Chapter 18
Parameter Estimation of the Exponential

Smoothing with Independent Regressors
Using R

Ahmad Farid Osman

Abstract As an extension to the state space approach of the exponential smoothing
methods, Osman and King recently introduced a new class of exponential
smoothing methods by integrating regressors into the model. For the model to be
utilized successfully, it requires a proper estimation procedure. The parameter
estimation can be done through optimization using the “optim” function available in
R statistical software. The objective of this paper is to discuss the effective use of
the “optim” function in estimating parameters of the state space model of the
exponential smoothing method augmented with regressors. The study started by
considering several sets of optimization R codes to be supplied to the “optim”
function. These codes use different set of initial values as the starting points for the
optimization routine. The other difference between optimization codes is also in
terms of restrictions imposed on the optimization routine. The second phase of the
study was done by generating a number of simulated time series data with prede-
termined parameter values. The final phase of the study was then conducted by
applying the optimization codes on all simulated series. By analyzing the perfor-
mance of each of the optimization codes to accurately estimate parameters, a
guideline or suggestion on how to effectively execute “optim” function in R with
respect to the use of the new forecasting approach then outlined.
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18.1 Introduction

The exponential smoothing method is an approach that used to produce future
forecasts for a univariate time series. The method is believed to have been around
since 1950s. The classical forms of exponential smoothing method are including
simple exponential smoothing [1], linear [2] and Holt-Winter’s additive and
multiplicative [3]. Following the idea of nonlinear state-space framework, charac-
terized by a single source of errors introduced by [4], the exponential smoothing
method can now be expressed via state space representation. Hyndman et al. [5]
thoroughly explain the state-space approach of the exponential smoothing method.
A total of 30 possible models makes this approach to be very useful in producing
forecasts for any univariate time series data. The disadvantage of this approach,
however, it does not allow for integration of regressor(s) into the model. To miti-
gate this problem, Osman and King [6] introduced an extended version in which
regressor(s) can be included into the model. By taking an example of a basic model
that consist of one regressor, z;,, the method with time varying parameter of
regressor can be expressed as follows:

Vi=bi1FbiiA + (18.1a)
b=t +bl,zflAzL, + o, (18.1b)
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¢, in Eq. (18.1) denotes the level of the series, by, represents a regressor
parameter, ¢ denotes errors, while o and f5; represent the smoothing parameters.
Both slf ; and zj , are representing dummy errors and dummy regressor, respectively.
On the other hand, L, represents the lower boundary for a “switching procedure.”
Detailed explanation on this model is given in Osman and King [6].

Given that this is a new developed method, there is no available statistical
software that can be used to execute parameter estimation for the method at this
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moment. In general, the objective of this study is to determine how best of exe-
cuting “optim” function in R statistical software to estimate parameters of the new
models.

18.2 Research Methodology

There are two main issues involved in estimating parameters of Eq. (18.1). First,
what constraints need to be imposed on the smoothing constants, o and f3;. Second,
what values of starting points (for the two smoothing constants) should be used in
optimization routine. In order to find answer for the first issue, two approaches were
considered that provide different parameter space for the two smoothing constants.
The first approach is to impose parameter space according to the classical boundary
of the smoothing constants in exponential smoothing method, that is between 0 and
1 for o and between 0 and o for 5, as explained by [6] and Osman and King [3].
The second approach is to impose restrictions on eigenvalues of the characteristic
equation of the model to be within the unit circle as explained by Osman and King
[7]. The second approach is known as forecastability concept which gives wider
parameter space for the smoothing constants as compared to the first approach.
With regard to the second issue, different sets of starting points for the smoothing
constants were considered in this analysis that is either 0.01, 0.1, or 0.5 for each of
the smoothing constants.

The analysis which only involves one model as described by Eq. (18.1) was
started by producing two optimization R codes for parameter estimation using two
different sets of restrictions as explained above. The next step then followed to
produce six simulated series with different predetermined values of parameters as
listed in Table 18.1. For all cases of simulation, initial level and growth term were
set to be £y = 500 and b; o = 0.5. By considering a situation where the “switching
procedure” is not required, all simulated series were generated based on the fol-
lowing equations where the error term, ¢, is a normally distributed generated series.

