformations. 
The biotic components involved in the biological degradation of xenobiotic are 
microorganisms, plants and their enzymatic proteins as well as intra- or extracellu-
lar enzymes (Gianfreda and Rao 2008).

13.3  Rhizoremediation

It is a bioremediation technique based upon association of microbes with plant 
roots that intiate the removal of xenobiotic compounds from the contaminated 
sites. It is the most promising, efficient and cost-effective technology and sustain-
able technique. The growing plant secretes root exudates that play a role in root-
microbe interaction and also help in the stimulation of the growth rate and tolerance 
or degrading activities of microbes against xenobiotic pollutants. A diverse range 
of compounds as root exudate (like organic, amino and fatty acids, carbohydrates, 
vitamins, nucleotides, phenolic compounds, polysaccharides and proteins), present 
in the rhizosphere system, provide a better habitat for the rhizosphere microbio-
mass. Subsequently, the presence of a diverse range of root exudates in rhizosphere 
system, responsible for the diversity and proliferation of microbiomes in rhizo-
sphere system, is one of the significant factors behind the story of xenobiotic deg-
radation.Zelenev et al. (2005) found that the percentage of cultivated microbes 
increases from <1 % in bulk soil to 2–7 % in the rhizosphere. Thus, root exudate is 
one of the most important factors to stimulate the growth of rhizospheric microbi-
omes (Rohrbacher and St-Arnaud 2016). Catabolism of aromatic compounds in 
bacteria has revealed that various enzymes (e.g. monooxygenase, dehydrogenase, 
hydrolase, oxygenase, isomerase, etc.) involve in the conversion of toxic chemicals 
of pesticide into various intermediate products such as protocatechuate and (sub-
stituted) catechols. These dihydroxylated intermediates (protocatechuate and cat-
echols) directly enter into one of the two possible pathways, either a 
meta-cleavage-type or an ortho-cleavage-type pathway, thereafter supplied to 
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central metabolic routes such as the tricarboxylic acid cycle to form biochemical 
products (Verma et al. 2014) (Fig. 13.1)

13.3.1  Role of Root Exudates: Rhizoremediation of Xenobiotic 
Compounds

In rhizosphere system, root exudates like organic acids (citric, malic, succinic, 
oxalic and pyruvic), carbohydrates (glucose, xylose, fructose, maltose, sucrose, 
ribose), amino acids, fatty acids, proteins, enzymes, nucleotides and vitamins are 
the important nutrient resources for enhancing the survival rate of microorganisms 
under stress or polluted condition (Rohrbacher and St-Arnaud 2016). Typically, 
most microorganisms have sensory systems that guide them to interact with roots. 
The microbes obtain energy and nutrients for their survival through the root exu-
dates. Corgié et al. (2003) reported that phenanthrene (PAH) biodegradation reached 
86 % in the first 3 mm from the roots, 48 % between 3 and 6 mm and 36 % between 
6 and 9 mm. They observed a parallel bacterial gradient, where high numbers of 
heterotrophs and PAH-degrading bacteria were close to the roots. Similarly, Corgie 
et al. (2004) found that, in the rhizosphere of perennial rye grass (Lolium perenne 
L.) growing in a petroleum hydrocarbon-contaminated soil, the highest rates of 
hydrocarbon degradation and the microbial degraders were mainly found within 
3 mm of the root surface. In a phenanthrene-contaminated soil, the major phenan-
threne had degraded by Pseudoxanthomonas sp. (Gammaproteobacteria) and 
Microbacterium spp.(Actinobacteria) (Cébron et al. 2011).

But when root exudates of rye grass were added, the population of phenanthrene 
degraders shifted mostly towards the actinobacterium, Arthrobacter sp., the 
Gammaproteobacteria Pseudomonas stutzeri and Pseudoxanthomonas mexicana. 
Consequently, Rentz et al. (2005) observed that the firmicutes Bacillus sp., 

Fig. 13.1 Rhizoremediation of xenobiotic compounds
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Paenibacillus sp. and Pseudomonas sp. were able to use both root exudates and 
phenanthrene as carbon source. Arthrobacter sp. was shown to degrade hydrocar-
bons and more specifically phenanthrene (Radwan et al. 1998; Seo et al. 2006). 
Kozdrój and van Elsas (2000) also found Pseudomonas and Arthrobacter as domi-
nant active phenanthrene degraders either in the presence of artificial root exudates 
or with phenanthrene alone (Rohrbacher and St-Arnaud 2016).

13.4  Factors Affecting Rhizoremediation

The physicochemical properties of rhizospheric soil compared to bulk soil affect the 
rate of degradation of organic compounds in soil, because its properties govern the 
sorption bioavailability and the persistence of xenobiotics in the soil (Pal et al. 2006; 
Zacharia 2011). Gold et al. (1996) reported that soil pH and clay content greatly 
affected the persistence of pesticide (chlorpyrifos, cypermethrin, permethrin, fen-
valerate, etc.) under field conditions.

13.4.1  Soil Moisture

Water acts as a solvent for organic compound (xenobiotic) movement (Wardle and 
Parkinson 1992) and diffusion and is also essential for microbial function. The per-
centage of pesticide degradation increases with water content, because the rate of 
diffusion of atmospheric oxygen into soil is limited and anaerobic conversion of 
pesticide can succeed over aerobic degradation. However, poor oxygen transfer in 
high water content soil can retard or accelerate (Skopp et al. 1990) the pesticide 
degradation. Schroll et al. (2006) showed an optimum mineralization for isopro-
turon, benazolin-ethyl and glyphosate at the soil water potential of−0.015 MPa, 
whereas mineralization of pesticide was significantly reduced when soil moisture 
becomes near to water-holding capacity of soil. Soil moisture affects not only the 
activity but also the diversity of soil microbes (Bouseba et al. 2009).

13.4.2  Temperature

The effect of temperature on the rate of xenobiotic degradation depends on their 
molecular structure. Adsorption of pesticide in soil is affected by the temperature, 
due to the alteration in the solubility and hydrolysis of pesticide in soil (Burns 1975; 
Racke et al. 1997). Rani and Sud (2015) reported that increase in temperature is 
responsible for desorption process of absorbed pesticide, due to weak adsorption on 
tested soil. Thus, low level of temperature (below 20 0C) may be required for reme-
diation process, because at this temperature pesticide is immobile in soil.

13.4.3  Soil pH

Soil pH plays an important role in abiotic/biotic degradation and also in the adsorp-
tion of ionic pesticide (Pal et al. 2006, Chaplain et al. 2011). Mostly pesticides are 
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formulated in powder form and are soluble in water. Therefore, shifting of pH deter-
mines the degradation of pesticide. Commonly, insecticides are more liable to 
hydrolysis compared to fungicide and herbicide. According to Deer and Beard 
(2001), carbamate organophosphate insecticides are more susceptible than chlori-
nated hydrocarbon to hydrolysis. Thus, soil pH influences the sportive behaviour of 
pesticide molecules on clay and organic surface.

13.4.4  Soil Organic Matters

Soil organic matter plays a major role in the regulation of retention and mobility of 
pesticide in soil. According to some studies organic matter has dual activity such as 
it can enhance the microbial activities by co-metabolism (Pal et al. 2006) or it can 
decrease the microbial mediated pesticide degradation by stimulating adsorption 
process (Thom et al. 1997; Perucci et al. 2000; Pal et al. 2006). More than 1 % of 
organic matter is significant (Burns 1975) for the occurrence of an active autochtho-
nous microbial population that can degrade the xenobiotics.

13.5  Challenges of Remediation Technology

According to Dixon (1996), in the United States alone, restoration of all contami-
nated sites will cost approximately $1.7 trillion. In addition, the conventional meth-
ods such as incineration, landfilling and excavation of soil are not sufficient to clean 
the contamination sites, and also these methods require much more cost and labour 
and also cause some environmental problems like water pollution and air pollution 
and produce toxic compounds. Therefore, demand of the time is to develop alterna-
tive methods to refurbish contaminated sites in a cost-effective, less labour- intensive, 
safe and environmental friendly way. One of such alternative methods is bioreme-
diation, in which microbes work on environmental pollutants and degrade pollutant 
into nontoxic compounds (Caplan 1993; Dua et al. 2002). Bioremediation has main 
advantages like it can be applied in situ without the removal and transport of pol-
luted soil and without the disturbance of the soil matrix and other bacterial degrada-
tion and usually results in complete mineralization of the organic pollutants.

13.5.1  Improvement in Rhizoremediation

During design of rhizoremediation process, researcher should focus on the follow-
ing aspects:

• Screening of microorganism for remediation of xenobiotic compounds from pol-
luted soils depends upon the presence of degradation ability with production of 
bio-surfactants properties (Płociniczak et al. 2011), because bio-surfactants facili-
tate the solubilization of xenobiotic compounds (Kuiper et al. 2004) and they also 
show a combined effect with chemotaxis processes, to proliferate and spread in 
polluted soil to increase the efficacy of rhizoremediation (Gerhardt et al. 2009).

13 The Significance of Plant-Associated Microbial Rhizosphere for the Degradation…



314

• Formulation of the microbial consortium for degradation of xenobiotic com-
pounds is found to be more efficient than the introduction of one single strain 
with the complete pathway, because each microbe of consortium plays a particu-
lar role in catabolic degradation pathway, involved in the degradation of a certain 
pollutant (Rahman et al. 2002).

• Selection of plant-microbe pairs, wherein a suitable rhizosphere strains is intro-
duced together with a suitable plant (coating microbes on plant seed) to enhance 
the rhizoremediation, because introduced microbes might settle down on the root 
rhizosphere with indigenous population and enhance the efficiency of root colo-
nization with addition of degrading microbes (Kuiper et al. 2001).

13.6  Conclusion

Currently, the remediation of xenobiotic compounds require attention to develop 
sustainable and green bioremediation technology at worldwide, because existing 
traditional technologies are very costly and labour-intensive and also act as a threat 
to the environment. Therefore, the application of rhizospheric microorganisms (like 
bacteria, fungi and actinomycetes) in contaminated soil help to make better associa-
tion with plant roots for the degradation of xenobiotic compounds without causing 
any environmental problems and also provides efficient, economic and sustainable 
green remediation technology. So the need of the hour is to focus research initiatives 
on exploration of rhizospheric system in stress environment and find out the pres-
ence of specific gene, enzyme and soil’s physical parameter (like soil pH, organic 
matter, temperature, water coefficient of soil) to enhance microbial quality that is 
responsible for biodegradation.
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14Biodegradable Polyhydroxyalkanoate 
Thermoplastics Substituting Xenobiotic 
Plastics: A Way Forward for Sustainable 
Environment
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Abstract
Conventional plastics such as polyethylene, polypropylene, polystyrene, 
poly(vinyl chloride), and poly(ethylene terephthalate) are high-molecular-weight 
polymeric materials which vary from 50,000 to 1,000,000 Da. They have attained 
unique position in modern material technology. They are omnipresent in today’s 
society with range from ordinary to high-tech, from vital to entirely lavish. These 
plastics have diverse feasible application in every field of industries/factories 
ranging from automobiles to medicine owing to their promising material proper-
ties, viz., lightweight, stability, long durability, economic viability, and feasibil-
ity to manipulate a range of strengths and shapes. The resistance to degradation, 
stability, and long durability are some miracle features associated with these 
plastic materials while in use. However, such properties become detrimental to 
the environment when out of usage, being synthetic polymers and exceptionally 
recalcitrant to microbial attack, i.e., nonbiodegradable (xenobiotic polymeric 
materials). To combat the menace posed by plastics to the environment, several 
efforts have been made for developing the products that are eco-friendly and 
degradable with comparable material properties as that of conventional plastics. 
This chapter presents a revolutionary insight with various technological strate-
gies to overcome the detrimental effects of conventional plastics with special 
emphasis to completely biodegradable polyhydroxyalkanoate thermoplastics.
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14.1  Introduction

14.1.1  Polymers

Polymers are the leading products of contemporary chemical industry that consti-
tute the pillar of existing society. A polymer is a high-molecular-weight substance 
produced through the unification of vast number of small molecules that form the 
repeating entities known as monomers. The process by which the monomeric units 
are converted into polymeric substances is called polymerization (Verma et al. 
2007). Day-to-day life have become comfortable and vibrant because of invention 
and wide-range uses of polymers, viz., plastic serving dishes, cups, nonstick pans; 
automobile tires and seat covers, raincoat, plastic pipes and fitting, plastic bags; 
TV, radio, and computer cabinets; synthetic glues, wide range of synthetic fibers 
for clothing; and flooring materials and materials for biomedical and surgical oper-
ations (Verma et al. 2007). Diverse applications of polymer in every walks of 
human being are now to such extent that no one imagines of the materialistic world 
without plastics. Among all the polymers, conventional plastics have distinctively 
categorized as miraculous polymer in contemporary material technology owing to 
most desirable material properties, i.e., physical (melting temperature, glass-tran-
sition temperature, thermal stability, and crystallinity) and mechanical properties 
(Young’s modulus, tensile strength, and elongation to break). Table 14.1 depicted 
the properties of some common conventional plastics. These eye-catching 

Table 14.1 Material properties of some common conventional plastics

Material property Polypropylene
Low-density 
polyethylene Polystyrene

Poly(ethylene 
terephthalate)

Tm (°C) 176 130 110 262

Tg (°C) −10 −36 21 3400

Crystallinity (%) 50–70 20–50 – –

Young’s modulus 
(Gpa)

1.7 0.2 3.1 2.2

Tensile strength 
(Mpa)

38 10 50 56

Elongation to break 
(%)

400 620 – 7300

Thermal stability,  
Td(5 %)

338 387 – –

Singh et al. (2013) and Kumar et al. (2015)
Tm melting temperature, Tg glass-transition temperature, Td(5 %) temperature at 5 % weight loss
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properties facilitate conventional plastics for widespread applications in the medi-
cal field, constituents in automobiles, construction, sport and leisure equipment, 
packaging materials, routine home appliances, computer equipment, cell phones, 
printers, etc. (Kumar et al. 2015).

14.1.2  Conventional Plastics

The term “plastic” originates from the Greek word “plastikos” that means compe-
tency to precast into various forms/shapes (Joel 1995). The first true conventional 
plastic called Bakelite (a polymer of phenol and formaldehyde) was discovered in 
1907 by Belgian chemist Leo Baekeland followed by successive production of 
numerous other conventional polymers (Thompson et al. 2009). Currently, the 
exploited conventional plastics are composed of organic and inorganic constituent, 
viz., carbon, silicon, hydrogen, nitrogen, oxygen, and chloride; the fossils fuel and 
natural gases are the precursors for synthesis of these plastics (Seymour 1989). The 
polymers that are manufactured in the laboratories and industries are termed as 
synthetic polymers or man-made polymers. Thus, high-molecular-weight conven-
tional plastics, such as polyethylene, polypropylene, polystyrene, etc., are also syn-
thetic polymers.