=41 +biA,, + & (18.3a)
b, = ¥4 +bl,z—1Azl,, + oy (183b)
biy=Dbii1+Bre/Ay, (18.3¢c)

Table 18.1 Predetermined parameter values for six simulated series

& B & B
Simulation 1 0.10 0.01 Simulation 4 0.50 0.10
Simulation 2 0.10 0.10 Simulation 5 0.90 0.01
Simulation 3 0.50 0.01 Simulation 6 0.90 0.10
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Table 18.2 Starting points used in optimization routine

o I Possible combination of starting points considered in
optimization, (o, ;)

0.01 0.01 (0.01, 0.01)

0.10 0.01 (0.10, 0.01)

0.10 0.10 (0.10, 0.10)

0.50 0.01 (0.50, 0.01)

0.50 0.10 (0.50, 0.10)

0.50 0.50 (0.50, 0.50)

0.01, 0.10 0.01, 0.10 (0.01, 0.01), (0.01, 0.10), (0.10, 0.01), (0.10, 0.10)

0.01, 0.10, 0.01, 0.10, (0.01, 0.01), (0.01, 0.10), (0.01, 0.50), (0.10, 0.01), (0.10, 0.10),

0.50 0.50 (0.10, 0.50), (0.50, 0.01), (0.50, 0.10), (0.50, 0.50)

The third stage of analysis was done by applying optimization R codes for
parameter estimation on all simulated series. A total of eight sets of starting points
for smoothing constants were used with six of them that are simply combination
between single starting point for both o and f3;. For other two sets of starting points,
either two or three different values of starting points were used for each smoothing
constant. All possible combinations of starting points are then considered in the
optimization routine. Table 18.2 depicts all starting points used in estimation
process. Note that, even though multiple starting points were used, only the one that
gives the smallest value of the objective function was examined.

The estimation process was performed iteratively by minimizing the objective
n
function (nlog (Z a?)) of the optimization code. This optimization procedure
=1
was conducted using “optim” function with the use of Nelder—Mead algorithm. The
final step of analysis was then to evaluate the estimation results by comparing the
predetermined values and the estimated values of all parameters.

18.3 Estimation Results

Estimation results are given in Tables 18.3, 18.4, 18.5, 18.6, 18.7, and 18.8. It can
be seen that in most cases, small values of starting points (o = 0.01, f; = 0.01 and
o= 0.1, f; =0.01) managed to produce the smallest value of the objective
function. This finding, however, is not true for simulation 5 and also not true for
simulations 3 and 4 in which restrictions on parameter space were imposed
according to the forecastability concept. Another finding is that, when the actual
parameters (predetermined values) are small, the use of large starting points has led
to the failure of the optimization routine to produce estimation that close to the
actual values as evident by the results of analysis in the case of simulation 1 and 2.
As mentioned earlier, estimation based on the forecastability concept provides
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Table 18.3 Estimation results for simulated series 1
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Classical boundary

Starting points

Estimated coefficients

Objective function

o B b bio o B

0.01 0.01 490.5707 0.5042 0.0610 0.0080 882.0783
0.10 0.01 490.5887 0.5042 0.0609 0.0080 882.0783
0.10 0.10 491.3279 0.5037 0.0607 0.0079 882.1475
0.50 0.01 489.1021 0.5033 0.4089 0.0135 894.1491
0.50 0.10 492.9763 0.5024 0.0660 0.0079 882.7981
0.50 0.50 490.5314 0.5044 0.0596 0.0080 882.0814
0.01, 0.10 490.5887 0.5042 0.0609 0.0080 882.0783
0.01, 0.10, 0.50 490.5887 0.5042 0.0609 0.0080 882.0783
Forecastability concept

Starting points Estimated coefficients Objective function
o B b bio o B

0.01 0.01 489.9522 0.5060 2.18E-06 0.0049 886.3208
0.10 0.01 490.5844 0.5042 0.0608 0.0080 882.0783
0.10 0.10 490.6940 0.5044 0.0601 0.0082 882.1154
0.50 0.01 493.5977 0.5023 0.0696 0.0084 883.2511
0.50 0.10 490.6622 0.5042 0.0602 0.0080 882.0793
0.50 0.50 489.4188 0.5053 0.0590 0.0078 882.3468
0.01, 0.10 490.5844 0.5042 0.0608 0.0080 882.0783
0.01, 0.10, 0.50 490.5844 0.5042 0.0608 0.0080 882.0783
Table 18.4 Estimation results for simulated series 2