14.1.2.1  Classification of Polymers/Conventional Plastics
The mechanical properties of polymers are function of intermolecular forces, such 
as van der Waal’s forces and hydrogen bonds persisting in the macromolecules and 
the simple molecules too. However, their impact in simple molecule is less effective 
than the macromolecules/polymers. Thus, lengthier the chain, stronger the impact 
of intermolecular forces (Verma et al. 2007).

Based on the nature of principal intermolecular force of attraction, polymers are 
broadly categorized into the following four types, i.e., elastomers, fibers, thermo-
plastics, and thermosetting polymers (Verma et al. 2007; Bernard 2014). Elastomers 
are the amorphous polymers, where polymer chains are held by feeblest force of 
attractions. In other words, they behave as rubber or rubberlike elastic materials. 
They are composed of arbitrarily coiled molecular chains with limited cross-links. 
Such polymer can be extended approximately ten times more than their normal 
length. Nevertheless, they regain their original state as soon as the stretching force 
is removed. In contrast, fibers are the polymers that involve reasonably strong inter-
particle forces such as hydrogen bonds with high tensile strength as well as high 
modulus. Nylon is one of the best examples of this type of polymers (Verma et al. 
2007). Thermoplastics involve interparticle forces of attraction that are in between 
those of elastomers and fibers. These plastics, viz., polyethylene, polypropylene, 
polyvinyl chloride, polystyrene, etc. are common and could be easily precast into 
preferred shapes through heating followed by cooling at room temperature. These 
types of plastics soften on warming and transformed into fluids, which upon cooling 
become solid. Interestingly, such plastics involve no cross-linking between the 
polymer chains. They are proficient to undergo such reversible alterations upon 
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warming and cooling repetitively (Verma et al. 2007). On the other hand, on heating 
the thermosetting plastics, Bakelite, for example, becomes hard and infusible as a 
result of excessive cross-linking among the polymer chains, thereby producing 
three-dimensional networks of bonds (Verma et al. 2007; Bernard 2014).

14.1.2.2  Methods for the Synthesis of Conventional Plastics
Addition and condensation reactions are the basis for synthesis of conventional 
plastics. Addition polymers involve the repetitively addition of monomers leading 
to the formation of long chains without the removal of any by-products (Verma et al. 
2007). The monomers involved in the synthesis of such polymers are unsaturated in 
nature and are typically the derivatives of alkenes. Polyethylene, polypropylene, 
orlon, poly vinyl chloride, etc. are good examples of addition polymerization 
(Verma et al. 2007). In contrast, condensation polymer involves the formation of 
polymer as a result of condensation of two or more than two monomer units with the 
removal of simple molecules like water, alcohol or ammonia, etc. Dacron, Bakelite, 
and nylon-6,6 are examples of this type of polymer (Verma et al. 2007).

14.1.2.3  Application of Conventional Plastics
The exploitation of widespread uses of conventional plastics (as depicted from 
Table 14.2) is usually linked to their fundamental structures, desirable material 
properties (Table 14.1), possibility to regulate a range of strengths and shapes, 
hydrophobicity, lightweight, economic feasibility, and long durability (Bernard 
2014; Kumar et al. 2015). These are made up of variable lengths of hydrocarbons as 
backbone and bound merely with hydrogen apart from other carbons. Remarkably, 
additional molecular constituents could be introduced into the backbone of conven-
tional plastics that give rise to novel properties and thus opening viability towards 
producing wide range of useful commodities (Bernard 2014). These plastics are 
largely exploited as packaging materials for commodities/products, such as phar-
maceuticals, food, cosmetics, and chemicals including detergents. Almost 30 % of 
the conventional plastics are exploited globally for packaging uses that further 
enhancing at a rate of 12 % per year (Sabir 2004; Shah et al. 2008). The extensively 
exploited conventional plastics for packaging involves polyethylene (low-density 
polyethylene and high-density polyethylene), polypropylene, polystyrene, polyvi-
nyl chloride, polyurethane, poly(ethylene terephthalate), poly(butylene terephthal-
ate), and nylons (Vona et al. 1965; Shah et al. 2008).

14.1.3  Conventional Plastics: Emerged as Alarming Xenobiotic 
Materials

The exploitation/utilization of conventional plastics for various application is found 
to be steady (Fig. 14.1) among the developed counties of the world including Europe 
(Plastics Europe 2015). However, the exploitation of these plastics in the developing 
counties has increasing trend (Fig. 14.1). China is the major manufacturer of con-
ventional plastic materials followed by Europe (Fig. 14.2). It is anticipated that 
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there will be demand of 66.5 MT of plastics in Europe by 2020 and worldwide pro-
duction of plastics could be increased up to threefold in 2050 (Plastics Europe 2010; 
European Commission 2013; Plastics Europe 2015).

Resistant to degradation, stability, and prolonged durability are the essential fea-
tures when conventional plastics are in use. Nevertheless, such miracle possessions 
of plastic materials turn out to be detrimental to the environment when out of usage. 
They remain as such for several years when cast-off in environment as refuse/debris 
due to predominantly xenobiotic nature, i.e., biologically inactive or recalcitrant to 
microbial attack (Shah et al. 2008; Kumar et al. 2015). As a consequence, these 
plastics emerged as one of alarming xenobiotic materials worldwide. Xenobiotic 
compounds are anthropogenic materials present unnaturally in living or biological 
systems/environment uncommonly in high amounts. The feasible health hazard of a 
xenobiotic material is a function of its perseverance in the environment and the 
toxicity of the chemical class (Wilson et al. 1985). Therefore, the reason for the 
prolonged persistence of conventional plastics in the environment linked to their 
synthetic polymer-specific chemical structures that give rise to exceptional physico-
chemical features with a long-lasting existence still in adverse or harsh environ-
ments. The depolymerization is a main requisite for breakdown or degradation of 
polymeric material that result into elimination of physicochemical properties 
responsible for long-lasting life of the synthetic polymer/plastics (Kawai 2010). 
Moreover, the microorganisms, such as fungi and bacteria, are also incompetent to 
evolve proficient biological machinery systems for their degradation/metabolism 
(Bernard 2014). Hence, these polymeric materials not only emerged as wonder 
materials but also as indispensable evils.

Million tons of conventional plastics are produced worldwide, and substantial 
amounts of these polymeric materials access the environment especially as indus-
trial refuses/wastes, where animals are killed due to clogging of cast-off plastics in 
the gut or entangled in waste plastics (Fiechter 1990; Shimao 2001). Considering 
these facts, the feasible ways for attaining plastic garbage-free environment involve 
dumping of plastic wastes at landfill sites, incineration, and recycling (Ray and 
Bousmina 2005). Table 14.3 summarizes methodologies for achieving plastic waste 
material-free environment. However, these viable approaches associated with some 
shortcomings (Table 14.3) owing to which the world is fueling towards the develop-
ment of eco-friendly and sustainable plastics, i.e., biodegradable plastics/
bioplastics.

14.1.4  Bioplastics: Eco-Friendly Alternative to Conventional 
Plastics

Bioplastics/biodegradable plastics defined as polymeric materials that are degrad-
able as well as eco-friendly in nature leading to mineralization (Ray and Bousmina 
2005). Bioplastics as innovative field of research is relatively young because the 
first proof of these polymeric substances was acknowledged less than a century ago 
(Lemoigne 1926). They are categorized into four types, i.e., photodegradable, 
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semi-biodegradable, chemically synthesized, and polyhydroxyalkanoate thermo-
plastics. The backbone of the photodegradable plastics/polymers that are associated 
with light-sensitive groups is not used comprehensively because of their non-
degradability in landfill. Such plastics fail to undergo degradation owing to scarcity 
of sunlight in landfill. Semi-degradable plastics are made up of starch and small 
fragments of conventional plastics such as polyethylene fragments. In such plastics, 
starch plays the role of filler as well as cross-linking agent, thereby, holding together 
the small fragments of conventional plastics (for instance, polyethylene). 
Biodegradation is linked with molecular size, i.e., the greater the molecular size, the 
lower the probability towards biodegradation. The properties of starch and polyeth-
ylene differ significantly that result into low compatibility of starch and polyethyl-
ene blend based semi-biodegradable plastics (Shujun et al. 2006). Microorganism 
found to proficiently degrade the starch but failed to attack and act on polyethylene 
fragments (Johnstone 1990). On the other hand, polyvinyl alcohol, polyethylene 
oxide, polyglycolic acid, poly(ε-caprolactone), and polylactic acid are the examples 
of chemically produced plastics, which are susceptible to enzymatic/microbial 
attack. Nevertheless, the material properties of these plastics are not akin to that of 
conventional plastics as a result of which not viable for wide range of uses (Khanna 
and Srivastava 2005). Interestingly, polyhydroxyalkanoate thermoplastics are 
merely fully biodegradable plastics composed of hydroxyl fatty acid units with 

Table 14.3 Approaches for achieving plastic waste free environment

Approaches Feasibility References

Disposal of 
plastic wastes at 
landfill sites

One of the cost-effective approaches to dispose 
recalcitrant plastics is to exploit municipal landfills. 
Nevertheless, landfill sites are insufficient because 
of fast growth in human population and society 
along with accumulation of enormous quantity of 
recalcitrant plastic refuse

Ray and Bousmina 
(2005) and 
Suriyamongkol et al. 
(2007).

Incineration Incineration can be exploited as other alternative 
approach to deal with these conventional plastic 
materials. Unfortunately, incineration of these 
plastics includes production of vast amount of 
carbon dioxide as well as seldom toxic gases, which 
is accountable towards global warming and global 
pollution, respectively. For example, incineration of 
polyvinyl chloride in municipal incinerators 
resulting into formation of extremely poisonous 
dioxins. Furthermore, polystyrene foam products are 
often found composed of chlorofluorocarbons and 
hydrochlorofluorocarbons, which are ozone-
destroying and greenhouse chemicals

Chiras (1994) and 
Ray and Bousmina 
(2005)

Recycling This approach is found to alter the material 
properties of the conventional plastic to a great 
extent due to which the quality of plastics is 
low-grade compared to plastic material 
manufactured from primary manufacturer. Thus, the 
usage of the recycled plastic material is restricted

Fiechter (1990) and 
Ray and Bousmina 
(2005)
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material properties similar to conventional plastics. The attention-grabbing features 
associated with PHAs are thermoplastic, nontoxic, biodegradable, biocompatible, 
hydrophobic, elastomeric, piezoelectric, and optically active with wide range of 
industrial applications on account of desirable material properties. Considering 
these facts, polyhydroxyalkanoate thermoplastic is receiving increasing attention 
and commercial interest globally.

14.2  Role of PHA Thermoplastics in Developing 
a Sustainable Environment

Developments in science and technology have fueled the fast growth of modern 
society, which is certainly unsustainable due to the stress it places on present 
resources/environment. The energy and materials required to sustain the current 
society are mainly obtained from non-renewable fossil resources that will be exhaust 
in near future (Sudesh and Iwata 2008). Apart from this, the worldwide increase 
usage of fossil fuels is responsible for enhanced release of carbon dioxide into the 
atmosphere thereby, contributing towards global warming and climate change 
(Sudesh and Iwata 2008). Xenobiotic conventional plastics usually synthesized 
from finite and non-sustainable fossil fuels that not only persist in soil for a long 
period but also exhibit detrimental effects on environment (Fiechter 1990; Shimao 
2001; Shah et al. 2008; Kumar et al. 2015). Nature’s in-built mechanisms and self-
regulation ability fail to tackle such pollutants as these are not familiar to it. 
Consequently, there has been growing public concern over the unfriendly conven-
tional/petroleum-based plastics due to increased cost of solid waste disposal, 
decreasing capacity of municipal landfills, and the potential hazards from plastic 
waste incineration. All these issues lead to development of polyhydroxyalkanoate 
(PHA) thermoplastics as eco-friendly and sustainable plastics. These biodegradable 
plastics produced from renewable natural resources, i.e., microorganisms such as 
bacteria and cyanobacteria. They depict properties such as good strength, flexibility, 
nontoxicity, impermeability to oxygen, good moisture resistance, and stability 
including material properties comparable to petroleum-based plastics (Kumar et al. 
2015). Moreover, biogenic synthesis of PHA polymeric materials exhibits benefits 
of saving fossil resources along with decrease of carbon dioxide release that makes 
them a significant innovation of sustainable development (Bugnicourt et al. 2014).

The main property that differentiates PHAs from conventional plastics is their 
biodegradability. PHAs are degraded upon exposure to soil, compost, or marine 
sediment. Biodegradability is defined as the ability of a material/substance to be 
broken down, particularly into harmless products, by the action of living things as 
microorganisms. In the natural world, bacteria and fungi are the main members in 
the biodegradation process. The breakdown of materials provides them with precur-
sors for cell components and energy for energy-requiring processes. Biodegradation 
of PHAs under aerobic conditions produces carbon dioxide and water. However, in 
anaerobic conditions, the end/degradation products are carbon dioxide and meth-
ane. Being the product of renewable carbon sources, their production and uses 
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follow sustainable closed cycles (Braunegg et al. 1998). It is anticipated that in the 
near future, PHA thermoplastics, which is relatively young, will attain a unique 
position in modern material technology not only in terms of real commercial appli-
cations but also sustainability and environmental protection.

14.2.1  Polyhydroxyalkanoate (PHA) Thermoplastics

Naturally occurring polyhydroxyalkanoate (PHA) thermoplastics that manufac-
tured in the cytoplasm as spherical and water-insoluble inclusions are polymeric 
materials of 0.2 ± 0.5 mm in diameter made up of a huge number (600–35,000) of 
hydroxyl fatty acid units (Dawes and Senior 1973; Madison and Huisiman 1999; 
Luengo et al. 2003; Khanna and Srivastava 2005). Each monomeric unit of PHA 
thermoplastics commonly includes saturated alkyl group as side chain. However, 
occasionally it can also hold unsaturated, branched, or substituted alkyl groups. So 
far 150 diverse forms of monomeric units of PHA thermoplastics have been 
recorded. The different PHA thermoplastics found to possess different monomeric 
units owing to variation in the supplementation of organic carbon substrates to the 
source microorganism as well as the metabolic pathways operating in the cell in 
which it is synthesized (Rehm 2003; Narayan 2006). PHA thermoplastics are repre-
sented by the common structural formula as presented in Fig. 14.3, where “X” can 
accept up to 35,000 and R-pendant group holds hydrogen atom or huge ranges of 
carbon chains (Lee 1995).