Classical boundary

Starting points Estimated coefficients Objective function
o I %) b1y o B

0.01 0.01 499.6713 0.5437 0.0965 0.0965 888.2322
0.10 0.01 496.6999 0.5679 0.0987 0.0986 885.1003
0.10 0.10 494.0989 0.6097 0.0986 0.0986 887.5330
0.50 0.01 497.1064 0.5793 0.0968 0.0968 887.3669
0.50 0.10 498.8807 0.5607 0.0961 0.0961 887.9756
0.50 0.50 496.0680 0.5655 0.2274 0.0970 899.7527
0.01, 0.10 496.6999 0.5679 0.0987 0.0986 885.1003
0.01, 0.10, 0.50 496.6999 0.5679 0.0987 0.0986 885.1003
Forecastability concept

Starting points Estimated coefficients Objective function
o ﬁl [,0 b1,0 o ﬁl

0.01 0.01 496.8073 0.5991 0.0442 0.0978 880.7533
0.10 0.01 496.0696 0.5654 0.2279 0.0970 899.7527
0.10 0.10 493.4104 0.6271 0.0551 0.1029 882.9565
0.50 0.01 496.0702 0.5655 0.2274 0.0970 899.7527
0.50 0.10 492.9681 0.5885 0.1120 0.1032 891.7968
0.50 0.50 496.6072 0.5614 0.2319 0.0970 899.7886
0.01, 0.10 496.8073 0.5991 0.0442 0.0978 880.7533
0.01, 0.10, 0.50 496.8073 0.5991 0.0442 0.0978 880.7533
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Table 18.5 Estimation results for simulated series 3

A.F. Osman

Classical boundary

Starting points

Estimated coefficients

Objective function

o B b bio o B

0.01 0.01 485.8148 0.5060 0.6596 0.0136 883.3676
0.10 0.01 478.3717 0.5063 0.6515 0.0133 884.3208
0.10 0.10 485.8522 0.5059 0.6595 0.0136 883.3676
0.50 0.01 485.8272 0.5060 0.6591 0.0136 883.3676
0.50 0.10 485.8050 0.5059 0.6593 0.0136 883.3676
0.50 0.50 478.6677 0.5062 0.6550 0.0133 884.2457
0.01, 0.10 485.8148 0.5060 0.6596 0.0136 883.3676
0.01, 0.10, 0.50 485.8148 0.5060 0.6596 0.0136 883.3676
Forecastability concept

Starting points Estimated coefficients Objective function
o B b bio o B

0.01 0.01 485.0704 0.5061 0.6701 0.0131 883.4157
0.10 0.01 476.6314 0.5065 0.6436 0.0132 884.8260
0.10 0.10 478.0573 0.5062 0.6586 0.0133 884.4020
0.50 0.01 485.8229 0.5060 0.6596 0.0136 883.3676
0.50 0.10 485.8287 0.5060 0.6599 0.0136 883.3676
0.50 0.50 479.5304 0.5062 0.6512 0.0133 884.0483
0.01, 0.10 485.8167 0.5060 0.6597 0.0136 883.3676
0.01, 0.10, 0.50 485.8229 0.5060 0.6596 0.0136 883.3676
Table 18.6 Estimation results for simulated series 4

Classical boundary

Starting points Estimated coefficients Objective function
o ﬁl [0 b170 o ﬁl

0.01 0.01 491.8341 0.5654 0.5788 0.1019 883.1337
0.10 0.01 491.8140 0.5654 0.5787 0.1019 883.1338
0.10 0.10 491.8329 0.5655 0.5788 0.1019 883.1338
0.50 0.01 491.9181 0.5669 0.5814 0.1016 883.1428
0.50 0.10 491.8227 0.5655 0.5788 0.1020 883.1338
0.50 0.50 491.8329 0.5654 0.5787 0.1019 883.1337
0.01, 0.10 491.8341 0.5654 0.5788 0.1019 883.1337
0.01, 0.10, 0.50 491.8341 0.5654 0.5788 0.1019 883.1337
Forecastability concept

Starting points Estimated coefficients Objective function
o B %) b1y o By

0.01 0.01 491.8447 0.5654 0.5787 0.1020 883.1338
0.10 0.01 491.8128 0.5654 0.5787 0.1019 883.1338
0.10 0.10 491.8210 0.5655 0.5787 0.1019 883.1338
0.50 0.01 491.8337 0.5653 0.5788 0.1019 883.1337
0.50 0.10 491.8399 0.5653 0.5786 0.1019 883.1338
0.50 0.50 491.8136 0.5655 0.5788 0.1019 883.1338
0.01, 0.10 491.8128 0.5654 0.5787 0.1019 883.1338
0.01, 0.10, 0.50 491.8337 0.5653 0.5788 0.1019 883.1337
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Table 18.7 Estimation results for simulated series 5
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Classical boundary