For example, when

n = 1 R = Hydrogen Poly(3-hydroxypropionate)

Methyl Poly(3-hydroxybutyrate)

Ethyl Poly(3-hydroxyvalerate)

Propyl Poly(3-hydroxyhexanoate)

Pentyl Poly(3-hydroxyoctanoate)

Nonyl Poly(3-hydroxydodecanoate)

n = 2 R = Hydrogen Poly(4-hydroxybutyrate)

n = 3 R = Hydrogen Poly(5-hydroxyvalerate)

Fig. 14.3 General 
structure of 
polyhydroxyalkanoates
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Uncommon PHA thermoplastics establish a specific group of polyoxo(thio)
esters that associated with unusual monomer units (Lütke-Eversloh et al. 2001; Jain 
et al. 2010). Such unusual monomer units are introduced in the growing chain of 
PHA thermoplastic backbones merely by means of related carbon substrates supple-
mented to microorganisms. Interestingly, a novel type of sulfur incorporating PHA 
thermoplastic family has been reported that associated with thioester bonds (Lütke-
Eversloh et al. 2001). Uncommon PHA thermoplastics are classified into two types: 
(a) microorganism originated PHA thermoplastics, where PHA polymers manufac-
tured either from natural monomeric units or chemical derivatives of the natural 
ones, and (b) PHA thermoplastics resulting from chemical synthesis or through 
physical alterations of naturally existing polymers (Lütke-Eversloh et al. 2001; Jain 
et al. 2010). Uncommon PHA thermoplastics are categorized into four types based 
on their chemical structure (Lütke-Eversloh et al. 2001; Jain et al. 2010): (i) PHA 
thermoplastics with side chains bearing double or triple bonds or/and diverse func-
tional groups such as methyl, methoxy, ethoxy, acetoxy, hydroxyl, epoxy, carbonyl, 
cyano, phenyl, nitrophenyl, phenoxy, cyanophenoxy, benzoyl, halogen atoms, etc.; 
(ii) PHA thermoplastics, where the monomer unit contributing towards oxoester 
bond undergoes alteration, i.e., the hydroxyl group to be esterified is not positioned 
at third carbon; (iii) PHA polymers, where some oxoester bonds substituted with 
thioester functions, i.e., thioester containing PHA thermoplastics; and (iv) PHA 
thermoplastics manipulated by chemical or physical means.

14.2.2  Classification of PHA Thermoplastics

Based on the size of monomeric units integrated in the polymeric chain (Anderson 
and Dawes 1990; Steinbuchel 1992; Steinbuchel et al. 1992; Madison and Huisiman 
1999), PHA thermoplastic can be classified into five type, viz., (i) short-chain-
length (SCL) PHA thermoplastics, which contain hydroxyacid (HA) monomeric 
units ranging from 3 to 5 carbon atoms (Nawrath et al. 1994; John 1997; Bohmert 
et al. 2000; Gouda et al. 2001; Nishioka et al. 2001; Borah et al. 2002; Thakor et al. 
2003; Kahar et al. 2004; Toh et al. 2008; Sankhla et al. 2010; Bhati and Mallick 
2012); (ii) medium-chain-length (MCL) PHA thermoplastics made up of HA mono-
mer units with 6 to 14 carbon atoms (Mittendorf et al. 1998; Poirier 1999; Solaiman 
et al. 2006; Cerrone et al. 2014); (iii) long-chain-length (LCL) PHA thermoplastics 
composed of HA monomers with 15 or more than 15 carbon atoms (Singh and 
Mallick 2008 2009a, b; Singh et al. 2013 2015); (iv) SCL-MCL PHA thermoplastic 
copolymers comprised of SCL and MCL monomers, which are covalently linked in 
the same polyester molecules (Caballero et al. 1995; Lee et al. 1995a; Doi et al. 
1995; Sheu and Lee 2004; Kahar et al. 2004; Phithakrotchanakoon et al. 2013); and 
(v) SCL-LCL-PHA thermoplastic copolymers, where SCL and LCL monomers are 
covalently associated in the same polymeric molecules (Singh and Mallick 2008, 
2009a b; Sankhla et al. 2010; Singh et al. 2013, 2015). Bacterial species capable to 
synthesize either SCL- or MCL- or LCL-PHA thermoplastics but not normally 
copolymers of SCL-MCL- or SCL-LCL-PHA thermoplastics because of the 
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substrate specificity of PHA synthases that can accept 3-hydroxyacids (3-HAs) of a 
specific range of carbon length (Anderson and Dawes 1990; Kato et al. 1996; Ashby 
et al. 2002; Singh et al. 2013, 2015; Kumar et al. 2015). On the other hand, the PHA 
synthase of Alcaligenes eutrophus can accept 3HAs with 3 to 5 carbon atoms, 
whereas that occur in Bacillus cereus ATCC14579, Pseudomonas sp. A33, 
Pseudomonas fluorescens GK13, Pseudomonas marginalis DSM50276, 
Pseudomonas mendocina DSM50017, Aeromonas caviae, recombinant 
Pseudomonas putida GPp104 PHA−, recombinant E. coli ABCReJ1Pp, recombi-
nant E. coli ABC2PpJ4Pp, recombinant E. coli ABCReJ4Pp, and Pseudomonas 
oleovorans can only recognize 3HAs with 6 to 14 carbon atoms (Caballero et al. 
1995; Lee et al. 1995; Doi et al. 1995; Sheu and Lee 2004; Saharan et al. 2012; 
Phithakrotchanakoon et al. 2013). Interestingly, Pseudomonas aeruginosa MTCC 
7925 can polymerize 3HAs holding 4 to18 carbon atoms (Singh and Mallick 2008, 
2009a, b; Singh et al. 2013, 2015; Kumar et al. 2015).

Poly-3-hydroxybutyrate (PHB) is the general member of SCL-PHA thermo-
plastics. PHB is comparatively rigid as well as crystalline (Park and Lee 2004). 
However, MCL-/LCL-PHA thermoplastics are elastomeric polymeric materials 
with poor tensile strength. Thus, SCL-, MCL-, and LCL-PHA thermoplastics are 
not viable for wide range of commercial uses. Nevertheless, incorporation of 
MCL- or LCL- monomers in PHB backbone results into biosynthesis of SCL-
MCL-PHA copolymer or SCL-LCL-PHA copolymer, respectively, that changes 
the material properties of the polymer, enabling it suitable for different application 
(Matsusaki et al. 2000; Singh and Mallick 2008, 2009a, b; Singh et al. 2013, 2015; 
Singh and Mallick 2015).