Starting points

Estimated coefficients

Objective function

o A b bio o B

0.01 0.01 466.0406 0.4934 1.0000 0.0135 889.1787
0.10 0.01 484.8486 0.4929 0.9993 0.0169 883.9131
0.10 0.10 466.5630 0.4942 1.0000 0.0140 888.8960
0.50 0.01 473.3510 0.4972 1.0000 0.0137 885.8410
0.50 0.10 486.2458 0.4965 1.0000 0.0143 883.3803
0.50 0.50 466.0930 0.4936 1.0000 0.0137 889.1486
0.01, 0.10 484.8486 0.4929 0.9993 0.0169 883.9131
0.01, 0.10, 0.50 486.2458 0.4965 1.0000 0.0143 883.3803
Forecastability concept

Starting points Estimated coefficients Objective function
o B b bio o B

0.01 0.01 487.7907 0.4972 1.1450 0.0137 881.5762
0.10 0.01 487.7899 0.4972 1.1447 0.0138 881.5762
0.10 0.10 487.7884 0.4973 1.1446 0.0137 881.5762
0.50 0.01 489.8414 0.5011 1.1408 0.0150 881.7747
0.50 0.10 487.7656 0.4972 1.1446 0.0137 881.5762
0.50 0.50 487.8659 0.4972 1.1493 0.0137 881.5781
0.01, 0.10 487.7907 0.4972 1.1450 0.0137 881.5762
0.01, 0.10, 0.50 487.7656 0.4972 1.1446 0.0137 881.5762
Table 18.8 Estimation results for simulated series 6

Classical boundary

Starting points Estimated coefficients Objective function
o B b big o B

0.01 0.01 488.7248 0.5210 0.9672 0.1045 884.9660
0.10 0.01 488.6802 0.5210 0.9670 0.1046 884.9659
0.10 0.10 488.6616 0.5211 0.9670 0.1046 884.9659
0.50 0.01 488.6761 0.5210 0.9668 0.1046 884.9660
0.50 0.10 488.6834 0.5210 0.9671 0.1046 884.9659
0.50 0.50 488.6856 0.5211 0.9671 0.1046 884.9659
0.01, 0.10 488.6802 0.5210 0.9670 0.1046 884.9659
0.01, 0.10, 0.50 488.6834 0.5210 0.9671 0.1046 884.9659
Forecastability concept

Starting points Estimated coefficients Objective function
o B b bio o By

0.01 0.01 488.6967 0.5210 0.9671 0.1046 884.9659
0.10 0.01 488.6582 0.5210 0.9670 0.1046 884.9659
0.10 0.10 488.6894 0.5211 0.9671 0.1046 884.9659
0.50 0.01 488.6784 0.5210 0.9671 0.1046 884.9659
0.50 0.10 488.6732 0.5211 0.9671 0.1046 884.9659
0.50 0.50 488.6926 0.5211 0.9668 0.1045 884.9660
0.01, 0.10 488.6967 0.5210 0.9671 0.1046 884.9659
0.01, 0.10, 0.50 488.6784 0.5210 0.9671 0.1046 884.9659




182 A.F. Osman

wider space for the smoothing constants. If we look at the estimation result of
simulation 5, the estimated values of o when estimated based on the forecastabilty
concept are much higher than the predetermined value. In this particular case,
estimation performed based on the classical boundary method produced more
accurate estimated value for o.

18.4 Conclusion

As discussed in the previous section, the use of small values of starting points for
smoothing constants in optimization routine is advised as compared to large values
of starting points. However, taking into account the better performance of large
starting points in some cases, it is encouraged to use multiple starting points that is
also include small values of starting points. It is also can be concluded that the use
of forecastability concept in imposing restrictions on parameter space does not
necessarily will produce better estimate than the use of classical boundary concept.
Since it provides wider parameter space for the smoothing constant, it allows for
greater chance of estimation error as well.

The use of classical boundary concept in imposing restrictions to the parameter
space of the smoothing constant is actually sufficient if we want to update the
levels, ¢, and the regressor parameter, b;, based on the weighted average
methodology, the concept used in the classical form of the exponential smoothing
methods. This is because restricting o to be between 0 and 1 and f3; to be between 0
and « in the state-space representation is equivalent to restrict both o and f; to be
between O and 1 in the classical form of the exponential smoothing methods.
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