14.2.3  PHA Thermoplastics Production in Biological System

A critical review of literature perusal revealed that bacteria from almost 75 varied 
genera including both gram-positive and gram-negative involved in the biosynthesis 
of PHA thermoplastics (Reddy et al. 2003). The existence of PHA thermoplastics in 
cyanobacteria was reported since 1966, where PHA production pathway was found 
to depict resemblance with the heterotrophic bacteria (Wang et al. 2013; Drosg et al. 
2015). However, in the case of plants, the first PHA production was reported in 
1992 in the form of PHB thermoplastic in the cytoplasm of cells of Arabidopsis 
thaliana followed by production of diverse PHA thermoplastics in different species 
via introduction of novel metabolic pathways in the cytoplasm, plastid, or peroxi-
some (Poirier et al. 1992; Poirier 2001). PHA synthases are the main enzymes of 
PHA biosynthetic pathways, which utilize coenzyme A-thioester of (r)-hydroxy 
fatty acids as substrates (Jain et al. 2010). Depending on the primary structures, 
substrate specificity and the subunit composition, PHA synthases can be broadly 
categorized into following four types: (i) Class I/class II PHA synthases involve 
enzymes made up of merely one type of subunit (PhaC) having molecular weights 
ranging between 61 and 73 kDa (Qi and Rehm 2001). On the basis of substrate 
specificity, class I PHA synthases (Cupriavidus necator) specifically exploit CoA 
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thioesters of different (R)-3-hydroxy fatty acids containing 3 to 5 carbon atoms. 
However, class II PHA synthases (Pseudomonas aeruginosa) specifically accept 
CoA thioester of different (R)-3-hydroxy fatty acids having 6 to 14 or 15 or more 
than 15 carbon atoms (Rehm 2003; Ren et al. 2000, Singh and Mallick 2008, 2009a, 
b; Singh et al. 2013, 2015). (ii) Class III PHA synthases (represented by 
Allochromatium vinosum) composed of enzymes with two different types of sub-
units, i.e., PhaC and PhaE subunits having molecular weight of approximately 40 
and 40 kDa, respectively. PhaC subunit depicts amino acid sequence resemblance 
ranging from 21 to 28 % with respect to class I and II PHA synthases. Nevertheless, 
PhaE subunit exhibits no resemblance with PHA synthases. These PHA synthases 
accept CoA thioester of (R)-3-hydroxy fatty acids having 3 to 5 carbon atoms 
(Liebergesell et al. 1992; Liebergesell and Steinbüchel 1992). (iii) Class IV PHA 
synthases (represented by Bacillus megaterium) are found to depict resemblance 
with class III PHA synthases, where the subunit PhaE is substituted by PhaR having 
molecular weight of about 20 kDa (McCool and Cannon 1999, 2001).

The production of PHA thermoplastics in bacteria such as Cupriavidus necator, 
Rhodopseudomonas palustris, Methylobacterium organophilum, etc. and cyano-
bacteria such as Synechococcus sp. MA19, Synechocystis sp. PCC 6803, etc. was 
found to be stimulated as a result of inadequacy of an essential nutrient, viz., sulfate, 
ammonium, phosphate, potassium, iron, magnesium, or oxygen (Dawes and Senior 
1973; Ward et al 1977; Steinbuchel and Pieper 1992; Byrom 1992; Nishioka et al. 
2001; Reddy et al. 2003; Thakor et al. 2003; Panda and Mallick 2007; Bhati and 
Mallick 2012). The PHA thermoplastics pool could be improved through increasing 
the carbon to nitrogen ratio (Shi et al. 2007). Moreover, the accumulation of PHA 
thermoplastics observed under vigorous cell growth without involving restriction of 
any nutrients in bacteria, viz., Alcaligenes latus and recombinant E. coli, incorpo-
rated with PHA biosynthetic genes (Saharan et al. 2012). Table 14.4 summarized 
the production of PHA thermoplastics in various bacterial, cyanobacterial, and 
transgenic plant species.

Biosynthesis of PHA thermoplastics have been comprehensively investigated in 
the past several years, where acetyl-CoA acts as principal precursor to furnish 
3-hydroxyalkanoyl-CoA of diverse lengths as substrates for PHA synthases of 
many specificities (Chen 2010). However, 3-hydroxyalkanoyl-CoA could also be 
generated as a result of β-oxidation of fatty acids of diverse chain lengths (Chen 
2010). In addition, PHA thermoplastics also found to synthesize from acetyl-CoA 
via fatty acid biosynthetic pathway (Kumar et al. 2015; Singh and Mallick 2015). 
Various genes responsible for encoding different enzymes are straightforwardly or 
indirectly engaged in PHA production. The accumulation of PHA thermoplastics by 
different biosynthetic pathways is summarized in Table 14.5.

14.2.4  Material Properties of PHA Thermoplastics

The material properties such as melting temperature (Tm), glass-transition tempera-
ture (Tg), Young’s modulus, elongation to break, and tensile strength are essential 
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Table 14.5 Overview of various PHA thermoplastics biosynthetic pathways

Pathway Abbreviation Enzyme Species References

I PhaA β-Ketothiolase Ralstonia eutropha Sudesh et al. 
(2000)PhaB NADPH-dependent 

acetoacetyl-CoA 
reductase

PhaC PHA synthase

Associated 
way

PhaZ PHA depolymerase Aeromonas 
hydrophila 4AK4

Sudesh et al. 
(2000)

Dimer hydrolase Pseudomonas 
stutzeri 1317

(R)-3-Hydroxybutyrate 
dehydrogenase

Ralstonia eutropha

Acetoacetyl-CoA 
synthetase

Pseudomonas 
oleovorans

II FabG 3-Ketoacyl-CoA 
reductase

Pseudomonas 
putida KT2442

Sudesh et al. 
(2000)

Epimerase Aeromonas 
hydrophila 4AK4,

Mittendorf 
et al. (1998)

PhaJ (R)-Enoyl-CoA 
hydratase/enoyl-CoA 
hydratase I

Pseudomonas 
aeruginosa

Acyl-CoA oxidase, 
putative

Enoyl-CoA hydratase I, 
putative

III PhaG 3-Hydroxyacyl-ACP-
CoA transferase 
Malonyl-CoA-ACP 
transacylase

Pseudomonas 
mendocina, 
recombinant 
Escherichia coli

Sudesh et al. 
(2000), Zheng 
et al. (2005) 
and Taguchi 
et al. (1999)

FabD

IV NADH-dependent 
acetoacetyl-CoA 
reductase

Rhizobium (Cicer) 
sp. CC 1192

Chohan and 
Copeland 
(1998)

SucD Succinic semialdehyde 
dehydrogenase

Clostridium 
kluyveri

Valentin and 
Dennis (1997)

V 4hbD 4-Hydroxybutyrate 
dehydrogenase

OrfZ 4-Hydroxybutyrate-
CoA:CoA transferase

VI Lactonase, putative Mutants and 
recombinant of 
Alcaligenes 
eutrophus

Valentin and 
Steinbüchel 
(1995)

Hydroxyacyl-CoA 
synthase, putative

VII Alcohol dehydrogenase, 
putative

A. hydrophila 
4AK4

Xie and Chen 
(2008)

(continued)
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parameter to assess the effectiveness/usefulness of a PHA thermoplastic for a given 
commodity use. PHB depicts a number of features such as melting temperature (180 
°C), tensile strength (40 Mpa), and Young’s modulus (3.5 Gpa) analogous to con-
ventional plastics, for example, polypropylene (PP) and low-density polyethylene 
(LDPP). Nevertheless, PHB thermoplastic is not only rigid, crystalline, and brittle 
but also exhibits low elongation to break that restricts its potential application (Table 
14.6). Therefore, it is very important to improve the material properties of PHB 
thermoplastics so that desirable features could be attained for various applications. 
This can be achieved by co-monomer integration into the PHB thermoplastics back-
bone that results into biosynthesis of P(3HB-co-3HV), SCL-MCL-PHA, and SCL-
LCL-PHA copolymers, i.e., PHA copolymers with improved material properties. 
Among PHA copolymers, copolymers of SCL-MCL-PHA or SCL-LCL-PHA ther-
moplastics revealed superior material properties over SCL-, MCL-, or LCL-PHAs 
or even P(3HB-co-3HV) copolymers marketed under the trade name of BIOPOL® 
(Byrom 1992; Lee 1995; Matsusaki et al. 2000; Singh and Mallick 2008, 2009a, b, 
Singh et al. 2013, 2015; Singh and Mallick 2015). These PHA copolymers depicted 
much improved material properties akin to that of conventional plastics such as 
polypropylene (PP) and polyethylene (PE) (Kumar et al. 2015; Singh and Mallick 
2015). Table 14.6 showed comparison on the material properties of PHA polymers 
with common conventional plastics.

Pathway Abbreviation Enzyme Species References

VIII ChnA Cyclohexanol 
dehydrogenase

Acinetobacter sp. 
SE19, 
Brevibacterium 
epidermidis HCU

Brzostowicz 
et al. (2002)

ChnB Cyclohexanone 
monooxygenase

ChnC Caprolactone hydrolase

ChnD 6-Hydroxyhexanoate 
dehydrogenase

ChnE 6-Oxohexanoate 
dehydrogenase

Semialdehyde 
dehydrogenase, putative 
6-hydroxyhexanoate

Dehydrogenase, 
putative

Hydroxyacyl-CoA 
synthase

Chen (2010)

Table 14.5 (continued)
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14.2.5  Applications of PHA Thermoplastics

The interesting properties associated with PHA thermoplastics such nontoxicity, 
elastomeric, biocompatibility, piezoelectric, optically active, impermeable to gas, 
biodegradability, and hydrophobicity are accountable for various commercial uses 
(Chen 2010; Kumar et al. 2015; Singh and Mallick 2015). The PHA thermoplastics 
depict the following industrial application in the field of: (i) PHA thermoplastics as 
packaging materials (PHA thermoplastics were exploited for manufacture of bot-
tles, packaging films for applications as containers and paper coatings, shopping 
bags, disposable substances as razors, diapers, feminine hygiene products, cosmetic 
containers and cup, upholstery, medical surgical garments, carpet, compostable 
bags and lids, tubs for thermoformed articles, tray for foods, utensils (Vincenzini 
and Philippis 1999; Chen 2010); (ii) PHA thermoplastics as agricultural delivery 
carrier (PHA thermoplastics could be exploited as sustainable platform for the con-
trolled release of fertilizers, plant growth regulators pesticides as well as herbicides, 
seed encapsulation, and covering foils (Vincenzini and Philippis 1999); (iii) PHA 
thermoplastics as Biomedical implant materials (PHA thermoplastics have been 
utilized to make devices together with sutures, meniscus repair devices, suture fas-
teners, tacks, rivets, staples, surgical mesh, surgical pins, repair patches, screws, 
bone plates and bone plating systems, cardiovascular patches, slings, atrial septal 
defect repair devices, guided tissue repair and regeneration devices, bone marrow 
scaffolds, tendon repair devices, spinal fusion cages, dural substitutes, ocular cell 
implants, skin substitutes, articular cartilage repair devices, ligament and tendon 
grafts, meniscus regeneration devices, bone graft substitutes, vein valves, nerve 

Table 14.6 Comparative account on the material properties of PHA thermoplastics with common 
conventional plastics

Property PHB

P(3HB-co-
3HV)

P(3HB-co-
3HA)

P(3HB-co-3HV-co-3HHD-
co-3HOD)

PP LDPE

(mol 
fraction 
80:20)

(mol 
fraction 94: 
06)

(Mol Fraction 
84.8:7.2:3.1:4.9 – 
95.7:1.0:1.8:1.5)

Tm (°C) 180 145 133 115 to131 176 130

Tg (°C) 4 −1 −8 −8 to −14 −10 −36

Crystallinity (%) 60 56 45 – 50–
70

20–50

Young’s modulus 
(Gpa)

3.5 0.8 0.2 0.2–0.3 1.7 0.2

Tensile strength 
(Mpa)

40 20 17 17–19 38 10

Elongation to 
break (%)

5 50 680 682–723 400 620

Singh et al. (2013), Kumar et al. (2015) and Singh and Mallick (2015)
Tm melting temperature, Tg glass-transition temperature, 3HA: [3-hydroxydecanoate (3 mol%), 
3-hydroxydodecanoate (3 mol%), 3-hydroxyoctanoate (<1 mol%), and 3-hydroxy-cis-dodeceno-
ate (<1 mol%)]; PP, polypropylene; LDPE, low-density polyethylene
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guides, bulking and filling agents, orthopedic pins including bone filling augmenta-
tion material, pericardial patches, stents, adhesion barriers, bone dowels, hemostats, 
and wound dressings (Vincenzini and Philippis 1999; Chen 2010; Saharan et al. 
2012); (iv) PHA thermoplastics as drug delivery (PHAs could be exploited as 
potential drug carrier and retarded drug release (Vincenzini and Philippis 1999). 
Homopolymers as well as copolymers of lactate and glycolate are extensively 
exploited towards commercially accessible sustained release products for drug 
delivery. Nevertheless, drug release cannot be completely regulated owing to degra-
dation of lactate and glycolate copolymers through bulk hydrolysis (Pouton and 
Akhtar 1996). In this regard, PHA thermoplastics emerged as attractive alternative 
due to their unique properties such as biodegradability, biocompatibility, and degra-
dation by surface erosion (Gould et al. 1987). Brophy and Deasy (1986) found that 
there was enhancement in liberation rate of sulfamethizole from irregularly shaped 
PHB microparticles as the molecular weight of polymer increased. To date, only 
PHB and P(3HB-co-3HV) copolymer were investigated for their potential towards 
controlled drug release. It is anticipated that other family members of PHA thermo-
plastic with different features will further improve the controlled release properties 
for the drug release (Chen 2010). We are at early stage in exploring such applica-
tions. Therefore, this field needs intensified research and innovation to explore the 
actual potential of PHA thermoplastics); (v) PHA thermoplastics as biofuels (it is 
anticipated that in the near feature the PHA thermoplastics act as potential precursor 
for the production of biofuels. For example, methyl esters of 3-hydroxybutyrate and 
MCL 3-hydroxyalkanoate produced through esterification of PHB and MCL-PHA 
could be exploited as biofuels (Zhang et al. 2009); and (vi) PHA monomers as drug 
(PHA monomers could be exploited as drug. This fact is evident from 3-hydroxybu-
tyrate (3HB) and its derivatives that showed effect on cell apoptosis including cal-
cium ion (Ca2+) concentration in the cytoplasm of glial cells of mouse (Xiao et al. 
2007). Under the influence of 3HB and its derivatives, the % cells experiencing 
apoptosis reduced considerably and was evident from flow cytometry. In vitro 
investigation, it was observed that 3HB derivatives intensely raised the Ca2+ concen-
tration in the cytoplasm, where the extracellular and the intracellular Ca2+ together 
acted as pool for such Ca2+ concentration increase).

14.2.6  Current Commercial Status of PHA Thermoplastics

To date, the marketable production of PHA thermoplastic, i.e., 3-hydroxybutyrate 
and 3-hydroxyvalerate [P(3HB-co-3HV)] copolymer, is carried out by Metabolix, 
Inc. (USA) exploiting bacterium Cupriavidus necator, where 80 % of dry cell 
weight (dcw) P(3HB-co-3HV) copolymer synthesis have been reported (Byrom 
1992). PHA thermoplastic market is at its initial phase of technology progression 
and still not achieved the cost-effective scale of polymer production (Kumar et al. 
2015). The foremost hurdles stopping the marketable use of bacterial PHA is its 
high production price contributed through supplementation of expensive carbon 
substrates during bacterial fermentation. Specifically, almost 30–50 % of the overall 
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PHA production cost is due to the organic carbon substrate (Lynd et al. 1999; Choi 
and Lee 1999; Braunegg et al. 2004). For example, the recombinant E. coli with a 
PHB thermoplastic quantity of 157 g l−1 and a PHB thermoplastic of 77 % (dcw), 
the cost of carbon substrate is raised by 38 % of the entire cost when the production 
scale was assumed to be 1,00,000 tons year−1 (Choi and Lee 1999). Therefore, to 
diminish this shortcoming, photoautotrophic hosts (plants and cyanobacteria) and/
or alternate economical carbon substrates are getting the present consideration. 
However, plant-based PHA production undergoes some shortcomings, viz., low 
expression level (Table 14.4), long growth period, etc. which make the system less 
preferred for large-scale exploitation (Singh and Mallick 2015). Thus, cyanobacte-
ria are observed as eye-catching hosts for the production of PHAs due to their neg-
ligible nutrient need, competence to convert “greenhouse gas” into biodegradable 
plastics through photosynthetically, and non-requirements of fertile lands for their 
cultivation as most of them are aquatic in nature. Regardless of these benefits, the 
notable obstacle in photosynthetic synthesis of PHB thermoplastic in cyanobacteria 
is the shortage of a cost-effective viable mass cultivation system. It was reported 
that ongoing mass cultivation of cyanobacteria have productivity up to 10–15 g dry 
wt/m2 day−1 in sunlight covering area. Furthermore, the cost-effective harvesting of 
these tiny cyanobacterial cells/filaments is additional drawback related to cyanobac-
terial production of PHA (Belay 2004).

Exploration of economical substrates is found to be another possibility for PHA 
thermoplastic production. The utilization of organic wastes, viz., swine waste liquor, 
palm oil mill effluents, and vegetable including fruit wastes, is being observed as 
alternative substrates for decreasing the manufacture cost of PHA thermoplastic 
(Hassan et al. 1996, 1997a, b; Meesters 1998; Reis et al. 2003; Salehizadeh and van 
Loosdrecht 2004). Wastewaters, spent washes, pressed muds, and sludges generated 
from food and brewery industries, municipal sewage, etc. hold significantly large 
quantity of organic materials, for example, volatile fatty acids (VFAs). The VFAs 
such as acetic, propionic, and butyric acids are precursors of PHA thermoplastics 
(Ruan et al. 2003). Combined benefits of decreasing disposal price as well as manu-
facture of valuable products could be anticipated if waste components/products 
could be exploited as carbon source for PHA thermoplastics production. Thus, vari-
ous investigators conducted study on PHA thermoplastics production from acti-
vated sludge supplemented with malt waste, acetate, volatile fatty acids, paper mill 
wastewater or rice grain-based distillery spent wash, municipal wastewaters alone 
as well as supplemented with carbon sources, fermented food waste, synthetic 
wastewater, and also anaerobic wastewaters (Singh and Mallick 2015). Furthermore, 
prices for process development exploiting mixed cultures could be considerably 
decreased since simple, non-sterilizable reactors with inexpensive substrates require 
less process control compared to a pure culture (Satoh et al. 1998; Reis et al. 2003; 
Salehizadeh and van Loosdrecht 2004). Exploitation of open mixed microbial cul-
tures enables the use of diverse substrates as the population of microorganisms is 
capable to acclimatize constantly with fluctuating substrate (Reis et al. 2003). 
Consequently, by means of supplementation of activated sludges and wastes under 
suitable conditions might be an encouraging alternative for PHA thermoplastic 
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production that warrants more research as no exhaustive investigation on the opti-
mization of nutrient removal and PHA production by mixed cultures are available 
(Singh and Mallick 2015; Kumar et al. 2015). However, such mixed culture system 
too showed few limitations such as little PHA thermoplastics content rate and cell 
density, insufficient substrate exploitation ratio, and long acclimatizing time for 
activated sludge. Considering these, economical substrates such as whey, nonedible 
plant oils, hydrolysates of starch (corn and tapioca), molasses, as well as cellulose 
could be exceptional carbon sources for bacteria for manufacturing PHA thermo-
plastics that could contribute towards significant cost-effective advantages (Singh 
and Mallick 2015; Kumar et al. 2015). Many investigators found to conduct study 
on PHA thermoplastic production using diverse bacterial strains such as Azotobacter 
chroococcum, recombinant E. coli, Ralstonia eutropha, Pseudomonas cepacia, 
Brevundimonas vesicularis, Bacillus megaterium, Pseudomonas aeruginosa, 
Burkholderia cepacia, Pseudomonas putrefaciens, Haloferax mediterranei, 
Hydrogenophaga pseudoflava, Serratia ureilytica, etc. to convert cost-effective sub-
strates into PHA thermoplastics (Singh and Mallick 2015; Kumar et al. 2015). It is 
anticipated that increasing and advanced research work on PHA thermoplastic pro-
duction using bacterial strains with cost-effective substrates could be utmost cost-
effective approach pertaining to economical PHA polymers production and effective 
commercialization of PHA thermoplastic in future (Singh and Mallick 2015; Kumar 
et al. 2015).

14.3  Conclusions

Polymers are the leading products of modern chemical industry that constitutes the 
backbone of existing society. Among these polymers, conventional plastics emerged 
as unique and extraordinary polymer in modern material technology because of 
their anticipated material properties including resistant to degradation, stability, and 
prolonged durability that enable them for various industrial uses. Nevertheless, such 
wonder properties associated with these plastics turn out to be harmful to environ-
ment/ecosystem when out of usage especially because of primarily xenobiotic 
nature. Disposal of plastic wastes at landfill sites, incineration, and recycling are 
viable approaches for acquiring plastic garbage-free environment depicted limita-
tions. As a result, global research is powered towards the development of eco-
friendly and sustainable bioplastics such as polyhydroxyalkanoate (PHA). Owing to 
material properties comparable to conventional plastics, PHA thermoplastics open 
up various commercial applications. However, the notable hurdles preventing the 
marketable exploitation of PHA are its high production price especially contributed 
by exploitation of expensive carbon substrates. Consequently, photoautotrophic 
hosts and alternate cost-effective substrates are receiving the current attention. 
Unfortunately, photoautotrophic-based PHA production suffers some limitations. 
Thus, exploitation of various and novel inexpensive substrates for PHA thermoplas-
tics accumulating microorganism should be encouraged as a way towards cost-
effective PHA thermoplastic production. Overall, as these thermoplastics are in 
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their initial phase of commercial development, therefore, the fruitful, cost-effective, 
and sustainable biogenic production of PHA thermoplastics requires further rigor-
ous research on recombinant microbial species, mixed cultures, proficient fermenta-
tion strategies, recovery, and separation processes with the exploitation of novel 
economical substrates for commercial-level production and marketing.
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